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Coping with Anomalies in Parallel Branch-and-Bound number of processors must be used to solve the problem in poly-
Algorithms nomial time.

GUO-JIE LI AND BENJAMIN W. WAH Analytical properties of parallel approximate branch-and-bound
(PABB) algorithms have been rarely studied. In general, a k-fold

Abstract -A general technique that can be used to solve a wide variety speedup (or ratio of the execution time in the serial case to that of
of discrete optimization problems is the branch-and-bound algorithm. We the parallel case) is expected when k processors are used. However,
have adapted and extended branch-and-bound algorithms for parallel simulations have shown that the speedup for PABB algorithms using
processing. The computational efficiency of these algorithms depends on k processors can be: a) less than one (called a detrimental anomaly)
the allowance function, the data structure, and the search strategies. [4] [7], [13]; b) greater than k (called an acceleration anomaly)
Anomalies owing to parallelism may occur. In this correspondence, [4], [7]; or c) between one and k (called a deceleration anomaly)
anomalies of parallel branch-and-bound algorithms using the same search [4], [18], [7], [13], [20]. It is desirable to discover conditions that
strategy as the corresponding serial algorithms are studied. Sufficient preserve the acceleration anomalies, eliminate the detrimental
conditions to guarantee no degradation in performance due to parallelism anomalies, and minimize the deceleration anomalies.
and necessary conditions for allowing parallelism to have a speedup great- One of the motivations of this correspondence is to improve Lai
er than the number of processors are presented. and Sahni's results on anomalies of parallel B&B algorithms [7].

First, Lai and Sahni have made an implicit assumption that all
Index Terms -Anomalies, approximation, branch-and-bound algo- nonterminal nodes of the B&B tree have identical lower bounds, and

rithms, heuristic search, lower-bound test, parallel processing. hence the nonterminal nodes can be expanded in any order. Nearly
all of their anomalies were discovered with an inconsistent selection

I. INTRODUCTION strategy, namely, when n1 processors were used, the expansion
The search for solutions in a combinatorially large problem space order of nonterminal nodes in a level was from left to right, but when

is a major problem in artificial intelligence and operations research. n2 processors were available, the expansion order was from right toGenerally speakingproblemsinartificial intelligence lassifdoperatpese h left. We will show in Section III that all of their detrimental anoma-Generally speaking, these problems can be classified into two types. lies can be avoided by using a consistent selection order. Second,
The first type is decision problems that decide whether at least one Lai and Sahni have only considered best-first searches and finding
solution exists and satisfies a given set of constraints. Theorem- oal solutions.H owevered betical arches and simu-
proving and evaluating queries for expert systems belong to this optimal solutions However, our theoretical analysis and simu-
class. The second type is combinatorial extremum-search or opti- lations have shown that anomalies are infrequent when optimal
mization problems that are characterized by an objective function to solutions are sought using best-first searches while they are more
be optimized and a set of constraints to be satisfied. Practical prob- frequent In approximate B&B algorithms with depth-first searchesbeoptimsisuc ands ath etofeonstraveling-esmn baehisfiedacaticlprob- - [9]. We will prove conditions that can avoid detrimental anomalieslems such as the traveling-salesman, warehouse-location, job-shop- even when approximations are allowed. Since the anomalous behav-scheduling, knapsack, vertex-cover, and integer-programmin ior depends on the search strategies, we will investigate the anoma-problems are examples in this class, lies with respect to the various search strategies separately. Lastly,

Exhaustive search is usually impractical and prohibitively ex- Lai and Sahni have claimed that a near-linear speedup for parallel
pensive for solving large search problems, especially when the B&B algorithms with best-first search holds only for a "small"
problem is NP-hard [1]. Studies on improving search efficiency is, number of processors. On the contrary, we have shown that a near-
thus, of considerable importance. Research has been conducted on linear speedup may hold for a large number of processors, and that
designing a unified method for a wide variety of problems the maximum number of processors to attain a near-linear speedup
[5], [3], [16], the most general of which is the branch-and-bound the predictedo9ne
(B&B) algorithm. This is a partitioning algorithm that decomposes ca p [9].
a problem into smaller disjunctive subproblems and repeatedly de- The objective of this correspondence is to study conditions to
composes until infeasibility is proved or a solution is found cope with the anomalous behavior of B&B algorithms under ap-
[8], [12]. Backtracking, dynamic programming [14], and AND-OR proximations and parallel processing. Anomalies between the serial
tree search [6] can be viewed as variations of B&B algorithms, and parallel cases are studied with respect to the same search strat-

