IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. I, JANUARY [98)

The Design of Optimal Systolic Arrays

Abstract — Conventional design of systolic arrays is based on
the mupping of an algorithm onto an interconnection of processing
elements in 2 VLSI chip. This mapping is done in an ad hoc
manner, and the resuiting configuration usually represents a
feasible but suboptimal design. In this paper, systolic arrays are
characterized by three classes of parameters: the velocities of data
flows, the spatial distributions of data, and the periods of com-
putation. By relating these parameters in constraint equations
that govern the correctness of the design, the design is formulated
into an optimization problem, The size of the search space is a
polynomial of the problem size, and a methodology to system-
atically search and reduce this space and to obtain the optimal
design is proposed. Some examples of applying the method, in-
cluding matrix multiplication, finite impulse response filtering,
deconvolution, and triangular-matrix inversion, are given.

Index Terms — Data distribution, data flow, parameter method,
period, recurrence equation, systolic array, velocity.

I. INTRODUCTION

HE evolution in very large scale integration (VLSI)

technology has had a great impact on computer architec-
ture. Specialized algorithms can be implemented on a VLSI
chip using multiple, regularly connected processing elements
(PE’s) to exploit the great potential of pipelining and multi-
processing. This type of array processor has been referred.to
as a systolic array [11]. One of the many advantages of this
approach is that each input data item can be used a number of
times once it is accessed, and thus, a high computation
throughput can be achieved with only modest bandwidth.
Other advantages include modular expandability, simple
and regular data and control flows, and use of simple and
uniform cells. »

Systolic arrays have-been classified into (semi-) systolic
arrays with global data communications and (pure) systolic
arrays without global data communications [11]. In semi-
systolic arrays, a data item accessed from memory is broad-
cast to and used by a number of possibly nonidentical cells
concurrently. Although this approach is potentially faster
than systolic arrays without data broadcast, providing (or
collecting) a data item to (or from) all the cells in each cycle
requires the use of a global bus that may eventually slow
down the processing speed as the number of cells increases,
On the other hand, a pure systolic array eliminates the use of
broadcast buses and implements the algorithm in pipelines
extending in different directions. Several data items flowing
along different pipes with the same or different rates may
meet and interact. The PE’s operate synchronously, that is,

Manuscript received April 4, 1983; revised January 25, 1984, This work was.

supported in part by a David Ross Grant from the Purdue Research Foundation
and by the National Science Foundation under Grunt ECS80-16580.

The authors are with the School of Eléctrical Engineering, Purdue Univer-
sity, West Latayette, IN 47907, '

GUOQ-JIE LI, STUDENT MEMBER, IEEE, AND BENJAMIN W. WAH, MEMBER, IEEE

each data item must stay in a PE for one and only one clock
cycle, and all the necessary operands to be processed by
a PE in each computational step must arrive at this PE
simultaneously. This mode of pipelining is referred to as
systolic processing.

In general, systolic arrays are somewhat inflexible to im-
plement because they must be algorithmically specialized.
Studies have been made to design reconfigurable inter-
connections for the pure systolic array approach in order to
provide the flexibility needed while retaining the benefits of
uniformity and locality {17]. Another approach is based on
the mapping of different algorithms onto a fixed computer
architecture. This is exemplified in the mapping of algo-
rithms onto wavefront array processors {12] and linear array
of processors [16]. Special controls are included in order to
tailor the algorithms to the architectures.

The efficient mapping of algorithms onto architectures is
very important in a direct implementation, and also esseatial
as a benchmark for comparison when algorithms are mapped
onto a fixed architecture. Previously, the mapping of algo-
rithms has been done in a rather ad hoc fashion. The proposed
designs usually represent feasible but suboptimal solutions.
Previous studies can be classified into four categories. In the
first type, transformations are performed at the algorithm-
representation level, and a direct mapping is made from this
level to the architecture [8], [18],[26]. In the second type,
transformations are performed at the algorithm-model level,
and there are procedures for deriving the model from the
algorithm representation and for mapping the mode! into

“hardware [1], [2], [4], [15], [16], [21]-[25], [28]-[30). In the

third type, transformations are performed on a previously
designed architecture to obtain a new architecture [27]. In
the last type, transformations are performed to map the sys-
tolic architecture into the function implemented and to prove

" the correctness of the design [19]. A critical review of the

methodologies can be found in [20].

For the above methods, very little can be said about the
optimality of the resulting design. Most of the transtforma-
tional methods are heuristic in nature. Although minimum
execution-time algorithms can be systematically derived and
heuristics for optimizing space are studied 4], no formal
method for optimally mapping the transformed algorithms
onto systolic architectures is proposed.

The objective of this paper is to provide a systematic
methodology for the design of optimal pure planar systolic
arrays for algorithms that are representable as linear recur-
rence processes. Planar systolic arrays are those in which the
interconnections can be laid out in a plane without crossing
each other. Linear recurrence processes (to be defined later)
with one- or two-dimensional inputs are suitable for imple-

0018-9340/85/0100-0066801.00 © 1985 IEEE

LI AND WAH: DESIGN OF OPTIMAL SYSTOLIC ARRAYS

mentation on these systolic arrays, and inputs with a larger
number of dimensions have to be partitioned first. The merit
of a design is measured by the completion time (T') or the
product of the VLSI chip area and the completion time
(A X T)or the product of the VLSI chip area and the square
of the completion time (A X T*). However, area is a com-
plex function of the number of PE’s, the number of buffers,
the interconnection pattern, and the available technology,
and has to be assessed for each configuration separately. The
discussion on area measurement is outside the scope of this
paper, and the number of PE’s is used as an indicator for the
area required.

Systolic designs are characterized by three classes of
parameters: velocities of data flows, spatial distributions of
data, and periods of computation. The relationships among
these parameters are represented as constraint equations,
and the completion time and hardware complexity of a design
can be expressed in terms of these parameters (Section 1),

A systematic methodology to solve the design problem as an .

optimization problem is discussed in Section IV. Examples
illustrating the method are shown in Section V.

II. CHARACTERISTICS OF RECURRENCE PROCESSES -

In this section, the characteristics of recurrence processes
and their relationships to systolic processing are discussed.
The following are examples of linear recurrences.

1) Finite Impulse Response (FIR) Filtering: FIR filter-
ing, an important technique in signal processing [3], 5],
[10], can be considered as a matrix—vector multiplication

. -
W F”al cer gg 0 X1
)f’ =1 a \ B I n>m Q.1)
: : - G
AR | L
L ' 4

where the matrix is an upper-triangular Toeplitz band matrix.
yi, 1 =i = n, is a summation of product terms, the kth term
of which is denoted as y}. The operation can be written as a
recurrence equation

i =0 lsisn

yi =)': -t + Gk Xivk-)
lsisnlsk=mx =0 forj>n,
. (2.2)

2) Two-Dimensional Matrix Multiplication [5], [7], (9],
[11]: Each term in the multiplication of two two-
dimensional matrices, C = A X B, is a summation of
product terms. The kth term of ¢;; can be computed as
C?} = () ‘

1<i,j=n

chi=cP +aub, 1sijksn. (23
3) Discrete Fourier Transform (DFT): DFT is usually re-
garded as a matrix—vector multiplication, ¥ = () X X, in

which () contains power terms of w = ez"‘/‘T"‘, the nth root

67

of unity. Each term of Y can be expressed as a summation of
product terms: y; = i xw®,0 < i = n — 1. This formof
representation requires additions, multiplications, and power
operations. Rewriting it in a different way, the kth term of
Yi is
y?=0 0=
lsk=n0<i=sn-1.
' (2.4)

isn-—-1

yi=ylTo + X

This representation requires multiplications and additions

only.
) Polynomial Multiplication: The multiplication of two

polynomials (£ aix') (Z72) b,x’) = (E25°c.ix') can be re-

duced to finding the coefficients of the resulting polynomial.
The kth term of ¢; is expressed as

O0=si=s=2n-2

O0=<si=s=2n -2,

l=sk=snb =0
forj <Qorj =n.

