
Supplementary Meta-Learning: Towards a Dynamic Model
For Deep Neural Networks

Feihu Zhang Benjamin W. Wah
The Chinese University of Hong Kong, Shatin, Hong Kong
hi.yexu@gmail.com bwah@cuhk.eud.hk

Abstract

Data diversity in terms of types, styles, as well as ra-
diometric, exposure and texture conditions widely exists
in training and test data of vision applications. However,
learning in traditional neural networks (NNs) only tries to
find a model with fixed parameters that optimize the average
behavior over all inputs, without using data-specific prop-
erties. In this paper, we develop a meta-level NN (MLNN)
model that learns meta-knowledge on data-specific proper-
ties of images during learning and that dynamically adapts
its weights during application according to the properties of
the images input. MLNN consists of two parts: the dynam-
ic supplementary NN (SNN) that learns meta-information
on each type of inputs, and the fixed base-level NN (BLNN)
that incorporates the meta-information from SNN into its
weights at run time to realize the generalization for each
type of inputs. We verify our approach using over ten net-
work architectures under various application scenarios and
loss functions. In low-level vision applications on image
super-resolution and denoising, MLNN has 0.1∼0.3 dB im-
provements on PSNR, whereas for high-level image clas-
sification, MLNN has accuracy improvement of 0.4∼0.6%
for Cifar10 and 1.2∼2.1% for ImageNet when compared to
convolutional NNs (CNNs). Improvements are more pro-
nounced as the scale or diversity of data is increased.

1. Introduction
A lot of attention has been directed to deep neural net-

works (DNN), with numerous breakthroughs on both low-

level computer-vision applications, such as image super-

resolution [8] and denoising [4,15,40], and high-level clas-

sification [11, 21], recognition [32] and detection [37].

Training neural networks (NNs) for computer-vision ap-

plications often requires a large amount of diverse train-

ing data for the NN to learn its features and to generalize

Demo code and models are available at https://github.com/
feihuzhang/MLNN.

27.5

28

28.5

29

29.5

30

0 20 40 60
PS

NR

epochs

Individual
CNN
MLNN

31.6

31.8

32

32.2

32.4

32.6

32.8

33

0 20 40 60

PS
NR

epochs

CNN Testing
CNN Training
MLNN Testing
MLNN Training

Figure 1: Using image super-resolution (Sec. 4) to illustrate the

benefit of dynamic model adaptation to inputs. Left: Test errors for

each type of inputs with a mixture of nature images (solid lines)

and screenshots (dashed lines) as training data. Our MLNN (red

lines) with model adaptation performs better than training with

static manual classification (orange lines) and original CNNs with-

out data classification (blue lines). Right: Training and testing re-

sults for a mixture of five types of images.

them to unseen inputs. These diversities include those at the

image-level (such as type, style and radiometric), region-

level (smooth or textured), and pixel/patch-level (such as

noise, location and artifact).

Traditional NNs are trained by maximizing an objective

based on a loss function across all training data in order to

find a model with fixed structure and weights. It optimizes

the average behavior across all training data, without spe-

cializing to their variations. NNs with fixed structure and

weights may under-perform when compared to NNs that

can dynamically adapt to training data. Fig. 1 shows re-

duced errors when we manually classify training data into

multiple classes according to their meta-level differences,

and train each to learn a unique model. Obviously, such

an approach is onerous. In some low-level vision tasks in

which each pixel is an input as well as a target, it is impos-

sible to manually classify them. Alternatively, we can train

a second classifier to categorize the data before selecting

the proper model. Its drawback is that it is hard for the new

classifier to accurately classify every input, leading to pos-

sibly an improper model selected. Moreover, the number of

classes is unknown and can be infinitely many.

To address the problem of simultaneous automatic clas-

sification and dynamic model selection with generalization,

2017 IEEE International Conference on Computer Vision

2380-7504/17 $31.00 © 2017 IEEE

DOI 10.1109/ICCV.2017.466

4354

ω1

ω0

ω2

ω2

ω

input

input output

SNN

BLNN:

Figure 2: Proposed meta-learning NN (MLNN) using SNN (with

ω0 weights and ω2 outputs) and BLNN (with ω weights).

we propose to use meta-learning to integrate the two steps

together. Meta-learning systems [39] adapt to specific situa-

tions by dynamically searching for the best learning strategy

in response to data diversity. It differs from base-level learn-

ing (like CNNs) in terms of adaptation: meta-level learning

studies how to choose the right model dynamically, as op-

posed to base-level learning whose model is fixed with a

priori assumptions (or inductive bias [26]).

Fig. 2 depicts our proposed meta-learning NN (MLNN).

The top supplementary NN (SNN) with a small number of

weights ω0 (around 5∼10% of ω) learns and outputs meta-

level information ω2 to the base-level NN (BLNN) that us-

es it as part of its weights. The SNN is a traditional NN

that abstracts meta-information ω2 important for the BLNN

to adapt to different inputs. The BLNN maintains gener-

alization using ω1 as in traditional NN, as well as meta-

information ω2 from SNN for dynamic input adaptation.

Our experience shows that the system can be trained by

backward propagation and achieves far better performance

when compared to traditional CNNs, especially on complex

problems with large data diversity.

In this paper, we focus on realizing MLNN and study

its behaviors in several high- and low-level computer vision

applications. Significant improvements were found in our

experiments on comparing MLNN with traditional CNNs

using training and test data with significant diversities.

2. Related Work

2.1. Meta-Learning

In applications with diverse features, it is desirable to

have algorithms that dynamically adapt to input features

[30, 34, 35]. Meta-learning [23, 33] is an approach that fo-

cuses on learning the characteristics of a problem or its in-

puts and that allows the system to select a suitable mod-

el for new or unseen scenarios. By accumulating meta-

knowledge [39], meta-learning systems build self-adaptive

learners using algorithms that improve their bias dynami-

cally.

