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Abstract—In this paper, we have investigated the efficient evaluation
of branch-and-bound algorithms in a system with a two-level memory
hierarchy. An efficient implementation depends on the disparities in
the numbers of subproblems expanded between the depth-first and best-
first searches as well as the relative speeds of the main and secondary
memories. A best-first search should be used when it expands a much
smaller number of subproblems than that of a depth-first search, and
the secondary memory is relatively fast. In contrast, a depth-first search
should be used when the number of expanded subproblems is close to
that of a best-first search. The choice is not as clear for cases in be-
tween. The Iterative Deepening A* (IDA*) algorithm has been shown
to be asymptotically optimal in space, time, and cost. However, for the
conditions that we have assumed, IDA* does not result in the optimal
spuce-time tradeoff for minimizing the completion time. In this paper,
we study the space-time tradeoff by proposing and analyzing two strat-
egies: a specialized virtual-memory system that matches the architec-
tural design with the characteristics of the existing algorithm, and a
modified branch-and-bound algorithm that can be tuned to the char-
acteristic of the problem and the architecture. The latter strategy il-
lustrates that designing a better algorithm is sometimes more effective
than tuning the architecture alone. Guidelines have also been devel-
oped to select appropriate a priori values for the parameters of the
modified B&B algorithm.

Index Terms—Best-first search, branch-and-bound algorithm, disk
overhead, modified branch-and-bound algorithm, two-level memory
hierarchy, virtual-memory.

I. INTRODUCTION

HE search for solutions in a combinatorially large

problem space is important in artificial intelligence
and operations research. Search problems may be classi-
fied as either decision or optimization problems [11]. In
a decision problem, one attempts to determine the exis-
tence of at least one solution that satisfies a given set of
constraints. Examples include theorem-proving, expert
systems, and some permutation problems. An optimiza-
tion problem is characterized by an objective function to
be minimized or maximized and a set of constraints to be
satisfied. Examples include the traveling-salesman, job-
shop-scheduling, knapsack, vertex-cover, and integer-
programming problems.
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A general technique for solving combinatorial-search
problems is the branch-and-bound (B&B) algorithm [20].
A B&B algorithm is a partitioning algorithm that decom-
poses a problem into smaller subproblems and repeatedly
decomposes them until infeasibility is proved or a solu-
tion is found. Many theoretical properties of serial B&B
algorithms have been developed [13]-[16], [18], [27],
[41]. It has also been recognized that the B&B algorithm
is a generalization of many heuristic search procedures
[19] such as the A* [26], AO* [22], SSS* [32], B* [3],
alpha-beta [17], and dynamic programming [6] algo-
rithms. Parallel computer architectures for evaluating
B&B algorithms have also been studied [35].

B&B algorithms are characterized by four constituents:
branching rule(s), selection rule(s), elimination rule(s),
and termination condition(s). The first two rules are used
to decompose problems into simpler subproblems and ap-
propriately order the search. The last two rules are used
to eliminate generated subproblems that are not better than
the ones already known.

In a B&B algorithm, let P; be a subproblem, and f (P;)
be the value of the best solution obtained by evaluating
all subproblems decomposable from P;. Each subproblem
is characterized by a value that is computed from a lower-
bound function g. The lower-bound function satisfies the

.following properties:

1) g is a lower-bound estimate of f;

2) g is exact when P; is feasible;

3) lower bounds of descendant nodes always increase.

A lower bound is calculated for a subproblem when it
is created. If a subproblem is a feasible solution with the
best objective-function value so far, then the solution
value becomes the incumbent z. In minimization prob-
lems, if the lower bound of P; exceeds the incumbent,
then P; can be pruned because it will not lead to a better
solution value than the incumbent. In other words, P; is
terminated during the computation if

(1)

The decomposition process continues until all subprob-
lems are cither expanded or eliminated.

The above elimination rule for obtaining an exact op-
timal solution can be relaxed to obtain a suboptimal so-
lution with a guaranteed accuracy [20]. Suppose it were
decided that a deviation of 10 percent from the optimum
was tolerable. If a feasible solution of 150 is obtained,

g(P) =z
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_then all subproblems with lower bounds of 136.4 [or
150/(1 + 0.1)] or more can be terminated since they

cannot lead to a solution that dcviates by more than 10
percent from 150. This technique significantly reduces the
amount of intermediate storage and time nceded to arrive
at a suboptimal solution. Define an allowance function
¢ (2): R = R (set of reals) such that P, is terminated if

g(P;) = z — (). (2)

The final incumbent zx obtained by the modified lower-
bound test is related to the optimal solution value z, by
(13]

(ZF - G(ZF)) == (3)

Examples of often used allowance functions are

e(z) =€ ¢ = 0 (absolute error deviation), and
(4)
€2 . ..
€(2) = e = 0, z = 0 (relative crror deviation)

(5)

The selection rule examines the list of active subprob-
lems and sclects one for expansion. If the list is main-
tained in a first-in/first-out order, then the algorithm is
called a breadth-first search. If the list is maintained in a
last-in/first-out order, then the algorithm is called a depth-
first search. Lastly, if the list is maintained in an increas-
ing order of lower bounds. then the algorithm is called a
best-first search.

The iterative deepening A* (IDA*) algorithm [42]. [43]
starts from the root and performs a depth-first search using
a heuristically assigned value as the initial incumbent.
This depth-first search is repeated with successively in-
creasing estimates for the initial incumbent until the op-
timal solution node is expanded. The first initial incum-
bent is taken to be the lower bound of the root. After cach
iteration, the next estimate of the initial incumbent is the
smallest of the lower bounds that exceed the current cs-
timate of the incumbent.

The B&B algorithm is summarized as follows:

procedure Branch.and.Bound;
{ incumbent = oo,
list of subproblems = { P, };
while list of subproblems # &5 do |
apply selection to rule to list of subproblems:
expand selected subproblem by the branching rule:
for P € {child subproblems gencrated} do |
if P is a feasible solution then | .
update incumbent;
apply elimination rulc |
else if (g(P) < (z — €(2))) then
insert P into the list of subproblems
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To illustrate the B&B algorithm. the evaluation of an
integer-programming problem 24| is shown here. Inte-
ger-programming problems may be cxpressed as a con-
strained optimization.

