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ABSTRACT

In this paper, we propose four methods for equalizing the si-
lence periods experienced by users in a multi-party VoIP con-
versation in order to improve their perceived conversational
quality. To mitigate the unbalanced silence periods caused by
delay disparities in Internet connections, the playout sched-
uler at the receiver of each client equalizes the silence peri-
ods experienced. Our limited subjective tests show that we
can improve the perceptual quality when the network con-
nections are lossy and have large delay disparities. Because
it is impossible to conduct subjective tests under all possi-
ble conditions, we have developed a classifier that learns to
select the best equalization algorithm using learning exam-
ples derived from subjective tests under limited network and
conversational conditions. Our experimental results show that
our classifier can consistently pick the best algorithm with the
highest subjective conversational quality under unseen condi-
tions, and that our system has better perceptual quality when
compared to that of Skype (Version 3.6.0.244).

Index Terms— Delay equalization, multi-party VoIP,
mutual silence, Skype, subjective conversational quality.

1. INTRODUCTION
In a two-party conversation, each client takes turns in speak-
ing and listening, and both perceive a silence duration (called
mutual silence or MS) in between turns. In a face-to-face set-
ting, both clients have a common perspective of the conversa-
tion and experience the same MS as the other. However, when
the conversation is carried out over a network with delays, the
MSs are perceived as alternating short and long silence du-
rations between turns. This asymmetry is caused by the fact
that after A speaks, the silence period experienced by A is
governed by the time for A’s speech to travel to B (called the
mouth-to-ear delay or MEDA,B), the time for B to construct
a response (called the human response delay of B or HRDB),
and the time for B’s response to travel to A (MEDB,A). In
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contrast, after A receives the response from B, the silence pe-
riod experienced before A speaks is only governed by his/her
HRDA. This asymmetry leads to a degraded perception of
interactivity and loss of conversational efficiency (CE) [1].

The extension of a VoIP system from two-party to multi-
party is not straightforward. The perceived effects of delays in
multi-party VoIP is more complex because there may be large
disparities in network conditions between any two clients [2].
Hence, each client may experience different MSs and a dif-
ferent perspective from the other clients. In particular, the de-
sign of transmission schemes for supporting multi-party VoIP
is different from that of two-party VoIP. Unicast transmissions
of speech packets from one speaker to all participants at the
same time may cause congestion near the speaker. In contrast,
a centralized scheme, which Skype employs, utilizes a single
VoIP client as the host to relay all traffic from the speaker to
all participants. This approach may cause both computation
as well as network bottlenecks at the relay.

In our previous work [2], we have developed a dynamic
overlay network (ON) whose parents are fully connected and
whose children are each connected to a single parent. This
approach balances the trade-offs between end-to-end network
delays (which affect conversational dynamics) and packet
transmission rates (which affect network congestion). To
improve the quality of received speech segments, we have
also designed an end-to-end loss-concealment (LC) scheme
by piggybacking redundant copies of previously transmit-
ted packets in the current packet, and a cooperative playout
scheduling (POS) scheme that dynamically adjusts the jitter-
buffer delay at the receiver. As the paths from different clients
to a node can have different characteristics, we use unique jit-
ter buffers for each source client at this node.
Multi-party conversational model. After hearing a

speech segment from A in a multi-party conversation, the next
speaker B waits for a short HRDB before responding. As
is discussed before, another participant, say C, perceives this
switch from A to B differently. Let MEDi,j include the sum
of link delays between i and j and the delay at the jitter buffer
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Fig. 1. A multi-party VoIP conversation.
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a) Non-cooperative POS with fixed jitter delays
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b) Cooperative POS with equalized MEDs for non-bottleneck pairs
Fig. 2. Disparities in MSs for a 5-node multi-party VoIP conference.
(Click the icon for demo.) The average HRD is around 750 ms.

of receiver j. Further, let MSA→B
C be the MS experienced by

C on the switch from A to B (Figure 1), where:
MS

A→B
A = MEDA,B + HRDB + MEDB,A

MS
A→B
B = HRDB (1)

MS
A→B
k/∈{A,B} = MEDA,B + HRDB −MEDA,k + MEDB,k.

