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Consistent Synchronization of Action Order with Least Noticeable
Delays in Fast-Paced Multiplayer Online Games

JINGXI XU and BENJAMIN W. WAH, Chinese University of Hong Kong

When running multiplayer online games on IP networks with losses and delays, the order of actions may
be changed when compared to the order run on an ideal network with no delays and losses. To maintain
a proper ordering of events, traditional approaches either use rollbacks to undo certain actions or local
lags to introduce additional delays. Both may be perceived by players because their changes are beyond
the just-noticeable-difference (JND) threshold. In this article, we propose a novel method for ensuring a
strongly consistent completion order of actions, where strong consistency refers to the same completion
order as well as the same interval between any completion time and the corresponding ideal reference
completion time under no network delay. We find that small adjustments within the JND on the duration of
an action would not be perceivable, as long as the duration is comparable to the network round-trip time.
We utilize this property to control the vector of durations of actions and formulate the search of the vector as
a multidimensional optimization problem. By using the property that players are generally more sensitive
to the most prominent delay effect (with the highest probability of noticeability Pnotice or the probability of
correctly noticing a change when compared to the reference), we prove that the optimal solution occurs when
Pnotice of the individual adjustments are equal. As this search can be done efficiently in polynomial time
(∼5ms) with a small amount of space (∼160KB), the search can be done at runtime to determine the optimal
control. Last, we evaluate our approach on the popular open-source online shooting game BZFlag.
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1. INTRODUCTION

Multiplayer online games (MMOs) refer to computer games with multiple players who
interact remotely in the real world over the Internet. Among them, fast-paced online
games are increasingly popular with improvements in network bandwidth and reduced
latency. Here, fast-paced games refers to games in which the reaction time required is
near the limit of human reaction time (215ms on average according to an online test
[Human Benchmark 2016]). We are interested in those games with action durations
ranging from 300 to 700ms, particularly scenarios with precise weapons. Examples
include shooting games with bullets or missiles, fighting games with fast punching or
kicking, and racing games with weapons shooting enemies.
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Fig. 1. Physical network latencies can delay the completion of actions and cause the reordering of comple-
tions that are different when compared to the reference order.

In these games, players interact in a common game world in virtual space, even
though they may be separated in physical space in the real world. In virtual space,
players perceive virtual time, which is not necessarily the same as physical time, as it
can be affected by network and buffering latencies.

An action is a translation or a movement of a virtual object triggered by a player,
which has some effects in virtual space. As an action will not have any effect before it
completes, the order of actions is defined by their completion order.

We define the reference order of actions to be the order of completions in virtual
space without network latency (i.e., in a virtual perfect world). Figure 1(a) illustrates
the reference order in a two-player game in which two players are shooting at the
same target. A shaded box shows the start, duration, and completion of an action that
represents the shooting of a bullet in a player’s view in virtual space. When there is
no network latency, the messages of A’s and B’s actions are immediately sent to the
other player’s virtual space. In both spaces, A’s and B’s actions terminate at t1, and t2,
respectively, where t2 > t1 defines the reference order. The example can be generalized
to more than two players, and the orders perceived by all players in their virtual spaces
are the same. In this case, virtual time is aligned to physical time.

In contrast, when there is network latency, the actual order of completions of actions
in virtual space can be different from the reference order. Figure 1(b) shows that the
messages of A’s and B’s actions are delayed by network latency t4 − t3 (assuming the
same two-way latencies). In B’s view, B’s action still terminates at t2, but A’s action is
now delayed by t4 − t3 and terminates at t′

1 = t1 + t4 − t3. Note that t′
1 > t2 implies an

inconsistent order of completions between A and B when compared to the reference; in
A’s view, A’s action terminates earlier than B’s action, whereas in B’s view, A’s action
terminates later. We call this phenomenon the reordering problem [Mauve et al. 2004].

Reordering is directly related to consistency and correctness in the continuous do-
main [Mauve et al. 2004]. Consistency requires the state (action order in our context)
at time t to be the same in any two players’ virtual spaces if both have completed all
the operations supposed to be executed before t. Correctness further requires the state
to be the same as the virtual perfect site (reference order in our context).

In this article, we define strong consistency to mean identical actual and reference
orders (thus satisfying consistency and correctness defined in Mauve et al. [2004]), and
that the interval between any two completion times is unchanged when compared to
the reference order. The latter requirement is important for the following reasons:

(a) If the intervals of completion times of two actions are longer than those in the
reference, then the delays in the corresponding actions will accumulate. A later
action may therefore terminate significantly later, and its effect can be noticed.

(b) If an interval is shorter than the reference, then the deadline of the corresponding
action is moved up, and there may not be sufficient time to process this action.
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Our definition also applies to the traditional well-studied MMOs, where consistency
of states over clients is important. Related work has been reviewed in a recent survey
paper [Yahyavi and Kemme 2013]. Several techniques have been developed for main-
taining consistency. Dead reckoning is useful for predicting an unreceived future state
if the corresponding play pattern is relatively simple [Shi et al. 2014]. Rollbacks move
virtual times backward and replay the actions in the correct order once reordering
is detected. They have been widely adopted because they are easy to implement. Re-
cent approaches have focused on smooth correction techniques that repair inconsistent
states during a game. However, subjective studies have found that such corrections are
noticeable and annoying. In general, important factors that affect players’ detection of
corrections [Savery 2014] include a player’s locus of attention and the smoothness and
duration of a correction.

The preceding approaches, however, can lead to noticeable inconsistencies in
fast-paced games before the inconsistencies are fixed [Stuckel and Gutwin 2008].
These games have higher requirements on keeping their states consistent than MMOs
because their action durations are short and comparable to the network latency.
Players thus need to pay high attention to all fast-paced actions. For example, in a
fighting game, a defender should keep changing the way she guards when defending
the constantly changing attack patterns. Such a high attention level, as well as the
short action durations, can render the inconsistency of rollback or correction noticeable
[Savery 2014].

Several techniques have been developed to solve the preceding problem. The local-
lag method [Mauve et al. 2004] maintains consistency by delaying an action in virtual
space slightly after a player initiates the action. Although this can avoid inconsistencies
when compared to rollback and smooth correction techniques, it can lead to noticeably
sluggish response. Local perception filters [Smed et al. 2005], instead, modify the
durations of actions to maintain consistency, but they can produce noticeable change
of durations, especially in fast-paced actions. In this article, we call these delay effects
because they cause players to feel “sluggishness” or “having undue slowness” in their
games. These were also called glitches in some previous papers.

To demonstrate that the local-lag strategy can produce noticeable delay effects, we
modified the code of an open-source online tank-battle game BZFlag [Myers et al. 2012]
to implement the strategy. The game has both rapid actions and fast interactions. To
better represent fast-paced games, we modified the base speed of a bullet in BZFlag
from the original setting of 100 units/s to 300 units/s. Using bullets of different dura-
tions, we hired 14 students to perform subjective tests and asked each to choose which
setting had slower response: one in a reference network without latency and another in
a network with latency but with the local-lag strategy. If they could correctly identify
the second setting, then the local-lag strategy was unable to conceal the delay effects.

Figure 2 displays the result using a just-noticeable-difference (JND) surface devel-
oped in our previous work [Xu and Wah 2015] (previously called JND prof ile and is
renamed here to avoid confusion with just-noticeable distortion profiles in video coding
[Jayant 1992]). It shows the probability of noticeability Pnotice, or probability of subjects
correctly noticing a change when compared to the reference. It was generated by testing
a few representative combinations of action duration and network latency and by inter-
polating the Pnotice of the remaining duration-latency pairs using a bicubic algorithm.
It shows that the local-lag strategy cannot conceal the delay effects because 50% of the
subjects can identify the scenario with a short 25ms one-way network latency, even
when the action duration is 0.5 seconds (that covers about one third of the distance in
the game map and is 20 times longer than the network latency).