¢! =

PR
ci = ¢+ apo1bigs

(2.5)

5) Deconvolution: This is the inverse of FIR filtering
[see (2.1)] that solves for vector X given vector Y and the
Toeplitz matrix. By equating the product on the left-hand
side with vector Y on the right-hand side, a,x, = y, =
30 Gueks1Xitm-ks 1 = i = n. This can be expressed as a re-
currence with a temporary variable z;

2=y, lsi=sn
z{.‘z Zl -t am~k+lxi+m-k
lsksm-1,1si=sn, x, = 0
forj>n
zZr!
x;=""l—' Il=sisn. 2.6)
i

6) Triangular Matrix Inversion: Given an upper-
triangular matrix U such that u, ; = 0,i > j,V = U™ (the
inverse of U) can be expressed as a recurrence by using a
temporary variable w; ; [6]

W{:-+11=0 lSi<an
Wﬁj=W:‘3‘ u;,kv,‘,,- 15[<k$]$n
w:+l
vw—--—-‘- Isi<j=sn
ul,i
1 . "
v, = l1si=n. .7
Ui

7) Two-Dimensional Tuple Comparison: Given two two-
dimensional matrices A and B, the operation of finding
whether the ith row of A is identical to the jth row of B can
be expressed as a recurrence [9]

¢); = TRUE lsi,jsn
cti= P N(aiw= b0 1 (2.8)
Equations (2.2) and (2.4)—(2.6) above are one-dimensional

=i j,k=n.

68

recurrences, while others represent two-dimensional
recurrences. , ‘
In general, linear recurrences for the computation of a
" two-dimensional result Z from two two-dimensional inputs X
and Y can be expressed as .

Zf,/ = f[z}‘_‘}’.x(i,k),y(k, Nl

where f is a function to be executed by a PE, and k is a
positive integer bounded by a linear function of i, J, and the
problem size. The size of a problem s characterized by a
finite set of integers. For example, the size of the FIR-
filtering problem [see (2.2)] is characterized by {n,m}. 255
is the intermediate result of the last step of iterative com-
putation at position (i, j). x(i, k) and y(k, j) are linear func-
tions in linear recurrences to define the indexes of X and Y in
the kth step of iteration. In the following discussion, the
coefficients of i, j, and k in x(i, k) and y(k, j) are 1 or —1.
This assumption will be extended in Section V so that the
coefficients can be any integer. & is defined within g recur-
rence to indicate the order of evaluation. When § = —1, the
recurrence is called a forward recurrence, and z* is defined
in terms of z*''. When 8 = 1, the recurrence is termed a
backward recurrence, and z* is defined in terms of z*™'. The
triangular matrix inversion recurrence defined above is a
forward recurrence, while others are backward recurrences.

There are four ways of representing a recurrence process
when the operations performed in computing z;; are com-
mutative: forward recurrence, backward recurrence, and
the corresponding recurrences in which the evaluation order
of terms are reversed. As an example, the following three
recurrences are equivalent ways of representing matrix multi-
plication in addition fo (2.3):

é=1lor~1 2.9)

=0, o=t Garribaier; k=100
(2.10)

C,"-,*,-' = 0; Cf,! =, Cf,"/’ + a;.iby, k=n,,1
. . 2.11)
ey =0 cly=clf + Gnrnbriny k=m0l
) 2.12)

These four formulations represent only two unique ways of
computing ¢, ;. Equations (2.10) and (2.11) are equivalent as
far as the evaluation order of terms is concerned. The same
can be said, about (2.3) and (2.12). In designing systolic
algorithms, only the evaluation order is important, and it is
insignificant whether a recurrence is written in the forward or
~ backward form. In this- paper, it is assumed that the two
alternate ways of solving the same problem are expressed as
backward recurrences. Since the complexities of the resulting
design may depend on the order of evaluation, the two alter-
native recurrences must be studied.
.- The key to systolic processing is that the appropriate data
-must be in the appropriate place at the time they have to be
processed. That is, both- timing and data distributions are
very important, and the relationship between them must be
‘identified. The coupling between time and space is provided
by index k in the general recurrence formula. The superscript

k is concerned with time, that is, the number of steps of

iterative operation, whereas the subscript k¥ is concerned

ILEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 1, JANUARY 1985

with data distribution. For example, in matrix multiplication,
¢t , can be computed provided that c&', a,y, and by ; arrive at
the same PE simultancously. In other words, the kth step
of computing ¢;; requires the intermediate result of
the (k — 1)st step of computing ¢; ;, an entry in row i and
column & of matrix A, and an entry in row & and column j of

‘matrix B.

1II. PARAMETERS FOR DESIGNING SYSTOLIC ARRAYS

In this section, a set of parameters characterizing the be-
havior and the correctness of systolic arrays are defined [13].
These parameters are illustrated with respect to the matrix-
multiplication problem that can be represented in a backward
recurrence cf; = flct3', a(i, k), bk, j)) [see (2.3)]. A pos-
sible systolic design is depicted in Fig. 1. The data flows of
the three rhomboidal data blocks are in three directions: A
moves towards the north, B moves towards — 120° north, and
C moves towards —60° north. During a clock cycle, each PE
receives three data items from three different pipes and
executes a multiply—add operation. These data items advance
into neighboring PE’s along their own pipes synchronously in
the next clock cycle. This design is for illustration and
requires the minimal completion time but not the minimal
number of PE’s. If hardware or #PE X T or #PE X T is
1o be optimized, one of the matrices has to be stationary;
however, the concept of vector composition of zero vectors
cannot be depicted clearly.

A systolic array consists of a mesh of interconnected PE’s.
The distance between two directly connected neighboring
PE's is defined to be unity. If butfers exist between two
adjacent PE’s, they are equally spaced along the link. A clock
cycle is a unit of time during which one iterative operation is
computed in a PE and data advance into neighboring PE’s
or buffers, or a datum advances from one buffer into the
next stage. ,

The ways that data are fed into a systolic array are related
and can be characterized by three parameters: velocity,
space, and time. If these parameters are known, the systolic
array can be completely determined. The first two parameters
defined below are vectors;' the third parameter is a scalar.

Parameter 1 — Velocity of Data Flow: The velocity of a
datum x is defined as the directional distance passed by x
during a clock cycle and is denoted as X,;. Since the distance
between adjacent PE’s is unity, and buffers, if they exist, are
equally spaced between PE's, the magnitude of X, must be a
rational number of the form i /j where i andj are integers and
i = j. This means that in j clock cycles, x has propagated
through i PE's and j — i buffers, If i = 1, then there are
j — | buffers between two neighboring PE’s in the pipelining
direction of x. Otherwise, there are j — i buffers between
i + 1 PE’s, and their positions have to be determined from
the recurrence process. The locations of these buffers for one
of the input directions can be chosen randomly, and these
determine uniquely the locations of buffers for the other input
and output directions.

'All vectors in this paper are indicated by symbols in bold letters with an
arrow on top (¢.g., ¥). The magnitude (absolute value) of a vector is enclosed
in vertical bars. A negative value indicates that the direction of the vector
is reversed.