In implementing search algorithms for combinatorial searches, egy. In general, anomalies should be studied with respect to the best
approximations and parallel processing are two major approaches to serial algorithm and the best parallel algorithm (with possibly a

enhance their efficiency. Owing to the exponential nature of NP- different search strategy than that of the serial algorithm). However,
hard problems, optimal solutions are usually infeasible to obtain. In conditions to resolve these anomalies would be problem dependent
practice, approximate solutions are acceptable alternatives. Our and may result in a large number of cases that cannot be enumerated.
experimental results on the vertex-cover and 0-1 knapsack problems The conditions to resolve anomalies between n1 and n2 processors,
reveal that a linear reduction in accuracy results in an exponential I - ni < n2, are different from those presented here and are shown
reduction of the average computational time [22]. On the other elsewhere [11]. These results on resolving anomalies are useful for
hand, parallel processing is applicable when the problem is solvable designers to understand the existence of anomalies and to modify
in polynomial time, or when the problem is NP-hard but is solvable existing algorithms to prevent detrimental anomalies and enhance
in polynomial time on the average [17], or the problem is heuris- acceleration anomalies.
tically solvable in polynomial time (such as game trees) [21]. It is II. PARALLEL APPROXIMATE BRANCH-AND-BOUND ALGORITHMS
impractical to use parallel processing to solve a problem with an
exponential complexity because, in the worse case, an exponential Many theoretical properties of B&B algorithms have been devel-

oped by Kohler and Steiglitz [5] and Ibaraki [2], [3]. A brief sum-
mary of these properties to solve a minimization problem were
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ately ordering the search and restricting the region searched are the treated as the heuristic function. Lastly, in a depth-first search,
key ideas behind B&B algorithms. subproblems with the maximum level numbers are expanded first,
The way in which PO, the initial problem, is repeatedly decom- and the negation of the level number can be taken as the heuristic

posed into smaller subproblems can be represented as a finite rooted function. If U is the current list of active subproblems in the process
tree B = (P, E) where P is a set of disjunctive subproblems, and E of expansion and h is the heuristic function, then the selection
is a set of edges. The root of the tree is PO. If a subproblem Pij is function for a subproblem to be expanded in a serial B&B algorithm
obtained from Pi by direct decomposition, then (Pi, Pi,) E E. The is
level number of a node is the number of edges leading from the root
to this node (the root is at Level 0). Letf(Pi) be the value of the best Ss(U) = {P, h(Pi) = min(h(P,))}. (8)
solution obtained by evaluating all subproblems decomposable from PjC=U
Pi, Pij be the jth subproblem directly decomposable from Pi, and ki B&B algorithms have inherent parallelism. Each of the four rules
be the total number of such subproblems (ki = 1{(Pi, x): (Pi, x) E of a serial B&B algorithm can be enhanced by parallel processing.
E}|). Then f satisfies 1) Parallel Selection of Subproblems: In the parallel case, a set

f(P1) = mm {f(P)} of subproblems less than or equal in size to the number of processors
j= ( ) have to be selected for decomposition in each iteration. The se-

Each subproblem is characterized by a lower bound value that is lection problem is especially critical under a best-first search be-
computed from a lower bound function g. Let T be the set of all cause et of subproblems with the smallest lower bounds must be
feasible solutions. The lower bound function satisfies the following selected The selection function in (8) becomes
properties: {Pi,, * Pik if IU > k

where h(Pi)<h(Pj), Pi, Pj EzU
1) g(Pi) <f(Pi) for Pi E P Sp(U) iEli ( i 1, ikl

(g is a lower bound estimate off); (2) U if U . k

2) g(Pi) f(Pi) for Pi E T
(g is exact when Pi is feasible); (3) where k is the number of processors. This returns the set of k (or

