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This paper presents the concept of kernels to address the complexity of solving big-

data applications. Their solution strategies often require evaluating domain-dependent
subspaces on the big data and selecting the best result. As the data space in these

problems is so vast that it is infeasible to scan the data once, we need domain-specific
methods for identifying promising and manageable subspaces with a high density of

solutions before looking for individual ones. To this end, we introduce kernels to represent

some properties of the statistical quality, average density, or probability of solutions
in a subspace to prune subspaces with suboptimal kernels. We classify various past

approaches based on their analysis methods and illustrate each by an example. Our

results confirm that kernels can effectively harness the complexity of solving big-data
applications.

Keywords: Kernels; big-data applications; data distributions; pruning strategies, data

transformations.

1. Introduction

With the pervasive availability of Internet access, big-data applications have become

increasingly popular in recent years. For instance, customer data collected through

multi-modal sources and real-time financial data can help guide new investment

decisions. Likewise, data collected in massively online open courses can help develop

strategies for improving students’ learning experience. Google Trends1 show the

popularity of searching for the term “big data” peaked at 77% in late 2014 but

has since been overtaken by finding the phrase “machine learning” in late 2016.

This change does not reflect less interest in big data but more in using machine

learning for solving big-data problems. Since 2010, numerous national projects and

interdisciplinary studies have supported research in the big-data area.2

According to Wikipedia, big data entails capturing, storing, analyzing, process-

ing, and visualizing large quantities of data within a tolerable amount of time using
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Fig. 1. Characterizing four big-data applications by their volume, veracity, variety, and velocity.

existing hardware/software infrastructures.3 We can characterize these applications

in numerous dimensions, including volume, variety, velocity, veracity, and value.

Figure 1 illustrates the relative degrees of volume, velocity, variety, and verac-

ity for four big-data applications. Social networks have a vast size and type of

data changing quickly and with different credibility. In contrast, student data in

e-learning has higher veracity, less variety, smaller volume, and lower velocity than

big data in social media; and data in finance and healthcare applications have their

behavior between social networks and e-learning.

Solving big-data applications is highly diverse due to their domain dependence.

We use seven attributes to characterize these diversities: application requirements,

data properties, representations, solution goals, algorithms, infrastructure support,

and theoretical foundations.

For instance, a big-data problem in astronomy or meteorology often has struc-

tured data, well-understood solution algorithms, and adequate infrastructure sup-

port than a big-data problem in social networks. The latter application has extensive

multi-modal data with diverse representations, ill-defined objectives, and domain-

specific solution algorithms. In contrast, a financial big-data problem may rely on

quantitative and statistical approaches to minimize risk while maximizing return.

Irrespective of the first six attributes, a common difficulty is the lack of a sound

theoretical foundation. For example, complexity theory developed for small-data

problems requires the data to be limited and manageable, rather than unbounded

or not fully accessible using available computing resources. As a result, such theories

are not applicable for solving big-data problems.

In short, the seven attributes lead us to conclude on a lack of standard algo-

rithms, infrastructures, and theories for solving big-data applications. Understand-

ing their requirements and properties is critical in harnessing their complexities.
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Big-data applications generally have the following three properties.

Property 1. The applications’ data space is so vast that it is infeasible to scan the

data once and find all solutions or the optimal solution. Hence, we are interested

in looking for good but not optimal results that satisfy the requirements.

Property 2. We characterize the search space by some incomplete and heuristi-

cally defined problem-dependent attributes. The multi-dimensional space spanned

by them may be unbounded, ill-defined, or non-smooth, making it difficult to enu-

merate all the alternatives exhaustively. Thus, efficient search algorithms will need

to traverse the space selectively by exploiting domain-specific properties.

Property 3. The solution points satisfying the application requirements are likely

non-uniformly distributed and non-IID (independent and identically distributed) in

the big-data space. Moreover, their statistical properties may be non-stationary over

time. Hence, it will be hard to use automated methods to acquire the distributions.

Moreover, statistical techniques based upon some uniform models of the underlying

data may not work well.

These three properties allow us to identify three measures of big-data

complexity.

Data complexity refers to the complexity of big-data space itself. With the multi-

dimensional attributes defining the unbounded search space (Property 2), we cannot

tackle the space complexity of big-data problems like small-data ones. In addition,

existing techniques assuming structural regularity do not work well (Property 3).

Examples of other complications that make it challenging to characterize data com-

plexity include complex meta-structures with high-order information, multi-modal

relationships, and non-IID and non-stationary data distributions.

