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Abstract. In this paper we investigate systolic processing for problems formulated
in dynamic programming. These problems are classified as monadic-serial, polyadic-
serial, monadic-nonserial, and polyadic-nonserial. Problems in serial formulations
can be implemented easily in systolic arrays; however, nonserial problems may have
to be transformed into a serial one before an efficient implementation can be found.
A monadic-serial dynamic programming problem can be solved as the search of an
optimal path in a multistage graph and can be computed as a string of matrix
multiplications. Three efficient systolic-array designs are presented. A polyadic-serial
dynamic programming problem can be solved by either a divide-and-conquer
algorithm or the search of optimal solutions in a serial AND/OR-graph. We have
evaluated the asymptotically optimal architecture for divide-and-conquer algorithms
and have developed efficient methods of mapping a regular AND/OR-graph into
systolic arrays. Cases are studied for transforming a problem in a nonserial formula-
tion into a serial one.

1. Introduction

Dynamic programming (DP) is a powerful optimization methodology that
is widely applicable to a large number of areas including optimal control,
industrial engineering, economics, and artificial intelligence (31, [5], (9],
[23], [29]. Many practical problems involving a sequence of interrelated
decisions can be solved efficiently by DP. Bellman has characterized DP
through the Principle of Optimality, which states that an optimal sequence
of decisions has the property that whatever the initial state and decision
are, the remaining decisions must constitute an optimal decision sequence
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with regard to the state resulting from the first decision [3]. Subsequently,
numerous efforts have been devoted to the rigorous mathematical framework
and effective evaluation of DP problems [14], [12], [29].

In general, DP is an approach that yields a transformation of the problem
into a more suitable form for optimization but is not an algorithm for
optimizing the objective function. Moreover, DP can be interpreted
differently depending on the computational approach, and efficient
implementations are based on the corresponding representations. Tradeofls
must be performed on the efficiency and costs of implementation of the
alternate representations. '

Bellman, Dreyfus, White, and many others viewed DP as a multistage
optimization technique, that is, reducing a single N-dimensional problem
into a sequence of N one-dimensional problems [3], [29]. The decisions
that transform an initial state into a final state must be ordered in terms of
stages, and functional equations relate state values in successive stages. The
use of monotone sequential processes has been proved by Karp and Held
to correspond naturally to DP [14] and has been further developed by
Ibaraki [12] and Kumar [16]. On the other hand, Gensi and Montanari
have shown that formulating a DP problem in terms of polyadic functional
equations is equivalent to searching a minimum-cost solution tree in an
AND/OR-graph with monotone cost function [10]. DP can also be formu-
lated as a special case of the branch-and-bound algorithm, which is a general
top-down OR-tree search procedure with dominance tests [22], [13], [18].
Lastly, nonserial DP has been shown to be optimal among all nonoverlap-
ping comparison algorithms [5], [25].

Although DP has long been recognized as a powerful approach to solving
a wide spectrum of optimization problems, its applicability has been some-
what limited due to the large computational requirements. Recent advances
in very-large-scale integration ( VLSI) and multiprocessor technologies have
provided feasible means of implementation. Casti et al. have studied
parallelism in DP [7]. Guibas et al. have proposed a VLSI algorithm for
solving the optimal parenthesization problem [11]. Linear pipelines for DP
have been described recently [27]. Clarke and Dyer have designed a systolic
array for curve and line detection in terms of nonserial DP [9]. Wah et al.
have proposed parallel processing for branch-and-bound algorithms with
dominance tests [28]. Chen has studied a synthesis method for transforming
a class of DP problems into VLSI architectures [8]. However, these studies
were directed toward the implementation of a few special cases of DP
formulations.

In this paper we classify DP problems into monadic-serial, polyadic-
serial, monadic-nonserial, and polyadic-nonserial representations. Potential
parallelism and the corresponding systolic architectures are investigated for
each class. DP preblems can be solved as the search of an optimal path in
a multistage graph or as the search for an optimal solution in an AND/OR-
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Figure 1. Examples of multistage graphs. (a) A multistage gruph with one source
and one sink. (b) A multistage graph with multiple sources and sinks.

graph. We will adopt the graph search as a paradigm to illustrate the various
approaches of DP. To take advantage of the regular and limited interconnec-
tions of systolic arrays, the graph should have a regular structure. For DP
problems in serial formulations, the corresponding graph representations
are serial; however, for nonserial problems, they must be converted into
serial formulations before efficient implementations can be found. A type
of regular graphs of special interest is the multistage graph in which nodes
are decomposed into stages, and nodes in one stage are connected to nodes
in adjacent stages only. Figure 1 depicts two examples of multistage graphs.

2. Classification of dynamic programming formulations

A DP formulation is represented in a recursive functional equation whose
left-hand side identifies a function name and whose right-hand side is an
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expression involving the maximization (or minimization) of values of some
cost functions. Note that the cost functions are neither restricted to be
monadic nor additive; however, they must be monotone in order for the
Principle of Optimality to hold. DP formulations were traditionally classified
according to either the form of the functional equations [21] or the nature
of recursion [5]. Both attributes are important in designing a systolic array
to implement the recurrences, hence, we can classify these recurrences into
four classes as follows.

2.1. Monadic versus polyadic formulations

A DP formulation is called monadic if its cost function involves only one
recursive term, otherwise it is called polyadic. The distinction is illustrated
by an example in finding the minimum-cost path in a multistage graph. For
a multistage graph, let ¢;; be the cost of an edge. The cost of a path from
source, s, to sink, ¢, is the sum of costs on the edges of the path. Define
£,(i) as the minimum cost of a path from i to «. Thus, the cost of a path
from i to t via a neighbor j is ¢,;+£,(j). To find f(i), paths through all
possible neighbors must be compared. Hence,

fl(i)=miin[0i,j+.fl(j)]° (1)

This equation is termed a forward functional equation. Similarly, if f>(i) is
defined as the minimum cost of a path from s to i, then the functional
equation becomes

f:(i)zmli“[ﬁ(j)+c_i.i]- (2)

This equation is termed a backward functional equation. The formulations
in equations (1) and (2) are monadic since each cost function involves one
recursive term only.

Equations (1) and (2) can be generalized to find the optimal path from
any vertex i to any other vertex j. This is equivalent to finding an intermediate
vertex k such that the shortest paths from i to k and from k to j constitute
the shortest path from i to j. The functional equation is

£ j) = minL G, K)+ (k) 3)

where f3(i, j) is the minimum cost of a path from i to j. This cost function
is polyadic because it involves more than one recursive term. Examples of
problems expressed in polyadic formulations include finding the optimal
binary search tree and computing the minimum-cost order of multiplying
a string of matrices.