Our goal in this article is to develop methods that can significantly reduce the per-
ception of delay effects when strong consistency is maintained in fast-paced online
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Fig. 2. Pnotice when using the local-lag strategy to conceal the effects of network latency in BZFlag. The
x-axis shows the original action duration common in all virtual spaces; the y-axis is the one-way network
latency. The dark blue curve shows the contour Pnotice = 50%.

games. Our approach is to determine at runtime the best setting of control parameters
that can conceal the delay effects. The possible combinations of control parameters
to use are found by offline experiments evaluated by the probability of noticeability
Pnotice that can quantify players’ subjective perception of delay effects (or quality of
experience (QoE)). Our work is unique because it uses offline QoE results to determine
the controls at runtime. In contrast, previous work has focused on studying the delay
effects in online games [Teal and Rudnicky 1992; Lin et al. 2002; Chen and El Zarki
2011] as well as the QoE of general consistencies in multimedia applications [Huang
et al. 2013]. However, their metrics were not used to optimize the setting of controls at
runtime for concealing delay effects.

Our study is based on five assumptions that are general enough to cover many fast-
paced interactive online games. However, they are not essential for designing strategies
in slow-paced games, as these games have sufficient slacks for performing rollbacks
and other smooth corrections without being noticed by players. The assumptions are
as follows:

(a) We assume that network latencies in the near future are similar to those of the
recent past (typically in the last few seconds). This assumption allows a priori
setting of the size of delay buffers. Many previous studies [Stuckel and Gutwin
2008; Smed et al. 2005; Hariri et al. 2011] rely on this implicit assumption, which
has also been verified in our previous work [Xu and Wah 2013b].

(b) We develop our methods with respect to one weapon. The methods developed can
be generalized well to games with multiple weapons because changing weapons is
a relatively slow action, and there is sufficient time to notify other players when a
player changes her weapon.

(c) We assume that weapons are precise, that each player can attack one target at a
time, and that multiple attackers can attack the same or multiple targets at the
same time. We do not consider imprecise weapons (e.g., a boom or a field magic)
that attack multiple targets at the same time. In this case, players do not care
about the order of the attacks and the consistency of their completion times.

(d) An action is realized only when it completes, which is common for precise weapons.
For instance, the effect of shooting a bullet is realized when the bullet arrives at
the target. Without this, it is not possible to conceal delay effects by changing the
timing or duration of an action.

(e) An attack action (e.g., punching or kicking in fighting games or shooting a bullet in
shooting games) is much faster than the movements of avatars of players in virtual
space. This means that the duration of an action does not vary much with respect
to the movements of avatars. The assumption is reasonable, as the reaction times
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Fig. 3. Illustration of our proposed approach for solving the reordering problem.

in fast-paced games are near the limit of human reaction times, and such a short
duration can only relate to an attack action rather than the movement of an avatar.
Example action durations studied are 300 to 700ms, although slower-paced games
with longer action durations can also benefit from our algorithms.

Problem statement. Based on these five assumptions, we study the reordering of
action completions in fast-paced MMOs running in a network with latency. We study it
under two cases: one in which the target’s response is predictable and another in which
it is not. In the first case, an attacker does not have to wait for the target’s response
before proceeding to her next action. On the other hand, in the second case, the outcome
to an action is unknown until the target’s response has been received (defined as the
blank period in Section 2). This means that an attacker has to wait for the target’s
response before proceeding to her next action. Under each of these two cases, we study
two related subproblems.

In the first subproblem, we develop an analytic method for achieving strong consis-
tency at runtime.

Figure 3 illustrates the approach that corrects an inconsistent order by combining
the local-lag strategy (by delaying the start of a player’s action) and the local-perception
filters (by extending the duration of her action and by shortening the duration of the
other player’s action). Because all of these are small adjustments, the delay effect due
to each will be less noticeable than that caused by each adjustment when applied in
isolation.

In the second subproblem, we develop a polynomial-time algorithm for finding the
optimal multidimensional Pnotice of delay effects caused by multiple controls that are
perceived as a whole. Our approach decomposes the evaluation of the multidimensional
Pnotice into multiple simpler subproblems of evaluating Pnotice of each control. We prove
that when the target’s response is predictable, optimality occurs when Pnotice of all of
its component controls are equal. This reduces the complexity of finding the optimal
Pnotice from exponential to linear. If the response is unpredictable, the optimal Pnotice
can still be found in polynomial time.

Our solution extends our previous work [Xu and Wah 2013a, 2013b] for solving the
blank-period problem described earlier when the target’s response is unknown ahead
of time. Our previous approach reschedules the actions so that an attacker can have
consistent information from a defender, without taking into account the reordering
of action completions. Our current approach allows strong consistency to be enforced,
both for targets with predictable and unpredictable responses.
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Fig. 4. In delaying an action by the longest network latency, local-lag algorithms solve the reordering
problem by compensating the virtual delay caused by the network latency. However, the delay effect may be
perceived by players, as a player has to wait for t4 − t3 before her action is carried out.

This article is divided into five sections. Section 2 summarizes the shortcomings
of related studies. Sections 3 and 4 present our solutions for solving the reordering
problem when a target’s response is predictable and unpredictable. For simplicity, we
use a shooting game as a running example but evaluate the algorithms using the online
game BZFlag [Myers et al. 2012]. Finally, conclusions are drawn in Section 5.

2. PREVIOUS WORKS

2.1. Previous Approaches for Solving the Reordering Problem

There are four classes of approaches for solving the reordering problem.
Rollback methods [Mauve et al. 2004] solve the reordering problem by canceling the

current actions leading to an incorrect outcome, reverting the affected states to those
before reordering happens, and proceeding from then on in an order consistent with
the reference. These methods have been found to cause significant delay effects in
fast-paced games. When an existing outcome is canceled, a player may see its status
changed from a winner to a loser or vice versa [Xu and Wah 2013a].

Smooth correction methods [Savery and Graham 2014] repair those inconsistent
states after they have occurred by changing the speeds of later actions. They empha-
size on local rather than global consistency, leading to smooth animations of actions in
MMOs. However, in fast-paced interactive games, high players’ attention to actions, as
well as their short durations, may result in noticeable delay effects. Another work [Li
et al. 2011] combined dead-reckoning and local-perception methods to maintain contin-
uous synchronization. The resulting schedule of actions does not consider perceptual
effects because it lacks a metric for measuring perception in its optimization.

Local-lag methods maintain consistency by delaying the launch of an action [Teal
and Rudnicky 1992; Mauve et al. 2004; Stuckel and Gutwin 2008]. A typical algorithm
involves two steps. It first predicts the longest physical network latency between any
two clients with the network information collected in the last several seconds. Next,
in each player’s view, it delays all actions by an amount equal to the latency collected
when compared to the reference. If the message of an action is received before this
latency, it waits until the latency (called synchronization delay) is completed before
starting the action. As all messages from the other sides should have been received at
that moment, all actions can now be executed in the reference order.

Figure 4 illustrates the local-lag method. The longest network latency (t4 − t3) is first
estimated. In A’s view, A’s action is delayed by t4 − t3 before it is transmitted to B.
B’s action in A’s view is then forced to be delayed by δB,B = t4 − t3 to t5 to ensure all
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Fig. 5. Illustration of the blank-period problem in a fighting game and its proposed solution [Xu and Wah
2013a].

actions in A that should start before this action to have enough time to inform B. The
completion times of A’s and B’s actions are t′

1 and t′
2 (t′

1 < t′
2), respectively, which are the

same as the reference order in Figure 1(a).
This strategy can lead to noticeable delay effects, as the late start of an action after

initiated can be perceived as a sluggish response. Previous work has shown that players
are very sensitive to such delays when playing as a first-person avatar in shooting
games [Beigbeder et al. 2004; Stuckel and Gutwin 2008; Raaen and Grønli 2014].

System-level methods try to address the problem at the system level. One high-level
approach used a distributed framework [Chan et al. 2007; Zhang et al. 2008], but it
could not solve the reordering problem in a short period. Some [Chan et al. 2007] focused
on efficiently distributing event messages but left the handling of synchronization to
the application level. Others [Zhang et al. 2008] studied synchronization on low-level
consistency, such as the positions of players. The distributed architecture Colyseus
[Bharambe et al. 2006] maintained consistency in a large-scale shooting game Quake.
It focused on action delays but did not solve the reordering problem, as it adopted “an
optimistic consistency model with no bounds on order or numerical error in order to
limit staleness as much as possible.” Another work [Marshall et al. 2010] considered the
consistency of distributed interactive applications but focused on optimizing network
bandwidth. Efforts had been made to address the critical casual order of events [Zhou
et al. 2007] but did not consider the human perception of delay effects.

