Memory for

Abstract—In this paper, we design some simple schemes for a
variety of searches, each of which may be performed in one complete
imemory cycle using bit-memory logic primarily. The searches we
study include the basic equality search, the threshold searches (both
greater than and less than searches), and most importantly, the
greatest value and the least value searches. For each kind of search,
we present both the algorithm suitable for our needs and the logic
circuit of the memory cell required by the algorithm. Based on the
basic search schemes, an algorithm for ordered retrievalis developed.
A comparison for ordered retrieval schemes is then made between
the proposed scheme and the previous algorithms. Itis found that this
algorithm outperforms all the other algorithms compared, particu-
! larly in the resolution of multiple responses. Finally, issues relating
to LSI implementation, manufacturing defects, modular expansion,
and extension to associative sequential memories are discussed.

Index Terms—Basic search, contént-addressable memory,
equality-threshold search, maximum value search, minimum value
search, multiple match resolution, ordered retrieval.

[. INTRODUCTION

CONTENT-ADDRESSABLE memories (CAM’s), al-
ternatively known as associative memories (AM’s),
have received much attention in the Literature since they
were first described in 1956 [14]. The distinguishing feature
of such memories is that stored words are accessed by
matching some portion of their contents to a search word
| and selecting the first one that matches rather than accessing
. the data using its physical location in the memory as in
. standard random access memories (RAM’s). It can be
' readily seen that CAM’s must depend upon a high degree of
. parallelism in their search schemes in order to compete in
| memory access times with RAM’s. Large speed improve-
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ments can be gained from this parallelism and this makes
CAMs attractive to a wide variety of applications. A good
survey of the current technology in CAM’s can be found in
[12], [3], and [5}.

With the advent of large scale integration (LST) technol-
it becomes feasible to economically implement fast
search algorithms in CAM’s by incorporating much of the
control logic into the memory plane. Several search algor-
ithms for CAM’s have been developed in the past two
decades, [1],[4], [13], [10]. Some algorithms, suchas[13] and
[17] have been based upon distributed logic design, but few
have incorporated a high percentage of their search logic in
the memory cell. An exception to this is found in a design by
Kautz [7] for a special purpose sorting array. His design is
oriented towards ordering, rather than searching, of the
memory, but does include associative capabilities as a
byproduct. .

The trend in associative memory design is toward dis-
tributed logic. Previous designs have placed control logic
outside the storage logic. This control logic includes com-
parison logic, propagation logic, multiple response resolu-
tion logic, arithmetic logic, etc. Ina distributed logic design,
the control logic and the storage logic are designed together.
The controls are brought into the cells as part of the storage
itself. The cells become more complex and have more control
functions associated with them, but it also results in more
homogeneousand modular design. In this paper, we proposc
the basic design of such a memory and present some
searching and sorting schemes and the implementation of

some basic searches using distributed cellular logic which is

considerably fasterthan any of the previous sorting methods.
The capabilities of the cells are actually a subset of the
capabilities of Kautz's augmented CAM array [8]. The
searches that we will examine include the basic equality

_search, the threshold searches (both greater than and less

than searches) and most importantly, the greatest value
search and the least value search.
The following conventions are

used throughout the
paper: '
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the value of the ith word of memory,

the value of the jth bit of the ith word of

memory, :

a priority circuit which is used to sequence

responses in Wp, W,, or Wy,

a circuit used to detect responses in Wy, W,

or W,

the equality enable signal for the jth bit of the

ith word in the equality-inequality search

mode and the least value search mode,
signal which can be gated toset (or reset)any

one of the word control registers W,, W,

W‘h .

the enable signal for the jth bit of the ith word

in the greatest value search,

signal which can be gated to set (or reset)any

one of the word control registers W,, W3,

W,

G the associative memory search mode com-
mand (equality-inequality mode or the least
value mode), :

i an index for a word in the memory,
t<i<m,

I the value of the jth bit of the input/output
register 1,
an index for a bit in the word, 1 <j < n,

k a variable index, 1 <k <n,

L the less than state signal for the ith word of

memory; a signal which can be gated to set
~ (or reset) any one of the word control reg-

isters W,, W5, W, .

Least Significant Bit,

the number of words in the CAM,

the value of the jth bit of the mask register M,

(used in the minimum value search, the

equality search and the threshold searches),

the value of the jth bit of the mask register Af*

(used in value search the greatest),

Most Significant Bit,

the set of all bit positions with M; = 0.

n the number of bits in a word of the CAM.,

P, the synchronization bus signal for the jth

bit-slice in the least value search,

the default-detection bus signal for the jth

bit-slice in the least value search,

an index in the word control logic, 1 <r <4,

the signal for the jth bit-slice shared by the

equality-inequality search and the least value
search,

the value of the search register S,

the value of the jth bit of the search register S,

the search-default feedback bus signal for the

jth bit-slice in the greatest value search,

the synchronization bus signal for the jth

bit-slice in the greatest value search,

oL

L=

m

Ei.n+l

th

Fl’.n;i- 1

LSB

<

.
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V; the default-detection bus signal for the jth
bit-slice in the greatest value search,

Wi, the ith flip-lop of the word control register
W,

W, the word flags register with m flip-flops,

W, — W, results stores or temporary stores in the word

control logic,
w abbreviation for logical OR operation,
€ abbreviation for “an element of.”
v abbreviation for “for all,”
3 abbreviation for “there exists.”

I1. BASIC ASSOCIATIVE MEMORY ORGANIZATION

The associative memory organization shown in Fig. 1 is
used to implement the search schemes to be presented. A
bit-slice is a vertical slice through the memory as arranged in
Fig. 1. The jth bit-slice is made up of the jth bit of every word
in the memory. The search operations are parallel by word
and serial by bit-slice. A minor cycle refers to the time needed
to perform an operation on a single bit-slice and a major
cycle refers to the time needed to complete an operation on
all bit-slices of the memory. Hence, a major cycle for the
present AM organization is composed of n minor cycles
where n is the number of bits in a word. Itis shown later that
some searches will require a longer minor cycle than others,
thereby lengthening the major cycle as well. A “basic”
operation is an operation which may be performed in a single
major cycle. '

1. DEFINITION OF SEARCH OPERATIONS

In each of the following search definitions, the set of words
involved in the search are those where w; , = 1 and i€ {1,
2, ---, m). The result of the search partitions this set of
words into two sets, the set that satisfies the search condition
and the set that does not. Let B; be the content of the ith
word in the memory, S be the content of the search register,
and M be the content of the mask register. That is,

Bf,= z 201—]_8'_-].' S= Z 2"_-"'S1

i=1 i=1

and

M=% 271-M,
i=1
The search is performed only on that part of the search word
which is not masked. In other words, only those S bits for
which the corresponding M bits are 0’s are included in the
matching (comparison) process. Let MZ be this set of bit
positions. Other bit positions with M; =1 are bypassed.
(Note that j = 1 for MSB and j = n for LSB.) We define the
various searches as follows: “

A. Equivalence Searches
1) Equality Search: B, ;= 8, Vje{l1,2,---, n}.
2) Inequality Search: 3k € MZ such that By, # §,.
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Fig. 1. Cellular logic associative memory block diagram,

3) Similarity Search (Masked Equality Search): B, ;= S

Vie MZ.

