Guest Editor’s Introduction

New Computers for
Artificial Intelligence
Processing

Benjamin W, Wah
University of Illinois at Urbana-Champaign

New computer architectures can be used to
improve efficiency in the processing of some time-
consuming Al tasks, but cannot overcome the

combinatorial complexity of Al processing.
his special issue of Computer is
about recent efforts to produce

T hardware and software architec-
tures that support artificial intelligence
(AI) applications. The earliest computer

design to support Al processing was the
implementation of Lisp on the PDP-6

and PDP-20, all made by the Digital
Equipment Corporation. The half-word
instructions and the stack instructions of
these machines were developed with Lisp’s
requirements in mind. Since then, we have
been seeing a proliferation of special-
purpose computers that can support sym-
bolic and Al processing. These efforts in-
clude the implementation in hardware of
primitive operations fundamental to ap-
plications in AI, the design of a collection
of primitive architectures to support more
complex functions, and the design of
system-level architectures to support one
or more languages or knowledge-represen-
tation schemes.

Characteristics of Al
computations

To develop a special-purpose computer
to support Al processing, the require-
ments of Al applications must be fully

0018-9162/87/0100-0010501.00 © 1987 IEEE

computer and its successors, the PDP-10

understood. Conventional numerical algo-
rithms are usually well analyzed, and
bounds on computational performance can
be established. In contrast, many Al appli-
cations are characterized by symbolic pro-
cessing, nondeterministic computations,
dynamic execution, large potential for
parallel and distributed processing,
knowledge management, and open
systems.

Symbolic processing. Al applications
generally process data in symbolic form.
Primitive symbolic operations, such as
comparison, selection, sorting, matching,
logic set operations (union, intersection,
and negation), contexts and partitions,
transitive closure, and pattern retrieval
and recognition are frequently used. At a
higher level, symbolic operations on pat-
terns such as sentences, speech, graphics,
and images may be needed.

Nondeterministic computations. Many
Al algorithms are nondeterministic, that
is, it is impossible to plan with the available
information the procedures that must be
executed and terminated. This comes
from a lack of knowledge and from an in-
complete understanding of the problem,
and results in the need to enumerate all
possibilities exhaustively when the prob-
lem is solved.

COMPUTER



Dynamic execution. Owing to this lack
of complete knowledge and to the uncer-
tainty of the solution process, the
capabilities and features of existing data
structures and functions may be defined,
and new data structures and functions
may be created, when the problem is ac-
tually solved. Further, the maximum size
for a given structure may be so large that it
is impossible to allocate the necessary
memory space ahead of time. As a result,
memory space may have to be dynamically
allocated and deallocated when the prob-
lem is solved.

Large potential for parallel and distrib-
uted computing. In parallel processing of
deterministic algorithms, a set of neces-
sary and independent tasks must be found
and processed concurrently. This class of
parallelism is called AND- parallelism. In
Al processing, the large degree of nonde-
terminism offers an additional source of
parallel processing. Tasks at a nonde-
terministic decision point can be processed
in parallel. This latter class is called OR-
parallelism.

Knowledge management. Knowledge is
an important component in reducing the
complexity of solving a given problem:
More useful knowledge means less ex-
haustive searching. However, many Al
problems may have a very high degree of
inherent complexity, hence the amount of
useful knowledge may also be exceedingly
large. Further, the knowledge acquired
may be fuzzy, heuristic, and uncertain in
nature. The management, representation,
manipulation, and learning of knowledge
are, therefore, important problems to be
addressed.

Open systems. In many Al applications,
the knowledge needed to solve the prob-
lem may be incomplete because the source
of the knowledge is unknown at the time
the solution is devised, or because the en-
vironment may be changing and cannot be
anticipated at design time. Al systems
should be designed with an open concept
and allow continuous refinement and ac-
quisition of new knowledge.

Design issues

The essential issues in designing a com-
puter system to support a given Al ap-
plication can be classified into the
representation level, the control level, and
the processor level (see Table 1).

January 1987

¢ The representation level deals with the
knowledge and methods to solve the prob-
lem, and the means to represent it.