3) g,p)g( fr (Pi, E Eless) subproblems with the smallest heuristic values from U.
3) g(Pi) ' g(Pi>) for (Pi, Pi>) E E 2) Parallel Branching: The selected subproblems can be decom-

(lower bounds of descendents always increase) . (4) posed in parallel.
3) Parallel Termination Tests. Multiple infeasible nodes can be

If a subproblem is a feasible solution with the best objective- eliminated in each iteration. Further, multiple feasible solutions
function value so far, then the solution value becomes the may be generated in an iteration, and the incumbent has to be
incumbent z. The incumbent represents the best solution obtained updated in parallel to find a new incumbent.
so far in the process. Let L be the lower bound cutoff test. If a single 4) Parallel Elimination Tests: The lower bound test [(5) or (6)]
solution is sought, the Pj LPr means that Pj is a feasible solution and can be carried out in parallel by comparing lower bounds of multiple
that f(Pj) < g(Pi). Using the best solution value obtained, Pi is subproblems with the incumbent. However, the bounding functions
terminated during the computation if are problem-dependent, and software implementation may be more

flexible.
g(P.) > z. (5) For simplicity, the case of searching a single optimal (or sub-

An approximate B&B algorithm is identical to the optimal B&B optimal) solution is discussed in this correspondence. The case in

algorithm except that the lower bound test is modified. Hence, PjLPI which all solutions are sought can be analyzed similarly. The paral-
iff(Pj)/(1 + E) 5 g(P;), E - 0 where e is an allowance function lel computational model used here consists of a set of processors
specifying the allowable deviation of a suboptimal solution value connected to a shared memory. There is a single subproblem list

from the optimal solution value. Using the incumbent, Pi is termi- shared by all processors. It is assumed that the processors operate
nated during the evaluation of the approximate B&B algorithm if synchronously in executing the steps of the PABB algorithm. In

each iteration of the algorithm, multiple subproblems are selected
z and decomposed. The newly generated subproblems are tested for

g(Pi) + e , z . 0. (6) feasibility (and the incumbent updated if necessary), eliminated by
lower bound tests, and inserted into the active list if not eliminated.

The final incumbent value ZF obtained by the modified lower bound In this model, eliminations are performed after branching instead of
test deviates from the optimal solution value zo by after selection as in Ibaraki's algorithm [2]. This reduces the mem-

ory space required for storing the active subproblems.
ZF The shared memory in the proposed computational model may

1 +E C Z° . ZF* (7) seem to be a bottleneck of the system. However, this model can be
transformed into a second model in which all processors have a

For example, suppose it were decided that a deviation of private memory and are connected by a ring network. The behavior
10 percent from the optimum was tolerable. If a feasible solution of of the PABB algorithm in the transformed model has been shown to
150 is obtained, all subproblems with lower bounds of 136.4 (or be very close to that of the original model, except that very little
150/(l + 0.1)) or more can be terminated, since they cannot lead interprocessor communication and interference are involved
to a solution that deviates by more than 10 percent from 150. This [19], [20]. Since subproblems are decomposed synchronously and
technique significantly reduces the amount of intermediate storage the bulk of the overhead is on branching operations, the number of
and time needed to arrive at a suboptimal solution. iterations, which is the number of times that subproblems are de-

Ibaraki has mapped breadth-first, depth-first, and best-first composed in each processor, is an adequate measure in both the
searches into a general form called the heuristic searches [3], [15]. serial and parallel models. The speedup is thus measured by the
A heuristic function is defined to govern the order in which sub- ratio of number of iterations in the serial case to that of the parallel
problems are selected and decomposed. The algorithm always de- case.
composes the subproblem with the minimum heuristic value. In a
best-first search, the lower bound values define the order of expan- III. ANOMALIES OF PABB ALGORITHMS
sion, and the lower bound function can be taken as the heuristic In this section, some anomalies of the PABB algorithm are illus-
function. In a breadth-first search, subproblems with the minimum trated. Let T(k, e) be the number of iterations required for expand-
level numbers are expanded first, and the level number can be ing a B&B tree to find the first optimal (or suboptimal) solution,
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where k is the number of processors and E is the allowance function.
Once the optimal solution is found, the time to drain the remaining
subproblems from the active list is not accounted for here.

