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Abstract—The PUMPS architecture consists of P task processing
units (TPU) which share a pool of special peripheral processors, VLSI
functional units, and a common two-dimensional shared memory (SM)
via a block transfer oriented interconnection network. A shared cache
is provided between the TPU’s and SM for efficient MIMD inter-
processor communication. The SM is also connected via a backend
database management network (BDMN) with distributed control to
the file memories, which are disk-based database storage devices.

A front end communication processor (FECP) is used to switch the
control of 1/0 terminals. The FECP and the BDMN manage the re-
lationally structured image databases in addition to providing the ef-
ficient processing capabilities for classical file manipulative primitives.
The FECP and BDMN have unique features such as a language in-
terface for relational image database management using query-by-
picture example (QPE) and spatial operators.

Special VLSI functional units for pattern analysis and recognition
of context-free languages and finite-state languages are presented.
To effectively use the multiple resources on the system, they must be
scheduled efficiently. A distributed scheduling algorithm is discussed
with respect to the cube and Omega networks., Lastly, the architecture
of a database machine for image processing is discussed, Special
hardware for selection and histogramming are presented.

Index Terms—Image database management, multiprocessor ar-
chitecture, pattern analysis, reconfigurable architecture, resource
sharing, VI.S1 computing structures,

I. INTRODUCTION

PATTERN analysis tasks require a wide variety of pro-
cessing techniques and mathematical tools. Computa-
tional processes required for both numerical and combinatorial
algorithms are summarized in Table | (found on p. 981). The
table reveals the computation-intensive properties, such as the
solution of linear system of equations (LSE), ordered search
and sorting, and constrained optimizations, that are frequently
used in image analysis. This table is not meant to be exhaustive.
In most pattern analysis systems, large single processor
computers are employed to process pictorial information.
These computers are often designed for general applications
and are not tailored for the special needs of pattern analysis
and image database management. Many image analysis tasks
" require only repetitive Boolean operations or simple arithmetic
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operations defined over extremely large arrays of picture ele-
ments. Hence, the use of a large general-purpose computer
results in intolerable waste of resources. Moreover, a rigidly
structured architecture does not lend itself to the flexibility
required to process a wide spectrum of pattern recognition and
image processing (PRIP) algorithms. Various computer ar-
chitectures have been proposed in the past for pattern recog-
nition and image analysis, and a survey of some of these has
been given in [16). The existing pattern analysis system ar-
chitectures consist of the array-structured machines such as
ILLIAC 1V, BSP, and STARAN to the multi-mini/micro-
processor systems, such as C.mmp and C.m*. Other image
processing systems are the real-time cellular-logic based
CLIP-4 and the Toshiba TOSPICS which has a large image
memory designed to reduce data transfer time [16]. Most of
the above machines are too rigid in their configurations. Yet
other systems, such as the PM4 [5] and PASM [37], which
limit their degree of reconfiguration to SIMD and/or MIMD,
have been proposed.

These architectures do not satisfactorily address the bot-
tlencck problems of manipulating large image databases,
especially in a real-time environment. In a study on the effect
of computer architecture on algorithm decomposition, a con-
clusion was reached that cost-effective solutions to many ap-
plications such as pattern analysis problems require some form
of functional specialization in the computer architecture [22].
A general-purpose multiprocessor system which is designed
basically for a lime-sharing environment is not tailored to ef-
ficient implementation of specific applicative domain which
requires the execution of special classes of algorithms.

It is well known that certain algorithms are more suited to
SIMD array processing, and some to MIMD multiprocessing,
However, there are also some classes of image algorithms in
which there is a need to update a common database (such as
the same copy of a histogram), or the need to efficiently process
a moving image, in which pipelining is most adequate. In order
to meet the processing requirements of the explosive amount
of pictorial information, concurrency must be exploited
maximally at all levels of a computation. At the instruction
preprocessing level, pipelining can be implemented within the
processor. At the arithmetic and logic operation level, pipe-
lining and parallelism can be implemented in VLSI or special
attached processing units. These units, when integrated with
an efficient multiprocessing system which is organized at the
control level in a relatively tightly coupled system, enable
configurations of parallelism (synchronized or asynchronous)
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or of macropipelines [19]. The multiprocessor architecture

- manages the different sets of shared resources in the system.
In addition, an efficient database system which is harmo-
niously integrated into the reconfigurable multiprocessor
system will alleviate most of the inefficiencies exhibited by the
rigid architectures. The reconfigurability implies that for each
given parallel algorithm, an optimum path may be selected
through the structure to efficiently execute the set of tasks.
Moreover, the system utilization and throughput may be in-
creased by having several algorithms in execution concurrently
in different partitions of the system.

The PUMPS architecture described in this paper exploits
the new emerging VLSI computing structures and special
peripheral processors such as the attached array processor
AP120B [14]. The PUMPS configuration also results from
the need to relax the processing modes defined in the PM*
architecture [5]. PUMPS organization introduces features
such as distributed operating system, resource sharing and
cost-effective resource pool configuration for a given appli-
cative domain and workload. The PUMPS architecture can
thus be easily reconfigured to suit a specially chosen applica-
tion area.

The emphasis of application of the architecture in this paper
is in pattern analysis and image database management. A
general block diagram of a pattern analysis system, is shown
in Fig. 1. There are cssentially five processing stages. In the
preprocessing stage, enhancement operations are performed
to restore the noisy blurred patterns. The enhanced patterns
are then segmented according to region features. The classi-
fication stage recognizes the segmented parts by indicating its
membership in the pattern classes. Finally, structure analysis
is performed to produce description and interpretation of the
pattern information.

