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Abstract—In dense matching (including stereo matching and
optical flow), nearly all existing approaches are based on simple
features, such as gray or RGB color, gradient or simple transfor-
mations like census, to calculate matching costs. These features do
not perform well in complex scenes that may involve radiometric
changes, noises, overexposure and/or textureless regions. Various
problems may appear, such as wrong matching at the pixel
or region level, flattening/breaking of edges and/or even entire
structural collapse. In this paper, we propose two fundamental
principles based on the consistency and the distinctiveness of
features. We show that almost all existing problems in dense
matching are caused by features that violate one or both of
these principles. To systematically learn good features for dense
matching, we develop a general multi-objective optimization
based on these two principles and apply convolutional neural
networks (CNNs) to find new features that lie on the Pareto
frontier. By using two-frame optical flow and stereo matching
as applications, our experimental results show that the features
learned can significantly improve the performance of state-of-the-
art approaches. Based on the KITTI benchmarks, our method
ranks first on the two stereo benchmarks and is the best among
existing two-frame optical-flow algorithms on flow benchmarks.

Index Terms—Image Feature, CNN, Dense Matching, Optical
Flow, Stereo Matching, Matching Cost.

I. INTRODUCTION

STEREO matching, optical flow and other dense-matching
applications have always been hot issues in computer

vision. In the past, a number of methods have been developed
to solve these problems. These methods consist of three steps:
extracting features and their descriptors, computing the match-
ing cost and/or aggregation [1]–[4], and applying matching
algorithms [5]–[7] to minimize some energy functions.

In recent years, there is a lot of attention on the last two
steps. However, little has been done on feature extraction that
is critical in dense-matching. The most popular features for
stereo matching and optical flow are still limited to some
kind of color space or gradient values [8]. Although these
simple features are fast to compute and flexible (like in
scaling and subpixel interpolation), they are easily influenced
by radiometric changes, noise, overexposure and the scene
environment (as shown in Fig. 1). This is also the major
reason why some of the best methods that work well on
benchmarks of simple indoor scenes [9] report limited suc-
cess on benchmarks of complicated outdoor scenes [10]. On
the other hand, the popular sparse features used for shape
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matching and object detection (including SIFT [11] and SURF
[12]) which are scale and radiometric invariant met their
limitations on performance improvement and flexibility when
directly applied to dense matching. These methods were not
designed for dense matching from the beginning, and they
usually involve a complex step on label densifying [13].

Instead of developing new features for dense matching,
some recent methods [14], [15] introduce convolutional neural
networks (CNNs) to compare the similarity of a pair of
patches and use the similarity score as the matching cost.
These help achieve high accuracy when used in some stereo
matching methods [14]. To address their high computational
cost, Zbontar et al. proposed a faster framework with some
sacrifice in accuracy [16]. However, as its time complexity
depends on the displacement space, it still cannot be used for
optical flow and other complex algorithms, such as continuous
matching with slanted surface or subpixel accuracy. (The time
complexity is O(KNM), with size K of displacement space,
N pixels, and computation complexity M of CNN.)

The primary problem in developing better dense matching
algorithms is to identify good features. There has been little
work in this area. A direct approach [8], [17] collects the
error rates when employing one type of features in a specific
algorithm. The rates, however, are not useful for designing
feature extractors because they cannot provide quantitative
information on the features of each pixel and/or region. Also,
it is impractical to use them as targets because not only is
it time consuming to run matching algorithms during feature
extraction, the error rate of one matching algorithm cannot
represent the feature’s performance in other algorithms.

In this paper, we identify two fundamental principles on
good features that each pixel should possess in order to be
effective for dense matching. These principles help understand
the requirements on good features for dense matching, as well
as identifying the weaknesses of existing algorithms (as they
violate one or both of these principles).

The first principle, the Consistency Principle, states that a
feature point (a pixel/location where the feature performs well)
should own the same or similar feature descriptors (such as
RGB values when color is used as the feature) when it appears
in different image views (such as the left and right views of a
stereo pair). For example, many existing features like color or
gradient are highly influenced by noise, radiometric variance,
scaling change, translation and/or rotation. As illustrated in
Fig. 1, such external disturbances can easily break the consis-
tency of features between different views.

The second principle, the Distinctiveness Principle, states
that a feature point should be different enough with respect
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(a) Inputs & inconsistency examples (b) Original & improved CostFilter [1] (c) Original & improved PMBP [5]

Fig. 1: An illustration of the Consistency Principle using optical flow as an example. Results on flow field are visualized by the color coding
technique used in [10]. (a) Input views (from KITTI dataset [10]). Enlarged red windows, illustrating color inconsistencies, are usually
caused by radiometric variations, view-angle changes and over exposure. (b) Original CostFilter [1] with simple color+gradient features and
the improved results using our proposed feature. (c) Original and improved PMBP [5] by using 32-channel fast-flow features to improve
these matching methods. (See Section V for a description of the features.)

(a) Left View (b) Right View (c) Ground Truth

(d) PatchMatch [18] (e) MC-CNN [14] (f) [18] with Our Feature

Fig. 2: An illustration of the Distinctiveness Principle using stereo
matching as an example. (a) Left and (b) right views from Middlebury
dataset [9]. (c) Ground truth (with disparity values visualized). (d)
Original patchmatch stereo [18] with color+gradient features. (e) Poor
subpixel accuracy produced by MC-CNN [14] that cannot be used
for continuous stereo matching. (f) Significant improvements when
our 32-channel fast stereo features are embedded in the original
patchmatch algorithm [18].

to other points/pixels in its surrounding regions. For instance,
when using color as the feature, pixels at a corner are unique,
whereas those in smooth regions are not distinct. In large
smooth regions, the principle is violated in many state-of-the-
art features [5], [18], [19] because the color of all the pixels
in these regions are very similar. As illustrated in Fig. 2, the
lack of distinctiveness lead to wrong matches in these regions.

The above two principles can guide us in finding good
features. To facilitate the search of such features, we formulate
in Sec. III a multi-objective optimization that incorporates both
principles as objectives under the search space imposed by the
CNN architecture. Our formulation aims to study the tradeoffs
between these principles and to find Pareto-optimal solutions
[20] in the search space that are optimal in the sense that no
solution on the Pareto frontier is better than another when all
the objectives are considered together (illustrated in Fig. 3).

We implement the search using a loss function that incor-
porates the objectives on the two principles and train a CNN
(that acts as the feature extractor) to look for new features.

f1

f 2

Fig. 3: Referring to details in Section VI-D, an illustration of
Pareto optimality and a comparison of the solutions found in stereo
matching. The x axis shows the consistence f1 (Eq. (6)), the smaller
the better. The y axis shows the distinctiveness f2 (Eq. (9)), the larger
the better. The target of the search is to find the Pareto optimal frontier
with trade-offs between f1 and f2. The results of ten feature methods
are plotted, and four non-dominated solutions with each of our CNN
solvers are shown. Data is collected using the KITTI datasets [21]
and shown in Table VII. The dash curve illustrates a hypothetical
Pareto frontier for some CNN architecture.

This implementation is found to be effective for identifying a
set of dominating solutions closest to the Pareto frontier.

The features learned possess the following good properties.
a) High accuracy with robustness to noise and radiomet-
ric changes. Our evaluations on benchmarks show that our
feature-based method outperforms the current best. b) Flexible
for use in almost all existing dense-matching algorithms.
These are similar to RGB values (e.g. scaling and subpixel in-
terpolation are possible for continuous and pyramid-matching
algorithms). c) Low memory requirement and fast speed. The
feature extractor consists of five convolutional layers and can
be implemented efficiently (e.g., a 16-channel fast feature can
be extracted in 20 fps). Also, the new features do not increase
the time complexity of the original matching algorithms.

