
American Journal of Artificial Intelligence
2022; 6(2): 36-47
http://www.sciencepublishinggroup.com/j/ajai
doi: 10.11648/j.ajai.20220602.12
ISSN: 2639-9717 (Print); ISSN: 2639-9733 (Online)

Dominance Pruning in Machine Learning for Solving
Financial Trading and Real-Time Multimedia Applications

Benjamin Wan-Sang Wah

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong

Email address:
bwah@cuhk.edu.hk

To cite this article:
Benjamin Wan-Sang Wah. Dominance Pruning in Machine Learning for Solving Financial Trading and Real-Time Multimedia Applications.
American Journal of Artificial Intelligence. Vol. 6, No. 2, 2022, pp. 36-47. doi: 10.11648/j.ajai.20220602.12

Received: December 28, 2022; Accepted: January 16, 2023; Published: February 6, 2023

Abstract: This paper presents the design of dominance relations to reduce the space traversed in machine learning for solving
two applications in financial trading and real-time multimedia. A machine-learning algorithm designed for an application with a
huge search space will need to perform an efficient traversal of the space during learning. It will be more effective if it employs
a powerful pruning mechanism to eliminate suboptimal candidates before using them in the learning algorithm. In our approach,
we present dominance relations for pruning subspaces with suboptimal kernels that are otherwise evaluated in learning, where
kernels represent the statistical quality, average density, or probability of solutions in a subspace. Specifically, when one subspace
dominates another by a dominance relation, we can prune the latter and guarantee without searching both that the kernel of the
latter cannot be better than that of the first. As a result, a significant portion of the search space will be pruned by those non-
dominated subspaces during learning. In the financial trading application studied, we use mean reversion as our strategy for
learning the set of promising stocks and Pareto-optimality as our dominance relation to reduce the space evaluated in learning.
In the multimedia application, we propose a dominance relation using an axiom from our past work to approximate the subspace
of perceptual qualities within an error threshold. The pruning mechanism allows the learning of the mapping from controls to
perceptual qualities while eliminating the evaluation of all those mappings that are within the error thresholds. In both cases, we
can harness the complexity of machine learning by reducing the candidate space evaluated.

Keywords: Kernels, Dominance Relations, Machine Learning, Financial Trading, Mean Reversion, Real-time Multimedia,
Perceptual Quality

1. Introduction
With the pervasive availability of the Internet, applications

involving large quantities of data and complex optimizations
have become increasingly popular. In general, there is a lack
of standard algorithms, infrastructures, and theories for solving
these applications. We have identified three unique properties
of these applications.

Property 1.1. The applications’ data space is so vast and
their optimizations so complex that it is infeasible to scan the
data once and find either all or the optimal solutions. Hence,
we are interested in looking for good but not necessarily
optimal results that satisfy the application requirements.

Property 1.2. We characterize the search space by some
incomplete and heuristic problem-dependent attributes. These
are heuristics because the multidimensional data space may

be unbounded, ill-defined, or non-smooth, making it difficult
to characterize all its attributes. Hence, efficient algorithms
will need to exploit domain-specific properties to effectively
traverse the space.

Property 1.3. The solutions satisfying the application
requirements have distributions that are likely non-uniform
and non-IID (independent and identically distributed).
Moreover, they may be non-stationary over time, making
it difficult to use automated methods to acquire their
distributions. In general, statistical techniques based on some
uniform models may not generalize well.

These properties lead to the understanding that such
applications have diverse domain-dependent characteristics,
possibly non-stationary statistical properties, and have high
complexities to store, traverse, and process. Hence, good

American Journal of Artificial Intelligence 2022; 6(2): 36-47 37

algorithms to look for solutions will need to identify promising
and manageable subspaces before drilling down into each.

As an illustration of the properties, consider a financial
trading application studied in Section 3. Here, the data
available each day in the stock market is enormous because
many stocks are traded, each having a lot of past historical
information. According to the efficient market hypothesis [1],
stock prices do not have a well-defined statistical model, as
they evolve in a random walk. Even in non-random-walk
cases, their behavior can be highly dynamic and non-stationary
and may depend on ill-defined exogenous factors, such as
market conditions and political or social events.

The second application studied in Section 4 on the
perceptual quality of real-time multimedia is also complex and
data-intensive. The space of perceptual quality as a function of
controls is vast, ill-defined, and unbounded, making it difficult
to find good operating points that optimize perceptual quality.

Figure 1 shows a data space B for an application with a
solution set ∑B . A solverAB onB can determine whether i ∈∑
B . Because B is so large or ill-defined that its space cannot

be enumerated, we resort to a dimension-reduced subspace
S ⊆ B with a solution set ∑

S ⊆
∑
B .

P a g e | 4

on 𝐵𝐵 can determine whether 𝑑𝑑 ∈ 𝐵𝐵 belongs to its solution set Σ𝐵𝐵. Let 𝛴𝛴𝑆𝑆 ⊆ 𝛴𝛴𝐵𝐵 be the solution
set in 𝑆𝑆 ⊆ 𝐵𝐵. For point 𝑖𝑖, 𝑘𝑘𝑖𝑖𝑆𝑆 = 1 if 𝑖𝑖 ∈ 𝛴𝛴𝑆𝑆 and 𝑘𝑘𝑖𝑖𝑆𝑆 = 0 otherwise. The solver 𝐴𝐴𝑃𝑃 resorts to a more
feasible dimension-reduced subspace 𝑆𝑆 with kernel 𝐾𝐾𝑆𝑆.

We define subspace 𝑆𝑆 using some application-specific attributes 𝑥̅𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑞𝑞 (Property 2) and
their values 𝐶𝐶̅ = 𝐶𝐶1, … ,𝐶𝐶𝑞𝑞 . Let 𝐹𝐹𝐵𝐵 be a function that maps 𝐵𝐵 to 𝑆𝑆 with 𝑁𝑁𝑆𝑆 points.

𝑆𝑆 = 𝐹𝐹𝐵𝐵(𝑥̅𝑥 | 𝐶𝐶̅) (Subspace defined by a mapping function 𝐹𝐹𝐵𝐵). (1)

Each point has one or more quality metrics. For an application with one quality metric, let 𝑑𝑑𝑖𝑖𝑆𝑆 be
the quality of 𝑖𝑖 ∈ 𝑆𝑆. We assume that 𝑑𝑑𝑖𝑖𝑆𝑆 in 𝑆𝑆 are IID to allow the mean and standard deviation
computed.

𝑚𝑚𝑆𝑆 =
∑ 𝑑𝑑𝑖𝑖

𝑆𝑆𝑘𝑘𝑖𝑖
𝑆𝑆𝑁𝑁𝑆𝑆

𝑖𝑖=1
𝑁𝑁𝑆𝑆

(Mean quality of solution points in 𝑆𝑆), (2)

𝜎𝜎𝑆𝑆 = � 1
𝑁𝑁𝑆𝑆−1

∑ �𝑑𝑑𝑖𝑖𝑆𝑆𝑘𝑘𝑖𝑖𝑆𝑆 − 𝑚𝑚𝑆𝑆�
2𝑁𝑁𝑆𝑆

𝑖𝑖=1 (Unbiased estimate of standard deviation). (3)

Note that we do not require the IID property to apply across subspaces.