The pattern analysis system above is often applied to a
continuous sequence of patterns. The processing time of such
a repetitive task can be reduced by partitioning the task into
a sequence of processes which can be executed on a macro-
pipeline [19] configuration of the PUMPS. Each process can
be executed in an autonomous unit, called a segment, which
operates concurrently with other segments. In the PUMPS,
a segment can be an SISD, SIMD, MIMD, pipeline unit, or
specially dedicated VLSI processors. Hence, a macropipeline
configuration of the PUMPS is composed of segments which
are logically arranged so that consecutive processes of a task
can be assigned to distinct segments of the macropipeline for
processing. In general, the concept of macropipelining is of
great importance for the flexibility and efficiency of PUMPS
for processing PRIP algorithms [6].

In Section II, we outline the architectural features of
PUMPS. The design issues in the configuration of macro-
pipelining are enumerated in Section IIl. In Section IV, three
examples of VLSI functional units are shown. These functional
units are designed for matrix manipulation and recognition
of context-free languages and finite-state languages. In Section
V, the design of a distributed resource arbitration network is
presented. In Section VI, the design issue of a database ma-
chine for image processing are discussed, and VLSI design for
selection and histogramming is presented. Section VII provides
some concluding remarks and directions for future studies.

IEEE TRANSACTIONS ON COMPUTERS. VOL. C-31, NO. 10, OCTOBER 1982

image

!

PREPROCESS ING
" ENHANCEMENT
RESTORATION

SEGMENTATION

©)

FEATURE EXTRACTION

< (%) CLUSTERING

PATTERN CLASSIFICATION

Y

PATTERN STRUCTURE (&) SHAPE DISCRIMINATION
(SYNTAX) ANALYS|S [ (9) TEXTURE ANALYSIS

@ G0 30 SCENE ANALYSIS

Description
and/or

Interpretation

Fig. 1. A general flow diagram of pattern analysis system.

II. SYSTEM ARCHITECTURE OF PUMPS

An integrated image analysis and image database processing
system is depicted in Fig. 2. It consists of three closely coop-
erating subsystems, namely, the man-machine interface using
a command interpreter, the image analysis subsystem, and the
databasec management subsystem. The PUMPS architecture
integrates these subsystems into an efficient multiprocessor
system.

PUMPS is a high performance multiprocessor computer
operating with SISD/MIMD task processors and a set of
shared peripheral processors and VLSI units (PPVU’). A
block diagram showing the major components in PUMPS is
given in Fig. 3. In general, there are P task processing units
(TPU’s) in the system, each of which is multiprogrammed.
They also can operate in an interactive fashion through the
shared PPVU’s and shared memory systems. The TPU’s can
communicate with each other via the task processor commu-
nications (TPC) bus. This intercommunication medium is very
effective in passing interrupts, synchronization, and other
control signals. All the TPU’s are connected to the shared-
resource pool of special PPVU’s via a special resource arbi-
tration network (SRAN). This network provides connections
between each TPU and the desired PPVU. The SRAN is a low
conflict interconnection network. Besides connecting any TPU
toany PPVU, it must provide for arbitrary inter-PPVU paths,
As VLSI technology develops, modular switches will become
more cost-effective because of their regular and local con-
nections [15]. In-case several TPU’s reférence the same
functional unit, some priority must be established to resolve
the conflicts.

The allocation of the shared resources in the pool to the
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TPU’s depends on the computational requirements of theac-  and some VLSI array or pipeline processors in the pool for
tive processes. The allocation is considered dynamic. Fur-  image analysis applications. In this sense, PUMPS has a dy-
thermore, the selection of the resource types in the pool is namically reconfigurable structure. Different applicative en-
tailored to special application requirements. For example, one  vironments may be equipped with different functional units.
may wish to include an FFT processor, a histogram analyzer, The remaining system resources, such as TPU’s and shared
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memories, are designed for general-purpose MIMD compu-
tations.

The TPU’s perform three basic types of functions: 1) dis-
patching and initiating PPVU tasks, 2) executing purely se-
quential tasks, and 3) participating in MIMD processes and
running the operating system. In order to perform the first type
of function, a local task memory (TM) is provided within each
TPU as depicted in Fig. 4. The TM is partitioned into several
segments. These consists of the unmapped memory, which is
used for the operating system kernel and device drivers, the
local image buffers, and the local scratch-pad. The local image
buffers are shared between the task processor (TP) and the
PPVU’s. The PPVU’s are generally passive and the TPU,
acting as a controller, must provide the PPVU with a contin-
uous flow of data when the PPVU is processing a task. A re-
source controller and data channels (RCDC) in the TPU is
used to format and channel the data between the TM and the
PPVU.

To match the speed of the TP, a local task cache (TC), is
provided between the TP and TM. The TC stores the most
recently used private instructions and data of the active pro-
cesses assigned to the TPU. Due to the locality property of
programs, most of the references can be made in the cache. A
multiprocessor system with private caches may encounter data
coherence problems in which several copies of the same block
of shared data may exist in different caches at any given time
[12]. Basically, two methods have been proposed to solve this
coherence problem. In the first method, whenever a processor
attempts to update a variable in a TC, the possible copies of
the variable in other caches must be modified accordingly
before the process execution proceeds. This requires main-
taining a central copy of the directories of each cache or se-
lectively tagging cache blocks with common variables [7]. This
method, although efficient, may be cost-prohibitive. The
second method was proposed for the C.mmp, in which shared
writable data are noncacheable and reside in shared memory.
In the PUMPS architecture a compromise solution was sought
to solve the cache consistency problem by tagging the data as
private (P-data) or shared (S-data). The shared writable data
are referenced in a unique cache (SC) shared by all the pro-
cessors. An analysis of the performance of the shared cache
concept shows its potential effectiveness [11].