For polvadic DP formulations, Bellman’s Principle of Optimality must
be generalized to include the statement that all subsequences of an optimal
policy are also optimal™ [12]. For instance, according to equation (3), if it
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is found that the minimum-cost path from i to j passes through k, then the
subpath from i to k of this optimal path must be optimal over all subpaths
from i to k; so is the subpath from k to j.

2.2. Serial versus nonserial formulations

The distinction between serial and nonserial formulations is based on both
the form of their objective functions and the nature of recursion. From the
objective function, an optimization problem is said to be serial if all
functional terms of its objective function share one variable with its pre-
decessor functional term (except for the first functional term) and another
one with its successor functional term (except for the last functional term);
otherwise, it is said to be nonserial. In an interaction graph to represent
the problem, vertices stand for variables, and an edge exists between two
vertices if and only if the two variables belong to a functional term of the
objective function [5]. It is obvious that a serial optimization problem has
a corresponding interaction graph with a serial structure.

An example of a serial optimization problem is depicted in Figure 1(b).
In this multistage graph each stage, X;, 1 =i = N =4, stands for a discrete
variable, and node x,; stands for the jth value taken by variable X;. Bold
characters are used to denote vectors and matrices, and variables here can
be considered as vectors of defined values. If the cost of edge (Xij,s Xivt,jpar)
is g/(X.;, Xis1.,.,), then the minimum-cost path from any node in stage 1
to any node in stage N is

N-—-1

m’inf(X)=m\in 'ZI g:(Xi, Xis1), (4)
where X is the set of discrete variables {X;, ..., X~} In equation (4) every
functional term of the objective function has two variables that only interact
with variables in two other functional terms, and all the interactions are in
a serial fashion. For instance, g(X;, Xi+1) interacts only with the functional
terms g;-(Xi-1. Xy) through X; and i1 (Xier, Xis2) through X,.,. As a
result, equation (4) is a serial optimization problem.

Many practical DP problems can be represented in a serial formulation.
For a traffic-control problem, X; can be the possible times for the traffic
light to be in state i, and the cost on an edge of the graph representation
is the difference in timings. For a circuit-design problem, X; can be the
possible voltages at point |, and the cost of an edge of the graph representa-
tion may be the corresponding power dissipation. For a fluid-flow problem,
X, can be the possible pressure values in the ith pump, and function f may
be the flow rate for a given pressure. For a scheduling problem, X; can be
the possible task service times for the ith task, and the edge cost reflects
the delay. Note that the optimal-path problem in multistage graphs is a
special case of serial optimization problems.
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In contrast, the objective function of a general nonserial optimization

problem has the following form:
‘ N

f(X)= & g.(X", (5)
i=1

where X ={X,,...,Xx} is a set of discrete variables, X'c X, and ¥ is a
monotone function relating the g;’s together. For example, the following
equation is a nonserial optimization problem:

m\in{gl(xl , Xz, X4) + 82X, X4) + 8:(Xs, Xs)},

where X ={X,,..., Xs}

From the viewpoint of recursion, a DP problem can be represented as
a folded AND/OR-tree (or AND/OR-graph) in which the nodes are
classified into levels or stages [21]. An AND-node represents a (sub)problem
that is solved only if all its children have been solved, whereas an OR-node
represents a (sub)problem that is solved if any one of its children can be
solved. If this AND/OR-graph has a serial structure such that arcs only
exist between nodes in adjacent levels, then the corresponding DP problem
has a serial formulation. For nonserial DP problems, the dependency
between states is not restricted to successive stages but may exist between
states in arbitrary stages. In the corresponding AND/OR-graphs the arcs
are not restricted to successive levels, but may run between any two arbitrary
levels. .

As an example, consider the problem of finding the optimal order of
multiplying a string of four matrices:

M=M,x Msx Myx M,,

where M,, 1 =i=4, is a matrix with r,_, rows and r, columns. Let m,; be
the minimum cost of computing M; x - - - x M;. Clearly,
{O if j=1i,

Amkm_(rn.;k+mk+.,,~+r._.'rk-r,) if j>i
i ke

(6)

m,;=

The solution to be found is m,,. This formulation is polyadic-nonserial
and can be represented as the search of an AND/OR-graph in Figure 2,
where AND-nodes denote multiplications and OR-nodes denote com-
parisons. In Figure 2 the topmost node represents the original problem of
multiplying four matrices. This can be achieved in three ways:

(1) (M x MyXxX M3) x My,
(2) (M xM.)x(M:x M,); or
(3) M, x(M.x Mx M,).
These three alternatives are represented by the three AND-nodes in the

second level. Note that the first AND-node in the second level, which
denotes m, ;- my,, is connected to the node representing m,, in the
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Figure 2. An AND/OR-graph representation of finding the optimal order of multiply-
ing a string of matrices.

bottommost level. Similarly, the third node in the second level is connected

to the node representing m,, in the bottommost level. Regardless of the

rearrangements of nodes in this graph, it is impossible to have arcs that

only connect nodes in adjacent levels, hence, the formulation in equation -
(6) is polyadic-nonserial.

We have classified DP problems in terms of their recursive functional
equations and objective functions. Monadic and polyadic DP formulations
are distinct approaches to representing various optimization problems, while
serial and nonserial optimization problems are problems solvable by the
corresponding DP formulations.

3. Systolic arrays for monadic-serial DP formulations

Monadic-serial DP problems can be conveniently solved as the multiplica-
tion of a string of matrices. In this section three efficient systolic designs
are presented. The proposed designs do not exploit all potential parallelism
of solving a given problem, especially when the number of stages is large.
Other parallel designs using different formulations may allow a higher
degree of parallelism and will be discussed later.

3.1. Solving a monadic-serial DP problem as
multiplving a string of matrices

We have shown that the search for a solution of a problem in a monadic-
serial DP formulation can be viewed as finding a pathin a multistage graph.
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For the multistage graph in Figure 1(a) and from equation (2), f(C,), the

minimum cost from C, to ¢, is

C)= min{c, , +d,,, (°|_3+d:,n ,Ciat dm}- >(7)

f(C5) and f(C,) are obtained similarly.

Equation (7) is similar to an inner-product operation. If we define matrix
multiplication in terms of a closed semiring (R, MIN, +, +oc, 0), in which
“MIN" corresponds to addition and "'+ corresponds to multiplication in
conventional matrix multiplications [1], equation (7) becomes

fCy) Cia G2 Cia d,,
f(C)=C-D=|f(Cy) |=]| ¢y €22 Caz - ds, | (8a)
f(Cy) Ciy Caz Caa d;,

Likewise, we have
f(B)=B-(C-D), (8b)
f(A)=A-(B-(C-D)). (8¢)

Thus, solving the multistage-graph problem with a forward monadic DP
formulation is equivalent to multiplying a string of matrices. The order of
multiplications is reversed in backward monadic DP formulations.