Fig. 1 shows an example of a detrimental anomaly when approxi-
mations are allowed. In a serial depth-first search, subtree T2 is
terminated owing to the lower bound test of P : f(P )/(1 + e) '
g(P2) where E = 0. 1. In a parallel depth-first search with two pro-
cessors, a feasible solution P4 is found first, and nodes PI and P l are
terminated owing to the lower bound test of P4. Consequently, /
subtree T2 has to be expanded, which will eventually prune subtree g=78 p 2 g=78 4
T3. If the size of T2 is much larger than that of T3, the time taken to 9=85 / _ g=f =100
expand T2 using two processors will be longer than that taken to
expand T3 using one processor. Strategies to handle these anomalies /=91/T3
will be discussed in Section V-B. p

Fig. 2 shows an example of an acceleration anomaly when a g=f/ 8

depth-first search with approximations is used. When a single pro-
n 3

cessor is used, subtree T has to be expanded. However, when two option
processors are used, P2 is expanded in the second iteration, and the fi T2 (SeriaL case)
feasible solution P4is found. Therefore, node P3 and subtree T will
be eliminated by lower-bound tests with P4. If subtree T is large, P1
then the speedup of using two processors over one processor will be
much greater than two. Acceleration anomalies will be discussed in
Section VI.
Many examples to illustrate anomalies can be created for the SOm9=f=85

various combinations of search strategies and allowance functions. Solutionmn
However, the important consideration here is not in knowing that paraLLeL case
anomalies exist, but in understanding why these anomalies occur. © a feasbile soLution
Furthermore, it is desirable to preserve the acceleration anomalies
and to avoid the detrimental anomalies. Our objective is to find the - - lower-bound tests
sufficient conditions to ensure that T(k, E) . T(1, E), as well as the -Fig. 1. An example of a detrimental anomaly under a depth-first search with
necessary conditions for T(k, E) ' T(l, e)/k. The necessary condi- approximations (E = 0.1).
tions to eliminate detrimental anomalies and the sufficient condi-
tions to preserve acceleration anomalies are not evaluated because
they depend on the sequence of nodes expanded and the size of the PO
resulting subtrees. Besides being impossible to enumerate due to the
large number of possible combinations, these conditions are prob- / \
lem dependent and cannot be generalized to all problems. 9-80 g-lO0

f=90 1 f91

IV. GENERALIZED HEURISTIC SEARCHES /

Recall from Section II that the selection function uses heuristic
values to define the order of node expansions. It was mentioned that
breadth-first, depth-first, and best-first searches are special cases of Q g 3 40)
heuristic searches. These searches are potentially anomalous when f I00
parallel expansions are allowed.

Consider the serial depth-first search. The subproblems are main-
tained in a last-in-first-out list, and the subproblem with the maxi-
mum level number is expanded first. When multiple subproblems T
have identical level numbers (or heuristic values), the node chosen
by the selection function depends on the order of insertion into the Qf90
stack. If the rightmost child of a parent node is inserted first, then
the leftmost child will be the node inserted last and expanded first ( a feasible solution
in the next iteration. lower-bound test

In a parallel depth-first search, the mere extension of the serial Fig. 2. An example of an acceleration anomaly under a depth-first or
algorithm may cause an anomalous behavior. For example, the order best-first search with approximations (E = 0.1).
of expansion in a serial depth-first search for the tree in Fig. 3 is A,
B, D, I, J, E, etc. When two processors are used, nodes B and C are
decomposed to nodes D, E, F, G, and H in the second iteration. A

