IEEE TRANSACTIONS ON COMPUTERS, VOL. C-33, NO. 3, MARCH 1984

261

A Partitioning Approach to the
~ Design of Selection Networks

BENJAMIN W. WAH, MEMBER, IEEE, AND KUO-LIANG CHEN

Abstract — The (m, n) selection problem is defined as the
selection of the m smallest numbers in any order from a set
of n numbers (m < n). In this paper, we have proposed a class of
design procedures for selection networks based on partitioning.
Conditions are defined so that the optimal design can be found
in polynemial time. The resulting selection network has
0(|Plog; n’}-[log; m7) time complexity and O(n - [log2 m |)
hardware complexity for all values of m. As a comparison, net-
works previously known can optimize either hardware or delay
but not both simultaneously, and perform worse than pure sorting
when m approaches n/2.

Index Terms — Bitonic merging network, comparison-exchange
module, odd-even sorting network, partitioning, scheduling,
selection. :

I. INTRODUCTION

ITH the advent of parallel processing, the scheduling

of tasks is very important. Suppose there are m pro-
cessors, and n tasks, each of which is characterized by a value
(e.g., priority, initiation time), are to be scheduled. The
problem is to select the m tasks with the minimum or maxi-
mum values. A special example is seen in the evaluation
of parallel branch-and-bound algorithms under best-first
search [7]. In this case, there is a large list of subproblems to
be expanded, and each subproblem is characterized by a
lower-bound value. The scheduler selects m subproblems
with the minimum lower bounds to be expanded.

In a centralized approach, selection can be performed in
time complexity O(n) for n tasks [3]. However, the major
bottleneck lies in the centralized collection and distribution
of tasks, or in the routing of tasks to processors. This mo-
tivates us to study an interconnection network that can per-
form selection and task routing in parallel. Qur study is based
on-the parallel selection of numbers, and is applicable to
more complex entities.

The (m, n) selection problem entails the transformation of
u set of n numbers into another set in which none of the
first m numbers exceeds any of the last n—m numbers. The
algorithm for performing this-is sometimes called an (m, n)
algorithm [4].

Manuscript received August 16, 1982; revised August 10, 1983. This
. work was supported by National Science Foundation Grants ECS 81-05968 and
ECS 80-16580,

B. W. Wah is with the School of Electrical Engineering, Purdue University,
West Lafayette, IN 47907.

K.-L. Chen is with the Department of Computer Science and Technology,
University of Science and Technology of China, Hefei, Anhui, China. He was
on leave at the School of Electrical Engineering, Purdue University, West

- Lafayette, IN 47907 at the time of this work.

This problem is closely related to sorting except that the m
numbers selected do not have to appear in any order. Parallel
sorting has been investigated extensively. Batcher pioneered
parallel sorting by designing a network model using 2-input,
2-output comparison-exchange modules that can compare
two numbers on their inputs and switch the smaller (larger)
number to the upper (lower) outputs [2}. The hardware and
time complexities for sorting n numbers are O(n log3 n) and
O(log} n), respectively. Preparata proposed the fastest par-
allel sorting algorithm on an adaptive model that required
(c'/a) logs n + o(log, n) time complexity and n'*® pro-
cessors for 0 < @ < 1 assuming that memory conflicts
are not allowed [5]. When memory conflicts are allowed,
Preparata showed that sorting can be achieved in time
C log; n + o(log, n) with n log, n processors. Preparata’s
results are based on the use of general purpose processors
and form the lower bound for parallel sorting. Other parallel
sorting algorithms have also been developed. However,
the set obtained by sorting is over-constrained because it is
arranged in a sorted order. By relaxing this constraint,
we expect the complexities of selection to be smaller than
that of sorting.

Parallel networks for selection have been little studied.
Alekseyev derived the lower ((n — m)[log,(m + 1)7) and
upper ((r — 1) (28(m) + m)) bounds on the number of com-
parators for selecting m numbers out of n = r - m numbers
where $(m) is the minimum number of comparators needed in
a sorting network for m numbers [1]. An effective procedure
is based on the selection of m numbers out of 2m numbers.
By first sorting (x,,* -+, x,) and (X, * -, x,), then com-
paring and interchanging x, oy X2 X3moy * X Xmer, half
of the numbers are eliminated. To select m numbers out of
n = r - m numbers, the procedure is repeated r — 1 times
(eliminating m numbers each time) [4]. For this algorithm,
the time complexity is worse than that of parallel sorting when
m approaches n/2.

Yao has studied the bounds on selection networks [8]. He
found that for m < Vn, the upper and lower bounds on the
number of comparators is O(n[logy(m + 1)7). The upper
bound on delay is O(log, n + Llog, m | log, log, n) for fixed
m = 2 and large n. He developed network constructions to
prove these bounds. However, there are two main drawbacks.
First, the networks proposed can optimize either hardware or
delay, but not both simultaneously. The reduction of one
parameter results in a performance that is worse than pure
sorting for the other parameter. Second, the bounds apply
when m is small as compared to n (m < Vn). When m ap-

0018-9340/84/0300-0261$01.00 © 1984 IEEE

262

proaches n/2, the proposed networks have worse performance
than Batcher's sorting networks.

Recognizing the lack of a practical selection network, our
objective is to develop a parallel selection algorithm that has
better hardware and delay complexities than parallel sorting
for all values of m < n. In general, this can be implemented
by either Batcher’s network model or Preparata’s adaptive
model. In this paper, we present a partitioning approach to
the design of selection networks based on Batcher’s model.
. As a result, the complexities are measured in terms of the
number of comparison-exchange modules and the corres-
ponding delay. Our algorithm chooses the optimal num-
ber of partitions and the optimal size of each partition in
polynomial time. It must be pointed out that our solution
is optimal with respect to the partitioning approach and does
not necessarily result in the optimal selection network (which
is still an open problem).