LI AND WAH: DESIGN OF OPTIMAL SYSTOLIC ARRAYS

e ()

69

'l

©

Fig. 1. The systolic processor for two-dimensional matrix multiplication (¢, = 0; ¢f, = ¢! + a, b, » V=0 j ks).
. (@) Systolic processor. (b) Vector equations with (4, = 1, = 1, = 1), (¢) Structure of cell,

Parameter 2— Data Distribution: For a two-dimensional
array X used as input or output of a systolic array, the ele-
ments along a row or a column are arranged in a straight line
and are equally spaced as they pass through the systolic array,
and the relative positions of the elements are iteration in-
dependent. Other forms-of data distributions are not consid-
ered in this paper. Suppose the row and column indexes of
X are i and j, respectively. The row displacement of X is
defined as the directional distance between Xi.; and x,., ; as
X pusses through the systolic array and is denoted by X,.
Similarly, the column displacement of X (¥;) is defined
as the directional distancc'bctween,x,, jand x; 4. If X
is a one-dimensional array, the index in accessing X is
implicit,"and the item displacemenr of X (¥,) is defined as
the directional distance between Xx; and x;4;. Since data
are equally spaced along rows and columns, the row and
column displacements are independent of the values of i and
J: Note that the direction of data distribution is defined along
. @ subscript-increasing direction, and the magnitudes of all
data-distribution vectors are nonzero rational numbers due
to pipelining.

Referring to Fig. 1, array A is referenced through indexes
{ and k in the recurrence formula; hence, the data distribution
vectors are defined by @, and a,,.

Parameter 3 — Period: Suppose the time at which a
computation is performed is defined by the function 7., and
the time at which an input is accessed for a particular com-
putation is 7,. The periods of i and j for two-dimensional
outputs are defined as

3.1
(3.2)

L= 1(zha) - n.(2t)

tj = Tg(lf,jﬂ) - Tc(zf.j)-

In computing z} ; (= flz45, x (i, k), Y&, j)]), itis assumed
that the recurrence is expressed in a backward form or
has been converted into a backward form, and hence, z¢%
(= flzi,, x(i, k + 1), y(k + 1,/)]) is evaluated after zf,.
Define the period of iterative computation for two-

dimensional outputs as
3.3)

Note that ¢, is always positive. In computing z, ;, items x;,,
and x; ., are accessed sequentially, and so are Yi;and y,, ;.
Define the periods of X and Y with respect to k in the com-
putation of z; ; as the time between accessing successive
elements of X and Y. Formally,

L = Tt(zll?}l) - Tc(zt"‘./)-

3.4)

ty = 7,(Yisr,j) — Tu(Ve) - (3.5)

Iw and 1, may be negative depending on the order of access
defined in the subscript-access functions x(I, k) and y(k, j).
Since data needed in the computation of 25! after the com-
putation of zi; must be assembled in time 7y, it is true that

Iy = ’Ih! = !tky,. (36)

As an example, the systolic array in Fig. 1 is implemented
with ¢, = 1, = 1 because a;,x is accessed one cycle before
dix+1, and so are b, ; and bivr, ;. It is also seen that
I = t; = 1. As another example, elements of vector A are
accessed in increasing order of indexes in the recurrence for
polynomial multiplication [see (2.5)]. The period 1,, is,
therefore, positive. On the other hand, vector B is accessed
in decreasing order of indexes, and hence, 1., is negative.

It is important to note that the computations in a systolic
array are periodic, and hence, all the periods are independent

te = Tu(Xixe1) = 7u(xi4)

70

of i, j, and k. Furthermore, periods represent time intervals
between computations, and their absolute values must be
rational numbers greater than or equal to 1 because directly
connected PE’s are separated at unit distances, and com-
putations can only be performed in PE’s. When absolute
values of periods are less than 1, there must be a bus that
can broadcast data, and this is outside the scope of our
present discussion.

There is a total of 13 parameters for two-dimensional lin-
ear recurrences, of which three are for the velocities
of data flow, X,, ¥4, Z4, six are for data distributions, Xigs X5,
s Fier Zia» 2o and four are for the periods, fu, ty, 1is ¢;. For
one-dimensional problems, only nine parameters ¥q, Yu Za»
1, Vs» Zo» ties liy» @DA §; exist. These parameters can be used in
constraint equations to govern the correctness of the design
and in performance measures to define the number of PE’s
needed and the completion time. The following theorem
states the relationships among these parameters.

Theorem 1 (Theorem of Systolic Processing): Suppose
a two-dimensional recurrence computation zf; = flzt7',
x(i, k), y(k, j)] is implemented in a systolic array, then the
velocities, data distributions, and periods must satisfy the
following vector equations: ’

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 1, JANUARY 1985

istics of systolic processing, k — p steps of the iterative
computation are performed after #; units of time, and 2t
Xuisrkr and Yy j arrive at PE A for the computation of
2k, = flzki), x(i + 1,k), y(k, j)). Therefore, BA =
t,%4, CA =1,Z,, and DA = 1;5,. From the prigciple_.of
vector composition, BA + DB = DA and CA + DC = DA;
thus, (3.9) and (3.10) are proved. The cases for negative
periods can be proved similarly.

Last, (3.11) and (3.12) can be proved similarly and will not
be shown here. ul

Performance of a systolic design can be expressed in terms
of the defined parameters. The number of PE's required
(denoted by #PE) is studied here, and the completion time
can be expressed as a function of the PE configuration
and velocity. ‘

The number of streams of data flow of a matrix X in the
direction of data flow is defined as the number of distinct
lines that must be drawn in parallel to the direction of data
flow so that each element of the matrix lies in exactly one
line. For a one-dimensional vector with n elements, the num-
ber of streams can be one (elements are fed serially) or n
(elements are fed in paralle!). For a two-dimensional a-by-n
matrix, this number depends on the directions of X;; and X,,.

taXg + X = tuZa * (data movement for X and Z between computing 287! and 2 (3.7)

| LyYa + Yo = tiyZa (data movement for ¥ and Z between computing z}7' and z;) (3.8)
LR+ Xy =45, (data movement for X and Y between computing 2} ; and zf,y,)) (3.9)
43+ 3y = 154 (data movement for ¥ and Z between computing z! ; and zi,, ;) (3.10)
G¥a+ Vi = 4% (data movement for X and Y between computing z} ; and zf ;+\) 3.11)
424+ I, = 4%, (data movement for X and Z between computing z} , and 2z). (3.12)

For one-dimensional preblems, only (3.7)-(3.10) are
necessary.

_ Proof: Without loss of generality, orthogonally con-
nected PE’s with diagonal connections are used in our proof.
It is also assumed that ¢, = 1, = 1, > 0. In Fig. 2, A, 8, C,

and D represent four PE’s that do not have to be directly .

connected. While PE C is computing zf; = f{z57', x(i, k),
y(k,)], Xu+nyisin PE B.2and y,u.), isin PE D [Fig. 2(a)].
Since 1, = #,, > 0, CB represents X.;, and CD represents ¥y,.
According to the characteristics of systolic processing, the
operands needed in the next iteration must arrive at the same
PE simultanecously after 1, units of time. Hence, z{ j, X:x4 1
and y,a+y, ;) arrive at PE A simultancously that computes
zhit= flzdpxG b + 1), pko+ 1L D] (Fig. 2(b)]. We
have CA = 1,2,,BA = 1;%5,DA = 1,§,. From the principle
of vector composition, BA + CB = CA and DA + CD =
CA, so (3.7) and (3.8) are proved. The other cases in which
1. and 1, have different signs or are negative can be proved
similarly.