For a multistage graph with N stages and m vertices in each stage, the
computational complexity is O(m°N). For single-source, single-sink prob-
lems, the first and last matrices degenerate into row and column vectors,
respectively. :

3.2. Systolic arrays for multiplving a string of matrices

Three linear systolic arrays for evaluating problems in monadic-serial DP
formulations are described in this section. The following scheme is based
on a combination of two methods of multiplying a two-dimensional matrix
with a vector, one of which was discussed by Kung [17]. Figure 3(a) depicts
a scheme for computing (A - (B - (C - D))) for the multistage graph in Figure
1(a). An iteration is defined as a shift-multiply-accumulate operation with
respect to the time at which a row or column of the input matrix enters a
given processor, and the iteration numbers are indicated in Figure 3(a).
Note that the same iteration number is carried out at different times in
ditferent processors. In the first three iterations, C-D is evaluated. The
control signal FIRST is one; D, the input vector, is serially shifted into the
systolic array; and the result vector, {f(C)), i=1,2,3}, remains stationary.
At the end of the third iteration, FIRST is set to zero. In the following three
iterations, B - (C - D) is computed. Note that matrix B is transposed, and '
the ith column of matrix Bis fed into P,. The input vector, { /(C,),i=1, 2, 3},
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s
the end of the sixth iteration, the output vector {f(B),i 2,3} is formed.
In the last three iterations, input vectors A and { f(B,),i=1,2, 3} are shifted
into P, to form the final result.

For the systolic array in Figure 3(a), the data shifted alternate between
the input vector and the result vector every three iterations. This alternation
can be controlled by the processor structure of P, depicted in Figure 3(b).
R, is a register that stores an element of the input vector, and A, is the
accumulator that stores the temporary result of an element of the result
vector. The data paths are controlled by control signals ODD; and MOVE;.
When the number of matrices multiplied is odd (not including the initial
input vector), ODD; is one, hence, R; is connected to the output, and the
input vector is shifted along the pipeline. When the number of matrices
multiplied is even, ODD, is zero, A, is connected to the output, and the
result vector is shifted. At the end of a matrix multiplication, the result
vector generated becomes the input vector in the next iteration and is moved
by the control signal MOVE; from A, to R;. Note that there is a one-cycle
delay between switching the control signals in P,., and P;.

To search a multistage graph with (N +1) stages and m nodes in each
intermediate stage (the first and last stages have one node each), it takes
N- m iterations with m processors. There is no delay between feeding
successive input matrices into the systolic array, and the processors are kept
busy most of the time. In contrast, it takes (N —2)m™+ m iterations to solve
the problem with a single processor. Define PU, the processor utilization, as
the ratio of the number of serial iterations to the product of the number of
parallel iterations and the number of processors. PU for the above systolic
array is

remains stationary, while the result vector, {f(B,), i=1,2,3}, is shifted. At
=1,2,
,2

(N=2)m’+m_N-2 1

N-m-m N N-m

PU = (9)
When N and m are large, PU is very close to 1.

Although the proposed systolic array is designed for matrices in which
each element is a single constant, it can be extended to many practical
sequentially controlled systems, such as Kalman filtering, inventory systems,
and multistage production processes, in which each matrix element is a
vector with many quantized values. In this case the potential parallelism
could be very large.

If broadcast is allowed, the above scheme can be simplified. In what
follows, a linear systolic array with parallel inputs and broadcasting is
described. Figure 4(a) depicts a scheme for computing (A - (B - (C-D)))
for the multistage graph depicted in Figure 1(a). In this scheme all input
matrices are fed into the systolic array in the same format. In the first three
iterations. C - D is evaluated. The control signal FIRST is one; D, the input
vector, is broadcast to all processing elements (PEs); and the intermediate
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results of f(C,), i = 1, 2, 3, remain stationary. At the end of the third iteration,
the result vector is gated into registers S;, S,, S;, by the control signal
MOVE (see Figure 4(b)), and FIRST is set to zero. Since FIRST is zero,
f(C,), i=1,2,3, are fed back and broadcast as new inputs. In the following
three iterations, B - f(C) =B (C - D) is computed. At the end of the sixth
iteration, the output vector {f(B;),i=1,2,3} is formed. In the last three
iterations, input vectors A and {f(B;),i=1, 2,3} enter PE P, to form the
final result. PU for this systolic array is again given by equation (9).

In the two schemes proposed above, the degree of parallelism may be
restricted by the limited number of input/output ports in a VLSI chip and
the fact that the ratio of the computational overhead to the input/output
overhead is relatively low in matrix-vector multiplications. The input/out-
put bottleneck is due to the large number of edge costs that must be fed
into the systolic array.

The input/output bottleneck can be relieved if the serial optimalization
problem is formulated by equation (4). The search for an optimal assignment
of X,’s in equation (4) corresponds to the search for the shortest path in a
multistage graph, where nodes in each stage represent values that can be
assigned to a variable. An example graph with four variables, each of which
can take on three quantized values, is shown in Figure 1(b). Here, the edge
costs are expressed as functions of the nodes connected, and, hence, only
the values of the nodes rather than the values on the edges have to be input.
This results in an order-of-magnitude reduction in the input overhead.
Systolic processing is suitable in this case when the number of quantized
values in each stage is constant, and the f’s, the functions to compute edges
costs, are independent of i

To solve equation (4) the variables can be eliminated one by one. First,
X, is considered. Since only one term, f(X,, X,), is affected by X,, it is
sufficient to compute

h(X,) =min f(X,, X,). (10)
In other words,
h(x.,)= min f(x,;, x2;), X.;.€Xs.

Ny X,

The optimization problem then becomes
N —1
min f(X) = min {h(X3)+ Y f(X,-,X,.H)}. (11)
X X-{X,} jw=

If h(X,) is defined as

1A
>~
iA
z
to

h(Xk)=l\T,lin{h(Xk-|)+f(XA--|,XA)}, 2 2)
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or

h(xy ;)= min‘ {h(xe e DS s N0 X € X, 25 k=N,
B T

then h(x,_, ) represents the shortest path from any vertex in stage 1 to X, .
After eliminating k — 1 variables, X,, ..., X, _,, the remaining optimization
problem becomes

A

Y f(X.-,Xm)}. (13)
i =k

i=

{h(xk)+'

x"(-\l ..... xl. l)

m)gn f(X)= min

Finally, we get h(Xx), each element of which represents the shortest path
from any vertex in stage 1 to a node in stage N. The problem is solved by
comparing the m elements of h(Xn).