Since these nodes have identical level numbers, the selection func- eve 0
tion can choose any two of these nodes in the next iteration. Suppose B / '0
that they are inserted in the order E, D, H, G, and F. Then nodes F ceIo/ I \
and G will be selected and expanded in the third iteration. This may o p/ G\[
cause an unexpected behavior as compared to the serial case. A level 2 ,00000 900100 01000o 01100 01200
similar example can also be developed for the best-first search when 0 0,0/ 0/\ /
the lower bounds of nodes are identical.I/ \J K/L/ \ !/I,\O
The ambiguous selection of nodes for expansion is exactly the level 3 1Ooo00X)000OIO oiooo0 010°IOp01110

reason for anomalies reported by Lai and Sahni [7]. In their proof oooo /\
of Theorem 1, which states that detrimental anomalies can always / Q/ \R
exist when a larger number of processors are used, the nodes se- C
lected for expansion are different when a different number of pro- level 4 01 oto011
cessors are used. This change of selection order in their Theorem 1 Fig. 3. The path numbers of a tree.
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(and almost all their other theorems) is based on the implicit as- fices to prove a) that at least one node belonging to cI 'is expanded
sumption that nodes have identical lower bounds. In this case, the in each iteration of the parallel search; and b) that once all the nodes
lower bounds are not useful in guiding the selection of subproblems. in (cJ 1 are expanded or terminated, the parallel heuristic search must
To have an accurate comparison when different number of pro- terminate. The proof requires the following property on basic nodes.
cessors are used, a consistent selection strategy must be used. Lemma 1: Let Pi be a basic node, then for any node Pj such that
To resolve the ambiguity of the selection of subproblems, distinct h(Pj) < h(Pi), Pj must be either expanded or terminated when Pi is

heuristic values must be defined for the nodes. In this correspon- expanded.
dence, a path number is proposed to uniquely identify a node. The Proof: Suppose that in the current active list, U, Pi E U is a
path number of a node in a tree is a sequence of d + 1 integers basic node. Assume that there exists a node Pj such that
representing the path from the root to this node, where d is the h(Pj) < h(Pi) and that Pj has not been expanded or terminated when
maximum number of levels of the tree. The path number Pi is expanded. Since P has the minimum heuristic value among the
E = eoe,e2 ... ed is defined, recursively, as follows. The root P0 active nodes in U, Pj must not be active at that time. That is, PJ is
exists at Level 0 and has a path number of Eo = 000... 0. A node a descendant of some node Pk, Pk E U, and h(Pi) < h(Pk). By (12),
Pij on Level 1, which is the jth child (counting from the left) of Pi h(Pi) < h(Pk) - h(Pj), which contradicts the assumption that
with path number Ei = eoe .. elIOOO**, has path number h(Pj) < h(Pi).
E= eoe ... e1,jjOO*. As an example, the path numbers of all The following theorem proves that any unambiguous heuristic
nodes in the tree of Fig. 3 are shown outside the nodes. functions satisfying (11) and (12) are sufficient to eliminate detri-
To compare path numbers, the relations '>' and '=' must be mental anomalies.

defined. A path number E, = e'e' is less than another path Theorem 1: Let E = 0, i.e., an exact optimal solution is sought.
number E, = e2e<* * (Ex < E,) if there exists 0 c j c d such that T(k, 0) ' T(1, 0) holds for any parallel heuristic search with a heu-
e e, 0. i < j, and ej < eJ. The path numbers are equal if ristic function satisfying (11) and (12).
e= e2 for 0 c i ' d. For example, the path number 01000 is less Proof. The proof is by contradiction. Suppose there exists a
than 01010. According to our definition of path numbers, nodes can basic node Pi, in the parallel search such that Pi, 0 (D 1 and that
have equal path numbers if they have the ancestor-descendant re- P E k (see Fig. 4). This means that either Pi, or its an ancestor
lationship. Since these nodes never coexist simultaneously in the is terminated by a lower bound test in the serial case. Hence, there
active list of subproblems of a B&B algorithm, the subproblems in must exist a feasible solution P,2 E 'D 1 such thatf(Pi2) < g(Pil) and
the active list always have unique path numbers. that Pi2 has not been obtained when Pi, is expanded in the parallel
The path number is now included in the heuristic function. The case. It implies that a proper ancestor Pi,3 E C1 of Pi2 exists in the