To prove (3.9) and (3.10), suppose that while PE D is
computing z£ ; = flz¥7', x(i, k), y(k, j)], PE C is computing
zf_-':,,,, p <k, an_g PE B has x,+1,6 [Fig. 2(c)]. Therefore,
DC = %,, and DB = X,. In accordance with the character-

%% .. represents the clement of X defined by the subscript-access function '

X j)

If X, 'and X, are in the same or opposite directions, then the
number of streams of data flow can be one (serial input) or n*
(paralle] input). If X, and X;, are in different directions, then
the number of streams is given by n + (n — 1)¢ where € is
an integer between 0 and n. To see that this is true, when ¢
is 0, each row or column of the matrix lies in a single stream,
and the number of streams is n. The extreme case happens
when each element of the matrix lies in a different stream,
and the number of streams is n°. As an example, each matrix
in Fig. | has five streams of data flow (n = 3,¢ = 1).
#PE depends on the directions in which the inputs are
moving. There are four possible cases. First, one of the input
matrices or the output matrix is stationary, and the others are
moving. Assuming that all the elements of the stationary
matrix are used in the computation, #PE is given by the size
of the stationary matrix. Second, both input and output matri-
ces are moving in the same or opposite directions. #PE is
given by the product of the minimum number of streams of
data flow and the distance traveled between the time that the
first elements of the input matrices meet and the time that
the last elements of the input matrices meet. Third, there are
two independent directions of data flow. If the two input
matrices are flowing in the same or opposite directions and
the output matrix is flowing in a different direction, #PE is
given by the number of streams of data flow of the output
matrix. If the two input matrices are flowing in different

LI AND WAH: DESIGN OF OPTIMAL SYSTOLIC ARRAYS

e WYa
A Ve | O Al uen) P 0
Yyleeri)
TR
? - —] L |
1D Lxg . Ve
1 |
l;:f‘
B Xufik 1) s k) € B = c
Ay | Yolkd) Xis
@) (b)
N N L
AL xm| b Atsoern b
Yybd) Yyini) ~
T titg 1
~ o - | 5,
X, I.D ‘X‘ b
4 ' ' N\
Xie
8| Bufit1y) ey | € B ¢
© (d)
* - Fig. 2. Proof of Theorem 1.

directions and the output matrix is flowing in a direction of
one of the inputs, and if each stream of data flow in an input
matrix has to be interacted with every other stream of data
flow in the other input matrix, #PE is given by the product
of the numbers of streams of data flow of the input matrices.
When the last assumption on the interaction of data tlows is
false, #PE reduced by a term that has to be determined from
the recurrence. Lastly, there are three independent directions
of data flow. In this case, #PE for the two input matrices can
be computed as before. However, this number can be further
reduced by the flow of the output matrix.

For example, matrices A, B, and C in Fig. 1 are flowing in
three different directions and have five streams of data flow
each. #PE for A and B is 5§ X 5 = 25. However, matrix C
is flowing in a different direction which cuts off two corners
of the PE configuration. #PE is reduced to 19,

Based on the last item of the result that will be computed,
the time required for all the computations in a systolic array
can be derived in terms of 4, #;, t;, and the problem size to be
solved. However, any load and drain times of the
input—output matrices would depend on the directions and
distributions of data flows on a given configuration of the
PE’s, and have to be analyzed for euch case individually.
Other design requirements such as the number of input—
output pins can also be expressed in terms of the PE
configuration and the defined parameters.

For example, the time needed for multiplying two n-by-n
matrices is nt + (n = 1)|y;| + (n = 1)|1;] since, from
(2.3), it takes nr, steps to compute ¢, ,, (n — 1) |t;| steps from
computing ¢, to ¢, 5, and (n = 1) 1| steps from computing
€1 10 Cnq. In the design in Fig. 1, no load or drain time
is necessary,

We have been less specific in the discussion on hardware
and time complexities because they are dependent on the
recurrence. In fact, closed-form expressions for these com-
plexities under all possible situations are very complex, and
it would be better to analyze the cases separately. This will be
illustrated in the examples.

71

1V. DESIGN METHODOLOGY FOR SYSTOLIC ARRAYS

The design of an optimal systolic array for a linear recur-
rence can be formulated into an optimization problem. The
constraints of optimization are provided by Theorem 1,
which shows the fundamental space—time relationships and
governs the corrections in systolic processing. The objective
function to’ be minimized can be expressed in terms of
the parameters of systolic processing and the problem size.
We first show the formulation of the optimization and then
explain the various constraints. The design problem is formu-
lated as

minimize #PE X T? or #PEXT or T (4.1)
subject to
(3.7)~(3.12)
and
1 - -
—= R =1 or |%| =0 4.2)
Jmax
1 - -
—=|Jl=1 or [j)=0 (4.3)
1 - -
— = ZJ=1 or |2 =0 (4.4)
kmax
! S ”kl = Lk I = |ti! = Linaxs I = !’/' = t_,nua (45)
l’kszl = kl = tkmax; ltil 'jdl = k2 = Limans l’}”x‘d, = kl = ’jm.u
(4.6)
] #0; R #0, 5] #0 4.7
Fal #0; 2l # 05 2] #0 (4.8)
f = il = |t
recurrence determines relative signs of £, and ¢, . (4.9)

ki, kz, K3y tianaxs Limaxs @0 25, are integers. All other parameters
are rational numbers. Moreover, fu, limas and lip,, are
functions of the problem size and 7., the number of times
that function f in the recurrence has to be executed in order
to compute all the required results,

The terms in (4.6) represent the distances traversed be-
tween computations. Since a computation must be performed
in a -PE, the distance traversed must coincide with the
locations of PE’s. The upper bounds of &y, k;, and &; are the
maximum values of ¢, ¢, and ¢; because the maximum values
of speeds are 1 [see (4.2), (4.3), (4.4)]. To derive these upper
bounds, recall that the total computation time 7 is a func-
tion of #, |6}, and |5;|. In order for systolic processing to
be more efficient than a serial computation, it is necessary
for T = Tin. By using the minimum values for two of
the periods (4 = 1,]| = 1,];] = 1) in the above inequality,
the upper bound for the other period (finu, finns OF fnus)
is obtained. As an example, in multiplying two 3-by-3
matrices, T = 35 + 2|;| + 2|tj| = T,qu = 27. By setting
Il = ;] = 1, timax = [(27 = 4)/37 = 8. Similarly,
Limax = Lman = 11. Sometimes, T is not a function of a period,
say ;. According to the definition of ¢, this is the time
between computing zf ; and z},, ;. Suppose i ranges from | to
n — 1; then nft;| units of time are needed for the computation

n

from 2} ; to 2% ;. The inequality nlt| = Tiu allows £y, to
be solved.

The constraints in (4.2), (4.3), (4.4) state that data cannot
travel more than one unit per unit of time because directly
connected PE's are separated at unit distances, and no broad-
casting is allowed. The lower bounds on velocities are
derived from (4.6). Velocities smaller than the given lower
bounds do not have to be considered because there exists a
more efficient design of computing the recurrence in a single
PE (with time Tiequ). The constraints in (4.5) follow directly
from the definitions of #, ¢, and 1;.

