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A Comparative Study of Distributed Resource Sharing
on Multiprocessors
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Abstract — In this paper we have studied the interconnection of
resources to multiprocessors and the distributed scheduling of
these resources. For a given interconnection network, the
resource-mapping problem entails the search of one of the free
resources which can be connected to each requesting processor. To
prevent the bottleneck of sequential scheduling, a request without
any destination address is given to the network, and the network
is responsible for finding the necessary resource and connecting
it to the processor. The addressing mechanism is thus distributed
in the network. Three different classes of networks have been
investigated: namely, single shared bus, multiple shared buses,
and multistage dynamic networks. In each case, the scheduling
algorithm is described, and the tradeoffs of different network
configurations are studied. The resource-sharing networks are a
generalization of conventional interconnection networks with
routing tags in which all the resources are of different types.

Index Terms — Address mapping, crossbar switch, multistage
dynamic network, queuneing delay, resource sharing, shared bus.

I. INTRODUCTION

ECENT advances in large-scale integrated logic and -

communication technology, coupled with the explosion
in size and complexity of new applications, have led to the
development of parallel processing systems with a large
number of general- and special-purpose processing units. An
example is the PUMPS architecture that contains a large
number of special VLSI functional units for pattern analysis
and image database management [6]. An interconnection
network is an essential element of these systems as it inter-
connects processors and resources [10]. Its function is to
route requests initiated from one point to another point con-
nected on the network. The network topology is dynamic,
and the links can be reconfigured by setting the network's
active switching clements. The notable characteristic of these
networks is that they operate with address mapping. That is,
a request is initiated with a specific destination or a set of
destinations, and routing is done by addresses. Routing of
requests is usually done in parallel. As classified by Feng
[10], these networks include the single or multistage net-
works and the crossbar switch. Examples are the banyan [13],
indirect binary n-cube [24], cube [27], perfect shuffle [29],
flip [3]. Omega [17]. data manipulator [9], augmented data
manipulator [28], delta [8],[23], baseline [32], Benes [4],
and Clos [7]. Examples of systems designed with. inter-
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connection networks are Trac [26], Staran [2], C.mmp [33],
[lliac IV [16], Pluribus [22], Numerical Aerodynamic
Simulation Facility (NASF) [1], and the Ballistic Missile
Defense testbed [21].

In a resource-sharing environment, a request is directed to
any one or more of a pool of identical resources and not to any
particular element in the pool. This exists in a multiprocessor
system with a set of identical (or sets of identical) VLSI
chips performing special functions like matrix inversion, fast
Fourier transform, and sorting. Another application lies in a
system with load balancing. Processors are considered as
resources themselves. When a processor is overloaded, the
excess load is sent to any available processor in the system.
Resource sharing is also an important element in data flow
machines. Tasks in node store are sent to a pool of identical

‘processors for processing.

To use an address-mapping network in this environment,
the address of a free resource must first be sought and given
to the request before it enters the network. This implies a
centralized scheduler which manages the free resources, and
has been studied with respect to the banyan network. In these
studies, it is shown that when a processor makes a request for
multiple resources, by allocating resources with smaller dis-
tance functions, the amount of network blockage caused by
the allocation of these resources is reduced [15]. A tree net-
work is proposed to aid the scheduler in choosing a resource
to allocate. It has a delay of O(m) in selecting a free resource
(m is the total number of resources) [25). This sequentinl
service of requests is a major overhead in a resource-sharing
environmeat and may become n bottleneck. This approsch is
practical when the number of resources is not lurge or when
requests are not very frequent. The performance of resource-
sharing systems under address mapping has also been studied
by Fung and Torng [ 12], Marsan et al. [19], [20], and Willis
[31]. In these studies, resources are modules that requests can
be directed to. Examples include memory modules and 1I/0
devices. Under these applications, the destination address of
a request is known a priori. Therefore, routing of requests
can be done in parallel. Furthermore, these studies assume
that resources are continuously connected during their usage.
As aresult, it is unnecessary to have more than one resources
on each output port of the network. ‘

Another solution that avoids the sequential scheduling of
requests is to send requests without any destination tags, and
it is the responsibilityjof the network to route the maximum
number of requests to the free resources. In this way, the
scheduling intelligence is distributed in the network. This
approach permits multiple requests to be routed simulta-
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neously. Further, the resource can be disconnected from the
processor after the task has been transmitted. The resource
will continue to process the task after the disconnection until
completion. Since an output port may not be fully utilized
when the scheduled resource is busy, more than one resource
can be connected on the same output port. We termed this
network a resource-sharing interconnection network (RSIN )
[14], [30]. It is the goal of this paper to show the various
approaches to distributed resource scheduling and to study
the performance of different RSIN’s.