4) Proximity Search: There is exactly one k€ MZ such*

| that By # Si.

Note: The similarity searc

h is also known as masked-

equality search. It differs from the equality search in that the
mask is effectively not used in the latter while itis used in the
former search. In most cases, this distinction is so
insignificant that the “equality search” is used to mean both
the equality and the masked-equality searches. Unless speci-

fied otherwise, we will assume that all searches are masked.

B. Threshold Searches

1) Greater-Than Search: B; > S.

2) Less-Than Search: B; < S.

3) Greater-Than-or-Equal-To Search: B; = S.
4) Less-Than-or-Equal-To Search: B; < §.

C. Double-Limits Searches
1) Between-Limits Search: Let X and Y be the limits such

that X > Y. Then B, is
a) <Xand > Y,

b) <X and =Y,
c) <Xand >V,
d) £Xand =Y.
2) Outside-Limits Searches: Let X and Y be the limits

such that X < Y. Then B, is

a) <Xor>7,

b) < X or
c) <X or
d) <X or

=
>
=

Y’
Y!
Y.

D. Extremum Searches

2,

2, -+, mh

E. Adjacency Searches
1) Nearest-Above Search: #ke({l, 2, -+, m} such that

B,> B, > S.

1) Least Value Search: Bi < By, vk#i and keil,

-, ml.
2) Greatest Value Search: B; = B,, Yk#i and ke{l,

2) Nearest-Below Search: k€ {1, 2, ---, m} such that

B, < B, < 8.
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There are other nonsearch operations that can be per-
formed in associative memories. These include word
addition, field addition, summation, counting, shifting, com-
plementing, logical sum, logical product, etc. Devices that
incorporate nonscarch operations may be referred to as
associative processors [3]. We will not investigate further
on nonsearch operations in this paper.

IV. ALGORITHMS AND IMPLEMENTATIONS
OF BAsIC SEARCHES

We define a basic search as one which can be completed in
exactly one major cycle, assuming multiple response resolu-
tion as an operation separate from search operations. This
definition applies only to the configuration of the CAM in
Fig. 1. A multiple response is the situation when more than
one word satisfies the given search condition. The multiple
response resolution resolves this situation by means of a
priority circuit [2] or other schemes, e.g,, [9], [6], [16], and
outputs all responders one at a time. Among the scarches
listed in the previcus section, not all of them can be
economically implemented as basic searches. Therefore, we
choose to implement those searches which are most
frequently used as basic searches while the rest can be
performed in a series of the basic searches. As an example,
the between-the-limits search (Y < B; < X)) can be gen-
erated by performing a less-than search (< X }ollowed by a
greater-than-and-equal-to search (= Y) on the responders
of the first search. In the implementation to be presented, the
basic searches are the equality search, the similarity (masked
equality) search, the four threshold searches, and the two
extremum searches. Each of these basic searches can be
performed alone or many combinations of them can be
performed simultaneously. These searches are grouped into
three groups called Mode A, Mode B, and Mode C opera-
tions. The Mode groupings are as follows.

Mode A: The equality search, the similarity search and
the four threshold searches.

Maode B: The least value search.

Mode C: The greatest value search.

Searches in Mode A can be performed simultaneously.
Furthermore, Mode A or Mode B operations can be per-
formed simultaneously with Mode C operations. We will
assume that positive logic is used throughout our designs.

A. Mode A: Equality-Threshold Search Mode

In this mode, the CAM is partitioned according to the
magitade of  the search word 8 into three  sels,
namely, words whivh ae ogqoal 1o 8, wondy which are less
than 8, and words which are greater than 8. The result of this
search mode is stored in two of the word control registers,
W, and W,, and the interpretation is given in the algorithm
to follow. This search mode is characterized by the signal
G = 0, which gates the contents of the search register Sto the
search bus. That is, R;=5;Vje {1, 2, -+, n}. The basic
searches performed in this mode are the equality searches
and the four threshold searches (namely, > S, <8, =8, and
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<S) M, =0 means that S, is not masked while M;=1
means §; is masked.
The three query states arc shown in the following table.

Query State

-

—— O E

SJ'
o 0
1 1
0 d
1 d

d = don’t care

Algorithm A—Mode A Search Operation
I)a) Initialization:
S «—Search word, M «—Mask, G = 0,j=0,
wi,=1 w = 6, wia=0vie{l,2, m}.
b) Data Path Setting:
Gate E; , 1 to wy 3, [y to W, 5, and w;, t0 E; |,
vie{l, 2, -, m}

These data paths and the control signal G are held until the
completion of the major cycle.
2) Let je—j+ 1.
3) Compute
a) Eijor=Ej-(M;+ By, R+ B~ R) Vvieil,
2, -+, m}, simultaneously.
b) d;_j = Ei,j - Bl'.-j : (M; + Bi,j" Rj + Ei.j b EJ), Yie {1,
2, -++, m}, simultaneously.
) Li=Jfuy diy (wired-oR), Vie {1, 2, ", m}, simul-
taneously.
4)Isj=n?
a) Yes—Proceed to step 5).
b) No—Proceed to step 2).
5) Result Interpretation:

wiz (= LYwis (= Ein+1) Interpretation
0 0 B, is greater than search word,
0 1 B; matches search word,
1 0 B, is less than search word,
1 1 [does not occur).

In this search algorithm, the minor cycle is composed of
step 3) alone while the major cycle is composed of steps
2) 4). The resuit of thissearch modec is handled by the match
detector D in the word control logic section. Any multiple
responses will be resolved by the priority circuit C. The

! g, , will be sensitive to B, ; and only to the first bit mismaich between
B,and S. A simpler design usingd, ) = E;. , - B, can be used. [n this case,
d,, will be sensitive to all mismatches between B, and S. Since L; is
obtained by wired-oRing d, /s, the final output voltage of the wired-or will
depend on the number of mismatches. It will be more appropriate to
eliminate this dependence by only taking the first mismatch as what is
done here. We must confess that the exact design is highly
te?hnology-dependent. The above point was pointed out by one of the
referees.
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bit-cell logic needed to implement this equality-inequality
search mode is shown in Fig. 2. The delay in each minor
.cycle is one gate delay. The following example shows the
state of Lyand E; ;fora Mode A search of 6 words, each 5 bits

" long.

