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Abstract. State-of-the-art stereo matching networks have difficulties in
generalizing to new unseen environments due to significant domain dif-
ferences, such as color, illumination, contrast, and texture. In this paper,
we aim at designing a domain-invariant stereo matching network (DSM-
Net) that generalizes well to unseen scenes. To achieve this goal, we
propose i) a novel “domain normalization” approach that regularizes the
distribution of learned representations to allow them to be invariant to
domain differences, and ii) an end-to-end trainable structure-preserving
graph-based filter for extracting robust structural and geometric rep-
resentations that can further enhance domain-invariant generalizations.
When trained on synthetic data and generalized to real test sets, our
model performs significantly better than all state-of-the-art models. It
even outperforms some deep neural network models (e.g . MC-CNN and
DispNet) fine-tuned with test-domain data. The code is available at
https://github.com/feihuzhang/DSMNet.

1 Introduction

Stereo reconstruction is a fundamental problem in computer vision, robotics and
autonomous driving. It aims to estimate 3D geometry by computing disparities
between matching pixels in a stereo image pair. Recently, many end-to-end deep
neural network models (e.g . [5,19,63]) have been developed for stereo matching
that achieve impressive accuracy on several datasets or benchmarks.

However, state-of-the-art stereo matching networks (supervised [5,19,63] and
unsupervised [51,68]) cannot generalize well to unseen data without fine-tuning
or adaptation. Their difficulties lie in the large domain differences (such as color,
illumination, contrast and texture). As illustrated in Fig. 1, the pre-trained mod-
els on one specific dataset produce poor results on other real and unseen scenes.

Domain adaptation and transfer learning methods (e.g . [3, 12, 51]) attempt
to transfer or adapt from one source domain to another new domain. Typically,
a large number of stereo images from the new domain are required for the adap-
tation. However, these cannot be easily obtained in many real scenarios. Yet, we
still need a good method for disparity estimation even without data from the
new domain for adaptation.

We focus on the more challenging but crucial domain generalization [1] prob-
lem that assumes no access to target information for adaptation or fine-tuning.
Namely, we are trying to design a model that can generalize well to unseen
data without any re-training or adaptation. The difficulties in developing such
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(b) Test Scenes

(a) Training Scenes (c) Feature Map of GANet [63]

(d) Feature Map of our DSMNet

(e) Results of GANet [63]

(f) Results of Our DSMNet

Fig. 1: Visualization of the feature maps and disparity results. GANet [63] is used
for comparisons. The features used for matching (outputs of the feature extraction
networks) are visualized in (c) and (d). Models are trained on synthetic data (Sceneflow
[32]) and tested on novel real scenes (KITTI [33]). The feature maps from GANet has
many artifacts (i.e. noise). Our DSMNet mainly captures the structure and shape
information as robust features, and there is no distortions or artifacts in the feature
map. It can produce accurate disparity estimations in the novel test scenes.

a domain-invariant stereo matching network (DSMNet) come from the signifi-
cant domain differences (Fig. 1(a)-(b)) which can be roughly categorized as i)
image-level styles (e.g . color, illumination), ii) local variations (e.g . contrast), iii)
texture patterns, details and noise conditions and iv) other complicated domain
shifts (e.g . uncommon/non-linear contents). They can be approximated by:

f(p) = �I(�p � �(p) + �p) + �I : (1)

Here, p is the feature of each pixel (e.g. RGB). Without domain shifts, f(p) = p
for different datasets. In practice, domain shifts are varying in different datasets.
The i) image-level style differences can be represented as �I and �I . The ii) local
variations (e.g. contrasts) are �p. �p represents the iii) image details/noise. Pixels
of an image have the same �I and �I . The local shifts �p and �p are varying in
different regions/pixels. And � is the expression of iv) other uncommon domain
differences that cannot be easily formulated as specific models.

Fig. 1 visualizes the features learned by state-of-the-art stereo matching
model [63]. Such domain differences make the learned features unstable, distorted
and noisy, leading to many wrong matching results (Fig. 1(e)) when applied to
the novel test data (Fig. 1(c)).