The set of distinct values of speeds and periods are related
to the number of buffers among the PE’s. Specifically, for
te,|Z4, k1, and tim, ki represents the number of PE’s
traversed by a datum between two successive iterative
computations, the maximum of which is fu.. Let n be the
maximum number of iterations required for computing a
result (7 is usually a linear function of the problem size). For
a given k;, the maximum number of PE’s in the pipeline is
(m = Dk, + 1since the first iteration is computed in a single
PE, and the remaining n — 1 iterations require (n — 1)k,
PE’s. The total number of buffers in the pipeline, b, satisfies

0=bs[(n= Vma + 1] = [(n = Dk + 1]

= Nl — K1) - (4.10)
Once b is chosen, |Z,] and |#,| can be determined
2= (n ha l)L]
2l = " h b @.11)
ky b
Wl = = =k + ——— 4.12)
ud 2l 7 m -1 (

As a result, there are O(nt,m) combinations of values of
and |Z,]. ermlarly, for i, and |3, 1, and |%,|, there are
O(ntia) and O(nt 2us) combinations of values, respectively.
Data flow in the above optimization problem can be in
one, two, or three independent-directions. There are five
. possibilities: a) all inputs and outputs are flowing in the same
or opposite directions; b) the inputs are flowing in the same
or opposite directions, and the output is in a different direc-
tion; ¢), d) the inputs are flowing in two different directions,
and the output is flowing in a direction of one of the inputs;
and ¢) inputs and outputs are flowing in three different
directions. The directions of vectors can be reversed, and
velocities can be zero vectors. Due 1o the assumption of
unit distance between directly connected PE's, when data
are flowing in two independent directions, they must be
orthogonal to each other; and when data are flowing in three
independent directions, they must be in multiples of 120° to
each other. Furthermore, the magnitudes of velocities and
periods are chosen from a finite set. Therefore, the opti-
mization of design of a systolic array for a given recurrence
has a finite search space of complexity O(n*s} s L)
The worst case complexity shown above is very large.
There are two ways to reduce this complexity. First, instead
of requiring that T = T,.,, the requirement that T <
O(Tr.u/ #PE) may be used. This reduces the values of fyng,
Lmas @0d 1, and in turn reduces the search complexity.
Second, it is noted that systolic designs for linear recurrences

{EEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 1, JANUARY 1985

are extendible because the systolic processing equations gov-
erning the correctness of the design (Theorem 1) are indepen-
dent of the problem size. To reduce the search complexity, an
optimal design for a smaller problem can be found and is used
to extend to the systolic design for a larger version of the
same problem. This method can also be applied when the
maximum number of PE’s that can be implemented in a single
chip is smaller than that required by the optimal design. In
general, this method will not lead to an optimal design for the
original problem. This is due to the fact that the objective
function is monotonically increasing with the problem size,
and the fact that the objective function for one design is better
at a given problem size does not imply that this design is
better at a different problem size.

The optimal solution to the above design problem can be
found by exhaustive enumeration. However, the search time
for an arbitrarily large recurrence can be long, if not impos-
sible. By recognizing that the completion time is a linear
function of #, £, and #;, their values can be ordered so that
periods that do not lead to an optimal solution are eliminated
from further consideration each time a feasible solution
is found. This strategy is explained with respect to the
minimization of completion time and #PE X T°.

To minimize the completion time, the different directions
of data tlows are first determined (five possibilities). The
maximum values of £, ¢, and 1; are found. A setof 4, 1;, and
t; that minimize the completion time is selected from the set
of possible values, The speeds of data flows are evaluated
from (4.6) by using &k, = k; = &, = 1. The six remaining
unknowns on spatial distributions can be solved from the
systolic processing equations (3.7)-(3.12). If no feasible
solution is found, the procedure is repeated by finding an-
other set of periods so that the completion time is increased
by the least amount. The above steps are carried out for all
the five combinations of data flow directions. If no feasible
solution is found, one of the &y, k., or k; is increased by !, and
the procedure repeats. It is obvious that the first feasible
solution found is the optimal solution that minimizes the
completion time.

To minimize #PE X T2, it is necessary to know the lower
bound on #PE. For linear recurrences with two-dimensional
(n-by-n) inputs, the lower bound on #PE can be one (both
inputs are serial), n (one input is serial and the other has n
streams of data tlow), or n* (both inputs have n strcams of
data flow). It is casy to prove tfrom the systolic processing
equations that serial inputs wsually do not lead to feasible
solutions, and the lower bound is #?. Repeating the procedure
in minimizing completion time, a feasible design is first
found. Suppose this design rc.quircs P, PE’s and T, clock
cycles to complete, then it is true that any design with
T, = \/_T./n will not lead to a better solution (since
P,T, 2 n°T? = P, T?) and can be eliminated from con-
sideration. The search is continued to find better solutions
with completion time between 7, and Ts.

By systematically enumerating and reducing the search
space that is a polynomial function of the problem size, the
optimal design can be solved very efficiently. The method of
designing optimal systolic arrays using the parameters de-
fined in this paper is referred to as the parameter method.

Y . LI AND WAH: DESIGN OF OPTIMAL SYSTOLIC ARRAYS
The steps in the design are sketched as follows.

Step 1: Write the recurrence formula for the problem to
be solved.

Step 2: Write the corresponding systolic processing
equations (Theorem 1) and the constraints on the values
of parameters.

Step 3: Write the objective function based on the design
requirements in terms of the systolic processing parameters
and the problem size.

Step4: Find the parameter values that minimize the objec-
tive function by enumerating over the limited search space.

Step 5: Design a basic cell for the systolic array and find
a possible interconnection of cells from the parameters
obtained. Eliminate cells that do not perform any useful
computation,

In the 3-by-3 matrix-multiplication problem, recall that the
computation time needed is 3, + (3 ~) |t| + G = D1l
The completion time is minimized when 1, |1,|, and [t,] are as
small as possible. The search is started with ¢, = 4 = f; = |
on all the combinations of directions of data flows. If no
feasible solution is found, the signs of #; or 1; are negated, and
the search repeats. In this example, when data are flowing in
three different directions, #, = ¢, = r; = | results in a solution
that satisfies the constraints of (3.7)-(3.12) and (4.2)-(4.9)
and minimizes the completion time. The corresponding vec-
tors are depicted in Fig. 1(b). By using these vectors, the
velocities and spatial distributions of data flows can be deter-
mined, and a basic cell design is shown in Fig, 1(¢). These
cells are connected together into a mesh. Some of the cells are
eliminated because no computation is performed there. The
final VLSI structure is shown in Fig. 1(a). This is the fastest
matrix-multiplication scheme, which can be completed in
7 units of time with 19 cells.

On the other hand, if #PE X T? is to be minimized, the
search has to be continued to find out all the feasible designs
with completion time less than V19 x 7?/3* = 10.2. By
assuming that the output matrix is stationary, a feasible de-
sign can be found with ¢, = ¢ = ¢, = 1, 7 units of com-
putation time, and 3 units of drain time. This reduces the
search space further to finding all feasible designs with less
- than 10 units of completion time. In fact, this is the optimal
solution that minimizes #PE X T2

Note that the recurrence for two-dimensional tuple com-
parison ‘[see (2.8)] is identical to the recurrence for matrix
multiplication except for the operations performed in the
PE’s, and hence, the systolic array for matrix multiplication
can be applied in this case,

V. EXAMPLES

A. Direct Applications of the Methodology

1) FIR Filtering: The operation can be represented as a
" one-dimensional linear recurrence yf = f(y!™', x(k, i),
a(k)] [see (2.2)]. Another recurrence that evaluates the terms
“in a reverse order can be written as yi = i + Guoge1 Xm-seis
1 =i =n,1sk s m. Inboth recurrences, the inputs are
accessed in the same order, and hence 1, = 1. It takes my
units of time to compute y, (m is the window size of the FIR

filter) and (n — 1) || units of time to compute the remaining
y;'s. The total computation time, disregarding possible load
and drain times, is mf + (n — 1)|#]. For a problem with
m=4andn = 6, Tscrial = 24. From [his, [P r19/4-1 =
5, tix = [20/51 = 4. The design problem can be formu-
lated as

minimize #PE X [4|n,] + 5|r| + load time + drain time]}?