The PUMPS has a distributed memory organization using
virtual memory addressing based on paged segments. Within
the TC, misses are serviced by a task memory management
unit (TMMU) which initiates the block transfer from the TM
to the TC, provided the block exists in the TM. If the block
does not reside in the TM but is known to the process, a TM
page fault occurs which is also serviced by the page-fault
handler that resides in the TMMU. The occurrence of a TM
page fault causes the current active process in the TP to be
blocked, whereupon a task switch is made to a runnable process
also residing in the TPU. By distributing the memory man-
agement functions over the TMMU’s entire system, the TP’s
are relieved of performing memory management functions and
thereby increase their effectiveness in performing useful
computations. Such a memory management scheme was
proposed in the PM4 system. )

The interleaved TM in TPU serves as a high speed buffer
between the TPU and the shared memory (SM). The SM
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Fig. 4. Architecture of a task processing unit (TPU).

consists of semiconductor memories organized with multi-
ported / lines and m memory modules per line, to permit effi-
cient block transfers of information [11]. A block-transfer
oriented processor-memory interconnection network (PMIN),
such as the delta network [32], is used between the TPU's and
the SM’s. The shared memories are also connected to the file
memories (FM) via a backend image database management
network (BDMN), which is designed to handle the data
transfers from multiple disks. The FM, together with a back-
end computer and the BDMN, comprise the database machine
for image processing (DMIP).

The architectural design of the database machine for image
processing is shown in Fig. S. It consists of three parts: a set of
data modules, each of which includes a disk with the associated
cellular logic for processing picture queries, a backend com-
puter, and the BDMN. The design of an efficient image da-
tabase system of PUMPS differs from the conventional da-
tabase design for alphanumeric information processing, be-
cause of the large amounts of imagery data involved [6]. The
need to interface with image processing packages [8] and the
necessity of providing a high-level language interface to the
users, complicates the design issues. However, the design of
the DMIP is based on the identification of the propertics of
various image data manipulation and retrieval operators. These
operators are interpretable via a language interface which
permits a logical representation of the images. To permit a high
degree of concurrency of accesses to the DMIP, its control is
distributed. The control mechanism requires the partitioning
and replication of images and the placement of these partitions
on the secondary storage. The images on the file memory are
also dynamically reorganized for efficient retrievals. The de-
sign of the DMIP will be discussed in more detail the Section
VL

A front-end communication processor (FECP) is used to
switch the control of /O terminals and performs preprocessing
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task such as interactive file editing. The FECP together with
the BDMN provide efficient processing capabilities for clas-
sical file manipulative primitives in addition to providing the
users access to the whole multiprocessor system.

I11. CONFIGURATIONS OF MACROPIPELINES IN THE
PUMPS

In general, the implementation of the possible configurations
of macropipelines in the PUMPS requires additional hardware
support. Each processing segment or peripheral processor and
VLSI unit (PPVU) has one full duplex buffers for data oper-
ands. The buffers are configured to enhance the access times
of the operands and to control the synchronization of data
inputs to the PPVU. The output of one segment is stored in the
buffer of the next segment in the macropipeline. This buffer
is used as the input to this next segment as shown in Fig. 6.
Such structures of macropipelines characterize most image
processing algorithms [30]. Many examples of macropipelines
are found in the literature: real-time vision systems [29],
analysis of motion [1], image reconstruction from projections
[13], radar signal processing [2], and air traffic control
[19].

For the PUMPS architecture, each buffer B; in Fig. 6 is
partitioned into several independent logical modules, whose
sizes are software selectable. Two successive segments coop-
crate in a producer/consumer relationship. One segment stores
its output as successive batches of data in consecutive modules
of the local buffer of the next segment, where they are pro-
cessed sequentially. Of course, the consumer or producer must
be suspended when the intermediate buffer is empty or full,

S‘ 53

Fig. 6. Macropipeline in PUMPS architecture with S; a TPU or PPVU.

respectively. P and V operations can be used to enforce the
producer/consumer relationship. The flow of data through a
PPV U is coordinated by a small local control unit. In practice,
a segment may receive input data from the preceding segment
and also from a TPU memory. The communication between
the two segments of a macropipeline might be reduced to a few
words, in which case, the local buffers are sufficient. In some
cases, the local buffers are used to limit the congestion at the
TPU’s local memories when a picture is being streamed be-
tween two consecutive segments.

For efficient macropipelining, the algorithms used for two
consecutive segments should be input/output compatible. For
example, if one segment produces an output image in row-
major format (line by line), then the succeeding segment
should consume it also in row-major format to avoid additional
segments for data format transformations (e.g., transposition).
In this context, the choice of the PPVU’s will depend on the
typical system workload. The selection of the number of
PPVU’s of each type was discussed in [6].

If the execution times of the segments of the pipe are dis-
similar, the overall performance of the task on the macro-
pipeline configuration may be poor [23]. The performance is
also affected by the randomness of the processing times on the
TPU [11]. The processing times on a PPVU are generally
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determmnstnc in nature. Some of the inputs to the pipeline may
have deterministic interarrival times and others are random.
A general study which takes into account these various aspects,
would indicate decomposition strategies for good performance
of a macropipeline configuration.

Macropipelines are generally efficient when the same task
is repeated on successive input data sets. This is typical of
real-time processing applications. In such applications, the
impact on the performance of the pipeline startup time is re-
duced [23]. However, if the processing is performed on onc

input data set, a speed-up is still obtainable by applying the

techniques discussed above. In this case, the intermediate data
is not buffered between two segments but is forwarded directly
to the next segment provided they are /O compatible. The
speed-up results by avoiding data manipulation which takes
place in buffers. This technique is a generalization of chaining
as implemented in the Cray-1 computer.

IV. SPECIAL VLSI FUNCTIONAL UNITS FOR PATTERN
ANALYSIS

A typical task requires the coordination of different pro-
cesses with varying characteristics. Some of these processes
run more efficiently on dedicated PPVU’s. When a particular
process is executed frequently in a workload, it may become
cost-effective to attach a special functional unit to the com-
puter system for its processing, as provided by the PUMPS
architecture. Examples of the special functional units are FFT
analyzers and VLSI chips for solving linear system of equations
[25]. Many computations required in image processing and
pattern recognition are suitable candidates for VLSI realiza-
tion. It is highly desired to develop VLSI computing structures
for image smoothing, image registration, edge detection, image
segmentation, texture analysis, multistage feature selection,
syntatic pattern recognition, pictorial query processing, and
image database management, etc. The ultimate purpose is
towards the development of an effective, real-time, pattern-
analysis and image-understanding system. The potential gain
in VLSI hardware approaches lies not only in speed but also
in reliability and cost-effectiveness.