Example 1: “Mode A" Search Operation

Search Word—S 10110,

Mask Word—M 00100,

Effective Search Word—S§' 10410 {d = don’t care).

State of {L,, E; ;. ) Lines
at the End of the Minor Cycle

i B, j=0 1 2 3 4 5

| 10111 o1 01l 01 01 0f 00

2 11000 oL 01 00 00 00 00

Memory 3 10010 oL 01 01 01 O 01
Words 4 10110 01 01 01 01 01 O
5 10101 01 01 01 01 10 10

6 (3R] 01 10 10 10 10 10

For interpretation of L;, E; ¢, see step 5) of Algorithm A, for
. Mode A search operations.

. B. Mode B: Least Value Search Mode

In this mode, the search register is no longer needed
" because no search word is used. However, the minorcycleis
' more complicated than that in Mode A. It now consists ofa
| comparison phase and a default phase. Consider the jth
. minor cycle. In the comparison phase, one of the threc
conditions is to be detected: 1) that the bit-siice is masked, 2)
that the bit-slice is not masked and at least one enabled

[EEE TRANSACTIONS ON COMPUTERS, YOL. ¢-27, NO. 9, SEPTEMBER 1978

bit-cell contains a “0,” and 3) that the bit-slice is not masked.
and ail enabled bit-cells contain a “1.” In the first case, all
enable signals to this bit-slice are passed on to the next bit-
slice on the right. In the second case, those enabled bit-cells
containing a “0” will pass its enable signal to the next bit-
cells on the right. In both cases, the minor cycle is complete.
The third case, however, is called the default case and the
default phase is entered. The defauit condition is detected in
the defanlt-detection bus and the default signal Q;is fed back
to the bit-slice via R. R; is connected to the default feedback
circuitry (R; = P; - §;- G) when this search mode is ac-
tivated by setting G = 1. P;is asynchronization signal and it
also serves as the search signal in the comparison phase.
After the default phase, all enabled bit-cells pass their enable
signals to the next bit-cells on the right, thus completing the
minor cycle. The result of Mode B can be stored in either
W, or W, because Mode A does not operate simuitaneously
with Mode B.

The implementation of the Mode B search in ¢ach bit-cell
is shown in Fig 3. Note that this implementation shares
much of the circuitry with that for Mode A and that at the

beginning of the jth minor cycle, R;=0.

Algorithm B—Mode B Search Operation—The Least
Value Search Algorithm

I)

a} Initialization:
G=1,j=0,w,=1w,=0Vie{l,2,--,m
b) Data Path Setting:

Gate E; g to wig, W,y to E;y Vi€ {1,2,---,mj.

The data paths and the control signal G are held until the
completion of the major cycle.
2) Let j—j+ 1
3) Minor Cycle:
a) Comparison Phase: Compute L '

i) Ejor=Eij  (M;+ B, Rj+B;; R)) Viel,
2, -+, m} simuitaneously.

ii) pi(t) = E; ,t - 2) (delay element used to syn-
chronize the feedback of @, via R)) Vie {1, 2, -, mj
simultaneously. :

iil) g;;=Ei; Biy¥ie{l,2.-, m} simultaneously.

g;; = 1 means that B, ; is enabled and equals 0.

iv) P;= |y pij (Wired-oR).

v) @; = & (wired-0R),

Q, = 1 means at least one enabled bit in the jth
column is O. '

vi) R, =P; - Q;- G.

b) Is R;= 17

i} Yes—Default detected, proceed to step 3c).

ii) No-—Default inhibited, proceed to step 4).

¢) Default Phase: Compute £, j,, = Eij
4) Isj=n?

a) Yes—Proceed to step 5).

b) No—Proceed to step 2).
5) Read out the words indicated by w; ; = 1.
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Example 2 shows an example search of Mode B operation
on 5 words, each 10 bits long.

Example 2: “Mode B” Search Operation
a) WORDS in which the least value is to be retrieved:

Word Bijt Positions Ordet
Number 1723 4 56 78910 of
(i) ) Retrieval
1 001 100100 3
2 o0 101! 00t 01 1
3 1 0011100001 5
4 00101061011 2
5 oot 1 o010 11 4

805

b) STATES of all enable lines (E; ;,.,) at the end of the
major cycle:

Note: Minor cycles 3, 5, 8, and 10 go through the default

Word
Number 01 2 3 4 56 7 8 910
(&) ()
1 1110000000
2 111111l Fig 3.
3 1 0000000 O0O0O0
4 1111 t11000°¢0
5 1111 00080660C0C0

phase.
¢) Timing diagram for bit-slice 3 in the major cycle:

23

i,0

Sync+| pDefault

Ty detection
n. R AMbus
i $.9.

3

Bit-cell with least value search logic for Mode B operation.

d) Timing diagram for bit-slice 4 in the major cycle:

Time in Gate Delay units Time in Gate Delay lnits
r————— —r
0123456 74%9 01t 234546
" o " » O O b b 40 . ® & & & & 2 O
! [ [ ' ] [
na 6| T 1 T T 4 ar_T_-l.J__L_______
Yo [ | | P DS
Pyl LT L ISR
1. s [ £ } Ry T, Vv 1 1
Ryglt v T v LR I S
! [ 1 | [
roob ' 3 B E i
! . E s 1L; o | 1 1.4 1_]4 [TIE}'S 1.4 [11| e
1.3 8.3 rha e 0 o i i ' Eysgla it
= LT R PU S S I N SR P 1s b g
P1a H 170 i T ) Malr—1
1;3 0l 1 | i [P B - 0" 1 a4 s
q 1 [ \ T 2,4 .4 = 12,5 q 1
> - 9.3 ] q va gl
E23, B23 —E24 23 gl T | | =0 B o \
. g i, 3' I L I I B o !
=1 * | I I ' 2,4 E ll 'I__.' SR
p23 E ) ' bro i 2.4 ? 1 P
[ S [} _ s 53’3 ?I '1 ! : : ll £3.47 f1.4 a'lEg.S 5:2‘5 nt : ]' T —
3377 3 ha A L : N ' Pr.a ST L
=0 - 1,3 ER [ i 1 1,4 8 4} VLI
P 3,3 g7 T 1 T 2| A I,
a3 _ t [ ! ) E > »F oL
5 o UYL i 4.4 By.a A e
4,3 4.3 Ty 48 ! 1 ' *0 ks : Es.a oLl L
Pas ty tg tg - 4.4 “3.5 !;[__;__.___l_____
5.7 Bs,4 .355-5 By,a y—— T
£5.3 B 5 + £, , Note: Signats for bit-cells (2,3), =1 5.4 .4 ot
s 1 9 3 * {4,3) and (5,3) are the same P 4 L | N
T ’ as thosa for bit-cell (1,3}, 5. ' ]
53 fit-slice 4 b pat g
Bit-slice 3 01273