The symbols used in describing the complexities of merg-
ing and sorting are '

C the number of comparison-exchange modules, and

D the delay in units in which the delay through one
module is one;
with subscripts

OE odd-even merge approach, and

BIT bitonic merge approach;
and superscripts

M merging, and

T sorting.

For example, a symbol Clg(n) represents the hardware com-
plexxty of sorting n numbers using odd-even merge. A sym-
bol DY:(m, n) represents the delay of O—E merging two lists
of sizes m and n. Some related results on merging and sorting
are shown in Table I.

The proposed selection algorithm is based on odd-even
sorting and bitonic merging [2]. The selection algorithm is
discussed in Section II. Bounds on the optimal number of
partitions with minimum hardware and delay are derived in
Sections IIT and 1V. The performance of our algorithm is
compared to Alekseyev's and Yao’s selection algorithms in
Section V.

I1. DEeSIGN OF SELECTION NETWORKS USING PARTITIONING

The selection-network design procedure using partitioning
is denoted as SEL(m,n)(m < [n/2]). If m > [n/2], the
procedure becomes selecting the n—m greatest elements
(SEL(n — m,). 1

The procedure consists of partitioning the numbers into
multiple subsets, O-E sorting the subsets individually, and
bitonically merging the subsets.

=|n/2]

[1) Choose P, the set of possible number of partitions
(Section 1V);
2) FORp € PDO
3) [Partition the set of numbers S (|S| = n) into p
subsets, S|, S,, " -+ §,, such that [S;| = m, 1 <
i = p (Section III);

Selection Network Design Procedure SEL(m, n) m

{EEE TRANSACTIONS ON COMPUTERS, VOL. C-33, NO. 3, MARCH 1984

TABLE1
SOME RELATED RESULTS IN MERGING AND SORTING NETWORKS
“nyny ifoan, €1
Cl (nyny) = 4C3L ”"‘] !"’D + cg'P[1 l"’” itany > 1 m
+ (n,+n2 l)/2J
DYk (ngng) = 1 + [lngz mnx(n,,n,)l fornyng > 1 (2)
Ol) = Ol ||] + O [2” + l;] EY) o)
CMr (2Y) = 12! ' n=2>1 (4
D (n) = l‘OKznl nz2 (5
Cdeln) = ¢y + ¢l %ﬂ +CcM ”%, l%ﬂ a2 ')
Coi2) = 22—t +)= 1 n=221 @
Ddg(n) = [[log._.n +1p= ”Ingznn ”logzn] + 11/2 n>2 (8)
2

" Cfixln) = Cffir [+ Clir B + Clir (n} n>2 9
Dgir(n) = [bog,n] {pog,n] + 1]/2 i (10}
Chinln) 2 Coy(m) 2 Clfrlo) 2 ca&”%,. -;‘«ﬂ 2 cm”%ﬂ +17] m2oon
Property on bitonic sequence:
For a bitonic scquence of 2n numbers, a,, a,, ..., 85, compute for { = 1,2, .., 'm:
b, = min(a;,8;4,); ¢ = max(a,a;+n). The two sequences: MIN = b, by, .., b,
and MAX = ¢y, ¢y, .., ¢, are both bitonic, and by € cforall1 <, j<n.
4) Sort §;, 1 = i = p, using O~E sort;

‘Select the first m elements from each sorted

list (it can be guaranteed that the m elements

to be selected must be included in the m
- smallest elements of each subset);

p' = p;

5) WHILE p’ > 1 DO

6) [Pair and juxtapose (one ascending
and one descending) the p’ sorted
lists into { p’/2] bitonic sequences
.(Section IV-A)

2)) : Perform pairwise comparison on
each bitonic sequence to form
two different bitonic sequences,
MIN; and MAX;, 1 =i =< |p'/2];

‘Eliminate MAX,, 1 =i = |p'/2]
‘(Property on bitonic sequences —
Table I);

8) IF[p'/27 > 1 THEN

Sort MIN;, 1 =i=|p'/2],

: using bitonic merging;

9) 4 f =[p' / 21

]
i |

10) Choose p € P that result in the minimum number
of comparators |

The hardware for performing .pairwise comparison and

bitonic merging (steps 7 and 8) constitute a merging module.

WAH /‘\ND CHEN: DESIGN OF SELECTION NETWORKS

The above procedure clearly selects the m smallest elements
in an unsorted order.

It should be mentioned that our proposed design procedure
. is similar to Alekseyev’s method []] with a major difference
in step (8) where Alekseyev proposed to sort each list using
O-E sort. But since the list is already bitonic, it could be
sorted more efficiently using pairwise comparison and bi-
tonic merging (11). Further, m is restricted in Alekseyev’s
method to be a factor of n, and the set S is partitioned into n/m
subsets of m elements each. We have lifted this restriction in
our procedure. We will analyze inithe next two sections the
optimal number of partitions and the number of ¢lements in
each partition to result in the minimum hardware or delay.

III. OPTIMAL S1ZES OF PARTITIONS FOR A
GIVEN NUMBER OF PARTITIONS

In this section, we present efficient procedures to obtain
p-optimality, the partitioning of n numbers into p partitions
with at least m elements in each partition so that the total
number of comparators for O-E sorting each partition is
minimum [step 3 of Procedure SEL(m,n)]. Comparators
for the merging modules will not be accounted for until
Section 1V. The range on the size of each partition is deter-
mined and this substantially reduces the number of enumera-
tions. In Section III-A, results for two partitions are shown.
This is extended to the general case in Sectiop I1I-B.