Note that the MS perceived by A differs from that of C, since
A waits for a response to his/her own speech (similar to two-
party), but C is currently just listening. To capture this special
case, we define the respondentMS (RMS) MS

i→j
i and the lis-

tener MS (LMS) MS
i→j
k/∈{i,j}, where i is the previous speaker

and k is neither the previous nor the current speaker.
Variations in MS. Some of the variations in MSs in

multi-party VoIP are inevitable. The current speaker experi-
ences HRD (usually the shortest MS) when switching from
the last speaker, and RMS (usually the longest MS) when
switching to the next speaker. These correspond to the MSs in
the two-party case and cannot be reduced without compromis-
ing the perceptual quality. This pair of speakers in a particu-
lar turn are called the bottleneck pair. For example, in Turn
3 in Figure 2, the bottleneck pair consists of the speaker at
BC, Canada, and the speaker at HK, China, where the speaker
at HK experiences an MS of 770 ms (due to HRD), and the
speaker at BC experiences an RMS of 1940 ms (due to 770
ms HRD and round-trip MEDs of 1170 ms). Note that the
bottleneck pair changes from one turn to another.

In contrast, the remaining listeners perceive LMS that do
not contribute to the bottleneck. Each passive listener belongs
to a non-bottleneck pair with respect to the speaker in a given
turn. Although their MSs may have large variations, they can
be equalized by increasing the corresponding delay at each
client. The equalized MSs can contribute to improved per-
ceptual conversational quality. As an example, the LMSs of
the three passive listeners in Turn 3 have been equalized in
Figure 2b. Note that RMS is usually much larger than LMS.

Previously, we have defined conversational symmetry
(CS) [2] as a metric for capturing the variations in MS in a
multi-party VoIP conversation. Here, we slightly modify the
definition to capture the variations in LMS and RMS:

CSk =
maxj MS

i→j
k

minj,j �=k MS
i→j
k

over a past window. (2)

Intuitively, the numerator represents the maximum of the kth

curve in Figure 2b, whereas the denominator is the minimum
while discounting the minimum term of HRD. Note that CSk

for client k should be 1 in a face-to-face conversation.
Approach. Based on the network conditions observed

in Section 2, we present in Section 3 four POS algorithms
and study their performance by comparative subjective eval-
uations. As there are infinitely many network and conver-
sational conditions and conducting offline subjective evalua-
tions to determine the best algorithm under each condition is
infeasible, we study the design of a classifier in Section 4,
using limited number of offline comparative subjective evalu-
ations to learn user preferences in conversational quality. The
classifier learned allows us to choose the best algorithm under
unseen network and conversational conditions at run time.

2. NETWORK & CONVERSATIONAL CONDITIONS
Table 1 summarizes the delay, jitter, and loss statistics of
seven UDP trace sets collected in PlanetLab (grouped into
five classes). The behavior is non-stationary and dynamic
over time. To avoid overwhelming the network with exces-
sive traffic, we have collected each group of one-to-five traf-
fic traces at different times and have put them together into a
single five-by-five trace set. This approach is valid because
the behavior of the five one-to-five trace sets is independent.

We set the one-way end-to-end delay of a packet as:
T = (t2 − Δt2) − (t1 − Δt1), (3)

where t1 and t2 are the sending and arrival times of the pack-
ets according to the local clocks. We synchronize the clock of
node i using its local official NTP server and obtain the offset
Δti. Our approach is valid because the inaccuracy of the local
clocks is much smaller than the end-to-end delay of a packet.