® The control level is concerned with the
detection of dependencies and parallelism
in the algorithmic and program represen-
tations of the problem.

® At the processor level, the hardware
and architectural components needed to
evaluate the algorithmic and program rep-
resentations are developed.

Many current designs start with a given
language or knowledge-representation
scheme; hence, the representation level is
already fixed. Research has been focused
on automatic methods to detect parallel-
ism, as well as on providing hardware sup-
port for time-consuming operations.
However, the representation level is an im-
portant element in the design process and
dictates whether the given problem can be
solved in a reasonable amount of time. At
this time, little has been done in providing
tools (a) to aid users in collecting and or-
ganizing knowledge or (b) to aid them in
designing efficient algorithms.

Hierarchy of meta-knowledge. Domain
knowledge refers to objects, events, and
actions per se, while meta-knowledge in-
cludes the extent and origin of the domain
knowledge of a particular object, the relia-
bility of certain information, and the pos-
sibility that an event will occur. In other
words, meta-knowledge is knowledge
about domain knowledge. Meta-knowl-
edge can be considered as existing in a
hierarchy. That is, meta-knowledge is in-
volved in deciding the appropriate domain
knowledge to apply, while meta-meta-
knowledge is the control knowledge about
the meta-knowledge. Higher level meta-
knowledge is commonsense knowledge
known to humans.

The use of meta-knowledge allows one
to express the partial specification of pro-
gram behavior in a declarative language,
hence making programs more aesthetic,
simpler to build, and easier to modify.
Moreover, it facilitates incremental system
development; that is, one can start from a
search-intensive algorithm and incremen-
tally add control information until one ob-
tains an algorithm that may be search-free.
Lastly, many knowledge-representation
schemes and program paradigms, such as
logic, frame, semantic network, and
object-oriented languages, can be in-
tegrated with the aid of meta-knowledge.

There are many open problems related
to the use of meta-knowledge: its unam-
biguous specification, its consistency

. o S A NG Y g S s N 1 e
¥

Table 1. Design issues in AI architec-
tures,

Representation level

Hierarch); of meta-knbwledge‘
Domain-knowledge representation
Al languages and programming

Control level
Truth maintenance
Partitioning and restructuring

Synchronization
Scheduling

Processor level

Micro-level architectures
Magcro-level architectures
System-level architectures

verification, the learning of new meta-
knowledge, and the use of appropriate
statistical metrics.

Domain-knowledge representation.
Declarative representations specify static
knowledge, while procedural representa-
tions specify static knowledge as well as
the control information that operates on
the static knowledge.

Declarative representations are referen-
tially transparent; that is, the meaning of a
whole can be derived solely from the
meaning of its parts and is independent of
their historical behavior. Declarative
representations offer a higher potential for
parallelism than procedural representa-
tions, but are usually associated with a
large search space that may partly counter-
act the gains of parallel processing.

In contrast, procedural schemes allow
the specification and direct interaction of
facts and heuristic information, hence
eliminating wasteful searching. However,
they may over-specify the precedence con-
straints and restrict the degree of parallel
processing. When one chooses the ap-
propriate representation scheme, trade-
offs must be performed as regards the
amount of memory space required to store
the knowledge, the time allowed for mak-
ing inferences, the expected usage of the
knowledge, and the underlying computer
architecture and technological limitations.

Al languages and programming. Con-
ventional imperative languages are inade-

11



quate to Al programming owing to its
inefficiency in symbolic and pattern
processing and its unacceptable program-
ming complexity. New Al languages
feature large declarative power, symbolic
processing constructs, representation of
information by lists, and use of recursion
as the only control mechanism. Function-,
logic-, and object-oriented languages are
the major programming paradigms used
for Al today, and hybrids of these
paradigms have been developed. These
languages differ in their expressive
power, their ease of implementation,
their ability to specify parallelism, and
their ability to include heuristic
knowledge. A language-oriented Al
computer will inherit all the features and
limitations of the language it implements.