A. 2-Partition Case

Consider first the case which sets no requirement on the
minimum number of elements in each partition. Without loss
of generality, m is set to 1. The following procedure estab-
lishes 2-optimal partitioning form = 1 and n = 2.
Optimal Partitioning Procedure PART(I,n,2), n = 2
[1) Compute the smallest integral power of 2 that is larger

than n/2 (ny), the largest integral power of 2 that is
smaller than n/2 (n.) and the midpoint (n,,):

nL =3 2Llogan/271J - 2“032 n/ZJ;
= Alogl 1+ 13211 = A logaln+1)2) mt ny
ny = 2k = 2'lem ; ny = > ;

2) Let (n{,n;) be the desired partitions, n| =< nj, n] +

_ n; = n. Setone of the partitions to have a size of ng, Ny

or ny, and the size of the other partition is adjusted
accordingly.

n nL+nM
Ifn <= |—| < —*=
"’“.LZJ 2

then set n{ = n,,ny =n — n;
TR SR . T
2 2 2
’ : ’
= min{n — ny,n
then set | (M M);
n; = max(n — ny, ny)
nM+nU n
If ——=<!|—| <n,;
2 2 Uy
thenset n =n'— ny,n} = ny

263

n n n

(3”3 {3 Coel| 5] +9)+ Coul ;] -y~ C&:([jl% c&(MJ
0 -3 6 B 19 (3 21 20 26 25 33 34 40 39 44 42 48 40 39 64 72
:ng; 18e 6 10 16 19 24 26 26 26 35 39 41 43 47 48 47 49 %9 6o 72 72
R 32|19 11 1% 21 20 2@ 29 32 28 36 41 446 44 31 51 53 48 40 o6 74 76
"L{ 33 7 12 14 18 22 24 23 27 33 37 38 41 44 45 43 48 %6 &3 &7 T4
3333 | 207 | 0 S} 4 9 12 12 17 15 22 22 29 29 35 34 38 35 43 44 53 56 &3
34 0 - 7 10 11 12 18 21 22 2% 30 32 32 32 39 43 49 30 SO 43
34 34 29 o 3 % 9 & 1% 17 21 1B 26 27 30 26 34 39 44 42 %2 %6
as 0 : 0 12 16 16 18 22 24 23 29 3% I9 40 43 49 34
a8 3% 223] 11 t& 14 19 17 26 28 3% 3% 41 40 47
6] 19 16 19 16 24 29 32 35 40 42 42 45
3 96 | 241 | © 1% 15 17 12 23 27 33 32 40 41 44 40
a7 o 10 11 9 14 21 26 20 32 D& 38 37 4t
37 |ass|o 2 & 311 12 20 21 20 20 53 31 I8
36 [- 2 2 913 15 19 25 28 29 30 Js 39
a0 08 | 269 | 0 2 -2 9 11 16 14 23 25 29 26 3% 37
a9 0 -3 3 9 13 14 17 22 2523 30 25 28
a9 avjar|o -8 =7 2 4 11 11 17 16 22 21 29 30 3s
5w |8 EREEE R

3 7131220 21

oyt mg 440 801 #09 0 3 7111517 16 20 26 30 33 34
2 a1 41] 298 | o § -4 ~3-0 DUIP -2 =1 b & 11 9 18 16 23 23 29
42 0 -§~Aasa7|aux;agg:g;

42 0o | o ~3fp -1 1 % 21113171
* 43 3 o -3 €2 -4 3_-3 0 0 %10 131315192t
43 43 (321 | o -6 -4"[p -4 -8 3 410 9 14 1217
44 0 0«2 -2 -5 2 6 810 14 1% 1413
44 44 [329 | O p 5 2 1B 2 S 10 B 15 4317 12
a3 o 2 0-%5-p 0 4 S Bit12102
43 43 [342 | O -2 0-6-3"p -1 -1 3 4 B 519
46 o 0-2 0-1-p -2 2 5 % 51827
46 46 | 331 | o 5-2 4 2 37T 2 3 & 2182
47 o 23540-5l32|‘2534
47 47 | 361 o 2 7 4 7 2 Ty o1 -1 142133
48 p 111210 9 9 & &_1 13 3% 39 40
49 48 | 367 p 1 16 16 18 12 16 12 10D 17 26 37 40
"M{ 49 R 111210 9 9 & § 61820344
49 49 | 383 [0 2 7 4 7 2 24 & 7202
30 o 2 3 5 4 0-f"6 111321 32239
% %0 | 398 | O 8 -2 4 2 2-p 71117 142834
51 [0-2 0-1 -F 31t 1617 20 29 36
91 31 | 408 [O - =p -3 - “2 0 =6 -3-§ 4 7161623 213
32 [} 204-5 S 12 16 20 26 26 27 R
@Rk |Muz o 9 2 i< 71321 2030 31 3420
a3 [} © -2 N 010 17 20 25 30 32 30 34
3333 | 43 | o P -6 -4-40 1 3 14 16 2523 1 20 B
34 o 3 -6 -B7°2 @ 1117 2529 30 21 3@ 4
34 34 | 481 [0O =3-10 4 9 14 14 26 29 34 30 41 43
55 o €3 -8"71 10 16 18 22 23 33 33 39 43 4@
9533 (452 | O koip 3 7 57 18 26 2% 33 32 42 43 30
S& o S 13 18 23 30 33 13 3a 45 50 52 54
nat g {90 96 | 489 | 0 B8 13 24 24 35 37 4L 36 49 53 39 %
—“-‘———‘L{ 37 [10 18 22 28 34 37 35 41 49 54 35 38
? 37 57 | 474 1 O 113 16 26 27 34 32 41 41 30 50 57
58 o 8 19 24 29 31 33 41 43 4a 30 % 58
%8 %8 485 [+] 12 10 23 37 33 30 42 45 30 4 % 97
a9 ° 14 17 2% 30 31 38 45 49 49 31 56 36
sp 3% | a97 f 0 14 71 19 28 26 39 41 49 49 94 31 37
&0 0 29 27 26 30 40 46 49 32 37 50 Se 37
0 40 | %0% | 0 30 31 34 28 42 47 54 52 b1 a1 83 %
o1 [31 33 31 39 44 SO 52 56 #0 &1 58 a4
61 61 | 318 |0 27 32 30 38 37 47 48 35 33 60 % &b
2 [33 34 41 44 44 49 %% 9 59 39 &8 73
62 62 | %27 | © 36 34 43 47 31 46 37 5% & 38 71 7%
63 [30 44 30 33 32 51 99 &2 6t &9 77 G2
63 63 | 337 | O - 23 24 A2 38 48 49 %6 %4 59 %5 &2 40 72 7% 84
64 §T2 20 23 30 37 40 40 42 52 37 39 ol 65 65 62 o4 75 dI He 90
ny {64 1} 343 § 15 23 32 32 43 43 49 44 57 61 67 64 72 71 72 44 79 9% 93 92
6% 1923 29 3% 38 37 42 50 5% 54 S9 0 a2 Y6 83 73 AC 83 n@