Computational complexity refers to the complexity of search algorithms for solv-

ing big-data problems. Some solvers resort to statistical sampling of the data space

or assume some structural properties. However, these do not work well with non-

IID or non-stationary distributions (Property 3). Furthermore, because we cannot

look for all the solutions (Property 1), the computational complexity of big-data

problems is different from that of small-data applications. A possible measure is

the time complexity to find the first solution.

System complexity refers to the complexity of hardware/software systems for

solving big-data problems. Traditional infrastructures for small-data applications

focus on architectures to reduce the computational or space complexity. In contrast,

solution algorithms in big-data applications may need to rely on subsets of accessible

data and address their dynamic nature and reference localities in their life cycle,

including sensing, storage, and computations.

Our observations lead to the understanding that big-data applications have

diverse and domain-dependent characteristics, possibly non-stationary statistical
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on 𝐵𝐵 can determine whether 𝑑𝑑 ∈ 𝐵𝐵 belongs to its solution set Σ𝐵𝐵. Let 𝛴𝛴𝑆𝑆 ⊆ 𝛴𝛴𝐵𝐵 be the solution 
set in 𝑆𝑆 ⊆ 𝐵𝐵. For point 𝑖𝑖, 𝑘𝑘𝑖𝑖𝑆𝑆 = 1 if 𝑖𝑖 ∈ 𝛴𝛴𝑆𝑆 and 𝑘𝑘𝑖𝑖𝑆𝑆 = 0 otherwise. The solver 𝐴𝐴𝑃𝑃 resorts to a more 
feasible dimension-reduced subspace 𝑆𝑆 with kernel 𝐾𝐾𝑆𝑆. 

We define subspace 𝑆𝑆 using some application-specific attributes �̅�𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑞𝑞 (Property 2) and 
their values 𝐶𝐶̅ = 𝐶𝐶1, … ,𝐶𝐶𝑞𝑞 .  Let 𝐹𝐹𝐵𝐵 be a function that maps 𝐵𝐵 to 𝑆𝑆 with 𝑁𝑁𝑆𝑆 points.  

 𝑆𝑆 =  𝐹𝐹𝐵𝐵(�̅�𝑥 | 𝐶𝐶̅)                     (Subspace defined by a mapping function 𝐹𝐹𝐵𝐵). (1) 

Each point has one or more quality metrics. For an application with one quality metric, let 𝑑𝑑𝑖𝑖𝑆𝑆 be 
the quality of 𝑖𝑖 ∈ 𝑆𝑆.   We assume that 𝑑𝑑𝑖𝑖𝑆𝑆 in 𝑆𝑆 are IID to allow the mean and standard deviation 
computed. 

𝑚𝑚𝑆𝑆 =
∑ 𝑑𝑑𝑖𝑖

𝑆𝑆𝑘𝑘𝑖𝑖
𝑆𝑆𝑁𝑁𝑆𝑆

𝑖𝑖=1
𝑁𝑁𝑆𝑆

              (Mean quality of solution points in 𝑆𝑆), (2) 

𝜎𝜎𝑆𝑆 = � 1
𝑁𝑁𝑆𝑆−1

∑ �𝑑𝑑𝑖𝑖𝑆𝑆𝑘𝑘𝑖𝑖𝑆𝑆 − 𝑚𝑚𝑆𝑆�
2𝑁𝑁𝑆𝑆

𝑖𝑖=1        (Unbiased estimate of standard deviation). (3) 

Note that we do not require the IID property to apply across subspaces. 

When points have multiple metrics, their vectors of metrics are assumed to be IID. We calculate 
the mean and standard deviation of the primary metric and constrain the remaining metrics. It is 
also possible to have more general problem-dependent metrics, such as weighted means and 
downside-deviations. 

We define the kernel 𝐾𝐾𝑆𝑆 in subspace 𝑆𝑆 to represent some properties on the statistical quality, 
average density, or probability of solutions in 𝑆𝑆. An example is the tuple of the mean and standard 
deviation of the quality of solutions in 𝑆𝑆. We compare subspaces and prune suboptimal ones 
according to their kernels. The subspaces involved need not have the same IID distribution on 
their metrics because we do not compare their distributions. 

In the next section, we classify three general approaches for finding promising subspaces 
according to the data distribution supported, pruning methods used, and data transformations 
employed. Our survey illustrates the reliance on domain-specific information when solving big-
data applications. 