Truth maintenance. Many Al applica-
tions are characterized by a lack of consis-
tent and complete knowledge at the repre-
sentation level. Hence, it may be necessary
to modify the existing knowledge base
continually and to maintain its consistency
as new knowledge is acquired. Truth
maintenance consists of recognizing an in-
consistency, modifying the state to remove
the inconsistency, and verifying that all in-
consistencies are detected and corrected
properly. The process of removing incon-
sistencies may be inconsistent itself, and
may introduce further inconsistencies into
the knowledge base.

Partitioning and restructuring. These
refer to the reorganization and decompo-
sition of the knowledge base and the Al
program to achieve more efficient process-
ing. The issues that need to be considered
are similar to those considered for conven-
tional multiprocessing and parallel pro-
cessing systems, namely, granularity, static
and dynamic detection of parallelism, and
restructuring. However, the methods to
resolve these issues are different. Owing to
the nondeterminism encountered in Al
processing, Al tasks may be decomposed
into a large number of smaller tasks, which
will influence the design of a special-
purpose computer system to support Al
processing. Many of the proposed Al
systems have a collection of simple pro-
cessing elements to execute tasks of small
granularity and another collection of more
complex processing elements to execute
tasks of larger granularity.

The detection of parallelism is also com-
plicated by the nondirectionality of the
modes of variables, the dynamic creation
and destruction of data, and the nondeter-

12

minism. In many languages designed for
Al processing, the input/output modes of
variables and the necessary data structures
are defined at run time. Static analysis,
allocation, and scheduling are impossible
here. Dynamic detection and scheduling
do not give satisfactory performance be-
cause of their relatively high overheads for
tasks of small granularity. One popular so-
lution is to require users to supply addi-
tional information in order to allow
compile-time analysis, The amount of
speedup that parallel processing of nonde-
terministic tasks will provide is not clear,
although the potential for processing these
tasks in parallel is great. Without ap-
propriately guiding the search, restructur-
ing the program, and detecting redundant
computations, much of the power of
parallel processing may be directed toward
fruitless searches.

Synchronization. There are two levels
of synchronization: control-level syn-
chronization and data-level synchroniza-
tion.

In procedural languages, if a statement
precedes another statement in the pro-
gram, the implication is that this statement
precedes the second statement if the two
statements share common variables; that
is, control-level synchronization is implicit
when data-level synchronization is needed.
This implicit execution order may over-
specify the necessary control-level syn-
chronization in the problem.

On the other hand, if the tasks are
specified as a set over a number of
declarative languages, then control-level
synchronization is absent, and the set of
tasks can be processed in parallel if the
tasks do not share common variables.

If the tasks have common variables but
are semantically independent, then they
have to be processed sequentially in an ar-
bitrary order to maintain data-level syn-
chronization. The difficulty of specifying
control-level synchronization when tasks
are semantically dependent is a major
problem in declarative languages, such as
Prolog. For example, the decomposition
of a set into two subsets in Quicksort must
be performed before the subsets are
sorted. Hence, the tasks for decomposi-
tion and for sorting the subsets are both
semantically dependent and data depen-
dent. To overcome this problem, pro-
grammers are provided with additional
primitives, such as the input/output
modes of variables in a Prolog program,
to specify the necessary control-level syn-
chronization. These primitives may have

side effects and may not be able to specify
completely all control-level synchroniza-
tion in all situations. These problems may
have to be dealt with at run time until suf-
ficient information is available to solve
them.

In short, there is a trade-off between the
expressive power of the language and the
implementation difficulty in designing a
special-purpose computer system to sup-
port an Al language. New languages that
combine the ability of functional lan-
guages to specify parallel tasks and that of
logic languages to specify nondeterminism
are evolving.

Synchronization is needed when the
system is message-based, but may not be
needed in systems that are value-based or
marker-based. In a value-based system,
multiple values arriving at a processor
simultaneously are combined into a single
value, hence contention will not happen
and synchronization is not necessary.
Neural networks and the Boltzmann
machine are examples of this class. In
systems supporting marker-passing, such
as NETL and the Connection Machine,
markers in a set represent entities with a
common property and are identified in a
single broadcast, hence synchronization is
not necessary.

Scheduling. Scheduling is the selection
of ready tasks to assign to available pro-
cessors. It is especially important when
there is nondeterminism in the algorithm.
Scheduling can be static or dynamic. Static
scheduling is performed before the tasks
are executed, while dynamic scheduling is
carried out when the tasks are executed.