Many existing approaches combine known models into

a system and use meta-knowledge to select a proper model.

Chan et al. [5] proposed to combine the results of multiple

learning algorithms, each applied to a different set of train-

ing data, in order to adapt to diverse situations. Alexandros

et al. [1] used decision trees as inducers at the meta level

and mapped dataset characteristics to inducer performance

in order to adapt inducers to datasets. Ali et al. [2] used

meta-learning in automatic kernel selection for support vec-

tor machines. Ferrari et al. [10] developed a new method on

distance-based problem characterization and ranking com-

bination for selecting clustering algorithms.

When applied to NNs, existing meta-learning approach-

es can be used to select among learned models in different

scenarios. Such an approach is inadequate because it is hard

to enumerate all possible cases, and an incorrect selection

may result in even worse performance.

In this paper, we propose a novel approach that integrates

meta-knowledge into NN learning and that realizes selec-

tion and learning together. This integration avoids the segre-

gation of the accumulation of incomplete meta-knowledge

and the learning of general characteristics of inputs.

2.2. Dynamic Neural Networks

Dynamic learning has been studied for a long time. Re-

cent work explored the idea of introducing more flexibili-

ty in the network structure and their weights. Jaderberg et
al. [14] proposed the Spatial Transformer that allows the s-

patial manipulation of data in a NN. Kalchbrenner et al. [18]

proposed structure-dynamic k-Max Pooling in order to han-

dle input sentences of varying lengths.

There were recent studies on weight-dynamic NNs. Noh

et al. [27] introduced a layer to generate dynamic outputs

and to supply them as parameters of another fully connected

layer. Klein et al. [19] designed a dynamic convolutional

layer and used it for short-range weather prediction. Bert

and Xu et al. [16] proposed dynamic filter networks that

generated different filters with adaptive weights.

These weight-dynamic as well as traditional NNs are ac-

tually special cases of our model in Fig. 2. Our model

consists of three parts: SNN with ω0 for extracting meta-

information from inputs, ω1 in BLNN for generalization

across inputs, and ω2 output by SNN for dynamic adap-

tation in BLNN to different inputs. Noh et al.’s dynamic

fully-connected layer [27], Klein et al.’s dynamic convolu-

tional layer [19] and Xu et al.’s dynamic filter [16] all as-

sume ω1 = ∅, whereas traditional CNNs assume ω2 = ∅.

To get similar modeling power as CNNs with ω, Klein et
al. [19] and Noh et al. [27] need a complex ω0 to generate

enough parameters (ω2) to run the convolutional computa-

tion. As a result, the size of the model is often too large for

existing back propagation solvers, leading to overfitting or

getting stuck in local minima. For example, when we imple-

ment the dynamic convolutional layer [19] for image super-

resolution [8] with three convolutional layers, the network

needs a hundred times of parameters in order to construct a

structure comparable to the original CNNs. Such a network

4355

can easily get stuck into an all-zero local minimum, and the

memory for storing hidden layers increases quadratically.

In contrast, Bert et al. [16] tried to control model com-

plexity by limiting ω0 in order to avoid over-fitting. How-

ever, it comes at the cost of performance, since only a few

parameters in ω2 can be generated. The resulting parame-

ters can only be used for simple 1D or 2D filters that are

not as powerful as the original 3D convolutional layer for

feature extraction. In our experiments, we observed a 10%

degradation when compared to the original CNN method.

Some methods use a small number of weights to predic-

t the remaining weights [7], whereas MLNN uses a small

number of parameters to learn meta-knowledge and makes

some weights dynamic. There are teacher-student network-

s [3,31] with a similar guided scheme to improve modeling

power or learning capability. However, none tried to realize

the dynamic behavior of their filter kernels. In short, tradi-

tional NNs cannot dynamically adapt to diverse inputs and

only achieve good average performance across all inputs.

Hence, it may perform well in one case but not in another.

2.3. Dynamic Adaptation in Vision Applications

In low-level vision applications, such as image denois-

ing [4] and super-resolution [8, 13], the objective is to im-

prove image quality. To get similar or better results when

compared to non-learning based methods, the NNs used

must be able to precisely manipulate each pixel. When each

pixel is a target, it is much more complex considering the di-

verse conditions involved. Although one solution is to use

different models in smooth and textured regions, it is not as

flexible as pixel-level meta-learning networks.

Unlike low-level vision tasks, NN models for high-level

vision applications, such as image classification [21], de-

tection [29] and recognition [32], are usually complex with

millions of parameters and hundreds of layers. These mod-

els are designed to have good classification ability for han-

dling possibly different view angles, resolutions and objec-

t locations. However, they would hit a performance ceil-

ing even when the number of parameters and layers is in-

creased. Moreover, future applications may involve com-

plex or even mixtures of different kinds of images, rather

than only nature images. In such applications, an effective

scene-level meta-learning network would be essential.

3. Supplementary Meta-Learning Network
In implementing BLNN in Fig. 2 directly as a traditional

NN like CNN, output Yi for input Xi can be computed us-

ing W (convolutional filter) and b (bias vector) as follows:

Yi = W · Xi + b. (1)

In traditional NNs, the solver optimizes an average behavior

over input X = {X0, ...,Xn} to result in fixed W and b in-

dependent of input. That is, all inputs share the same model

despite their individual features.

3.1. Learning Meta-Knowledge

In contrast to traditional NNs, we propose to learn meta-

knowledge in order to increase our model’s flexibility. Since

no model can perform well under all situations, it is best to

use a design that selects the best model for each case. We

integrate selection and generalization together by combin-

ing the learned meta-knowledge into the model itself.

Let F(Xi) (ω2 in Fig. 2) be the learned meta-knowledge

for Xi, where F is the function to be learned (the function

form of ω0 in Fig. 2). To combine F into the original con-

volutional model, we split it into two parts as follows.