The basic principle behind distributed resource scheduling
is that the status information of resources is propagated
through the network and is available to all the processors.
The network is made up of multiple stages of interconnected
cells that possess local status information about the re-
sources. When a request is received by a cell, it is switched
through the best output port of the cell, and the updated status
information is relayed back to other related cells and pro-
cessors. Occasionally, a wrong decision is made because the
local status information is not updated in time, and the re-
quest has to be rerouted or rejected. Through the continuous

propagation of status information, requests can be serviced in

parallel. ﬁ

When single-resource requests are considered in a system
with one type of resource, distributed control can be imple-
memted by logic gates in interconnected cells with a small
number of control lines, This is illustrated in the three classes
of networks studied in this paper. When multiple types of
resources are allowed in the network or when multiple
resources are requested by one request, the scheduling
algorithm is dependent on the number of resources in each
type, the way that resources are distributed to the output
ports, and the network characteristics. Further, deadlocks
may occur when multiple resources are ‘requested by a re-
quest, and distributed resolution of deadlocks may have high
overhead. A complete solution is beyond the scope of this
paper. Briggs et al. have considered the problem of choosing
the number of resources in each type in which one resource
is connected to each output port and one resource is requested
each time [5]. In this paper we restrict our considerations to
single-resource requests in a system with one type of re-
source. The algorithms proposed can be extended easily to
systems with multiple types of resources. :

In analyzing the performance, we are interested in select-
ing the best network type and configuration that satisfy the
requirements. A performance model using a Markov chain
has been developed with respect to the single shared bus. The
performance of multiple shared buses under limiting condi-
tions is approximated as multiple single-bus systems. The
analytical performance of multistage dynamic networks is
difficult to evaluate. Simulations have been used to evaluate
these networks. ,

The RSIN discussed here is a generalization of address-
mapping interconnection networks with routing tags
{17],127]. Inan RSIN, multiple resources are allowed in each
type, and the type of resource requested is used as an address
or tug of a set of possible destinations. When there is one
resource in each type, the type number becomes the desti-
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nation address, and the network operates in an address-
mapping mode.

In the next section, a classification of RSIN’s is described.
Sections III-V discuss the different RSIN’s. In Section VI,
the performance of these networks are compared.
Section VII provides some concluding remarks.

II. RSIN’S IN A MULTIPROCESSOR SYSTEM

An organization showing the use of RSIN is depicted in
Fig. 1. Each processor has a connection to the network. Mul-
tiple resources may be connected on a single output port from
the RSIN. The configuration of a system using RSIN’s can be
denoted by a triplet: processor/network/resource. The num-
ber of processors is p, and this suffices to characterize the
processors (assuming they are identical). The network is
characterized as i X j X k N where i is the number of
RSIN’s, j (respectively, &) is the number of input (re-
spectively, output) ports for each RSIN, and N is the network
configuration. Note that p = i+ j. The single type of re-
sources are distributed uniformly to the output ports with r
resources on each output port so that the output ports are
utilized evenly. The configuration of the system can thus be
represented as p/i X j X k N/r. As an example, consider a
system with 16 processors and 32 identical resources. If the
RSIN is mude up of 16 private buses connecting cach pro-
cessor to (wo private resources, the configuration is de-
scribed as 16/16 X 1 x | SBUS/2. If the RSIN is a 16-by-32
crossbar switch, there is one resource on each output port,
and the system is described as 16/1 X 16 x 32 XBAR/I.
Lastly, if a 16-by-16 indirect binary n-cube network is used,
we have 16/1 X 16 X 16 CUBE/2.

A task is serviced in the following fashion after it is gener-
ated in a processor. It is queued at the processor until the
processor has established a connection with a resource. The
task is sent to the resource. After data transmission is com-
pleted, the network connection is broken, and the task is
serviced at the resource until finished. After the task is ser-
viced, the result is routed to the originating processor. This
can be done by a separate address-mapping network with
parallel routing since the destination address is known. In this
paper we concentrate on eliminating the overhead of se-
quential service of requests for resources.

Circuit switching is used in RSIN’s, Although the general
question of whether circuit switching is better than packet
switching is unsolved, the reasons for choosing circuit
switching here are twofold. First, packet switching has been
studied in conventional address-mapping networks in which
a request is directed to a given destination. When a resource
is connected continuously to a processor, the connected path
may block other requests from using this resource or the
network. By breaking a request into packets, the waiting time
in accessing a resource can be shortened. However, in an
RSIN, the issue is less critical because a request can always
search for another available resource provided that the net-
work path is free. Furthermore, the overhead of rerouting a
packet when a path or resource is blocked is higher than that
of rerouting a resource request. Second, and more im-
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Fig. 1. RSIN as used ih a multiprocessor environment.
portantly, due to the characteristics of resources, a task can-
not be processed until it is completely received. The extra
delay in breaking a task into multiple packets may decrease
the utilization of resources, and hence, increase the response
time of the system.

Tasks or requests are characterized by three values: the
interarrival time of tasks in each processot, the time to trans-
mit a task to the resource, and the time for a resource to
service a task. We define the following:

/A average interarrival time of tasks in each processor;

I/, average time for a processor to transmit a task to the
resource after the connection is established;

1/p.  average time for a resource to service a task after data
transmission is completed.

The basic assumptions made in the performance study are
as follows,

(a) There is one class of tasks and their arrivals in each

processor are governed by a Poisson distribution, Tasks®

transmission and service times are exponentially distributed.,

(b) Blocked or rejected tasks are queued at the processors
and retried as soon as the network indicates that free re-
sources are available. Task service is done in a FIFO order.
No queueing is allowed at the resources.

(c) The network delay in propagating requests and status
information is negligible.

(d) All the resources in the system are identical.

(e) Each request needs one resource only.