2.2. Previous Approaches for Solving the Blank-Period Problem

The blank-period problem occurs when the response of a target is unpredictable at the
time the action from an attacker is completed. We illustrate it using one attacker and
one defender. There is no reordering here, as there is only one action from the attacker.

In the reference case with no network latency, an attack action terminates when
the target’s response is received. Figure 5(a) shows that A’s action terminates at t1 in
both attacker A’s and target B’s views. In contrast, when there is latency, the action
in the attacker’s view terminates before the target’s (unknown) response is received.
Without knowing this response, there is a blank period in which the response cannot be
displayed in the attacker’s view. Figure 5(b) shows that the action in A’s view terminates
at t1, whereas B’s response is available at t2 = t1 + RTT. To ensure a correct outcome
in A’s view, the action in A’s view should not terminate until B’s response is received.

Consider the example when A shoots B in BZFlag and B will move to dodge the
shot. When there is network delay, A does not know whether B has been shot before
receiving B’s message. Hence, A will need to wait for a blank period before seeing B’s
result, even after seeing the shot hitting B in her own view. This is different from her
playing experience in offline games without network delay.

Traditional methods for solving the reordering problem can also be adopted
to solve the blank-period problem. The local-lag [Mauve et al. 2004] and the local
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perception-filter [Smed et al. 2005] methods can reschedule actions to let them complete
after the target’s response has been received. However, as mentioned in Section 2.1,
these methods may lead to significant delay effects that are noticeable by players.

To this end, our previous work [Xu and Wah 2013a] proposed to delay and extend
the attacker’s action, and to shorten the target’s action (Figure 5(c)). In this way, the
blank period is covered by three smaller adjustments that are less noticeable than a
single large adjustment of extending the attacker’s action. However, the method does
not address the strong consistency of action completions. However, it inspires us to
study in this work the use of multiple smaller adjustments for maintaining strong
consistency without being noticed.

2.3. Measuring Delay Effects Using Probability of Noticeability

JND is a well-known concept in psychophysics for measuring perceptual effects. Tra-
ditionally, JND rests on perceptual attention, although it is arguable whether some
representative aspects of attention are directly related to consciousness. Further, JND
was developed using some oversimplifications in its classical models, including We-
ber’s law and Steven’s power law. In short, JND by itself is inadequate for representing
subjective QoE.

Instead of using JND and its classical theory, here we evaluate perceptual differ-
ences by the probability of subjects noticing a change in pairwise comparisons of two
alternatives whose difference is captured by JND.

Specifically, we employ a subjective-test method called constant stimuli for measuring
JND. We show pairs of original and changed settings in a random order to subjects
and ask them to identify the changed setting. With a given setting R as reference and a
modification M that results in a changed setting R + M, we define awareness p(R, M)
[Xu and Wah 2015] to measure the probability a subject can identify the changed
setting when we present the two settings in a random order. Rather than arguing that
JND is a hard threshold that differentiates between noticing or not noticing a change,
we describe the result of subjective tests in a probabilistic form. In this way, we directly
measure the effects of subjective QoE instead of deriving QoE by JND.

Note that awareness p by itself is larger than the probability of subjects who can
actually notice a change, as there are subjects who give the correct answer by random
guesses. Without random guesses, there are Pnotice = 2p− 1 (defined as the probability
of noticeability) of those subjects who can actually notice the change. Assuming the
responses of subjects to be independent and identically distributed, Pnotice N of the
N subjects can actually notice the change, whereas (1−Pnotice)N answer by random
guesses. Hence, Pnotice N × 1 + (1−Pnotice)N × 0.5 = pN ⇒ Pnotice = 2p − 1 [Xu and
Wah 2015]. When the modified setting is the same as the original (M = 0), 0% of
the subjects can notice the change and everyone responds by random guesses; hence,
p = 50% (⇒ Pnotice = 0). In psychophysics, p = 75% (⇒ Pnotice = 0.5) is generally used
as a level of noticeable change. In short, p and Pnotice are equivalent representations of
noticeability.

In our previous work, we developed a graphical method called JND surface [Xu
and Wah 2015] that amalgamates all combinations of reference R, modification M,
and awareness p into a 3D graph p(R, M). To avoid confusion, here we represent the
3D graph using the probability of noticeability Pnotice(R, M). Figure 2 illustrates such
a surface that shows the fraction of subjects who can actually identify the change
after using the local-lag strategy in solving the reordering problem. Its x-axis R shows
the duration of an attack action, and its y-axis M shows the one-way latency from
an attacker to a target (assumed to be identical in both directions) that needs to be
concealed by the local-lag strategy; the color indicates the corresponding Pnotice(R, M).
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This surface allows a succinct presentation of the performance of the local-lag strategy
across all combinations of action duration and network latency.

Figure 2 further shows that a larger M is more likely to be noticed under a smaller
R. This monotonicity property [Xu and Wah 2015] in terms of Pnotice is stated as follows.

AXIOM 1. (a) Pnotice(R, M) is monotonically nonincreasing with respect to reference
R, as a given modification M is less noticeable under a larger R. (b) Pnotice(R, M) is
monotonically nondecreasing with respect to M, as a larger M is more noticeable un-
der a given R. (c) For multidimensional modifications, Pnotice-f(re f, m1, m2, . . . , mn) is
monotonically nondecreasing when all mi, i = 1, . . . , m, are nondecreasing.

To generate a JND surface, in earlier work [Xu and Wah 2013a] we proposed a brute-
force method for sampling Pnotice of many (R, M) pairs and to interpolate Pnotice for
all intermediate combinations. In our past experiments, 16 subjective tests had to be
carried out by each subject to generate a surface with adequate accuracy. An effective
greedy approach was later developed [Xu and Wah 2015, 2016] to use the monotonicity
property to heuristically sample a much smaller number of combinations (around 7)
and to achieve the same level of accuracy. Another concept called the just-noticeable
distortion profile developed in video coding [Jayant 1992; Chou and Li 1995; Yang et al.
2005; Ma et al. 2011] has a similar name but is different from the JND surface used
here. A JND profile is defined by closed-form models that can be used for optimizing
control assignments at runtime. Such models were acquired through previous analysis
on structural characteristics of signals that are specific to video coding. They are hard
to get in general multimedia applications. A different study on the quality of perception
[Gulliver and Ghinea 2006] explored the human perception on distributed multimedia
quality but focused on video streaming and cannot be adopted for optimizing online
games.

2.4. Multi-Dimensional JNDs

The generation of a JND surface is more challenging when there are multiple controls to
be adjusted, as each control will be a dimension in the surface. For instance, in Figure 3,
there are three places in the actions to be controlled, resulting in a 5D surface and an
exponential increase in complexity with respect to the number of controls.

When multiple controls are applied together, their effects are perceived by humans
as a whole. Some previous studies proposed to combine their effects on JND by taking
the maximum JND. They argued that humans tended to notice the most significant
change when there were multiple changes [Chou and Li 1995]. This is not always true
in practice, as Pnotice of a large change in one control may not be larger than Pnotice of a
smaller change in another control. Note that the chance of perceiving a change is based
on Pnotice, not on the magnitude of the change. Some other methods used square root to
calculate the combined JND [von Helmholtz 1891]. An integration was also proposed
when an explicit JND function was given [Dzhafarov and Colonius 1999].

All previous methods considered the combined changes in determining their overall
effect. Our analysis, however, shows that Pnotice is a true indication on whether a
subject can (probabilistically and actually) detect a change. Hence, a better approach
to determine the overall effect is to utilize its Pnotice. By assuming that subjects will
notice the change with the maximum Pnotice when there are multiple changes, we
propose to decompose the evaluation of a multidimensional Pnotice into the evaluation
of individual Pnotice’s, each corresponding to one control assignment. For the case when
the target’s response is predictable, we prove that the minimum multidimensional
Pnotice occurs when the individual component Pnotice’s are equal.
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Fig. 6. Symbols defined on the action performed by player A in A’s and B’s virtual spaces, respectively.