F(Xi) = {Fw(Xi),Fb(Xi)}. (2)

We then combine F into the two parts of Eq. (1) by the sim-

ple dot product and addition.

Yi = [Fw(Xi) ·W]Xi + [Fb(Xi) + b] (3)

where Wi = Fw(Xi) ·W; bi = Fb(Xi) + b.

The meta-knowledge introduced in Eq. (3) allows dif-

ferent situations to be classified accordingly, whereas the

fixed part {W, b} in Eq. (1) enables generalization of each

class to unseen cases. The model is unique and can adapt to

different inputs, as the meta-knowledge captured by SNN

through ω0 and realized as {Fw, Fb} will change with dif-

ferent inputs. Since the learning of both parts is done simul-

taneously in our model, the classification and generalization

of each input can be realized in an integrated manner.

3.2. Matrix Setting

We discuss in this subsection the setting of {Fw,Fb} in

Eq. (3). For {W, b} in ω1, we assume W to be an N ×M
matrix, and b, an N × 1 vector. To keep the matrix sizes

consistent, we set {Fw(Xi),Fb(Xi)} in ω2 as an N × N
matrix and an N × 1 vector, respectively.

Since the output of Fb is an N × 1 vector that can be

easily learned, we focus on Fw. Learning such a function

is expensive as it needs many new parameters to fit Fw as

well as N2 memory to store intermediate and final outputs.

To reduce the burden in learning, we need to simplify Fw
by reducing the number of elements in ω2. There are three

possibilities here: a) using a matrix with repeated elements,

like a circulant matrix, b) choosing a matrix with special

element distribution, like each row satisfying the Gaussian

distribution that requires learning its mean and standard de-

viation, c) employing a sparse matrix.

We encountered some difficulties when using the first t-

wo alternatives. We observe that convergence is not sta-

ble during learning, with a speed that is slower than that of

the original CNNs and learning can easily get stuck in local

4356

0.32

0.36

0.4

0.44

0.48

0.52

0.56

0 1 2 3 4 5

Lo
ss

 V
al

ue

Bandwidth

Arc 1
Arc 2
Arc 3

Figure 3: Image supper resolution (Sec. 4) used to illustrate

the effect of bandwidth on loss values. The graph plots the per-

formance (loss values) of different trained network architectures

(Arcs 1-3) as a function of bandwidth.

minima. This could be caused by the dependence of matrix

elements that counteract each other. For example, in a con-

volutional model, each element can be used to adjust more

than one filters.

We, therefore, focus on using sparse matrices with inde-

pendent elements. Learning in this case is more efficient as

the number of elements is small, although its complexity is

highly affected by the structure of Fw(Xi).

To better utilize the learned meta-knowledge, it is

obvious that Fw(Xi) should have full rank, namely,

rank(Fw(Xi)) = N . For Wi = (w1, ...,wn)
T , we know

that rank(Wi) ≤ rank(Fw(Xi)). If rank(Fw(Xi)) < N ,

then there exists j �= k such that wk = αwj , which

makes wk homogeneous with wj and contributes nothing

new to the model. For example, in an extreme case where

rank(Fw(Xi)) = 1, (N − 1)/N of the elements in Wi are

redundant because all the N filters are homogeneous. This

setting performs no better than directly using a 1 ×M ma-

trix as Wi. During learning, although we cannot control the

values of the weights, we can eliminate redundant informa-

tion in Fw(Xi) to reduce the complexity in learning.

In sparse matrices, a band matrix is a special case with

full rank regardless of bandwidth. We, therefore, use a band

matrix to implement Fw(Xi), as it has full rank and learning

complexity can be controlled by adjusting its bandwidth.

A band matrix has many good properties when realizing

DNNs. Firstly, we only need to learn no more than 3N (re-
sp. 5N) parameters for a 1-band (resp. 2-band) matrix. Sec-

ondly, learning is fast and memory efficient, since band ma-

trices lend themselves to more efficient computations than

dense ones. Lastly, band matrices have full rank and are

more effective in utilizing the learned elements when com-

pared to other sparse matrices.

When implementing the output of Fw as a band matrix,

its bandwidth will significantly affect the speed, memory

usage and accuracy in learning. When bandwidth is in-

creased, more elements will need to be learned and the SNN

becomes more complex. Limited by the ability of back

propagation, it will soon lead to either over-fitting or getting

stuck in local minima. Fig. 3 illustrates this phenomenon in

which learning performance reaches an optimum at a par-

ticular bandwidth. In most cases, this optimum is at a band-

width between 1 and 3, with little difference among them.

As a result, we set the bandwidth to 1 in all our experiments.

3.3. Efficient Implementation of MLNN

The original Eq. (3) is not flexible when used in DNNs.

In this subsection, we simplify the model by employing

simple transformations to Fw and Fb to facilitate its imple-

mentation in existing deep-learning platforms. We first as-

sume Fw(Xi) and Fb(Xi) to be near linear transformation

of Xi, which can be implemented by several convolutional

layers. Since Fb has no fixed form, we give it a new form:

Fb(Xi) = [(Fw(Xi)− I) · b]T + F′
b(Xi). (4)

Note that F′
b(Xi) and [(Fw(Xi) − I) · b]T can be treated as

a base shift vector. In that case, F′
b(Xi) is still dynamic to

inputs but now becomes the target of learning. As the orig-

inal Fb and Fw are learned as a set of convolutional layers,

F′
b can also be learned using these layers.

By substituting Eq. (4) into Eq. (3), we have

Yi = Fw(Xi) · (WXi + b) + F′
b(Xi). (5)

We further introduce a linear transformation of Xi to

Fw(Xi) and F′
b(Xi),

Yi = F′
w(WXi + b) · (WXi + b) + F

′′
b (WXi + b) (6)

where Fw(Xi) = F′
w(W · Xi + b)

and F′
b(Xi) = F

′′
b (W · Xi + b).