Figure 5 shows a systolic array with three PEs that performs the search
of the graph in Figure 1(b). PE P, consists of three registers, R;, K;, H,,
and three operation components, F,, A,, C,. Input data pass through R; in
a pipelined fashion. Feedback data are maintained in K; and H,; until new
data replace them. The operation components, F,, A;, C,, are used to
compute function f, and perform additions and comparisons, respectively.
For simplicity, function f is assumed to be independent of i, and, hence,
the subscripts in F,, A;, and C; will be dropped. The connections of the
registers and operation components are shown in Figure 5(b).

The systolic array is initialized by zeroing all registers, H,’s and K;’s and
by sequentially loading input data in X, Xy, -, X1, 10 PEs P,,...,P,.
As the intermediate results are shifted from P;, the feedback controller
feeds them back in a round-robin fashion. Referring to Figure 5(a), when
x,, enters Py, x,, and h(x,,) (equals 0) leave P; and are fed back to P,
through the feedback controller.  f(x,,,x:;) and h'(x,,) =
min(0, h(x, ) +f(x,,, X2,)) are then computed in P,. In the next iteration,
x,, enters Py, x,, and h'(x.,) are shifted to P,, and x, ; and h(x,.) (equals
0) are fed back by the feedback controller to P.. In P., f(x,-,Xx>,) and
h3(xa,) =min(h'(xa2,), h(x,2)+f(x12,x2,))  are computed. In Py,
f(x141, X22) and h'(x;2) =min(0, h(x, )+ f(x,,, X22)) are computed. When
x,, and h*(x,,) arrive at Py, h(x.,)=h'(xs,) is evaluated, and x;, and
h(x.,) are fed back to P, at the end of this iteration. Input data are
continuously shifted into the pipeline, and the process is repeated. For the
graph in Figure 1(b), the process is completed in 15 iterations.

In general, to evaluate the optimal path for an N-stage graph, each with
m quantized values, a pipeline with m PEs is needed. Between the
((k—1)m+1)th and (k- m)th iterations, 2< k=N, xXi,,..., X, enter the
R-pipeline; x,_,, and h(x,. (1), 1=i=m, are fed back to registers K, and
H, in the ((k—1)m+i)th iteration; and h™(x,,), h"” X))y h (X))
are obtained at the end of the (k- m)th iterationin P, ..., P,. After N-m
iterations, A" (xX~x1)y .- - h'(X ~.m) are obtained in P, ..., Py, and the final
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solution is obtained in P,, by comparing h(xx,), ..., h(x ~.m). This is done
by setting F =0 in the last m iterations and circulating the values of h(xn.),
1 = i=m, through the pipeline. Therefore, the total computational time is
(N +1)m iterations, each of which includes the time for the computation
of function f, one addition, and one comparison. PU for this scheme is
(N-1)m>+m)/((N+1)m-m)=1.

Although distinct feedback lines are shown in Figure 5(a), only one of
the feedback lines is used in any iteration. Hence a single broadcast bus
suffices, and the station to pick up the data from the bus is controlled by
a circulating token.

If the optimal path in addition to the optimal cost value is desired, N
path registers, each of which can store m indices, are needed in P,,. In the
computation of h"(xx4+1i) = min{h(x, ;) +f(xe ;s Xeri)h, 1sk=N-1,
index j’, 1=j'=m, of the edge (x;, Xi+1.;) belonging to the optimal path
from any vertex in stage 1 to vertex X, ; must be propagated in the pipeline
and is known to P,,. Index j' is stored in the ith word of the kth path
register. The pointers stored in the path registers are used to trace the
optimal path at completion.

4. Solving polyadic-serial DP problems by
divide-and-conquer algorithms

Recall that a serial optimization problem can be solved as the multiplication
of a string of matrices. However, a problem expressed in a monadic-serial
formulation does not exploit all the potential parallelism because the order
of matrix multiplications is fixed. On the other hand, there is more flexibility
for parallelism when the problem is formulated in a polyadic equation
because the matrices can be multiplied recursively by a divide-and-conquer
algorithm.

Consider the polyadic-serial DP formulation in equation (3) for the
multistage shortest-path problem in Figure 1(b):

fls 0= min LAl K+ 0], (14)

where fi(i, j) is the cost of the optimal path from i to j, s is a node in stage
1 of the graph, k is a node in stage 2, and 7 is a node in stage 4. In matrix
notations, let f3(V,, V;) be a cost matrix, each element of which denotes the
cost of the optimal path from a vertex in stage i to a vertex in stage j. It is
easy to see, for an intermediate stage k between i and j, that

./:I(V.,V,)=f3(vi,vk) 'fz(vk«,v,')- (15)

This formulation allows a string of matrix multiplications to be reduced to
two smaller strings of matrix multiplications. For simplicity in deriving the
lower bound, all the matrices are assumed to have identical dimensions.
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One important. issue in parallel divide-and-conquer algorithms is the
granularity of parallelism [28]. This is the minimum size of a subproblem
that is evaluated by a processor (processors and systolic arrays are synony-
mous here) in order to achieve the optimal performance, as measured by
the PU, or the AT’ or the KT? criteria, where A, K, and T are the area
of a VLSI implementation, the number of processors, and the computational
time, respectively. If the granularity is large, then the processors can be
loosely coupled; otherwise, tight coupling is necessary.

Parallel divide-and-conquer algorithms is a parallel AND-tree search
that can roughly be divided into three phases: start-up, computation, and
wind-down. In the start-up phase, the problem is split, and the tasks are
distributed. During the computation phase, all processors are kept busy
until the number of tasks in the system is less than the number of processors.
In the wind-down phase, the results are combined together, and some
processors may be idle. PU depends on the ratio between the amount of
time spent in the computation phase and that of the other phases. The time
complexity of searching a binary AND-tree of N leaves can be formulated
in the following recursive equation:

S(N)+2T(-];->+C(N), N>1,

T(N)= (16)

o(1), N=1,

hwere S(N) and C(N) are the time complexities of the start-up and
wind-down phases. The granularity that results in the optimal PU is related
to the complexity of S(N) and C(N). In finding the sum or the maximum
of N numbers, S(N)+ C(N)=0(1), and using O(N/(log, N)) processors
will achieve the maximum PU [15], [2], [26]. In sorting N numbers,
S(N)+ C(N)=O(N), and log. N processors should be used to maximize
the PU.

The fastest way to multiply N m x m matrices is to locate the matrices
in the leaves of a complete binary tree of height [log, N]. The N-stage
graph problem can be solved in O(m- [log, N1) time units with [N/2]
matrix-multiplication systolic arrays [19]. The PU of the systolic arrays is
relatively low in this approach. In this case, PU does not measure the
utilization of the processing elements in a systolic array but measures the
average fraction of time that a systolic array is used in matrix multiplications.
Similar to the search of the maximum, using [ N/(log, N)] systolic arrays
will result in the maximum PU. However, the asymptotic effects of deviations
from the optimum have not been studied before. This is addressed by the
following proposition.