In this paper, we propose two novel trainable neural network layers for con-
structing the DSMNet for cross-domain generalization without fine-tuning or
adaptation. The proposed novel domain normalization (DN) layer fully reg-
ulates the distribution of the feature in both the image-level spatial (height and
width) and the pixel-level channel dimensions. It can therefore reduce the do-
main shifts/differences of i) image-level styles (�I and �I in Eq. (1)) and ii) local
contrast variations (�p in Eq. (1)) between different datasets/scenes. Our non-
local structure-preserving graph-based �ltering (SGF) layer can further
smooth and reduce the iii) domain-sensitive local details/noise (�p in Eq.(1)).
It also helps capture more robust structural and geometric representations (e.g .
shape and structure, as in Fig. 1(d)) that are more robust to iv) many other
complicated domain differences (� in Eq. (1)) for stereo reconstruction.
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We formulate our method as an end-to-end deep neural network and train it
only with synthetic data. In experiments, without any fine-tuning or adaptation
on the real test data, our DSMNet far outperforms: 1) almost all state-of-the-art
stereo matching models (e.g . GANet [63]) trained on the same synthetic dataset,
2) most of the traditional methods (e.g . Cosfter filter, SGM [14] et al .), 3) most of
the unsupervised/self-supervised models trained on the target test domains. Our
model even surpasses some of the fine-tuned (on the target domains) supervised
neural network models (e.g . MC-CNN [61], content-CNN [31], DispNetC [32]).
Also, it doesn’t sacrifice fine-tuned accuracy for generalization. After fine-tuning
on the target scenes, it can achieve state-of-the-art accuracy (e.g . on KITTI
benchmark). Moreover, our method can be easily extended to the optical flow
task. It also significantly improves the generalization abilities of the optical flow
networks (e.g . FlowNew2 [17], PwcNet [48]).

2 Related Work

2.1 Deep Neural Networks for Stereo Matching

In recent years, deep neural networks have seen great success in stereo matching
[5, 19, 32, 44, 63]. These models can be categorized into three types: 1) learning
better features for traditional stereo matching algorithms, 2) correlation-based
deep neural networks, 3) cost-volume based stereo matching networks.

In the first category, deep neural networks have been used to compute patch-
wise similarity scores as the matching costs [61, 64]. The costs are then fed into
the traditional cost aggregation and disparity computation/refinement methods
[14] to get the final disparity maps. The models are, however, limited by the
traditional matching cost aggregation step and often produce wrong predictions
in occluded regions, large textureless/reflective regions and around object edges.

DispNetC [32], a typical method in the second category, computes the correla-
tions by warping between stereo views and attempts to predict the per-pixel dis-
parity by minimizing a regression training loss. Many other sate-of-the-art meth-
ods, including iResNet [28], CRL [38], SegStereo [57], EdgeStereo [47], HD3 [60],
and MADNet [51], are all based on color or feature correlations between the left
and right views for disparity estimation.

The recently developed cost-volume based models explicitly learn feature
extraction, cost volume, and regularization function all end to end. Examples
include GC-Net [19], PSM-Net [5], StereoNet [20], AnyNet [55], GANet [63] and
EMCUA [36]. They all utilize a similarity cost as the third dimension to build
the 4D cost volume in which the real geometric context is maintained.

Others, like [13], combine the correlation and cost volume strategies.
The common feature of these models is that they all require a large number of

training samples with ground truths. More importantly, a model trained on one
domain cannot generalize well to new scenes without fine-tuning or retraining.

2.2 Adaptation and Self-supervised Learning

Self-supervised Learning: A recent trend of training stereo matching networks in
an unsupervised manner relies on image reconstruction losses that are achieved
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by warping left and right views [67,68]. However, they cannot solve the occlusions
and re
ective regions where there is no correspondence between the left and the
right views. Also, they cannot generalize well to other new domains.
Domain Adaptation: Some methods pre-train the models on synthetic data and
then explore the cross-domain knowledge to adapt [12, 39] for a new domain.
Others focus on the online or o�ine adaptations [41,49{51]. For example, MAD-
Net [51] is proposed to adapt the pre-trained model online and in real time. But,
it has poor accuracy even after the adaptation. Moreover, the domain adaptation
approaches require a large number of stereo images from the target domain for
adaptations. However, these cannot be easily obtained in many real scenarios.
And, in this case, we still need a good method for disparity estimation even
without data from the new domain for adaptation.