In short, the major contribution of this paper lies in the
development of two fundamental principles for characterizing
good features in dense matching. The tradeoffs between the
two principles can be implemented as a multi-objective op-
timization problem. We propose to use a CNN solver as a



IEEE TRANSACTION ON IMAGE PROCESSING, VOL. PP, NO. , XX 2017 3

feature extractor to find good features on the Pareto frontier.
The rest of paper is organized as follows. After reviewing

previous work and their challenges in Section II, we formulate
and analyze the two fundamental principles in Section III and
propose a general model for designing good features in Section
IV. Section V shows the details of our CNN solver, which
includes a fast version and an accurate version learned by
different architectures. The experimental results in Section VI
demonstrate that our approach is effective and efficient. We
further analyze our model and solutions in Section VI-D and
discuss an extension of our CNN architectures in Section VII.
Finally, Section VIII concludes the paper.

II. RELATED WORK AND CHALLENGES

A. Feature Extraction in Dense Matching

A dense matching framework usually consists of three
steps: extracting local feature descriptors, calculating and
aggregating matching costs, and matching the descriptors by
minimizing some energy functions. Based on the available
features, matching cost can be defined as the distance or differ-
ence between two feature descriptors. Common functions used
include the sum of absolute or squared distances (SAD/SSD),
and normalized cross-correlation (NCC) as well as their mixed
or truncated versions [17].

Cost aggregation and matching algorithms have been well
studied in the past. Many powerful approaches have been
proposed, including fast cost-aggregation methods [1]–[4],
[22] and matching algorithms [5]–[7], [23]. They are effective
and perform well under some simple synthetic or indoor
scenes. However, they may perform poorly when applied to
complicated outdoor scenes (for instance, the KITTI datasets
[21]) because the simple color or gradient-based features
they employ for calculating matching costs cannot address
the nuances in complex scenes. Various problems, such as
wrong matches in pixels or regions, flattening/breaking in
edges, and/or collapse of the whole structure, may arise when
involving radiometric changes, noises, overexposure and/or
textureless regions.

In general, features form the foundation of dense match-
ing approaches. In state-of-the-art dense matching schemes,
features are more important than the matching-cost function
used. As shown in Fig’s 1 and 2, good features can lead
to impressive results, whereas improper ones may lead to
structural collapses. To this end, we focus in this paper on
the development of methods for finding good features.

As discussed above, one simple and widely used feature is
the color-space (e.g., RGB) and/or gradient values. Its biggest
advantage is that it can be flexibly and efficiently used in
every dense matching scheme. For instance, it can be used
for scaling and subpixel interpolations to produce sub-pixel
accuracy in some continuous and pyramid dense matching
approaches [5], [19], [24]. However, it is easily influenced
by radiometric changes, noise, overexposure and textureless
regions (as shown in Fig. 1).

As a compensation, some illuminance invariant features
have been proposed, including Laplacian of Gaussian, pho-
tometric correlation by bilateral filter [25], and Adaptive

Normalized Cross Correlation (ANCC) [26]. However, they
are still not robust enough for challenging outdoor scenes.
Moreover, they may bring outliers and smoothness effects to
some object boundaries.

Some approaches have introduced radiometric and scale
invariant SIFT [11] or SURF [12] to their dense matching
algorithms [13]. These features have been successfully used
in object detection or scene recognition. However, for dense
matching, they are not reliable in every region because it
is necessary to employ a complex densifying procedure to
generate dense matching maps. This requirement limits their
effectiveness and accuracy improvements.

Zbontar, et al. are the first to introduce CNNs to compute
the matching-cost matrix [14]. Their method uses a trained
siamese CNN architecture to learn the patch similarity score.
It skips the feature-extraction step and directly uses the score
as the matching cost. Such a method has largely improved
the accuracy of some algorithms (like SGM [6]). However,
it sacrifices many good properties of the traditional feature-
based framework; for instance, it cannot be used in continuous
or pyramid matching algorithms [5], [18], [27]. Also, its time
complexity and memory requirement rely on the displacement
space and are issues in many large displacement dense match-
ing applications.

In short, existing dense-matching applications generally find
good features by trying them one after another and by adjust-
ing their parameters in order to achieve good performance
on some benchmarks. This is the reason why one effective
matching scheme may degenerate greatly when applied to a
new untested environment/dataset. This has happened to many
schemes (e.g. [5], [18], [19], [27]) that cannot produce good
results on the challenging KITTI dataset, although they have
done well on others. In this paper, we develop a new approach
that considers the properties of good features before choosing a
feature for dense matching. Without relying on trial-and-error,
our method identifies good features through optimization.

B. Multi-Objective Optimization and Pareto Optimality

A general multi-objective optimization is defined as follows:

min
φ∈C

F =

 f1(φ)
...

fk(φ)

 . (1)

Solving Eq. (1) amounts to finding a representative set of
Pareto optimal solutions. Pareto optimality or Pareto efficiency
is a state of allocation of resources from which it is impossible
to reallocate in order to make any one objective better off
without making at least another objective worse off. The
Pareto frontier is the set of all Pareto efficient solutions that
do not dominate each other. The following four classes of
methods are widely recognized approaches.

A) Classical methods based on scalarizing. Scalarizing Eq.
(1) entails reformulating it into a single-objective optimization
problem in such a way that optimal solutions to the single-
objective problem are Pareto optimal solutions to the original
multi-objective problem [28]. Using different scalarization
parameters, different Pareto optimal solutions can be produced.
There are two popular scalarization methods.



IEEE TRANSACTION ON IMAGE PROCESSING, VOL. PP, NO. , XX 2017 4

a) Linear scalarization (weighted-sum) methods [29]:

min
φ∈C

F =

k∑
i=0

ωifi(φ), (2)

which can be extended to more general non-linear forms.
b) ε-constraint methods [29] optimize one of the objectives

and reformulates the remaining as constraints:

min
φ∈C

fj(φ) (3)

s.t. fi(φ) ≤ εi, i = 1...k, i 6= j, φ ∈ C.

B) Methods based on lexicographic ordering assume that
the multiple objectives in Eq. (1) can be ranked in order of
importance, with f1 being the most important to the decision
maker and fj , the least important. The following sequence of
optimization problems are then solved one at a time:

min
φ∈C

fl(φ) (4)

s.t. fj ≤ y∗j , j = 1...k, j 6= l, φ ∈ C,

where y∗j is the optimal value of the above problem with l = j.
C) Methods based on evolutionary multi-objective optimiza-

tion (EMO) simulate the natural evolution by an iterative
computation process. An initial population is first created
according to a predefined scheme. Then a loop (generation)
consisting of evaluation, selection, recombination, and/or mu-
tation is executed a number of times until some termination
condition is met. The best individuals left in the population
are output as Pareto optimal solutions. Examples of popular
EMO algorithms include NSGA-II [30] and SPEA-2 [31].

D) Other methods. In some special cases, no-preference
methods [32] and interactive methods [33] can be used.

In this paper, we solve Eq. (1) using CNNs trained by
a back-propagation solver with mini-batch gradient descent.
As gradient values must be propagated backward in every
iteration, only the formulations based on weighted sum in Eq.
(2) and ε-constraint in Eq. (3) are applicable. Using a weighted
sum is easy because its gradient can be directly calculated.
However, for the ε-constraint method, it is impossible to
discard solutions out of the ε-constraint in the mini-batch-
based training scheme. The only possibility is to give a heavy
penalty when fi(φ) > εi and zero penalty otherwise in order
to make most of the training samples within the ε-constraint.
This is similar to the widely used hinge-loss method.