3. SOLVING THE REORDERING PROBLEM FOR TARGETS WITH PREDICTABLE RESPONSE

In this and the next sections we solve the reordering problem in fast-paced multiplayer
games. By extending the local player’s action while shortening the corresponding re-
mote player’s action, we show that delay effects can be made less aware while strong
consistency can be maintained. We divide our discussion into two scenarios. In this
section, we assume that the target’s response is predictable, which means that the
attacker does not have to wait for the target’s response before starting her next action.
In Section 4, we assume that the target’s action is unpredictable. To maintain strong
consistency without rollback or correction, the attacker needs to wait for the target’s
response before initiating her next action.

Figure 6 summarizes the symbols defined on actions. Let sA,B, rA,B, and tA,B respec-
tively be the starting time, time it is ready, and completion time of A’s action in B’s
virtual space. In B’s virtual space, rA,B = rA,A + dA,B, where dA,B is the network latency
between A and B. Note that sA,B and rA,B may not be the same.

We aim to design control strategies to improve Pnotice(R, M). We identify the strat-
egy used to control M by its superscript and omit it when obvious. For example,
Pnotice(R, MLL) refers to the case when MLL is controlled by the local-lag strategy.

Note that Pnotice represents the probability of noticeability of a strategy used to con-
trol M and is common for all players using this strategy. A player using the strategy
will have her Pnotice represented by a JND surface, which is obtained by instantiat-
ing Pnotice(R, M) to Pnotice(re f, m), where re f and m correspond to the reference and
modification used by the player. We further use the second superscript to distinguish
the role of a player in whose view the modification is made (by default, the role is
attacker ATK). The subscripts A, B are similar to those used in actions. For example,
Pnotice(re f ATK

A,B , mLPF1,ATK
A,B ) stands for Pnotice when the action duration of attacker A in

B’s view has changed from re f ATK to re f ATK + mLPF1,ATK. We omit the subscripts when
the player and the view are obvious.

Since the defenders studied in this section have predictable responses, all actions
are by default initiated by attackers, and it is not necessary to indicate their role. In
Section 4, the role of a player is to be explicitly indicated (whether she is an attacker
or a defender) when a target’s action is not predictable.

3.1. Maintaining Strong Consistency by the Local-Lag Strategy

In the reordering problem illustrated in Figure 1, network latency causes the actual
order to be inconsistent with the reference order. We prove in this section that the
local-lag method [Mauve et al. 2004] can always maintain strong consistency. Let mLL

i, j
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ALGORITHM 1: Proposed Strategy for Solving the Reordering Problem
Require: Offline-measured JND surfaces instantiated from the strategies based on local lag

Pnotice(R, MLL) and local perception filters Pnotice(R, MLPF1) and Pnotice(R, MLPF2);
Ensure: The extent of modification due to local lag (mLL) and local perception filters (mLPF1 and

mLPF2);
1: Estimate the duration of actions using (7);
2: Estimate network latency;
3: if action is carried out by a local player then
4: Search for the optimal mLL and mLPF1 using (20) and (21);
5: else
6: Search for the optimal mLPF2 using (20) and (21);
7: end if
8: Modify the action using the mLL, mLPF1 and mLPF2 found.

be the local lag before an action is started. We have

si, j = ri, j + mLL
i, j . (1)

We first define the term synchronization delay before proving the theorem.

Definition 1. The synchronization delay �ti, j of i’s action in j’s virtual space is the
delay between the time when the action is initiated by i in her view to the time when
this action is started in j’s view:

�ti, j = si, j − ri,i = ri, j + mLL
i, j − ri,i = ri,i + di, j + mLL

i, j − ri,i = di, j + mLL
i, j . (2)

THEOREM 3.1. The local-lag strategy can maintain a strongly consistent order with
respect to the reference when the synchronization delay of i’s action in j’s virtual space
is Dmax = maxx,y dx,y, the maximum one-way latency between any two clients. In other
words, strong consistency is maintained by the local-lag strategy when

mLL
i, j = �ti, j − di, j = Dmax − di, j . (3)

PROOF. According to Definition 1, the maximum �ti, j is governed by Dmax. In other
words, in the worst case, the local-lag strategy will need to conceal �ti, j = Dmax. To en-
sure strong consistency in all views, we have i’s action terminate in j’s virtual space at

ti, j = ti,i + �ti, j = ti,i + Dmax. (4)

When �ti, j = Dmax, the delay between the completions of p’s and q’s actions is

tp, j − tq, j = tp,p + �tp, j − (tq,q + �tq, j) = tp,p − tq,q. (5)

This proves that the delay is strongly consistent with that of the reference.

The long synchronization delay specified in Theorem 3.1 may lead to noticeable delay
effects. To address this issue, we next propose a better strategy that can maintain strong
consistency while incurring less noticeable delay effects.

3.2. Proposed Strategy for Maintaining Strong Consistency

We first show a necessary and sufficient condition for maintaining strong consistency.
This condition can be calculated at runtime based on information estimated from the
recent past. Using this condition, we show that the duration of actions can be adjusted
to maintain strong consistency.

Algorithm 1 presents our proposed strategy, which has been illustrated in Figure 3.
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3.2.1. Necessary and Sufficient Condition for Maintaining Strong Consistency. To ensure that
our proposed strategy can maintain a strongly consistent order with respect to the
reference, we first evaluate the completion time of the action initiated by i to j:

ti, j = si, j + li, j = ri,i + di, j + mLL
i, j + li, j . (6)

Note that j does not know ri,i and ti,i (i �= j) before receiving the message of that
action. However, li, j is predictable, as the duration of an action can be estimated by the
speed of the shot and the virtual distance between i and j in the recent past and does
not vary much with respect to the movements of players (Assumption (e) in Section 1).
Let disti, j(t − 1) and disti, j(t) respectively be the virtual distances between i and j in
the previous and the current time windows:

li, j = disti, j(t)/vi, j ≈ disti, j(t − 1)/vi, j . (7)

The necessary and sufficient condition for maintaining strong consistency is as follows.

THEOREM 3.2. Strong consistency in targets with predictable responses can be main-
tained by the local-lag strategy if and only if

dp, j + mLL
p, j + lp, j − dq, j − mLL

q, j − lq, j = mLL
p,p + lp,p − mLL

q,q − lq,q. (8)

PROOF. According to (5), to maintain strong consistency for players p and q,

tp, j − tq, j = tp,p − tq,q. (9)

By expanding both sides of (9), we have

tp, j − tq, j = rp,p + dp, j + mLL
p, j + lp, j − (

rq,q + dq, j + mLL
q, j + lq, j

)
, (10)

tp,p − tq,q = rp,p + mLL
p,p + lp,p − (

rq,q + mLL
q,q + lq,q

)
. (11)

The theorem is proved by substituting (10) and (11) into (9).

By substituting (3) into (8), strong consistency can be enforced by the local-lag strat-
egy before the message of i’s action is received by j. This is possible because di, j is
predictable (Assumption (a)) and (8) does not have any unknown terms involving r.

An important observation of (8) is that both mLL
i, j and li, j can be changed without

violating strong consistency, as long as (8) is satisfied. In the rest of this section, we
present methods to do several small changes on the durations of actions to make the
overall effect less noticeable. We prove the correctness of the proposed strategy in two
steps. First, we prove that the reordering problem can be solved by extending or by
shortening the duration of action(s). This provides the basis for proving the correctness
of the combined strategy in the second step. We further show that Pnotice of the combined
strategy can be significantly reduced.

3.2.2. Maintaining Strong Consistency by Extending the Durations of Actions. Figure 7(a) illus-
trates the strategy. Starting from the local-lag setting in Figure 4, instead of delaying
the start of a local action, we extend the action in each player’s view to cover the empty
period before it starts while keeping the completion time unchanged.

Figure 7(b) shows the JND surface after conducting subjective tests to measure
subjects’ sensitivity on detecting delay effects.

When using this strategy, the optimal extension is exactly the one-way latency from
the player who started the action to the receiver. A longer period will lead to a larger
change and make more players notice the delay effects, whereas a shorter extension is
infeasible due to the definition of strong consistency.
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Fig. 7. Strong consistency can be maintained by extending the duration of actions. (a) Starting from the
state in Figure 4 where actions are adjusted by the local-lag strategy, we extend the duration of the local
actions (shown as unshaded boxes, each with an arrow). In A’s view, A’s action now starts at t3 like that in the
reference but still ends at t′1. We readjust the duration similarly in B’s view. Strong consistency is maintained
because the completion times are not changed from the local-lag strategy. (b) Pnotice due to extending the
durations of actions in BZFlag is lower than that of the local-lag method (see Figure 2, whose axes are defined
in the same way). The curve shows the contour Pnotice = 50%.