primary key is still the lower bound value or the level number. The serial case such that h(Pi,) c h(Pi,), and that Pi2 is obtained before
secondary or ternary key is the path number and is used to break ties Pi, and terminates Pi,. Since Pi, is a basic node in the parallel search,
in the primary key. h(Pi3) < h(Pi,), and Pi3 has not been expanded when Pi, is expanded

in the parallel case, Pi3 must be terminated according to Lemma 1.
(level number, path number) breadth-first search For the parallel search, there must exist a feasible solution Pi,4 £E (

(path number) depth-first search such thatf(Pi4) ' g(Pi3), and that Pi4 has not been obtained when Pi3
h(Pj) = (lower bound, level number, is expanded in the serial case. Two cases are possible:

First, P14 is not generated when Pi3 is expanded in the serial case,
path number) or i.e., a proper ancestor Pi, E CFk of Pi, exists when Pi3 is active and
(lower bound, path number) best-first search (10) h(Pi,) > h(Pi3). According to the properties of lower bound func-

tions [(2), (3), and (4)], we have f(Pi4) C g(Pi3) c f(pi_) <
where the level number, path number, and lower bound are defined f(P,2) - g(Pi,). Moreover, in the parallel case, Pi4 should be ob-
for Pi. For a best-first search, nodes with identical lower bounds can tained before Pi, is expanded (otherwise, Pi3 would not be terminated
be searched in a breadth-first or depth-first fashion. by Pj4). Hence Pi, has to be terminated by Pi4 in the parallel algo-
The heuristic functions defined above belong to a general class of rithm, which contradicts the assumption that Pi E F k.

heuristic functions satisfying the following properties: Second, h(Pi) < h(Pi3), and Pi,, as well as its descendant P14, have
h(P ) 0 h(Pj) if Pi 0 Pj, Pi, Pj E P

been terminated in the serial case and not in the parallel case. We can
h(Pt) Jh(P1) if Pz jI)~, Pi, Pj E " then apply the above argument again to Pi, and eventually obtain a

(all heuristic values are distinct) (11) sequence of nodes Pi, Pi2, ...* Pim as depicted in Fig. 4, in which
Pi. is not terminated by any lower bound test. There are three

h(Pi) S h(Pj) if Pj is a descendant of Pi possibilities:
(heuristic values do not decrease) (12) 1) The first node Pim occurs in the serial case [Fig. 4(a)]. Since

,is a feasible solution, we have: g(Pi_) <f(Pi1,,) '
In general, the results developed in the following sections are appli- g(Pi.2) c f(Pim 2) < g(Pi ,) ' * * f(P) < g(P.) Further,
cable to any unambiguous heuristic function satisfying (11) and since h(Pik+2) h(P- ) (otherwise,

3
k could not have been termi-

(12), and are not restricted to the use of path numbers. For example, nated byPik+1 in the serial case) and since h(Pnot4) Kh(Pav 2) (by the
the lower bound can be used as the secondary key and the path same argument as h(P2) K h(P(t)), we have h(Pik4) K h(P). Re-
number as the ternary key in a breadth-first search. peating this, we get h(Pim) < h(Pil). By Lemma 1, Pi, must be
By using the heuristic function defined in (10), the study of expanded in the parallel case and terminatesP which contradicts

anomalies for depth-first, best-first, and breadth-first searches can expa i th pck
be unified. The results developed in the following sections apply to 2) The first node Pi- occurs in the parallel case, Fig. 4(b). Simi-
all these search strategies. lar to the argument for P,4 discussed before, we can explain that Pi -l

has been obtained when Pi, is selected. Therefore, P,l must be termi-
V. SUFFICIENT CONDITIONS TO ELIMINATE DETRIMENTAL ANOMALIES nated in the parallel case, which contradicts that P,1 E CFk.