Figure 2. The relationship between the subspace of search alternatives and its solution set. 
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Fig. 2. The relationship between the subspace of search alternatives and its solution set.

properties, and high complexities to store, traverse, and process. To this end, a good

search algorithm to look for solutions will need first to identify promising subspaces

with a high solution density or a high aggregate quality before drilling down into

each.

Figure 2 illustrates a big-data space B whose kernel KB cannot be computed

due to the size of B. For an application on big data B with some objectives, a search

algorithm AP defined on B can determine whether d ∈ B belongs to its solution

set
∑

B . Let
∑

S ⊆
∑

B be the solution set in S ⊆ B. For point i, kSi = 1 if i ∈
∑

S

and kSi = 0 otherwise. The solver AP resorts to a more feasible dimension-reduced

subspace S with kernel KS .

We define subspace S using some application-specific attributes x̄ = x1, . . . , xq
(Property 2) and their values C̄ = C1, . . . , Cq. Let FB be a function that maps B

to S with NS points.

S = FB(x̄|C̄) (Subspace defined by mapping function FB) (1)

Each point has one or more quality metrics. For an application with one metric,

let dSi be the quality of i ∈ S. We assume that dSi are IID to allow the mean and

standard deviation computed.

mS =

∑NS

i=1
dSi k

S
i

NS
(Mean quality of solutions in S) (2)

σS =

√√√√ 1

NS − 1

NS∑
i=1

(dSi k
S
i −mS)2 (Unbiased estimate of std. dev.) (3)

Note that we do not require the IID property to apply across subspaces.

When points have a vector of multiple metrics, their vectors are assumed to

be IID. We calculate the mean and standard deviation of the primary metric and

constrain the remaining metrics. It is also possible to have more general problem-

dependent measures, such as weighted means and downside-deviations.
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We define the kernel KS in subspace S to represent some properties on the

statistical quality, average density, or probability of solutions in S. An example is

the tuple of mean and standard deviation of the solution quality in S. We compare

subspaces and prune suboptimal ones according to their kernels. The subspaces

involved need not have the same IID distribution on their metrics because we do

not compare their distributions.

In the next section, we classify three general approaches for finding promising

subspaces according to the data distribution supported, pruning methods used,

and data transformations employed. Our survey illustrates the reliance on domain-

specific information when solving big-data applications.

2. Three Approaches for Finding Subspaces with Large Kernels

This section describes three practical approaches for finding subspaces with a large

kernel in big-data space and explains how they help reduce the search complexity

(see Table 1). In each, we present the critical domain-specific information leading

to a successful solution and illustrate some example applications and their kernels.

2.1. Structural analysis for finding lower-dimensional structures

A structural analysis exploits the underlying structure of data entities to allow

more efficient spatial traversals. We classify these techniques into structured, semi-

structured, and unstructured.

Structured data consists of data with some underlying structural relationships

embedded. Examples include relational data, community networks, and knowledge

maps. However, such structures may not be apparent initially and may require

analysis driven by observations or hypotheses to discover them.

(a) An observation-driven approach starts with the application’s goal. It then

relies on user-guided statistical analysis, limited traversals, reorganization, and ex-

perimentation to transform the original data into a new structure. After reorganiz-

ing the data by some attributes, the process selects a subspace with the best kernel

and verifies its selection on new unseen data.

We illustrate this approach in the collective credit allocation in scientific pub-

lications.4 The application aims to find the appropriate credit for a coauthor’s

contribution to an article perceived by peers in the scientific community. It uses

structured data on all publications and their citation records. The work proposes

a credit-allocation algorithm that assigns credit to each citing article and co-cited

one. It then validates the algorithm by showing its success in identifying Nobel

laureates from those prize-winning papers in Physics, Chemistry, and Medicine. In

this application, a subspace refers to a specific organization of the coauthors and

articles and their credit assignments. The algorithm proposes a new structure with

an improved kernel represented as the success rate in identifying Nobel laureates

from the credit assigned to each piece and its coauthor.
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Table 1. A summary of types of subspaces with large kernels in big-data analysis.

