

Quality Assessment of VoIP Conversations over the Internet

Batu Sat, Zixia Huang, and <u>Benjamin W. Wah,</u>

12/10/2007

Department of Electrical and Computer Engineering and the Coordinated Science Laboratory University of Illinois at Urbana-Champaign, USA

Outline

- Conversation (2-party or multi-party)
 - Conversational dynamics
 - Conversational voice communication quality (CVCQ)
- Network environment and network control
- Trade-offs in CVCQ attributes
- Multi-party transmission schemes
- Experimental results

Multi-Party Conversation

Small group

- Turn-taking process: one person speaking at a time
 - Talk-spurts and pauses during speech
 - Mutual silences in between turns
 - Double talk (in rare cases)
- Roles
 - Previous speaker
 - Current speaker (responder)
 - Passive listener(s)

2-Party Conversational Dynamics

- Common perception of reality in face-to-face conversation
- Multiple realities in conversation over channel with delays
 - <u>Mouth-to-Ear Delay</u> (MED)

- <u>Human Response Delay</u> (HRD): Duration between hearing speech and responding
- <u>Mutual Silence</u> (MS): Perceived duration before hearing response

Multi-Party Conversational Dynamics

• Multiple realities

- Participants perceive different timing and duration of speech & silence events
- MED, HRD, MS

Demonstration

Person	Location	Face-to-Face	Our System	Skype (v3.5)
А	Berkeley (USA)		Ť	🐳 Host
В	Canada		Ÿ	*
С	Dartmouth (USA)		Ť	**
D	Hefei (China)		*	*
E	Hong Kong		Ŷ	*

Conversation Order (HRD=750 ms) using Trace Set 1:

Conversational Metrics

- <u>Conversational Interactivity</u> (CI) (N(N-1) values)
 - Ratio of perceived silence durations before and after person's speech.
 - Asymmetric with increasing MED
- <u>Conversational Symmetry</u> (CS) (N values)
 Summarize the imbalances in CI from one participant's perspective
- <u>Conversational Efficiency</u> (CE) (1 value)
 - Ratio of conversation durations for f2f setting over setting with channel delays
 - Decreasing with increasing MED

Conversational Voice Communication Quality

- CVCQ: Quality of an interactive conversation
 - Listening-only speech quality (LOSQ) of one-way speech (N(N-1) values)
 - Perceived degradations due to network delays
 - CI, CS, and CE can be perceived

- MED cannot be perceived directly
- CVCQ can be represented by (LOSQ, CI, CE, CS)
 - No standard to relate these metrics to MED

Trade-offs in CVCQ

- Trade-offs among (LOSQ, CI, CS, CE) depend on MED
 - MED 🚹 LOSQ 👚 CI, CS, CE 📕
 - MED 📕 LOSQ 📕 CI, CS, CE 1
- Multi-dimensional on all speaker-listener pairs
- Trade-offs among

- Individually perceived metrics (CI, CS, LOSQ)
- Commonly perceived metric (CE)
- Improving CE by minimizing MED for each listener can cause
 - Vulnerability to unconcealable frames due to delay spikes
 - Request for repetition of an utterance \rightarrow Low CE

Perceived Delay Effects (2-Party)

- Perceived effects of MED depend on **conversational conditions**
 - CI and CS depend on the Human Response Delay (HRD)
 - CE depends on Switching Frequency of conversation

Table 2: Statistics of two face-to-face conversations.							
Conversation	Avg. single-	Avg. HRD	# of	Total			
Type	talk duration	duration	$\operatorname{switches}$	Time			
Social	3,737 ms.	729 ms.	7	35 sec.			
Business	$1,\!670 { m \ ms.}$	552 ms.	15	35 sec.			