2.3 Cross-domain Generalization

In contrast to domain adaptation, domain generalization [1,11] is a much harder
problem that assumes no access to target information for adaptation or �ne-
tuning. There are many approaches that explore the idea of domain-invariant
feature learning. Previous approaches focus on developing data-driven strategies
to learn invariant features from di�erent source domains [11,22,34]. Some recent
methods utilize meta-learning that takes variations in multiple source domains
to generalize to novel test distributions [1,23]. Other approaches [24,25] employ
an invariant adversarial network to learn domain-invariant representations for
image recognition. Choyet al. [7] develop a universal feature learning framework
for visual correspondences using deep metric learning.

In contrast to the above approaches, there are methods that try to improve
the batch or instance normalization in order to improve the generalization and
robustness for style transfer or image recognition [35,37].

In summary, for stereo matching, work is seldom done to improve the gener-
alization ability of the end-to-end deep neural network models, especially when
developing the domain-invariant stereo matching networks.

3 Proposed DSMNet
To address the challenges of domain shifts (Eq.(1)), we propose 1) a novel domain
normalization (DN) to remove the in
uence of the image-level domain shifts (� I

and � I : e.g. color, style, illuminance) and the local contrast variations (� p in
Eq.(1)), as well as 2) the trainable structure-preserving graph-based �ltering
(SGF) layer to smooth the domain-sensitive local noise/details (� p) and capture
the structural and geometric context as robust features for domain-invariant
stereo reconstruction.

3.1 Domain Normalization

Batch normalization (BN) has become the default feature normalization
operation for constructing end-to-end deep stereo matching networks [5, 19, 32,
47,51,63]. Although it can reduce the internal covariate shift e�ects in training
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Fig. 2: Normalization methods. Each subplot shows a feature map tensor, with N as the
batch axis, C as the channel axis, and (H; W ) as the spatial axes. The blue elements in
set S are normalized by the same mean and variance. The proposed domain normaliza-
tion consists of image-level normalization (blue, Eq. (2)) and pixel-level normalization
of each C-channel feature vector (green, Eq. (4)).
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Fig. 3: Norm ( � p of Eq.(1)) distributions of the features for di�erent datasets (left to
right: synthetic SceneFlow, KITTI, Middlebury, CityScapes and ETH 3D). The output
of the feature extraction network is used for the study. The norm ( � p ) of the feature
vector at each pixel is counted. Instance normalization can only reduce the image-level
di�erences, but does not normalize the C-channel feature vectors at pixel level.

deep networks, it is domain-dependent and has negative in
uence on the cross-
domain generalization ability.

BN normalizes the features as follows:

x̂ i =
1
�

(x i � � i ): (2)

Here x and x̂ are the input and output features, respectively, and i indexes
elements in a tensor (i.e. feature maps, as illustrated in Fig. 2) of sizeN � C �
H � W (N : batch size,C: channels,H : spatial height, W : spatial width). � i and
� i are the corresponding channel-wise mean and standard deviation (std) and
are computed by:

� i =
1
m

X

k2 Si

xk ; � i =

s
1
m

X

k2 Si

(xk � � i )2 + �; (3)

where Si is the set of elements in the same channel as elementi (Fig. 2), and �
is a small constant to avoid dividing by zeros.

Mean � and standard deviation � are computed per batch in the training
phase, and the accumulated values of the training set are utilized for inference.
However, di�erent domains may have di�erent � and � caused by color shifts,
contrast, and illumination. (Fig. 1(a){(b)). Thus � and � computed for one
dataset are not transferable to others.
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(a) 8-connected graph (b) directed graph G1 (c) directed graph G2

Fig. 4: Illustration of the graph construction. The 8-way connected graph is separated
into two directed graphs G1 and G2 .

Instance normalization (IN) [35,40] overcomes the dependency on data-
set statistics by normalizing each sample separately, where elements inSi are
con�ned to be from the same sample as illustrated in Fig. 2. In theory, IN
is domain-invariant, and normalization across the spatial dimensions (H , W )
reduces image-level style variations.

However, matching of stereo views is realized at the pixel level by �nding
an accurate correspondence for each pixel using itsC-channel feature vector.
Any inconsistence of the feature norm and scaling will signi�cantly in
uence the
matching cost and similarity measurements.