(f) A processor can transmit one task at a time to the
resources. Other tasks arriving during the task transmission

time are queued.
Blockages in the system are caused by two reasons regard-

less of whether centralized or distributed scheduling is used:.

namely. blockage due to shared links in the network, and
blockage duc to busy resources. To illustrate blockage due to
the network. consider an 8-by-8 Omega network (Fig. 11)
with interchange boxes that can be set to one of the two
possible states: straight or exchange (broadcast connection is
not needed since one resource is needed for each request). In
this example assume processors 0, 1,2 are requesting one
resource each, and resources 0, 1, 2 are available. Other pro-
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cessors are not making requests and other resources are busy.
Further, the network is completely free. All the resources
will be allocated if the following processor—resource map-
pings are used: {(0,0), (1, 1), (2,2)}, {(0, 1), (1,0), 2,2)},
{0,2), (1,0, (2, D}or {(0,2), (1, 1), (2,0)}. But if the fol-
lowing processor-resource mappings are used: {(0, 0), (1, 2),
(2, D} or {(0, 1), (1,2), (2,0)}, then a maximum of two
out of three resources can be allocated without blocking. A
similar example can be génerated for the indirect binary

n-cube network. This illustrates that the scheduler must be

designed properly to give the maximum resource utilization.

The performance of the routing algorithm used in an RSIN
is measured by d, the expected delay in the queue before free
resources are allocated. The performance depends heavily on
K,/ Iq. the ratio of task transmission to service times. When
this ratio is large, more blocking is incurred in the network,
and a more complex network has to be used. In this paper we
compare three network configurations: namely, single shared
bus, multiple shared buses,; and Omega networks. Only distrib-
uted scheduling algorithms will be discussed.

II1. RSIN’s USING A SINGLE SHARED Bus

A shared bus is used to connect a subset of processors to
a subset of resources. Other subsets of processors in the
system cannot access resources connected for this subset.
Since different subsets of processors do not interfere with
each other in the accesses, the performance of each bus can
be analyzed independently.

Status information of resources is communicated by the
bus to processors, and tasks are transmitted over the bus from
processors to resources. Every time a free resource is allo-
cited or @ busy resource completes its task, the number of
free resources available on this bus is broadcast to all the
connected processors via the network. This information will
wake up blocked requests in the queues of processors, The
first request in each queuce will be sent to the network. If
multiple requests are sent to the network simultaneously, an
arbitrator will select one request, and the other requests are
queued at the processors again. As a new request is generated
in a processor, if a free resource is not available, the request
is queued at the processor; otherwise, it is sent to the net-
work. A possible implementation of the bus control is shown
in the next séction. In this section we analyze the performance
of the single shared bus. The single-bus approach is interesting
because it provides an upper bound on the queueing delay.

A queueing model of the shared bus is shown in Fig. 2.
The degenerate cases of this model can be analyzed very
easily using conventional methods. When u, is very smalil as
compared to u, or when the number of resources is very
large. free resources are always available and the system is
modeled as an M/M/1 queueing system. On the other hand,
when p, is small as compared to u, and the number of re-
sources is small, the overhead in the bus is negligible and the
system can be approximated by an M/M/r queueing system.
For cases in between, the analysis is elaborate. The reason is
due to the fact that there is no buffer space at the resources,
and the bus must be idle when all the resources are busy or
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Fig. 2. A queueing model of the shared bus.

stage 1]

Fig. 3. State transition diagram forap/1 x 1 x 1 SBUS/r system (with single-resource requests and one type of resources).

when no task is queued for transmission. In the remainder of
this section, a Markovian analysis of the single shared bus
is shown.

The state transition diagram for a p/1 x 1 X | SBUS/r
system is depicted in Fig. 3. Each state is represented as N,
where € € {0,1,2, .} is the number of queued tasks,
n € {0, 1} is the number of tasks transmitting, and
s €1{0,1,- -, r}is the number of busy resources.

In state N, € > 1,n = 1,0<s <r — 1, and a new
task arrives (with rate pA); the new state becomes N{%. Simi-
larly, when a task in transmission is completed (with rate w,),
the resource receiving the task begins service, and a task in
the queue is immediately sent to the bus. The new state
becomes N:3Y,. When a resource finishes serving a task (with
rate su,), the new state is N¢,_,. The boundary states are
those with€ = 0, 0orn = 0,0orn = lands = 0,0rn = |
and s =r — 1. The case n = 0 occurs when there is
no queued request or when all the resources are utilized.
In the latter case, a task queued on the bus cannot begin

transmission until a free resource is available. Therefore,
state N{ ,_, is changed to state N§, when data transmission
in the bus is completed. For states with n = 0, there is no
M, transition. Likewise, for states with s = 0, there is no u,
transition, ‘

The average queueing delay can be obtained by first solv-
ing the average queue length and applying Little’s formula.

r—1

1 < - . )
d =—2i| ZP(N.,) + Pr(N} ) (H
PA S j=0

where Pr(-) is the stationary probability for a state.

To solve for the stationary probability values, we can ex-
press the probability of all the states in terms of that of
an elementary state(s), and to solve for the probability of the
elementary state(s) by using the relationship that all proba-
bility values sum to unity. Referring to Fig. 3, we let the set
of states on a 45° column to be a stage. We designate the
states on stage O to be the elementary states. By expressing
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the relationship among states on stages i + 1,iandi — 1,

i > 1, we have the following matrix equation:
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(16/16 X 1 x 1 SBUS/2). It has worse délay than the
case of 2 partitions (16/2 X 1 X 1 SBUS/16) for p, below

Pr(N‘}f&)- rp)\ + un - WL 0
Pr(N{} 0 PA + u, + 1, —2u, 0
Pr(Ni} 0 0 PA + w, + 2u,
P . _ . . .
Pr(N7L) 0 pA + p, + (r = D, rig
 PriNo,) || 0 PA + p, + s
(PNl ] [0 0 o o |[ P
Pr(N{, ) . 0 0 Pr(N{*} »
Pr(Ni.,) 0 - 0 Pr(Ni'} | \
o . e . . @)
Pr(N',-1) 0 o=, 0 Of|Pr(NYL)
| PrNVe) | | 0 —m O PrNR) ] .