Table 2 summarizes the average, minimum, and maxi-
mum of the lengths of speech segments and the conversation
order of two multi-party social conversations extracted from
a television series. One conversation consists of fifteen turns
from three females and two males, and the other has thirteen
turns from two females and three males.
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Table 1. Internet traces collected in 2007 and 2008 (DL: delay; JT:
jitter; JT60: jitters larger than 60 ms with respect to mean delay; and
LR: loss rate). Delays are classified into low (less than 100 ms), high
(larger than 100 ms), and mixed (a combination of both). Similarly,
jitters are classified into low (less than 5% in JT60), high (greater
than 5% in JT60), and mixed; and losses into low (less than 5%),
high (greater than 5%) and mixed. Shaded boxes indicate the parent
nodes of the overlay network in each trace set [2].

# Location
DL/JT/LR Avg DL(ms) JT60(%) LR(%)
(L/H/M) Min Max Min Max Min Max

1

CA,US

Class 1
L/L/L

45 92 0.2 3.6 0.0 0.1
IL,US 45 63 0.0 2.4 0.0 0.0

Germany 28 92 0.0 2.4 0.0 0.2
MD,US 58 90 2.4 2.6 0.0 0.0

UK 29 88 0.0 2.5 0.0 0.2

2

NY,US

Class 1
L/L/L

26 52 0.0 0.0 0.0 0.0
OR,US 25 60 0.0 0.0 0.0 0.0
TX,US 26 31 0.0 0.0 0.0 0.0
CA,US 11 39 0.0 0.0 0.0 0.0
MO,US 17 54 0.0 0.0 0.0 0.0

3

BJ,CN

Class 2
M/L/L

50 284 0.4 0.6 0.0 0.0
IL,US 120 219 0.0 0.2 0.0 0.0

Hungary 120 290 0.4 0.7 0.0 0.0
SH,CN 83 301 0.1 2.8 0.0 0.1
Taiwan 131 319 0.0 7.5 0.2 0.3

4

SD,CN

Class 2
M/L/L

22 242 0.0 0.9 0.1 1.4
Japan 70 226 0.0 0.0 0.0 0.5
TJ,CN 27 244 0.0 0.0 0.0 1.1
TX,CN 124 165 0.0 0.0 0.0 0.0

Uruguay 121 242 0.0 0.1 0.0 0.0

5

CA,USA

Class 3
L/L/M

42 178 0.0 0.1 0.0 0.0
Canada 53 148 0.0 0.0 0.0 3.6

HK 101 131 0.0 1.3 14.3 17.1
NH,US 49 129 0.0 0.1 0.0 0.2
AH,CN 97 194 0.0 0.0 0.0 0.1

6

Canada

Class 4
L/M/L

58 202 0.0 2.2 0.0 0.7
Inda 248 352 12.2 12.9 3.7 4.2

CA,US 32 185 0.0 0.8 0.0 0.4
SC,CN 46 301 0.0 0.0 0.0 0.5
AH,CN 33 296 0.0 0.0 0.0 0.5

7

BJ,CN

Class 5
L/M/M

104 199 0.1 5.3 1.9 8.6
UK 88 132 0.0 0.1 0.0 0.4

TX,US 88 163 0.0 2.9 0.0 2.6
Canada 64 199 0.0 1.4 0.0 1.1
SX,CN 107 190 0.0 2.8 0.0 0.0

3. MULTI-PARTY PLAYOUT SCHEDULING

Algorithm 1: Fixed POS. Each client estimates the mean de-
lays from others during call establishment. To accommodate
jitters, MED is set to be 40 ms larger than the mean delay.
Algorithm 2: Non-cooperative adaptive POS. Similar

to a two-party system that updates its MED at the beginning
of each talk-spurt [1], Algorithm 2 selects an MED based on
the recently collected delay statistics for each speaker-listener
pair. At each decision point, statistics corresponding to a past
10-second window is used to determine the MED that would
have allowed 99% of the packets to be in time for playout.
Algorithm 3: Cooperative adaptive POS.We have pre-

viously developed a multi-party POS algorithm that considers
the difference between the bottleneck and the non-bottleneck
nodes [2], where the former is the node that would experience
the longest MS when a particular client is speaking. In most
cases, the bottleneck node is the previous speaker, due to the

Table 2. Characteristics of speech segments in two five-party social
conversations used in our experiments.