As indicated above, the fixed part WXi + b in Eq’s (5)-

(6) can be implemented by convolutional layers. In this

paper, we assume that F′
w, F′

b and F
′′
b can all be fitted by

some convolutional layers. We further restrict the values

of F′
w(Xi) in a range (−1,1) or (0,1) using an activation

function like Tanh or Sigmoid. This approach helps limit

the search space and improves convergence, while avoiding

getting stuck in local minima. Finally, the outputs of F′
w are

reshaped to the required band matrices.

Fig. 4 shows that WXi+b can be achieved in BLNN with

ω1. We further implement SNN using two sub-branches for

F′
w and F′

b/F
′′
b , respectively. The difference between their

implementations is that Eq. (5) needs to use the output of the

previous layers in Stage (a) as inputs to the sub-branches,

whereas Eq. (6) directly uses the output of the major branch

in Stage (b). When the BLNN layer is a k × k convolu-

tional layer, to guarantee shape and range consistency, the

two branches of SNN also need similar k× k convolutional

scope. For Eq. (6), we can always use 1 × 1 filters to im-

prove efficiency. For these reasons, we use Eq. (6) to realize

the dynamic model in our experiments. Eq. (5) will only be

used in fully-connected layers or when the inputs of SNN is

different from those of BLNN.

4357

…

…

(5)
Fw

Fb

(a) (b) (c) (d) (e) (f)

Figure 4: Implementation of MLNN, where pixel-level meta

knowledge {Fw(Xi),Fb(Xi)} is extracted in SNN by two sub-

branches. (a) Input sample; (b) Output of ω1; (c) ω0: two-branch

SNN; (d) Learned meta-knowledge ω2: {Fw(Xi),Fb(Xi)}; (e)

Combining the meta-knowledge ω2 by Eq. (5); (f) Output of

MLNN. For implementation of Eq. (6), the input to SNN in Stage

(c) is changed to the gray dashed arrows.

3.4. Understanding Performance Improvements

This subsection explains the source of performance im-

provements in MLNN from two aspects.

Meta-level learning. As discussed earlier, traditional NN

optimizes the average performance across all inputs, with-

out tailoring its behavior to address the diversity of input-

s. In contrast, MLNN uses SNN to learn input-specific

meta-knowledge and provides this information in the for-

m of dynamic weights to BLNN. Stage (d) of Fig. 4 visu-

alizes the meta-knowledge learned, where SNN learns the

meta-information for each pixel and different colors corre-

spond to different classes of inputs. By introducing meta-

knowledge into BLNN, ω can adapt itself to different types

of inputs, leading to better adaptability of MLNN.

Dynamic weights. An important difference between tra-

ditional CNN and MLNN models lies in the dynamic na-

ture of their weights/parameters. During training, inputs for

both are varying and weights are updated. However, dur-

ing testing, inputs for CNNs are varying but weights are

fixed. For MLNNs, inputs are varying and weights are adap-

tive. This significantly increases their modeling power. Our

MLNN successfully introduces flexibility into a NN by us-

ing dynamic weights. As shown in Fig. 5, the filter kernels

of MLNN are always adaptive to inputs, whereas those of

traditional NNs are fixed. As a result, even when using sim-

pler 48-channel outputs for MLNN, its performance is still

better than a fixed model with 64-channel outputs.

As discussed in Sec. 2.2, existing weight-dynamic NNs

are actually special cases of MLNN shown in Fig. 2. They

do not have a term ω1 to realize the balance between gen-

eralization (ω1) and input-adaptation (ω2). In contrast,

MLNN uses a small number of additional parameters in

SNN to make the model dynamic to inputs. Most of the

parameters are used in the generalization term ω1 to avoid

overfitting and to generalize to unknown scenes.

We can find evidence of MLNN’s good generalization

(a)

↑
↑

↑

↓
(b)

↑
↑

↑

↓
(c)

Figure 5: Super-resolution (Sec. 4) used to compare filter kernels

(Arc 1 trained on dataset-5). (a) The fixed 64 first-layer filters of

the original CNN model. (b) and (c) MLNN model: adaptive filter

kernels on two different input patches (last one). Most of the fil-

ters are slightly different, whereas some are significantly different

(indicated by red arrows). MLNN, based on adaptive kernels, can

use a simpler 48 first-layer model to achieve better performance.

behavior by comparing the filter kernels of different input-

s. Fig. 5 visualizes the filter kernels of the first layer in a

learned MLNN model. For the two different input patches,

most of the filters are slightly different from each other and

only some are significantly different. It is likely that those

similar filters realize the generalization of the MLNN mod-

el, whereas those that are significantly different adapt the

model’s behavior to different inputs.

3.5. Relation to Polynomial and Residual Nets

Polynomial NNs (PNNs) [28, 38] are designed to learn

a polynomial model and possess more powerful capabili-

ties to represent or classify data. The popular CNNs can be

understood as a near linear system, although they use acti-

vation functions to increase their modeling power.

Our MLNN can be treated as one kind of well-controlled

and organized PNNs. Since we utilize the dot product to

combine meta-knowledge Fw(Xi) into the original convo-

lutional layers, Fw(Xi) can be represented as a near-linear

transformation of Xi. After each MLNN layer, the degree

of the model will increase quadratically, which significantly

increases its complexity when compared to CNNs. Mean-

while, due to the well controlled architecture and parameter-

s, MLNN overcomes the common problems of PNNs [9,24]

that are hard to implement and can easily overfit.

In a more general sense, the MLNN layer can also be

used as one kind of quadratic activation function to effec-

tively increase the search space of the NN model.

Deep Residual Nets [11] insert shortcut connections and

turn a network into its counterpart residual version. This

successfully solves the convergence problem in very deep

NNs and significantly improves the classification accuracy.