A similar boundary equation can be written for states in
stage 1. It is not difficult to see that the r + I-by-r + | matrix
mulitiplying the states on stage i + | [second term on the
right-hand side of (2)] is singular. Therefore, the states on
stage { + 1 cannot be expressed in terms of states on lower
stages. However, from (2), we see that states on lower stages
can be expressed in terms of states on higher stages. This
does not imply that the elementary states can be chosen at
infinity because the stationary probabilities there approach
zero. A compromise is to choose the clementary states at
a sufficiently large stage ¢ + 1, such that the stationary
probabilities of states above stage ¢ + 1 are approximately
zero, and the stationary probabilities of states below stage
g + 1 can be solved accurately to within the precision of
the computer.

There is no good method for choosing ¢g. A simple proce-
dure is to start with ¢ = 2 and to solve for the queueing delay
d (1). This is repeated for increasing values of g until d starts
to decrease. At this point, the maximum precision in solving
for the elementary states is attained, and the procedure termi-
nates. The iterative procedute is compared to a procedure that
solves for all the stationary probabilities simultaneously
using (r + 1)(¢ + 1) balance equations. The results are
found to be within four digits of accuracy in all cases.

Some performance results for-a system with 16 processors
and 32 resources are shown in Figs. 4 and 5 for u,/u, = 0.1
and 1.0, respectively. These results are plotted with respect
to the traffic intensity of a hypothetical system with a single
bus of service rate 16 w, and a single resource of service rate
32 u, (p, = 16A(1/(16 w,) + 1/(32 w,))). The delay times
are normalized with respect to the average task service times.
The processors can be connected to the resources via a single
bus, or they can be partitioned and each partition is connected
via a single bus to a subset of the resources. In Fig. 4, we see
that the delay is smaller as the number of partitions increases.
A strange behavior is observed for the case of 16 partitions

0.64, and approaches the delay for the case of 8 partitions
(16/8 x 1 x 1 SBUS/4) as p, increases. The reason for this
is that under light loads, the bottleneck is at the resources.
Therefore, systems with a smaller number of accessible re-
sources have higher delays. Under heavy loads, the bottle-
neck is at the bus. Thus, systems with a smaller number of
partitions have higher delays. The above phenomenon is not
observed for cases of 1, 2, and 8 partitions because they have
a sufficient number of resources connected, and the resources
do not pose a bottleneck under light load. In Fig. 4, we have
also shown the performance when each processor is con-
nected to 3, 4, and = resources via a private bus. We see that
the delay is almost halved as the number of private resources
for each processor is increased from 2 to 4. For infinitely
many resources, the bus is the bottieneck, and the system can
be modeled .as an M/M/1 queue that saturates when
p. = 6.0. )

The strange behavior observed when u,/u, = 0.1 does not
occur when u,/u, = 1.0 (Fig. 5). In this case the bus is
always the bottleneck. As the number of partitions increases,
the delay decreases. Further, the improvement of using in-
finitely many resources is very small due to the high data-
transmission time. ‘

!

IV. RSIN’s :USING MULTIPLE SHARED BUSES

i

The approach using muitiple shared buses is a hybrid of
crossbar switch and single shared bus. The RSIN has a cross-
bar configuration while each output port of the crossbar is
connected to a singleishared bus with one or more resources.
In contrast to the shared bus, the crossbar switch is non-
blocking and will give the highest resource utilization and the
least delay. The crossbar switch is useful in providing a lower
bound on the queueing delay. \

In this section the cell design of a crossbar switch to
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support distributed resource scheduling is shown. Recall that
one type of resource exists in the system, and cach request
needs one resource, The extension of the analysis techniques
presented in the last section will also be shown on the mul-
tiple shared buses. -

In Fig. 6, the overall structure of a crossbar network for
distributed resource sharing is shown. Processor i{,0 =
i < p, initiates a request by sending a request signal to the
switch along the ith row. Resource controller j,0 = j < m,
indicates that bus j is free and at least one resource is avail-
able by sending a resource signal along the jth column. At
cell C;; where there are request and resource signals, the
switch is set on and data transfer can begin. The request
signal is removed from any further cells along the ith row.
Similarly, the resource signal is removed from any further
cells along the jth column. Each cell in the switch has intel-
ligence (to be discussed) to resolve conflicts and to route
requests. There is a control latch in each cell to indicate its

state. It is obvious that there is no centralized control for the

routing of requests.
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Because requests can appear and disappear at any time, it
is important that a change in request state for one processor
does not affect the state of allocation of other processors. To
illustrate this, referring to Fig. 6(a), if the request signal to
cell C,; is removed, then the latch in C; ; is reset, and a free
resource is available. The resource signal will again propa-
gate down the jth column. Processor & may have made a
request previously and have found another resource since no
resource signal was passed along the jth column. The new
resource signal passed along the jth column should be ig-
nored in Cy, in order not to upset the state of a previous
allocation. .