III. METRICS OF FEATURES SATISFYING PRINCIPLES

To develop superior features for dense matching, we first
present the metrics on features that satisfy the consistency and
distinctiveness principles discussed in Section I.

φ – feature extractor;
φ(p) – feature descriptor at pixel p;
l0 – ground truth displacement;
li – candidate displacement in label space S (li ∈ S);

(e.g. for stereo, li is the candidate disparity value).

For stereo matching, stereo images are well rectified, with
displacements in the x direction. In contrast, displacements
for optical flow occur in both the x and y directions. In
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qjγ

Fig. 4: An illustration of the definition in Eq. (9). Here, q = p+ l0
is the best matched location for p. The red pixel qj = p + lj is
the closest outlier to q. Hence, the width and height of Ωp is γ =
‖q − qj‖∞ = ‖l0 − lj‖∞.

evaluating features for dense matching, there must be a related
image pair (such as a stereo pair) and a correspondence map
that describes the displacement between the corresponding
pixels in the two images. Such a correspondence map provides
the ground-truth displacement l0 at each pixel.

In all stereo-matching and optical-flow datasets, ground
truths are usually available and obtained by radar (for natural
images). New features can be learned and validated on the
training data based on the ground truths and then generalized
to test data with the ground truths hidden.

For any pixel p in one view and qi in another (qi = p+ li
as shown in Fig. 4), let d(p, qi) be the distance between the
feature descriptors of p and qi. For convenience, we set:

d(p, qi) = d(φ(p), φ(qi)) = d(p, p+ li) = d(p, li). (5)

Although there are many popular functions for d(p, qi), such
as L − 1 distance ‖φ(p) − φ(qi)‖1 and L − 2 distance
‖φ(p)−φ(qi)‖2, we introduce in Eq. (15) of Section V our own
distance functions that can be specialized for dense matching
applications and tailored to different feature extractors.

We then define the metrics for the two principles below.
1) Consistency Principle. The principle requires a feature

point to own the same or similar feature descriptors when it
appears in different views. For d(p, q) defined in Eq. (5), the
principle can be stated in terms of the consistence measure.

f1(φ) = d(p, q) = d(p, l0) = 0 or ≈ 0. (6)

To increase the consistency of features between different
views, f1 must be as small as possible. In practice, large
d(p, q) in some regions will lead to poor accuracy in matching
algorithms. For example, regions with noises and illuminance
changes always have larger average d(p, q).

2) Distinctiveness Principle. For pixel p in an image, let
pi 6= p ∈ Ωp, where Ωp is the surrounding region (called
distinctive region) centered at p in the same image (to be
defined more formally later). The principle requires a feature
to be distinct enough with respect to other pixels in its
surrounding region. It can be stated formally as follows:

∀ pi ∈ Ωp, pi 6= p, d(p, pi) > m, (7)

where m is the threshold related to the vision system. For in-
stance, the threshold is known as the just-noticeable difference
(JND) in human vision systems [34], [35]. There are plenty of
studies that focus on JND thresholds, which decide whether
d(p, pi) is “good.” Note that the performance of a feature is
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TABLE I: Error rates under different precisions based on the results
of MC-CNN [14] from the KITTI 2012 stereo benchmarks. The
results illustrate that more errors appear around ground truths.

Error Threshold Error of All Regions Increased Error Rate
2 pixels 5.45 % 1.82%
3 pixels 3.63 % 0.78%
4 pixels 2.85 % 0.46%
5 pixels 2.39 % –

highly influenced by the size of its distinctive region |Ωp| (the
larger the better). For example, Eq. (7) will not be satisfied
for pixels in a smooth region and |Ωp| ≈ 0.

Since the consistency principle defines a relation between
different views, whereas the distinctiveness principle states
a condition between a pixel and its neighborhood in the
same view, we can deduce from the consistency principle
d(pi, qi) ≈ 0 ⇒ d(p, qi) ≈ d(p, pi) and d(p, q) ≈ 0, where
q = p + l0 is the best matched location for p. Based on
Eq. (6), we have d(p, qi) = d(p, li) and d(p, q) = d(p, l0).
The distinctiveness principle between different views can be
formulated as follows.

d(p, li)− d(p, l0) > m′ ∀qi = p+ li ∈ Ωq, li 6= l0, (8)

where m′ is the new JND threshold that varies in different
matching algorithms.

As shown in Fig. 4, we define the distinctive region Ωp =
Ωq with width/height of 2γ∗ and ground truth displacement l0
as:

Ωp = {p+ li | li ∈ S, ‖li − l0‖∞ < γ∗} with γ∗ = max γ

s.t. d(p, li)− d(p, l0) > m′,∀ ‖li − l0‖∞ < γ, li 6= l0 ∈ S.

We now define f2 as a metric (normalized to the [0,1] range)
for the distinctiveness principle.

f2(φ) = |Ωp|/|S|, (9)

where |S| is the number of candidates in the search space S.
The value is better if it is larger. For example, when it is 1,
the feature at p is distinctive in the entire displacement space.

Before understanding the definition of f2, two important
properties of any dense matching algorithms must be empha-
sized. Firstly, outliers (for pixel p, lj is an outlier displacement
for p if d(p, lj) − d(p, l0) ≤ m′) are more likely to appear
around a ground truth because pixels close to each other in
an image usually share similar texture, illuminance and color
conditions that make them hard to differentiate. Secondly, an
outlier close to a ground truth has significant influence on the
accuracy of matching, not because of its high similarity to
the ground truth but also their spatial proximity. These facts
make it hard to find correct matches among outliers close to
a ground truth.

Table I illustrates the above observations on some dense
matching results. It shows that 1.82% pixels are matched at
the wrong locations 2-3 pixels away from the ground truths;
0.78% are wrongly matched 3-4 pixels away; but only 0.46%
are wrongly matched 4-5 pixels away.

The definition of f2 is designed based on the properties
above. The value of f2 is decided by the outlier closest to the

(a) (b)
Fig. 5: An illustration of the distinctiveness principle with two
matching-cost maps. Each grid corresponds to one candidate that
matches qi for p, with its color representing the value of d(p, qi) (the
brighter the larger). Our target is to find the center grid corresponding
to ground truth q0, where any grid darker than the center is an outlier.
(a) f2 = 0, with 24 outliers close to the ground truth. (b) f2 ≈ 0.5,
with more than 100 outliers that are all far from the ground truth.

(a) Effect of consistency (b) Effect of distinctiveness

Fig. 6: Effects of each principle on accuracy of the matching results.
(a) The effect of the consistency principle (f1) on accuracy of the
stereo matching results. Only regions where the distinctiveness prin-
ciple is well satisfied is counted (f2 ≥ 0.95). (b) The influence of the
distinctiveness principle (f2) on result accuracy. Only regions where
the consistency principle is well satisfied is counted (f1 ≤ 0.02).
We use the evaluation method suggested in [8], [17] to collect the
accuracy data. Different lines represent different matching algorithms,
including a local method Costfilter [1], a global method graph cuts
and a continuous matching algorithm Patchmatch [18].

ground truth and defines the size of the distinctive region in
which there is no outlier.

As illustrated in Fig. 5(a) with f2 = 0, although there
are only 24 outliers, it is hard for any matching algorithm
to find the center best matches. However, in Fig. 5(b) with
f2 ≈ 0.5, there are more than 100 outliers, but it is much
easier to find the center best matches. When the candidate
displacement drops into the distinctive region, the matching
algorithm will be guided to converge to the center pixel during
cost aggregation.