Note: Signals for bit-cells (4,4) and {5,4) are the same as

ty: Startina of minor cycle for bit-sYice 3;
tg! pefault condition detected;

ty! End of minor cycle for bit-slice 33

FROM t[] T0 t5: Comparison Phase of Minor Cycles;

FROM ty T0 tB: Default Phase of Minar Cycle.

those for bit-cells {2,4) and {}.4), respectively.
: Starting of minor cycle for bit-slice 4:

: End of minor cycle for bit-stice 4;

t2: Nefault-inhibit signa) becomes stable;

: Bit-siice contro) logic in stable state.
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Fig. 4. Bit-cell for simultaneous ascending retrieval and descending re-
trieval or equality-threshold searches.

€. Mode C: Greatest Value Search Mode

' In the implementation of the least value search scheme,
' the speed for searching is traded for less hardware in each
: bit-cell by sharing much of the logic with the equality-
inequality search. Had it not been required for the latter
 search, the comparison time for the least value search could
. be shortened by looking only at the content of the bit-cell,
. and the default time could be shortened by looking at the
. feedback signal. Since the least value and the greatest value
© searches are analogous to each other, we shall demonstrate
' the speed-up design for the greatest value search. The imple-
" mentation of the new design is illustrated in Fig. 4 which
. shows the complete design for each bit-cell. With this imple-
. mentation, Mode C operations can be executed simul-
| taneously with either Mode A or Mode B operations. Note
.~ that T, = 0 at the beginning of the jth minor cycle.

. Algorithm C—Mode C Search Operation—The Greatest
! Value Search Algorithm

. I)

a) Initialization:
j=0,w, =1, wa=0Vie{l, 2 -, m
b) Data Path Setting:

Gate Finyy to wig,and w, , to F,,Vie {1,2,+, m}.

The data paths are held until the completion of the major
cycle. .
2) Let j—j+ L
3) Minor Cycle: .
a) Comparison Phase: Compute
i) Fijor=Fij (M} + By + T)Vie{l,2,.m
simultaneously. ' _
ii) u,;(r) = F; ;{t — 1) (delay element used to synch-
ronize the feedback of V; via T) Vie{l, 2,-, m}
simultaneousiy.
iil) v, ;= F;; By vie{l,2, -, m} simultaneously.
v; ;= 1 means that B, ; is enabled and equals 1.

iv) U; = | Jr, w; (wired-OR).
v) V;=Jr, v, (wired-or).
¥, =1 means at least one enabled bit in the jth
column is 1.
vi) T;= U; V;(wired-AND)
b)Y Is =17
i} Yes—Default detected, proceed to step 3c).
v ii) No—Default inhibited, proceed to step 4).
¢) Defauilt Phase: Compute F, ;,, = F; ;.
4) Isj=n?

a) Yes—Proceed to step 5).
b) No—Proceed to step 2).
5) Read out the words indicated by w; 4 = 1.
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V. ORDERED RETRIEVAL

A. Ascending Order Retrieval

The ascending order retrieval of a set of data can be
achieved by performing the least value search repeatedly
until all the data are retrieved. With the CAM organization
that we have presented, a microprogram in the Memory
Control Store provides an economical and efficient imple-
mentation of such a retrieval algorithm. A flow chart for
such ancending order retrieval algorithm is shown in Fig. 3.

B. Descending Order Retrieval

The algorithm described for ascending order retrieval can
be modified for descending order retrieval by substituting
the greatest value search for the least value search. That is,
Mode C search operation is executed in the CAM instead of
Mode B search operation, Hence, the algorithm for descend-
ing order retrieval is to perform the greatest value search
repeatedly until all the datn are retrieved,

VL SoME SPEED-UP TECHNIQUES
The design shown in this paper will have one gate delay
per minor cycle in each of the Mode A search operations.
The delay in Mode B operations ranges from 3 to 8 gate
delays per minor cycle, while for Mode C operations, it

ranges from 1 to 4 gate delays per minor cycle.? We now
consider several techniques that can be used to reduce the
scarch times. The four areas that bear investigation are
Jlookahead techniques, external examination of retrieval
process, implementation of additional basic operations, and
modifications to the scheme involving greater parallelismin
the search.

In the first area, lookahead logic can be added to each
word in the memory. The algorithms we have described
previously are all bit-serial and word-parallel in nature in
which the enable signal for each word propagates from bitto
bit and operations for each word are performed in parallel.
The speed of a search operation is therefore proportional to
1 where n is the number of bits in each word. Wecan increase
the speed by adding some lookahead logic to each word.
Each word is segmented into contiguous groups of bits of
equal siz¢ k,and a lookahead circuit is added to each group
(assuming k is a factor of n). Each lookahead circuit operates

I 1 the case of the lenst vatue search, the maximum und the minimum
delays are actually shorter. The output from gate 6 of gach bit-slice can
be assumed to be settled before the major cycle starts (see Fig 4) This
means that M| lines are enabled ahead long enough for the outpuls of gate
6 to settle. In this case, the minimum time 10 pass through each bit-slice
is 1 gate delay. The maximum time to pass through each bit-slice is also
shorter than 8 (the maximum gate delay count). When default occurs,
B, = 1 for all enabled words. Therefore, output from gate 7 is 0 and the
feedback through R;never has to go through gate 4. Hence, the maximum
delay through a bit-slice is 7 gate delays.
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Fig. 6. Bit-cells j and j + 1 of word i with equaiity search and lookahead logic.

on all the bits in its group in parallel and passes the resuit
onto the next group when it has finished. The speed of an
equality search operation using this lookahead circuit will
be proportional to a/k but for extremum searches, no
improvement is found. This type of lookahead is essentially
single-leveled or cascaded. This means that the signals still
have to propagate from group to group instead of from bitto
bit,and the lookahead circuits exist in a single level abovethe
storage circuits of each word. The cellular property of the
design is preserved because each group, instead of a bitin a
word, can now be regarded as a cell. We will not investigate
other types of lookahead circuits, e.g., tree-lookahead cir-
cuits, because they do not preserve the cellular property. We
now illustrate the construction of these lookahead circuits
for the equality and the Mode B and Mode C searches.