Similar to residual learning, we use element-wise addi-

tions to combine meta-knowledge Fb(Xi). In particular, in

implementing Eq’s (5) and (6), when we remove the branch

of Fw, the SNN (as shown in Fig. 4) is directly transformed

to residual connections as those in [41] and [11]. In general,

a residual net partially realizes dynamic learning in the bias

4358

Table 1: Baseline Network Architectures

Layer

Set

Low-Level Vision Applications High-Level Classification Applications

Arc 1 3-layer [8] Arc 2 3-layer [8] Arc 3 4-layer [8] Arc 4 21-layer [42] Arc 5 4-layer [17] Arc 6 4-layer

set 1

[
conv, 9 × 9, 64

ReLU, 64

]
×1

[
conv, 9 × 9, 128

ReLU, 128

]
×1

[
conv, 9 × 9, 128

ReLU, 128

]
×1

[
conv, 3 × 3, 64

ReLU, 64

]
×1

[
conv, 5 × 5, 20
Maxpool, 2, 2

]
×1

⎡
⎢⎣
conv, 5 × 5, 32
Maxpool, 2, 2

ReLU, 32
BatchNorm

⎤
⎥⎦×1

set 2

[
conv, 1 × 1, 32

ReLU, 32

]
×1

[
conv, 1 × 1, 64

ReLU, 64

]
×1

[
conv, 5 × 5, 64

ReLU, 64

]
×1

⎡
⎣conv, 3 × 3, 64

BatchNorm
ReLU, 64

⎤
⎦×19

[
conv, 5 × 5, 50
Maxpool, 2, 2

]
×1

⎡
⎢⎣
conv, 5 × 5, 32

ReLU, 32
Maxpool, 2, 2
BatchNorm

⎤
⎥⎦×1

set 3
[
conv, 5 × 5, 1

]×1
[
conv, 5 × 5, 1

]×1

[
conv, 1 × 1, 64

ReLU, 64

]
×1

[
conv, 3 × 3, 1

]×1

[
fc, 500

ReLU, 500

]
× 1

⎡
⎣conv, 5 × 5, 64

ReLU, 64
Maxpool, 2, 2

⎤
⎦×1

set 4
[
conv, 5 × 5, 1

]×1
[
fc, 10

] × 1
[
fc, 10

] × 1

term. We believe that our MLNN helps partially understand

the performance of residual nets. On the other hand, the

convergence behavior of our MLNN can also be attributed

to the realization of residual learning in MLNN.

4. Experimental Results

In this section, we verify the performance of our MLNN

design under multiple application scenarios.1

4.1. Parameters and Network Settings

Table 1 shows the baseline network architectures under

different applications. We replace some convolutional or

fully connected layers in these architectures by MLNN in

order to get new dynamic models. The performance of these

new models are then measured and compared to the original

standard models under different applications.

Given an original [k×k, n] convolutional layer, to ensure

that the number of parameters are not significantly changed,

we discuss their setting when realizing the layer MLNN.

For BLNN, we employ a [k×k, 3n/4] convolutional lay-

er, whereas for SNN, in each SNN branch (Fw and Fb), we

use two 1 × 1 convolutional layers with ReLU activation

between them. Specifically, we implement one [1× 1, n/4]
and one [1× 1, 3n− 2] convolutional layers for Fw; for Fb,

we use [1× 1, n/4] and [1× 1, n] layers.2

To combine Fw, we first employ TanH (for classifica-

tion tasks) or Sigmoid (for low-level vision tasks) to re-

strict the output of Fw, before reshaping it to a 1-band ma-

trix. In contrast to gated structures [36], an activation func-

tion after Fw is used to avoid the influence of initializations.

Configurations without activation perform similar to or s-

lightly better (<0.15%) than those with activations, but their

performance highly depends on the initialization of the bias

term in the Fw layers.

1More details and demonstrations are available in the supplementary

material at http://www.feihuzhang.com/Publication.html
2For better performance, we can use more complex layers (e.g. two

3×3 convolutional layers) in SNN with 20-50% extra computational cost.

Table 2: Evaluations using image supper-resolution (PSNR: dB)

Data set Model Dataset-1 Dataset-2 Dataset-5

Arc 1

Original 29.97 29.01 32.64

CNN-c 30.01 29.07 32.71

MLNN 30.11 29.20 32.87

Arc 2
Original 30.05 29.08 32.73

MLNN 30.18 29.26 32.93

Arc 3
Original 30.21 29.26 32.88

MLNN 30.31 29.39 33.03

Arc 4
Original 30.34 29.38 32.99

MLNN 30.43 29.50 33.11

4.2. Low-Level Image Quality Improvement

In almost all low-level vision applications, each pixel

will be a target and the training data can contain more than

ten million samples. Hence, data diversity is very common

and significant, and dynamic MLNN models will have ap-

parent advantages over standard models.

Image super-resolution, which aims at recovering a high-

resolution image from a single low-resolution image, is a

classical problem in low-level computer vision. Dong et al.
show that traditional super-resolution algorithms can be re-

placed by a deep CNN to get better performance and faster

speed [8]. Due to the convenience of collecting and control-

ling training data, this is one of the most suitable applica-

tions to verify the performance of MLNN.

To control data diversity, we build mixed datasets with

five types of images, including natural, depth and cartoon

images, as well as screenshots and oil paintings (with about

100,000 51 × 51 patches for each type, 9/10 for training

and 1/10 for testing). We refer natural image as “dataset-1,”

mixture of natural images and screenshots as “dataset-2”

and mixture of all five types of images as “dataset-5.” We

use three kinds of network structures proposed in [8] and

another much deeper 21-layer residual net [42] as the base

models for evaluations and comparisons.

In each comparison, we implement 3× super-resolution.