We also assume that the system operates in two modes:
request and reset modes. In the request mode, processors can
make requests for free resources. In the reset mode, pro-
cessors can relinquish previously acquired resources. This
method degrades performance because requests and resets
cannot operate concurrently. However, a single signal line
suffices to indicate which mode is active. Other alternatives
that allow concurrency in requests and resets include: (a) the
use of state-saving latches in each cell, and (b) the use of
separate request and reset control lines. These alternatives re-
quire more hardware and will be discussed in the next section.

Referring to Fig. 6(b), the inputs and outputs of cell C; ; that
connects processor i and bus j have the following meaning:

Xi, =
{0
1

(request mode)

processor i is not searching for a free resource

processor i is searching for a free resource

X,'.j =
0" processor i does not want to change the state of
allocation
1 processor i wishes to relinquish the allocated
resource ’

(reset mode).

X,., always returns to 0 at the end of ¢ach mode;

=

bus j is busy or all the resources connected through
bus j are busy; new request cannot be accepted.

bus j is free and a free resource on bus j is available;
a new request can be accepted.

DI, data line to send data from the ith processor;
DO;; data line for resources on the jth bus to receive data
from the ith processor;
L= :
0 Latch-is off; any request made by processor i is
passed to the next cell, C, ;).
1 Latch is on; processor i is connected to bus j.
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Fig. 6. A crossbar switch to support distributed resource scheduling.

Si.;/R.; the set/resetsignal for the control latch in cell Cii

MODE the signal to control the cell to be in request or
reset mode.

The input/output relationship of the control signals is
shown in Table 1. :

In the request mode, if processor i is making a request
(Xi,; = 1). bus is free, and a resource connected on bus j is

available (Y;; = 1), then the latch is set (S;; = 1. and

Y1, = 0. If bus j is not available or all the resources on bus
J are busy (Y, ; = 0), then the request signal is passed to the
next cell (X, ;,, = X, ;). and Y., ;, = 0. Since the X;; signal
returns to 0 at the end of the request mode, but the Y, ; signal
may still be kept at 1, so ¥,., ; equals the output of the control
latch (L, ;) when X.;=0andY,; = 1. For those processors
that have made requests previously, the state of allocation
is not disturbed in the current request mode, and data trans-
mission can continue. In the reset mode, if processor i issues
a reset signal, all the control latches in row i of the network
are reset. A circuit implementation of the cell is shown else-
where [30]. Each cell can be realized with eleven gates and
one latch. The maximum gate delay in the request mode is
four while the maximum gate delay in the reset mode is one.

The boundary connections for the switch are as follows.
Each X;,, signal is connected directly back to P,. Similarly,
each ¥, ; signal is connected back to R;. Suppose P, makes a
request by setting X; , = 1, and it receives X, ,, = 1 at the end
of the request cycle. This means that the request is not satis-
fied, and P; should resubmit its request in the next request
cycle. Likewise, R; indicates that bus j is free and resources
are available by setting ¥, ; = 1. If at the end of the request
cycle, ¥, ; = 1, this means that no resource is allocated, and
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TABLE 1
TRUTH TABLE OF CELL IN SHAVED BUSES
: Inputs Outputs

MODE | Xy | Yiy | Xijer | Yiesy | 8y | Ry

0 [} 0 0 0 1]

Request | 0 1 0 L, i 0 0

1 0 1 0o (o 0

1 1 0 0 1 0

0 0 0 0 0 0

. | Reset 0 1 0 1 0 0

1 0 1 0 0 1

1 1 1 1 0 1

R; should send out the ¥, = 1 signal continuously. Other-
wise, it will set ¥, ; = 0 to indicate that the bus is allocated.

Requests and resets are accepted at the beginning of the
corresponding cycles. They are not accepted in the middle of
acycle because the next cycle cannot start until al] the signals
in the current cycle have settled. In each cycle, the signals
propagate from the top left corner at 45° to the bottom right
corner [Fig, 6(a)] in a wave-like motion. The maximum
number of cells that the signal has to propagate is therefore
p + m. Using the gate delay values of our design, the maxi-
mum length of the request cycle is4(p + m) gate delays; the
maximum length of the reset cycle is (p + m) gate delays.
Comparing these to a crossbar switch with a centralized
scheduler, the delay to find a free resource is O (log;, m) using
a priority circuit [34], and the time to decode the location
of the switch andgto set the corresponding cross point is
O(logy(p - m)). The delay to service p requests is thus
O(p * log, m) (assuming p < m).

A final remark about the design is that it is asymmetric.
That is, it favors processors with small index numbers. This
means that processors that are located closer.to the resources
always have higher priority. However, it is inevitable in this
approach due to the fact that request signals ‘are initiated
simultancously at the beginning of a request cycle, and
control signals are propagated sequentially. There are two
solutions to this problem. First, the request cycle can be
lengthened, and requests are initiated randomly within the
request cycle. This degrades the performance of the system.
Second, more control with separate request and reset signal
lines are built into each cell so that requests and resets can be
carried out concurrently. This is the approach taken in the
Heidelberg POLYP Polyprocessor [18]. With this approach,
a random scheduling algorithm can be implemented. A short
pulse (token) indicating that resources are available on an
output port is circulated continuously in the corresponding
resource signal line. A requesting processor sets its request
signal line. Due to the random positioning of the tokens
in the network, the processor that is allocated a resource
is also random. The major disadvantage of this approach is
that the extra signal lines may pose a problem in VLSI
implementation.