A. VLSI Matrix Arithmetic Solvers

Many pattern analysis programs require to perform large-
scale matrix/vector computations. These include matrix
multiplication, L-U decomposition of a dense matrix, the in-
version of a triangular matrix, and the solution of triangular
systems of equations. Hwang and Cheng [25] have proposed
a partitioned approach to realize these large-scale matrix
computations by modularly structured VLSI arithmetic de-
vices. Only four basic types of VLSI arithmetic chips are
needed in implementing the partitioned matrix algorithms.
Functional specifications of these primitive chip types are given
in Fig. 7. Detailed logic design of these basic VLSI modules
can be found in [24]. The four types, D, I, M, and V, perform
submatrix L-U decomposition, inversion of triangular sub-
matrix, cumulative submatrix multiplications, and cumulative
matrix-vector multiplications, respectively. The following ex-
ample shows how to triangularize a nonsingular dense matrix
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using the partitioned approach with VLSI matrix arithmetic
modules of size » X r, where # is the order of the given dense
matrix 4, and the case k = n/r = 3 is shown in the following
example:

Ay A A Ly 0 0
A=1An Axn Anl=|Ly L» 0
Axn Axx Ax; Ly L L
Uy Uy U
0 Uxn Uxy=L-U
0 0 Uss

where all 4;;, L;;, U;; are r X r submatrices. Ly, L), L33 are

lower triangular submatrices with all diagonal elements equal

to 1. Uy, Uyy, U3z are upper triangular submatnces
Partitioned L-U Decomposition:

Step 1: Ay = Ly - Uy (TprD)‘

Step 2: Ly = Ay - Upy's Ly = Ay - Uy
U =L7 AU =L A
A (Types I and M)
Step3: Ayy = Ayy = Ly - Ui = Ly Uy
Ax3= Ay — Ly Uizi Az = A3a — L3 - Uy
(Types M and D)

Az Ly = A3y~ Up™!

(Types M and I)

"Ujz+ L3y Uxs) = L33 Uss
(Types M and D).

After decomposmon we need only to solve the triangular

system as demonstrated below.
Partitioned VLSI Solution of a Triangular System of

Equations:

Step 4: U23 = L22

Step 5: A33 = A3z — (L3

Uiy Uy Ui X, Di|
0 Un Un|-lx,|=1|D
0 0 Us X3 D;

where X; and D; for i = 1, 2, 3 are r X | column subvec-
tors.

Step 1: X3 = U5y - D3 (Types I and V)

Step 2: X; = U - (D3 = Uz * X3)

(Types I and V)

Ui [D1 = Uiz X2+ Ups - X3)]
(Types I and V).

Speed performance and hardware chip count of these par-
titioned matrix algorithms are analyzed in [25]. With a strictly
parallel architecture, we can achieve linear speed O(n) with
O(n?/r?) VLSI chips. With a serial-parallel architecture, we
can achieve O(n2/r) speed with O(n/r) VLSI chips. The
dominating chip type to be used will be the M-type as shown
in Fig. 7. The functional design of a pattern classifier using the
proposed VLSI matrix arithmetic chips is shown in Fig. 8.
With sufficient training feature samples, we can classify the

'Step X =
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“input pattern vectors (features) by Fisher’s linear criterion.
All the matrix manipulation networks in Fig. 8 can assume
pipelined structures as detailed in [26]. A high degree of ov-
erlapped operations are performed in successive submatrix
computation steps.

Feature extraction and pattern classification are the initial
candidates for possible VLSI implementation [26]. We dem-
onstrated only the VLSI realization of the Foley-Sammon
feature extraction method and of the Fisher’s linear classifier.
Other methods such as the eigenvector approaches to feature
selection and Bayes quadratic discriminant functions should
be realizable with the proposed “partitioned” matrix arith-
metic solvers.

B. Recognition of Context-Free Languages

We present in this section a VLSI architecture for the
high-speed recognition of context-free languages [9]. The
architecture for context-free languages consists of n(n + 1)/2
identical cells and is capable of recognizing an input string
of length n in 2n time units. The architecture for finite-state
language recognition consists of n cells and can recognize
a string of length n in constant time. This will be presented in
the next section. Since both architectures have characteristics
such as modular layout, simple contiol and dataflow pattern,
high degree of multiprocessing and/or pipelining, etc., they
are very suitable for VLSI implementation.

The recognition methods employed will be based on the
Cocke-Kasami-Younger algorithm [20] and its extension to
finite-state languages recognition.

Let G = (N, 2, P, S) be a grammar in Chomsky normal
form (with no null rule) andlet A = aya2- - a,,n = 1,bea
string where, for 1 < k < n, ay € Z. Form the strictly
upper-triangular (n + 1) X (n + 1) recognition matrix T as
follows, where each element ¢, J 18 a subset of NV and is initially
empty (note: O-origin addressing convention is used for ma-
trices).

Begin

Loopl: Fori:=0ton — | do
tijr1:={A|A —> ajy\ isin P};
Loop2: For d := 2 to n do
Fori:=0ton—ddo
Begin ’
ji=d+i;
t;j := [A|there exists k,
i+1<k<j-1
“such that 4 — BC
is in P for some
B e tis, Cety
End

End
If the element 1o , of the recognition matrix contains the start

symbol S, then the string is accepted; otherwise the string is
rejected.