y=U 1 2 3 4 5 8 7 10 19 12 13 14 15 18 17 16 10 20

Fig. 1. The number of comparators required for O-E sorting using 2 parti-
tions normalized with respect to 2 partitions of sizes | n/2 | and [n/27,
64 = n = 127 (solid and dotted lines indicate combinations with the mini-
mum number and comparators).

The procedure has O(1) time complexity. It is illustrated in
Fig. 1 with n, = 32, ny = 64, and n, = 48 for 64 <
n < 128. An entry in the table represents the number of
comparators required for O—E sorting two partitions of sizes
Ln/2) — y and [n/27 + y normalized with respect to that
for sorting two partitions of sizes | n/2 | and [n/27. The
minimum value(s) in each row is, thus, the normalized
optimal number of comparators required. The minima are
joined together using solid and dotted lines. Procedure
PART(1, n, 2) obtains the locus on the solid line for n, <
x < (n, + ny)/20r (ny + ny)/2 = x < ny, and on the dot-
ted line for (n, + ny)/2 < x < (ny + ny)/2.

As an example, for n = 87, | n/2 | = 43, [n/2] = 44.
Scanning along the corresponding row in Fig. 1, the mini-
mum values occur at y = 4 and y = 11 with C}g(43) +
CLe(44) — 7 = 643 comparators. It corresponds to setting
ny =43 — yand n; = 44 + y. That is, (n], n}) = (39,48)
or (32,55). The proposed partitioning procedure finds the
partitions (39, 48).

Theorem 1: Procedure PART(1,n,2), n = 2, results in
2-optimality. The proof of Theorem 1 is long and is shown in
the Appendix.

264

Theorem 1 shows the optimality of the partitioning proce-
dure. However, the procedure is developed with respect to

= 1. If this restriction is lifted, the procedure has to be
modified because PART(1,n,2) may not result in feasible
partitions. The modified optimal partitioning procedure,
PART(m,n, 2), n = 2m, partitions the set as PART(1, n, 2).
However, when the size of the smaller partition using
PART(l,n,2), n{, is less than m, a limited enumerative
search is performed to find n; and n — n| that satisfies
MiNen, <2 {COE(M) + Che(n — np)}. The procedure has a
time complexity of O(1) when the optimal sizes of the par-
titions found by PART(1, n, 2) are greater than or equal to m.
Otherwise, enumeration is necessary, and the time complexity
is O(n/2 — m).

B. General Case withp = 2 Partitions

In this section, we present conditions and bounds that
result in p-optimal partitioning. By using these bounds, effi-
cient design procedures can be developed.

Theorem 2: The necessary condition for p-optimality is
that the partmom are pairwise optimal.

Proof: Assume that the partitions are p-optimal, and
there are two partitions that are not palrwme optimal.
These two partitions can be rearranged to result in a smaller
number of comparators which contradicts the assumption of
p-optimality. "

Theorem 3: In a p-optimal partitioning with L n/p | = m
the size of each partition is between max(m, 2""*#"")) and
2(lozz:(n/pﬂ.

Proof: The condition | n/p] = m is used to ensure the
possibility of all p partitions having sizes greater than or
equal to m.

For | logx(n/p)] < [logy(n/p)7, consider first that m =
2ilem). We assert that in an optimal partitioning the size of
any partition must lie in the range 2''®*”! and 2 tegalip) 1,
Suppose this is false, then there exists two partitions Sy, S5,
with sizes s,. 5, such that 5, < 2llerw»] apd 5, > 2tlesmn)],
ors, < 2'ertwmland s, > 2M'o=vm From Theorem 1, S, and
S, can be rearranged to result in a smaller total number of
“comparators. This contradicts the assumption that the par-
titions are p-optimal. For the case m > 2\l°a"»J, the lower
limit is set to m. Therefore, the lower bound on the partition
size is max(m, 2tioenpr]y,

For the special case when | logy(n/p) | = [log,(n/p) 1, ac-
cording to Theorem 1, the size of each partition is set to n/p
to result in p-optimally. n

Theorems 2 and 3 lead to a procedure for finding p-optimal
partitions. The procedure is a reduced form of enumeration.
Assuming that there are P partitions, it is written in a recur-
sive form and assigns one partition in each call.