Fig. 8. Strong consistency can be maintained by shortening the durations of actions. (a) Starting from the
state in Figure 4 whose actions are controlled by the local-lag strategy, we shorten the durations of remote
actions (shown as shaded boxes). In A’s view, B’s action now completes at t′′2 instead of t′2, without changing
its starting time. Because the duration of B’s action can be estimated in A’s view (Assumption (e)), A can also
start its action earlier and allows it to complete at t7 as in the reference. Hence, the order is still strongly
consistent. (b) Pnotice due to shortening the durations of actions in BZFlag is lower than that of the local-lag
method (see Figure 2, whose axes are defined in the same way). The curve shows the Pnotice = 50% contour.

Due to space limitation, we state without proof the following corollary on the correct-
ness of maintaining strong consistency. (See Figure 7(a) on the idea of the proof.)

COROLLARY 3.3. Starting from the state in which actions are adjusted by the local-
lag strategy, extending the starting times of local actions will not change the strong
consistency of completions with respect to the reference.

3.2.3. Maintaining Strong Consistency by Shortening the Durations of Actions. Figure 8(a) il-
lustrates the strategy. Starting from the state in Figure 4 where actions are adjusted
by the local-lag strategy, we start the local action in each player’s view earlier but
terminate the other player’s action earlier while keeping its starting time unchanged.

Figure 8(b) shows the JND surface after conducting subjective tests to measure
subjects’ sensitivity on detecting delay effects. Similar to before, the optimal period to
shorten the durations of actions is exactly the one-way network latency from the player
who started the action to the receiver.

Due to space limitation, we state without proof the following corollary on the correct-
ness of maintaining strong consistency. (See Figure 8(a) on the idea of the proof.)
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Fig. 9. In every virtual space, we extend the local actions and start them earlier while shortening the
remote actions to reduce their synchronization delay. (a) Starting from the state in Figure 4, we extend the
durations of local actions (shown as unshaded boxes). In A’s view, A’s action now starts at t′4. When this
is small compared to the original duration t′1 − t4, it is less likely to be noticed. Similarly, B’s local action
is extended. (b) Starting from the state in (a), we shorten the remote actions. In A’s view, we move B’s
completion time from t′2 to t6. Because the duration of B’s action can be estimated in A’s view, A can also start
her action earlier by the same amount (from t′1 to t7). Hence, the order is still strongly consistent. Similarly,
in B’s view, we can do the same modification.

COROLLARY 3.4. Starting from the state in which actions are adjusted by the local-
lag strategy, shortening the remote action and starting the local action earlier will not
change the strong consistency of completions with respect to the reference.

3.2.4. Maintaining Strong Consistency in the Combined Strategy. The three strategies (local-
lag, extending and shortening an action) can be combined to solve the reordering
problem. Figure 9 shows the corresponding adjustments. Based on the state in which
actions are adjusted by the local-lag strategy, we can extend a player’s action or start
it earlier while shortening the other player’s action. By comparing this figure to Fig-
ure 1(a), we find identical orders of action completions and intervals between action
completions in each view, showing the correctness of the proposed approach.

According to (3),the maximum synchronization delay to be concealed by the local-lag
strategy alone is mLL

i,i = Dmax = maxx,y dx,y. After adjusting the durations of actions,
the new local-lag delay in i’s virtual space becomes significantly shorter:

mLL
i,i = Dmax − mLPF1

i,i − mLPF2
j,i . (12)

This means that the combined approach leads to a smaller change in each of mLL
i, j ,

mLPF1
p,p , mLPF2

q,q , resulting less noticeable delay effects due to each change.
The correctness of the combined strategy is shown in the following theorem, which

can be proved by combining the proofs of Corollaries 3.3 and 3.4.

THEOREM 3.5. The order of completions in the combined strategy is strongly consistent
with respect to the reference if and only if (12) is satisfied.

Similarly to the last two strategies, the optimal setting in the combined strategy
should exactly fill Dmax. Any deviation will lead to undesirable delay effects.

3.3. Optimizing the Combined Strategy

As shown in (12), the combined strategy entails the control of the durations and the
delays of actions while satisfying strong consistency. In this section, we develop methods
for controlling these changes to make the overall delay effect the least noticeable.

We like to find PCOMB
notice (re f, m), the JND surface of the combined strategy. As m =

(mLL, mLPF1, mLPF2), the 5D JND surface will be expensive to measure by subjective
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tests. Further, the controls in m may have dependent effects. Since we do not know
their dependence, we define PCOMB

notice (re f, m) using function f without a closed form:

PCOMB
notice-f (re f, m) = f (P ′

notice(re f, mLL), P ′
notice(re f, mLPF1), P ′

notice(re f, mLPF2)), (13)

where

⎧⎨
⎩

P ′
notice(re f, mLL) = Pnotice(re f, mLL | mLPF1 = 0, mLPF2 = 0)

P ′
notice(re f, mLPF1) = Pnotice(re f, mLPF1 | mLL = 0, mLPF2 = 0)

P ′
notice(re f, mLPF2) = Pnotice(re f, mLPF2 | mLL = 0, mLPF1 = 0).

(14)

The following two lemmas can be derived directly from Axiom 1.

LEMMA 3.6.

Let Pmax = max {P ′
notice(re f, mLL), P ′

notice(re f, mLPF1), P ′
notice(re f, mLPF2)},

then

⎧⎨
⎩

m̂LL ≥ mLL for P ′
notice(re f, m̂LL) = Pmax

m̂LPF1 ≥ mLPF1 for P ′
notice(re f, m̂LPF1) = Pmax

m̂LPF2 ≥ mLPF2 for P ′
notice(re f, m̂LPF2) = Pmax.

(15)

LEMMA 3.7. Using the preceding definitions, we have

PCOMB
notice-f (re f, mLL, mLPF1, mLPF2) ≤ PCOMB

notice-f (re f, m̂LL, m̂LPF1, m̂LPF2). (16)

The following assumption (to be validated later by subjective tests) is based on the
observation that in fast-paced games, subjects will only notice the dominant delay effect
but not those due to individual controls when compared to the reference.

ASSUMPTION 1. Given m̂ = (m̂LL, m̂LPF1, m̂LPF2), then PCOMB
notice-f (re f, m̂) is equal to the

maximum of the three individual noticeabilities when they are equal:

PCOMB
notice-f (re f, m̂) = max {P ′

notice(re f, m̂LL), P ′
notice(re f, m̂LPF1), P ′

notice(re f, m̂LPF2)}. (17)

COROLLARY 3.8. PCOMB
notice-f (re f, m̂) = Pmax.

The proof is straightforward by applying Assumption 1 and Lemma 3.6.

COROLLARY 3.9.

PCOMB
notice-f (re f, m) ≤ max {P ′

notice(re f, mLL), P ′
notice(re f, mLPF1), P ′

notice(re f, mLPF2)} (18)

PROOF. This can be proved by combining Lemma 3.7 and Corollary 3.8.

Our goal in the optimization is to minimize PCOMB
notice (re f, m) under given re f :

P = min PCOMB
notice (re f, m) subject to m = mLL + mLPF1 + mLPF2 = Dmax. (19)

Without knowing the closed form of function f in (13), the best we can do is minimize
the upper bound of f . According to Corollary 3.9, we have

P = min max {P ′
notice(re f, mLL), P ′

notice(re f, mLPF1), P ′
notice(re f, mLPF2)}, (20)

subject to m = mLL + mLPF1 + mLPF2 = Dmax. (21)

The following theorem proves the optimal solution to (20) and (21).