The VLSI architecture for implementing the Cocke-Ka-
sami-Younger algorithm in parallel can be divided into two
parts, the preprocessing requirements and the hardware design.
Preprocessing requirements are those tasks that are mostly
input independent and therefore are required to be computed
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only once initially. The hardware design is the part that uses
the preprocessing results and performs the recognition in 2n
time units. - '

The preprocessing requirements have three parts. First, each
distinct nonterminal of the grammar is numbered in as--
cending order. That is, if the nonterminal set is {S, A} then the
corresponding numbered nonterminal set will be {41, A>} where
Ay =S and 4; = A. Similarly, we also number the terminals
of the grammar in this way. That is, if the terminal set is {b,
a} then the corresponding numbered terminal set will be |a,.
az} wherea; = b and a, = a. With the grammar rules rewritten
according to the numbered terminal and nonterminal sets, we
can proceed to the next stage of the preprocessing requirc-
ments.

The next stage of preprocessing requirements is to construct
a coded production table for the hardware. After we have done
all the coding, we will have a coded production table for the
production matching operation. The table will then be loaded
into the memory module of each cell in the architecture during
the initialization phase.

The last preprocessing requirement is to code every input
string according to a special format. This corresponds to loop
I of the Cocke-Kasami-Younger algorithm. First, we build
a code table similar to the one before, except that we use ter-
minals this time. That is, assume we have n terminals labeled
ai, az, '+, ap, then for each terminal found in the order of
labels, the corresponding set of nonterminals that derive it are
coded in the same way as before. Now we can use this table to
code the input strings by using table scanning. The table
scanning can be done either in the host computer or on-the-fly
by a simple content addressable memory [34], which contains
this code table,

With the exception of the table scanning, all the other
preprocessing tasks are input independent. Therefore, they are
computed only once initially and the rest of the recognition
tasks will be carried out by hardware.

In order to implement the Cocke-Kasami-Younger algo- .
rithm efficiently in hardware, the VLSI structure is chosen to
be the same as the strictly upper triangular recognition matrix
T (see Fig. 9). On the other hand, data in each matrix element
are represented by using an s-bit binary word as described in
the preprocessing tasks. The hardware design can be subdi-
vided into two portions: the dataflow requirement and the
functional units design. The dataflow requirement specifics
the necessary data communications between cells, whereas the
functional units design handles the required operations on
input data within a cell.

The dataflow requirement is specified in loop2 of the
Cocke-Kasami-Younger algorithm. It is easy to see that el-
ement (if) of the recognition matrix needs to receive data from
elements (ik) and (kj), for i < k <. Observe also that there
is no data dependency among the elements on a particular
diagonal of the recognition matrix; therefore, we can compute
the elements on a diagonal in parallel if the required data for
each element is arranged to arrive at the right moment.

Let 1 = j — i be the distance between cell (ij) and the
boundary (see Fig. 9). The result of a cell at distance ¢ will be
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ready at time 2¢; the cell then transmits its result upwards and
to the right. This result travels at a rate of one cell per time unit
for  additional time units and then slows down to one cell in
every two time units until the recognition is completed. Using
this algorithm, a network with n(n + 1)/2 cells will require 2n
time units for the final result to be available. Detailed sche-
matic logic design of the recognition cells can be found in [9].
A VLSI architecture for the recognition of context-free lan-
vuages using Earley’s algorithm has also been proposed re-
cently [41].

C. Finite-Srate Languages Recognition

Since finite-state languages form a subset of context-free
languages, the Cocke-Kasami-Younger algorithm and hence,
the architecture in Section 1V-B, can also be used to recognize
finite-state languages. In this section, a more efficient method
for finite-state language recognition, which is derived from the
Cocke-Kasami-Younger algorithm will be employed [9]. The
VLSI architecture using this algorithm can be made to have
constant response time by using pipelining if the number of
cells is sufficient,

The method used here is derived from the Cocke-
Kasami- Younger algorithm. Ths is done by observing the fact
that fimite-state grammar is a kind of right-lincar grammar
which is a special case of the algorithm. The modified algo-
rithm for recognition of finite-state languages is given as fol-
lows:

Modified Algorithm: Let G = (N, Z, P, S) be a finite-state
aerammar (with nonull rule) and let A = aya2---a,,n = 1 be
stringowhere for 1 <7 <m0 € 2. Form the linear recog-
mition array 7" as follows, where ¢, is a subset of N:

Begin

o= Ald s a,isin P

Loopl: Fori:=2tondo

Begin
j=n—i
ti:=1{4|4 —> a4 \Bisin P

for some B € t;—}
End
End
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If the element #,, of the linear recognition array T contains the
start symbol (or final state) then the string is accepted; oth-
erwise the string is rejected.

The architecture design is again divided into two parts: the
preprocessing requirements and the hardware design. The
preprocessing requirements are about the same as before.

In order to utilize the processors’ organization with the
chosen data structure, the architecture also employs a linear
array structure of size n as shown in Fig. 10, where A is the
input string. On the other hand, the same data representation
in Section IV-B for nonterminals in each array element is used.
Notice that the computation of the next element of T in this
algorithm depends only on the present element. Therefore,
pipelining technique can be applied to make the recognition
in constant time. The design a typical cell for the recognition
of finite-state languages can be found in [9].

b ]

V. DISTRIBUTED SCHEDULING OF RESOURCES ON
INTERCONNECTION NETWORKS

We have discussed earlier that available resources on the
system are arbitrated by the SRAN. In this section, we discuss
a distributed algorithm for this purpose [40].

In general, an interconnection network routes requests from
a set of source points to a set of destination points (they may
coincide with each other). In a resource sharing interconnec-
tion network (RSIN), the destination points arc identical (or
sets of identical) resources for which requests or tasks can be
delegated to. Examples of these are special purpose VLSI
chips. In this respect, jobs initiated at source processors can
be sent to any one of the free resources of a given type at the
destination. This is the important point that differentiates
RSIN’s from interconnection networks using address mapping,
Another application is to use the same set of destination points
as the source points. In this case, we have a load balancing
network which can rebalance the load in the system dynami-
cally. RSIN’s can also be used as distribution networks in
dataflow machines.