Minimize CX

subject to AX = B

X' = (xp 00, 0 L X))

Xx; nonncgative integer, { = 1,2, + -, m:

A, B, and C are constant matrices. (6)

Thesc problems differ from ordinary lincar-programming
problems in that the variables are restricted to noanega-
tive integer values.

Onc approach to solve this problem is to first apply the
dual simplex method to a subproblem and solve it as a
lincar program. If the optimal solution is integral, then a
feasible solution has been generated; otherwise, create two
new subproblems as follows. Choose a variable in the
subproblem that has a nonintegral value (say x, = 4.4)
and restrict that variable to the next smaller integral value
for one subproblem (v, < | 4.4 | ora, < 4)and to the
next larger integral value (v, = [ 4.4 orx, = §) for
the other. The variable chosen is the one with the greatest
up or down penalty. The up penalty for a variable x,, hav-
ing a value of a;, is the estimate of the amount by which
the solution to the current subproblem would increase if
the integral constraint x;, = | «; | was introduced. The
down penalty is similar, except that it is associated with
the constraint v, < | «a, |. The lower bound of a new
subproblem is the sum of the optimal simplex solution and
the associated penalty. This entire process is repeated on
the new subproblems until cither a feasible integral solu-
tion is found or all subproblems have been expanded.

Fig. 1(h) shows the B&B tree tor the problem in Fig.
1(a). The dual simplex method gives an optimal solution
of 14.2 for the original problem. Since the variables are
not integral, a feasible solution has not been generated.
Up and down pcnaltics are calculated for the variables. x,
has the greatest penalty (U = 1.8). Two new subprob-
lems are then created, one with x; = 0, and the other with
x, = |. The lower bounds are calculated as shown in Fig.
1(h). The dual simplex method is applied again to the sub-
problem with the smallest lower bound. and a feasible so-
lution is generated in which all variables are integral. This
constitutes an optimal solution since the lower bound of
the remaining subproblem is greater.

Among the alternative scarch strategies, depth-first
scarch. brcadth-first search, and IDA require a small
memory space and can be evaluated entirely in the main
memory. In a depth-first scarch, the list of subproblems
is stored in a last-in/first-out stack with a maximum size
cqual to the height of the scarch tree. For many scarch
problems, this height is equal to the number of variables
in the problem and is reasonably small. A breadth-first
scarch has a similar behavior. On the other hand, a best-
first scarch expands the minimum number of subproblems
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Fig. 1. ta) An example ol an integer-programming problem and (b) the
corresponding B&B solution.

if no node other than an optimal-solution node has a lower-
bound value equal to the optimal-solution value [20]. [21].
Hence a best-first scarch will have the best time-efliciency
if the main memory is large cnough to accommodate all
its active subproblems. However, analytical and simula-
tion studics have shown that the average maximum mem-
ory space required to obtain an optimal solution for many
problems by a best-first scarch is exponential with a sub-
lincar exponent |34}, [36], 140} unless the lower-bound
function is very accurate in leading to the optimal solu-
tion. In many computers, the main memory is limited in
size. and a slower secondary memory will have to be uscd
with the main memory to solve any nontrivial problem by
4 best-first search. Although IDA* is asymptotically op-
timal when the problem size is intinite, for finite problem
sizes it expands at best a constant multiple of the number
of nodes expanded in a best-first scarch [42]. IDA* per-
forms redundant node expansions because it uses a stack
of constant size. If memory spacc is available in main and
secondary memory, a better space-time tradeoft can be
made by storing the nodes and not regencrating them as
well as overlapping the accesses to main and secondary
memory such that the average access time is close to that
for main memory. In this case, the time required to ex-
pand a subproblem by a best-first search may cxceed that
by a depth-first scarch, and the latter strategy may have a
N Atsbhowiah IMA%X J¢ acvmntotieally
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optimal when the problem size is infinite, for finitc prob-
lem sizes it expands at best a constant multiple of the
number of nodes cxpanded in a best-first scarch [42].
IDA* performs redundant node expansions because it uses
a stack of constant size. If memory space is available in
main and secondary memory, a better space-time tradcoft
can be made by storing the nodes and not regenerating
them as well as overlapping the accesses to main and sec-
ondary memory such that the average access time is close
to that for main memory. In this paper, we seck to deter-
mine the most efficient search strategy for a two-level
memory hierarchy.

Studies have been carried out on non-search algorithms
in a computer with a two-level memory hicrarchy man-
aged by a paged virtual-memory system. These include
rules for enhancing locality {25}, automatic restructuring
of programs [12], {7]-[91. [2]. matrix manipulation [23],
[10]. sorting [4]. [1]. and databasc operations [30].

In the remainder of this paper. we will present alter-
native scarch strategics that are uscful in a single-user
computer system. In such a system, the time-etliciency
may be characterized by the expected completion time of
the algorithm. In Scction 11, we will present analytical
and simulation results on the number of subproblems ex-
panded under the best-first and depth-first strategies. In
Sections 111 and 1V, we will present the design of a spe-
cialized virtual-memory system for the best-first search
and a modificd B&B algorithm [39], which is a compro-
mise between the depth-first and best-first searches. The
modified algorithm illustrates that designing new archi-
tectures to fit an existing algorithm may be less beneficial
than designing a better algorithm to fit an existing archi-
tecture.

Both of these alternatives are of limited value in mul-
tiuser systems. It is extremely difficult to modify the vir-
tual-memory system without adversely affecting other
users in the system. Morcover, it is very difficult to de-
termine a suitable metric to characterize the time cth-
ciency of an algorithm to the degree that it may be used
as an optimization measure. The completion time cannot
be used to characterize the efficiency of the algorithm as
it will depend not only on the algorithm itself but also on
the system load during its exeeution. Other possible met-
rics such as the processing time and the sum of the pro-
cessing and secondary-storage times do not adequately
describe the tradeoft and the overlap between computa-
tions and sccondary-memory {CCesses.