THEOREM 3.10. The optimal solution to (20) and (21) is (mLL, mLPF1, mLPF2), where

P ′
notice(re f, mLL) = P ′

notice(re f, mLPF1) = P ′
notice(re f, mLPF2). (22)
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PROOF. The proof is by contradiction. If (22) is false, then without loss of gen-
erality, we assume that P ′

notice(re f, mLL) > P ′
notice(re f, mLPF1) and P ′

notice(re f, mLL) >

P ′
notice(re f, mLPF2).
Based on Axiom 1(b), we know that P ′

notice(re f, mLL), P ′
notice(re f, mLPF1), and

P ′
notice(re f, mLPF2) respectively are monotonically nondecreasing with increasing mLL,

mLPF1, and mLPF2. To get the optimal solution, mLL should be reduced as much as
possible. However, as mLL is reduced, mLPF1 and mLPF2 will be increased due to (21).
These lead to larger P ′

notice(re f, mLPF1) and P ′
notice(re f, mLPF2).

As we assume that P ′
notice(re f, mLL) > P ′

notice(re f, mLPF1) and P ′
notice(re f, mLL) >

P ′
notice(re f, mLPF2), the optimal solution of (20) and (21) is when P = P ′

notice(re f, mLL) =
P ′

notice(re f, mLPF1) + δ1 = P ′
notice(re f, mLPF2) + δ2. However, we can always find δ1 > δ′

1 >

0 and δ2 > δ′
2 > 0 such that P ′

notice(re f, mLL)> P ′
notice(re f, m

LL
)= P ′

notice(re f, m
LPF1

)+ δ′
1 =

P ′
notice(re f, m

LPF2
) + δ′

2, which results in P ′
notice(re f, mLL) > P ′

notice(re f, m
LL

). Therefore,
P ′

notice(re f, mLL) is not optimal. Contradiction!

Theorem 3.10 allows us to find the optimal solution to the upper bound of PCOMB
notice-f at

any (re f, m) when given the three JND surfaces P ′
notice(re f, mLL), P ′

notice(re f, mLPF1), and
P ′

notice(re f, mLPF2). We search over the three surfaces to find m that satisfies (21) and
(22). In each surface, for a given re f , we first build a bidirectional graph that connects
each m to the corresponding P ′

notice (discretized to k3 levels). The complexity is O(k1k2),
where k1 and k2 are the discretization levels of the JND surface along the re f and m
axes, respectively. Then we enumerate the k3 levels of P ′

notice, starting from the highest
value, and find the first P ′

notice that satisfies (21). At the same time, we use the graph
to find the corresponding m. The complexity is O(k3).

In short, the complexity is linear with respect to k3, the level of discretization in
P ′

notice. In our implementation, k3 = 101 is sufficiently high, which corresponds to a
4ms interval in the x-axis and 2ms in the y-axis. The search can be done within 1ms
by a desktop computer with an Intel Core 2 Duo E8400 3GHz CPU. As we use at most
four JND surfaces, each with around 40KB, all surfaces can be stored in main memory.
Hence, the search can be done in real time using the offline collected JND surfaces.

3.4. Experimental Evaluations on BZFlag

We present experimental results on evaluating the combined strategy on BZFlag
[Myers et al. 2012], based on the three JND surfaces found by subjective tests. We
measure the combined surface using the optimal setting in (22) for each re f . As the com-
bined surface still follows Axiom 1, we conduct subjective tests to sample some critical
points and approximate the surface using our previous algorithm [Xu and Wah 2015].

The results shown in Figure 10(a) are significantly better than those of methods
using the local lag and local-perception filters (Figures 2, 7(b), and 8(b)).

To validate Assumption 1, we first show in Figure 10(a) the combined JND surface
obtained by subjective tests based on the left-hand side of (17). As f is unknown, we
directly measure PCOMB

notice-f (re f, m) using subjective tests. Next, we show in Figure 10(b)
the combined JND surface derived using the setting in (22), which was obtained by
minimizing the upper bound of f in (20) and (21) and taken from the right-hand side
of (17). Assumption 1 is validated because the two figures are very similar, with small
differences at the corners that are reasonable in subjective tests with limited subjects.

To further illustrate the improvement of the combined strategy, we compare in Fig-
ure 10(c) the network latency when Pnotice = 50%. The graph shows that the com-
bined strategy can maintain strong consistency while concealing delay effects, even
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Fig. 10. Performance of the combined strategy for solving the reordering problem on targets with predictable
responses. (a) JND surface of the combined strategy found by subjective tests. The x-axis shows the duration
of the action, and the y-axis shows the one-way network latency. (b) JND surface of the combined strategy
found by using (17). Its similarity to (a) verifies Assumption 1. (c) One-way latency in running the game,
when players can correctly notice a difference with respect to the reference at Pnotice = 50%.

with much larger network latency. Alternatively, when using the same latency as the
method with extended durations, the combined strategy can use the extra latency in
delay buffers to smooth network jitters and provide better loss concealment, resulting
in greater stability of the game in real time.

In short, our results clearly show the merit of the combined strategy for solving the
reordering problem when compared to the previous methods. The combined strategy
leads to lower Pnotice on delay effects under a given latency while providing better loss
concealment at the same level of Pnotice.

4. SOLVING THE REORDERING AND THE BLANK-PERIOD PROBLEMS TOGETHER

In this section, we consider cases in which defenders’ responses are not known a priori
to attackers. As illustrated earlier in Figure 5, there will be a blank period in which
an attacker does not know the outcome of her action until the defender’s response has
been received. To avoid inconsistent outcomes or rollbacks, the attacker will need to
wait for the defender’s response before proceeding.

The blank-period problem described here may occur in conjunction with the reorder-
ing problem when there are multiple attackers. In this section, we present methods for
concealing such delay effects. We first show the solution to the blank-period problem
with one attacker and one defender. We then combine this solution with that in Sec-
tion 3 for solving the reordering and the blank-period problems for multiple attackers.

4.1. Necessary and Sufficient Condition for Concealing the Blank Period

Referring to the blank-period problem in Section 2, the action in attacker i’s view would
terminate only after knowing defender j’s action. Based on the three control strategies
in Section 3.3, let mLL

i, j , mLPF1
i, j , and mLPF2

i, j respectively be the extent that i’s action is
delayed, extended, and shortened in j’s virtual space. Because a player may serve a
dual role as both an attacker and defender, we add superscripts ATK and DEF to m to
identify her role. The necessary and sufficient condition is stated as follows.

THEOREM 4.1. The necessary and sufficient condition for attacker i to conceal the
blank period when waiting for defender j’s response is

mLL,ATK
i,i + mLPF1,ATK

i,i + mLPF2,DEF
i, j = di, j + dj,i. (23)

PROOF. Referring to Figure 5, i would have received j’s response when

ti,i = ti, j + dj,i. (24)
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Fig. 11. Illustration of the blank-period and the reordering problems under network latency when A and B
shoot C, who is trying to defend against the attack. (a) Reference under no latency. (b) Case under latency.
(c) Our previous work [Xu and Wah 2013a] for solving the blank-period problem may lead to reordering.

By expanding both sides, we have

ti,i = ri,i + mLL,ATK
i,i + li,i + mLPF1,ATK

i,i and ti, j + dj,i = ri,i + di, j + li,i − mLPF2,DEF
i, j + dj,i.

Equation (23) follows after simplifying and rearranging the terms.

Similar to Theorem 3.2, Equation (23) does not have any unpredictable terms in-
volving r. Hence, it can be enforced by both players before their actions are carried
out.

4.2. The Blank-Period and Reordering Problems with Multiple Attackers

The blank-period and reordering problems can happen together when there are multi-
ple attackers instead of one attacker.

Figure 11(a) illustrates the reference case under no network latency. Here, the orders
of completions are the same in all virtual spaces—that is, t2 > t1.

Figure 11(b) illustrates the case under network latency. The blank-period problem
happens in B’s view between t2 and t3 during which B does not know the result of the
shot from A to C. It also happens in A’s view in which the result of A’s shot to C is not
known until the message from C is received at A. On the other hand, the reordering
problem happens in B’s view in which the order of A’s and B’s completion times (t′

1 > t2)
is inconsistent with the reference (t1 < t2). This also happens in C’s view (t′

1c > t′
2c). The

example can be extended to a scenario with more than two attackers when the new
attackers and their associated actions are added between B’s and C’s views.

In our previous work [Xu and Wah 2013a], we proposed a method for solving the
blank-period problem. This is done by delaying the start of the attacker’s action and
by extending its duration while shortening the defender’s action. These changes will
allow the local action to complete only after receiving the defender’s response.