Proposition 1. Let PU(k, N) be the processor utilization of multiplying a
string of N matrices using k(N) synchronous systolic arrays. Assume the time
to multiply two matrices by a systolic array to be constant. By defining
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Coo=liMpn - (K(N)/(N/log; N)), the normalized asympiotic processor
utilization is

0 if Cox™ 0,
lim PU(k, N)= if 0<ce<00, (17)
N =00 1+cy

1 if c=0.

Proof. Note that there is no start-up phase in this problem as the matrices
to be multiplied are known initially. The number of nodes evaluated in the
first iteration of the wind-down phase is at least k/2 and at most k—1.
Hence, the total number of nodes evaluated in the wind-down phase is at
least k—1 and at most 2k —3. As the total number of nonterminal nodes
in the binary AND-tree is N —1, the total number of nonterminal nodes
evaluated in the computation phase is at least (N-1)—(2k-3)=N+2-2k,
and at most (N —1)—(k—1)=N—k. I, the number of iterations in the
computation phase, is bounded by

N+2 N
(2 )]

According to the bound of tree-height reduction, I,,, the number of iterations
in the wind-down phase, is bounded by

log.(2k—-3)= I.<log-(k—1). (19)
By the definition of PU we have

. . N -1
;L‘.I.Eo PU(k, N)= ,l\l_l.nl K41 (20)

We now discuss three separate cases.
(a) c« - co. From equations (18)-(20) we get

N-1
lim PU(k, N)= i
lim PUCk N)= lim 30y k — 2+ loga(2k — 3)]

= |lim N
T N-x N+k- (log.(2k—-3)—2)

1

l 2 2k - - )
1+c¢, lim oga(( 3-2)
N log: N

=

Since c. - 0, we can assume that k> N/log, N for N> N, and

log:((2k —3)—2)>log, k> [logs N —log.log, N1.
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This means that limy_.. ((log.((2k—-3)—2))/log, N)>1, implying that
PU(k, N)=0. As PU(k, N) must be nonnegative, the first case of equation
(17) is proved.:

(b) ¢, =0. From equations (18)-(20) we get

N-1
lim PU(k, N)= Ii
Am PUGk N) = i N7k~ 1 +Tog k= 1)]
' N-1

=i -
>‘~l-r~'3rN+k-(log:(k—l)—1) (22)

Since ¢, >0, we éan assume that k< N/log, N for N> N,, and
log.((k—1)-1)<log, k<[log. N —log,log. N].

This means that limuy_.. ((log.((k—1)—1))/log. N)<1, implying that
PU(k, N)=1. As PU(k, N) =1, the third case of equation (17) is proved.

(c) 0<c.<oo. From the definition of ¢, we have limy., k=
limuy.x (cxN/log, N) and

l wk l ) x+l ﬁN—l 1] ﬂN
0og- im 0g- C og- 08, 108> -1

(23)

y
Nk log, N Nox loga N

From equations (21)-(23) it is easy to see that
1 1
=
1+c, . logs((k—=1)—1)

I+c, |
Nl_l:Tl_ log. N

1 1
= .
log- -3)- +cy
I+ e lim 0g-((2k—=3)-2) 1+c,
N=x log. N

= PU(k, N)

=

This proves the second case of equation (17). ]

As an example in applying equation (17), suppose that there are VN
processors. Itis easy to show that ¢, =lim n ., (VN *logs N/ N)=0. Hence
PU(k, N)=1. Note that the above proposition holds in the case in which
each node is evaluated in constant time, as the constant complexity does
not affect the limits in equations (21) and (22).

Since PU(k, N) increases monotonically with decreasing k, PU(k, N)
alone is not adequate to measure the effects of parallel processing. A popular
measure in VLSI complexity theory is the AT" criterion. The following
theorem proves the lower-bound AT complexity of divide-and-conquer
algorithms for solving polyadic-serial DP problems. This lower bound is
attained when k(N)= N/(log. N). Results on the scheduling algorithms
to achieve the optimal granularity of divide-and-conquer algorithms have
been presented elsewhere [20].
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Theorem 1. Suppose that a string of N m x m matrices are multiplied by S(N)
processors in time T(N) using a divide-and-conquer algorithm, and that each
processor performs a multiplication of a pair of mxm matrices in T, time
units. Then S(N)T*(N)=O(N - log: N) T3, and equality holds when S(N) =
O(N/log: N). (O indicates the set of functions of the same order.)

Proof. The multiplication of a string of M matrices by a divide-and-conquer
algorithm can be represented as a complete binary tree with M terminals.
The number of matrix-multiplications, or the number of nonterminals, is
M —1. A parallel divide-and-conquer algorithm for multiplying a string of
N, N > M, matrices can be roughly divided into two phases: computation
and wind-down. During the computation phase, all processors are kept
busy until half of the number of intermediate matrices to be multiplied is
less than the number of processors. There are (N-1)—=(S(N)-1)=
N — S(N) nonterminals to be evaluated, and at least (N/S(N)—-1)-T,
time units are required. In the wind-down phase the results are combined
together, and some processors would be idle. According to the data depen-
dence, at lcast log. S(N) - T, time units are required in this phase. Therefore,
the following lower bound of time complexity holds for any parallel divide-
and-conquer algorithm:

N
T(N)=|——=1+1l0og. S(N) |} - T
(N) (S(N) 0g: S( )> s (25)
where 1 = S(N)= N. For simplicity, the constant term in equation (25) can
be ignored without affecting the validity of the following proof. The AT?
lower bound is derived as

-

S(N)

S(N)Tz(N)2< +2N log, S(N)+ S(N) log3 S(N)) - Ti. (26)
To find the order-of-magnitude minimum of equation (26), it is necessary
to compare the following three cases. When S(N)=0(N/log. N),
S(N)T*(N)=0O((N logs N)T7). In contrast, when S(N)<O(N/log. N),
the first term on the right-hand side of equation (26) is

N O(N log. N) 27

S(N) o8> T (27)
When S(N)>@(N/log, N), the third term on the right-hand side of
equation (26) is

S(N)log: S(N)>O(N log. N), (28)

since log: S(N) = O(log3 N). The above analysis shows that the AT" com-
plexity is Q(( N log. N)T3), and that O(N/log: N) is the optimal granular-
ity to achieve this lower bound. O



138 WaH AND GuUO-SIE LI

To investigate the relationship between K and KT?, the exact time
required to multiply N m x m matrices using K processors is derived. The

total time required is

T=T.+T,

N-1 N -1
=[TJ . T,+[logz(N+K—l—K- l—;(——J)J - Ty, (29)

where T. and T, represent the times in the computation and wind-down
phases, respectively. The numerical evaluations of equation (29) for N-=
4096 is shown in Figure 6, in which KT? is minimum when 431 or 465
processors are used. Notice that the curve is not smooth because the time
needed in the wind-down phase is decreased by 1 whenever N is divisible
by K, and this affects KT? significantly, especially when K is large. The
simulation results for different values of N verify that the optimal granularity
is close to N/log, N.