When points have multiple metrics, their vectors of metrics are assumed to be IID. We calculate
the mean and standard deviation of the primary metric and constrain the remaining metrics. It is
also possible to have more general problem-dependent metrics, such as weighted means and
downside-deviations.

We define the kernel 𝐾𝐾𝑆𝑆 in subspace 𝑆𝑆 to represent some properties on the statistical quality,
average density, or probability of solutions in 𝑆𝑆. An example is the tuple of the mean and standard
deviation of the quality of solutions in 𝑆𝑆. We compare subspaces and prune suboptimal ones
according to their kernels. The subspaces involved need not have the same IID distribution on
their metrics because we do not compare their distributions.

In the next section, we classify three general approaches for finding promising subspaces
according to the data distribution supported, pruning methods used, and data transformations
employed. Our survey illustrates the reliance on domain-specific information when solving big-
data applications.

Figure 2. The relationship between the subspace of search alternatives and its solution set.

Original Data Space B Subspace S

Σ𝑆𝑆 (with 𝐾𝐾𝑆𝑆)Σ𝐵𝐵 (with 𝐾𝐾𝐵𝐵)

Figure 1. The solver AS looks for solutions in a dimension-reduced subspace S with
kernelKS .

The original solver AB may need to be adapted into a
subspace application solver AS to work on S. We define AS
using some application-specific attributes xS = x1, . . . , xq
(Property 1.2) and their values cS = c1, . . . , cq . Let FS be
a function that maps xS with values cS to the solver AS :

AS = FS(xS | cS). (1)

We further define the kernel KS of subspace S to be some
aggregate statistical quantity, average density, or probability of
solutions in S, where each point in S has one or more quality
metrics. Using the kernel, an application solver can prioritize
points in the subspace for evaluation or prune suboptimal ones.

In general, machine-learning algorithms are built on an
application’s search space and may require an efficient
abstraction of the space before learning is performed.
Alternatively, learning may rely on some domain-specific
strategies to traverse the search space during learning. In
either case, the quality of learning will depend on how efficient
the space can be traversed. In the literature, pruning in
machine learning refers to removing redundant or the least
important parts of a model or search space [2]. There were
numerous studies on pruning learning models (such as neural
networks [3] and decision trees [4]) to prevent overfitting and
reduce computational complexity. On the other hand, pruning
the search space is more general and is not necessarily tied
to machine learning. We study in Section 2 some effective
strategies for reducing the search space.

In this paper, we focus on pruning an application’s search
space during learning to improve its effectiveness. By
identifying dominated subspaces, we can conduct machine
learning much more efficiently in finding good solutions.
Our goal is to develop new dominance relations for
pruning suboptimal subspaces during learning on the two
aforementioned applications.

Referring to the stock trading application studied (see Table
1), the data space B consists of the historical prices of all the
stocks traded, and the solution set

∑
B is the set of stocks

with positive returns after some delay. To reduce B, we define
subspace S in which stocks are traded daily, and

∑
S are those

stocks with a positive return on the following day. In Section 3,
we define AS to select stocks using mean-reversion (MR) in
which we restrict xS in Eq. (1) to be the thresholds on returns
at the end-of-day (EOD) and cS to be the set of threshold
values learned for each trading day. We further reduce the large
space of MR thresholds evaluated in learning using Pareto
optimality as our dominance relation.

Table 1. The Attributes of the Two Applications Studied.

Application Objective Domain Controls Kernel Metrics Sub-space S Dominance Relation Domain Knowledge

Financial Trading Application

Max. avg. return (dL, dU], Annual ret., Daily traded stocks Domain-indep. Mean reversion

over horizon dL < dU ≤ 0 downside deviation Pareto optimality

Real-time Multimedia Application

Optimal perceptual End-to-end delay Awareness as Subspace on Monotonicity of Axiom on perceptual

quality function of controls awareness awareness to controls quality

In the multimedia application studied (see Table 1), B is
the huge data space for mapping past perceptual qualities to
run-time controls. This space is ill-defined because perceptual
quality is an abstract concept. To reduce B, we consider

perceptual qualities measured by awareness [5] in subjective
tests that are conducted offline over a past window of time.
However, the subspace S is still unmanageable because the
space of past scenarios is infinite in size. To this end,

38 Benjamin Wan-Sang Wah: Dominance Pruning in Machine Learning for Solving Financial Trading and
Real-Time Multimedia Applications

we employ an axiom from our past work as a dominance
relation to prune a majority of suboptimal past scenarios and
to interpolate S through a few subjective tests. This approach
allows S to be fully specified, making it feasible to learn from
the reduced subspace good operating points at run time.

This paper is divided into five sections. We classify in
Section 2 three approaches for finding effective subspaces
according to the data distribution supported, pruning methods
used, and data transformations employed. In Section 3, we use
Pareto optimality as a domain-independent dominance relation
when learning mean-reversion parameter sets according to
their expected annual return and downside deviation. In
Section 4, we present a dominance relation that helps prune the
data subspace of perceptual quality in a multimedia application
to within a prescribed error threshold. (See the summary in
Table 1). Finally, conclusions are drawn in Section 5.

2. Finding Effective Search Subspaces

We survey in this section three general approaches for
identifying effective subspaces and their kernels. By reducing
the space traversed, we can greatly improve the performance
when solving the application problem by machine learning.
Interested readers should refer to a more complete article
published on this topic [6].

2.1. Structural Analysis to Discover New Structures

The structural analysis aims to discover new structures in
existing data that allows a more efficient traversal of the search.
It achieves this goal by evaluating the underlying data structure
to either identify some existing embedded relations or discover
a new structure. The process is heuristic as it depends on
the domain knowledge of the data relations. We classify
these techniques developed for structured, semi-structured,
and unstructured data.

a) Structured data consists of data with some embedded
relationships, such as relational datasets, community networks,
and knowledge maps. The structural analysis uses a
combination of observations and hypotheses to discover those
structures that help find solutions faster.

An observation-driven approach starts from the
application’s goal that defines the kernel metrics. It then relies
on user-guided statistical analysis to transform the original
data into alternative structures and to select the target structure
with the best kernel metrics. An example is in the credit
allocation in scientific publications [7] that uses the credit on
each citing article and co-cited ones to discover a new structure
relating Nobel laureates to the prize-winning papers. The new
structure leads to an efficient credit-allocation algorithm.