Both principles are indispensable for characterizing good
features. As an illustration, we collect statistics on the effect
of one when that of the other is controlled. For example,
we measure the effect on d(p, q) by keeping the left view
fixed and by adding noise and radiometric changes to the
other. We then collect the data from those regions where
distinctiveness is well satisfied. Fig. 6(a) shows how changing
f1(φ) can influence the performance of a feature (in terms of
result accuracy) when f2(φ) is fixed. The accuracy statistics
is collected using the evaluation method suggested in [8],
[17]. Likewise, we choose those regions where the consistency
principle is satisfied and then collect the accuracy of these
regions to see its relationship to f2. Fig. 6(b) shows the
trend on result accuracy due to changing f2(φ) when f1(φ) is
limited to a small value.
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IV. OPTIMIZATION MODEL FOR FINDING GOOD FEATURES

Based on f1 in Eq. (6) and f2 in Eq. (9), we can formulate
the feature extraction problem as a multi-objective optimiza-
tion over C, a set of possible calculations/transformations
(such as Laplacian of Gaussian (LoG) and Sobel operator)
over pixels:

min
φ∈C

F =

[
f1(φ)
−f2(φ)

]
. (10)

Eq. (10) defines the objective on good features for dense
matching. Its solution {φ1, ...φn} (feature extractors) is a set
of Pareto optima that are decision vectors whose objective
cannot be improved in any dimension without degrading the
other. Specifically, solution φ1 dominates φ2 (φ1 � φ2) when

f1(φ1) < f1(φ2) & f2(φ1) ≥ f2(φ2)

or f1(φ1) ≤ f1(φ2) & f2(φ1) > f2(φ2). (11)

Solutions that are not dominated by others are called non-
dominated, and the set of all such solutions form a Pareto-
optimal set or frontier. Our target is to systematically find one
or more Pareto-optimal solutions for Eq. (10).

In Eq. (10), f1 can be easily computed when given the
feature descriptors φ. However, f2 is expensive to evaluate
because, as defined in Eq. (9), we need to traverse all candidate
displacement values in the whole displacement space S in
order to calculate f2 for each pixel. Moreover, f2 is non-
differentiable with respect to φ.

To reduce the complexity of calculating f2, we develop f ′2
to replace f2 by using the following trend information on f2.
According to Eq. (9), we have the following observations.

1) A higher f2(φ) comes with a lower outlier rate. As shown
in Fig. 4, Ωp and f2 for p are decided by the closest outlier lj
to ground truth displacement l0. Given any outlier distribution,
f2 is, therefore, directly proportional to the outlier rate.

2) A high f2(φ) also means that all the outliers are far from
ground truth l0; that is, the value of γ∗ in Eq. (9) should be
as large as possible.

Hence, to increase f2, we can decrease the outlier rate as
well as control the distribution of outliers in order to make
them all far from the ground truth. Fortunately, these targets
can be easily achieved using f ′2(φ) defined for each pixel p:

f ′2(φ) =
1

|U |

∑
lj∈U wjh(lj)∑
lj∈U wj

(12)

where h(lj) = δ · h1(lj) + (1− δ) · h2(lj)

h1(lj) = −τ · log(d(p, lj)− d(p, l0) + τ)

h2(lj) = −τ (d(p, lj)− d(p, l0) + τ)

ε
−τ · log(ε) + τ

δ =

{
1 if d(p, lj)− d(p, l0) + τ > ε

0 otherwise

wj = exp

(
−‖lj − l0‖∞

r

)
.

Here, U ⊆ S is a small subset from the whole displacement
space S chosen to reduce the high computational cost of f2.
|U | represents the number of samples in U ; wj is a popular

d(p, lj)− d(p, l0)

h(lj)

(a) Trend of h(lj)
f ′2

f2

(b) Trend of f ′2 with respect to f2

Fig. 7: An illustration of the monotonic behavior of f ′2 with respect
to f2. (a) Monotonic trend of h(lj) with respect to d(p, lj)−d(p, l0).
(b) Corresponding monotonic relation between f2 and f ′2. Data for
f2 and f ′2 is collected by sampling from the KITTI datasets. To
calculate f2, we use m′ = 0. Note that different m′ does not change
the monotonic behavior.
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Fig. 8: An illustration of the orthogonal relationship among the
principles on consistency and distinctiveness, network architectures,
as well as training/optimization procedures in our learning system.

spatial Gaussian weight for controlling the distribution of
outliers (to give different penalties to make them far from l0); τ
is used to adjust the penalty to sample lj ; and h is a piecewise
function of h1 and h2 chosen as follows. h1 is a slightly altered
log function of the hinge/margin ∆d = d(p, lj) − d(p, l0):
it gives large penalties if ∆d is small or negative, and
small penalties otherwise. h2 is a supplementary function
for h1: it has the same value and derivative/gradient at the
intersection point with h1, and helps set an upper bound to
the derivative/gradient of h1 to avoid it becoming infinity.
ε is a very small value chosen to avoid h2 being infinity
or an imaginary number. As d(p, l) = d(φ(p), φ(p + l)) is
differentiable with respect to φ, h and f ′2 are continuous and
differentiable, although they are both piecewise functions. In
short, the components of f ′2 are chosen to give large penalties
to closer outliers, while having small penalties to non-outliers.

Fig. 7(a) shows that h(lj) is effective for reducing the outlier
rate. When lj is an outlier, it means that d(p, lj)− d(p, l0) is
small or even negative, and h(lj) gives it a higher penalty. On
the other hand, as different matching algorithms have different
JND (m′), it is hard to set a fixed value for m′. Instead of
setting a fixed value like hinge loss, the definition of h(lj) can
increase generalizability of the features learned and remove the
influence of m′ in our method.

Fig. 7(b) shows that f2 is monotonically decreasing with
increasing f ′2. We calculate f ′2 by sampling p and lj from
the KITTI datasets with the condition of f1<0.02. f2 is then
calculated by brute-force sampling. Both the sampled values
of f2 and f ′2 are then averaged over a set of pixels. In
this and the following experiments, we used r=10, τ=0.1,
ε=0.1τ . These parameters are used to adjust the penalty and
gradient of the function, as they help limit the maximum of
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the derivative/gradient’s absolute value ‖ ∂(f ′
2)

∂(∆d)‖=
τ
ε=10 and

set the baseline ‖ ∂(f ′
2)

∂(∆d)‖=1 if ∆d=0. These choices are not
unique, and other reasonable values can also be used.

Finally the original objective in Eq. (10) is transformed to
include f1 and f ′2 that are differentiable with respect to φ:

min
φ∈C

F ′ =

[
f1(φ)
f ′2(φ)

]
. (13)

V. IMPLEMENTING FEATURE EXTRACTORS USING CNNS

Recently, CNNs trained by back-propagation [36] have
been found to perform well on large-scale computer-vision
tasks, with superior performance on feature extraction for
classification and recognition [37], [38]. In this section, we
develop a method based on CNNs to solve Eq. (13).

In the search space defined by a given CNN architecture, the
multi-objective formulation in Eq. (13) identifies the possible
tradeoffs between the two principles in this search space. The
network optimization/training procedure is used to find a path
in this space towards those solutions that are on or close to
the Pareto frontier with the best tradeoffs. That is, different
CNN architectures will lead to different Pareto frontiers as
well as tradeoffs. Fig. 8 illustrates the orthogonal relationship
among the principles, the CNN architecture, and the learning
algorithm. The architectural setting defines the corresponding
search space and limits where solutions can be found.

Among the principles, the architectures and the learning
algorithms, we find the architectures to be the most flexible
because they are always designed empirically. More advanced
architectures usually lead to an expanded solution space
and better solutions. However, when limited by time and
computational resources, it is impossible to try all possible
architectures one by one in order to find the best solution.