An examination of the equality search operation shows
that each of the E, ;. , signals propagates from bit slice j to
bit slice j + 1 in one gate delay where j ranges from 1 to n.
Improvement can be achieved by grouping bits in each word
and performing the comparisons in parallel. An example is
shown in Fig. 6 where the necessary lookahead logic for
grouping bits jand j + 1 of word i is shown. Comparison in
cach bit is done in parailel. The results of comparison, €; ;. ;
and e, ;. . are ANDed together with E; jtoform E, ;5. The
propagation time for these two bits is 1 gate delay instead
of 2 in the usual bit serial operation. The speed of the
equality search will therefore be proportional to n/2 gate
delays.

For Mode B and Mode C operations, lookahead wiil
require more hardware. The existence of default cases has
caused the increased complexity. Previously, without look-
ahead, default is detected for a bit-slice when certain
conditions exist on all enabled words in that bit-slice. These
conditions include 1) all enabled words have 1’s in this
bit-slice for the least value search and 2} all enabled words
have O’s in this bit slice for the greatest value search. The
number of default feedback lines is 1 for each search mode.
With added lookahead circuit to each word for a group of

k bit-slices, the number of default feedback lines will
be 2% These 2* lines can be shared by both the least value
search and the greatest value search. Consider a particular
group; the following operations are to be carried out:a) The
bits of each word in this group are decoded into 2* lines. b)
The corresponding lines from each word of this group are
_wired-ored together to form default feedback lines 0 to
2% — 1; a particular feedback line p will be 1 when there
exists an enabled word in this group whose decoded value
equals p. ¢) In the group-slice control logic, i itis a Mode B
operation, it will scan from feedback lines 0 to 2* — 1 until
the first line with a 1 is found; similarly if it is a Mode C
operation, it will scan from feedback lines 2 — 1to0; this
line will represent the minimum/maximum of all these
enabled words in this group. d) This line is encoded into &
search bus signals to be fed back to each word in this group.
¢) In a particular word, the enabled line for the next group
is enabled if the current group of this word is enabled and
the value of this part of the word equals the search bus
signal, i.e., it equals the minimum/maximum value found by
the group slice control logic. However, there are some dis-
advantages of using lookahead on Mode B and Mode C
operations. The extensive amount of decoding requires an
order of 2* gates for each group in each word, each with a
fan-in of k. For each group-slice, there are 2* default feed-
back buses running across all the words and this can cause
difficulty in integrated circuit implementation. The biggest
difficulty, however, lies in the implementation of the
scanning algorithm in the group-slice control logic. The
algorithm of scanning across a set of lines untii the first
1 is found is essentially a multiple match resolution prob-
lem. If a tree-type muliiple match resolution circuit is used,
e.g. [1], a maximum delay of log, 2* = k will be observed.
That is, the overall speed of a group of bit slices, with or
without lookahead, is of the order of k. Unless a faster
multiple match resolution circuit is used, and the cost of
hardware is sufficiently low, lookahead for Mode B and
Mode C searches is not beneficial.
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An examination of the example illustrated in the
previous section points out another possible source of
improvement, this time in the algorithm itself. In many cases
the number of words still enabled at the end of a minor
cycle rapidly drops to one within a few minor cycles. At this
point the completion of the major cycle is a formality since
the greatest (or the least) valued word must be the only
remaining enabled word. Unfortunately the detection of this
condition, the only-one-respondant-left condition, is too
complex to be performed at the end of every minor cycle, and
would require extensive external wiring and logic.

We have implemented some of the search operations
defined in Section I1I as basic operations. Some other useful
searches may be performed by combining two or more basic
searches and possibly some nonsearch operations. An
example is the - between-the-limits searches, which 1s
generated by performing a less-than search followed by a
greater-than search on words selected by the first search. In
- fact, all the searches described in Section 111, except for the
proximity seatch, can be performed as a basic search or as
a combination of basic searches designed in this paper.
Speed improvements can of course be gained by imple-
menting these search operations as basic searches, but the
amount of logic circuits may be extensive. In most other
cases, the more complicated searches, such as the case of
ordered retrieval, are implemented as a combination of
simple searches.

One modification to our ordered retrieval technique that
yield positive results without compromising our cellular
logic approach is to increase the parallelism of the algorithm
itself. This can be done by simultaneously performing the
greatest value search and the least value search on the same
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set of enabled words. The associative sort is complete
when both searches select the same word, an easily
detectable condition, or when no words are still enabled at
the beginning of a major cycle, also an easily detectable
condition. A small additional amount of external manipula-
tion of the sorted file block is required by the non-
associative processor controlling the sort to concatenate
the two halves of the sorted block since one will be in the
reverse of the desired order, but it is felt that this is a
small price to pay for a speed-up factor of greater than 2.
This technique is shown in Example 3 that follows.

The speed-up involved in this approach is greater than a
factor of 2. To understand why it is greater than a factor of 2
instead of exactly equal to 2, we must consider the properties
of the fields to be searched. Assuming an even distribution,
there is on the average one more bit with the value“1”inthe
higher valued half of a-sorted file than in the lower valued
half of the same file. This can be verified in Example 3a).
The greatest value search has a shorter minor cycle time for
bit positions with a value of “1” in the word with the
greatest value than for bit positions with a “0” in the word
with the greatest value. Likewise, the least value search has
a shorter minor cycle time for bit positions with a value of
“0” in the word with the least value than for bit positions
with a “1” in the word with the least value. This provides for
an average major cycle time five gate delays shorter than if
all words were to be selected in an ordered retrieval by
either search alone {assuming the delay for each minor cycle
of both Mode B and Mode C search operations ranges from
3 to 7 gate delays). The design for this technique has been
indicated in Fig. 4. ‘

Example 3:“Mode B” and “Mode C” Parallel Operation.

a) WORDS to be retrieved:

A = Number Ascending

Word Bit Positions of I's Order of

Number 1 2345678910 per Word Retrieval
1 6010101101 5 12
2 110901001 00 4 20
3 0900111101 5 6
4 11111 10000 6 30
5 001!t oo o0 O0O0O00 1 11
] t 1100001 00 4 23
7 000 00O0CO0OO0CO0OOD 0 1
8 ¢ 101111101 7 14
9 1101010010 5’ 21
10 1111001100 6 28
11 1 101111111} 9 22
12 0001111011 6 10
13 00000111111 s 4
14 0t 1 0101111 7 15
15 111111011t ¢ B 31
16 1 10100000 4 26
17 1111100000 5 29
18 1110001 ¢ 01 5 24
19 0000 001 001 2 2
20 1 01 00 O0O0CO0T1O 3 19
21 oo 1 1 011011 6 13
22 00 01 ¢ 1 11 11 [} T
23 1111111111 10 32
24 00 0O0CO0OO0T1T 1 11 4 33
23 o0rtrr11ro0110 7 16
26 00011016011 5 8
27 1110010100 5 25
28 00011106110 5 9
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Example 3a (continued):
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A = Number Ascending -
Word Bit Positions of I's Order of
Number i 23 454867 9 10 per Word Retricval
29 i1 11000010 5 27
30 100101000790 3 18
31 000O0GCT1 10011 4 5
32 1 0060001001 3 17
Number of 1’s in memory: 160 A. LSI Implementation

Number of bits in memory: 320

Number of 1’s per word in the smaller half of the ordered
list = 4.69.