. B&B ALGORITHMS IN A Two-Livil MEMORY
HiERARCHY
To decide between using the best-first and depth-first
strategics in a system with a two-level memory hicrarchy,
it is necessary to compare the relative numbers of sub-
problems expanded (Section I1-A) and the relative speeds
of the main and secondary memories (Section 1-B).

A. Number of Expanded Subproblems
An analvtical model of the scarch strategies depends on
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-the accuracy of the lower-bound function that predicts the

best solution derivable from a given node. To compare
the performance of search stratcgies for all possible dis-
tributions of the accuracy would be a nontrivial, if not
impossible, problem. The eftects of the accuracy of the
lower-bound function on the average performance of the
A*-algorithm (best-first search) and informed backtrack-
ing (depth-first search) have been studied for decision
problems [28]. Other models of the cutoff mechanism
which do not explicitly consider the accuracy of the lower
bounds have also been used to study the average perfor-
mance of best-first [31] and depth-first [31, 33} scarches.
A mathematically tractable solution that assumes a con-
stant distribution for the accuracy has been derived and
published before [36]. The results of this derivation arc
summarized here.

Suppose that the state-space trec is a complete s-way
tree of height & and that solution nodes exist at the leaves.
It was assumed that all solution values were indepen-
dently and identically distributed (iid) random variables
with a truncated exponential distribution function. An ap-
proximate valuc of the expected number of nodes ex-
panded was derived as a function of the parameters of the
distribution function, the shapc and sizc of the scarch tree,
and the secarch strategy. The expected number of nodes
expanded by a best-first scarch was found to be always
less than that by a depth-first scarch. However, the dif-
ference was a function of the accuracy of the lower-bound
function in predicting the solution value. When the lower-
bound function is very inaccurate, depth-first, and best-
first searches both perform poorly and expand a large por-
tion of the state-space trec. In contrast, when the lower-
bound function is very accurate, both depth-first and best-
first searches perform cqually well and cxpand a small
portion of the state-spacc tree. Between these two ex-
tremes, a depth-first scarch always cxpands many morc
nodes than a best-first scarch.

The above behavior can be illustrated by the 0/1 knap-
sack. vertex-cover, and integer-programming problems.
The lower-bound functions for the 0/ 1 knapsack and ver-
tex-cover problems are greedy algorithms and are very
accurate in pruning unnccessary expansions. In contrast.
the integer-programming problem uses a lower-bound
function that is a lincar program with the intcgrality con-
straints removed for all unassigned variables. This func-
tion will generally be less accurate. Table 1 shows some
results from our simulations with these problems. For the
knapsack and vertex-cover problems, the number of sub-
problems cxpanded in a depth-first scarch was almost
identical to that in a best-first scarch. For intcger-pro-
gramming problems, the ratio of the number of subprob-
lems expanded in a depth-first scarch to that in a best-first
search varies between 1.4 and 17.6.

B. Effects of Secondary Memory on the Total Overhead

A simplificd analysis of the performance of a best-first
scarch will indicate the appropriate scarch strategy to usc.
Suppose that the best-first scarch is implecmented on a
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TABLE 1
Ntmaer oF NoDpEs Expanpep in Best-First (BES) ann Drein-Firsi
(DES) SEARCHES FOR 30-0m0:01 07§ KNAPSACK. 8O-Nobnt VERE-Covir,
AND 20-VAriaBLE, 20-CONSTRAINT INTEGER-PROGRAMMING PROHEEAMS
(PARAMETERS 101 THESE PROBUEMS WERE GENERATED RANDOAMIY )

Number of Nodes Expanded
Problem |0/1 Knapsack | Vertex-Cover {Integer-Program

BFS | DEFS | BFS | DES | BES DFS
1 1701 { 1731 | 4351 | 6205 |1541 2169
2 5475 | 5519 | 5839 | 7290 [2096] 9425
3 6394 | 6442 | 8045 | 9757 {2237] 5356
4 1406 | 1474 | 5349 | 7134 |1242] 9752
s 1103 [ 1145 | 4401 | 5186 | 594 1178
[ 15309/ 15403 8253 | 8277 |1396] 305t
7 808 860 [12140§12463| 35S 2687
8 7137 | 7202 | 7663 | 7647 [1456] 14485
9 18265| 18396 | 12847[21892 | 246 3852
10 14257[14337|14104[15524 (3475} 7391

paged virtual-memory system with a list of subproblems
and a priority queuc' of pointers to these subproblems to
maintain the required ordering. Subproblems are not or-
dered by lower bounds in the list. In cach iteration. the
subproblem with the minimum lower bound is found from
the priority queuc and deleted from the list. while newly
generated subproblems are inserted into the list and the
priority queuce is updated. Let i, subproblems be the page
size. and n,, pages be the maximum amount of main mem-
ory allocated to the subproblem list. Also. assume that
Ny (resp. ) subproblems are expanded in the best-first
(resp. depth-first) search and that cach subproblem cxpan-
sion generates s subproblems. Let iy and wy, be the ex-
pected number of page reads and page writes from and to
the secondary memory, respectively. Since a pointer node
is usually much smaller than a subproblem. the heap is
assumed to be resident in the main memory, and the pag-
ing overhead due to the pointer heap will be ignored.

In the simplified analysis. it is assumed that the initial
incumbent is set at oo, and that the first feasible solution
generated becomes the optimal sotution. hence subprob-
lems gencrated are not pruncd.” Manipulation of the list
of subproblems will incur no page reads or writes i ny,
doces not exceed n,, where

(7)

n, measurces the number of iterations that subproblems can
be cxpunded without exceeding the size of the main mem-
ory. Initially. the memory space available is (1,1, 1)
subproblems with the root of the B&B tree resident in the
main memory. In cach iteration, one subproblem s re-
moved from the main memory and s subproblems are gen-

'"The priority queue can be implemented by o heap. which is a complete
binary tree such that the vatue of cach node is least s snwdl o that of
its descendants,

“In reality. when the first feasible solution s generated ina best first
seirch, the optimal solution is close to be found. The initial incumbent ised
is prablent dependent. Ininteger programnning problems, the inihal incum
bent is set at oo, For other problems. a better mitial incombent can be
used.
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erated, resulting in an increase of (s — 1) subproblems
in the main memory.