Set
Length (ms)

Conversation OrderAvg Min Max
1 2222 600 4400 ACABCEDBCDBCDBC
2 1603 630 3350 BACBDECDBCB

inherent structure of RMS in (1).
Algorithm 3 uses the MED found by Algorithm 2 when

the listener is the bottleneck. For non-bottleneck listeners, it
relaxes the MED to a level larger than that chosen by Algo-
rithm 2. This relaxation is limited to a level where the MS ob-
served by the non-bottleneck client equals to the MS observed
by the bottleneck client. The relaxation is calculated based
on a heuristic parameter that linearly combines the maximum
and the minimum allowed MEDs [2]. It improves the con-
cealment of jitters as well as conversational symmetry, with-
out significant effects on conversational efficiency (CE) [2].
Algorithm 4: Distributed equalization. More aggres-

sive equalizations of LMSs for non-bottleneck nodes will lead
to CS closer to 1. However, this may lead to reduced CE be-
cause it unnecessarily delays all non-bottleneck nodes, who
may become the speaker in the next turn and cannot speak
until he/she finishes the current turn. Hence, there is a de-
sirable CS and LMS that will result in the best quality. User
feedbacks have shown that the maximum LMS should be less
than 1500 ms and that a suitable CS is between 1.3 and 1.7.

Algorithm 4 dynamically adjusts the MS of each listener
based on the history of MSs. To accommodate fluctuations
in MSs, we estimate a range of MSs [EMSmin, EMSmax]
that cover most of the MSs in a conversation. The algorithm
considers three cases. a) If the MS of a listener in the last
turn is the same as the RMS and is very large, then its cur-
rent LMS is usually small as compared to RMS and is set to
EMSmax. This allows less abrupt changes in MSs from the
last turn. b) If the MS in the last turn and the current LMS
without adjustment are both less than EMSmin, then we set
it to EMSmin. c) If the previous MS is within the range, then
we use the moving average of the previous several MSs that
are also within the range. Since our results indicate that the
size of the moving window has limited influence on percep-
tual quality, we set the window size to cover three turns. Note
that our method does not depend on the HRD in each turn.

Algorithm 4 can run in a non-cooperative or cooperative
fashion. In a non-cooperative approach, one client may set its
MS to be unnecessarily large because it applies the algorithm
without considering the MSs in other clients. In a cooperative
approach, each client broadcasts its history of MSs to other
clients at the end of a turn. Based on the listener’s estimated
MS and by assuming that this client is the next speaker, the
strategy predicts the MSs of all listeners in the next turn us-
ing (1). We first set MEDi,j to be the average end-to-end
delay from i to j plus 60-ms jitter delay at the receiver. If the
equalized MS in the current turn causes any MS in the next
turn to be larger than EMSmax, we reduce the current MS to
a reasonable level according to the current delay statistics.
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4. EVALUATION OF CONVERSATIONAL QUALITY
We use comparative subjective evaluations as well as objec-
tive measures because there is no single objective measure
that can capture user preferences of conversational quality in
multi-party VoIP. We have developed a multi-party VoIP sim-
ulator [2] that generates conversations using different POS
algorithms under each given set of network traces and pre-
recorded conversations encoded by the ITU G.722.2 wide-
band codec. It uses a fixed 750ms HRD and employs an adap-
tive overlay network and link-based loss concealments [2].

The objective measures captured include the PESQ (ITU
P.862) of each speech segment; the statistics of MSs of the
conversation; the MS ratio (MSR), which is the average ratio
between the maximum and the minimum of two consecutive
MSs; and the conversational efficiency (CE) [2].