Number of I’s per word in the larger half of the ordered
list = 5.31.

b) ORDER of retrieval in parallel operation:

Let L, and L be the lists of words retrieved by Mode B
and Mode C search operations, respectively. Both lists are
ordered with respect to time, in Gate Delay Units, at which
they are retrieved, and neglecting overhead time between
major cycles. Assume that for the least value search, the
gate delays for each minor cycle range from 1 to 7 (see
footnote 2) and that for the greatest value search, they
range from 1 to 4.

In Fig. 4, a complete design has been shown. Each bit cell
requires 13 gates. There will be extra logic associated with
the registers and the controls. Consider a 32-bit word and a
64-word memory. This design wilineed over 26000 gates for
the logic in the bit-cells only, excluding all other register and
control logic. Therefore, the memory size that can be
effectively implemented on an LSI chip is very limited.
Furthermore, the pins on the LSI package will also limit the
word size. In order to maintain fast response and high
throughput, parallel reading and writing of bits of a word in
the memory is necessary. The major portion of the pins of
an LSI package is usually taken up by those used for paraliel
reading and writing. For a 32-bit word memory, the pin
requirement is 32 plus a few for control and selection. On the
other hand, the pin limitation will put a maximum word size

Ly Time Lo | Ly Time Lc | Ly Time Lc
Start 0 Start| — 113 27 1 °5 368 —
7 10 23 3 180 — | — 183 32
— 26 5 | — 1 18 | — 404 25
19 32 22 26 6 1 408 =
— 48 4 | — 29 1| — 423 14
24 66 — | — 204 9 i — 442 8
— 73 7| 26 226 — |2 454 —
— 95 w | — 29 2 End of Retrieval
13 106 — ] 228 306 -
— 120 29 | - 323 20
3l 140 — | 352 —
_ 148 6 | — 354 30

 Time in Gate Delay Units.

Throughput = 454 gate delaygf{32 x 10) bits = 1.42 gate
delays/bit.

VIIL. IssUES AND LIMITATIONS

We have presented adesign ofan associative memory that
can be used for fast ordered retrieval. From Example 3,
neglecting the overhead in loading and unioading the
memory, the sorting speed is 1.42 gate delays per bit. This
design is therefore very attractive and can be used in many
places where fast searching and sorting is required.
However, there exists many issues that need to be carefully
considered and resolved before successful operations can
result. We discuss five of these issues here, namely, LSI
implementation, manufacturing defects, modular expan-
sion, multiple match resolution and extension to sequential
associative memories. We do not contend that they exhaust
all the issues in this design. New issues may come up
during the implementation phase and will have to be
resoived by the designer.

that can be implemented. It becomes obvious that modular
 gxpansion is necessary in order for this design to be practi-
cal. The issue of modular expansion will be discussed later.

B. Manufacturing Defects

After the LSI chip has been manufactured, tests are made
to determine whether any cells are fauity. A faulty cellcan be
determined by injecting certain test patterns into the
memory. If the number of defects are small and their
locations can be determined up to the ‘locality of certain
gates in the cell, then these faults can be bypassed by utilizing

“some spare bit-slices designed into the memory. The
difficulty in recovering an error in a faulty cell of the CAM is
that the error may not only affect the word itself, but it may
also affect other words because the value of the faulty bitis
available to other words via the feedback circuitry. There-
fore,it may be necessary to remove the current bit-slice or the
current and all bit-slices to the right from operation when
an error occurs in a cell. We have assumed that only stuck-at
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faults can occur in the gates of memory cells and bit-slice
control logic. Faults occurring in registers and control store
arenotconsidered since the logicthere is only a small fraction
of all the logic on the chip. By assuming that the jth bit of the
ith word is faulty, we can identify two types of faults, one in
which the jth bit-slice has to be removed from operation and
one in which all the remaining bit-slices are rendered useless.
Referring to Fig. 4, for faults that occur in gates 10-13 and
the bit-slice control logic, they only affect the feedback
values but they do not affect the enable lines so long as the
mask bits are 1, that is, the bit-slice is masked off. This can be
done by setting a 1 permanently in the jth bit of the mask
registers and shifting the external pin connection to the chip
by 1 bit. For faults that occur in gates 1-9 and the storage cell
14, they affect the enable lines for the next bit-slice. If an
enable line has a faulty value of 1, that is, the remaining bits
of this word are enabled regardless of whether the current
word or bit-slice are masked off, it may cause a faulty
feedback to other bit-slices on the right. So unless all the
remaining bit-slices are masked off, the fault that occurs in
cell (i, j) will propagate to these bit-slices. If an enable
line stucks at 0, it will not affect the remaining bit-slices, and
only the ith word needs to be disabled from operation. A
finer recovery procedure can be developed if we can identify
which of the enable lines are faulty.
From the above discussion, we see that recovery from
manufacturing defects are not easy and only asmall {raction
of the faults are recoverable.