A hypothesis-driven approach uses the application’s goal
and informal observations to develop a hypothesis, propose
a model, and verify the model experimentally or analytically.
An example is in hypothesizing the complex relations among
humans in a society. The Small-World Problem [8] starts from
a hypothesis and some initial observations on any two persons

in the world knowing each other with a probability distribution
and finds a new small-world model.

b) Semi-structured data consists of data entities with
relations in one or more dimensions but none otherwise.
Examples include social-media journals, blogs, Twitter, and
financial news that evolve but have non-apparent structures
otherwise. An example of the approach is the prediction
of the probabilities of propagating news from one person to
another in an evolving social network [9]. By scaling the
temporal dimension using a power-law relationship between
the propagation probability and the duration since the last
interaction, the study transforms the data stream into a uniform
sequence over time with low prediction errors.

c) Unstructured data consists of entities without any uniform
relations. An example of the approach is in the attribute
extraction of web-based images that transforms the original
high-dimensional feature space into a lower-dimensional
hypersphere space by preserving the images’ various structures
and relevance relationships [10]. The result is an improved
retrieval of relevant images from the database.

2.2. Pruning Subspaces with Suboptimal Kernels

The idea is to use general or domain-specific properties to
reduce the search complexity by eliminating candidate points
in a subspace. We consider two general classes here: heuristic
and dominance pruning.

a) Heuristic pruning eliminates candidate solution points
using heuristic properties on data relations and distributions.
It uses partial, incomplete, or experiential information to
eliminate candidates without relying on a formal analytical
foundation. As a result, it is often evaluated on benchmarks,
and its performance is not guaranteed on unseen data. An
example application of the approach is on the burst-topic
discovery in microblogs (such as Twitter) that aims to find
high-quality topics in streaming data [11]. Only heuristic
methods have been developed for filtering burst topics from
non-burst ones because blogs are typically short, diverse, and
noisy posts, with some common but unrelated information.

b) Dominance pruning use a dominance relation [12]
between two subspaces Si and Sj to prune Sj . It is a formal
property because with the available information on Si and Sj
and without evaluating all their data points, one can prove that
the kernel Kj of Sj cannot be better than Ki. The dominating
kernels found are, therefore, guaranteed to be better. We
illustrate the use of dominance relations on two applications
in Sections 3 and 4, respectively, to prune their search spaces
before applying machine learning.

2.3. Projecting Data into New Dimensions

This approach transforms the original data space into
a different dimension, using heuristic and domain-specific
methods. There are generally three transformations: spatial,
temporal, or a combination of space and time.

a) Spatial transformation entails projecting the original data
space into a more structured spatial organization. Since the

American Journal of Artificial Intelligence 2022; 6(2): 36-47 39

number of projections is extremely large or infinitely many,
the choice is often driven by domain-specific heuristics. The
approach is illustrated in the detection of users’ communities
in an Internet social network [13] by clustering the spatial
dimension based on the degree of overlaps in the communities.

b) Temporal transformation entails the projection of data
into a new temporal scale that reorganizes the data over time
with a better structure. An example is in the prediction of
information propagation from one person to another in an
evolving social network [9] (Section 2.1).

c) Space-time transformation involves projecting the data
space along the temporal and spatial dimensions to find an
embedded structure. An example is in the persistent data-
sketching space-time transformation [14] that holds a sliding
window over space and time to approximate the entire data set
in streaming data and that allows a large fraction of all the past
events to be queried.

Summary. In this section, we have examined three general
approaches for transforming the original data space into a
different form to allow more efficient traversals. The success
of these approaches requires domain-specific information
and an in-depth understanding of the application aided by
observations, hypotheses, and experimentation. In the next
two sections, we apply dominance relations to prune the search
space of two applications before applying machine learning.
Without pruning, it will be inefficient for machine learning to
find good strategies and solutions.

3. Dominance Pruning in Learning
(Financial Trading Application)

This Section studies a financial trading application for
maximizing the average next-day return on daily traded stocks.
As is discussed in Section 1, we reduce the original data space
B to a more manageable subspace S in which stocks are traded
daily. We first discuss the kernel metrics used and the Pareto
optimality as a domain-independent dominance relation for
pruning candidates with suboptimal kernels in learning. We
present an application solver AS based on the mean-reversion
method that learns the best MR parameters from past historical
data to define the stocks for trading each day. Lastly, we show
some experimental results on using the approach.

3.1. Kernel Metrics

We define the kernel metrics at a given time to be the
projected annual return (AR) of n stocks over an average of 252
trading days per year and its downside deviation (DD) with a
minimum acceptable return b (chosen as zero) [15]:

AR =

n∏
i=1

(1 + ri)
252/n − 1, (2)

DD =

√∑n
i=1 min(0, ri − b)2

n− 1
, (3)

where ri is the return of stock i. To allow these metrics
to be computed, we assume that the returns in a subspace
are independent and identically distributed (IID), which is
generally true. Note that DD measures the unbiased standard
deviation of only the negative returns.

The kernel metrics above represent tradeoffs on the quality
of the stocks selected. To compare two alternative sets, we
would like the returns of the set selected to be high (captured in
AR); at the same time, we would like the likelihood of the set to
have negative returns to be small (captured in DD). Hence, this
is a multi-objective problem with two counteracting objectives.

3.2. Pareto Optimality

Pareto optimality is a domain-independent dominance
relation [16] for prioritizing subspaces evaluated by two or
more metrics in a multi-objective optimization of allocating
resources. Pareto optimality or Pareto efficiency is reached
when it is impossible to reallocate the resources to make
any objectives better without making another worse off [17].
A Pareto frontier is a set of efficient solutions that do not
dominate each other.

Using the kernel metrics of AR and DD, we can define a
dominance relation between two sets of stocks S1 and S2.
Specifically, when S1 dominates or is equal to S2 (S1 � S2),
it implies that S1 has the same or a better AR (ARS1

≥ ARS2
)

and the same or a smaller DD (DDS1
≤ DDS2

) than those of
S2. That is:

S1 � S2 ⇐⇒ (ARS1
≥ ARS2

) ∧ (DDS1
≤ DDS2

). (4)

We can also define the case when S1 and S2 are non-dominated
to each other:

S1 6= S2 ⇐⇒ [(S1 � S2) ∧ (S1 � S2)] (5)
⇐⇒ [(ARS1

< ARS2
) ∧ (DDS1

< DDS2
)]

∨ [(ARS1
> ARS2

) ∧ (DDS1
> DDS2

)].

It should be clear that Eq’s (4)-(5) satisfy transitivity but not
commutativity or reflexivity. The dominance relation defined
is domain-independent because it only relies on the kernel
metrics.

We are interested in looking for a set P = {Si | i = 1, ...}
with tradeoffs between ARSi and DDSi in such a way that
element i ∈ P with ARSi

and DDSi
is not dominated by

element j /∈ P. By pairwise comparison of alternatives with
known kernels, we use Eq. (4) to eliminate those dominated
sets. The remaining non-dominated sets P lie on a Pareto
optimal frontier of the 2-D region spanned by AR and DD.
Here, P and P, the set of dominating and dominated sets,
respectively, satisfy two properties.