It is important to point out that our focus in this paper
is on the tradeoffs between the proposed principles. With
this in mind, we employ simple 5-layer network architectures
as base settings in order to verify the effectiveness of the
principles, and further evaluate in Sec. VII two promising
architectures besides the original settings. Since the network
architectures are orthogonal to the tradeoffs studied, the two
principles proposed in this paper are always applicable in any
architecture, as they define good features for dense matching
and provide guidance for any learning system.

A. CNN Architectures Studied

Fig. 9 shows our proposed CNN architectures for stereo
and optical flows, and Table II lists the configurations of two
versions, one designed for speed and the other for accuracy.

For the version designed for speed, we employ a one-branch
fully-connected CNN structure in which both views share the
same model for feature extraction. The input data can be
any k × k (k > 10) sub-images. We find that this approach
increases the consistency of the features obtained and helps
training converge faster. With only one branch, we do not need
to exchange the left and right views as well as to compute the
feature maps twice to obtain the matching results for both
views. To accelerate convergence without affecting accuracy,

TABLE II: Configurations of the CNN architectures studied for
stereo and optical flows. Two versions, one designed for speed and
the other for accuracy, are used. In these architectures, padding is not
employed, and batch normalization [39] is embedded before each
ReLU and Max-Pooling layer. The output of each layer is set as
n−channel.

Arc
Stereo Optical Flow

One-branch
Fast

Two-branches
Accurate

One-branch
Fast

Two-branches
Accurate

Input k × k × 1 11× 11× 1 k × k × 1 31× 31× 1
normalize normalize

Layers

[
conv, 3× 3

ReLU

]
×4

[
conv, 3× 3

ReLU

]
×4

[
conv, 5× 5

ReLU

]
×4

[
conv, 3× 3
pooling, 2, 2

]
×3

[
conv, 3× 3

]
×1

[
conv, 3× 3

]
×1

[
conv, 5× 5

]
×1

[
conv, 3× 3

]
×1

Out Sigmoid Sigmoid

we use the sigmoid function after the last layer to restrict the
range of values to (0,1).

For the version designed for accuracy, we employ a symmet-
ric two-branch architecture, one for the left view and another
for the right. Its inputs are fixed-size patch pairs at each pixel.
Before they are input to the network, we reduce the influence
of radiometric changes between the views by normalizing both
patches (through subtracting the mean and dividing by the
standard deviation). To extract features for the whole images
after training, we use mirror-padding in each convolutional
layer for pixels in image borders.

B. Loss Functions

To solve Eq. (13), we employ the following loss function `
to train the feature extractor. For the input left view I and the
corresponding right view I ′,

` =
1

|I|
∑
p∈I

(
(1− λ)f ′2 + λf3

1

)
, (14)

where |I| is the number of valid training samples, and f1 and
f ′2 are defined in Eq’s (6) and (12), respectively. We use λf3

1 to
control the consistency principle in order to achieve different
non-dominated solutions. Different solutions can be found by
adjusting λ and/or by changing the form of f3

1 .
Our loss function follows the weighted-sum method while

using a cubic form of f1. This realizes the target by using
a small penalty when f1(φ) is relatively small and a heavy
penalty when f1(φ) is relatively large. By giving different
values to λ, we can obtain a set of non-dominated solutions.

Before deciding on the form of the loss function, we tried
d = 1, 2, 3, 4, respectively, in fd1 . In each case, we collected
several solutions by adjusting λ. Finally, we found that the
current cubic form works the best.

In solving Eq. (13), it is impossible to get all the non-
dominated solutions on the continuous Pareto frontier, which
does not have a closed form. Due to the high cost in train-
ing CNNs, we find four non-dominated solutions for each
architecture. More solutions can be obtained by changing λ
and by training the CNN again. These solutions are non-
dominated with respect to each other; that is, no one solution
is better than another, and each may perform differently under
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Fig. 9: CNN architectures used as feature extractors. Left panel: fast architecture, with left and right views using the same network as feature
extractors. Inputs can be images of any size. Right panel: two-branch accurate architecture, with both left and right views having its own
network branch as feature extractor. Inputs must be 11×11 or 31×31 patches; M×N images must be sliced to MN patches before input.

different matching algorithms. For example, in some local
matching algorithms with the Winner-Take-All strategy (such
as CostFilter [1]), the feature when setting λ = 0 gets the
best accuracy. In other global matching algorithms (such as
PMBP [5]), spatial propagation (such as PatchMatch [18]) and
pyramid matching (pyramid-MDP [24]), features by setting λ
in [0.4, 0.6] perform a little better.

Based on the fast and accurate CNN architectures, we
can define the distance-measurement function (cost function)
of two feature descriptors d(p, li) = d(φ(p), φ(p + li)) =
d(φ(p), φ(qi)) as follows:

d(p, li) =


1
2

∥∥∥ φ(p)
‖φ(p)‖2

− φ(p+li)
‖φ(p+li)‖2

∥∥∥2

2
fast

sigmoid
(
α

[
φ(p)

φ(p+ li)

]
+ β

)
accurate.

(15)

For the fast (resp., accurate) architecture, we use the first
(resp., second) form as the cost function. Here, α and β are
both learned parameters that can be implemented using one
fully connected layer. The time complexities of both functions
in Eq. (15) are O(n), where n is the number of channels in
the feature descriptor. More complex forms are not employed,
as they highly influence a matching algorithm’s complexity.

These two functions both restrict the range of distance
values to [0,1]. There are two main reasons for using this
range. Firstly, restricting the distribution of distance values
will help adapt them easier in different matching algorithms,
as it is easy to adjust parameter settings in different matching
algorithms (such as setting the balance between matching-cost
and smoothness terms). Secondly and more importantly, this
helps reduce the influence of some extreme outliers. Without
restricting the matching cost, d(p, l0) of the best matches in
some difficult cases can be very large and will significantly
influence the neighborhoods in cost aggregation of matching
algorithms, leading a whole region to wrong matches.

a) Preprocessing of training data: Training data are
constructed from the KITTI stereo and optical-flow datasets
[10]. For the fast architecture, each whole image is normalized
by subtracting its mean and dividing by its standard deviation.
As mentioned before, the fast architecture can use any size
of sub-images as inputs. To ensure the same size of training-
image pairs, all training images are sliced into overlapping
71 × 71 sub-image pairs. The center of each pair is required
to be highly matched (e.g. the KITTI 2012 dataset contains
194 image pairs that can be sliced to about 200,000 sub-
image pairs). In contract, for the accurate architecture, training
data are sliced into 11 × 11 (stereo) or 31 × 31 (flow) patch

TABLE III: Approaches and parameter ranges for training-data
augmentation on the KITTI datasets

Types Parameters Ranges
stereo optical flow

Radiometric

contrast [0.8, 1.2] [0.8, 1.2]
constrast dif [−0.15, 0.15] [−0.25, 0.25]
brightness [−0.3, 0.3] [−0.3, 0.3]

brightness dif [−0.2, 0.2] [−0.4, 0.4]

Scale&Rotation

scale [0.9, 1.1] [0.75, 1.25]
scale dif [−0.1, 0.1] [−0.25, 0.25]
angle [−10◦, 10◦] [−20◦, 20◦]

angle dif [−10◦, 10◦] [−20◦, 20◦]

Noise mean [−0.05, 0.05] [−0.05, 0.05]
stdev [0, 0.2] [0, 0.2]

pairs as in [14]. During the training process, all invalid regions
and pixels, such as occlusions and pixels without ground-truth
displacements, are neglected.