Fig. 3 illustrates that IN cannot regulate the norm distribution of pixel-wise
feature vectors that vary in datasets/domains.

We propose in Fig. 2 our domain-invariant normalization (DN) . Our
method normalizes features along the spatial axis (H , W ) to induce style-
invariant representations similar to IN as well as along the channel dimension
(C) to enhance the local invariance.

Our DN is realized as follows:

x̂0
i =

x̂ iq P
i 2 S0

i
jx̂ i j2 + �

; (4)

where S0
i (green region in Fig. 2) includesC elements from the same example

(N axis) and the same spatial location (H , W axis). x̂ i is computed as Eq. (2)
and (3) with elements in Si from the same channel and sample (blue in Fig. 2).

In our DN, besides normalization across spatial dimension, we also employ
L 2 normalization to normalize features along the channel axis. They collaborate
with each other to address the sensitivity to both image-level domain shift (� I

and � I in Eq.(1)) and the local contrast variations ( � p). As illustrated in Fig. 3,
it helps regulate the norm (� p) distribution of the features in di�erent datasets
and improves the robustness to local contrast variations.

Finally, the trainable per-channel scale 
 and shift � are added to enhance
the discriminative representation ability as BN and IN. The �nal formulation is:

yi = 
 i x̂0
i + � i : (5)

3.2 Structure-preserving Graph-based Filtering
We propose a trainable Structure-preserving Graph-based Filter (SGF) that ex-
ploits contextual information and avoid solely memorizing local domain-sensitive
texture patterns, details or noise (see Fig. 1(c)) for robust stereo matching.
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Our inspiration comes from traditional graph-based �lters that are remark-
ably e�ective in employing structural and geometric information for structure-
preserving texture and detail removing/smoothing [62], denoising [6,62], as well
as depth-aware estimation and enhancement [29,58].

Formulation For a 2D image/feature mapI , we construct an 8-connected graph
by connecting pixel p to its eight neighborhoods (see Fig. 4). To avoid loops and
achieve fast information aggregation over the graph, we split it into two reverse
directed graphsG1, G2 (see Fig. 4(b) and 4(c)).

We assign weight! e to each edgee 2 G, and a feature (or color) vectorC(p)
to each nodep 2 G. We also allow p to propagate information to itself with
weight ! e(p; p). For graph Gi (i = 0 ; 1), our SGF is de�ned as follows:

CA
i (p) =

P

q 2 G i

W (q;p ) �C (q )

P

q 2 G i

W (q;p ) ; W(q; p) =
P

l q ; p 2 G i

Q

e2 l q ; p

! e: (6)

Here, lq ;p is a feasible path fromq to p. Note that e(q; q) is included in the path
and counts for the start node q. Unlike traditional geodesic �lters, we consider
all valid paths from source nodeq to target node p. The propagation weight
along path lq ;p is the product of all edge weights! e along the path. Here weight
W (q; p) is de�ned as the sum of the weights of all feasible paths fromq to p,
which determines how much information is di�used to p from q.

For the edge weight! (q ;p ) , we de�ne it in a self-regularized manner as follows:

! e(q; p) = x p
T x q

kx p k2 �k x q k2
; (7)

where xp and xq represent the feature vectors ofp and q, respectively.
Compared to other local �lters, such as Gaussian �lter, median �lter, and

bilateral �lter that can only propagate information in a local region determined
by the �lter kernel size, our SGF allows the propagation of long-range informa-
tion over the whole image. More importantly, the �ltering weights is de�ned as
a spatial accumulation along all feasible paths in a graph. Similar to Geodesic
�lter [29] and tree �lter [46, 59], this path-based �ltering kernel helps better
preserve the structures of the feature maps.

For stable training and to avoid extreme values, we further add a normaliza-
tion constraint to the weights associated with p in the graph Gi as:

X

q2 N p

! e(q ;p ) = 1 : (8)

Here,Np is the set of the connected neighbors ofp (including itself), and e(q; p)
is the directed edge connectingq and p. For example, in Fig. 4(b), for node p0,
! e(p 0 ;p 0 ) = 1; and for node p4, ! 0;4 + ! 1;4 + ! e(p 4 ;p 4 ) = 1.