Outline

- Conversation
- Network environment and network control
 - Network conditions
 - Network control: POS and LC
 - Trade-offs in system-controllable metrics
- Trade-offs in CVCQ attributes
- Multi-party transmission schemes
- Experimental results

Network Conditions: Packet Loss

• Network-loss conditions change in a matter of seconds

ECE Illinois

Stationary models cannot track fast changing conditions

- Retransmission of lost speech packets not feasible in real-time VoIP
 - Redundancy needed to conceal lost packets at receiver
 - Piggybacking previously sent frame(s) in current packet
 - Require receiver to wait for redundant packet
 - Too frequent packet transmissions cause congestion

Network Conditions: Packet Delay

ECE Illinois

• Packets experience network delays with jitters and spikes

- Speech needs to be played smoothly in the presence of jitters and delays
 - Employ jitter-buffers and adaptive play-out scheduling (POS)

Multi-Party Internet Traffic Behavior

Large variations in delay, jitter and loss

- Disparities across destinations from a single source
- Correlations in delay spikes from one source

wan to Xian (China), Canada, California (USA) and Czech at 1:00 CST in August 2007 (Trace 4).

Outline

- Conversation
- Network environment and network control
- Trade-offs in CVCQ attributes
 - Trade-offs via system controllable metrics
 - CVCQ representation
 - Subjective tests
- Multi-party transmission schemes
- Experimental results

Design Goals

- Observations on multi-party VoIP conferencing:
 - Multiple perspectives over delayed channels
 - − Disparities in network conditions across speaker-listener pairs
 → asymmetry
 - Trade-offs among multiple quality metrics (LOSQ, CI, CE, CS)
 - Not scalable by P2P extension of two-party VoIP system
- Design a VoIP conferencing system with high conversational quality that is consistent across time and participants.
 - Multi-party transmission topology
 - Loss concealment schemes

ECE Illinois

- Play-out scheduling schemes

VoIP System Architecture

• Speaker/Listener

- Perceptual metric: CVCQ
- Measurable metric: LOSQ, CI, CE, CS
- Conversational conditions: SF, HRD
- Delays introduced/perceived
- VoIP client
 - Speech encoding/decoding
 - Mixing of received streams
 - Network Control
 - Loss Concealments
 - Play-out scheduling
 - Measurable metrics (MED_{est}, UCFP)
- Transmission scheme
 - Receiver: single or multiple
 - Sender: single or multiple
 - Overlay network control (if present)

Network Control via POS & LC

- Goal: Mitigate network imperfections
- System-observables
 - Network-loss rate & burstiness
 - Network delays & jitters
- System controls

- Redundancy rate (degree of piggybacking)
- Play-out schedule of speech segments
- Intermediate quality metrics (system-controllables)
 - Un-concealable Frame Rate (UCFR)
 - Un-concealable Frame Pattern (UCFP)
 - Mouth-to-ear delay (MED)

Trade-offs in System-Controllable Metrics

- Trade-offs between UCFR and MED
 - Depending on network conditions
 - Must be adaptive

Network C	ontrol used	Network Delay Condition				
under conditions		Low Jitter	High Jitter			
Network	Low Loss	No-redundancy Short & slow changing MED	No-redundancy UCFR improves gracefully with MED			
Condition	High Loss (Bursty)	Redundant Piggybacking MED to allow receipt of redundant packets	Redundant Piggybacking High MED to reduce UCFR			

CVCQ Representation

- CVCQ = (LOSQ,CI,CE)
 - Point in 3-D space
- CI and CE depend on MED and conversational conditions
 - Given conversational condition
 - Restricted to curve (e.g. C_business, C_social) on (CI,CE) plane
 - Restricted to plane (e.g. P_business) on (LOSQ,CI,CE) space

IEEE Int'I Symposium on Multimedia, 2007

75

80

85

Conversational Efficiency

90

Trade-offs in CVCQ Attributes

- LOSQ depends on MED, redundancy, codec, and network conditions
- For given codec, network conditions + POS/LC policy

ECE Illinois

Restricted to a curve on the P_business plane in (LOSQ,CI,CE) space

- Different planes for different conversational conditions
- Different curves for different network conditions + POS/LC policy

Subjective Tests: Comparative MOS

- Comparing perceived quality of two conversations (ITU P.800)
 - Subjects asked to compare A against B
- Illustration of user preference in 2-D

- Direction of arrow represents preference
- Length of arrow represents strength of preference

ble 3: Comparison MOS tests:	User responses
User response	CMOS score
A is strongly preferred against B	-2
A is preferred against B	-1
A and B are preferred equally	0
B is preferred against A	1
B is strongly preferred against A	2