The difficulty in designing a good
scheduler lies in the heuristic metrics to
guide the nondeterministic search. The
metrics used must be efficient and ac-
curate. Trade-offs must be made among
the dynamic overhead incurred in com-
municating the heuristic-guiding and
pruning information, the benefits that
would be gained if this information led the
search in the right direction, and the
granularity of tasks.

In practice, the merits of heuristic
guiding are not clear, since the heuristic in-
formation may be fallible. As a result,
some Al architects do not schedule nonde-
terministic tasks in parallel. The excessive
overhead coupled with the fallibility of
heuristic information also leads some
designers to apply only static scheduling to
Al programs.

Micro-level, macro-level, and system-
level architectures. The VLSI technology

COMPUTER



that has flourished in the past 10 years has
resulted in the development of many
special-purpose computers.

* Micro-level architectures to support
Al processing consist of architectural
designs that are fundamental to applica-
tions in Al.

Examples of basic computational prob-
lems that are solved efficiently in VLSI are
set intersection, transitive closure, con-
texts and partitions, best-match recogni-
tion, recognition under transformation,
sorting, string and pattern matching, dy-
namic programming, selection, and proxi-
mity searches. Special features in Al lan-
guages that are overhead-intensive can
also be supported by hardware. Examples

of these architectures include the unifica-
tion hardware, tag bits for dynamic data-
type checking, and hardware stacks.

¢ The macro-level is an intermediate
level between the micro-level and the sys-
tem level. Macro-level architectures can be
made up of a variety of micro-level archi-
tectures and can perform more complex
operations. Examples include the dic-
tionary and database machines, architec-
tures for searching, and architectures for
managing dynamic data structures (such
as the garbage-collection hardware).

® The system-level architectures
available today are generally oriented
toward one or a few of the languages and
knowledge-representation schemes and

designed to provide architectural support
for overhead-intensive features in these
languages and schemes. Examples include
systems to support . functional program-
ming languages, logic languages, object-
oriented languages, production rules,
semantic networks, and special applica-
tions, such as robotics and natural-lan-
guage understanding.

Design methodology

The issues classified in Table 1 provide a
view to the design methodology for spe-
cial-purpose computers that support Al
processing. The various approaches can be

About the cover

The explosion of form and color here
and on the cover symbolizes the com-
plexity of Al processing—its com-
binatorial complexity. The enumerative
nature of many algorithms used in Al
applications can lead to endless searching
for the correct combinations. The key to
harnessing this unbridled combinatorial
stampede is to establish good heuristics
and efficient computers.

The graphics were created by a
graphics program of an iterative process
in which the output of the polynomial
y= 72 + ¢ provides the input for the
same equation, whose output in turn
becomes input, and so on. The images,
in an infinite regress, are made up of
smaller and smaller clones of the parent
image. The colorless areas of the images
locate a set of numbers in the complex

plane known in the field of fractal
geometry as the Mandelbrot set—named
after Benoit Mandelbrot of the IBM
T. J. Watson Research Center. !4

The images were generated at the Cor-
nell National Supercomputer Facility in
conjunction with the university’s
Mathematics Department and Theory
Center. They were computed on Floating
Point System’s Models 164 or 264 Array
Processors attached to an IBM 3090/400
Quad Processor mainframe running
VM/370 Extended Architecture with 999
million bytes of virtual address space.
They were displayed on an Advanced
Electronics Design model 512 graphics
tube. The AED 512 was attached to the
IBM 3081 via a 9600-baud RS-232 port
and a Device Attachment Control Unit
7170 high-speed communications line.

They were photographed with a Canon
Al Camera equipped with a Vivitar
70-150 zoom lens with Fujicolor or Fuji-
chrome 100 film at F9.5 and 1 second.
The photos were provided courtesy of
Homer Wilson Smith of Art Matrix,
Ithaca, New York, whose stock of
photos of the Mandelbrot set are
remarkable for their complex beauty.