The first (for Arc 1-2), the first two (for Arc 3) or the first

five (for Arc 4) original convolutional layers are replaced

by MLNN. All other settings in training are set the same as

those in [8]. Table 2 shows the PSNR for measuring the dif-

ference between testing results and ground truths after train-

4359

Table 3: Evaluations of Arc1 on 5 types of images (PSNR: dB)

Data Set CNN Individual Models MLNN

natural images 29.81 29.97 30.02
screenshots 28.09 28.30 28.38

depth images 43.89 44.23 44.11

cartoon images 32.77 32.92 33.02
oil paintings 30.22 30.32 30.38

Table 4: Evaluations using image denoising (PSNR: dB)

Architecture With CNN Model With MLNN Model

Arc 1 28.71 28.87
Arc 3 28.87 28.98
Arc 4 29.02 29.14

ing for 64 epochs. Fig. 1 further compares the convergence

curves of Arc 1. We observe a) that in all the architectures,

MLNN helps get 0.1-0.3 dB improvement in PSNR; b) that

the improvements are more pronounced as data diversity is

increased. For example, in Arc 1, MLNN only improves

0.14 dB for “dataset-1,” whereas MLNN gets 0.23 dB im-

provement for “dataset-5” with significant data diversity.

Table 3 shows the detailed results on each type of im-

ages in “dataset-5” for Arc 1. When compared to a sin-

gle CNN trained on “dataset-5,” training the same CNN for

each type of images to get five models leads to better per-

formance. Our MLNN performs even better in four out of

the five types than the CNNs trained for each type. This

happens because MLNN learns pixel-level meta-knowledge

for each pixel and can differentiate input diversities of each

pixel even within a single type of images.

Image denoising is another low-level vision application

that benefits from the development of DNNs. With the

Berkeley Segmentation Database [25] as the ground truth,

random noises are added to the images, using Gaussian

noises with standard deviation in [0, 50]. 240 images are

randomly chosen for training and 60 for testing. We employ

simple fast 3-layer Arc 1-2 and the much deeper 21-layer

residual net in [42] as the base network settings, while keep-

ing all the other settings the same as those in [42] as well

as our MLNN the same as those in image super-resolution.

Table 4 shows that all the three structures with MLNNs get

about 0.11-0.16 dB improvements when compared to those

with the original CNNs after training for 64 epochs.

4.3. High-Level Image Classification

In scene classifications, data diversity is not as signifi-

cant as low-level vision applications since existing datasets

only contain no more than one million samples. However,

MLNN still helps get 0.4∼1.5% improvements in accuracy

on the following three datasets. Moreover, its improvement

will be more pronounced as data scale is increased.

MNIST database of handwritten digits [22] of 0-9 has

a training set of 60,000 examples and a test set of 10,000

examples. We use a 4-layer network [17] (Arc 5 in Table 1)

Table 5: Performance comparisons in image classification

Data Set Model
Top-1 Error

(%)

Top-5 Error

(%)

Mnist
Arc 5 1.11

MLNN 0.71

Cifar-10

Arc 6 18.7

MLNN 18.3

ResNet-44 7.61

Res-MLNN-44 6.97

ResNet-110 6.38

Res-MLNN-110 5.82

ImageNet

AlexNet 42.6 19.6

MLNN-1 42.2 19.0

MLNN-2 41.3 18.5

MLNN-3 41.1 18.2

ResNet-50 24.53 7.89

Res-MLNN-50 23.27 7.02

as the base setting and get 1.11% error rate on the test set

after 10,000 iterations in training. After changing the first

fully-connected layer to MLNN of Eq. (5), the error rate is

reduced to 0.71%.

CIFAR-10 dataset [20] consists of 60,000 32×32 colour

images in 10 classes, with 6,000 images per class (50,000

for training and 10,000 for testing). The CIFAR10 Caffe

model [17] (Arc 6 in Table 1) was trained for the CIFAR-

10 classification task. Without any data augmentation, we

trained it for 70,000 iterations with a batch size of 100.

Table 5 shows the error rates obtained with and without

MLNN. The original Arc 6 achieves a top-1 error of 18.7%.

After replacing the fist two convolutional layers by MLNN

(as shown in Fig. 4) with nothing else changed, the error rate

is reduced to 18.3%. We also tested the more complicated

44-layer and 110-layer residual nets [11]. By replacing the

first 3 × 3 layer in each of the residual blocks by MLNN

and training them with data augmentation, the accuracy has

been improved by 0.6%. Since the CIFAR-10 dataset con-

tains only 60,000 samples, data diversity is not as obvious

as that in low-level vision applications where each pixel is

a target. The performance of MLNN is, therefore, limited,

but we still can achieve 0.4∼0.6% accuracy improvement.

ImageNet [6] is a data set with over 15 million labeled

high-resolution images belonging to roughly 22,000 cate-

gories. We use the ILSVRC-2012 which is a subset of Ima-

geNet with 1000 images in each of 1000 categories for train-

ing and another 50 in each category for validation.

We first use AlexNet [21] as the base setting of the net-

work architecture, which contains five convolutional layers,

three fully connected layers and some non-linear activation-

s. For MLNN-1, we replace the fist fully connected layer of

AlexNet by the implementation of Eq. (5); for MLNN-2, we

change the 3rd and the 4th convolutional layers to the MLNN

implementation of Eq. (6); and for MLNN-3, we include all

the changes in MLNN-1 and MLNN-2. We fixed all other

settings and trained the models for 310,000 iterations with-

out data augmentation. We then tested the more advanced

4360

ResNet-50 [11] with data augmentation to increase data di-

versity and to avoid overfitting. We replaced the bottleneck

3×3 layer of each residual block by MLNN layers (with 16

layers changed).