P and P satisfy (a) ∀ i, j ∈ P, Si 6= Sj ,

(b) ∀ k ∈ P,∃ i ∈ P such that Si � Sk. (6)

Intuitively, each point on the Pareto frontier has a larger or
equal AR and a smaller or equal DD when compared to at

40 Benjamin Wan-Sang Wah: Dominance Pruning in Machine Learning for Solving Financial Trading and
Real-Time Multimedia Applications

least one point that is not on the frontier. Further, those on
the frontier do not dominate each other; that is, each has either
smaller AR and DD or larger AR and DD, when compared to
another point on the frontier. We are interested in those points
on the frontier because each is not better than another as far as
AR and DD are concerned. Moreover, those not on the frontier
are inferior to at least some Pareto-optimal points.

Transitivity in Pareto optimality is crucial because it allows
the pruning of all suboptimal points, including unsearched
ones, when limited by the Pareto frontier. Note that the
frontier found by searching a subset of the alternatives is
not the true frontier of the application because we have
not exhausted all the possibilities. However, the resulting
boundary will approach the true frontier when sampling
more points. The advantage of this approach over heuristic
pruning is that it guarantees that the pruned alternatives have
suboptimal kernels, whereas heuristic pruning does not have
the transitivity to have such guarantees.

One of the popular approaches for finding Pareto frontiers is
scalarizing methods [18] that assign weights on objectives to
convert a multi-objective problem into a single-objective one.
Other methods include lexicographic ordering, evolutionary
multi-objective optimization, no-preference schemes, and
interactive methods. In our application, we apply a
guided generate-and-test approach to enumerate multiple
combinations in finding a Pareto frontier.

3.3. Mean Reversion on Stock Returns

We first illustrate the idea of mean reversion before showing
our algorithm and results. Consider a financial trading strategy
that looks for a portfolio of stocks on a given day using two
thresholds (dL, dU] from 500 NYSE and NASDAQ stocks
with top market caps traded at the end-of-day (EOD) of each
day over a past period T . (We use the aggregate return over T
to mitigate the day-to-day fluctuations.) The thresholds define

a portfolio at the EOD of day t ∈ T to include stock i when its
return rit ∈ (dL, dU], where rit =

pit
pit−1
− 1 and pit is the price

of stock i at the EOD of day t.
Figure 2a plots the relation between rit+1 and rit, i ∈
{1, ..., 500}, at the EOD of t ∈ T = {1-9 Nov. 2017}.
(Note that we have six trading days in T and an extra day
to compute the next-day return of the last day traded.) Using
[dL, dU] = (−0.3,−0.054], the fraction of stocks with positive
next-day returns is 0.75. That is, stocks whose returns are
down by 5.4% or more in one EOD during the six trading days
have a 75% chance of positive gain in the following EOD. The
aggregate return of the 500 stocks is 8.81% over the period
and a projected AR of 32.71 times. On the other hand, stocks
in the set bounded by [dL, dU] = (−0.054, 1] have only 51%
of positive returns over T .

Figure 2b further plots the (AR,DD) pairs of the 301
combinations enumerated using dL = −0.3 and dU = 0 :
−0.001 : −0.03. The power of dominance pruning is apparent
as the infinitely many points to the left of the Pareto frontier
can be eliminated without evaluation during learning.

The search of (dL, dU] over a past period allows us to learn
the best combination and to generalize it to the next day. In the
next section, we apply this iterative approach to learn the best
(dL, dU] on a given day to decide on the stocks to be traded on
the following day, using dominance pruning to significantly
reduce the number of candidates evaluated in learning.

The idea of choosing (dL, dU] in Figure 2 is due to mean
reversion (MR) [19] in stock trading. Jegadeesh first observed
this phenomenon, which shows that if a stock performs worse
than others on one trading day, it tends to do better on
the following trading day. The regression toward the mean
behavior [20] is reasonable because returns do not go down
forever and will eventually recover. Note that the use of two
parameters dL, dU in our example is not unique, and there are
many ways of realizing the general mean-reversion method.

Figure 2. An illustration of mean reversion and the Pareto frontier defined by (dL, dU] = (−0.3,−0.054]. (a) The graph shows the Pareto frontier obtained by enumerating the
301 combinations of dL = −0.3 and dU = 0 : −0.001 : −0.03. Note that the infinitely many points to the left of the frontier can be pruned without evaluation in learning. (b)
Each point in the graph represents the next-day return to today’s return of the 500 stocks traded on Nov. 1-9, 2017. The portfolio defined by (dL, dU] = (−0.3,−0.054] has 75%
of positive next-day returns.

American Journal of Artificial Intelligence 2022; 6(2): 36-47 41

3.4. Learning Algorithm and Implementation

Our learning algorithm is a guided generate-and-test that learns the MR parameters in two levels: the macro-level and the
micro-level. Figure 3 shows the learning process, and Figure 4, the pseudo-code.

Figure 3. The macro-level and micro-level learning process over the horizon.

ℓ
/* macro-level learning enumerates combinations of global parameters and find the pareto optimal sets, using */
 /* the mean-risk results reported by the micro-level over the horizon. */

1. function paretoPoint = macroLearn (𝐻𝐻𝐿𝐿, SL) /* input learning horizon 𝐻𝐻𝐿𝐿 and a list of stocks SL*/
2. initialize 𝐷𝐷𝐿𝐿,𝐷𝐷𝑈𝑈, 𝐿𝐿, NP𝑚𝑚𝑚𝑚𝑚𝑚 , NP𝑚𝑚𝑚𝑚𝑚𝑚; /* initialize 𝐷𝐷𝐿𝐿,𝐷𝐷𝑈𝑈, 𝐿𝐿, NP𝑚𝑚𝑚𝑚𝑚𝑚 , NP𝑚𝑚𝑚𝑚𝑚𝑚 in the enumerations */
3. for 𝐿𝐿𝐿𝐿 ∈ 𝐿𝐿𝐿𝐿size,𝐺𝐺𝐺𝐺 ∈ 𝐺𝐺𝐺𝐺size /* learning/generalization window combinations evaluated */
4. for 𝑁𝑁𝑁𝑁 ∈ 𝑁𝑁𝑁𝑁𝑡𝑡ℎ,𝑁𝑁𝑁𝑁 ∈ 𝑁𝑁𝑁𝑁𝑡𝑡ℎ /* LB threshold on #stocks and #effective trading days */
5. for 𝐷𝐷𝐷𝐷 ∈ 𝐷𝐷𝐷𝐷𝑡𝑡ℎ /*𝐷𝐷𝐷𝐷𝑡𝑡ℎ downside deviation thresholds evaluated */
6. {meanRiskPts} = microLearn(𝐿𝐿𝐿𝐿,𝐺𝐺𝐺𝐺,𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁,𝐷𝐷𝐷𝐷, NP𝑚𝑚𝑚𝑚𝑚𝑚 , NP𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐷𝐷𝐿𝐿,𝐷𝐷𝑈𝑈, 𝐿𝐿,𝐻𝐻𝐿𝐿, SL);
7. end
8. end
9. end
10. paretoPoint = findParetoPoint ({meanRiskPts}); /* find Pareto optimal points to use in 𝐻𝐻𝐿𝐿 */
11. end