C. Modular Expansion

Our philosophy of the design in this paper is that we want
to distribute the logic into the storage cells. In order for all
the distributed logic to perform coherently, extra commun-
ication lines are needed to transfer enable and feedback
signals from bit to bit. The number of these communication
lines are usually large and this will eliminate the possibility
of modular expansion which is easy in the case of RAM’s.
Consider our design in Fig. 4; each cell has 3 enable lines to

communicate with the cell on its right; each bit-slice has 8
lines which are used for feedback, synchronization and
mask. These lines run across all words in the bit-slice (these
exclude lines needed to read and write data into each bit).
Suppose a memory chip of m words by # bits is available.
To extend the word size of this memory, we can put 2
memory chips together side by side as shown in Fig. 7(a).
However, our design will need 3m enable lines to pass
enable signals from the chip on the left to the one on the
right. This will not be feasible even for a small m. To extend
the memory size, wé can put 2 chips one over the other as
shown in Fig. 7(b). This design will need 8n feedback lines to
pass the feedback, synchronization and mask signals be-
tween the two chips. Even for a small value of n, the number
of interconnections is very large. The requirement for a large
number of interconnections in modular expansion has
forced us to put as much logic as possible on one chip. Due
to the limitation of technology, the memory size that can be
implemented on a chip is very small; therefore other
schemes for modular expansion are necessary in order for
our design to be practical. In Fig. 7(c), we show a scheme
that allows us to extend the memory size by increasing the
dimensions of the memory. A batch of m memory chips are
put together in parallel. There will be an extra dimension
and it is composed of a single memory chip running across
all the m parallel chips. A flow chart for an ascending order
retrieval algorithm of m? words is shown in Fig. 8. The time
needed to orderly retrieve m* words will take m* + m units
of load time (time to store a word into the memory) and
m? + m units of search time (a search time includes the time
to execute a Mode C operation and to read it out into the
¥/O register). In a single memory chip which can accomo-
date m? words, the time needed for this memory system will
be m? units of load time and m? units of search time.
Therefore the degradation in performance is minimal when
m is large. For a memory size larger than m? words, extra
dimensions are needed.

We conclude that our scheme on memory size ¢xpansion
has minimal degradation on performance. The difficulty



B12

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-

TABLE 1
A COMPARISON TARLE 7OR ORDERED RETRIEVAL SCHEMFS
Relative
speed - f{n,k) :
h ] Memory Size Complexity Best Class
Scheme (C;;cf‘h:sn f’:‘;iR:tT";;)‘m Dependency of Hardware of Problem
Requived
frei and For n=5 5 Lenqgth of tag Rasic CAM High density
Goldberg BgstZCase (k=2"}: field {n} oniy of responders
=
Worst Case (k=1):
R=7k
Seeber and t= 2" k Length of tag Complex Density
Lindquist R(n.k)*%{(ﬂk-\) +-‘-(t—t'|(1l- fleid (n} only  cryogenic logic  dependent
n _ A at each bit
-%Ei[‘[k(t—21)k PP ALY (18 gates)
Lewin ?-'-‘k'—l Exact “Independent A registers lndependent-
. plus 9 gates
per bit sTice
Mifiler Best case: L%‘» Independent Basic CAM plus Multiple
. 2k-1 some additional response
Worst case: =y— control and resolution
, storage only
foster 1 cycla per ratriaval fxtarnal hrfm; Trea Ciprutt Ml tipie
usas (=131 external to LAM  raspunse
gates for 2M resolution
words of memory only
Proposed 172 cycle per retrieval Increases as” ~13 gates Independent

[Toapm] for m
words of memary

per bit cell

27, NO. 9, SEPTEMBER 1978

-
[1ogzm] is the size of a tag
of m. This differs from the

Begqin

1o0ad chip 1 o)

in

parallel with m words
(m units of ioad time}

l

(1 unit of search

perform Mode C searches
on chip 1--+m in parallel
and read out in parallel

time)

l

Toad m maximums
{m units of Voad

into
chip 0 sequentially
time)

l

perform Mode C searches
on chip 0 in parallel
and read out
{m units of search time}

repeat m times

End

Fig. 8. Flow chart for ascending order retrieval of m?® words in a three-

dimensional associalive memary

{see Fig. 7(c})].

that must be used to uniquely jdentify each word for a memory size
other schemes which do not use 2 specialized tag for nrdered retrieval,

still exists in word size expansion. The limitation is due to
the pin requirements. However, we can trade performance
for word size by loading bits of a2 word in groups instead of
ail in parailel. However, the degradation in performance
due to this loading scheme is more pronounced than our
memory size expansion scheme.

D. Multiple Match Resolution

The most useful application in our design is in the muitiple
response resolution. A tag field can be included in each
word. Each tag is a distinguishable number. Thesize of each
tag must be at least [log, m1 for a memory size m. When
there are multiple responses, each of the tags serves as a
number for the ordered retrieval scheme. The words used in
the ordered retrieval are those that respond. Only the bit-
slices containing the tag are used in the search. The
first cycle can retrieve 2 words, the one with the maximum
tag, and the one with the minimum tag. Subsequent searches
give 2 responses each time. The speed of this resolution
scheme is 1/2 memory cycle per word and is independent
of the memory size. A comparison is made between
our proposed scheme and the other published schemes in
Table 1. _

There are two disadvantages in using tags for multiple
match resolution. First, there are irregularities in implemen-
tation. Because each tag has a distinguishable value and if
each tag is hardwired into the memory, it will involve a
different design for each word and it will also be difficult to
overcome the problem of manufacturing defects when a cell
in the tag is bad. This problem can be solved by loading the
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Fig. 9. Associative sequential memory.

tags from a PROM when the memory is first used. Second,
when a cell in the tag becomes bad during operation, €.g.,
stuck at 0, there is a probability that two of the words in the
memory will have identical tags.

We can also perform the multiple match resolution
without using special fields as tags. This can be done by
treating the contents of each word or part of the word as a
tag itself. It requires all words under consideration in the
memory to be different in order for unique responses to
result.

E. Extension to Sequential Memories

Our design presented in this paper can be extended to
the design of associative sequential memories which is made

up of multiple loops of circulating bits shifting in syn-

chronism. There is a read/write head for each loop so that
one bit from each loop can be read or modified in one
clock period. This can be extended to include multiple
heads for each loop. Examples of such sequential memories
include charge-coupled devicememory, bubble memory, and
fixed head disk.

Since only one bit is available from each loop at any
time, we can design the associative logic outside the sequen-
tial memory as shown in Fig. 9. In this design, m words are
stored in the memory, with one word occupying each loop.
During a clock period, a bit-slice of these m words is shifted
out from the memory. This bit-slice is then processed by
the associative logic and the enable signals are stored in
temporary flip flops. Note that in the design presented
earlier, the enable signals propagate from the MSB to the
LSB and the data are stored in flip-flops. In the case of a
sequential memory, the enable signals can be stored in
temporary flip-flops. As the bit-slice is shifted out, MSB
first. the bit-slice, together with the stored enable signals,
generate a new set of enable signals which are stored back
into the temporary flip-flops. The exact design is shown in
Fig. 10.