Since the system operates continuously, requests from
source processors can be initiated at random times. At any
time, a set of processors may be making requests and a set of
resources are free. It is the function of a scheduler to set the
RSIN in order to connect the maximum number of resources
to the processors, that is, to have the maximum resource uti-
lization.

The earliest study of RSIN has been done with respect to
centralized computer systems. A unibus is used in a time-
shared fashion for connecting peripheral 1/0 devices to the
CPU. Multiple time-shared buses have been used in the
PLURIBUS minicomputer multiprocessor [31 1. A cross-bar
switch has been used in C.mmp although the network is mostly
used in address mapping mode. This network permits full in-
terconnection capability between any source and destination
ports. As long as each source port addresses a unique desti-
nation port, there is no blocking in the network and all mes-
sages can be routed through the network simultaneously. The
single or multiple buses are a source of bottleneck, and are the
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ast expensive designs. The cross-bar switch is the most ex-
ensive network but has the least degree of blocking. A com-

romise is to use a less expensive network than the cross-bar -

vitch and one that has less blocking probability than the single
us systems. This has been studied with respect to the Banyan

etwork [35]. In these studies, it is shown that when a pro- .

ssor makes a request for multiple resources, allocating re-
urces with smaller distance functions reduces the amount
“network blockage caused by the allocation of these resources
8]. A tree network is proposed to aid the scheduler in
100sing a resource to allocate. The tree network has a delay
'O(log; n) in selecting a free resource (n is the total number
‘resources).
A few comments can be made about the previous studies.
rst, the scheduling algorithms are centralized. For mapping
requesting processors to n resources, the scheduling algo-
hm has a worst case complexity of O(n * log, n). This
mplexity depends on the number of requesting processors.
1is is practical when n is small or when requests are not very
>quent. Second, for scheduling requests on interconnection
tworks with logarithmic delays such as the binary n-cube,
inyan, and Omega, no optimal scheduling algorithm has
en established.
The Omega [27] and binary n-cube [33] networks are
osen for their simplicity and versatility. The basic element
these networks is a two input, two output interchange box
ich allows a straight or a diagonal connection. For a network
necting V inputs to N outputs (N is a power of 2), there are
2 IV stages and V/2 » log, N interchange boxes. The delay
the network is therefore O(logy N).
Simulation results presented in [15] show that with N = 8,
re is a message blocking probability of about 30 percent
ng address mapping. We show in this section that there is
tually no blocking when these networks operate as a
IN.
The results are obtained by exhaustive enumeration of all
- possible combinations of connections for a subsct of re-
sting processors and free resources. Because of the large
nber of combinations, only networks with N = 8 can be
ulated. Even in this case, the total number of possible
nbinations is over 8 million. The large number of combi-
ions is attributed to the fact that the order of connections
mportant. For a set of i requesting processors and j free

yurces, there are (;)1' (i 2 j)or (J.)i!, (j > i) possible
i

ered connections,

\ faster method is developed by observing that each box can

et in two states. With 12 interchange boxes, there are 212

096 states or possible connections. These 4096 possible
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connections are arranged into multiple trees so that the max-
imum number of connections can be found efficiently. Using
this method, the enumerations were completed using 10 hours
of CPU time and 64 kbytes of memory on a VAX 11/780.

A selected set of the simulation results are plotted in Fig.
11" for the blocking probability. These results are based on the
assumption that the network is completely free before the al-
locations. The average processor blocking probability is defined
as the ratio of the number of allocated processors to the min-
imum of the number of requesting processors and the number
of free resources. It is seen that the blocking probability and
the standard deviation of processor allocations are very small.
We can conclude that with a good scheduling algorithm, these
networks serve almost equally as well as the cross-bar switch
for resource sharing.

The centralized scheduling algorithm has a high overhead
when the number of processors and resources to be scheduled
is large since every requesting processor has to be scheuled
sequentially. In a distributed algorithm, all the requesting
processors are scheduled in parallel. The resource scheduling
overhead is, therefore, proportional to the delay time in the
network and independent of the number of requesting pro-
Cessors. : A

The distributed algorithm is implemented by distributing
the scheduling intelligence into the interconnection network
so that there is no centralized control. Each exchange box can
resolve conflicts and route requests to the appropriate desti-
nation. If a request is blocked, it will be sent back to the orig-
inating exchange box in the previous stage. Request routing
is thus dynamic, and ail the exchange boxes operate indepen-
dently.

The algorithm consists of two phases. In the first phase
(resource phase), information concerning the number of free
resources is passed from the resource side to the processor side.
In the second phase (request phase), the network propagates
the requests from the processors to the resources. This uses the
information that is obtained in the resource phase. When
multiple signals are pending in a box, priority must be set to
determine the order of servicing these requests.

The algorithm described above does not preclude dynamic
operation. In fact, requests can be initiated at random times
and they will be routed to a free resource or be rejected. The
operation of the exchange box can be completely asynchronous.
An accepted request is known to a processor when an ac-
knowledgment is received along the data link. A request is
rejected when a rejection signal is received by the processor.
A rejected request can be retried later.

The performance of the distributed algorithm is again
plotted in Fig. 11. It is seen that the blocking probability is less
than 19 percent in all cases and compares favorably with the
optimal case. The maximum average delay time for a request
to access a free resource or be rejected is 4.2 units of time (not
shown) in which the delay through an exchange box is 1 unit.
The delay time of the algorithm is dependent on the delay in
the network and not on the number of requesting processors.
Further discussion of the network can be found in [40].