As proposed in Eq. (12), we use a small sample displace-
ment set U ⊆ S to improve training efficiency. In this paper,
U = U1∪U2 contains two parts: U1 is a sample set of integer-
precision displacements and U2 a set of floating/sub-pixel
displacements. d(p, lj) and d(p, l0) can be easily achieved if
lj ∈ U1. If l′j ∈ U2, we use the bilinear interpolation to obtain
d(p, l′j) and d(p, l′0). (l′0 is also floating-precision if l′j ∈ U2.)

C. Details of Implementing our Learning Algorithms

b) Data-set augmentation: Augmenting the training data
set is commonly used to reduce generalization errors. To make
the learned feature robust to imperfections such as noise,
illuminance changes and view rotations, for sub-images I l

and Ir of the, respectively, left and right views, we control
their radiometric variance by I ln = I l × constrast + brightness
and Irn = Ir × (constrast + constrast dif) + (brightness +
brightness dif). Further, to make the feature extractor robust to
noise, Gaussian noises (controlled by their mean and standard
deviation) are randomly added to each sub-image pairs during
training. Likewise, each pixel in the training data is scaled and
rotated by the scale and rotation parameters. Table III shows
the ranges in which the random values are taken for these
radiometric, noise, scaling and rotation parameters.

c) Learning platform and parameters: We modified the
CNN platform Caffe [41] to implement our own learning
procedures. For training-data sampling, we set U = {li|li ∈
S, |li − l0|∞ > 3} and the sampling numbers |U1| = 2 and
|U2| = 1. Mini-batch gradient descent with the momentum
term set to 0.9 is used to minimize the loss. The batch size is
set at 256 (resp., 64) for the accurate (resp., fast) architecture.
The models are trained for a total of 800K iterations with
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TABLE IV: Performance evaluation (in error rate %) and comparisons of different features in various matching algorithms

Methods & Applications Color Gradient Color+Gradient Census SIFT∗ SURF∗ MC-CNN [14] Our Feature
fast accurate fast accurate

CostFilter [1] stereo 30.19% 23.1% 21.51% 11.54% 9.13% 9.91% 6.49% 6.04% 6.01% 5.67%
flow 39.94% 28.31% 27.5% 19.1% 17.51% 18.19% × × 10.47% 9.34%

particle BP [7] stereo 21.9% 14.1% 13.92% 10.21% 8.87% 9.19% 6.17% 5.49% 5.51% 5.04%

PatchMatch [18] stereo 19.92% 14.81% 14.25% × × × × × 4.74% 4.37%
flow 23.9% 15.51% 13.35% × × × × × 5.74% 5.17%

PMBP [5] stereo 17.99% 14.1% 12.95% × × × × × 4.64% 3.83%
flow 21.79% 14.61% 10.5% × × × × × 5.46% 4.81%

SGM [6] stereo 11.75% 6.91% 7.01% 5.17% 4.92% 5.01% 3.41% 3.09% 3.24% 3.01%
pyramid-MDP [24] flow 15.9% 13.41% 11.15% × × × × × 5.84% 5.17%

∗ Keypoint-detection step is discarded for SIFT [11] and SURF [12] features (refer to the dense SIFT implementation in [40]). Descriptors are generated at
each pixel in order to run above dense matching algorithms.

the learning rate initially set to 0.01, and then decreased by a
factor of 10 at the 300Kth and the 600Kth iterations.

VI. EXPERIMENTAL RESULTS1

A. Parameter settings

There are two key parameters in our learning system. The
first is n, the number of channels in the CNN architecture.
It denotes the length of the feature descriptor that highly
influences the accuracy and efficiency of the features found.
We set n to different integers (64, 128, 256) and train the
CNN to get the feature descriptors. Section VI-E analyzes the
effect of n on complexity. The second key parameter is λ
in Eq. (14) that balances the weights between consistency
and distinctiveness. Different λ will lead to different non-
dominated solutions. In our experiments, we set λ is to
{0.8, 0.6, 0.4, 0} to get four sets of non-dominated features.

All the other parameters, including learning rate, training
iterations, batch-size and data augmentation parameters, are set
empirically. Reasonable settings are decided using trial-and-
error, background experience, and suggestions from related
works. Until now, there is no easy way to automatically set
the best values for these parameters in learning CNNs.

B. Evaluations of Features Found by Our Approach

The learned features (in 256 channels) are evaluated in
various existing dense matching (stereo matching or two-
frame optical-flow) algorithms. The features found by our
method are flexible and can be used for subpixel-location
interpolation and size/shape scaling for each channel, allow-
ing them to be used in almost all existing dense matching
algorithms. One or two algorithms are selected for each of
the 5 existing classical frameworks and their performance is
compared using different features. The matching algorithms
studied include cost-filtering methods [1], global-matching al-
gorithms [7], semi-global matching algorithms [6], continuous
(subpixel accuracy/slanted surface) matching algorithms [5],
[18], and pyramid-matching algorithms [24]. The features (or
the matching-cost method) for comparisons include Census
(used in [6]), color, gradient, color+gradient [18], Dense SIFT
[11]/SURF [12] and MC-CNN matching cost [14].

In our evaluations, test data are chosen from the KITTI
2012 (stereo and flow) dataset: 194 training-image pairs are

1We provide the demo code at https://github.com/feihuzhang/CNNF.

randomly divided into 4 sets (each with 48 or 49 two-view
pairs), with 3 sets chosen for training and the rest for testing.

Table IV presents the performance results, which are eval-
uated by the 3-pixel-threshold error rate of the non-occluded
regions and calculated by:

er =
1

|I|
∑
p∈I

δp (16)

δp =

{
1 if ‖l(p)− l0(p)‖2 > 3

0 otherwise,

where |I| is the number of valid pixels in an image; l(p)
is the matching result at pixel p; and l0(p) is the ground-
truth displacement at p. The results show that our features
found can significantly improve the performance of existing
dense matching algorithms, especially with respect to popular
features like color, gradient or census.

When compared to the current best MC-CNN matching-cost
computation [14], our features perform better in all matching
algorithms tested. Fig. 10 illustrates the improvements using
examples from the KITTI datasets. It shows that matching
algorithms using our features perform better in some large
smooth regions such as cars. Further, our features are more
robust to illuminance variations and noises. More importantly,
they are general and can be used in all 9 stereo and optical-flow
matching algorithms. In contrast, MC-CNN [14] can only be
used in the three integer-precision stereo-matching algorithms
due to its time complexity, as it needs to use all possible patch
pairs to calculate the matching-cost matrix. This requirement
is impractical for optical flow and continuous or pyramid
matching algorithms.

C. Evaluations of Our Features Using KITTI Benchmarks

We evaluate our features using the stereo and optical-
flow benchmarks by embedding it in one of the existing
matching frameworks. For stereo evaluations, the whole stereo
framework in [14] with the matching-cost matrix calculated by
our accurate 256-channel features are employed. The depth
edges are further refined by a weighted median filter (with
radius=11, ε = 0.05).

Table V shows the evaluation results on the stereo bench-
marks. When evaluated on non-occlusion areas, our feature
with the SGM stereo matching algorithm (CNNF+SGM) ranks

https://github.com/feihuzhang/CNNF
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(a) stereo pairs (b) MC-CNN-acrt [14] (6.16%) (c) with our feature (5.28%)

(d) stereo pairs with noise and illuminance variations (e) MC-CNN-acrt [14] (18.80%) (f) with our feature (14.96%)

(g) optical flow pairs (h) PMBP [5] (7.99%) (i) with our feature (4.88%)

Fig. 10: Improvements using features found by our method. (b)∼(c), (e)∼(f) and (h)∼(i) are visualized disparity/optical-flow results (upper:
color coded by KITTI stereo/flow benchmarks) and visualized error map (lower) corresponding to stereo/flow pairs (a) (d) (g), respectively.
3-pixel threshold error rates are reported in the captions. Gaussian noises (only right view) and irregular illuminance variations (both views)
are added to the stereo pair of (d) to evaluate the robustness of the features to noise and illuminance variations.