/* micro-level learning learns the MR thresholds in LW and generalizes them to GW over the horizon, using the 12 */
/* global parameters supplied by the macro-level; it reports the mean-risk results of the horizon to the macro-level. */

12. function meanRiskPts = microLearn(𝐿𝐿𝐿𝐿,𝐺𝐺𝐺𝐺,𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁,𝐷𝐷𝐷𝐷, NP𝑚𝑚𝑚𝑚𝑚𝑚 , NP𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐷𝐷𝐿𝐿,𝐷𝐷𝑈𝑈, 𝐿𝐿,𝐻𝐻𝐿𝐿, SL)
/* given each LW over the horizon, find the best 𝑑𝑑𝐿𝐿 ,𝑑𝑑𝑈𝑈 ,ℓ combination for each 𝜔𝜔 and generalize to the next GW */

13. for 𝜔𝜔 ∈ {1, … ,𝑊𝑊} /* enumerate 𝜔𝜔 over 𝑊𝑊 windows of size LW in 𝐻𝐻𝐿𝐿 */
14. acceptabledLdUℓ = learnMR(𝜔𝜔,𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁,𝐷𝐷𝐷𝐷, NP𝑚𝑚𝑚𝑚𝑚𝑚 , NP𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐷𝐷𝐿𝐿,𝐷𝐷𝑈𝑈, 𝐿𝐿, SL);
15. apply acceptabledLdUℓ to each day in GW with #stocks ∈ [NP𝑚𝑚𝑚𝑚𝑚𝑚 , …, NP𝑚𝑚𝑚𝑚𝑚𝑚] in each day of GW;
16. end
17. meanRiskPts = (𝑚𝑚𝑟𝑟

𝐻𝐻𝐿𝐿,𝜎𝜎𝑟𝑟
𝐻𝐻𝐿𝐿); /* compute AR and DD of daily returns in GW over 𝐻𝐻𝐿𝐿 */

18. end

19. function acceptabledLdUℓ = learnMR(𝜔𝜔,𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁,𝐷𝐷𝐷𝐷, NP𝑚𝑚𝑚𝑚𝑚𝑚 , NP𝑚𝑚𝑎𝑎𝑥𝑥 ,𝐷𝐷𝐿𝐿,𝐷𝐷𝑈𝑈, 𝐿𝐿, SL)

/* over all days in an LW, 𝜔𝜔, find the best 𝑑𝑑𝐿𝐿 ,𝑑𝑑𝑈𝑈 ,ℓ combination and return acceptable list of 𝑑𝑑𝐿𝐿,𝑑𝑑𝑈𝑈 ,ℓ combinations */
20. for 𝑑𝑑𝐿𝐿 ∈ 𝐷𝐷𝐿𝐿,𝑑𝑑𝑈𝑈 ∈ 𝐷𝐷𝑈𝑈 ,ℓ ∈ 𝐿𝐿 /* MR thresholds 𝑑𝑑𝐿𝐿 ,𝑑𝑑𝑈𝑈 ,ℓ to use in 𝜔𝜔 */
21. for 𝑗𝑗 ∈ 𝜔𝜔 and across all stocks 𝑘𝑘 ∈ SL /* enumerate all stocks 𝑘𝑘 over day 𝑗𝑗 in LW 𝜔𝜔 */
22. if 𝑟𝑟𝚥𝚥−1:𝚥𝚥−𝐿𝐿,𝑘𝑘

𝜔𝜔����������� ∈ (𝑑𝑑𝐿𝐿,𝑑𝑑𝑈𝑈], record 𝑟𝑟𝑗𝑗,𝑘𝑘
𝜔𝜔 ; end /* record next-day return if MR of stock 𝑘𝑘 happens in day j-1 */

23. evaluate 𝑟𝑟𝑗𝑗𝜔𝜔 and 𝑛𝑛𝑗𝑗𝜔𝜔 for 𝑗𝑗 ∈ 𝜔𝜔 ; /* mean next-day return over k stocks and #stocks for day 𝑗𝑗 */
24. end
25. eval 𝑚𝑚𝑟𝑟

𝜔𝜔 (AR) and 𝜎𝜎𝑟𝑟𝜔𝜔 (DD) for 𝜔𝜔 with trading days ≥ NT �with 𝑛𝑛𝑗𝑗𝜔𝜔 ≥ NS in each�;
26. save (𝑑𝑑𝐿𝐿,𝑑𝑑𝑈𝑈 , ℓ) in acceptable𝑑𝑑𝐿𝐿𝑑𝑑𝑈𝑈ℓ list if it has large 𝑚𝑚𝑟𝑟

𝜔𝜔 and 𝜎𝜎𝑟𝑟𝜔𝜔 < DD and #stocks are in range NP𝑚𝑚𝑚𝑚𝑚𝑚 , NP𝑚𝑚𝑚𝑚𝑚𝑚
27. end
28. end

Global Parameters and Sample Ranges of Values Evaluated
DL: [0 : −0.001 : −0.05,−0.055 : −0.005 : −0.15,−0.16 : −0.01 : −0.2]
DU : [0 : −0.001 : −0.05,−0.055 : −0.005 : −0.15,−0.16 : −0.02 : −0.4]

L: 1 : 5; NP: [2, 10]; LWsize: 20; GWsize: [5, 10];
NSth: 2; NTth: 9; DDth: 0.014;HL: 4000

Figure 4. The pseudo-code of our algorithm has three routines: (a) macroLearn for learning a set of global control parameters, based on the range of values in the table; (b) learnMR
for learning the best combination of [dL, dU , `] that satisfies the MR condition in a learning window (LW), and (c) microLearn for applying the best combination of MR parameters
learned to the next generalization window (GW) and evaluating the mean-risk results of all the GWs over the horizon.

42 Benjamin Wan-Sang Wah: Dominance Pruning in Machine Learning for Solving Financial Trading and
Real-Time Multimedia Applications

The macro-level algorithm is used to generate and prioritize
the combinations of 12 global parameters that are common
across the horizon. Examples of these parameters include
the range of the number of stocks traded each day and the
durations of the learning window (LW) and the generalization
window (GW). Using the global parameters supplied by the
macro-level, the micro-level learning algorithm learns the MR
parameters in each LW to decide on the stocks traded in the
next GW. After repeating the process over all GWs, it reports
the aggregate AR and DD found for the horizon to the macro-
level. Based on the results of all the combinations, the macro-
level applies Pareto optimality to prune a majority of the
combinations, including those not evaluated. It then selects
the best combination of the global parameters for the horizon.