If Eq. (8) holds, we can further derive
P

q2 G i
W (q; p) = 1 � .Eq. (6) can then

be simpli�ed as follows:

CA
i (p) =

P

q2 G i

W (q; p) � C(q); W (q; p) =
P

l q ; p 2 G i

Q

e2 l q ; p

! e: (9)

� Proof is in the supplementary material: https://github.com/feihuzhang/DSMNet
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(a) SGA [63] (b) one-way [30] (c) three-way [30]

Fig. 5: Special cases of our graph-based �lter. (a) Semi-global aggregation (SGA) layer
[63]. The dark blue node represents the maximum of each column. (b) and (c) are the
a�nity-based spatial propagations [30]. They aggregate from column t to t + 1.

Such a transformation not only increases the robustness in training but also
reduces the computational costs.

Linear Implementation Eq. (9) can be realized as an iterative linear aggrega-
tion, where the node is sequentially updated following the direction of the graph
(e.g. top to bottom, then left to right in G1). In each step, p is updated as:

CA
i (p) = ! e(p ;p ) � C(p) +

P

q2 N p ;q6= p
! e(q ;p ) � CA

i (q)

s:t:
P

q2 N p

! e(q ;p ) = 1 :
(10)

Finally, we repeat the aggregation process forG1 and G2 where the updated
representation with G1 is used as the input for aggregation withG2. The aggre-
gation of Eq. (10) is a linear process with time complexity ofO(n) (with n nodes
in the graph). During training, backpropagation can be realized by reversing the
propagation which is also a linear process (refer to the supplementary material).

Relations to Existing Approaches We show that the recently proposed semi-
global aggregation (SGA) layer [63] and a�nity-based propagation approach [30]
are special cases of our SGF (Eq. (9)). In addition, we compare it with non-local
strategies, [54,56], graph neural networks [65] and the attention mechanism [16].

a) Semi-global Aggregation (SGA)[63] is proposed as a di�erentiable approx-
imation of SGM [14] and can be presented as follows:

CA
r (p; d)= sum

8
>>>><

>>>>:

! 0(p; r ) � C(p; d)
! 1(p; r ) � CA

r (p � r ; d)
! 2(p; r ) � CA

r (p � r ; d � 1)
! 3(p; r ) � CA

r (p � r ; d + 1)
! 4(p; r ) � max

i
CA

r (p � r ; i )

s:t:
P

i =0 ;1;2;3;4
! i (p; r ) = 1 (11)

The aggregations are in four directions, namelyr = f (0; 1); (0; � 1); (1; 0); (� 1; 0)g.
Taking the right to left propagation ( r = (0 ; 1)) as an example, we can construct
a propagation graph in Fig. 5(a). The y-coordinate represents disparityd, and
the x-coordinate is the indexes of the pixels/nodes. Compared to our graph in
Fig. 4(b), edges connecting top and bottom nodes are removed, and the maxi-
mum of each column is densely connected to every node of the next column (red
edges). Eq. (11) can then be realized by our SGF of Eq. (9). Here, (p � r ; d � 1)
are the neighborhood nodes ofp, and ! 0;::: 4 are the corresponding edge weights.
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Fig. 6: Overview of the network architecture. Synthetic data are used for training,
while using data from other new domains ( e.g. real KITTI dataset) for testing. The
backbone of GANet [63] is used as the baseline. The proposed DN layer is used after
each convolutional layer in the feature extraction and guidance network. Several SGF
layers are implemented for both feature extraction and cost aggregation.

b) A�nity-based Spatial Propagation in [30] can be achieved as:

CA (p; d) =

 

1 �
P

q2 N p ;q6= p
! e(q ;p )

!