The scheduling algorithm discussed above can be applied
in the database machine design in which multiple subsets of
identical VLSI chips are applied. This is discussed in the next
section,
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VI. BACKEND IMAGE DATABASE MANAGEMENT
SYSTEM

In the design of PUMPS, imagery data must be staged to
the shared memory (SM) before they are accessible by the
TPU’s. This is efficient only when the same data are repeatedly
used. In this case, the overhead of the transfer is balanced by
the efficiency in processing. On the other hand, some image
processing operations resemble the conventional database
processing operations, namely, a large amount of data is pro-
cessed a small number of times. In this case, it is more efficient
to process the data directly on the storage medium and elimi-
nates the congestion in the processor-memory interconnection
network (PMIN). Furthermore, it relieves the TPU’s to pro-

-cess operations that are more CPU-bound. The database
machine for image processing (DMIP) is the result of an ar-
chitectural approach which distributes processing power closer
to devices on which data are stored and offloads database
processing functions from the main computer.

The motivations behind designing image database machines
are threefold. First, data transfer over the memory hierarchy
is expensive and therefore, it is preferable to process the image
without the intermediate data transfer. Second, the cost of
hardware, in particular VLSI, is decreasing. This allows many
specialized functions to be implemented directly in hardware.
Lastly, the size of image database is growing rapidly and the
need for distributed processing of imagery operations is inev-
itable.

Nearly all the research on database machines are directed
towards conventional databases which can be classified into
four types. The first type is the backend system which utilizes
minicomputers to enhance the database processing of large
host computers. The functions of the backend system include
access validation, storage management, concurrency control,
and 1/O control. IDM by Britton Lee, Inc. is an example of
this class. .

The second type of database machine utilizes the single-
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instruction multiple-data stream (SIMD) principle. This
concept is extended from backend machines in which the da-
tabase processing functions are moved to a lower level. In this
class, simpler, less costly processors are dedicated to a small
block of data. This concept is exemplified by the logic-per-
track device in which processing logic are duplicated for each
track of the disk and the keys in different tracks are searched
in parallel. Examples of this design are CASSM [28], RAP
[36], and DBC [3]. If the replication goes further down to the
bit level, an associative memory results. This is exemplified by
RELACS [4], in which STARAN is used as the associative
memory.

The third type of database machine design is based on the
multiple-instruction multiple-data stream (MIMD) principle.
This design is exemplified by DIRECT [10] in which the
processing logic are interconnected with an array of CCD
memory modules through a cross-bar switch. A variable
number of processors can be assigned to process a database
query. This design offers more flexibility and better load bal-
ancing and allows the processors to be shared among the
storage modules.

The last type of database machine design is based on the
distributed system principle, utilizing modules which consist
of a storage medium with enhanced intelligence, and which
communicate with each other through a communication net-
work. DIALOG is an example of this class [39]. The advan-
tages of this type of database machine are its flexibility and
its expandability. Furthermore, heterogeneous storage devices
can be accommodated in the system. Techniques developed
for the optimization of distributed databases are also appli-
cable for the design of this class of database machines.

A database machine for image processing can be designed
as one or a combination of the aforementioned classes. The
following functional features are identified. High level data-
base functions such as selection, projection, and join are im-
plemented. These operations are useful for manipulating the
image database. On the other hand, low level image processing
operations such as histogramming and edge detection are also
implemented. An image database machine is, therefore, a
conventional database machine enhanced with low level image
processing hardware,

We have previously studied the design of a relational da-
tabase system for images—IMAID [8], [17]—and a relational
database machine—DIALOG. IMAID is designed as an in-
tegrated database system interfaced with an image under-
standing system for the efficient storage and retrieval of images
and pictures. By using image processing and pattern recogni-
tion manipulation functions, structures and features of images
are extracted and integrated into relational databases. A re-
lational query language, query-by-pictorial example (QPE)
[8] is introduced for manipulating queries regarding spatial
relations as well as conventional queries. Conventional data-
base manipulation operators such as selection and join are used
to manipulate imagery objects stored in relations.

A general assumption about VLSI chips are that they are
inexpensive. For complex operations, this is not really true due
to the fact that external control, timing, memory, and software
must be provided. Furthermore, as the types of VLSI chips
increase and the degree of replication is large, the system be-
comes expensive. A solution to this problem is to use a resource
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“sharing interconnection network so that a pool of common
resources can be used. This concept is illustrated in Fig. 12.
VLSI chips are distributed into each storage module. They can
be used for real-time off-the-track processing. A pool of
common resources are also shared among the storage modules.
The resource-sharing interconnection network connects these
resources to the storage medium. We present in the remainder
of this section a specialized VLSI design that can be used to
perform real-time histogramming and selection from data off
the disk.

Fig. 13 shows the architecture of the selection processing
module. There is a common part of the circuit that is used for
both selection and histogramming. This consists of n circu-
lating registers which contain keys to be matched. The timing
and control module controls the associative logic which is ca-
pable of performing equality match, proximity, and threshold
operations [34]. A subset of the associative logic is enabled and
selected keys are compared with the data output from the disk.
The multiple match resolution circuit is used to select the first
1 from a set of responding 1’s and is similar to those designed
for associative memories [34]. The software programmable
logic array (SPAL) computes the output Z = f(x,,-- -, x,)
with a user selected function f of n variables. The output Z is
used to control the gate which filters off unnecessary infor-
mation from the disk. Since the selection function does not
change throughout the matching of the entire database, the
function fcan be input before the selection begins. fis repre-
sented in disjunctive normal form and each term of f can be
input sequentially. If n is larger than the number of possible
inputs of a single SPAL, the n inputs can be partitioned into
sets and fed into mulitiple SPAL’s. Multiple outputs Z,, Z,,
+++, Z will be obtained and supplied to a single SPAL to
compute Z. The circuit can be extended systematically into
a tree of SPAL's.

The selection circuit operates in periods in which a period
is the length of time for a database record (tuple) to be output
from the disk. The database data are fed to all the associative
logic. As selected fields of the record are detected, a subset, of
he associative logic is enabled and the results of the matching
ire stored in temporary flip flops. After the end of record is
letected, the values X, - - -, X, stored in the temporary flip
lops are output to the SPAL, which computes the value Z and
lecides whether the record is to be discarded.