The macro-level is implemented by the routine macroLearn
(Lines 1-11) with two arguments (horizon HL and stock list
SL). It enumerates three sets of parameters: (a) LWsize
(learning window size), (b) GWsize (generalization window
size), and (c) thresholds for deciding whether to generalize the
parameters found in a learning window (LW) to the immediate
next generalization window (GW). The latter set includes NSth
(lower bound on the number of stocks traded in a day in LW);
NTth (lower bound on the number of days in LW with stocks
traded); and DDth (upper-bound DD allowed in LW). The table
in Figure 4 shows a sample of the range of values used in
our implementation. The ranges are either user-specified or
learned through experimentation.

The micro-level learning algorithm starts by using a set of
12 global parameters supplied by the macro level. It learns
the best MR parameters in each LW before generalizing them
to the immediate next GW. In each LW, it evaluates the
next-day returns of various candidate sets of stocks selected
by the MR thresholds (dL, dU], and computes AR and DD
for each combination of dL, dU , `, where ` is the window
for smoothing daily return fluctuations over the past ` days.
It then applies the Pareto optimality to prune suboptimal
MR thresholds, including those not evaluated. Since these
combinations generally range from high AR with high DD to
low AR with low DD, we constrain the maximum DD tolerated
by DDth and pick the one with the highest AR. The result is a
(dL, dU , `) combination that will be used for selecting stocks
for trading in the following GW. We repeat the learning and
generalization process over the horizon by staggering the LWs
and GWs and report the AR and DD obtained over all the
GWs in the horizon to the macro level. Note that the kernel
metrics in an LW have statistical stationarity in some temporal
localities. This observation forms the basis of generalizing the
MR parameters learned in one LW to the following GW.

The micro-level is implemented by two routines. The first
routine microLearn (Lines 12-18) is called by macroLearn. It
evaluates the MR parameters for all the LWs over the horizon
one at a time and generalizes the parameters to the following
GW. The process is iterative (Lines 13-16): in each LW, it calls
learnMR to find the best dL, dU , ` for this LW, generalizes the
combination to the next GW, and computes the corresponding

return. The routine then iterates over all LWs and GWs in the
horizon and returns the AR and DD of the aggregate sequence
of GWs evaluated (Line 17).

The second micro-level routine learnMR (Lines 19-28) is
called by microLearn. It enumerates all the parameters for
each LW and records the next-day return of stock k ∈ SL
when MR happens (Line 22). The MR condition occurs when
the average smoothed return over the past ` ∈ L days is in
(dL, dU] and the number of stocks each day is in the range
[NPmin,NPmax]. We then record AR (mω

r) and DD (σωr) when
the number of significant trading days (each with at least NSth
stocks) in ω is greater than or equal to NTth. The routine returns
to microLearn [dL, dU , `] of all LWs with high AR and with DD
smaller than some upper bound DD.

3.5. Experimental Results

In this section, we report the best set of simulation results
using a list of 1000 NYSE and NASDAQ stocks with top
market caps on 8/14/2020 and a horizon of 4,000 days
(9/27/2004 to 8/14/2020). We assume that trading would be
done on Interactive Brokers Group (IBKR Lite) that charges
no commission on trading US exchange-listed stocks [21].

Figure 5a plots the (AR,DD) of evaluating 640 sets of
the 12 control parameters generated by macroLearn over the
4000-day horizon HL ending at 14 August 2020. (In other
experiments, we evaluated 10880 combinations of the control
parameters but the improvement is marginal.) Each point
corresponds to a complete run of microLearn over the horizon
using a given combination of parameters. We set the number
of stocks traded each day in GW to [NPmin,NPmax] = [2, 10],
[2, 15], and [2, 20], respectively. Note that all those points to
the left of the Pareto frontier are pruned.

Figure 5b plots the cumulative returns found in the sequence
of GWs over the horizon based on the Pareto point with the
highest AR. For example, the AR and DD of 4,000 days for
dLdU `(a) are 0.75 and 0.1402, respectively. For comparison,
we show B. Li et al.’s PAMR result [22] ran with default
parameters with a similar AR but a higher DD of 0.197.

Note that the best parameters learned can generalize well
to the future. The reason is that they were learned using a
4000-day horizon, and a small extension of the horizon would
not change its optimality. The parameters may need to be
relearned when the horizon is further extended.

Figure 5c compares the number of stocks traded each day
(NSPD). Our d1d2`(a) strategy limits NSPD between 2 and
10, whereas Li’s method does not have such a limit and has a
much higher maximum NSPD of 241. Note that a large NSPD
may be impractical in daily investments with limited capital.

We have shown in this section the merit of using the
domain-independent Pareto optimality for pruning suboptimal
parameter sets during learning. When combined with
the domain-dependent mean-reversion strategy for defining
portfolios, our simulation results over 21 years lead to an
average annual return of 175% with low downside deviation
and a small number of stocks traded each day.

American Journal of Artificial Intelligence 2022; 6(2): 36-47 43

(a) AR-DD tradeoffs of the global control parameters

(b) Cumulative returns of the Pareto point in (a) with the highest AR

(c) Number of stocks traded each day

Figure 5. Experimental results. (a) Scatter plot showing the AR-DD tradeoffs on the 640 sets of 12 global control parameters enumerated by macroLearn in Figure 4. The Pareto
frontier points are those whose AR and DD are not dominated. (b) Cumulative returns of our proposed strategy and the parameters used in obtaining the results. The best AR is 0.75
with DD of 0.1402. The result of PAMR [22] shows a similar AR but a higher DD of 0.197. (c) A comparison of the number of stocks traded each day (NSPD) over the 4000-day
horizon. Our d1d2`(a) strategy has a maximum NSPD=10, whereas PAMR has a maximum NSPD=241.

44 Benjamin Wan-Sang Wah: Dominance Pruning in Machine Learning for Solving Financial Trading and
Real-Time Multimedia Applications

4. Dominance Pruning in Learning
(Real-Time Multimedia Application)

Our goal in this section is to present a dominance relation for
reducing the complexity of learning the relationship between
the controls used in a multimedia application and the quality
perceived by users. As is discussed in Section 1, we propose
to reduce the original data space B to a subspace S that
uses awareness as a perceptual-quality measure. However,
S may involve infinitely many past scenarios, each requiring
expensive offline subjective tests (on the order of minutes). To
this end, we propose a dominance relation in Section 4.2, using
an axiom from our past work, to approximate S to within an
error threshold after a small number of subjective tests. The
result is a significant reduction in the complexity in learning S
that is within an error bound of the original S.

4.1. Background

Consider a voice-over-IP application that allows users to
converse using voice over the Internet. In this application,
the control is the mouth-to-ear delay (MED) between the
speaker and the listener, and an “optimal” MED entails
the tradeoff between voice quality and the conversation’s
responsiveness. Another example is a real-time online game
in which increasing the delay of actions may make users feel
that the game’s responses are sluggish yet better synchronized.

There are two general concepts on perceptual quality in
the literature: just-noticeable distortion (JND) and awareness.
In psychophysics, JND is the minimal change of the original
input (called reference I) to its modification (called distortion
I + ∆I), whose effect can be perceived by humans [5, 23].
In contrast, awareness p is the fraction of human subjects who
can detect a change when I and I + ∆I are presented in a
random order one after another. With this definition, a 75%
awareness level is generally used in psychophysical studies.
Given the three parameters (I , ∆I , p), we can relate them in a
three-dimensional JND surface p(I,∆I). In this application,
the kernel is the awareness measured.