1. H. W. Smith, Mandelbrot Sets and Julia Sets,
Art Matrix Corp., PO Box 880, Ithaca, NY
14851-0880.

2. A. K. Dewdney, ‘“Computer Recreations,””

Scientific American, August 1985, p. 16.

B. B. Mandelbrot, The Fractal Geometry of

Nature, W. H. Freeman and Co., New York,

1983.

Frangois Robert, Discreet Iterations, translated

by Jon Rokne, Springer-Verlag, Berlin, in

press.

w

»

January 1987

13



classified as top-down, bottom-up, and
- middle-out.

Top-down design methodology. This
approach starts by defining, specifying,
refining, and validating the requirements
of the application; devising methods to
collect the necessary knowledge and meta-
knowledge; choosing an appropriate rep-
resentation for the knowledge and meta-
knowledge; studying problems with the
given representation scheme that are
related to the control of correct and effi-
cient execution; identifying functional re-
quirements of components; and mapping
these components, subject to technologi-
cal and cost constraints, into software
and micro-level, macro-level, and sys-
tem-level architectures.

The process is iterative. For example,
the representation of knowledge and the
language features may be changed or re-
stricted if it is discovered that the func-
tional requirements cannot be mapped
into a desirable and realizable system with
the given technology and within the set
cost. In some projects, the requirements
may be very loose and span many different
applications. As a result, the languages
and knowledge-representation schemes
used may be oriented toward general-pur-
pose usage. The Japanese Fifth-Genera-
tion Computer System project is an at-
tempt to use a top-down methodology to
design an integrated, user-oriented, intelli-
gent system for a number of applications.

Bottom-up design methodology. In this
approach, the designers first design the
computer system; the design is based ona
computational model (such as dataflow,
reduction, or control-flow) and the tech-
nological and cost limitations. Both possi-
ble extensions of existing knowledge-
representation schemes and languages
developed for Al applications are im-
plemented on the given system. Finally, Al
applications are coded by means of the
representation schemes and languages
provided. This is probably the most popu-
lar approach to applying a general-pur-
pose or existing system to Al processing.
However, it may result in inefficient pro-
cessing, and the available representation
schemes and languages may not satisfy the
application requirements.

Middle-out design methodology. This
approach is a short-cut to the top-down
design methodology. It starts from a prov-
en and well-established knowledge-repre-
sentation scheme or Al language (most

14

likely a scheme or language developed for
sequential processing) and develops both
the architecture and the modifications to
the language or representation scheme
that are necessary to adapt to the applica-
tion requirements.

This is the approach taken by many de-
signers in designing special-purpose com-
puters for Al processing. It may be subdi-
vided into top-first and bottom-first,
although both may be iterative.

In a top-first middle-out methodology,
studies are first performed to modify the
language and representation scheme to
make them more adaptable to the archi-
tecture and computational model. Primi-
tives may be added to the language to fa-
cilitate parallel processing. Useful features
from several languages may be combined.
The design of the architecture follows.

In the bottom-first middle-out method-
ology, hardware support for the overhead-
intensive operations enables the chosen
language or representation scheme to be
mapped directly into architecture and
hardware. Applications are implemented
by means of the language and representa-
tion scheme provided. Lisp computers are
examples of computers designed with the
bottom-first middle-out methodology.

The future

To support efficient processing of Al
applications, research must be done in de-
veloping better Al aigorithms, better Al
software-management methods, and bet-
ter Al architectures.

The development of better algorithms
could lead to significant improvement in
performance. Many Al algorithms are
heuristic in nature, and upper bounds on
performance to solve Al problems have
not been established as they have been in
traditional combinatorial problems. As a
consequence, the use of better heuristic in-
formation, based on commonsense or
high-level meta-knowledge and on better
representation of the knowledge, could
lead to far greater improvement in perfor-
mance than an improved computer archi-
tecture could provide. Automatic learning
methods to aid designers to acquire and
manage the new knowledge in a systematic
manner are very important.