813 .

bit slice
¢ontrol [
legic
waoard O R/wW :
ossocighve §
logic
- =i

[word -1 } (5]

assoc:otive
search
logic
Fig. 10. Associative logic for associative sequential memory.

sequeniial
memory

There are two advantages in this design. First, the addi-
tional logic for each word is very small and therefore the
cost increase is minimal. Second, when the memory SIZE iS
extended, only 8 lines due to the associative logic are needed
to be connected between adjacent modules. Therefore, the
memory size can be modularly expanded. Moreover, the
amount of bit-slice control logic is small, so we can design
a memory with n modules, each with its own associative
and bit-slice control logic. During normal operations, each
module can perform independent associative search oper-
ations. When it is necessary to perform associative search
operations on 2 or more adjacent modules, all except one of
the bit-slice control logic for these modules are switched
out of the system and the feedback lines are connected
together to form a large block of associative memory. This
dynamic reconfiguration capability is useful in applications
where the nature and size requirements may change dy-
namically. However, there are two limitations with this
design. First, the words must be organized as described
here because our design can only process one bit-slice at a
time. Second, it is limited to memory @bes in which these
logic can be easily implemented in LSI technolegy, e.g2.
CCD memory. In bubble memory, the associative logic
have to be implemented on a separate chip and the amount
of interconnections between the memory and the associative
logic may become prohibitively large.

IX. COMPARISONS WITH OTHER METHODS OF
ORDERED RETRIEVAL )

We have presented in this paper several of the search
schemes, namely, the equality search, the inequality
searches, the threshold searches, and the extremum searches.
The other searches defined in Section III, except for prox-
imity searches which we have not implemented, can be
implemented as a combination of basic searches. Using the
implementation in this paper, we computed the maximum
and the minimum of the search time in each of the searches.



Minimum Number Maximum Number

Search Type of Gate Delays of Gate Delays
Equality Search r+5 n+5
Inequality- Search 7 n+s
Similarity Search n+$5 n+3
Greater-than Search n+3 n+5
Less-than Search 7 n+35
Greater-than-or-equal-to Search n+5 n+35
Less-than-or-equal-to Search n+ S n+5
Double-limit Search
Between-limit Search, X > ¥
<X & >Y a4+ 12 2n + 10
<X & =2Y n+ 12 21+ 10
<X& >Y 2n + 10 2n + 10
<X &=2Y 2n+ 10 2n + 10
Outside-limit Search, X < ¥
<X & >Y 7 2n 4+ 10
<X & =Y 7 2n + 10
<X & >Y n+5 2n + 10
<X & =Y n+35 n+ 10
Extremum Search
1) Least-value Search n n
2} Greatest-value Search n 4n
Adjacency Search
1) Nearest-above Search n+5 8n+5
2) Nearest-below Search n+7 Sn+5

We sce that the delay time in all these searches is
proportional to n, the number of bits in a word and is
independent of the number of words in the memory.

Several methods of ordered retrieval and multiple re-
sponse resolution have been proposed in the past. It would
be of great value to evaluate the method of ordered retrieval
presented in this paper in terms of these other schemes. In
particular, we compare this new algorithm with those
of Frei and Goldberg [4], Seeber and Lindquist [13], Lewin
[10], Miiller [11], and Foster [2}. In order to evaluate these
various schemes, it is necessary to determine the significant
characteristics that we wish to examine and to determine the
comparable features of these diverse methods.

In order to facilitate these comparisons, the methods

mentioned will be classified into two types, those with an
algorithm to order the retrieval according to the contents of
the stored words and those which use an external priority
scheme, usually some form of priority tree, to order the
retrieval according to the physical location in memory.
Among schemes of the first type are those of Frei and
Goldberg, Seeber and Lindquist, Miiller and Lewin. Miil-

ler’s scheme uses the contents of the responding words to

resolve multiple response conflicts but it does not neces-
sarily order the selections in ascending or descending order.

Among those schemes that use an external priority circuit
to resolve conflicts are those of Weinstein [16] and Foster.
These schemes are not strictly comparable to the proposed
algorithm since they cannot be used for sorting, Likewise the
Miiller scheme is not absolutely comparable to our
proposed scheme but is similar enough that we willinclude it
in the comparison.

The two main considerations for comparison are ob-
viously the speed with which a method retrieves stored data
and the cost in terms of amount of Jogic required. Rather
than attempting an exhaustive analysis of the implementa-
tion cost for each of the various schemes, we shall look at the
more readily available information as to the rate of cost
increase for increasing memory size. In particular we are
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interested in the memory cost as a function of memory size.

We shall limit our discussion of speed comparisons to the
number of search cycles required to retrieve each stored
word. For several of the schemes under consideration, a
significant parameter is the density of flagged words, that
is, the ratio of the number of words to be retrieved to the
number of words addressable with the given tag field size.
We will assume that the number of words addressable by the

- tag field is the same as the length of the memory.

The chart of Table I shows as direct a comparison as
possible between the aforementioned searches.and the
search scheme proposed. The headings include relative
speed (in terms of number of cycles needed to retrieve cach
flagged word), comments upon dependencies of logic com-
plexities to memory size, relative complexities of the hard-
ware needed for implementation, and comments upon class
of problems handled. Fig. 11 shows a plot of words to be
retrieved for a memory with a five bit tag field in each word,
corresponding to a memory size of 32 words.

It can be seen that our proposed scheme is equal to or
better than all of the presented schemes in terms of speed,
and in terms of the number of cycles needed to retrieve a
word from memory. In terms of the absolute speed, the
Foster method is somewhat faster in terms of gate delays per
retrieval since it used an external priority logic tree. The
Foster scheme, however, is not useful as a tool for ordered
retrieval, but only for multiple response resolution. At two
retrievals per memory cycle, our proposed scheme is by far
the fastest ordered retrieval scheme, even faster than the
Miilier scheme which does not even produce ordering, only
resolution. As far as the complexity of the hardware goes,
our scheme is well within the realizable realm of LSI
technology and in fact is no more complex than that used by
Seeber and Lindquist or than that used by Yang and Yau
[17] in their implementation of Lewin’s algorithm.

X. CONCLUSION

The concept and the design of this scheme was investi-
gated by the authors several years ago [15]. This paper
contains the basic principles and the subsequent extensions
and applications of this scheme. Among the different search
operations we have presented, which include the equality-
inequality searches, the threshold searches and the extre-
mum searches, the extremum searches have the greatest
improvement over the previous schemes in the literature.
They are useful in many applications, particularly in the
resolution of multiple responses. We have also indicated
many issues in the design and implementation of this
memory and some technigues to speed up the processing.

We conclude that such a scheme as we have presented
may be a useful and realizable tool for associative proces-
sing in any application where ordered retrievalis important.
One of the applications is to use it as a multiple match

_resolver as what we have described in Section VIIL There

are many other applications which vary from priority
interrupt processing to standard file processing and are too
numerous to be mentioned here.
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