When N is large and | (N —1)/ K] is approximately equal to (N —1)/K,
T.=(N/K)-1, and T, =log; K,

N .
T~ -1+log: K. (30)

KT? (+10°)

.oo 1 L] ¥ ) 1 L] L} L}
.00 .S0 1.0 1.5 2.0 2.5 3.0 3.3 %0

NUMBER OF PROCESSORS (#10%)

Figure 6. Simulation results of finding the optimal granularity of parallel divide-and-
conquer algorithms ( N = 4096).
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KT? will achieve the minimum value when T.= T,,. This can be shown by
differentiating KT*(K) with respect to K and relaxing the constraint that
K is an integer:

OKTK) _ p2yger il
3K 3K

From equations (30) and (31) we get oKT*(K)/aK =0 if (N/K—-1)=
log. K, i.e., T.= T,,. This means KT? for solving polyadic-serial DP prob-
lems by parallel divide-and-conquer algorithms approaches minimum if N
is large and the times needed in the computation and wind-down phases
are approximately equal. ‘

So far the matrices are assumed to have identical dimensions. When this
is not true, the order in which the matrices are multiplied together has a
significant effect on the total number of operations. Finding the optimal
order of multiplying a string of matrices with different dimensions is itself
a polyadic-nonserial DP problem, the so-called secondary optimization
problem [6], [4]. Guibas et al. have proposed a systolic array to solve the
optimal parenthesization problem, which can be used to compute the
minimum-cost order of multiplying a string of matrices [11]. Once the
optimal order is found, the processors can be assigned to evaluate the matrix
multiplications in the defined order and in an asynchronous fashion. In
this sense, the tree of matrix multiplications can be treated as a dataflow
graph.

(31)

5. Solving polyadic-serial DP problems by searching
folded AND/OR trees

In this section we discuss the evaluation of polyadic-serial DP problems as
AND/OR-graph searches. AND/OR-graphs are naturally obtained by rep-
resenting the DP problem using a problem-reduction method. The mapping
of a regular AND/OR-graph onto a systolic array is straightforward and
will be illustrated in the next section.

Polyadic-serial problems are discussed with respect to the search of a
multistage graph as formulated by equation (4). Suppose an (N +1)-stage
graph, with stages from 0 to N and m nodes in each stage, is divided into
p subgraphs, each of which contains N/p+1 consecutive stages. For sim-
plicity, assume that N = p©, where Q isa nonnegative integer. The minimum-
cost path has to pass through one and only one vertex in stage O,
N/p,...,pN/p in the segmented graph. The cost of a path equals the sum
of costs of the p subpaths. If all the m? subpaths from the m vertices in
stage iN/p to the m vertices in stage (i+1)N/p, 0=i=p—1, have been
optimized, there are m””' possible combinations of subpaths from stage 0
to stage N that must be considered for the optimal path. Using a divide-and-
conquer algorithm, each subgraph with N/p+1 stages is further divided
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. NUMBER
LEVEL OF NODES
0 !
1 m3=4
2 rnp<H=8

Figure 7. An AND/OR-graph representation of the reduction in finding an optimal
path in a three-stage graph to a one-stage graph.

into p smaller subgraphs. This partitioning process continues until -each
subgraph has one stage.

The partitioning process can be conveniently represented asan AND/OR
graph, in which an AND-node corresponds to a subproblem sum, and an
OR-node corresponds to alternative selections or comparisons. In this case
we have a regular AND/OR-graph of height 2 - log, N, whose AND-nodes
have p branches ( p-arc nodes) and whose OR-nodes have m””' branches
(m"~'-arc nodes). Figure 7 shows an AND/OR-graph that represents the
reduction of the multistage-graph problem with m = 2 and p =2 from three
stages to one stage. The four nodes at the top of the AND/OR-graph
represents the four possible alternate paths in the reduced single-stage
graph. The shortest path is obtained by a single comparison of these paths.

The relationship between DP and graph search was investigated by
Martelli and Montanari [21] who showed that, in the case of polyadic cost
functions, the solution of a DP problem can be obtained by finding a
minimal-cost solution tree in an AND/OR-graph. This equivalence allows
various graph searching techniques to be translated into techniques for
solving DP problems. For those acyclic AND/OR-graphs with positive arc
costs, Martelli and Montanari have named them as additive [21], and have
proposed top-down and bottom-up search algorithms. A similar algorithm,
called AO*, for searching hypergraphs was dicussed by Nilsson [24].

The above AND/OR-graph representation of a polyadic DP problem
can be considered as a folded AND/OR-tree. It is easy to see that the
efficiency of solving a DP problem by searching an AND/OR-graph depends
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on the graph structure (parameter p). The following theorem analyzes the
optimal structure.

Theorem 2. If a serial DP problem is solved by searching a regular AND/OR-
graph, the binary partition, namely, using 2-arc AND-nodes, is optimal in the
sense of minimizing the total number of nodes in the AND/OR-graph.

Proof. The total number of nodes in the AND/OR-graph is derived here.
First, consider the reduction from p+1 stages to one stage (see Figure 7
for p =2). The number of nodes in the bottom level is p- m®, as there are
p- m” cost values for all pairs of vertices between neighboring stages.
Similarly, there are m* OR-nodes in level 1 and m®- m"~' AND-nodes in
level 2. |

For the reduction from N +1 (=p?+1) stages to one stage, there are
log, N levels of AND-nodes at odd levels, with m-r",
p-m™ ., p"E N T 'm™*! nodes, respectively. Similarly, there are
(log, N)+1 levels of OR-nodes at even levels with m*, p-m’, ..., p°%% " m
nodes, respectively. Let u( p) be the total number of nodes in the AND/OR-

graph:

(Ing,.N )1 Iog,.N

ulp)= 3 p-m™+ ¥ pm’

i=0 =0

N - 1 N ° p - l -
m —_—m.
p-1 p-1
To find the minimum u( p) we relax the restriction that p is an integer and
evaluate the differential of u(p):
su(p) (N=1)(m""'(p—1)log.m—1)—m")
ap (p—1) '
From equation (33), it is seen that u(p)/ap=0if N=1, p=2, and m =3,
or N=1, p=3,and m =2. Considering a’u(p)/op”, we conclude that u(p)
increases monotonically when N =1, p=2, and m =3. In other words, the
binary partition with p =2 is optimal for solving regular multistage-graph
problems in the sense of minimizing the total number of nodes in the
corresponding AND/OR-graph. O