Procedure OPART (e, p, min, max):

[/*Procedure to find optimal allocation of e elements into
partitions p thru P. The size of each of these partitions is
between min and max. */

(1) /*Check if limits are exceeded:
The partitions are assigned in increasing sizes due to sym-
metry. To assign e elements into P — p + 1 partitions, the

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-33, NO. 3, MARCH 1984

minimum partition size is Le/(P — p + 1)] and must be
greater than min. Likewise, the lower bound on the maximum
partition sizeis[e/(P — p + 1)7 and must be less than max.
If these limits are exceeded, the procedure returns and
chooses a different assignment for partition p — 1*/

(2) /*Check for condition of last partition:

If p equals P, this is the last partition, and all the e elements
are assigned to this partition. If this assignment is pairwise
optimal with assignments in partition 1 through p — 1
(Theorem 2), then the total number of comparators required
for O-E sorting the partitions is computed. This number is
compared to the minimum obtained previously and is taken to
be the minimum if smaller. The procedure then returns to set
a different assignment for partitionp — 1.*/ :

(3 /* Aqﬂign elements to the current partition and call
OPART again:

Choose i elements ranging from min to Le/(P=p+ D]to
be assigned to partition p. If this assignment is pairwise opti-
mal with assignments in partitions 1 through p ~ 1, then the
assignment is valid and procedure OPART is called to assign
partition p + | (OPART(e — i.p + 1.i.max)). */
] : |

The procedure is called initially with OPART(n, 1,
max(m, 2toem)y 2loemly The complexity of the proce-
dure is difficult to evaluate. However, it is exponenti‘al with
respect to Ln/p J.

A simulation of OPART qhows that values of the maximum
and minimum feasible solutions deviate by about 1.5 percent
(Fig. 2). Thus, a heuristic procedure that generates any fea-
sible solution is usually acceptable. Theorem 2 is useful in
generating a feasible solution. The n elements are distributed
uniformly into P partitions. The partitions are examined and
rearranged in pairs to achieve 2-optimality. This'is repeated
until no further improvement is possible. The heuristic,
HPART, is not shown here and is called with similar argu-
ments as OPART. It runs very efficiently and has complexity
O(p?). Performance results of the optimal and heuristic pro-
cedures will be shown in Section V.

IV. OpTIMAL NUMBER OF PARTITIONS

In this section, we develop bounds on the number of par-
titions that result in the minimum number of comparators or
delay. These bounds are useful in reducing the complexity of
designing an optimally partitioned selection network [step 1
of Procedure SEL(m, n)].

A. Bounds on the Number of Partitions with
Minimum Comparators
The results in Section III are related to a fixed number of

partitions and does not include the hardware for the merging
modules. In order to find the optimal number of partitions,

‘the hardware for merging must also be considered.

For a given number of partitions p the partitions are
merged in pairs until a single partition is obtained. The
number of merging modules needed is the same as the number
of nonterminals in a binary tree with degree of 2 and p termi-
nals. Let x be the total number of terminals and nonterminals

WAH AND CHEN: DESIGN OF SELECTION NETWORKS -
4.50
BATCHER'S O-E SORTING
YAO'S DELAY UPPER BOUND NETWORK
4.25+
7 R Ry o e N
5
g 4007 ALEKSEYEV'S
< ALGORITHM
-4
«
E 3.751 PROPOSED ALGORITHMS
(MINIMUM COMPARATOR,
Q . MINIMUM DELAY,
Q HEURISTICS)
g 8.50
2 YAO'S COMPARATOR
UPPER BOUND
NETWORK
3.264 ’
3.00 T T A v T T
0.000 - 650.00 100.0 150.0 200.0 250.0 300.0 350.0

m-NUMBER OF ELEMENTS SELECTED
Fig. 2. Hardware complexities of different parallel selection
algorithms (n = 684).

in the tree. There are x — 1 incoming edges and (x — p)2
outgoing edges. Solving this, we getx = 2p — 1. The num-
ber of nonterminals (merging modules) equals p — 1. The
number of levels of nonterminal nodes is [log; p .

The following theorem defines the bounds on the number
of partitions.

Theorem 4: The optimal number of partitions for mini-
mizing hardware PGy has a lower bound P§ = | n/2/\osam}]
and an upper bound P§ = [n/m .

Proof: The maximum number of partitions P§ must be
[#/m]. Otherwise, there will be at least one partition whose
© size is less than m,

To prove the lower bound, suppose there are P{ partitions,
and each partition is forced to have 2271 elements with
the exception of possibly one partition which has 2/oe 1 <
[n — 2Momami(pf-— 1)] < 2Mos2m1*! elements. We show that
it is impossible to improve on the total number of compara-
tors by decreasing the number of partitions. ’

We first have to prove that this distribution is P{-optimal.
The proof is shown by induction on the number of partitions.
Given this fact, a partition is now eliminated, and the ele-
ments contained in it are distributed among the remaining
(P{ — 1) partitions until the allocation is (P ~ 1)-optimal.
We assert that it is sufficient to combine two partitions of size
2/ each into one partition in order to achieve (P — 1)-
optimality. The assertion is also proved by induction on the
number of partitions and using Theorem 1.

From (7), with P{ = 3, the increase in the number of
comparators for O-E sorting due to the elimination of one
partition is

CSE(ZF"’” m]H) - 2C(T)g(2“"" m]) = zﬂugzm]rlogz ml+ 1.
(12)
_ By eliminating one partition and assuming Pf{ = 3, the
comparators for one merging module is saved. The maximum
saving occurs at m = 2/l ynd, from (4),

Chr(2Mowmy + m = [log, m12Mesem= + ;. (13)

265

Equality exists between (12) and (13) form =< 2. Form = 3,
the terms in (12) are larger. This shows that eliminating one
partition results in increased hardware.