Since subproblems in the subproblem list are not or-
dered, it is assumed that the subproblem chosen for ex-
pansion is equally likely to be in any of the pages in use
by the list. The actual numbers of page reads and writes
will be less than the corresponding numbers when no sub-
problems are terminated prior to the generation of the op-
timal solution. Hence

L

n
Fon € 2 1 - = - Ny, > n
by immt ! [i(s _ l) + l' biy !
np
(8)
”hfs(s - l) + I
Whis = - n, Ny > N,
np
(9)

In (8), index i represents the current number of subprob-
lems expanded. Each term in the summation is the prob-
ability that the problem chosen for expansion is residing
in the secondary memory.

Page writes may be overlapped with subproblem ex-
pansions when sufficient buffers are available because the
B&B process can continue once the page has been copied
into a buffer. However, processing will have to be de-
luyed in a page read until the page has been read from the
secondary memory. Let A. be the CPU time required to
expand a subproblem, which is the same for both best-
first and depth-first searches. Further, let h, be the aver-
age page-read time, and = be the ratio of the number of
subproblems expanded in a best-first search to that in a
depth-first search ( =nye/ny). Dy, the overhead in-
curred by a best-first search, can be approximated as the
summation of the total page-read times and the maximum
of the CPU times and the page write times.

(10)
From (8), rue = wyp, = my when my, >> n,. In this case,
1 best-first search will be more etlicient than a depth-first
search if = is less than ., where

= he 1
© max (h, hy/n,) + hy/n, ()
ind h,/n, is the page-read overhead for each subproblem
xpanded.

In practice, due to the many simplifications made in this
inalysis, a best-first search should be chosen only when
= << E,. Similarly, a depth-first scarch should be used
vhen = >> E_. For problems characterized by interme-
liate values of Z, the choice between the depth-first and
est-first searches is less clear. Either a depth-first or
est-first search may be used, although neither is partic-
larly suitable. In Section IV, we study a modified B&B
lgorithm that is a hybrid of best-first and depth-first
earches and is more efficient than both when Z is close

—
0 =,.

Dy = rophy + max (wyghy, nypgh,)

I}
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In short, the difference between the number of subprob-
lems expanded in the best-first and depth-first searches is
problem dependent and varies considerably between
problems. This suggests that no one strategy will be op-
timal for all problems in a two-level memory hierarchy
and that the strategy should be chosen according to the
predicted difference. A depth-first search should be used
when there is a small difference between the number of
subproblems expanded under the depth-first and best-first
searches, such as the case in the 0/1 knapsack and veriex-
cover problems. When this difference is large, a depth-
first search will still be more efficient if the secondary
memory is slow. On the other hand, a best-first search
should be used when a depth-first search expands many
more subproblems than the best-first search. When this
disparity is moderately large, a best-first search should
still be used if the computer has a fast secondary memory.

III. A SPECIALIZED VIRTUAL-MEMORY SYSTEM FOR
BesT-FIRST SEARCH

In this section, we show an approach that tailors the
operating system to the characteristics of the best-first
search. The proposed virtual-memory system is depicted
in Fig. 2. Subproblems in the secondary storage are or-
ganized in a B*-tree.’ Each leaf of the tree is a page and
contains subproblems. The B*-tree organizes subprob-
lems to be expanded in the order dictated by the best-first
search. Since nonterminal nodes of the tree are pointer
nodes that are much smaller than leaf nodes, a substantial
portion of the pointer tree may be kept in the main mem-
ory. This reduces the number of secondary-memory ac-
cesses required to access a subproblem in the secondary
storage.

The main memory contains a partial list of subproblems
(m-list) and a heap of pointers to subproblems in the m-
list. Newly generated subproblems are inserted into the
m-list. When the m-list is full, subproblems are moved to
the B *-tree pages.

In a best-first search, the subproblem with the smallest
lower bound is always expanded in each iteration. This
requires the comparison of the subproblems with the
smallest lower bound in the m-list and that in the B*-tree.
The process is prohibitively expensive if the first B*-tree
page resides in the secondary memory. Hence the first B*-
tree page should be kept in a fast buffer (s-buffer) that is
partiatly in the main memory.

In inserting a subproblem into a normal B*-tree, the
appropriate page is read into the main memory, the sub-
problem is inserted into the page image in main memory,
and the page image is written back to disk. A more effi-
cient scheme is to set the block size to an integral number
of disk sectors which is greater than or equal to the size

‘A B-iree of order b s a search tree that is cither empty or satisties the
following properties [5]: 1) the root node has at Icast two children; 2) cach
node contains at lcast b keys and » + 1 pointers; and 3) each node contains
at most 2b keys and 2b + 1 pointers. A B' -tree is variant of the B-tree in
which all records reside in the teaves. The upper levels are organized as a
B-tree und serve as an index o focate a record, The leaf nodes are linked
from left 1o right for casy sequential processing.
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Fig. 2. Data structure in a modified virtual-memory system for supporting
the best-first scarch.

of a subproblem and to use a bit map in main memory to
show the status of all page blocks. Inserting a subproblem
into a page, therefore, consists of searching for an empty
block in the bit map and writing the block when the disk
head is properly positioned.

The design of the virtual-memory system involves the
selection of a replacement algorithm and the page size
[38]. Unlike conventional best-first searches. the B*-tree
and a good replacement algorithm allow future disk ac-
cesses to be predicted, provided that there are enough disk
buffers. The overhead of execution in a single-user envi-
ronment can be approximated by the maximum of the
computation and disk times. Since subproblems are cx-
panded in a similar fashion as conventional best-first
searches, the modified virtual-memory system has little
effects on the computational time, and the objective of
design becomes the minimization of the paging overhead.
An efficient replacement algorithm should maximize the
number of subproblems inserted into each page and avoid
replacing subproblems that will be expanded in the im-
mediate future. Let n,, be the maximum size of the m-list
and Py, ,P,.8(Py) < - =g(P,) be the sub-
problems in the m-list when replacement is initiated. We
have analyzed an effective replacement rule S(0, ¢) that
selects subproblems P, ,, * * * , Pj,,, for removal, where
9 =0,0+ ¢ < n,[38]. This replacement rule tends to
minimize the number of B*-tree pages accessed. A spe-
cial case of this rule is S(n,, — @, n,,), or the Back-Re-
placement policy, in which the ¢ subproblems with the
largest lower bounds are replaced.