, (5.1)
subject to
Xy + X = tuYa (5.2)
. taly + 8 = ¥, (5.3)
t,'fd + i, = t"ad (5.4)
t¥a + §o = tdy (5.5)
l | - -
-Zs|d|51 or |a =0
1 s -
$==1 or |5]=0
ls4 =5 1=y s4
la,] # 0 %] # 0 |y # 0

il =k =4]y =k =5

=l =l e =

where ky, k; are integers; all the other magnitudes are rational
numbers. It is not necessary to bound |x,| because X, is
uniquely determined when &, £, y4, and &, are set.

The search space in the above problem is quite reasonable.
However, the problem can be solved very efficiently by using
the defined search order. First, consider 7, = #, = —! and
t; = 1. Substituting into (5.2)-(5.5) results in four equations
with six unknowns. From FIR-filtering applications, it is
known that the g;’s are defined constants and can be fixed in
the systolic array without preloading. Assume that the g;’s
are statically placed in the PE’s, |@,| = 0, and from (5.3),
a, = —¥, Since |a,| # Oand |y, = 1, |y, canbesettol or
~1. Solving both cases results in a systolic design that re-
quires four PE's, m + n — | units of computation time and
the preloading of x,,-+*,x, into the pipe [14]. The com-
pletion time is, therefore, 2m + n — 1 units.

On the other hand, if t, = 1, = 1,1, = =1, and |a,| = 0,
then |y, = |5, = 1,|%] = %] = 1/2,and |a,| = 1. Thisis
aone-dimensional solution (all the vectors are pointing in the
same direction). A feasible systolic design satisfying the
above parameters is depicted in Fig. 3. This design does not
require elements of X to be preloaded, and the completion
time of the algorithm is 9 units. It should be noted that
L« = t, = 1 implies that the recurrence formula in (2.2)
is used.

To see that the design in Fig. 3 is optimal, the performance
measure #PE X T?forn = 6,m = 4 is 324. If the number
of PE’s is decreased to one, T = T,y = 24, and #PE X
T* = 576. The lower bound on #PEism = 4. The proposed
design achieves this lower bound in the minimal completion
time and, hence, is optimal.

74

[EEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 1, JANUARY 1985

buffer .
Step | e Xy i l"a] ‘l a, = a, = 3, x—s o X
- e Yy Ygeal¥e bt y ey’
Xg x'=x
yay e ax
siep2 TR WYY, ; a f ay : [
e ¥y Yemels ! g ? —
i Xp X3 e X, "35 6 4 a }
s R R v,72 Yy ’ R .
X .X,
My Mo w—efX f‘ g ? ay T a,
Step by, v v, 2 v, Y
Fig. 3. Systolic array for FIR filtering (n = 6,m = 4).
It is of interest to note that discrete Fourier transform /,/
[see (2.4)], polynomial multiplication [see (2.5)], and many P
pattern-matching problems have the same form of recurrence _ ~ by s Z? 5

equations as FIR filtering. The systolic design in Fig. 3 can
be applied except that different functions are performed in the
PE's [14).

2) Band-Matrix Multiplication: The systolic array for
matrix multiplication (Fig. 1) can be used for band-matrix
multiplication. However, the number of cells required is
large considering that most of the terms in the result are zero.
By recognizing that the result is also a band matrix, a differ-

ent recurrence can be written to compute the elements in the

band alone. The proposed methodology can be applied to
obtain the optimal systolic design.

In this example, we illustrate the flexibility of our design
method by showing that additional constraints (based on
insights) can be included in the optimization. Given that the
band width-is m, the most efficient direction of sending the

band matrix into a systolic.array is along the diagonal. These:

required directions of data*flows can be added as constraints
to the original design problem

4, + d, = ki, k is a rational number (5.6)
E.'. + b, = kb, k;is a rational number. ~ (5.7)

The details of solution are not shown here. The resulting -

design for m = 3 has three independent directions of data
flow (Fig. 4). The design is optimal and requires m? PE’s and
m + n =l units of completion time.

B. Recurrences with Feedback

In this section, the design of systolic arrays for recurrences
with feedback are exemplified. When outputs are routed back
into a systolic array, the direction of data flows has to be
changed. The difficulties in designing such a systolic array
are that feedbacks pose another direction of data flows in the
inputs, and the correctness of feedbacks is hard to express in
systolic processing equations because the format of feed-
backs is governed by the way outputs are generated. One
method is to treat the feedbacks as an independent input
stream and to design the systolic array in the usual way. After
an efficient design is obtained, the feedbacks have to be
checked to determine whether they are generated before they
are fed back into the systolic array. The process is repeated
until an efficient and correct design is found.

Fig. 4. Systolic array for band-matrix multiplication (the cell used is the same
as that of matrix multiplication).

1) Triangular-Matrix Inversion: The inversion of an
upper-triangular matrix U into another upper-triangular
matrix V has been represented in a forward recurrence
[see (2.7)] and can be rewritten into a bauckward recurrence
wt ;= flwki', uli, k), vk, j)]. Consecutive elements of U
and V are accessed in decreasing order of subscripts, and
hence, 1, = i, < 0. .

By examining the recurrence, it is found that the evalua‘uon
of w; ; requires one more term than that of w;, 1 Therefore,
w;, j-1 can be completed before w;, ;, which implies thats; > 0.
On the other hand, the evaluation of w; ; requires one less
term than that of w,_, ;, which implies that ; < 0. From th‘c
recurrence, it is also seen that the last item to be compun;d 1s
v, rather than vy ,. It takes (n — 1){r,} units of time from
computing u, , t0 v;,,; and n]#,| units of time to compute v x.

o bl MV WAL MREWRT T AT HTRAARe o B S AR ARG T Y

‘ - .
~vd
-
~ig - -
w
Ve o .
L - ‘
Yo A" . .
-
d -~
\[/ » w
- - -
“ue g [<4 ug
vy W

-
-wy

whiv o owlu

uw:u

(b)

(c)

Fig. 5. Systolic array for triangular-matrix inversion (n = 4),

The computation time is, thus, nlt,] + (n — D|4]. For a
problem with n = 4, T, = 20. By solving T = T ., we
Chave fy = 5 and L = 6. Since vy, v+, v have to be
computed, we have another equality 4l;| = T, that results
n L =3,

To minimize #PE X T2, parameters are first chosen to
minimize the computation time: &, = t, = ~1, = =1,
and 1, = 1. From these, .the following systolic processing
equations are obtained: :

-y + iy = —Wy (5.8)

—B + Ty =~y (5.9)

—y By =~ (5.10)

—Wg = =B (5.11)

o+ B, = i (5.12)

: By + Wy = (5.13).

Constraints on parameter values are similar to those stated
previously.