The same argument follows that eliminating more than one
partition is not cost-effective. The lower bound on the num-
ber of partitions is, therefore, | n/2"s2m1 |, -

Although the number of merging modules can be obtained
by finding the optimal number of partitions Pgpr, the overall
delay of the network is affected by the way that these modules
are connected [step 6 of Procedure SEL(m, n)]. To illustrate
this, consider the selection of 127 numbers out of 428. The
optimal partitions are 128, 128, and 172 with delays of 28,
28, and 36 units, respectively. The delay of a merging mod-
ule for pairwise comparison of 254 elements and bitonic
merging of 127 elements is 8 units. Suppose the partitions of
sizes 128 and 172 are first combined through bitonic merg-
ing. This requires a delay of 8 + max(28,36) = 44 units.
One more unit of delay is needed due to the final pairwise
comparison of 254 elements to result in a total delay of 45
units. Another configuration combines the partitions of sizes
128 and 128 together first to result in a total delay of
I + max(8 -+ max(28, 28), 36) = 37 units.

In order to determine the order for merging the partitions,
it is observed that in an optimal partitioning, all the partitions

have sizes between 2 en= i gnd 2ies: = except in one case
in which p — | partitions have sizes 2''*®2 " and one partition
S, has size between 2/ 271 gpd 2! 101 Thiy is shown in

the proof of Theorem 4. Therefore, the sizes of partitions can
differ by a maximum factor of 2. In this case, the maximum
difference in delay between O-E sorting the smallest and
largest partitions cannot exceed the delay of a merging mod-
ule since from (5) and (8),

D{e(2x) — Dbg(x) = Diir(x) + 1 = [loga x1+ 1. (14)

The merging modules are connected into a binary tree
of [log; p] levels. The delay of the tree is [log, p]
((toga m1 + 1) — [log, m7 units. The second term is due to
the fact that no bitonic merging is necessary in the last stage.
If p is a power of 2, all the path lengths equal {log, pT;
otherwise, there exists one or more paths with length

<[log, p1. To minimize the overall delay, the partitions are

attached to the terminals in any order except in the case in
which the number of partitions is not a power of 2 and §,, the
largest partition, has a size between 2/™#:7! ynd 2teszmi+!

, 1 +2
[with delay (F 08 ';”) —(8)] . In this case, S, should be

located as the terminal node of a shorter path from the root of
the binary tree. The extra delay of S, is offset by the reduced
path delay of the tree. In summary, the delay of the selection
network is :

[log, p1([logam] + 1) — [loga m +
<|’log2 ml + 1) (p is not a power of 2) or
2 (p is a power of 2 and |S,| < 2os2m1)

(f' logam7 + 2

> I'Iogm1_
2 2

Sp

) (p is a power of 2 and

266

B. Bounds on the Number of Partitions with
Minimum Delay

The optimally partitioned selection network with mini-
mum comparators does not always result in a network with
minimum delay. As an example, consider the selection of 35
out of 175 numbers, the optimal partitions with minimum
comparators are 35, 35,35, 35,35 with a delay of 36 units
and 1555 comparators. 1f four partitions 39,40, 48, 48 are
used, the delay is 29 units with 1568 comparators. The fol-
lowing theorem shows the bounds on the number of partitions
for minimum-delay networks.

Theorem 5: The optimal number of partitions for mini-
mizing deliay Phyy hos o lower hound

pl{) - I_n/2' logy mb_]
and an upper bound

{L(n/m)_l

21, logy(n/m)]

Dbloga(nim)) p;’

Pl =
2L|og2(n/m)J > PE

Proof: The lower bound can be proved by showing that
delay cannot improve with the elimination of one or more
partitions. The proof is very similar to that of Theorem 4 and
will not be illustrated here. To prove the upper bound, the
maximum number of partitions is | n/m]. It is easy to show
that { n/m | = 2!tetwm] If Jlloestwm] = PP then the upper
bound can be reduced from | n/m] to 2t | resuiting in
one less level in the tree of merging modules and no increase
in the delay for O—E sorting each partition. To further reduce
the delay.of the tree of merging modules, the upper bound has
to be halved, resulting in 2t'°&0vm .=t < PP partitions which
is impossible. On the other hand, if 2lle"m] < PP the
upper bound cannot be reduced to result in a smaller delay.
Pl issetton/m]. -

V. COMPARISON TO PREVIOUS ALGORITHMS

In this section, we present some performance results of
the proposed selection algorithm and compare them to
Alekseyev's and Yao's selection algorithms.

The proposed network has a delay complexity of
O(Tlog, n1 - {log; m7) and hardware complexity of O(n -
[logi m7). As compared to Alekseyev’s algorithm, there is a
constant improvement in hardware complexity and a speedup
of O([log, n1/[log, m1). The proposed algorithm has guar-
anteed performance for hardware and delay and for all values
of m. In contrast, Yao's selection algorithms have better
performance when m < Vrn and worse performance than
pure sorting when m approaches n/2. Furthermore, Yao’s aigo-
rithms minimize either hardware or delay complexities, but not
both simultaneously. Yao’s networks are aimed towards the
development of bounds on performance. Although our pro-
posed network performs worse on individual measure for
m < VA, it has better overall delay-hardware characteristics
and represents a practical approach to the problem. This is
demonstrated in the simulation results.

In Table 11, the complexity of our proposed optimal design
procedure is compared to exhaustive enumeration. It is
seen that exhaustive enumeration is impossible to use prac-

[EEE TRANSACTIONS ON COMPUTERS, VOL. C-33, NO. 3, MARCH 1984

‘ TABLEII
COMPARISON OF EXHAUSTIVE ENUMERATION AND THE PROPOSED OPTIMAL
DESIGN ALGORITHM FOR 1 = 100, (ITERATIONS IN THE PROPOSED ALGORITHM
ARE THE NUMBER OF RECURSIVE CALLS TO PROCEDURE OPART.)