A Markovian analysis similar to that of the single bus is
difficult due to the extensive number of states, For a system
with m buses and r resources on each bus, the number of
states in each stage is (r + 1)". The analysis method shown
in the last section can only be applied when m is very small.
However, we observe that under light load, each processor
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generates requests and sends data to resources as if other
processors are absent. As far as a processor is concerned, the
crossbar switch just looks like a single shared bus with mul-
tiple resources connected because a processor can only trans-
mit one task at a time to the resources. This implies that the
analysis techniques of Section Il can be applied directly
under a light load. The approximate delays are very close to
the simulation results for u,d < 1.

Under a heavy load, the multiple buses are “partitioned”
among the processors in a sense that each processor can only
access a subset of the buses because all the other buses are
busy. If p is the number of processors and m is the number
of buses, this partitioning effect can be analyzed easily if
m/p or p/m is an integer. Two cases are considered. Ifpis
greater thanm and p /m is an integer, then p /m is the number

- of processors assigned on a single bus. The analysis for delay A

is similar to that of Section III with a single bus connecting

'p/m processors to r resources. If p is smaller than m and
m /p is an integer, then each processor is connected by m/p
buses to m - r/p resources. As far as a processor is con-
cerned, the multiple buses do not improve delay over a single
bus. The analysis for delay is similar to that of Section 111
with a single bus connecting one processor to m -+ r/p re-
sources. The heavy load approximation is found to be satis-
factory when u,d is large. Simulations are used for cases
in between,

Some performance results of the crossbar switch are de-
picted in Figs. 7 und 8. When Mo/ b, is small, the resources
are the bottleneck. Partitioning the network into multiple
smaller crossbar switches reduces the cost and has relatively
small effects on delay except when the load is heavy. On the
other hand, when u,/pu, is large, the network is the bottle-
neck. Therefore, using a private output port for each resource
results in smaller delay. than the case of using shared output
ports for resources. Partitioning the network and increasing
the number of resources have relatively small impact on delay
except when the load is heavy.

V. RSIN’s USING MULTISTAGE DYNAMIC NETWORKS

The multistage dynamic networks are made up of multiple
stages of active switching elements and passive links. They
are classified into blocking, rearrangeable nonblocking, and
nonblocking networks [10]. In blocking networks, simulta-
neous connections of more than one terminal pair may result
in conflicts in the use of links. In rearrangeable nonblocking
networks, a new input-output conneetion pair can always be
estublished provided that some rearrangements on existing
connections are made. Lustly, a network that can handle all
possible connections is called nonblocking.

To utilize a multistage dynamic network for distributed
resource sharing, the scheduling intelligence is implemented
in the switching elements. Each element is responsible for
pussing the status information of resources to processors
and to schedule a request to an output port with free re-
sources. Regardless of whether the network is blocking or
nonblocking, a wrong decision may be made because the
scheduling algorithm in a switching element may use out-
dated status information in routing a request. Therefore, a
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request may have to be rerouted or rejected when a reject
signal on this request is received. We present in this section

the functional design of a switching element for scheduling

single-resource requests in a system with a single type of
resources. Although the algorithm is discussed with respect
to an Omega network, the design is applicable to other types
of multistage networks as well.

The Omega networks [17] belong to a class of blocking
networks with the property that the delay from a source to any
reachable destination is proportional to the logarithm of the
number of source points. The basic element in these networks
is a 2-input 2-output 2-function interchange box that allows
a straight or exchange connection (broadcast connection is
not needed here since one resource is needed for each re-
quest). Each interchange box can be regarded as a 2 x 2
crossbar switch. For a network connecting N inputs to N
outputs (N is a power of 2), there are log, N stages and
N/2 X log, N interchange boxes. The delay in these net-
works is thus O(log; N). The O(N x log, N) hardware
complexity is much better than that of the crossbar switch
(O(N?).
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As discussed in Section II, some of the mappings from
sources to destinations do not lead to maximal resource allo-
cation. A centralized scheduler using exhaustive enumera-
tion would have to examine all the different possible ordered
mappings in order to allocate the maximum number of re-
sources. Suppose x processors are making requests and y
resources are free. The scheduler has to try a maximum of
(3)y! (for x = y) or (x! (for y > x) mappings in order to
find the best one. Suboptimal heuristics can be used [30], but
this is only practical when x and y are small. Polynomial-
time optimal scheduling algorithms will be discussed in a
future paper [35]. '

On the other hand, a distributed scheduling algorithm al-
lows all the requests to be scheduled in parallel. The resource
scheduling overhead is therefore proportional to the delay
time in the network (O (log; N)) and independent of the num-
ber of requesting processors.

Before the algorithm is described, some symbols must be
defined. Functionally, there are five control signals for each
interchange box:

©Q = a resource-request signal;

L = a resource-release signal;

§ = number of resources reachable from this link;

J = a resource-reject signal;

C = a resource-found signal.

These control signals are indicated in Fig. 9. The first sub-
script in the notations indicates the stage at which the signal
originates. The second subscript indicates that the signal is
originated from or directed to the upper/lower half of the box.
The index of the box j is implicit and not included in the
notations.

Since the state of these control signals does not change
continuously, the number of interstage control links can be
reduced by storing these control signals in registers and mul-
tiplexing the signals on a single bidirectional control link at
each output port. In particular, there are resource-availability
registers A; in each box that stores the number of resources
reachable from the top (j = 1) or bottom (j = 2) output port.
Since it is assumed that each request needs one resource, the
status information can be simplified to one bit indicating
whether at least one free resource is reachable. This is valid

because a request is propagated as long as one free resource -

is available.