By searching through the set of feasible solutions, a set of
solution vectors that minimize the completion time are shown
in Fig. 5(a). In terms of these vectors, a systolic array for
triungular-matrix inversion is depicted in Fig, 5(b). It should
be noted that w, , is considered as an intermediate output with
initial value of 0. When w, ; arrives at one of the dividers
denoted by circles, the computation of w;, ; is finished, and
v, , is generated. v, ; is then fed back and moves downward.
Note that in Fig.-5(b), the triangular block of V above the
systolic processor represents a pseudo-input-matrix, whereas
another triangular block of V to the right of the array shows
the output sequence. In this scheme, a triangular array of

n(n + 1)/2 PE’s can compute an nth-order triangular-matrix
inversion in 2n — 1 units of time. Since there is no feasible
design with one or n PE's, the proposed design minimizes
#PE X T3,

2) Deconvolution: In the previous examples, processing
times in the PE's are assumed to be identical. This implies
that the period of processing is independent of the PE along
the direction of data flow,

In some applications, different operations may be per-
formed in PE’s along a direction of data flow. For example,
the last operation in deconvolution is division, which may
take more time than multiplication and may become the
bottleneck of data flow. Referring to the recurrence for de-
convolution z! = flzF™', x(i, k), a(k)] [see (2.6)], the x;'s
computed are fed back into the pipe for future computation.
Let the delay of a division PE be w and the delay of other PE’s
be 1. The last iteration of computing z; and the division of z,
to obtain x; tukes (w + 1) units of time. This is the period for
the X inputs.

il =w + 1. (5.14)
Due to the extra time involved in division, the design of
feedback signals is more complicated than that of triangular-
matrix inversion. The fact that inputs and feedbacks are one-
dimensional permits us to write down the relationships of
data flows more formally in systolic processing equations
[Fig. 6(a)]. Suppose PE A is the PE in which z"™! is being
computed using x,,, before being sent to the division unit
(PE D).z, p < m — |1 (for backward recurrences), exists
in PE B. In (I + w) units of time, z""' is sent to PE D and
is converted to x;, which is then sent to PE C. At that time,
z"7 will be computed in PE C using x;. From the above

e Y P - AEeEE oy

76
- delaysw
c 5 | €
(L+w)ig
{Lew)
2, |8 steps Al - B
X+ -"‘ . s
(a)
16-“7
. 1 'y H
g Y 7 ; T
. [a
3 H £, 4 } 3
(b)

Fig. 6. Systolic array for deconvolution. (a) Relationships of data flow. *
(b) Systolic array forn = 5, m = 4 after six clock cycles.

discussion, we have another systolic processing equation
Lt R= Lt (1 + WD E=wi,— i (5.15)

Equations (5.14) and (5.15) must be included in the opti-
mization. Note that X is a one-dimensiona) vector, and there
is one spatial-djstribution parameter X,, although the
subscript-access function is a function of i and k. By letting
w =2, la, = 0,]a] = —1, and observing that t,, = #,, the
other parameters can be solved: t, = =3/2,4 = 3,[Z| =
-2/3,|Z,] = 2,|%] = 2/3 and |%,| = —2. These parameters
satisfy the systolic processing equations, but the feedback X
cannot be generated at the right time from Z. If f; = —3, the
values of the other parameters are 1, = —3/2, |Z,] = 2/3,
7, = 2,|%| = =2/3,]%| = ~2. For m = 4,n =5, the
completion time T = (m — 1 + w)t, + (n = 1)|4] and
#PE X T? are minimized. It should be noted that the veloci-
ties of data flows are averaged over three clock cycles. By
first inserting buffers for the Z inputs, the positions of buffers
for the X inputs can be decided. A feasible assignment of
buffers is shown'in Fig. 6(b). o

C. Generalizations on the Recurrence Formula

In this section, extended forms of the general recurrence -

formula [see (2.9)] are discussed. The systolic processing
equations presented in Theorem 1 have to be modified.

1) Indexes in Subscript-Access Functions: In the original
recurrence formula (2.9), x is a function of i and &, and y is
a function of k and j. In general, x and y are functions of i,
j. and k. The general recurrence formula can be expressed as

gty = Gy G 0] (5.16)

Systolic processing equations (3.9)-(3.12) have to be
changed L s

hEa t Ty = 03+ (517
e+ L= 0Fat T (5.18)
it =R R, (5.19)
Wi+ Tu = G50t Jue (5.20)

The proof of (5.17) and (5.18) is similar to the proof shown

in Theorem 1 except that an additional PE is needed where " -
Yyier,jn is stored (Fig. 2). Yyiuy ;4 is moved to PEA in g |

units of time. Similar arguments apply to (5.19) and (5.20).
If a subscript-access function does not involve a particular

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 1, JANUARY 1985

index, the corresponding data distribution parameter is zero.

As an example, the recurrence for one-dimensional tuple
comparison: ¢! = TRUE, ¢f = ¢/' N (aix = b1 S i s
n,1 =k < m, results in the following systolic processing

equations:
| LuGa + G = hala (5.21)
twba + s = tista (5.22)
1,64 + ¢, = tdy + a, (5.23)
i+ & = tiby + by (5.24)

2) Coefficients of Indexes: The coefficients of i, j, and k
used in the subscript-access functions x and y are 1 (regard-
less of sign). This means that all elements of X and Y are used
in the course of computation of the recurrence. When these *
coefficients are greater than 1, some items in the inputs will
be skipped. As an example, suppose we have the following
recurrence for FIR filtering:

yi=0 lsi=n

yE= i+ apXiva- ,
lsi=splsk=s=mx=0 forj>n.
(5.25)

In this case, every other item of A and every other two items
of X will be skipped. .

Consider the case in which the coefficients of k can
be any integer (regardless of sign). The general form of the
recurrence formula is h

-z?.j = f[Zi;I,X(i, uk)’)’(Uk. J)]

u,v are positive integers. (5.26)

In this case, systolic processing equations (3.7) and (3.8)
have to be modified o

t,,.'v'd + ufk, = &,Z,j (5.27) ,
tky.-V‘d + Uj’.b = tk,id . (5.28) .

The other four systolic processing equations remain un-
changed. The proof for these is very similar to that of
Theorem !. The data distribution parameters are augmented
in this case because nonadjacent data are used. Similar
changes have to be made on the other four systolic processing
equations when the coefficients of 7 and j in the subscript-
access functions are integers not equal to 1. 4
*For the recurrence given in (5.25), systolic processing
equations (5.2) and (5.3) have to be changed to (5.27) and
(5.28) withu = 2,v = 3. Solving these with (5.4) and (3.5)
while assuming 7 = 4 = 1, we obtain |y, = 1,|¥] = =1,
las| = 0,|%,] = =1/2, and |&,] = |X,| = 1/2. The inter-
esting point is that the separation between the ¢, s is 1/2 unit,
which implies that only half of the 4;’s reside in PE’s. The
other half do not have to be loaded since they are never used.
The throughput of the system remains unchanged, that is, one
output per clock cycle. . .

V1. CONCLUSION

Conventional approaches in mapping algorithms onto
systolic arrays are usually done in an ad hoc fashion. The

L1 AND WAH: DESIGN OF OPTIMAL SYSTOLIC ARRAYS

resulting design represents a feasible, but not neccssaril‘y
optimal, solution. In this paper, we propose a systematic
methodology for the optimal mapping of algorithms that are
represented as linear recurrences onto systolic arrays. The
characteristics of systolic arrays are parameterized by the
velocities of data flows, spatial distributions and periods
of computation. The design problem is formulated into
an optimization problem with objective function con-
straint equations that are functions of the defined parame-
ters. An efficient order of searching the solution space is

. also proposed.