Outline

- Conversation
- Network environment and network control
- Trade-offs in CVCQ attributes
- Multi-party transmission schemes
 - Overlay network topology
 - Previous work on coding, POS, and LC
 - Proposed POS and LC
- Experimental results

Multi-party Transmission Schemes

- Decentralized: P2P unicasts from speaker to listeners
 - Not scalable in the number of participants
 - Near-end congestion at senders
- Centralized: Single "Host" relays to all participants
 - Multiple simultaneous speakers
 - 1. Decode \rightarrow Mix \rightarrow Re-encode \rightarrow Send new packet to listeners
 - 2. Relay packets (combining packets to the same destination if possible)
 - Host may be overloaded
- Hybrid

- IP Multicast: Not fully adopted by ISPs to allow global availability
- Overlay Network: Virtual network over VoIP clients
 - Only a subset of the P2P links are used, less strain on any one node

Overlay Network

Trade-off between

- Maximum packet transmission rate of any node in topology
- Maximum end-to-end delay (ME2ED) between any node pair
- Adaptive to changing network conditions
- Proposed topology structure
 - Parent nodes (blue): Fully connected with other parent nodes
 - Relay packets received after combining received packets
 - Children nodes (yellow): Only connected to one parent node

Greedy Design of Overlay Network

- Collect P2P topology network conditions at call establishment
- Find max E2E delay for P2P topology
- Find single parent topology with the best ME2ED
- Add new parent nodes until

- Improvement in ME2ED is small
- OR bottleneck pair (one with ME2ED) is already directly connected (no hope for improvement of ME2ED)

Speech Codecs: Desirable Properties

- High perceptual speech quality under no loss
- Wide-band (16 KHz) encoding of speech
- Low-bit-rate

- Low algorithmic delay and computational complexity
- Robustness to bursty losses
- Multi-mode operation to allow graceful adaptation to network conditions

Speech Codecs

- ITU standardized speech codecs
 - G.722.2: Wideband, ADPCM, [6.6 24 Kbps], 20ms frames
 - G.729.1: Wideband CELP-TDBWE, [8-32 Kbps], 20ms frames
- Propriety speech codecs

- iSAC: Wideband, Hybrid, [10-32 Kbps], [30-60ms framing options], GIPS
- Skype claims to use iSAC in two-party system, codec used in multi-party system is unknown
- Speech Codec used in our system
 - G.722.2, 24 Kbps mode, 40 ms packet period (2 frames)
 - High quality under both lossy and non-lossy conditions,
 - Low algorithmic delay, low computational complexity

Play-Out Scheduling

- Decentralized approach:
 - Trade-offs between MED & LOSQ for each speaker-listener pair
 - May cause asymmetry in conversation perceptions
- Fully centralized approach:
 - Trade-offs between MED & LOSQ for all speaker-listener pairs
 - Overhead in collecting network info & disseminating decision

Observations:

- Limiting factor in CE: Max MED across listeners from source
 Non-bottleneck listener's MED does not affect efficiency
- Disparities in MEDs from different speakers to one listener
 - Bottleneck listener can be different for each speaker

Our Adaptive POS Scheme

• Decentralized approach with side information

- Bottleneck listener for current speaker: determined by previous network statistics
- Each listener finds the individually optimal MED (w/ high LOSQ)
- Non-bottleneck listeners relaxes their MED according to bottleneck info
 - More robust to possible delay spikes
 - More symmetric conversational dynamics across listeners
 - Minimal effect on overall conversational efficiency
- Bottleneck listener uses individually optimal MED, updates clients for future

Loss Concealments

Observations:

ECE Illinois

- Speech quality needs to be consistently high across listeners
- Play-out scheduling cannot conceal packets lost
- Internal error concealment schemes of speech codecs are inadequate
- Disparities in network loss conditions across links

Loss concealment scheme:

- Dynamic loss conditions
- Link-specific (overlay network) loss concealment, rather than end-to-end
- Redundancy decision should be made available for POS schemes at clients
 - To wait adequately to allow for redundant information to arrive in time for play-out