The problem of selecting the proper replacement rule is
reduced to the selection of @ (the index of the first sub-
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TABLE 1l
COMPARISON OF 1 TO 9,cqum FOR TWO 20-VARIABLE, 20-CONSTRAINT
INTEGER-PROGRAMMING PROBLEMS (a1, = 100, 1, = 50)

Problem 1 Problem 2
8o
Predicted | Actual [ Predicted | Actual
n n n n

0[50f 0.80 0.80 0.47 0.46
10{50] 0.65 0.73 0.37 0.41
20§50| 0.56 0.63 0.31 0.39
3o|s0} o0.51 0.64 0.29 0.36
40{50] 0.50 0.61 0.28 0.33
50|50 0.54 0.59 0.28 031

80§20] 0.65 0.73 0.34 0.41
70{30] 0.60 0.68 0.30 0.36
60{40{ 0.56 0.63 0.29 0.35
50|50| 0.54 0.60 0.28 on
40/60| 0.53 0.57 0.28 0.3t
30{70} 0.53 0.54 0.29 0.0
20|80 0.54 0.54 0.30 0.31
10{90{ 0.55 0.55 0.31 oM

problem to be replaced) and ¢ (the number of subprob-
lems to be removed) to minimize 7, the expected number
of page accesses normalized by the expected number of
subproblems cxpanded. In Appendix A, we have derived
an expression for 5 (A-12) that is a function of 8, ¢, s (the
branching factor), n, (the page size in number of sub-
problems), w, (the probability that a subproblem ex-
panded is chosen from the s-buffer), and E(R) (the aver-
age number of B*-trec pages). Equation (A-12) was
verified experimentally on integer-programming prob-
lems, and a subset of the simulation results are shown in
Table 1I. These results show that (A-12) is a reasonably
good measure of 5 for integer-programming problems.

It is difficult to choose @ and ¢ that will minimize for
a given set of parameters because some of these parame-
ters are complex functions of 8 and ¢.* Instead, we opti-
mize 0 and ¢ iteratively. By using quadratic approxima-
tions of the variations, a nonlincar programming optimi-
zation indicates that a Back-Replacement policy should be
used. The details of this optimization will not be shown
here [38]. The use of the Back-Replacement policy is also
suggested by statistics collected during simulations of in-
teger-programming problems [Fig. 3(a)]. Only the results
of four problems arc shown here, but other problems sim-
ulated exhibit a similar behavior.

Assuming that the Back-Replacement policy is used. ¢
may be chosen similarly. It was found that ¢ shouid be
set between 0.7 n,, and 0.9 n,, [38]. Statistics collected
during simulations of integer-programming problems also
suggest a similar result although the actual performance
is problem-dependent |Figure 3(b)]. Other simulations
also exhibit a similar behavior. In practice, any ¢ in the
range of 0.7 n,, 10 0.9 n,,. is satisfactory as the number of
page accesses in this region differs from the minimum by
at most 10 percent.

Given the replacement algorithm, the optimal page size
can be determined. The cost of accessing a page on a

iSimulations of integer-programming problems showed that the param-
CLErs T, Ao and A, (defined in Appendix A) vary with both 8 and ¢ [38].
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1oving-head disk is given by-the sum of the average seek,
otational, and transfer times. For integer-programming
roblems, it was found that n,, (the page size) in the range
f 0.65 n,, to 0.85 n,, should be used [Fig. 3(c)].

The performance comparison between a direct imple-
ientation of the B&B algorithm and the modified virtual
iemory will be shown after the discussion of the modi-
ed B&B algorithm.

1V. Mobiriep BesT-First B&B ALGORITHMS [39]

In this algorithm, the range of possible lower bounds is
artitioned into n disjoint regions, {[uy, u), lu,, us),
*+  {Uy-1, uy)} (Fig. 4). Normally uy = gy and 4, =
o+ Where g, is the lower bound of the initial problem,
nd gin is an estimate of the value of the optimal solution.

The list of active subproblems in each region is usually
large and so has to be partly stored in the secondary mem-
ory. Further, accesses to the secondary memory incurs a
high overhead, and hence subproblems in each region [«;,
Uis1) i =0, -+, n — 1, are not ordered by lower
bounds but are kept in a last-in, first-out stack, §;, and
expanded in a depth-first manner.

This approach contrasts with the IDA* approach of
using a constant stack size. Our approach seeks a space-
time tradeoff that utilizes the available main and second-
ary memory as well as the overlapping of the accesses to
main and secondary memories.

The efficiency of the algorithm depends on whether it
is implemented on a file system or a virtual-memory sys-
tem. We will describe the version for a file system here
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Fig. 4. Data structure to support the modificd B&B algorithm.

and note the needed changes for a virtual-memory imple-
mentation. The main-memory space allocated to the stor-
age of subproblems is organized as a pool of fixed-sized
frames. Stack S; is partitioned into F;, a secondary-mem-
ory file, and B;, a main-memory buffer. Buffer B consti-
tutes the top portion of the S; and consists of a number of
. frames. Subproblems pushed onto stack S; are written into
_ B;. When B, is full, a new empty frame is requested from
the frame pool in the main memory. When no free frames
are available, subproblems in the bottom frame of B, are
written to F;. It is assumed that secondary-memory buff-
ers exists, and prefetching from the sccondary-memory
can be done in overlap with computations.

Let the current stack be the stack containing the active
subproblem with the smallest lower bound, and the solu-
tion stack be the stack containing the optimal solution.
Stack S is defined to be smaller than stack 5 if j < k,
and larger than stack S, if i > k. Similar relationships
hold for the buffers B; and B,. Hence the current stack is
also the smallest stack. An active stack is one that is larger
than the current stack and has not been eliminated by
lower-bound tests.