Better Al software-management meth-
ods are essential in developing more effi-
cient and reliable software for Al process-
ing. Al systems are usually open systems
and cannot be defined on the basis of a

closed-world model. The language must
be able to support the acquisition of new
knowledge and the validation of existing
knowledge. Probabilistic reasoning and
fuzzy knowledge may have to be sup-
ported. The verification of the correctness
of Al software is especially difficult owing
to the imprecise knowledge involved and
the random way of managing knowledge
in a number of declarative languages and
representation schemes. Traditional soft-
ware-engineering design methodologies
must be extended to accommodate the
characteristics of Al applications.

The role of parallel processing and in-
novative computer architectures lies inim-
proving the processing time needed to
solve a given Al problem. It is important
to realize that parallel processing and bet-
ter computer architectures cannot be used
to overcome the exponential complexity of
exhaustive enumeration (unless an ex-
ponential amount of hardware is used)
and are not very useful in extending the
solvable problem space. It is unlikely that
aproblem too large to be solved today by a
single computer in a reasonable amount of
time can be solved by parallel processing
alone, even if a linear speedup can be
achieved. The decision to implement a
given algorithm in hardware depends on
the complexity of the problem the algo-
rithm solves and the frequency of the
problem’s occurrence. Problems of low
complexity can be solved by sequential
processing or in hardware if they are fre-
quently encountered; problems of moder-
ate complexity should be solved by parallel
processing; and problems of high com-
plexity should be solved by a combination
of heuristics and parallel processing.

In many Al systems being developed to-
day, tasks and operations implemented in
hardware are those that are frequently exe-
cuted and have polynomial complexity.
These tasks and operations are identified
by means of the languages or the knowl-
edge-representation schemes supported.
The architectural concepts and parallel-
processing schemes applied may be either
well-known conventional concepts or new
concepts for nondeterministic and dynam-
ic processing. The role of the computer ar-
chitect lies in choosing a good representa-
tion, recognizing tasks for maintaining
and learning meta-knowledge that are
overhead-intensive, identifying primitive
operations in the languages and knowl-
edge-representation schemes, and sup-
porting these tasks and operations in hard-
ware and software.

COMPUTER



In this issue

This special issue of Computer is a col-
lection of articles describing a number of
projects in this active area called Al
computers.

The first article, *‘Computer Architec-
tures for Artificial Intelligence Process-
ing,”” by K. Hwang, J. Ghosh, and R.
Chowkwanyun, is a survey of computers
for Al processing. Existing efforts are
classified as multiprocessors supporting
MIMD operations, multicomputers sup-
porting multiple SISD processing, and
multipurpose computers operating in an
SIMD, or multiple-SIMD, or MIMD fa-
shion. The architecture, languages, execu-
tion paradigms, and principal applications
of various Al computers are summarized.

The second article, ‘‘Software Devel-
opment Support for Al Programs,’” by
C. V. Ramamoorthy, S. Shekhar, and V.
Garg, presents the problems faced in de-
signing the software-development envi-
ronment so that it will support all phases
of the software-development cycle of an
Al program: requirement specification,
design, implementation, testing, and
maintenance. The evolution of support
for development of Al programming is
described with respect to discrete tools,
tootboxes, life-cycle support, knowledge-
based tools, and intelligent life-cycle sup-
port environments.

The third article, ‘‘Symbolics Architec-
ture,”’ by D. A. Moon, details the design
philosophy of and trade-offs in the Sym-
bolics Lisp computers. Three levels of the
architecture—system architecture, in-
struction architecture, and processor ar-
chitecture—are discussed.

The next two articles discuss systems
for the support of object-oriented
programming.

The fourth article, ““The Architecture
of FAIM-1,” by J. M. Anderson, W. S.
Coates, A. L. Davis, R. W. Hon, 1. N.
Robinson, S. V. Robison, and K. S.
Stevens, presents the design of FAIM-1, a
concurrent, general-purpose, symbolic ac-
celerator for parallel Al symbolic compu-
tations. The OIL language supported by
FAIM-1 has object-oriented, logic-pro-
gramming, and procedural-programming
features.

The fifth article, ‘*“What Price Small-
talk?’’ by D. Ungar and D. Patterson,
discusses the design of a Reduced Instruc-
tion Set Computer for Smalltaik-80. The
requirements of the Smalltalk-80 pro-
gramming environment and the valuable
lessons learned by implementing clever

Januarv 1987

ideas in hardware that does not signifi-
cantly improve overall performance are
presented.