TABLE V: Stereo matching evaluations (non-occlusion areas) on two KITTI stereo benchmarks with ranking data, error rates and run times
reported. The stereo matching algorithm [14] with our learned feature achieves the current best accuracy.

KITTI 2012 Benchmark KITTI 2015 Benchmark
Method Rank Error Rate Run Time (Device) Method Rank Error Rate Run Time (Device)

Our CNNF+SGM 1 2.28% 71s (GPU TESLA K40) Our CNNF+SGM 1 3.04% 71s (GPU TESLA K40)
PCPB [42] 2 2.36% 68s (GPU Titan X) Displets v2 [43] 2 3.09% 265s (CPU >8 cores)

Displets v2 [43] 3 2.37% 265s (CPU >8 cores) PCPB [42] 3 3.17% 68s (GPU Titan X)
MC-CNN-acrt [14] 5 2.43% 67s (GPU Titan X) MC-CNN-acrt [14] 4 3.33% 67s (GPU Titan X)

cfusion [44] 6 2.46% 70s (GPU Titan X) Content-CNN [45] 6 4.00% 1s (GPU Titan X)

top in the KITTI 2012 and 2015 stereo benchmarks.2

For optical-flow evaluations, we only test our features
on classical two-frame optical-flow applications. Since our
method does not use extra information like multi-view frames,
stereo/depth and/or semantic segmentation results, for fair
comparison, methods like motion stereo flows and multi-
view flows are not compared. PMBP [5] with slanted surface
assumption (just like the PMBP-stereo) are implemented to
collect the initial results for both the left and right views.

2With respect to the public KITTI benchmarks at http://www.cvlibs.net/
datasets/kitti/index.php, our visualized results and ranking data are available
at (by clicking to access each) (a) 2012 stereo benchmarks; (b) 2015 stereo
benchmarks; (c) 2012 flow bechmark; and (d) 2015 flow benchmarks.

Consistency checking as that in [14] is used to find occlu-
sions and invalid regions which are recovered by an iterative
weighted median filter (with radius=20, ε=0.075). (We applied
the weighted median filter several times until all the invalid re-
gions are filled with displacement values.) Finally, we employ
a 5 × 5 median filter and a bilateral filter (with radius=11,
ε=0.1). The above three post-refinement steps are repeated
twice to collect the final results for benchmark evaluations.

The original PMBP [5] was run on a CPU with one thread.
Its computational complexity is KNR2, where K is a constan-
t, N is the number of pixels in an image, and R is the patch
width. It is slow and cannot be parallelized due to the spatial-
propagation step. We use PMBP instead of other improved

http://www.cvlibs.net/datasets/kitti/index.php
http://www.cvlibs.net/datasets/kitti/index.php
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow_detail.php?benchmark=stereo&error=3&eval=all&result=1a7944d8789a957188acc469c09f417f035ea6eb
http://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?benchmark=stereo&result=eb8aba2e21960d803fd6a0c6f22a646d4b6684e7
http://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?benchmark=stereo&result=eb8aba2e21960d803fd6a0c6f22a646d4b6684e7
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow_detail.php?benchmark=flow&error=3&eval=all&result=4850dd8680a4b0e52a334fec5baa5fb3bd48d285
http://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?benchmark=flow&result=2cfc7903c155d3795bd9b86067edf5907ac27bd1
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TABLE VI: Optical-flow evaluations on two KITTI flow benchmarks with ranking data, error rates and run times reported. The optical-flow
algorithm [5] with our learned feature achieves the current best accuracy among state-of-the-art two-frame optical-flow algorithms.

KITTI 2012 Benchmark KITTI 2015 Benchmark
Method Rank Error Rate Running Time (Device) Method Rank Error Rate Run Time (Device)

Our CNNF+PMBP 11 4.70% 30min (CPU 1 core) Our CNNF+PMBP 4 12.26% 45min (CPU 1 core)
PatchBatch-s 12 4.81% 60s (GPU) SOF [46] 7 16.81% 6min(CPU)

CNN-HPM [47] 13 4.89% 23s (GPU) JFS [48] 8 17.07% 13min (CPU)
PatchBatch [15] 15 5.29% 50s (GPU) PatchBatch-s 10 17.69% 60s (GPU)
PH-Flow [49] 21 5.76% 800s (CPU) PatchBatch [15] 14 21.69% 50s (GPU)

TABLE VII: Comparison of consistency and distinctiveness with
respect to different features on the KITTI 2012 dataset

Feature Types Stereo Matching Optical Flow
f1 f2 f1 f2

Color 0.14 0.17 0.23 0.09
Gradient 0.10 0.29 0.16 0.14

Grad+Color 0.11 0.31 0.19 0.17
Census 0.08 0.49 0.15 0.28

dense sift 0.06 0.57 0.11 0.39
dense surf 0.07 0.52 0.13 0.32

MC-CNN fast [14] 0.20 0.77 × ×
MC-CNN acc [14] 0.13 0.80 × ×
Our Four Sets of
Non-dominated
Fast Features

Found

0.05 0.76 0.06 0.51
0.09 0.79 0.11 0.55
0.15 0.81 0.17 0.58
0.24 0.83 0.25 0.60

Our Four Sets of
Non-dominated

Accurate Features
Found

0.07 0.80 0.05 0.57
0.11 0.83 0.1 0.62
0.16 0.86 0.16 0.65
0.24 0.88 0.25 0.68

algorithms based on PMBP because it is the first and the
most classical version among these algorithms. There are some
faster versions, such as GC-LSL [50] and SPMBP [19] that
achieved speed through limiting the candidate displacement
space or discarding the spatial-propagation step. Our features
can be easily introduced in all these algorithms to improve
their accuracy. When our features are embedded, using half
of the patch width slightly affects accuracy, but the whole
algorithm can be sped up by 2 ∼ 3 times.

Table VI shows the ranks and the error-rate information.
Our method ranks 11th on the KITTI 2012 benchmarks and
4th on the 2015 optical-flow benchmarks. More importantly,
the results show that our method is the current best two-frame
optical-flow method without using extra multi-view, motion
stereo or semantic segmentation reinforcement.

D. Analysis and Comparisons of Results

In this subsection, we compare different features and explain
why our features learned can outperform other state-of-the-
art approaches. Features are compared with respect to how
they satisfy the consistency and the distinctiveness principles
by calculating f1 (Eq. (6)) and f2 (Eq. (9)). For f1, we first
normalize their values by subtracting min(f1) and dividing by
max(f1)−min(f1), before comparing the average normalized
values. Then, f2 is calculated by assuming integer displace-
ments. JND m′ in f2 is set to zero, as different values of m′

do not change the relative partial order of solutions as well
as the monotonic behavior of f2 (as illustrated in Fig. 7). For
example, our feature always dominates the others regardless
of whether m′ = 0 or m′ = 0.1.

f1

f 2

Fig. 11: Comparisons of various approaches based on the consistency
and the distinctiveness principles (for optical flow). The x-axis
represents f1, the smaller the better. The y-axis shows f2, the larger
the better. Table.VII further shows the coordinate data. The figure
shows two sets of four non-dominated solutions of our method, one
set for the fast architecture and the other for the accurate architecture.