The control algorithm for each interchange box is written
in pidgin Algol and is shown in Fig. 10. The status of re-
sources reachable from the two output ports (0 or 1) is ored
at the beginning and at the end of the loop. If any change is
detected. this status information is passed back to the pre-
vious stage. This allows status change to be propagated as
early as possible. Status signals on requests include release,
reject, query. and resource-found and are serviced in this
order. When a connection is released, the status information
does not change because resources may still be processing the
tasks. Rejects are serviced before queries because they be-
long to requests that have waited longer and therefore should
have higher priority. After a query is sent to an output port,
the corresponding resource-availability register is zeroed be-
cause resources are no longer accessible from this port. The
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Fig. 9. Control signals fora2 x 2 interchange box.

PROCESS net (i, j);

/* Distributed scheduling algorithm in a 2x2 interchange box B;; (refer to Fig-
ure ). Each request needs one resource in a system with a single type”of
resources, */

WHILE (true) DO
BEGIN
wait (arrival of any control signal);

/+ Calculate status of resources reachable from the output ports by OR-
ing the contents of Aj and A,. #/

*

Service status signal (S) change:
Store 841,y and S;4, 9 into the availability registers A, and A,. ¢/

/
/

*

Service release (L):
If release(s) is received, send release(s) to appropriate output port(s} in
stage i+1 »/

.

Service reject (J):

All rejects are serviced at the input ports. For each reject, select an
output port with non-zero availability tegister randomly. Zero the
corresponding availability register and send query. Continue searching
until all the rejects are serviced. For those rejects that eannot be
satisfied, send rejects along the original ihput paths over which the
queries were sent, and eliminate the corresponding queries from this
interchange box. */ ’

/* Service query (Q):
Queries are serviced in a similar fashion as rejects,
/

/

*

Service resource-found (C):
Send a resource-found signal to stage i~1 along the original input path
over which the query was sent #/
/* Send status signals to the previous stage if any change is detected:
Calculate status of resources reachable from the output ports by OR-
ing the contents of Ay and A,. If this is different from the total calcu-
lated })roviously, senJ the new status along the status links to stage
=1 *
END;
END PROCESS

Fig. 10. Control algorithmina2 X 2 interchange box for multistage
dynamic networks.

algorithm discussed is general enough to be applicable to
interchange boxes with any number of input and output ports.

We illustrate the algorithm with the 8 X 8 Omega network
inFig. 11. Suppose resources Ry, R;, Ry, and R are available
and processors Py, Py, P4, and Ps are requesting. The algo-
rithm can be considered to operate in two phases. In the first
phase, status information is passed from the resources to
processors. For example, B, , receives 1 on both output ports
from R, and R;. This means that one resource is reachable
from each output port of B, ,. From the input ports of B, ,, at
least one resource is reachable. Therefore, this status infor-
mation is passed to interchange boxes in stage 1. Similarly,
status information is propagated in all the other boxes. At the
end of phase 1, every processor knows that at least one re-
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Fig. 11. Example of an Omega network supporting single-resource requests
in a system with a single type of resources (circled processors are making
requests; circled resources are available; status information are shown at the
input/output ports of interchange boxes).

source is available. In phase 2, the processors propagate the
requests to the resources simultaneously In stage 0, no con-
flict is encountered. B, ; in stage | receives two requests.
Since only one output port is available, one of the requests is
propagated, and the other request is rejected. This request,
subsequently, finds another route via B, , and B, , to Rs. In
this example, cach request has to pass through 3.5 inter-
change boxes on the average before it finds a free resource.
In practice, the two phases operate concurrently. When the
status information is changed in an interchange box, it is
propagated immediately back to the previous stage. Requests
continue to propagate in the presence of possibly outdated
status information. This tends to lengthen the time to find a
free resource. For clarity, status changes are not indicated in
the figure.

To calculate the overhead of the algorithm, assume that
there are r input-output ports in an interchange box and that
control signals are passed bit serially between stages. The
size ol the status signal passed from one box 1o another is one
bit. 2[log, r] stages of OR operations are necessary in each
iteration in order to calculate the changes in status informa-
tion. It takes a maximum of O(r * log, r) time to service the
queries/rejects. Further, O(1) time is needed to send control
signals:such as rejects and releases. The worst case time in
each stage is O(r X log, r). Since r is usually very small
(r = 2 for Omega networks), the worst case delay of propa-
gating N requests through the network of [log, N7 stages is
O(log, N). In contrast, in a centralized algorithm, it takes
0(log2 N) time to find a free resource and to set the switches
in the network. Due to blockage in the network, O(N) trials
have to be made before a successful connection can be estab-
lished. The delay for servicing N requests is O(N? log, N).

Basically, an interchange box is a crossbar switch, and the
complexity of implementation is high when r is large. This
box can be implemented by adding some peripheral controls
to the distributed logic that is shown in the last section.

One peculiar characteristic of the network is that status
changes always arrive at the processors simultaneously since
all the boxes are clocked. Requests queued at processors
therefore enter into the network simultaneously. This may

“tively small (=1). As seen from Figs. 7, 8, 12,
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cause undue conflict. A solution is to initiate requests with a
random delay after the arrival of new status information.

The proposed algorithm can be adapted to systems with
single-resource requests and multiple types of resources. In
this case, contral signal Q has to be augmented by the type of
resource requested, and status signal S has to be sent for each
type of resource. The number of resource-availability regis-
ters at each output port of an interchange box is increased so
that there is one register for each type of resources reachable
from this output port. The status change in each interchange
box is also computed with respect to each type of resource.
The overhead of the scheduling algorithm for a network of
log, N stages and ¢ types of resources is O(t X log, N).