Using awareness as a measure of perceptual quality, the
control of end-to-end delays to improve the user-perceived
subjective quality is challenging because the function relating
awareness to controls is ill-defined. Heuristic methods that
combine quantitative metrics as a crude approximation to
perceptual quality do not work well. A more accurate approach
is to learn their relation using offline subjective tests conducted
under a broad set of operating conditions and to generalize the
relation learned to run-time operations. However, subjective
tests are expensive to conduct even for one scenario, and there
are infinitely many past scenarios to be evaluated.

4.2. Dominance Relation on Awareness

In this section, we formulate a dominance relation for
pruning dominated operating points in a JND surface using an
axiom we developed earlier [24]. We have observed from our
past experiments on real-time multimedia the monotonicity of

awareness to I and ∆I , respectively. The following axiom
states this monotonicity property.

Axiom 4.1. Monotonicity of Awareness [24]. The awareness
in a JND surface has the monotonicity properties to the
reference (I) and its modification (∆I), respectively. (a)
Awareness is monotonically non-increasing to I for a given
∆I . (b) Awareness is monotonically non-decreasing to ∆I for
a given I . In other words, when given I (resp., ∆I), awareness
is a monotonic function to ∆I (resp., I).

The axiom was originally developed for one reference input
I but can be extended to multiple reference inputs in a
straightforward manner [25]. It requires the continuity and
smoothness of awareness to I and ∆I , respectively. These
properties are valid because changes to awareness in a small
region of I and ∆I (up to some granularity) are perceptually
indistinguishable [26].

Figure 6a illustrates the axiom. For a given reference I
on the x-axis, awareness is monotonically non-decreasing to
its modification ∆I on the y-axis. Likewise, for a given ∆I
on the y-axis, awareness is monotonically non-increasing with
respect to I on the x axis.

We can draw the following observation from the
monotonicity properties in Axiom 4.1.

Figure 6. (a) The JND surface of a voice-over-IP application shows a nonlinear relation
among awareness p (color on the z axis), MED (I on the x axis) and increase in MED
(∆I on the y axis). The blue line represents a constant awareness of 0.75. The top-
left-hand corner of the surface shows that subjects are very sensitive to changes in MED
when the original MED is small. (b) The dominance relation is based on Axiom 4.1. The
diagonal indicates the direction of monotonicity and pointsA,B, andM have subjective
tests conducted with awareness pA, pB , and pM , respectively. We can prune the top-left
(resp., bottom-right) butter-colored block when pA − pm ≤ δ (resp., pM − pB ≤ δ).

Observation 4.1. Error bounds on awareness for points in a
rectangular region of JND. Consider two points p1(I1,∆I1)
and p2(I2,∆I2). If I1 < I2 and ∆I1 > ∆I2, then for any
point p3(I3,∆I3) where I1 ≤ I3 ≤ I2 and ∆I1 ≥ ∆I3 ≥
∆I2, we have p1 ≥ p3 ≥ p2. As a result, in a rectangular
region on a JND surface, the awareness of any point in the
region is bounded by the awareness of the two diagonal corner

American Journal of Artificial Intelligence 2022; 6(2): 36-47 45

points A and B (see Figure 6b).
This observation leads to the following dominance relation

for pruning points on the JND surface whose awareness is
within a threshold δ from its actual value.

Property 4.1. Dominance relation on awareness to within an
error threshold δ. Consider two diagonal corner points A and
B of a rectangular block on a JND surface with awareness pA
and pB (where pA ≥ pB), respectively. If pA − pB ≤ δ, then
any point C in the block have awareness pC where pA− pC ≤
δ and pC − pB ≤ δ. Hence, if we replace pC by p′C = pA or
p′C = pB , then |p′C − pC | ≤ δ.

This property follows from Axiom 4.1 and Observation 4.1.
We have developed an efficient binary-divide algorithm

that uses the dominance relation to find an approximate JND
surface with an awareness that is within an error threshold
δ. We start by testing the upper-left (A) and lower-right (B)
diagonal points of the surface (Figure 6b). We stop the process
if pA − pB ≤ δ, where δ is an acceptable threshold on the
uncertainty in awareness. Otherwise, we conduct subjective
tests at the center point (M) of the diagonal and divide the
surface into four regions. As the two butter-colored blocks
have awareness bounded by their two corner points, we can
prune the top-left (resp., bottom-right) block when pA−pM ≤
δ (resp., pM − pB ≤ δ). Since the two azure-colored
regions cannot be pruned by pM , we can apply the process
to each. By repeating the process and subdividing a region
into smaller blocks, we can either measure the awareness at
the two diagonal and the midpoints or prune the region if
its uncertainty is within δ. The awareness in the resulting
JND surface is an interpolation of those points verified by
subjective tests. We use interpolations to ensure that the values
are smooth in the final JND surface, although we may not be
able to guarantee that the interpolated points would satisfy δ.

By applying the algorithm, we can interpolate all the
awareness in Figure 6a by performing subjective tests on
five points using δ = 0.01 [24]. For comparison, without
the dominance relation, it would be necessary to perform
expensive subjective tests at hundreds of points, rendering the
problem intractable.

The JND surface described so far was generated under
a given operating condition. For example, in the VoIP
application, subjective tests are conducted under a given
network loss and delay scenario. Under some general
assumptions, a JND surface collected under one scenario
can be extended to other scenarios without new subjective
tests [24]. In cases when the conversational style changes, new
subjective tests will need to be conducted. In short, very few
JND surfaces would need to be collected offline to cover a wide
range of operating conditions.

The ability to learn JND surfaces efficiently has opened
many new opportunities that allow a real-time control system
to generalize the JND surface learned offline to determine the
best operating points in the next time instant. We have made
extensions to combine multiple offline JND surfaces, each
associated with one quality metric. The combined JND surface
allows us to identify the best operating points for interactive
multimedia applications at run-time [24].

For example, consider the VoIP application running at a
suboptimal MED (on the x axis of the JND surface). The
best run-time control is to increase or decrease the MED along
the y axis (that defines ∆MED) until it reaches a new MED
whose awareness is acceptable (say at 75%). The system then
evaluates whether the signal quality and the interactivity are
satisfactory and re-adjusts the MED if needed. The MED
found can then be generalized to the near future by using the
properties of the continuity of awareness and temporal locality.

Figure 7 illustrates the process of offline learning of the JND
surface, run-time adaptation of the JND surface to the current
network and operating conditions, and generalization of the
adapted surface to the best operating points.

Figure 7. Using the offline-learned JND surface in real-time to find the best operating
points in a VoIP application.