Table VII shows the values of f1 and f2 when setting
λ to 0.8, 0.6, 0.4 and 0, respectively, to get four non-
dominated solutions on the KITTI 2012 dataset. Fig’s 3 and
11 further depict all the (f1, f2) tuples. The results show that
the features found by our method are the closest to the Pareto
frontier that achieve the best tradeoffs between consistency
and distinctiveness. For stereo matching, we get the following
dominance order: our feature (fast or accurate) � MC-CNN
(fast or accurate) � dense sift � dense surf � Census �
gradient (or color+gradient) � color. Such a dominance order
is also visible in Fig. 3. For optical flows, we get similar
conclusions as shown in Fig. 11.

E. Analysis of Time Complexities

In this subsection, we analyze the time complexities of our
feature-extraction procedure and those of using it in existing
matching algorithms. Each convolutional manipulation of one
pixel in a channel is set as one basic unit of computation
time (while ignoring activations, like ReLU, max-pooling
and Sigmoid computations due to their negligible times). For
example, for an n-channel fast-feature extractor, we have five
convolutional layers for an N -pixel image. According to the
CNN architectures in Table II, the time complexity for the
fast-feature extractor is O(n2N), as it needs (4n2 + n)N
units of convolutional computations. Table VIII lists the time
complexities and elapsed times for all the feature extractors.

The time complexities of using our features in matching
algorithms directly depend on the complexities of the cost
functions in Eq. (15). Since both are linear with n channels
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TABLE VIII: Efficiency and time complexity of our feature extrac-
tors without the matching algorithm. The running times are elapsed
times for just one view (resolution: 1242 × 375). The numbers in
brackets are the CPU run times.

Feature
Extractor

Time
Complexity

Running Time
n = 16 n = 64 n = 128

fast-stereo O(4n2N) 0.05s (4s) 0.15s (10s) 0.3s (19s)
fast-flow O(4n2N) 0.1s (7s) 0.4s (21s) 0.7s (37s)

acc-stereo O(84n2N) 3s 12s 21s
acc-flow O(195n2N) 7s 23s 35s

TABLE IX: Elapsed time (1-core CPU) when embedded in different
matching algorithms.

Matching
Alogirthm

Original
Running Time

Running Time With Our Feature
n = 16 n = 64 n = 128

CostFilter [1] 8s 13s 27s 41s
PMBP flow [5] 800s 500s 1300s 2100s
Particle BP [7] 5s 7s 15s 27s

SGM [6] 3s 5s 11s 20s

TABLE X: Marginal effects of training data size on error rate, using
Costfilter [1] in stereo matching with a 64-channel fast architecture
as the feature extractor.

Number of Images (Samples) f1 f2 Error Rate
100 (∼10M) 0.095 0.76 6.43%
146 (∼15M) 0.094 0.80 6.31%
200 (∼20M) 0.094 0.82 6.25%
300 (∼30M) 0.093 0.83 6.20%
346 (∼35M) 0.093 0.83 6.18%

of the feature descriptor, the time complexity when using our
feature is O(nM) if the complexity of the matching algorithm
is O(M). Table IX compares the run times for the matching
algorithms before and after using our features.

F. Effects Due To Increased Training Samples

Appropriately increasing training samples will improve ac-
curacy. Besides data augmentations, more training data can be
introduced from other datasets. For example, we can combine
the KITTI 2012 and KITTI 2015 datasets and get 394 image
pairs. Table X illustrates that the number of training samples
has a marginal reduction on error rates.

VII. IMPROVEMENTS WITH ADVANCED ARCHITECTURES

In general, more complex/advanced CNN architectures will
improve the accuracy of results. However, better accuracy
always comes at higher computational and memory costs. To
use the recently proposed residual and inception strategies,
extra layers must be added to the original 5-layer network.
For the residual strategy, we employ more advanced 4D
transformed setting [51] instead of the original one-branch
setting [52]. For the inception strategy, a four-branch inception
block with residual connections similar to [53] is tested.

Fig. 12 shows these architectural blocks. Limited by avail-
able computational resources, only fast 64-channel architec-
tures are tested to illustrate the performance differences. Table
XI and Fig. 13 lead to the following observations.

a) Residual and inception strategies are all effective for
getting results with better accuracy. But the memory and time

Fig. 13: Convergence of training in different network settings as
illustrated by stereo matching. 4D-residual and residual inception
blocks are implemented in the original 64-channel fast architectures
to replace the original five convolutional layers.

required to train them increase significantly (2∼4 times when
compared to the simple 5-layer net).

b) When compared to a 256-channel simple architecture,
a 64-channel 4D-residual net consumes more memory and
similar training time, although it does not lead to much
improved results. Hence, with limited computing resources,
it is better to first increase the number of channels, before
employing a more complex architecture.

c) Further improvements on accuracy are possible with more
complex architectures, such as replacing the original 5 × 5
convolutional layers in architectures for optical flow by two 3×
3 residual inception blocks (Fig. 12(a)) or 4D-residual blocks
(Fig. 12(b)). However, these will consume more memory and
training time (6 ∼ 10 times) and may require several powerful
GPUs to train the models in a reasonable amount of time.

In short, improvements due to network architectures are
always possible when computational resources are plenty.
Their study is orthogonal to the tradeoffs between consistency
and distinctiveness that define the properties of good features.

VIII. CONCLUSIONS AND FUTURE WORK

This paper solves two important problems in dense match-
ing. a) What are good features that lead to better performance?
b) How can these good features be found systematically? We
have developed a general model for finding good features
in dense matching based on two fundamental principles:
consistency and distinctiveness. Their tradeoffs lead to a multi-
objective formulation, which is solved by using convolutional
neural networks as feature extractors to learn new features.
We have demonstrated that our learned features outperform all
existing features or matching-cost computation methods using
the challenging KITTI datasets.

There are several directions orthogonal to the two principles
proposed that can be studied in the future. In this paper,
we have focused only on two-frame matching applications
(stereo matching and optical flows). Other applications, such as
multi-view matching/flow or reconstruction, can lead to further
improvements. Secondly, our approach is based on existing
matching frameworks and does not develop new approaches
specialized for the features learned. The design of such new
matching schemes by ameliorating some existing work will
be beneficial. Thirdly, the limitations of our method appear in
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(b) 4D-Residual Block

Fig. 12: Advanced architectural settings studied. Each of the original-layer sets can be replaced by one of the above blocks. Batch
normalization (BN) is performed right after each convolution, followed by ReLU (except the last one that is performed after adding the
residual connection). Before and after all the five blocks, there is an extra [1× 1, n] convolutional layer. (a) Inception-Residual block similar
to that in [53]. (b) More advanced 4D-residual block similar to that in [51].

TABLE XI: Performance evaluations and comparisons of different network architectures in the feature learning system

Architectural
Setting Memory (GB) Stereo Matching Optical Flow

param speed (fps) (f1, f2) error rate param speed (fps) (f1, f2) error rate
fast-64 0.7 0.15M 6.5 (0.094, 0.73) 6.31% 0.41M 2.7 (0.12, 0.50) 10.89%

Res-Incep 3.2 0.14M 4.1 (0.096, 0.76) 6.21% 0.24M 2.3 (0.12, 0.52) 10.74%
4D Res-Net 9.2 0.91M 1.8 (0.093, 0.78) 6.09% 1.7M 0.7 (0.12, 0.55) 10.55%

fast-256 2.7 2.4M 0.9 (0.091,0.79) 6.01% 8.2M 0.4 (0.11,0.55) 10.47%

those reflection regions (such as windows of a car) that are
prevalent in most existing work. In these regions, no useful
matching information can be found. To further improve the
performance in these regions, semantic segmentation informa-
tion would be helpful (as done in [43], [54]). Finally, designing
new CNN architectures and learning algorithms will improve
the accuracy of results, leading to better features found. Using
parallel computers with GPUs will further enable effective
explorations of large search spaces in manageable time.
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