POS/LC Schemes (Bottleneck Path)

• Loss concealment

ECE Illinois

- Control redundancy degree

$$R_{i+FBD} = \min\{R \mid UCFR_i^W(\bar{p}, \bar{R}) \le 2\%\}.$$

- POS
 - Estimate CVCQ curve by conversational and network conditions
 - Adjust system-controllable metrics to maximize user preference along curve

Adaptive POS: Previous Work

- None of previous schemes provides consistent balance between CVCQ attributes under changing network conditions
 - [11]: open loop scheme calculates running estimates of mean and variations in network delays and choose play-out delay at the beginning of talk spurt
 - [13]: closed loop scheme adapts LC based on the late loss rate collected in window
 - [15]: trained regression model based on Bernoulli loss models to estimate PESQ

Outline

- Conversation
- Network environment and network control
- Trade-offs in CVCQ attributes
- Multi-party transmission schemes
- Experimental results
 - Experimental setup
 - Demo of multi-way conversation/Skype

Experimental Setup

- 5 client machines (Windows), connected through a router
- VoIP client software (Skype 3.5.0.214) running on each
- Router machine (Linux) drops and delays packets

- For each connection based on PlanetLab traces
- Conversational Human Response Simulator (CHRS) on each
 - Listens to output waveform of VoIP software (other parties' speeches)
 - Waits for 750 ms after other's speech before playing speech
 - Each CHRS knows the pre-determined order for smooth turn switching
 - Conversations are recorded at each client by CHRS for off-line analysis

	Person	Trace Set 1	Trace Set 2	Trace Set 3
	А	CA, USA	UK	NH, USA
	В	Canada	Hong Kong	UK
	С	NH, USA	Finland	Canada
	D	Hefei, China	NH, USA	Hungary
	Е	Hong Kong	Hungary	Hefei, China
ia	, 2007			35

Experimental Results

Offline analysis of conversational recordings

- Calculation of LOSQ (PESQ ITU P.862), CI, CE, CS
- Subjective Comparative MOS tests for conversations
 - Two conversations (Our system & Skype): played in random order
 - Opinions in Comparative Category Rating (CCR) scale {-3,-2, -1, 0, 1, 2, 3}

Set	System	MS [ms]		CI	CS	CE	PESO	CMOS	
		Rsp.	PrSpk.	Lst.	~	~~			
1	Ours	1256	780	1029	1.62	1.68	70	3.477	.0.97
	Skype	2078	853	1510	2.44	1.80	62	2.754	+0.87
2	Ours	1072	780	925	1.35	1.40	73	3.741	. 0. 00
	Skype	1975	866	1462	2.32	2.11	63	2.916	+0.80
3	Ours	1071	780	928	1.36	1.35	72	3.735	.1.12
	Skype	1983	898	1463	2.29	2.40	62	2.995	+1.13

Experimental Results (cont'd)

- Shorter MS, thus better CI & CE
 - Our adaptive overlay network scheme chooses transmission topology that leads to a shorter end-to-end delay
 - Skype uses a single-parent topology based on the client initiating the conference call
- More symmetry (better CS)
 - POS schemes at each client utilizes a centralized side information to relax MEDs
 - Effect of relaxed MEDs to CE is minimal.

Demonstration

Person	Location	Face-to-Face	Our System	Skype (v3.5)
А	Berkeley (USA)		Ť	🐳 Host
В	Canada		Ÿ	*
С	Dartmouth (USA)		Ť	**
D	Hefei (China)		*	*
E	Hong Kong		Ŷ	*

Conversation Order (HRD=750 ms) using Trace Set 1:

Conclusions

- Conversational quality
 - LOSQ, MED

- CI, CS, and CE
- Subjective tests to guide control
- Optimized via intermediate quality metrics
- Trade-offs achieved via network controls
 - LC via redundant piggybacking
 - Suitable mouth-to-ear delays via POS
 - Overlay topology
 - Solution different from 2-party conversation

Figure 12: The planes represent the conditions due to the conversational type. The curve on each plane represents the conditions imposed by the network.

Questions?