C(p) +
P

q2 N p ;q6= p
! e(q ;p ) CA (q); (12)

where ! e(q ;p ) are the learned a�nities. 1 �
P

q2 N p
! e(q ;p ) is equal to our weight

! e(p ;p ) for p. The graphs for �ltering can be constructed as in Fig. 5(b) and 5(c)
for the one-way and three-way propagations [30], respectively.

c) Non-local Strategies, Graph Neural Networks and Attentions[16,45,54,56,
65] can be used for non-local feature aggregation. But, they are implemented
without spatial and structural awareness. Existing attentions and GNNs used
in image segmentation task only consider the feature similarity for aggregation
which treat pixel locations equally. In geometric problem (e.g. stereo matching),
spatial proximity is crucial for learning accurate depths since pixels in the same
object/class (with similar features) must be spatially close enough to have similar
depth values. Therefore, these similarity/a�nity based attentions and non-local
networks will easily smooth out depth edges and thin structures (as illustrated in
the supplementary material). Our SGF utilizes both the feature a�nity and the
spatial proximity for non-local graph-based �ltering. It spatially aggregates the
features along the paths which can better preserve the structure of the disparity
maps. More importantly, Our graph �lter has lower (linear) complexity in both
memory requirement and computation since it is realized by the linear spatial
propagation and the weight matrix is only 5 � N .

3.3 Network Architecture

As illustrated in Fig. 6, we utilize the backbone of GANet as the baseline ar-
chitecture. The LGA layer in [63] is removed since it's domain-dependent and
captures a lot of local patterns that are very sensitive to domain shifts.

We replace the original batch normalization layer by our proposed domain
normalization layer for feature extraction. For the feature extraction network,
we utilize a total of seven proposed �ltering layers. For 3D cost aggregation of
the cost volume, two SGF layers are further added for cost volume �ltering in
each channel/depth. Details of the architecture are in the supplementary.
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4 Experimental Results
In our experiments, we train our method only with synthetic data and test it on
four real datasets to evaluate its domain generalization ability. During training,
we use disparity regression [19] for disparity prediction, and the smoothL 1 loss
to compute the errors for back-propagation (the same as in [5, 63]). All the
models are optimized with Adam (� 1 = 0 :9, � 2 = 0 :999). We train with a batch
size of 8 on four GPUs using 288� 624 random crops from the input images.
The maximum of the disparity is set as 192. We train the model on the synthetic
dataset for 10 epochs with a constant learning rate of 0.001. All other training
settings are kept the same as those in [63].

4.1 Datasets

KITTI stereo 2012 [10] and 2015 [33] datasets provide about 400 image pairs of
outdoor driving scenes for training, where the disparity labels are transformed
from Velodyne LiDAR points. The Cityscapes dataset [8] provides a large
amount of high-resolution (1k � 2k) stereo images collected from city driving
scenes. The disparity labels are pre-computed by SGM [14] which is not accu-
rate enough for training deep neural network models. TheMiddlebury stereo
dataset [42] is designed for indoor scenes with higher resolution (up to 2k � 3k).
But it provides no more than 50 image pairs that are not enough to train robust
deep neural networks. In addition, ETH 3D dataset [43] provides 27 pairs of
gray images for training.

These existing real datasets are all limited by their small quantity or poor
ground-truth labels, making them insu�cient for training. Hence, we use them
as test sets for evaluating our models' cross-domain generalization ability.

We mainly use synthetic data to train our domain-invariant models. The
existing Scene Flow synthetic dataset [32] contains 35k training image pairs with
a resolution of 540� 960. This dataset has a limited number of the outdoor driving
scenes that provide stereo pairs with a few settings of the camera baselines and
image resolutions. We use CARLA [9] to generate a new supplementary synthetic
dataset (with 20k stereo pairs) with more diverse settings, including two kinds
of image resolutions (720� 1080 and 1080� 1920), three di�erent focal lengths,
and �ve di�erent camera baselines (in a range of 0.2{1.5m). This supplementary
dataset� can signi�cantly improve the diversity of the training set.

The two advantages in using synthetic data are that it can avoid all the
di�culties of labeling a large amount of real data, and that it can eliminate the
negative in
uence of wrong depth values in real datasets.

4.2 Ablation Study
We evaluate the performance of our DSMNet with numerous settings, includ-
ing di�erent architectures, normalization strategies and numbers (0{9) of the
proposed SGF layers. As listed in Table 1, the full-setting DSMNet far outper-
forms the baseline in accuracy by 3% on the KITTI and 8% on the Middlebury
datasets. Our proposed domain normalization improves the accuracy by about
1.5%, and the SGF layers contribute another 1.4% on the KITTI dataset.

� Available at https://github.com/feihuzhang/DSMNet .
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