3) There is a cycle of cutoffs such that Pi ILP,-2,
A. ParallelB&B Algorithms withLowerBound Tests Only Pim 3LPjm-4,.* , Pk+LPEk and Pik- lLPz,, where L denotes a lower

In this section, we show that any heuristic search with an un- bound cutoff test [Figure 4(c)]. By transitivity, we have
ambiguous heuristic function can guarantee that T(k, e) c T(l, e) f(Pim ) . f(Pim _,) . f(Pjik ) . f(Pim ),S which implies that
when only lower bound tests with e = 0 are used. A basic node is f(Pim) = f(Pim l) = f(Pik l). The heuristic value of all nodes of the
the node with the smallest heuristic value in each iteration. Let CFl cycle are less than h(P,l), so a feasible solution has been obtained
and CF k be the sets of nodes expanded in the B&B tree using one and before Pi is selected. Thus, P,l must be terminated in the parallel
k processors, respectively. To show that T(k, 0) c T(l, 0), it suf- case, which contradicts that P1, E C)k.
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(a) (b) (c) Second, assume that h(Pi,) < h(Pi3). The argument here is similar

p P. pto the proof of Theorem I except that the lower bound test to be used
O im S im Rim isf(Pi)/(l + E) < g(Pj) and notf(Pi) ' g(Pj). n

P1Pi. g For depth-first searches, the condition of Theorem 2 is not suf-
p. Piml'\~> p. ficient. Fig. 1 is an example of a detrimental anomaly caused by

1k+4 i +I > approximations. In breadth-first searches, since the sequences of

4+2r- . p .;1same, and the minimal feasible solution is selected as the new

Pk+2 incumbent if more than one feasible solution are obtained in an

~~Pik: Pik +, 8 ' iteration of a parallel search, approximations will not result in detri-
.~ . "->,pjmental anomalies when the condition in Theorem 2 is satisfied.Pik

* _ PXPi, S P; VI. NECESSARY CONDITIONS FOR ACCELERATION ANOMALIES
_- P In this section, the necessary conditions for T(k, 0) < T(I,O)/k

Pi3 r- ^ Pi3 T - 13 1 are developed. One condition is based on the complete consistency
Pi2 pPi,i - pi2@= > of heuristic functions. A heuristic function h is said to be consistent
2

-°0Pi ~ 'IOoPi, Pi (respectively, completely consistent) with the lower bound function
g if h(Pi) < h(Pj) implies that g(Pi) ' g(Pj) (respectively,

<:>1 <:,k <p,1 <X>k <tI1 <:>k g(Pi) < g(Pj)) for all Pi, Pj E P. A heuristic function h is said to be
not completely consistent with g if there exist two nodes Pi and P1

© a feasible solution parent-child relationship such that h(Pi) > h(Pj) and g(P,) < g(Pj). Note that if there are
lower-bound test sequence of node expansions nodes with equal lower bounds, then the heuristic function for a

and terminations serial best-first search is consistent, but not completely consistent,
with the lower bound function.

Theorem 3: The necessary condition for T(k, 0) < T(I, 0)/k is
that the heuristic function h is not completely consistent with g.

So far, we have proved that at least one node in ci)1 is expanded Proof: An acceleration anomaly does not exist if c1 C Vi
in each iteration of a parallel heuristic search. Since approximation because at least Flc) 1 /kl iterations are needed to expand the nodes
is not allowed, the optimal-solution node cannot be eliminated by in VX) . Hence, the proof is based on the assumption that a node
lower bound tests. Hence during a parallel heuristic search, once all Pi, E ( 1 exists and that Pi1, 4? k. This means that Pi, is terminated
nodes in i)" are either expanded or terminated, the optimal-solution by a lower bound test in the parallel case. That is, there is a feasible
node must be found. The remaining unexpanded nodes do not be- solution node P -2E c)k such that f(P) s g(Pi,), and Pi2 does not
long to ci) because their lower bounds are greater than the optimal exist in the serial case when Pi, is expanded. Let Pi3 be the immediate
solution. The parallel heuristic search is thus completed at this time. parent of Pi2. Referring to Fig. 5, two cases are possible.