Table 5 reports the top-1 and top-5 error rates on the val-

idation data. Convolutional nets with MLNN outperform

the base models by a large margin (0.4%-1.5% in top-1 er-

ror rate and 0.6%-1.4% in top-5 error rate). Moreover, the

improvement is more pronounced as we increase the num-

ber of MLNN layers from one to three in the base model.

4.4. Effects on Number of SNN Branches

We first study whether improvements are caused by

adding extra branches to the original network. In the CNN-

c model (Table 2), we use concatenation to replace the dot

product and element-wise addition in Eq. (6). That is, CNN-

c has the same network branches and even more parame-

ters when compared to MLNN. However, CNN-c has very

limited improvements (0.04∼0.06 dB) when compared to

MLNN (0.14∼0.23 dB). This illustrates that the improve-

ments brought by MLNN are attributed to the its dynamic

behavior with respect to each input.

Since the meta-level knowledge is split into two part-

s (Fw and Fb) in our implementation, we test the effect-

s of each branch in the SNN implementation individually.

Firstly, we replace Fw by traditional fixed-weight structures

and add Fb directly to Fw with the output of Fb adjust-

ed to the same shape as Fw. We find that for image up-

sampling, PSNR drops from 32.87 dB to 32.68 dB, and

for AlexNet classification, the top-1 error rate increases

by 0.61%. These results support our claim that adaptive

weights are effective in MLNN. Secondly, we change Fb
to an identity mapping [12]. We observe that for image

upsampling, PSNR drops from 32.87 dB to 32.7 dB and

for AlexNet classification, the top-1 error rate increases by

0.73%. It is obvious that both SNN branches are indispens-

able in our model to get good performance.

4.5. Effects on Number of MLNN Layers

The number of the MLNN layers also affects the model’s

performance. In general, as the number of MLNN layers is

increased, the accuracy of the model will first increase and

then begin to drop. For example, in AlexNet [21], if we con-

tinue to change the 5th convolutional layer to MLNN to get

MLNN-4, we get similar accuracy as MLNN-3. However,

if we further change the second fully connected layer to get

MLNN-5, the accuracy begins to drop by 0.2%. This hap-

pens because after adding a new MLNN layer, the degree

of the model will increase quadratically. As we ceaseless-

ly add more MLNN layers to a model, overfitting begins to

occur at some point. Our experience shows that in a neural

net, we change 1/4∼1/2 of the traditional layers to MLNN

layers in order to get good performance.

Table 6: Complexity and Efficiency Comparisons

Arch. Model Params FLOPs Speed

Arc 1
Original 8K 8.0× 103 2.5 MPixel/s

MLNN 8.5K 8.5× 103 2.3 MPixel/s

Arc 4
Original 0.7M 7.0× 105 21 KPixel/s

MLNN 0.69M 6.9× 105 21 KPixel/s

AlexNet

Original 60M 7.3× 108 675 fps

MLNN-2 60.6M 7.8× 108 633 fps

MLNN-3 66M 7.9× 108 619 fps

4.6. Efficiency Comparisons and Analysis

In this subsection, we compare the efficiency of MLNN

with standard CNN models. We implement MLNN based

on the deep learning platform Caffe [17] using a TESLA

K40C GPU. Table 6 compares the computational complex-

ity and the speed of the standard CNN and the dynamic

MLNN models. For low-level vision applications, the com-

putational complexity is directly proportional to the number

of parameters in the model. During the implementation, we

control the number of parameters by reducing the number

of channels of the output after the MLNN layers to offset

the extra parameters used in learning meta-knowledge. As

a result, efficiency does not decrease too much. For image

classification, the running time of the new MLNN model is

only sightly increased by 5-10%.

5. Conclusions
MLNN studied in this paper introduces meta-knowledge

to DNNs in order to allow them to adapt to inputs with

5%∼10% extra computation costs. Meta-knowledge is first

learned by SNN to differentiate various types of inputs and

then combined in BLNN to make the MLNN model adap-

tive to inputs. We verify its performance improvement using

several high- and low-level vision applications. By replac-

ing some standard convolutional or fully-connected layers

with our MLNN layers in a traditional NN, our new model

can outperform the base model by a large margin.

The MLNN layers are beneficial when the dataset has

large diversity, such as different image types, textures, and

radiometric and noise conditions. Usually, data diversity is

larger as the data scale is increased, and the improvements

brought by MLNN will be more pronounced.

The limitation of MLNN is that in very deep NNs, over-

fitting may occur when too many MLNN layers are used

(like in a pure MLNN net), as they significantly increase

the degree of the model. As a result, MLNN layers should

be used in conjunction with standard layers (convolutional

or fully-connected layers) in a DNN model.

Acknowledgement
Research supported in part by the National Grand

Fundamental Research 973 Program of China No.

2014CB340401.

4361

References
[1] K. Alexandros and H. Melanie. Model selection via meta-

learning: a comparative study. Int’l Journal on Artificial In-
telligence Tools, 10(04):525–554, 2001. 2

[2] S. Ali and K. A. Smith-Miles. A meta-learning approach

to automatic kernel selection for support vector machines.

Neurocomputing, 70(1):173–186, 2006. 2

[3] J. Ba and R. Caruana. Do deep nets really need to be deep? In

Advances in Neural Information Processing Systems, pages

2654–2662, 2014. 3

[4] H. C. Burger, C. J. Schuler, and S. Harmeling. Image de-

noising: Can plain neural networks compete with BM3D? In

Proc. of IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), pages 2392–2399. IEEE, 2012. 1, 3

[5] P. K. Chan and S. J. Stolfo. Experiments on multistrategy

learning by meta-learning. In Proc. of Int’l Conf. on Infor-
mation and Knowledge Management, pages 314–323. ACM,

1993. 2

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

Proc. of IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), pages 248–255. IEEE, 2009. 7

[7] M. Denil, B. Shakibi, L. Dinh, N. de Freitas, et al. Predicting

parameters in deep learning. In Advances in Neural Informa-
tion Processing Systems, pages 2148–2156, 2013. 3

[8] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-

resolution using deep convolutional networks. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 38(2):295–

307, 2016. 1, 2, 3, 6

[9] M. Donini and F. Aiolli. Learning deep kernels in the space

of dot product polynomials. Machine Learning, pages 1–25,

2016. 5

[10] D. G. Ferrari and L. N. De Castro. Clustering algorithm

selection by meta-learning systems: A new distance-based

problem characterization and ranking combination methods.