The advantages of this selection circuit are threcfold.

1) Generality: The design is more general than the finite
tate automaton approach [21] and allows arbitrary logic
unctions (with limitation imposed by the size and number of

he registers) to be implemented. It follows the parallel discrete
omparators approach of Stelhorn [38] except that all the
unctions are implemented in hardware and is, therefore, much
aster.

2) Reconfigurability: The size of a key is not limited to the
ize of a register. For equality and threshold operations, sup-
ose it is needed to compute D = B where D is a field of the
atabase tuple and B is a key. If B and D have a size greater
han the size of the register, they can be partitioned into k
ibkeys, B = By, -+, By, D = D\, -, Dy and the operation
) = Bisequivalentto (D, > B)) V (D)= B)) A (D2> B3))

oV ((Dy=B)) A (Dy= By) A (Dy > By)). Therefore, the
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Fig. 12. A conceptual view of an image database machine.

registers can be reconfigured to perform operations on keys
longer than the size of a register.

3) Speed: Because the computation of the function f by the
SPAL is completely overlapped with the associative matching
of the next record, the operation is pipelined and can result in
a higher throughput than conventional selection circuits where
the function f'is computed simultaneously with the matching
operations.

To use the circuit to compute the histogram of an image, the
registers will be set to the different thresholds and the asso-
ciative logic are set to perform the less than functions. As each
pixel of image is output, all the registers with keys smaller than
the value of the pixel is enabled and enable the SPAL. The
multiple match resolution circuit selects the correct interval
where the counter should be incremented. Based on the results
of the counters, a second pass of the imagery data would allow
thresholding to be performed.

VIiI. CONCLUSIONS

The PUMPS architecture generates a number of related
research topics that need to be investigated. One basic topic
is the development of an appropriate operating system and
language that can be used to effectively control and express
the pattern analysis and image database management tasks.
Another operating system related task is the memory man-
agement method and its implementation. Pattern analysis
algorithms cannot be classified as having properties of the more
general programs. For example, an algorithm for performing
a specific function on a VLSI processor may be well behaved.
In which case, parameters such as looping distance and page
reference string will be well defined for a given task dimension.
With such parameters we can develop an efficient image buffer
management policy and determine appropriate buffer size for
each VLSI unit. VLSI technology can be explored for fast
manipulation and update of relational image database and
permit a modular growth.

Implementation of a processing task on the PUMPS ar-

_
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TABLE1
IMAGE ANALYSIS AND DATABASE MANAGEMENT PROBLEMS AND THEIR REQUIRED COMPUTATIONS
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Iterative relaxation methods X M X X X ] X
Constrained and unconstrained
joptimizations X M M M M X !
Matrix manipulation T
(Solving Algebraic equations) X X M X i ;
Transformation and convolution M X j X . X . H “
- - - - + T
Interpolation and functional evaluation X X X X ! X i
Histogramming X X X X
Logical operations (boolean) X X x N X X x X N
Similarity retrieval ‘
and spatial operations X ' X ;
Set Manipulation ,
and relational operations X X X ' X
Ordered search or 1 r
heuristic search M M M M Cx M :
Sarting, pattern \
matching and graph operations X X M X i X
Backtracking H
and syntax parsing | X I X M X ' x
Language transtation ; | . 1 T
and compiling l i x i X l .
image Display Operations T i T 4 M - I

chitecture requires the efficient allocation and scheduling of
system resources. In particular, the effective utilization of the
PPVU’s is important. The match of the set of PPVU config-
urations with the specific application needs makes the PUMPS
very attractive. The unification of the image database man-
agement subsystem with the user-oriented multiprocessor

system in the PUMPS permits an effective on-line processing
of pattern analysis problems and the interactive management
of timagery data. Continued research is needed for the devel-
opment of specialized VLSI functional chips. Some of these
algorithms are listed in Table 1. Research in the effective
scheduling of resources also warrant further study. Lastly, the
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system must be evaluated and simulated over various appli-
cations related to pattern analysis and image processing.
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Abstract—The logic named PICCOLO for a picture database
computer and its implementation is presented. The logic is shown to
have three major advantages. One advantage is that the computer de-
sign based on this logic can handle a universal variety of pictorial data
structures. Another advantage is that a set of data generated by rules
such as texture distribution rules is stored in the picture computer
efficiently, The third advantage is that this logic can serve as the basis
of a logic for parallel processing machines. For implementation of the
logic, a new methodology named architecture engineering is introduced
as an architecture /design oriented methodology. Implementation case
‘'studies show the usefulness of the methodology. Two implementations
on an abstract machine that are also on a parallel LISP machine are
reported.
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chine, parallel processing, PICCOLO, picture database, relational
model, VLSI technology.

Manuscript received January 11, 1982,
The authors are with the Department of Information Science, Faculty of

Science, University of Tokyo, Hongo, Tokyo 113, Japan.

I. INTRODUCTION

ECENTLY, much data have been handled in a form of
pictures or images. LANDSAT remote sensing and
computerized tomography are examples of data gathering
intensive applications. Another group of examples are data
generation intensive applications such as CAD (computer-
aided design) and CAI (computer-assisted instruction). By
storing these data in an integrated database, the handling and
sharing of these data become much easier. Recently, several
works have been done for constructing such database systems
called picture database systems. INFADS by Kunii [1],[2],
GADS by Carlson [3], GRAIN by Chang [4], and QBPE
(qucery-by-pictorial-example) by Fu [5] are examples aiming
at a picture database system. These database systems are
founded on the relational model because the other data models
such as a network data model and a hierarchical data model
lack the data independence which is one of the essential re-
quirements for a database system. However, the relational
model again lacks the capability to handle a pictorial data