Fl First, h(Pi3) > h(Pi,). This means that Pi3 has not been generated
The above theorem shows that detrimental anomalies can be when Pi1 is selected in the serial case. Since Pi2LPi,, thus

avoided for depth-first, breadth-first, and best-first searches with g(Pi3) . g(Pi2) f(Pi2) g(Pi.), which implies that h is not com-
e = 0 by augmenting the heuristic function with an unambiguous pletely consistent with g. Second, h(Pi3) < h(Pi,). In order for Pi, to
function. As a special case, for a best-first search in which all nodes exist in the serial case, Pi4 E q,i must exist such that Pi4LPi3 and that
have distinct lower bounds, the node with the smallest lower bound h(P14) < h(P3). By the transitivity of lower bound tests, Pi4LPi1. This
can always be selected from the priority queue. In this case, the path contradicts the assumption that Pi, Eci) 1. a
numbers do not have to be used, and no detrimental anomaly will The significance of Theorems 1 and 3 is in showing that accelera-
occur. Due to space limitation, the performance bounds of the par- tion anomalies may exist and that detrimental anomalies can be
allel best-first search will not be shown here [9], [11]. prevented for depth-first searches when no approximation is al-

lowed and an unambiguous heuristic selection function is used. For
B. ParallelB&BAlgorithmswithApproximations a best-first search without approximation, detrimental anomalies
When parallel approximate B&B algorithms are considered, can be prevented by using an unambiguous heuristic selection func-

Theorem 1 is no longer valid all the time (see the example in Fig. 1). tion; however, acceleration anomalies may exist when there are
The reason for the detrimental anomaly is that L, the lower bound nonsolution nodes of the B&B tree with lower bounds equal to the
tests under approximation, are not transitive. That is, PiLPj and optimal solution value, since these nodes have heuristic values that
PjLPk do not imply PiLPk, since f(Pi)/(1 + E) . g(Pj) and are not completely consistent with their lower bound values. For a
f(P1)/(1 + E) s g(Pk) implies f(Pi)/(1 + E)2 C g(Pk) rather than breadth-first search without approximation, no acceleration anom-
f(Pi)/(1 + E) < g(Pk). Somewhat surprisingly, it is possible that aly occurs because at least one node belonging to V1 must be ex-
ci 1 and (D k are almost disjoint, and most of the nodes in ci 1 are not panded in each iteration of a parallel breadth-first search.
expanded in the parallel case. The following theorem shows that It is important to note that the conditions in Theorem 3 are not
detrimental anomalies can be avoided for a best-first search. necessary when approximate solutions are sought. An example in
Theorem 2: T(k, E) . T(I, E), e > 0, holds for best-first Fig. 2 shows the existence of an acceleration anomaly when

searches if the heuristic function satisfies (11) and (12). E = 0.1 and h is completely consistent with g (since a best-first
Proof: The key idea of this proof is to show that a detrimental search is used and all lower bounds are distinct). In this case, the

anomaly cannot occur although transitivity of lower bound tests is additional necessary condition is that the lower bound test with
not valid here. Suppose that there exists a basic node Pi, in ci) and approximation is inlconsistent with h; that is, there exist Pi and P3
not in ci)1. There are two cases as described in the proof of such that h(Pi) > h(P1) and that P,LPJ. Clearly, this necessary con-
Theorem 1 (see Fig. 4). dition is weak and can be satisfied easily.

First, assume that h(Pi5) > h(Pi3). Since the relations Pi4LP,3 and
Pi2LP,l exist, and Pi3 is selected before P,l in the serial case (for VII. CONCLUSION
a best-first search), it is true that g(P.3) < g(P.l). This implies Branch-and-bound algorithms belong to a general class of algo-
that f(Pi4)/(l + 6) . g(P11). Pi4 can be shown to be available rithms that can solve a wide variety of combinatorial-search prob-
before P,1 is expanded by the same argument as in the proof of lems. Two major ways to improve the search efficiency are guiding
Theorem 1. Hence, P,1 must be eliminated by Pi4 in the parallel case, the search by a heuristic function (or selection rule) and narrowing
a contradiction! the search space (or elimination rules). Anomalies due to paral-
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