Method Description and Examples Large-Kernel SS

Structural Analysis

Structured data

analysis

• Relations among structured entities

• Clusters, social networks, small-world model,
cooperative networks

Macro-level

low-dimensional data,
motifs, and patterns

Semi-structured

data analysis

• Relations among semi-structured data entities

in some dimensions/attributes
• Social media journal, blogs, twitters, rumors

over the temporal dimension

Relationships of

objects in a
transformed dimension

Unstructured

data analysis

• Lower-order relations among entities

• Hybrid textural data, images, video,

multimedia

Lower-dimensional

representation of

data-entity relations

Pruning Analysis

Random

sampling

• Solutions uniformly distributed in space

• A simplifying assumption

A random subspace in

the big-data space

Heuristic
sampling

• Eliminating search subspaces by the
heuristic/greedy properties on data

relations, distribution, or clusters

Heuristic properties of
dominating search

subspaces

Dominance

sampling

• Pruning suboptimal subspaces by dominance

relations without affecting quality

• Pareto frontiers in financial data

Pareto boundary of

solutions; dominating

subspaces

Transformational Analysis

Spatial
transformation

• Projecting spatial relations of data into a
different space to reduce complexity

• Social-media data on communities structured

by user interests

A projected subspace
of data with reduced

dimension and

complexity

Temporal

transformation

• Projecting temporal relations of data into an

alternate temporal scale
• Propagating social media data over time

A projected temporal

subspace of data

Space-time
transformation

• Projecting along spatial and temporal
dimensions to alternate subspaces

• Recent election news over space/time

Projected events in
transformed space
and time

(b) A hypothesis-driven approach starts from a hypothesis based on informal

observations and phenomena, proposes a model and a goal using these observa-

tions, and verifies the model experimentally and analytically. The objective may

be ill-defined initially but refined as the model is more well-defined. An example of

the approach is discovering the complex relations among humans in a society. The

Small-World Problem5 starts from a hypothesis and some initial observations on
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any two persons in the world knowing each other with a probability distribution.

Recent analysis refines and verifies the model to show that the diameter of a small-

world model is exponentially smaller than its size N and bounded by (logN)2.6

In this development, different subspaces refer to dissimilar ways of modeling the

small-world phenomenon, with a kernel on the probability of two people knowing

each other in a subspace.

Semi-structured data consists of data entities with relations in one or more

dimensions but none otherwise. Examples include social-media journals, blogs,

twitters, and financial news that evolve over a temporal dimension but have non-

apparent structures otherwise. Further, the evolution may be irregular and unpre-

dictable over time. To illustrate the approach, consider applying temporal scaling

on information propagation from one person to another in an evolving social net-

work. The application aims to predict the information propagation dynamics and

estimate future propagation probabilities among individuals. The problem is semi-

structured because although the temporal dimension is of interest, the application

has many other (unstructured) dimensions. In solving the problem, a key observa-

tion7 shows a power-law relationship between the probability a message propagates

to two individuals and the length of time since their last interaction. Scaling tem-

poral data according to this relation allows the data to be organized into a uniform

sequence with low prediction errors (kernel).

Unstructured data consists of entities without uniform relations; instead, there

may be multiple distinct relationships among the objects’ subsets. For instance,

Facebook has a massive data archive of hybrid textual data, images, video, and

multimedia. To illustrate the mapping of unstructured data to aid information

retrieval, consider the research on relevance preserving projection and ranking.8

The application searches an extensive database of web-based images to satisfy

some application requirements. The paper proposes to refine text-based search

results by mining images’ visual content. It offers an attribute extraction algo-

rithm that transforms the original high-dimensional feature space into a lower-

dimensional hypersphere space by preserving the images’ various structures and

relevance relationships. The result is an improved retrieval of relevant images from

the database. In this context, the original unstructured space is transformed into a

lower-dimensional hypersphere space, and its kernel is the improved retrieval accu-

racy using the new structure.

In summary, our examples show that discovering a proper structure for solving a

big-data problem is domain-dependent and often requires an in-depth understand-

ing of the application. This domain-specific information is essential for reducing

the vast number of possible subspaces to a manageable scale. The discovery of a

suitable subspace would lead to a kernel with high-quality metrics, rendering the

application problem solvable.
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2.2. Pruning analysis for eliminating subspaces with

suboptimal kernel

The basic idea is to use domain-specific data properties to identify subspaces with a

dominating kernel and eliminate those dominated ones to reduce search complexity.

We consider two general classes here: heuristic and dominance pruning.

Heuristic pruning eliminates search subspaces using heuristic properties on data

relations and distributions. It uses partial, experiential, or incomplete information

to reduce the search space without relying on a formal analytical foundation. As a

result, it is often evaluated on benchmarks, and its performance is not guaranteed

on unseen data.