The subjective evaluations are conducted by subjective
tests. Subjects were asked to listen in a random order to pairs
of conversations generated by two algorithms using our sim-
ulator and were asked to indicate their preferences. We use a
simplified version of the comparative category rating (CCR)
in ITU P.800 and ask subjects to choose among {A better then
B, A about the same as B, A worse than B}.

To determine the dominant opinion between two algo-
rithms under a given condition (with > 50% probability and a
certain level of statistical significance), we model the subjec-
tive opinions by a multi-nomial distribution with 3 possible
outcomes, assuming the independence of samples. We then
conduct hypothesis testing by selectively combining two op-
tions and have an equivalent binomial distribution that repre-
sents the for and against probabilities of the opinion. Option
i is dominant if the following hypothesis is accepted:

H0 :

(
pi,

∑
j �=i

pj

)
is drawn from binomial(N, p ≥ 0.5) (4)

where N is the number of samples. For instance, for 90%
(resp., 80% and 70%) significance, 27 (resp. 25 and 24) out
of 45 samples need to agree on an opinion.

Since there are infinitely many network and conversa-
tional conditions, it is impossible to conduct offline subjec-
tive evaluations to cover all cases. For this reason, we design
a classifier, similar to that in [3], that uses a limited number
of comparative subjective evaluations to learn the user prefer-
ences and to generalize them to unseen but similar conditions.

We choose a comprehensive set of traces that span the
space of possible conditions in conducting subjective tests.
We train an SVM-based classifier [LIBSVM], using the ob-
jective measures obtained for two conversations as input and
their subjective preference as output. We train 3 SVM classi-
fiers, each learning the mapping between the objective mea-
sures and the probability of one of the three options ({A >

B}, {A ≈ B}, {A < B}). Both the subjective and the pre-
dicted opinion distributions are processed to determine if one
of the opinions is dominant with a prescribed level of statisti-
cal significance, based on the number of samples collected.

5. EXPERIMENTAL RESULTS
In generating learning patterns for the classifier, we conducted
pair-wise comparisons between two algorithms under the first
conversational order in Table 2 and each of the five trace sets
1, 3, 5, 6 and 7. Also included in the learning patterns are the
subjective-test results between the multi-party version (3.6)
of Skype and Algorithm 4 using trace set 4.

In testing the classifier learned, we used all the trace sets
and the same conversational order, as well as the second con-
versational order in Table 2 and a different part of the trace
file in trace sets 5 and 7 (denoted by 5N and 7N).

Table 3. Partial orders of the algorithms and the multi-party Skype
(SK) in terms of results on subjective tests and tests of the learned
classifier on conversational quality with at least 70% significance.

Trace Partial Order (Subjective) Partial Order (Classifier Output)
Set + Algorithms 1-4 Algorithms 1-4 & Skype
Conv. A1 A2 A3 A4 A1 A2 A3 A4 SK

1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
3 2 2 2 1 3 3 2 1 3
4 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 2

5N 1 1 1 1 1 1 1 1 2
6 2 2 1 1 3 2 1 1 3
7 1 1 1 1 1 1 1 1 2

7N 1 1 1 1 1 1 1 1 2

Table 3 summarizes the partial orders found with at least
70% statistical significance. For trace sets with low delay dis-
parities, losses, and jitters (1, 2 and 4), all five alternatives
are statistically equal. For 5, 5N, 7, and 7N, the four algo-
rithms are mutually equal, and each is preferred over Skype.
Figure 3 further depicts the results of the learned classifier for
trace sets 3 and 6.

A1

A3 A4

SK
A2

=

(a) Trace Set 3 (b) Trace Set 6

A2 A1 SK

A4
A3

= =
(88%) (88%)

(99%)

(88%)

(99%)
(88%)= =

=
(72%)

(96%)

(72%)

(72%)

(98%)

(99%)
(99%)

(81%)

Fig. 3. Partial orders found: an arrow indicates a dominating opin-
ion with the corresponding statistical significance; a missing arrow
indicates that a statistically significant relation is not established.
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