Information Sciences, 301:181–194, 2015. 2

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proc. of IEEE Conf. on Comput-
er Vision and Pattern Recognition (CVPR), pages 770–778.

IEEE, June 2016. 1, 5, 7, 8

[12] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings

in deep residual networks. In European Conf. on Computer
Vision (ECCV), pages 630–645. Springer, 2016. 8

[13] T.-W. Hui, C. C. Loy, and X. Tang. Depth map super-

resolution by deep multi-scale guidance. In Proc. of Eu-
ropean Conf. on Computer Vision (ECCV), pages 353–369.

Springer, 2016. 3

[14] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial

transformer networks. In Advances in Neural Information
Processing Systems, pages 2017–2025, 2015. 2

[15] V. Jain and S. Seung. Natural image denoising with convo-

lutional networks. In Advances in Neural Information Pro-
cessing Systems, pages 769–776, 2009. 1

[16] X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool. Dy-

namic filter networks. In Advances in Neural Information
Processing Systems, pages 667–675, 2016. 2, 3

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In Proc. of ACM In-
t’l Conf. on Multimedia, pages 675–678. ACM, 2014. 6, 7,

8

[18] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A con-

volutional neural network for modelling sentences. arXiv
preprint arXiv:1404.2188, 2014. 2

[19] B. Klein, L. Wolf, and Y. Afek. A dynamic convolutional

layer for short range weather prediction. In Proc. of IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 4840–4848. IEEE, 2015. 2

[20] A. Krizhevsky, V. Nair, and G. Hinton. The cifar-10 dataset,

2014. 7

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems, pages

1097–1105, 2012. 1, 3, 7, 8

[22] Y. LeCun, C. Cortes, and C. J. Burges. The MNIST database

of handwritten digits, 1998. 7

[23] C. Lemke, M. Budka, and B. Gabrys. Metalearning: a survey

of trends and technologies. Artificial Intelligence Review,

44(1):117–130, 2015. 2

[24] R. Livni, S. Shalev-Shwartz, and O. Shamir. An algorith-

m for training polynomial networks. arXiv preprint arX-
iv:1304.7045, 2013. 5

[25] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to e-

valuating segmentation algorithms and measuring ecological

statistics. In Proc. of IEEE Int’l Conf. on Computer Vision
(ICCV), volume 2, pages 416–423. IEEE, 2001. 7

[26] T. M. Mitchell. The need for biases in learning gener-
alizations. Department of Computer Science, Laboratory

for Computer Science Research, Rutgers Univ. New Jersey,

1980. 2

[27] H. Noh, P. H. Seo, and B. Han. Image question answering

using convolutional neural network with dynamic parameter

prediction. arXiv preprint arXiv:1511.05756, 2015. 2

[28] S.-K. Oh, W. Pedrycz, and B.-J. Park. Polynomial neural

networks architecture: analysis and design. Computers &
Electrical Engineering, 29(6):703–725, 2003. 5

[29] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in Neural Information Processing Systems, pages

91–99, 2015. 3

[30] J. R. Rice. The algorithm selection problem. Advances in
Computers, 15:65–118, 1976. 2

[31] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gat-

ta, and Y. Bengio. Fitnets: Hints for thin deep nets. arXiv
preprint arXiv:1412.6550, 2014. 3

[32] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 1, 3

[33] M. R. Smith, L. Mitchell, C. Giraud-Carrier, and T. Martinez.

Recommending learning algorithms and their associated hy-

perparameters. In Proc. of Int’l Conf. on Meta-learning and
Algorithm Selection, pages 39–40. CEUR-WS. org, 2014. 2

4362

[34] K. A. Smith-Miles. Towards insightful algorithm selection

for optimisation using meta-learning concepts. In Proc. of
IEEE Int’l Joint Conf. on Neural Networks (IJCNN), pages

4118–4124. IEEE, 2008. 2

[35] K. A. Smith-Miles. Cross-disciplinary perspectives on meta-

learning for algorithm selection. ACM Computing Surveys,

41(1):6, 2009. 2

[36] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway

networks. arXiv preprint arXiv:1505.00387, 2015. 6

[37] C. Szegedy, A. Toshev, and D. Erhan. Deep neural network-

s for object detection. In Advances in Neural Information
Processing Systems, pages 2553–2561, 2013. 1

[38] I. V. Tetko, T. I. Aksenova, V. V. Volkovich, T. N. Kasheva,

D. V. Filipov, W. J. Welsh, D. J. Livingstone, and A. E. Villa.

Polynomial neural network for linear and non-linear model s-

election in quantitative-structure activity relationship studies

on the internet. SAR and QSAR in Environmental Research,

11(3-4):263–280, 2000. 5

[39] R. Vilalta and Y. Drissi. A perspective view and survey of

meta-learning. Artificial Intelligence Review, 18(2):77–95,

2002. 2

[40] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-

A. Manzagol. Stacked denoising autoencoders: Learning

useful representations in a deep network with a local de-

noising criterion. Journal of Machine Learning Research,

11(Dec):3371–3408, 2010. 1

[41] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregat-

ed residual transformations for deep neural networks. arXiv
preprint arXiv:1611.05431, 2016. 5

[42] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond

a gaussian denoiser: Residual learning of deep cnn for image

denoising. arXiv preprint arXiv:1608.03981, 2016. 6, 7

4363