An example application of the approach is on burst topic discovery in microblogs

(such as Twitter).9 The application aims to find high-quality topics from these

blogs that are typically short, diverse, and noisy posts, with primarily common

and meaningless issues. There are many existing heuristic methods for filtering

burst topics from non-burst ones, such as clustering burst features (like words or

phrases) and applying existing topic-discovery models to find burst topics. Another

approach divides the data stream into time slices and uses a probabilistic model

for burst-topic modeling on each interval. Although these heuristics help prune the

original big-data space into lower-dimensional subspaces and reveal the main topics

in general texts, they are not designed explicitly for microblogs. In this context,

our kernel is the quality of burst topics found in a reduced subspace evaluated by

benchmarks.

Dominance pruning use a dominance relation10 between two subspaces Si and

Sj to prune Sj . It is a formal property because with the available information on Si

and Sj and without evaluating all their data points, we can prove that the kernel Kj

of Sj cannot be better than Ki. The final dominating kernels found are, therefore,

guaranteed to be better as subspaces with suboptimal kernels will be pruned.

For example, consider the search for proper control of a real-time interactive

multimedia application to allow users in perceiving high-quality interactions. Ex-

amples of such applications include real-time interactive video conferencing and

online games. The application is a big-data problem because the space of percep-

tual quality as a function of controls is vast, ill-defined, and possibly unbounded. In

our past work, we observed two monotonicity properties (or dominance relations)

based on just-noticeable differences (JND) to reduce the complexity of traversing

the subspace of perceptual qualities.11 The approach allows us to develop an optimal

polynomial-time binary-divide algorithm for finding the perceptual quality (kernel)

of all the data points in a JND profile. The latter provides a good operating point

for interactive multimedia applications at run-time. For example, optimizing the

vector of actions in a multi-player online game makes it possible to conceal the vir-

tual delay of multi-player actions. The result allows users to perceive that the game
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runs smoother (with less and negligible virtual delay) without compromising the

synchronization of action orders.12

In general, heuristic pruning is simpler to design but does not guarantee the

kernels’ quality, and its effectiveness is often evaluated by benchmarks. In contrast,

dominance pruning ensures that only suboptimal subspaces will be pruned but

requires substantial domain knowledge and understanding in its design.

2.3. Transformations to project data into new dimensions

This approach transforms a big-data space into a different dimension with a better

kernel. The choice of a transformation is heuristic as well as domain-specific, and

its generalizability is limited by the dimension(s) used. There are generally three

transformations: spatial, temporal, or a combination of space and time.

Spatial transformation entails projecting the original big-data space into a more

structured spatial organization. Since the number of projections is extremely large

or infinitely many, the choice is often driven by heuristics or domain knowledge.

For example, consider a weighted graph clustering problem for community detec-

tion.13 This involves detecting users’ communities (or nodes with more connections)

in an Internet social network (such as Facebook). Using a heuristic observation that

overlaps in communities are densely connected, the research maps these overlapping,

hierarchically nested, and non-overlapping communities into distinct subspaces. In

this context, a subspace represents an embedding of the original data using a spe-

cific clustering approach. The subspace with the best clusters has improved kernel

with high-quality metrics of users engaged in communities.

Temporal transformation entails the projection of big data into a different tem-

poral scale that allows a better understanding of its entities. Please refer to the

example on semi-structured data in Sec. 2.17 for applying the approach.

Space-time transformation involves projecting the big-data space along the

temporal and spatial dimensions to reduce its subspace. Consider an example appli-

cation that continuously updates streaming data in persistent sketching over sliding

windows.14 Instead of maintaining all the previous versions of streamed data at ev-

ery update, the system only holds a sliding window of a small matrix (over space

and time) that approximates the entire data set (called persistent data sketch). In

this context, each subspace involves a specific space-time transformation of all the

previous versions of the streamed data; a suitable subspace has a large kernel that

makes it possible to query a significant fraction of all the events over time.

This section has examined various approaches for transforming the original big-

data space into a different structure to allow a more efficient traversal of its search

space when solving the application problem. Our examples show that the proper

transformation techniques are application-specific and require domain knowledge
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aided by observations and experiments. Thus, the approach is different from tra-

ditional information retrievals (IR)15 that use domain knowledge to transform the

data into meta-data before applying existing retrieval strategies.

3. Conclusions

This paper presents methods for harnessing the complexity of solving big-data

applications using kernels defined as the statistical quality metrics of solutions in

a subspace evaluated by the solver. Focusing on subspaces is more effective than

individual solutions because we can identify better subspaces at a macro scale. Using

kernels, we have illustrated three approaches to prune inferior subspaces. Our survey

of methods for solving big-data applications shows their dependence on domain-

specific information. Such knowledge helps identify promising subspaces searched

by the solver, which otherwise would be prohibitive using brute-force enumerations.
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