Figure 11(c) illustrates the case in which our previous approach may inadvertently
reorder the completions of actions when there are multiple attackers. Consider A’s
action. In her view, we delay the start of her action from t5 to t6 and extend its duration
from t7 to t8. We also shorten the duration of her action in C ’s view from t′

1c to t4. Similar
steps can respectively be applied to B’s action in B’s and C ’s views. Reordering occurs
in B’s and C ’s views when compared to the reference in Figure 11(a). The figure can
also be extended to a scenario with more than two attackers.
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ALGORITHM 2: Strategy for Solving the Blank-Period and Reordering Problems
Require: Offline-measured JND surfaces based on local lag (P ′

notice(R, MLL)) and local perception
filters (P ′

notice(R, MLPF1) and P ′
notice(R, MLPF2)); JND surfaces for each player instantiated from

the offline-measured JND surfaces; NATK attackers; NDEF defenders;
Ensure: Local lag (mLL,ATK

i,i ), local perception filters 1 and 2 (mLPF1,ATK
i,i , mLPF2,ATK

j,i ), and local
perception filter 2 (mLPF2,DEF

i,k , mLPF2,DEF
j,k );

1: Estimate the duration of actions using (7);
2: Estimate network latency;
3: for i = 1 to NATK do
4: for j = 1 to NATK and j �= i do
5: for k = 1 to NDEF do
6: In attacker i’s view,
7: Extend attacker i’s action using (25) and (28) to find the optimal mLPF1,ATK

i,i ;
8: Shorten attacker j ’s action using (25) to find the optimal mLPF2,ATK

j,i ;
9: In defender k’s view,
10: Shorten attacker i’s and j ’s actions by the optimal mLPF2,DEF

i,k and mLPF2,DEF
j,k

(using (27) through (29)) to compensate for the difference in network latency;
11: In attacker i’s view,
12: Delay the start of attackers i’s and j ’s actions by the optimal mLL,ATK

i,i (using (25)
and (26) and (28) and (29)) to let the actions complete exactly when the
corresponding defender’s response is received.

13: end for
14: end for
15: end for

4.3. Proposed Strategy

In this section, we combine the strategy described earlier for solving the blank-period
problem [Xu and Wah 2013a] and the strategy in Section 3.2 for solving the reordering
problem to solve both problems together. Algorithm 2 shows the pseudocode. We prove
its correctness in Section 4.3.1 and discuss its optimization in Section 4.3.2. Note that
each player will instantiate her surfaces from the set of common offline-measured
surfaces and may operate under a different operating point in the game.

4.3.1. Necessary and Sufficient Conditions for Solving the Blank-Period and Reordering Problems.
The following theorem proves the correctness of Algorithm 2 under the general case
when there are multiple attackers and multiple defenders.

THEOREM 4.2. Let Dmax be the maximum network latency between any two players.
Algorithm 2 is correct and solves the reordering and the blank-period problems together
for multiple attackers and defenders if and only the following conditions are satisfied
for all pairs of attackers i and j and defender k:

(a) In each virtual space, the order of completion times is strongly consistent with the
reference, both in attacker i’s and j’s views and defender k’s view:

mLL,ATK
i,i + mLPF1,ATK

i,i + mLPF2,ATK
j,i = Dmax, (25)

mLL,ATK
j, j + mLPF1,ATK

j, j + mLPF2,ATK
i, j = Dmax, (26)

mLPF2,DEF
i,k − mLPF2,DEF

j,k = di,k − dj,k. (27)
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Fig. 12. Illustration of Algorithm 2 in solving the example in Figure 11 when Aand B shoot C, who is trying
to defend against the attack. (a) Steps 7 and 8. (b) Step 10 (©1 in the figure) and step 12 (©2 in the figure).
(c) Extension to a scenario with three attackers when a new attacker D joins the game.

(b) For each attacker, her local action terminates after receiving defender k’s response:

mLL,ATK
i,i + mLPF1,ATK

i,i + mLPF2,DEF
i,k = di,k + dk,i, (28)

mLL,ATK
j, j + mLPF1,ATK

j, j + mLPF2,DEF
j,k = dj,k + dk, j . (29)

PROOF. We prove the two parts separately.
(a) Solving the reordering problem. There are two steps in proving this part.
First, strong consistency of completion times in all attackers’ views is ensured be-

cause (25) and (26) are the same as (12), which has been proved in Theorem 3.5.
Second, we prove the strong consistency of completion time in defender k’s view. For

any actions from i and j in defender k’s view, we shorten them by mLPF2
i,k and mLPF2

j,k ,
respectively. By (27), the completion order of these actions are enforced as follows:

ti,k − tj,k = ti,i + di,k − mLPF2,DEF
i,k − (

tj, j + dj,k − mLPF2,DEF
j,k

) = ti,i − tj, j . (30)

(b) Solving the blank-period problem. Equations (28) and (29) are exactly the neces-
sary and sufficient condition proved in Theorem 4.1 for concealing the blank period.

The general case of multiple attackers and multiple defenders follows by combining
the two parts and by considering any two attackers and any one defender.

Figure 12(a) illustrates steps 7 and 8 of Algorithm 2 that apply (25) and (28) for
Attacker A(respectively, (26) and (29) for B) to solve the reordering problem. Comparing
it to Figure 9, it is clear that the modifications to the actions of both attackers are
similar. It also illustrates the application of (28) and (29) to partially solve the blank-
period problem.

Figure 12(b) illustrates step 10 (©1 ) and step 12 (©2 ) of Algorithm 2.
In step 10, we shorten the duration of A’s action in defender C ’s view so that the

difference between A’s and B’s adjustments in C satisfies (27). As shown in C ’s view,
A’s action that originally completes at t1 now completes earlier at t′

1. In contrast, B’s
action need not be shortened in C ’s view because mLPF2,DEF

B,C = 0 already satisfies (29).
In step 12, we apply (28) and (29) to delay the start of actions in attacker A’s and

B’s views to let their actions complete when the response from defender C is received.
As shown in A’s view, to make A’s action complete when C ’s response is received, we
delay its start from t2 to t′

2. To maintain the correct order of the completions (which
has been ensured by steps 7 and 8), we further delay the start of B’s action in A’s view

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 13, No. 1, Article 8, Publication date: December 2016.



Consistent Synchronization of Action Order with Least Noticeable Delays in Online Games 8:21

from t3 to t′
3 so that t′

3 − t3 = t′
2 − t2 = mLL,ATK

A,A . This is basically the application of (25)
and (26) in solving the reordering problem, as Figure 12(b) is based on Figure 12(a). In
contrast, as the latency between B and C is short, and extending B’s duration by step 7
is sufficient to cover the blank period, C ’s response already arrives at B on time, and
the start of B’s action needs not be delayed in B’s view.

To show that the solution is correct, we compare the reference order in Figure 11(a)
to the order in Figure 12(b). It is clear that strong consistency is maintained. Further,
C ’s responses arrive at A and B exactly when their actions complete.

Figure 12(c) shows another example of applying Algorithm 2 on three attackers A,
B, and D shooting defender C. The corresponding reference order under no latency is
similar to the order in Figure 11(a), but with D’s action starting and completing slightly
earlier than A’s. For simplicity, we only show the messages between the attackers and
the defender but not among the attackers.

By comparing Figures 12(c) and 12(a), we need to schedule D’s action in A’s and B’s
views, as well as A’s and B’s actions in D’s view. These can be done by steps 7 and 8
of Algorithm 2. By comparing Figures 12(c) and 12(b), we apply step 10 to ensure that
strong consistency is satisfied in C ’s view (Figure 11(a)). Note that D’s action completes
slightly earlier than A’s. Finally, to solve the blank-period problem, Step 12 schedules
the completion times of all attackers to the point when C ’s response is received.

4.3.2. Optimizing the Proposed Strategy. In this section, we present the optimization for
achieving the minimum PCOMB

notice-f on delay effects when using Algorithm 2. The optimiza-
tion has several differences with respect to that in (20) and (21). First, we consider NATK

attackers and NDEF defenders. Second, we address the general case in which players
may have different re f . Third, we shorten the durations of all defenders’ actions to
solve the reordering problem in their views while delaying the starting times of all
attackers’ actions to solve the blank-period problem in the attackers’ views.