In the modified selection rule, a subproblem in the
smallest nonempty main-memory buffer is chosen for cx-
pansion. Note that the main-memory buffer for the small-
est-stack may be empty, and that the overhead may be too
large to fetch and wait for a subproblem in the smallest
stack from the secondary memory. In this case, the fetch
should be initiated, but the expansion should proceed with
any subproblem in the smallest nonempty main-memory
buffer. This No-Wait Policy is based on the facts that the
selection overhead is high and that the lower-bound heu-
ristic may be fallible in guiding the search [37].

Let the incumbent be z and the allowance function be
€(2). Suppose that (z — €(z)) lies in the range of ;. The
modified lower-bound elimination rule eliminates all ac-
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procedure modified. Branch.and.Bound:;

/% Range of possihle lower bounds is divided into regions, each of
which is occupied by a stack 8, 0 < i Sn—1. 8§ has 0 main memory
bufer 13, and a secondary-memory file I, */

incumbent mea; By = {Pp): §;=@.i=1,... 01
while there are non-empty stacks do [
let Sy be the current stack:
if B, is empty and no read {rom F, to B, is outstanding then
initiate read from Fy to By:
if all buffers are empty then
wait until read from any buffer is completed:
apply modified selection rule;
if (lower bound of selected subproblem < (z—¢ (z))) then {
expand selected subproblem:
for P € {expanded subproblems} do [
if P is a feasible solution then [
update incumbent;
apply modified elimination rule |
else if (g(P) < (z—€ (2))) then {
if By is full then{
if frame pool is empty then
initiate write from B, to F;
get frame from frame pool J;
] push P into the corresponding B; ]
]
1

Fig. 5. The modified branch-and-bound algorithm.

bounds greater than (z — €(Z)) are not eliminated im-
mediately because the overhead of accessing them in the
secondary memory is large, and §; may be eliminated
when a future incumbent is found. Subproblems in F; that
are larger than the incumbent will be eliminated when they
are staged to the main memory during the expansion of
S;. As a result, the lower-bound test has to be carried out
on each sclected subproblem before it is expanded. The
modified B&B algorithm is summarized in Fig. 5.

More subproblems may be expanded in the modified
B&B algorithm than in the conventional best-first search.
Some subproblems in the solution stack S,. with lower
bounds greater than the value of the optimal solution as
well as some subproblems from stacks S,4+q. * . Sn -
may be expanded due to the modified selection rule. These
subproblems arc never expanded in the conventional best-
first search. The extra overhead of expanding these addi-
tional subproblems will be offset by the savings in waiting
times due to page reads. Additional secondary-storage
space to store subproblems that are not pruned immedi-
ately by the modified lower-bound climination rule is also
necessary in the modified B&B algorithm.

When one stack is used, the modified B&B algorithm
is identical to a depth-first scarch: when infinitely many
stacks are uscd. it is identical to a best-first search. In
general, as the number of stacks increases, the number of
expanded subproblems decreases and the secondary-
memory overhead increascs. The assignment of the stack
boundaries and the number of stacks should be chosen to
maximize the overlap between computations and second-
ary-memory accesses. '

In Appendix B (B-20), we have derived an analytical
expression for E[D(n)]. the cxpected overhcad for a
given assignment of the stack boundaries when n stacks
are used. By enumerating Ef D(n)] over feasible assign-
ments, the assignment that minimizes E[D(n)] for a

R N Y o
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TABLE 11l
NORMALIZED OVERHEADS FOR THE EQuAL-WIDTH (EWA) AND ANALYTICAL
(AA) BOUNDARY ASSIGNMENTS FOR Five 80-Nopk VERTEX-COVER
PROBLEM AND FIVE 20-VARIABLE, 20-CONSTRAINT INTEGER-PROGRAMMING
PROBLEMS (n,, = 16 (128 kbytes)). FOr INTEGER-PROGRAMMING
PROBLEMS, n, = 4, and glp = (1 = 108, (X)) Bupe WHERE T IS A
RanboM NuMBER BETWEEN 0 anp |, FoR VERTEX-COVER PROBLEMS, 0, =
2, AND ghy, Is GENERATED BY A GREEDY ALGORITHM THAT ALWAYS
CHOOSES THE VERTEX WITH LARGEST DEGREE.

' Number Normalized Overhead
of

Suacks

Problem 3
EWA| AA

Problem 4
EWA| AA

Problem 1
EWA| AA

Problem 2
EWA| AA

Problem 3
EWA| AA

Vertex~cover problems with hy = 5 h. and hy = 10 b,

7129|13160|5186
7260|5186
5607|5176
6894|5164

9426 16196 | 8690 7274111752
7047|6139 7157 16363] 9231
5987594218671 |8257; 9213
8271|8402} 7218 |6975| 9388{10216

9714113891
9548]10423110942
9120{11873| 7662
9894] 6996

(VO N

I programming problems with by = 5 B,

2300|3086
183311633
35412087
1875]2037

4598 2058} 2580 |3561) 381| 646
2555 17933412 [3334] 1419 612
2040 |3793|2200 {2102 976! 581
1541 |1565]2951 |3610] 680| 381

2906
2953
2237
2468

2965
2510
3058
2287

W e we

! programming problems with by = 10

4930
2510
6220
3440

230013086
2500|4010
3290{2070
375015360

4958 [2058 5160 {1561 381| 646
43705270 2680 [2976] 1300| 603
3600 |3580| 4400 [4970} 976} 1710
1680 |2090{ 4700 {3990] 1360} 713

2906
4480
3400
3410

[Y9F SR =

assigning stack boundaries is to divide the range of pos-
sible lower bounds into equal-width regions.

We have carried out extensive simulations for the mod-
ified B&B algorithm with a number of integer-program-
ming and vertex-cover problems using analytical (AA) and
equal-width (EWA) stack-boundary assignments. Some of
these results are shown in Table I11. The values for the
overhead have been normalized with respect to h.. the
mean computational time required to expand a subprob-
lem. It can be seen that the performance of the heuristic
and the analytical schemes are approximately the same.