(32)

(33)

For an AND/OR-graph, the larger the value of p is, the less the Principle
of Optimality is applied. In the extreme case, p= N, the corresponding
AND/OR-graph search becomes a brute-force search, and the Principle of
Optimality is never used. For irregular multistage-graph problems, the
number of nodes in the AND/OR-graph depends on the ordering of stage
reduction. However, it is not difficult to demonstrate that binary partitioning
is optimal. Assume that stages iy,...,i, with m, ..., m, nodes are to be
reduced to two stages i, and i. If 3-arc AND-nodes are used,
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m, - m,+ my- m, COMparisons are needed to eliminate stages 2 and 3.
However, when 2-arc AND-nodes are used, m, - my - (my+my) comparisons
are needed if stage 2 is eliminated first, and m, - m, - (m,+ my) comparisons
are needed if stage 3 is eliminated first. It is easy to see that using 3-arc
AND-nodes requires more comparisons as long as m; = 2, 1 = i=4. Further-
more, binary partitioning requires less additions since one addition is needed

for each AND-node. '

6. Parallel prpcessing of nonserial DP problems

It has been shown that unrestricted nonserial optimization problems are
NP-hard, but problems with a favorable pattern of term interactions may
be solved efficiently [5]. The key of DP is to break a complex optimization
problem into a sequence of easier subproblems. In serial optimization
problems variables are shared by successive terms in the objective function
and hence can be dealt with one by one. This serial structure allows efficient
parallel processing, especially systolic processing. On the other hand, non-
serial DP problems may have to be transformed into the corresponding
serial formulations before they are implemented by systolic processing. This
transformation is possible if the nonserial problems have some special
structures.

Generally speaking, there are two ways to convert a nonserial formulation
into a serial one. One way is to combine several primary variables into a
new variable. Another way is to transform an irregular AND/OR-graph
into regular one by adding dummy nodes. The former one is suited for
solving monadic-nonserial problems, and the latter one is usually applied
to solving polyadic-nonserial problems. These methods are illustrated by
some examples in the following sections.

6.1. Solving monadic-serial problems

An approach to solving a monadic-nonserial problem with some structural
properties is first to convert it into a monadic-serial problem, such as a
multistage graph-search problem, and to map the serial formulation into
systolic arrays.

For the nonserial formulation in equation (5), a multistage optimization
procedure can be carried out separately for each variable V,. Of course,
this optimization must be performed on all values of the independent
variables that “‘interact”” with V. LetV,,..., V, be the variables that are
related to V, in one or more functional terms. The cost function can be
written as

floy,...,0,)= Lm_i\r'l {0 Oy ) F R0 Dy Vi e e v}
YR

(34)
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where h, is a function independent of V,. By denoting hy . as
min,cv, A (Vi Vis - -5 v, ), the cost function can be rewritten as

S(oy, ..., Un)=91_i\') {hl,op((vila-", Ui\)+h:(vl,--—, Vi1, Vivrsenes v}
(35)

A multistage optimization process is, therefore, a step-by-step elimination
of all variables. The computational time and storage depend on the number
of elements in the domain of function h,. Equation (35) can be treated as
a monadic-serial form if the evaluation of h, 4 is done separately.

The method is illustrated by the following example. For instance, if
V=V,u-uVy, then the objective function is

f(V)= min {gl(vl, U, U3)+gz(vza Uy, Ug) T '+8N—2(UN—2, Un-1s vN )}

vieV;
(36)
Let h,(v,, v3) =min, cv, &(v;, V2, v3), We have
N=2
m‘énf(V) =\r}‘1_i‘§1 {hl(v?_7 v;) + Z gi(vi, Visys U.’+z)} (37)
if he(Visy, Uiso) is defined as
hi(Vgsr, Uks2) = min {hi-i (v, Uisr1) t 8Ok, Ukvrs Uiva)}e (38)

L'Lt\k

Equation (38) represents the minimum of the summation of the first k terms
of f(V). After eliminating k variables, V,, ..., Vi, the remaining optimiza-
tion problem becomes

N-2
ménf(V) = min {hl\(vkﬂq Vps+2) + Z gi(vi, Visy, Ui-v-'_’)}-

V=(Vyu-uVy) i=k+1

(39)

The monadic DP procedure, thus, eliminates the variables in the order
V,,...,Vn. If the variables V; and V; are treated as a single variable in a
stage, and m,, 1=k=n, quantized values are allowed for V,, then there
would be m- - m, states in this stage, and m, * m. - m; steps arc required to
eliminate V,. Here, a step consists of a computation of function f, an
addition, and a comparison operation. The process of eliminating the
remaining variables is repeated until V_, and V, remain. The optimal
solution is obtained by comparing all values of hn-2(Un-1, Un). The total
number of steps required to compute equation (36) is

N-2

> (me-m . - mga)+tmaoy - my. (40)
k=1
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In short, the monadic-nonserial problem in equation (36) is solved from
the following serial problem:

min f(V) = min {g1(V{, V) +g5(V3, Vi) ++ - +gho(Vivoa, Vool
(41)

where the new variable V! is combined from V,; and V,,,. From this example
it is observed that more operations are needed for evaluating monadic-
nonserial DP problems than that of monadic-serial DP problems, but the
potential parallelism is higher. With additional control, the linear systolic '
array presented -earlier can be applied to evaluate monadic-nonserial DP
problems.

6.2. Solving polyadic-nonserial DP problems by
searching AND/OR-graphs

AND/OR-graphs can be sequentially searched in a breadth-first bottom-up
fashion, which expands nodes by levels from the bottom up [24]. Since an
acyclic AND/OR-graph can be viewed as a folded tree, searching the
AND/OR-graph can be accomplished by searching the corresponding
AND/OR-tree. In a parallel AND/OR-tree search, the nodes in the tree
are evaluated in parallel in a bottom-up fashion. The parallel architecture
can be designed with a flexible interconnection, such that a processor can
be dynamically assigned when it is free, or can be designed with a limited
interconnection, such that a static evaluation order is maintained for a given
problem. A dataflow processor is an example of the first altematlve We
will investigate the second alternative here.