Exhaustive ’ !’ropmed Optimal Algorithm
Enumerations # of partitions Min. # of Delay

m Iterations Tterations! | Lowerbound | Upperbound | Comparatots | in stages

2| 20417 0 | 80 80 100 2
3 4372211 261 25 33 243 18
4 1237284 25 25 25 313 16
6 175536 184 12 18 382 19

8 30829 19 ! 12 12 458 L I
10 12149 226 6 10 510 21
" 1am " 0 0 g 9t
n Uk 44]] fad 4
25 9 4 3 4 735 22
50 2 2 1 2 g0 | 2
100 1 1. 1 1 1o o]

tically. Further, iterations for the proposed design procedure
are not monotonically decreasing because they depend on
the range between the lower and upper bounds of the number
of partitions.

In Figs. 2 and 3, the performance of the selection networks
forn = 684 and m between 1 and 342 are plotted. The value
684 is picked randomly. The curves for m between 343 and
684 are symmetric with respect to m = 342. These design
procedures were implemented on a VAX 11/780. The simu-
lations took 7.5 h for the optimal procedure using OPART
and 0.6 h for the heuristic using HPART.

In Fig. 2, the number of comparators for the various
methods are compared. It is seen that optimization under
minimum comparators and minimum delay tesult in almost
the same number of comparators (=1 percent deviation on
the average). The heuristic method also gives exccllent
results, and the error is less than 1 percent on the average. In
contrast, Alckseyev's method requires significantly more
comparators than our proposed method.' The comparators
needed for Yao's hardware- and delay-upper-bound networks
are also compared. It is seen that Yao's hardware-upper-
bound network performs better for 3 = m =< 79 with n =
684, Yao’s delay-upper-bound network has worse hardware
requirement than his hardware-upper-bound network. As a
comparison, the hardware for pure O-E sorting is also
shown. Yao’s networks are worse than O-E sorting when m
approaches n/2. :

In Fig. 3, the delays of the different networks are com-
pared. It is seen that the delay for the minimum-delay
network is monotonically increasing while the delay for the
minimum-comparator network is not. This is due to the fact
that the number of partitions in a minimum-comparator net-
work can be increased beyond a power of two which incurs
an additional stage of delay in the tree of bitonic merging
modules. The delay curves for the heuristics are also very
close to those of the optimal algorithms. As a comparison,
the delays for Alekseyev's and Yao's algorithms are plotted.

"The performance curves of Alekseyev’s algorithm are discrete because m
must be a factor of n.

WAH AND CHEN: DESIGN OF SELECTION NETWORKS

4.00
YAOQ'S COMPARATOR
UPPER BOUND

3.50 4 NETWORK

@ 3.00 -
YAO'S DELAY
@ BATCHER'S UDPER BOUND
< 2’,50 < SORTING NETWORK
= ALEKSEYEV'S
EfJ ALGORITHM
& 2.00
> e
5 ' it
B 1.504 ooz
Q
e
37 1.00 1 PROPOSED ALGORITHM PROPOSED ALGORITHM
L (MINIMUM COMPARATORS, (MINIMUM DELAY,
HEURISTIC) HEURISTIC)
600 4
0.00

T Y ¥ T T T T T
00 10 20 30 40 50 6.0 7.0 80 9.0
log; (NUMBER OF ELEMENTS SELECTED)
Fig. 3. Delay in stages of different parallel selection algorithms (n = 684). |

Alekseyev’s algorithm may require less comparators than
pure sorting, but at the expense of additional delays. Yao’s
networks have worse delays for m = 4.

In summary, our proposed network has better hardware-
deluy charncteristics thun other approuches. While muintain-
~ ing hardware and delays to be always less than pure sorting
(which other networks cannot), the network represents a
practical approach to the parallel selection problem.

V1. CONCLUSION

In this paper, we have presented a practical design of
selection networks. The set of #n numbers are first partitioned
and O-E sorted independently bcfore they are bitonically
merged together. To minimize the number of comparators or
delay of the network, the number of partitions and the size
of each partition must be succinctly chosen. Exhaustive
enumeration is shown to be impractical.

We have proved the necessary condition for optimal par-
titioning and have found the range on the number of partitions
in which optimal partitioning occurs. Using these results,
design procedures are proposed to find the size of each
partition. The selection network designed has a delay com-
plexity of O('log, n1 + [log; m1) and hardware complexity
of O(n * [log} m7). The proposed network always maintains
less hardware and delay than pure sorting. It is compared to
Alekseyev’s and Yao’s selection networks and found to have
better hardware-delay characteristics,

" The partitioning approach is not limited to the net-
work model used here. The adaptive model of Valiant and
Preparata can be applied to sort and merge the lists. Using
Preparata’s scheme [5], a list of size m can be sorted in
O(log m) time and O(m log m) hardware., With Valiant’s
method [6], two sorted lists of size m each can be merged
together in 2 log log m + O(1) time and m processors.
Of course, the basic hardware in the adaptive model is a
processor. Further, there is no penalty for memory-
processor alignment, and the overhead corresponding to the

267

reassignment of sets of processors to subsequences to be
merged is ignored. An (m, n) selection can, thus, be done in
O(log(n/m)log log m) time with n log m processors. How-
ever, these results cannot be compared directly to our earlier
results because different hardware units are used. An open
problem at this time is to develop a parallel selection algo-
rithm on multiprocessors.

Although we have proposed a very efficient design, our
design is only optimal with respect to the partitioning ap-
proach. It is by no means the optimal design in general. The
problem here is similar to the problem of designing optimal
sorting networks which is still open at this time. Future
research is necessary in this direction.