The analytical delay characteristics of multistage networks
are difficult to evaluate. Delta networks with address map-
ping and packet switching have been analyzed under heavy
load [8] or lost packets [23]. Behavior under circuit switching
has been studied by simulations [11]. In an RSIN, the com-
plexity of analysis is worse than that under address mapping.
As a result, we study the performance using simulations
alone.

The delay characteristics of the Omega networks are plot-
ted in Figs. 12 and 13. In connecting 16 processors to
32 resources, there is very little difference in delay between
using cight 2 X 2 networks or one 16 X 16 network except
when the load is heavy. Therefore, it is cost effective o use
multiple small networks in connecting the processors and
resources together. We also observe that the blocking proba-
bility is reduced as compared to a conventional Omega
network with address mapping. The average blocking proba-
bility obtained is 0.15 foran 8 X 8 network | 14] as compared
to approximately 0.3 for a similar network under address
mapping [ 11]. This is due to the fact that a request can always
search for another available resource when a particular path
is blocked. The blocking probability obtained above is based
on random sets of requesting processors and available re-
sources and the fact that the network is free. This is true when
Mo/ o is small. When p,/u, is large, the utilization of the
network is high, and the blocking probability increases.

V1. CompARrISON OF DIFFERENT RSIN’s

In this section, we discuss the tradeoffs of different
RSIN’s. The tradeoffs have to be made with respect to the
relative cost of resources and networks and the ratio of task
transmission to service times u,/u.,.

If the cost of resources is small as compared to the cost of
an RSIN, the obvious solution is to connect a large number
of resources to each processor by a private bus. As we have
seen in Section IlI, this results in the least cost and delay.

If the cost of resources is large as compared to the cost of
an RSIN, then for a given number of resources, the problem
is to find the most efficient RSIN. As seen from the per-
formance results, the multiple-private-bus approach has the
worst delays. The Omega networks with distributed resource
sharing have reduced blocking probability and are very favor-
able as compared to crossbar switches when wu,/u, is rela-
and 13, the
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delay only increases slightly when the load is light. When
the load is heavy, the resources are the bottleneck, and the
Omega and crossbar networks have almost identical delay
characteristics. When u,/u, is large, the network is the
bottleneck, and crossbar switches have smaller blockage than
Omega networks. The choice, therefore, depends on the cost
of implementation and the value of u,/u, in the application.
Crossbar communication networks have been shown to com-
~ pare favorably to banyan-type.networks for VLSI imple-
mentation provided that the whole network is implemented
on one chip [11]. When the network is built on multiple
chips, banyan-type networks are still less expensive.

If the cost of resources is about the same as the cost of
an RSIN, the choice is more difficult. In this case, a large
number of small interconnection networks coupled with
a larger number of resources will give good performance.
This is illustrated in our evaluations which show that a
16/16 X 1 x 1 SBUS/3 system has a much better delay
behavior than a 16/4 X 4 X 4 OMEGA/2 or a 16/4 X 4 X
4 XBAR/2 system. The network to be used depends on
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TABLE 11
SELECTION OF SUITABLE RSIN

VALUE OF p/n, NETWORKS TO BE USED
small single multistage network

RELATIVE COSTS
COST,,, << COST,,,

large single ¢rossbar network

COST,,, =~ COST, large sumber of small multistage

petworks and a larger number of resources

res small

large large number of small crossbar networks

and a larger number of resources

COST,,, 3> COST, all private bus with a

Iarge number of resources

res

s/ ttn. The performance results we have obtained can guide
the designers in selecting the appropriate configuration.

In summary, the multiple-private-bus approach is attrac-
tive when the cost of resources is not high. When resources
are expensive, the multistage or crossbar networks are good
candidates of RSIN’s. The choice between multistage net-
works and crossbar switches depends on the value of sf o
Table II summarizes the networks to be used in different
situations.

: VII. CONCLUSION

In this paper distributed scheduling algorithms for re-
sources are studied. Resource sharing differs from conven-
tional accesses through addresses in that a request is directed
towards any one (or more) of a pool of free resources. A
centralized scheduling algorithm can be used to search for the
addresses of free resources and supply them to the requests.
A conventional address-mapping network can be used. The
scheduler is a potential source of bottleneck because requests
are serviced sequentially. On the other hand, a distributed
scheduling algorithm allows requests to be scheduled in par-
allel with a delay time that is proportional to the network
delay and independent of the number of requests. '

We have studied systems with single-resource requests
and a single type of resources. We have developed queuneing
analysis for the single shared bus that is extendible to limiting
cases in multiple shared buses. The Omega networks arc
evaluated by simulations due to the extensive number of
states. These results are useful in determining the network

configuration suitable for resource sharing.

Scheduling of multiresource requests is not studied here
due to the overhead and complexity in passing status informa-
tion and resolving deadlocks. The algorithms presented in
this paper can be extended easily to systems with multiple
types of resources. The request and status signals have to be
augmented by a type number. However, the problem on the
number and placement of each type of resources in the net-
work is still open. In the degenerate case of resource sharing,
each output port is connected to a different type of resource.
In this case, the resource type number in a request defines
uniquely the destination address of the request. Resource
accesses are therefore a generalization of the conventional
address-mapping accesses. :
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