Numerous examples illustrating the methodology are
shown. Cases including feedbacks and general recurrence
formulas are discussed. Although the systolic-processing
equations defined does not exhaust all possible situations, the
theory developed can guide the designers in obtaining the
necessary equations. For example, the mapping of recur-
rences onto a fixed architecture, such as the wavefront array
processors, essentially restricts the search space of the
optimization problem. Design requirements, such as hard-
ware and I/O constraints, can also be included in the opti-
mization, The art of designing systolicarrays is, therefore,
reduced to a systematic methodology. ‘ ‘

ACKNOWLEDGMENT

The authors are indebted to Prof. P. S. Xia and Prof. C.D.
Han for their helpful comments and discussions. Thanks are
also due to Prof. K. Hwang and Prof. H. T. Kung for provid-
ing valuable information. :

REFERENCES

[1] P.R. Cappello and K. Steiglitz, “Unifying VLSI array designs with
geometric trunsformations,” in Proc, Int, Conf. Parallel Processing,
1983, pp. 448-457. ‘

{2] H.D. Cheng, W.C. Lin, and K.S. Fu, “Space~time domain expansion
Approuch to VLSI and its application to hierarchical scene matching,” in
Proc. 8th Int. Conf. Pattern Recognition, Montreal, P.Q.; Canada,
Aug. 1984,)

(3] A.L. Fisher, “Systolic algorithms for running order statistics in signal
and image processing,” in VLS/ Systems and Computations, H,T. Kung
et ul., Eds. Rockville, MD: Computer Science Press, Oct. 1981,

- pp. 265-271, -

{4] J.A.B. Fortes, “Algorithm transformations for parallel processing

and VLSI architecture design,” Ph.D. dissertation, Univ. Southern

Califurnia, Los Angeles, CA, Dec. 1983, ‘

E. Horowitz, "VLSI grchitecture for matrix computations,” in Proc, Int,

Counf. Parallel Processing, Aug. 1979, pp. 124-127,

[6) K. Hwang and Y.-H. Cheng, “VL.S] computing structure for solving
lurge scale lincar system of equations,” in Proc, Int. Conf, Purallel
Processing, Aug. 1980, pp, 217-227, :

{7) ~rer, “Partitioned matrix algorithms for VLSI arithmetic systems,®
IEEE Trans. Comput., vol, C-31, pp. 1215-1224, Dec, 1982,

[8] L. Johnsson and D. Cohen, “A mathematical approach to maodelling the

flow of data and control in computational networks,” in VLS! Systems und

Compuiations, H.T. Kung ef al., Eds.

Science Press, Oct. 1981, pp. 213-225.)

H.T. Kung, “Highly concurrent systems,” in Introduction 1o VLSI Sys-

tem, C.A. Mead and L. A. Conway, Eds. Reading, MA: Addison-

Wesley, 1980,

H.T. Kung, L. M. Ruance, and D, W. L. Yen, “A two-level pipelined

systolic array for convolutions,” in VLS! Svstems and Computations,

H.T. Kung et al., Eds. Rockville, MD: Computer Science Press,

Oct. 1981, pp. 255-264.

H.T. Kung, “Why systolic architecture,” Computer, pp. 37-46, Jan.

1982. .

S.Y. Kung, K. 8. Arun, R.J. Gul-Ezer, and D. V. B, Rao, “Wavefront

array processor: Language, architecture, and applications,” /EEE Trans.

Comput., vol. C-31, pp. 1054-1066, Nov. 1982,

[5

—

—

9

(10}

)
{12

Rockville, MD: Computer -

77

{13] G.J. Li, “Array pipelining algorithms and pipelined array processors,”
M. Sc. thesis, lnst. Comput. Technol., Chinese Acad. Sci., Beijing,
1981. '

G.-J. Liand B. W. Wah, “The design of optimal systolic algorithms,” in

Proc. Comput. Software Appl. Conf., 1983, pp. 310~319.

D.1. Moldovan, “On the analysis and synthesis of VLSI algorithms,”

1EEE Trans. Comput., vol. C-31, pp. 1121-1126, Nov. 1982,

1.V, Ramakrishnan, D.S. Fussell, and A. Sliberschatz, “On mapping

homogeneous graphs on a linear array-processor model,” in Proc. Iat.

Conf. Purallel Processing, 1983, pp, 440-447,

L. Snyder, “Introduction to the configurable, highly parallel computer,”

IEEE Computer, vol. 15, pp. 47-56, Jan. 1982.

V. Weiser and A. Davis, “A wavefront notion tool for VLS! amay

design,” in VLSI Sysiems and Computations, H.T. Kung er al.,

Eds. Rockville, MD: Computer Science Press, Oct. 1981,

pp. 226-234,

M. C. Chen and C. A, Mead, “Concurrent algorithms as space-time re-

cursion equations,” in Proc. USC Workshop VLSI Modern Signal Pro-

cessing, Los Angeles, CA, Nov. 1982, pp. 31-352.

120] J. A. B. Fortes, K. S. Fu, and B. W. Wah, “Systematic approaches to the
design of algorithmically specified systolic arrays, Purdue Univ., W.
Lafayette, IN, Tech. Rep. TR-EE-84-39, Sept. 1984,

{21] D. Gannon, “Pipelining array computations for MIMD parallelism: A
functional specification,” in Proc. 1982 Int. Conf. Parallel Processing,
1982, pp. 284-286.

[22] J. M. Jover and T. Kailath, “Design framework for systolic-type arrays,”

in Proc. ICASSP, 1984, pp. 8.5.1-8.5.4.
R. H. Kuhn, “Optimization and interconnection complexity for parallel
processors, single stage networks and decision trees,” Ph.D. dissertation,

* Dep. Comput. Sci., Univ. Ilinois, Urbana-Champaign, Rep. 80-1009,

1980.

{14}
{15]
{16]

(17
(18]

(19}

[23)

C[24] HLT. Kung and W. T, Lin, “An algebra for VLSI algorithm design,” in

Proc. Conf. Elliptic Problem Solvers, Monterey, CA, 1983,
5. Y. Kung, “On supercomputing with systolic/wavetront wrray pro-
cessors,” Proc. JEEE, vol. 72, no. 7, pp. 867-884, 1984,
M. Lam and J. Mostow, “A transformational mode! of VLSI systolic
design,” in Proc. IFIP 6th Ini. Symp. Comput. Hurdware Descriptive
Lang. Appl., Carnegic-Mellon Univ., Pittsburgh, PA, May 1983,
[27] C.E. Leiserson, F. M. Rose, and J. B. Saxe, “Optimizing synchronous
-, circuitry by retiming,” in Proc. 3rd Caltech Conf. Very Large Scale
Integration, R, Bryant, Ed. Rockville, MD: Computer Science Press,
1983, pp. 87-116. : :
(28] W.L. Miranker and A. Winkler, “Space-time representations of come
putational structures,” Computing, vol. 32, pp. 93-114, 1984,
[29] P. Quinton, “Automatic synthesis of systolic arrays from uniform re-
cument equations,” in Proc. 1lth Annu. Symp. Comput. Arch., 1984,
pp. 208-214, .
{30} D. A. Schwartz and T. P, Barnwell 111, “A graph theoretic technique for
the generation of systolic implementations for shift-invariant flow
" graphs,” in Proc. ICASSP, 1984, pp. 8.3.1-8.3.4,

125]
126]

Gueo-jie Li (S'83) graduated from Peking Univer-
sity, Beijing, China, in 1968 and received the M.S.
degree in computer science and engineering from the
University of Science and Technology of China and
the Institute of Computing Technology, Chinese
Academy of Science in 1981,

Currently, he is working towards the Ph.D. degree
in electrical engineering at Purdue University, West
Lafayette, IN, His research interests include
parallel processing, computer architecture, and arti-
ficial intelligence.

Benjamin W. Wah ($'74-M'79) received the B.S.
and M.S. degrees in electrical engineering and com-
puter science from Columbia University, New York,
NY, in 1974 and 1975, and the M.S. degree in com-
puter science, and the Ph.D. degree in engineering
both from the University of California, Berkeley,
CA, in 1976 and 1979, respectively.

He is now an Associate Professor in the School
of Electrical Engineering, Purdue University, West
Lafayette, IN. His current research interests include
parallel computer architecture, distributed data-
bases, and theory of algorithms.

Dr. \:)Va3h has been a Distinguished Visitor of the IEEE Computer Society
since 1983, .