The sixth article, ‘““Initial Performance
of the DADO2 Prototype,”’ by S. J. Stol-
fo, presents the design trade-offs of, im-
provements achieved by, and measured
performance of DADO2, a parallel-
processing system for evaluating produc-
tion rules and other almost-decomposable
search problems.

The last two articles are concerned with
architectures for support of knowledge-
representation schemes.

The seventh article, ‘‘Applications of
the Connection Machine,”” by D. L.
Waltz, discusses the architecture and ap-
plications of the Connection Machine, a
system with massive parallelism. A
number of applications, including docu-
ment retrieval, memory-based reasoning,
and natural-language processing, are
presented.

The eighth article, *‘Connectionist Ar-
chitectures for Artificial Intelligence,’’ by
S. E. Fahlman and G. E. Hinton, presents

the designs of both NETL, a marker-pass-

ing system implementing semantic net-
works, and value-passing systems (which
the authors exemplify by the Hopfield and
Boltzmann iterative networks) for con-
straint satisfaction.

Owing to page limitations, we were
unable to include two other articles
originally accepted for this special issue.
One, ““The Architecture of Lisp Ma-
chines” by A, R. Pleszkun and M. J. Tha-
zhuthaveetil, enumerates the runtime re-
quirements of a Lisp system and identifies
architectural requirements that must be
met for good machine performance. The
solutions to these requirements in a num-
ber of Lisp machines are also discussed.
The other, “Computer Architecture for
the Processing of a Surrogate File to a
Very Large Data/Knowledge Base,” by
P. B. Berra, S. M. Chung, and N. 1. Hach-
em, shows the design and performance of
a proposed back-end system to support
the use of surrogate files in data/knowl-
edge bases. The articles will appear in an
upcoming issue in the near future.

Despite the large number of articles in
this special issue, it was not possible to
cover many major projects in this area. 1
realize that there are many researchers, too
numerous to mention individually, who
have made notable contributions to the
development of this area of research, and I
apologize for any inadvertent omissions.
Two collections of articles ! that I have
compiled also provide reference sources

for some of the published articles in this
exciting area. [J

Acknowledgments

1 would like to thank the authors and re-
viewers for helping to make this special issue a
reality. Without them, there would be no
special issue. The editor-in-chief of
Computer, Mike Mulder, and Computer
Editorial Board member Franklin Kuo helped
me through the formalities of publication. I
am also grateful to G. J. Li for his comments
and to K. Lindquist for her secretarial
support. 1 would like to acknowledge the
support of National Science Foundation
Grant DMC 85-19649 for this project.

References

1. B.W.WahandG.J.Li, Computers for Artificial
Intelligence Applications, IEEE Computer
Society Press, Washington, DC, 1986.

2. B. W. Wah and G. J. Li, *“A Survey of Special-
Purpose Computer Architectures for Al
ACM SIGART Newsletter, Number 66, Apr.
1986, pp. 28-46.

Benjamin W. Wah is an associate professor in
the Dept. of Electrical and Computer Engineer-
ing and in the Coordinated Science Laboratory
of the University of Illinois at Urbana-
Champaign.

He was on the faculty of the School of Elec-
trical Engineering at Purdue University be-
tween 1979 and 1985.

His current research interests include parallel
computer architectures, artificial intelligence,
distributed databases, computer networks, and
theory of algorithms.

Wah was an IEEE-CS Distinguished Visitor
between 1983 and 1986. He is an editor of the
IEEE Transactions on Software Engineering
and the Journal of Parallel and Distributed
Computing. He is the program chairman of the
1987 IEEE International Conference on Data
Engineering.

He has authored Data Management in
Distributed Systems (University Microfilm In-
ternational Research Press, 1982), and has
coedited a Tutorial on Computers for AI Ap-
plications (IEEE-CS Press, 1986).

He received a PhD in computer science from
the University of California at Berkeley in 1979.

Readers may write to Benjamin Wah about
this special issue at the University of Illinois at
Urbana-Champaign, Coordinated Science
Laboratory, 1101 W, Springfield Ave., Urbana,
1L 61801.

15