APPENDIX — PROOF OF THEOREM 1

The proof is done by first showing

(i) osI:],isI}./z{CSE(nl) + Cheln ~ n,)} = Cheln,)
+ Cheln — ny) n = —;l < ny (A-1)

(i) uj}j‘i‘r}":{C&’}u(m) + Chuln = m)} z Coilny)
| + Che(n — ny) ny =< % < ny. (A-2)

The proof is completed by showing the equivalence between
points on the solid and dotted lines in the region

nL+nMS£<nM+nu
2 2 2

(refer to Fig. 1).

We show the proof of (A-1). The proof is by induction on
n/2.

Basis: Letn, = 2,n, = 3,ny = 4,

(i) For 25‘;‘<3

min{Cx(4), Chx(1) + CEe(3), CE:(2) + Chi(2)}
= Cox(2) + Che(2) = 2.
(ii)) For 3=<n/2<4
min{C0e(6), Coe(1) + CHe(5), Che(2) + Chi(4),
C(T)E(3) + CGe(3)} = Chi:(4) + Cl(2) = 6.
Induction Hypothesis: Assume that (A-1) and (A-2) are true

for any (n/2) = 4.
Induction Step: Consider i-= 2n. Define

- ; . R . n+ n
iy = 2tlew2dl, fiy = 2Mor il iy = = 2 -
It is easy to show that
n o= i ny = Ry n A
L= v 5 M~ 5
2’ 2’ 2

268 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-33, NO. 3, MARCH 1984

For iy < /2 < fiy, this implies n, < n/2 < ny. Referring n, + ny _ <M + ny
to (A-1), 2 2 2
) . .. (Fig. 1) must be.shown. The proof is also done by induc-
LHS = mi Te(f) + Che(— . . LB .
05,_,;-,,2 Cox(ft)) oe(# — 1) tion on n/2. The approach is similar and will not be re-
B _ peated here. [
Expanding using (6),
) REFERENCES
. n ity - ;
LHS = min ’{COE<[E‘l> + C &:(L—i‘ J) [1] V.E. Alekseyev, “Sorting algorithms with minimum memory,” Kibern.,
Oy SA/2 . vol. 5, no. S, pp.- 99-103, 1969.
i A -7 [2] K.E. Batcher, “Sorting networks and their applications,” in Proc. 1968
+ C()F(- , i) > + C&(!)) Spring Joint Comput. Conf., AFIPS Press., vol. 32, 1968, pp. 307-314.
2 2 2 {3] M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan, “Time bounds for
7 selection,” J. Comput. Syst. Sci., vol. 7, no. 4, pp. 448-461, 1972.

Searching. Reading, MA: Addison-Wesley, 1973.
[5] F.P. Preparata, “New parﬁllel -sorting schemes,” IEEE Trans. Comput.,

vol. C-27, pp. 669-673, July 1978.
s ev
Since 7 is even (7 = 2n), it can be shown that (6] L.G. Valiant, “Parallelism in comparison problems,” SIAM J. Comput

- S - — - vol. 4, no. 3, pp. 348355, Sept. 1975.
n + n—my_ i + n—my_n_ n. {7 B.W. Wahand Y. W. Ma,"‘MANIP A multi-computer architecture for
2 2 2 2 2 solving combinatorial extremum search problems,” IEEF Trans. Compul
to be published.
By using the induction hypothesis, I8 A.C.C. Yao, “Bounds on selection networks,” SJAM J. Comput., vol. 9

e8] o) e
anfeil [3]) il [252])

= CgE(”I,) + C(T)E(” - n).

By using induction, it can be proved separately that

! >+ cH ((ﬁ - ’-ll\‘ {ﬁ - ﬁlJ)} {4] D.E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and

Benjamin W. Wah (8'74-M’79) received the B.S.
and M.S. degrees in electrical engineering and
computer science from Columbia University, New
York, NY, in 1974 and 1975, and the M.S. degree in
computer science and the Ph.D. degree in engineer-
ing both from the University of California, Berkeley,
n 1976 and 1979, respectively.

Currently, he is an Assistant Professor in the
School of Electrical Engineering, Purdue University,
West Lafayette, IN. His current research interests

) n, y M n - n - n wow® include parallel computer architecture, distributed
min Cc¥ OE) “2' + Coe 2 ’ 5 databases, and theory of computing.
0= =A2 Dr. Wah has been a Distinguished Visitor of the IJEEE Computer Society

= CM(non) + Cle(n — nyon — ny). Since 1983.

Il

+ Kuo-Llang Chen graduated with honors from
Chino-Tung University in 1961 mmuring in digi-
tal compulers.

Since 1961 he has been researching and teaching
logical design and computer architecture at the
Institute of Special-Purpose Computer, Beijing, and
the University of Science and Technology of China,
Hefei, Anhui, China, respecnvely From 1981 to
1983, he was on leave as a visiting scientist at the
Department of Computer and Information Sciences,

Since min(x + y) = min(x) + min(y), therefore, using (6),

LHS = 2C m(n/) + 2C(n(" - n) + Cﬂu("l,.nl,)
+ Coe(" - nm.n—n)= COE(nL) + C(T)E(;l - n,) = RHS .

To complete the proof of (A-1), the case of # = 2n + 1 must
also be considered. The proof is similar. Likewise, the proof
of (A-2) is similar and will not be illustrated here. By the

University of Florida, Gainesville, FL, and the

theory of induction, (A-1) and (A-Z) are pmved' . School of Electrical Engineering, Purdue University, West Lafayette, IN. His
To complete the proof, the equivalence between points ON research interests include paraliel/distributed processing, interconnection net-

the solid and dotted lines in the region works, and data flow computation.