As another example, optimizing the vector of actions in
a multi-player online game makes it possible to conceal the
virtual delay of multi-player actions. The result allows users
to perceive the game to run smoother (with more negligible
virtual delay) without compromising the synchronization of
action orders [25]. Interested readers can refer to the
references for details [24, 25].

5. Conclusions
This paper presents the design of dominance relations to

significantly reduce the space evaluated in machine learning
for solving two data-intense applications. Using kernels to
represent the statistical quality, average density, or probability
of solutions in a subspace, we present the use of dominance
relations to prune a subspace with suboptimal kernels.

In the financial trading application studied, we define a
subspace in which stocks are traded daily. We present an
application solver based on mean-reversion in which we learn
thresholds for identifying stocks with a high probability of
positive return the following day. Using the projected annual
return and the downside deviation as our kernel metrics, we
utilize the domain-independent Pareto optimality to prune
suboptimal mean-reversion thresholds in the learning space.

In the real-time multimedia application studied, we reduce
the space of abstract perceptual qualities to a subspace defined
by the awareness kernel metric. As this subspace may require

46 Benjamin Wan-Sang Wah: Dominance Pruning in Machine Learning for Solving Financial Trading and
Real-Time Multimedia Applications

expensive subjective tests on many past scenarios, we present
a dominance relation that allows the pruning of a majority
of suboptimal past scenarios and that guarantees the pruned
scenarios to be within a prescribed error tolerance. With
only a few subjective tests and interpolations, we can learn
a complete mapping between awareness and control that can
be used by the run-time application system to find the best
operating points.

Acknowledgements
This project was supported by the National Key

Basic Research Program of China (973 Program) No.
2014CB340401. The author would like to thank Mr. Kyle
Xing for his support in developing the programs in Section 3.4.

References

[1] E. Fama, “Random walks in stock market prices,”
Financial Analysis Journal, vol. 21, no. 5, pp. 55-59,
Sep.-Oct. 1965.

[2] Y. LeCun, J. Denker, and S. Solla, “Optimal brain
damage,” in Advances in Neural Information Processing
Systems (D. Touretzky, ed.), vol. 2, Morgan-Kaufmann,
1989.

[3] D. Blalock, J. J. G. Oritz, J. Frankle, and J. Guggag,
“What is the state of neural network pruning,” in Proc.
of the 3rd MLSys Conference, 2020.

[4] L. A. Breslow and D. W. Aha, “Simplifying decision
trees: A survey,” The Knowledge Engineering Review,
vol. 12, no. 1, pp. 1-47, 1997.

[5] G. T. Fechner, E. G. Boring, and D. H. Howes,
Elements of Psychophysics [Elemente der Psychophysik
(Translated by H. E. Adler)]. Holt, Rinehart and Winston,
1966 [First published, 1860].

[6] B. W. Wah, “Using kernels to harness the complexity
of big data applications,” Int’l Journal on Artificial
Intelligence Tools, vol. 31, no. 3, pp. 2241006-1-11,
2022.

[7] H.-W. Shen and A.-L. Barabasi, “Collective credit
allocation in science,” Proc. National Academy of
Sciences, vol. 111, no. 34, pp. 12325-12330, 2014.

[8] S. Milgram, “The small-world problem,” Psychology
Today, vol. 1, no. 1, pp. 61-67, 1967.

[9] J. Huang, W.-Q. Wang, H.-W. Shen, G. Li, and X.-Q.
Cheng, “Temporal scaling in information propagation,”
Scientific Reports, vol. 4, no. 5334, pp. 1-6, 2014.

[10] Z. Ji, Y. Pang, and X. Li, “Relevance preserving
projection and ranking for web image search reranking,”

IEEE Trans. on Image Processing, vol. 24, no. 11, pp.
4137-4147, 2015.

[11] X. Yan, J. Guo, Y. Lan, J. Xu, and X. Cheng,
“A probabilistic model for bursty topic discovery in
microblogs,” in Proc. 29th AAAI Conference, (Austin,
TX), 2015.

[12] A. Jouglet and J. Carlier, “Dominance rules in
combinatorial optimization problems,” European J. of
Operational Research, vol. 212, no. 3, pp. 433-444, Aug.
2011.

[13] J. Yang and J. Leskovec, “Overlapping community
detection at scale: A nonnegative matrix factorization
approach,” in Proc. ACM Int’l Conf. on Web Search and
Data Mining (WSDM), (Rome, Italy), 2013.

[14] Z. Wei, X. Liu, F. Li, S. Shang, X. Du, and J.-R. Wen,
“Matrix sketching over sliding windows,” in Proc. ACM
SIGMOD, (San Francisco, CA), 2016.

[15] B. Li and S. C. H. Hoi, “Online portfolio selection: A
survey,” ACM Computing Surveys, vol. 46, no. 3, p. 35,
2014.

[16] A. Jouglet and J. Carlier, “Dominance rules in
combinatorial optimization problems,” European J. of
Operational Research, vol. 212, no. 3, pp. 433-444,
2011.

[17] C.-L. Hwang and A. S. M. Masud, Multiple Objective
Decision Making-Methods and Applications: A State-
of-the-Art Survey. Lecture Notes in Economics and
Mathematical Systems, No. 164, Springer-Verlag, 1979.

[18] K. Deb, “Multi-objective optimization,” in Search
Methodologies: Introductory Tutorials in Optimization
and Decision Support Techniques, pp. 403-449, Springer
US, 2014.

[19] N. Jegadeesh, “Evidence of predictable behavior of
security returns,” Journal of Finance, vol. 45, pp. 881-
898, 1990.

[20] S. Stigler, “Regression toward the mean, historically
considered,” Statistical Methods in Medical Research,
vol. 6, no. 2, pp. 103-114, 1997.

[21] InteractiveBrokers, “Pricing structure,” Nov., 2022.
https://www.interactivebrokers.com/en/pricing/commissions-
home.php.

[22] B. Li, P. Zhao, S. C. H. Hoi, and V. Gopalkrishnan,
“PAMR: Passive aggressive mean reversion strategy for
portfolio selection,” Machine Learning, vol. 87, no. 2,
pp. 221-258, 2012.

[23] J. Ferwerda, “Psychophysics 101: how to run perception
experiments in computer graphics,” in ACM SIGGRAPH
2008 classes, (Los Angeles, CA), p. 87, 2008.

American Journal of Artificial Intelligence 2022; 6(2): 36-47 47

[24] J. X. Xu and B. W. Wah, “Optimizing the perceptual
quality of real-time multimedia applications,” IEEE
Multimedia, vol. 22, no. 4, pp. 14-28, Oct-Dec 2015.

[25] J. X. Xu and B. W. Wah, “Consistent synchronization of
action order with noticeable dealy in online games,” ACM
Trans. on Multimedia Computing, Communications, and
Applications, vol. 8, no. 1, Jan. 2017.

[26] X. Xu and B. W. Wah, “Optimality of greedy algorithm
for generating just-noticeable difference surfaces,” IEEE
Trans. on Multimedia, vol. 18, no. 7, pp. 1330-1337,
July 2016.