Since each player cannot see the game in another player’s view, we could optimize
the combined noticeability in each view separately. However, this may result in some
views having highly noticeable delay effects, whereas others have less noticeable delay
effects. To maintain fairness in a multiplayer game [Xu and Wah 2013a], we minimize
the noticeability in all views simultaneously.

Using notation similar to that of (14) in Section 3.3, we aim to minimize the upper
bound of the combined noticeability in attacker i’s and j’s views.

PCOMB
notice-f

(
re f, mATK

i,i

) ≤ max{P ′
notice

(
re fi, mLL,ATK

i,i

)
, P ′

notice

(
re fi, mLPF1,ATK

i,i

)
,

P ′
notice(re f j, mLPF2,ATK

j,i )}. (31)

In defender k’s view, we employ the LPF2 strategy with no combined noticeability:

Pnotice
(
re f, mDEF

x,k

) = P ′
notice

(
re fx, mLPF2,DEF

x,k

)
, where x = i, j. (32)

The overall optimization is now stated as follows:

P = min max
1≤i, j≤NATK,i �= j,

1≤k≤NDEF

max
{

PCOMB
notice

(
re f, mATK

i,i

)
, Pnotice

(
re f, mDEF

i,k

)
, Pnotice

(
re f, mDEF

j,k

)}

= min max
1≤i, j≤NATK,i �= j,

1≤k≤NDEF

max
{

P ′
notice

(
re fi, mLL,ATK

i,i

)
, P ′

notice

(
re fi, mLPF1,ATK

i,i

)
, (33)

P ′
notice

(
re f j, mLPF2,ATK

j,i

)
, P ′

notice

(
re fi, mLPF2,DEF

i,k

)
, P ′

notice

(
re f j, mLPF2,DEF

j,k

)}
,
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subject to mLL,ATK
i,i + mLPF1,ATK

i,i + mLPF2,ATK
j,i = Dmax (34)

mLL,ATK
j, j + mLPF1,ATK

j, j + mLPF2,ATK
i, j = Dmax (35)

mLPF2,DEF
i,k − mLPF2,DEF

j,k = di,k − dj,k (36)

mLL,ATK
i,i + mLPF1,ATK

i,i + mLPF2,DEF
i,k = di,k + dk,i (37)

mLL,ATK
j, j + mLPF1,ATK

j, j + mLPF2,DEF
j,k = dj,k + dk, j, (38)

where (34) through (38) are the same as (25) through (29) in Theorem 4.2.
Comparing the objective function in (33) with that in (20), we have one more max

operator for aggregating the P ′
notice of modifications to all attackers’ actions in every

view. This is used to maintain fairness (as mentioned earlier) across all players by
bounding the maximum Pnotice. We allow different re f ’s in (33), as actions of different
durations can appear together. There are also two new terms, P ′

notice(re fi, mLPF2,DEF
i,k )

and P ′
notice(re f j, mLPF2,DEF

j,k ), which represent the shortened durations of actions by at-
tackers i and j in defender k’s view. They are used to limit the delay effects in the
defenders’ views and to avoid some attackers’ actions being too fast, making them
difficult for defenders to guard against.

Comparing (34) through (38) to (21), there are new constraints for addressing the
reordering and the blank-period problems.

The preceding optimization is complex to solve in a closed form. The many variables
and constraints, as well as different re f ’s, make it hard to find an optimal solution at
runtime. Fortunately, several observations can help simplify the problem.

First, from (36), once mLPF2,DEF
i′,k is determined, any mLPF2,DEF

i,k , 1 ≤ i ≤ NATK, i �= i′,
can be determined uniquely.

Second, by combining (34) and (37), we can directly get mLPF2,ATK
j,i once mLPF2,DEF

i,k is
found in the last step. This also applies when we combine (35) and (38).

Third, from (37), we know that mLL,ATK
i,i + mLPF1,ATK

i,i is determined once mLPF2,DEF
i,k is

found. As shown in the proof of Theorem 3.10, the optimal solution is attained when
P ′

notice(re fi, mLL,ATK
i,i ) = P ′

notice(re fi, mLPF1,ATK
i,i ), which allows the optimal mLL,ATK

i,i and
mLPF1,ATK

i,i to be found directly. This also applies to (38).
With these observations, the optimal solution to (33) through (38) can be found

by enumerating the value of a single control variable mLPF2,DEF
i′,k . The computational

complexity is thus O((NATK)2NDEFk2), where k is the discretization level of mLPF2,DEF
i′,k .

We use k2 instead of kbecause one more loop is needed for finding mLL,ATK
i,i and mLPF1,ATK

i,i

that satisfy P ′
notice(re fi, mLL,ATK

i,i ) = P ′
notice(re fi, mLPF1,ATK

i,i ).
As the overall complexity is low, we can search for the optimal control values at

runtime. This can be finished within 5ms by a computer with an Intel Core 2 Duo
E8300 3GHz CPU. The size of each JND surface is 40KB, which is sufficiently small.

4.3.3. Experimental Evaluations on BZFlag. Similar to the results in Section 3.4, we
present in this section the evaluation of Algorithm 2 on BZFlag [Myers et al. 2012].
To simplify the illustration, we use two attackers and one defender in the following
experiments. We assume identical re f ’s for all players, which allows the common re f
to be shown in the x-axis of a single JND surface. We further assume that the players
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Fig. 13. Performance of the combined strategy with two attackers and one defender having identical refer-
ence durations for solving the reordering and the blank-period problems with an unpredictable defender’s
actions. (a) JND surface of the combined strategy in running BZFlag. The x-axis shows the action duration,
and the y-axis shows the one-way latency. (b) One-way latency when players can notice a change with respect
to the reference at Pnotice = 50%. The degradations between the scenario with a predicted defender’s actions
(labeled “Predictable” and shown in Figure 10(a)) and the current result (labeled “Proposed”) are caused by
the time to handle the blank-period problem.

to have the same instantiated JND surfaces in Algorithm 1 when using the strategies
in isolation based on the local-lag method and the local perception filters.

Figure 13 shows the resulting JND surface after applying Algorithm 2 as well as
the tolerable one-way latencies with Pnotice = 50%. The results show that the tolerable
one-way latencies are much smaller than the corresponding latencies in Figure 10(c).
These degradations are also reflected in the higher Pnotice values in Figure 13(a) when
compared to those in Figure 10(a). For example, when the reference duration is 0.5s,
the strategy based on extended durations allows more than 40ms tolerable one-way
latency in Figure 10(c), but it only allows around 25ms here. The degradations between
the results of Algorithm 1 (labeled “Predictable”) and those of Algorithm 2 (labeled
“Proposed”) in Figure 13(a) are attributed to the additional time to handle the blank-
period problem. Algorithm 2, however, leads to much better tolerable latencies when
compared to the other strategies. This means that the game can run in a network with
higher latency while providing comparable playing experience.

Note that Figure 13(a) is similar to Figure 8(b). This similarity can be explained by
(34) through (37)—that is, mLPF2,DEF

i,k − mLPF2,ATK
j,i = di,k + dk,i − Dmax. As we assume

that di,k = dk,i = Dmax, the optimal solution appears at mLPF2,ATK
j,i = 0 and mLPF2,DEF

i,k =
Dmax when we minimize the delay effect. In other words, the strategy with shortened
durations at the defender’s view causes the dominant delay effect in the combined
strategy.

In summary, Algorithm 2 leads to less noticeable delay effects while maintaining
strong consistency and concealing blank periods. Further, the controls found allow the
system to operate with the same Pnotice but with higher latency.

5. CONCLUSION

In this article, we proposed a novel method for ensuring strong consistency on the
completion times of actions, while minimizing noticeable delay effects due to network
latencies, in fast MMOs running on IP networks. We proposed a new approach for
minimizing delay effects on user perception. The success of our approach is based
on optimizing multiple controls together, each causing less noticeable delay effects
than when applying the corresponding control in isolation. Finally, we evaluated our
approach by conducting subjective tests using the popular open-source online shooting
game BZFlag and have shown significant performance improvements over previous
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strategies. Due to limitation in space, we refer interested readers to our previous work
[Xu and Wah 2013a] for the application of the proposed idea in fighting games.
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