Parallel AND/OR-tree search of polyadic-serial DP problems is a special
case of that of polyadic-nonserial DP problems. For nonserial DP problems,
the dependency between states is not restricted to successive stages but may
exist between states in arbitrary stages. In the corresponding AND/OR-
graphs the arcs are not restricted to successive levels but may run between
any two arbitrary levels. It may be difficult to map an irregular AND/OR-
graph to a systolic array with a regular interconnection structure. The
nonserial AND/OR-graph may have to be transformed into a serial one
before the mapping is done.

The strategy is illustrated by the problem of finding the optimal order
of multiplying a string of matrices. For simplicity, consider the evaluation
oi the product of four matrices,

M=MlXM:XM_\XM4,

where M,, 1 = i =4, is a matrix with r,_, rows and r, columns, r,> 0,0 =< 4.
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Let m,;, be the minimum cost of computing M, x - - - x M,. Clearly,

0 if i=j,
M= {r,nkl’ (Mgt Musr+rio o) i j>i
The solution to be found is m, ;. This problem was described in Section 2
and can be represented as a search of an AND/OR-graph, where the
AND-nodes ‘denote additions and the OR-nodes denote comparisons (see
Figure 2).

The AND/OR-graph in Figure 2 can be mapped directly into six pro-
cessors connected by multiple broadcast busses. Each processor evaluates
an OR-node and its immediate descendent AND-node(s). The broadcast
structure is necessary because a processor has to communicate with muitiple
processors and not its neighbors alone. Let T,(k), 1 = k=< N, be the time
to find the optimal order of multiplying k matrices. Then,

{Td(fk/21)+l_k/2_l if k>1,
if k=1.

Tu(k)= (42)

Equation (42) is true because, once the subproblems of size [k/2] are
compieted, the results can be used as inputs to subproblems of size larger
than [k/2]. In the following step, only subproblems of size [k/2]+1 can
be completed, and the results will be available as inputs to subproblems of
size larger than [k/2]+ 1. Thus it takes |k/2] steps to solve a subproblem
of size k. In each step, two additions and two comparisons are performed.

Proposition 2. The solution to equation (42) is T,(N)=N.
Proof. The proposition can be proved by induction. d

Although the above scheme is fast, it requires a large number of broadcast
busses and may be difficult to implement when the problem size is large.
To overcome this we can transform the nonserial problem into a serial one,
that is, convert the general AND/OR-graph into a simpler graph in which
all arcs connect nodes in successive levels. Suppose that an OR-node and
its immediate parent are not located in adjacent levels, then the OR-node
is connected to its parent via other intermediate nodes in adjacent levels.
The additional connections are represented as dotted lines in Figure 8. This
pipelined design is suitable for VLSI implementation because the intercon-
nections can be mapped into a planar structure.

The computational time for the scheme in Figure 8 is analyzed here. Let
T,(k), 1=k=N, be the time to find the optimal order of multiplying &
matrices. Once a subproblem of size [k/2] is solved, it takes |k/2] time
units to transfer the result into the processor that evaluates the subproblem
of size k. Analogous to the explanation for equation (42), it takes lk/2]
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Figure 8. A structural AND/OR-graph representation of finding the optimal order
of multiplying a string of four matrices.

steps to solve the subproblem of size k after the results of subproblems of
size [k/2] are available. Consequently,

T,(k) = T,([k/21)+2|k/2]. (43)

Proposition 3. Suppose T,(1)=2, then the solution to equation (43) is
T,(N)=2N.

Proof. The proposition can be proved by induction. O

A systolic array usually demands that all operands for an operation arrive
at a processor simultaneously and that the computations are carried out in
a pipelined fashion. Recall from Theorem 2 that the optimal branching
factors for AND- and OR-nodes are two and m (=2), respectively. Hence,
it is necessary for two data items to arrive at an AND-node simultaneously,
and that the OR-nodes are evaluated sequentially. Keeping the timing and
Proposition 3 in mind, it is not difficult to design a systolic algorithm for
this problem. In fact, the derived structure is the same as that proposed by
Guibas er al. [11].
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The above example demonstrates the relationship between an AND/OR-
graph representation of polyadic DP problems and the corresponding sys-
tolic design. In general, starting from an AND/OR-graph, a systolic array
with planar interconnections can be designed by first serializing links that
connect nodes not in adjacent levels in the AND/OR-graph, and by design-
ing the appropriate control signals. As shown in the examples, the transfor-
mation may introduce additional delay and redundant hardware in the
implementation.

7. Conclusions

Dynamic programming is a good example to show the variant architectures
required by multiple formulations. In this paper DP formulations have been
classified according to the objective functions and the structure of the
corresponding AND/OR-graphs. A given DP problem can usually be formu-
lated in multiple ways, such as a folded OR-tree (multistage graph), an
AND-tree, a folded AND/OR-tree, and an AND/OR-graph. Hence, it is

Table 1. Summary of results in parallel processing of dynamic programming

problems.
. Problem Suitable Functional
Formulation characteristic method requirements
Serial Monadic Many states or  Solve as string of  Systolic
quantized matrix processing
values in multiplications
each stage
Polyadic = Many stages Solve by divide- Loose coupling
and-conquer for fine
algorithms, or grain; tight
search coupling for
AND/OR-trees coarse grain
Nonserial Monadic  Variables can Transform into Systolic
be eliminated monadic-serial processing
one by one representation
(by grouping
variables)
Polyadic  Unstructured Search AND/OR- Dataflow or
problems graphs; systolic
transform into processing
serial
AND/OR-

graphs




148 WAH AND GUO-JIE Li

important to compare the alternative implementations. Systolic processing
is most applicable when the formulation is serial.

Many sequential decision problems have serial formulations that can be
considered as searching a multistage graph. If there are a large number of
states and/or quantized values in each stage, then a monadic formulation
is more appropriate, and the problem is efficiently solved as a serial string
of matrix multiplications. On the other hand, if the number of stages is
large, then the problem should be put into a polyadic formulation. The
matrices are grouped into a binary tree and multiplied by a divide-and-
conquer algorithm. We have found the AT? lower bound for multiplying
a string of N m x m matrices and have proved that dividing the string into
O(N/log, N) groups and multiplying each by a systolic array is optimal
in the sense of achieving this lower bound.

When the formulation is nonserial, it may be necessary to transform the
problem into a serial formulation before an efficient implementation can
be found. A monadic-nonserial formulation can be transformed into a
monadic-serial one by grouping state variables. A problem in a polyadic-
nonserial formulation can be represented as the search of an optimal solution
in an AND/OR-graph, which can be transformed into an AND/OR-graph
for a serial problem by adding dummy nodes. The transformed AND/OR-
graph can be mapped directly into a planar systolic array by using appropri-
ate control signals. The additional hardware and delay introduced is problem
dependent. A summary of variant architectures required by the multiple
formulations of dynamic programming problems are shown in Table 1.
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