These extensive simulations also suggest that for inte-
ger-programming and vertex-cover problems, three to four
stacks should be used to minimize the overhead. This is
clearly seen from Table III that shows the variations of
overheads with respect to the number of stacks for a sam-
ple of integer-programming and vertex-cover problems.
Moreover, an appropriate number of stacks and their
boundaries can be predicted quite accurately for the given
problem in general. However, stack assignments are
problem dependent, and the analytical method proposed
here can be used as a guideline to select the number of
stacks and their boundaries before the given problem is
actually solved.

In a virtual-memory implementation of the modified
B&B algorithm, the stacks will have to be defined in vir-
tual space, and the transfers of subproblems between the
main and secondary memories arc automatically managed
by the operating system. The frame pool and its associ-
ated routines are no longer needed. However, it is un-
likely that reads from the secondary memory to the main
memory can be overlapped with computations, so the
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analysis of overheads must be altered accordingly. The
analysis of such a scheme is very similar to that presented
here and will not be shown.

V. COMPARISONS OF VARIOUS SCHEMES

Extensive simulations have been performed to compare
the various schemes proposed in this paper. The simula-
tion programs were written in C language and were im-
plemented on the DEC VAX 11/780 computer. The sim-
ulations took over one hundred hours of CPU time to
complete. In the simulator, a main memory of 128 kbytes
(10 percent of the virtual space) was assumed. Due to
space limitation, only a sample of the simulation results
are shown here [39].

Simulation results for two 20-variable, 20-constraint
integer-programming problems are shown in Fig. 6. Each
subproblem required a memory space of 1974 bytes. The
logical file block size of the modified B&B scheme and
the page size of the direct implementation were fixed to
be 8 kbytes. For the modified virtual-memory scheme, a
page size of 16 kbytes was used. The page access time
was adjusted according to the assumptions that the disk
has a mean seek time of 28 ms and a mean rotational delay
of 8.33 ms, and that track capacities of 16 and 64 kbytes
were used. These correspond to transfer rates of approx-
imately 1 and 4 Mbytes /s, respectively. Only the case of
three stacks were simulated for the modified B&B scheme.
The overhead is defined as the completion time of the al-
gorithm normalized by h,. For the range of hq/h, simu-
lated, there is a two to fivefold reduction in the comple-
tion time for the modified B&B scheme as compared to
any other search strategies Other simulation results also
cexhibit a similar behavior.

Some simulation results for two 80-node vertex-cover
problems are shown in Fig. 7. Each subproblem required
a memory space of 330 bytes. The modified B&B algo-
rithm for the vertex-cover problem performs almost iden-
tically as a depth-first search for these problems because
the lower-bound function is very accurate in guiding the
search.

In conclusion, although a best-first search minimizes
the total number of subproblems expanded, it will not al-
ways be the most time-efficient search strategy on a two-
level memory hierarchy because of the extensive memory
space required. On the other hand, a depth-first search is
space clicicnt but requires more computational overhead
than that of the best-first search. The most time-efficient
strategy will depend on both the disparity between the
numbers of subproblems expanded under the best-first
(ny.) and depth-first searches (nyr). and the relative
specds of the main and secondary memories. In this pa-
per, we have proposed a modified branch-and-bound al-
gorithm that is a hybrid of the best-first and depth-first
scarches and have developed guidelines in choosing a
suitable scarch strategy. These guidelines are summarized
in Table IV.

This modified B&B algorithm [39] also compares fa-
vorably with IDA* [42], [43]. Both algorithms will find
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Fig. 6. Simulation results for B&B algorithms on two 20-hy-20 integer-
programming problems. (Main memory size is 128 kbytes.)

the optimal solution if one exists. IDA* is optimal in
space. Modified B&B uses more space than IDA* to avoid
multiple expansions of nodes. Both algorithms are asymp-
totically optimal in time but neither algorithm gives the
minimum completion time for a given problem. Both al-
gorithms expand more nodes than best-first search. IDA*
does multiple expansions of nodes. Modified B&B may
expand nodes in the last stack with lower bounds greater
than the optimal solution. The better algorithm depends
on the problem and the choice of parameters for modified
B&B.
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TABLE IV
SUMMARY OF SEARCH STRATEGIES TO B USED N DHFERENT ENVIRONMENT
(dfs: DEpri-First SEarch; bis: Brsr-Firsy S1ARCH; mbb: Mobit kb
BRANCH.AND BOUND ALGORITHM; A NUMBER OF NODES EVAL A TID N
bfs: AND 11,0 NUMBER OF NODES EVALUATED IN dfys).

Relative Speed of Secondary Memory
Nare / Nyt
fast moderate slow
small dfs dfs dfs
moderate || bfs/mbb mbb dfs/mbb
Py Whe e His/mbhb
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rithm in this paper illustrates one important characteristic
of many nondcterministic scarch problems such as eval-
uating a logic program or scarching for a good move ina
chess game. These problems have an unpredictable num-
ber of tasks to be performed betore the problem is solved.
The nondeterminism arises because the search is guided a
fullible heuristic function that does not always lead in the
right direction and results in backtracking when a wrong
decision is made. Theretore, the strict adherence to the
heuristic function may not always be rewarding, espe-
cially when the overhead of doing so is high and the heu-
ristic function is not accurate in guiding the scarch. In this
casc. the adherence to the heuristic function should be
relaxed. This method has been appliced to design the mod-
ificd selection rule in this paper and a parallel computer
system for searching branch-and-bound trees [35]. [37].

APPENDIX A
ExrrECcTED NUMBER OF PAGE ACCESSES IN THE
MoontEnn VIRTUAL-MEMORY  SYSTEM

Let n,, be the maximum size of the m-list. Replacement
is initiated when there are n,, subproblems in the m-list.
LetPi= 1, - .n,g(P)y=s - <gf,) bcihe
subproblems in the m-list. Similarly, let £, i =1, -,
n,, g(E)) = < g(E,). be the subproblems in the
sccondary memory. We can then define X, = g(P)) —
g(P).j=1  mand Yy = g(E) = ¢(ky). k =
1, ++ .n,. ltis assumed

1) that g(Py) ="g(E )

2) that X;, i = 1, + -+ [ n, arc iid random variables
with an exponential density function f,(x) = N\, ¢ Amt,

3y that ¥, j =1, -+, n arciid random variables with
an exponential density function fy ( v) = Ae My

Assumptions 2) and 3) have been verified experimen-
tally to be gamma with « < | for integer-programming
and knapsack problems {38]. The exponential distribution
is used here as an approximation. The ¢ subproblems se-
lected for removal are Py oy, -0 ¢ Py where Xy =
vand X, , = w.

Let w, be the number of subproblems in the sccondary
memory with ¢ < ¥, < w. The probability that w, = m
constitutes a binomial distribution.

Priw =m} = ( ">(Pr{v <Y, < w})

m
(1 =-Pr{r<yY = wi)" "

where Pr{ov < ¥, < w} =¥ . N\ e ™ dvaccording to
Assumption 3). The expected value of w, given that X,
=1, Xpre =woand n, = nis

E[w,\|X,, =0, Xy, = won =nj
wh.

~ Since n, and Pr {r < Y, <= w} are independent, (A-1)
may be evaluated as

n

m

=n-Pr{r<V s (A-1)

(=]

Elw,] = E[n,] S ) Sr.“ Priv <Y =w}

W

.
ELE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 9, SEPTEMBER 198K

Lo (0) fio(w) dodw
- E| l( ! D, = 6+ 1+ 0)
B ("m - 0)' r(’lm + 1 + g‘)

- My ! Frm, —60-—¢+ 1+ ())
(”m -0 - (b) r("m + 1+ g')

(A-2)
where & = N/ A\,

Assume that the w, subproblems reside in R pages, and
fet Q). - -+ . Qg be the numbers of subproblems in these
R pages. It is further assumed that Qy, - - -, Qy are iid
random variables with a uniform distribution between
((n,/2) + 1) and n,, where n, is the size of each page
in subproblems. Since R is a stopping time for the renewal
series s, renewal theory and Wald's cquation [29] give
Elw,] = E[R] E[Q]
and

E[R 4 Eln] n,!
) = —— E|ln}| ———
3n, + 2 \(n, — 0)!

P, -0+ 1+7)
F(n, + 1+ %)
B n,! '(n, —0—¢+ 1+ ;))
("m -0 - ¢)' r("m + 1+ g.) )
(A-3)

The derivation of the distribution function of R is ¢x-
tremely difticult. For mathematical tractability, the ex-
pected value of R will be used in the following analysis
instcad. Let the ¢ subproblems be actually inserted into
G of the E|R] pages. Assuming that these ¢ inscrtions
arc uniformly distributed among the E£] R} pages. K. the
number of subproblems inscrted into any page. satisfies
the binomial distribution.

et = (1) et (- )

The-cxpected number of pages into which subproblems
are inscrted is

I

E|R|Pr{K = 1}
- (1 7m)

H of the G pages will overflow and have to be split. A
page containing ¢ subproblems will be split if more than
(n, — ¢) subproblems arc inscried into it. Let v = max
((n,/2) + l.n, = ¢ + 1). m,, the probability that a
page has to be split, is

E|G]

E[R] - . (A4)

"y

7, = 2 Pr{split puge|Q = ¢} - Pr{Q = ¢}
Pan
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Hp 9
= 2 (1 - Pr{K <n, - gy) -
q-r N "(y
2 2"
==(n,+ 1 +v)— - 2 i, + 1 —v—j)
n, n, -0

() ) (- )
j ) \EIR] ATV N
This page splitting process may be viewed as a binomial
experiment with 7, as the probability of success. and the
expected number of pages split, EIH | = 7 * E|G . For
(E|G| — E[H]) pages that arc not split. therc is an
overhead of one write per page since the system can €x-
amine the bit map to decide the jocations for placing the
replaced subproblems inside a page without reading the
page into the main memory. For E| H | pages that have to
be split, iris nccessary 1o read the page once to discover
the median lower bound. This is followed by one page-
read to retricve the necessary subprobiems to be split into
the second page, onc page-write o insert the replaced
subproblems into the first page. and onc page-write to
write the second page to disk. Hence E|T.). the cxpected
number of page acCesses incurred during a replacement,
is given by

E(T,) = (E[G] — E[H]) + 4E[H]
= (1 + 3=r,) E[G]

6
={l+;—(n,,+l-—v)

(n,,+l-v-—j)'<;b>
() (-z1m) ]
- (- &m)

We will now derive an cxpression for the expected
number of subproblems expanded between two consceu-
tive replacements when the space reserved for the m-list
and the s-buffer is fixed. Let m, be the probability that a
subproblem selected for expansion is from the s-buffer.
Also, let D be a random variable indicating the number
of subproblems expanded between two replacements. Of
these D subproblems, let D, subproblems be from the s-
buffer and D,, subproblems be from the m-list. Thus, D
=D, + D,, and

Pr{D, = k|D} = <f> (r) (1 = m)"

The expected values of D, and D,, arc given by

6 "’I:V
5y

n, j=0

x E[R]

. (A-6)

E\D,] = E[E[D_\IDI] = w,E| D) (A-7)
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ELD, = (1 = m,) E[D]. (A-8)

The s subproblems generated by expanding a subprob-
lem are inserted into the m-list. The size of the m-list in-
creases by s when the subproblem cxpanded is from the
¢-buffer. and increases by (s — 1) when the subproblem
expanded is from the m-list (since the expanded subprob-
lem has been deleted from the m-list and an empty slot s
created). Equating the increase in the size of the m-list
between two replacements o the fixed number of sub-
problems removed during a replacement, we have

o=sE[D]+(s—1)" E|D,)
=(s -1+ 1r,,,)E[l)|
and
SID| - S -9
EIDL= 0 5y . (A-9)

Let the D, subproblems be residing in T, pages of the
secondary memory, and let Q). - .0 bethe number
of subproblems in cach of these T, pages. Q) have the
sume distribution as the Q,. Since T, is a stopping time for
the renewal series Q). renewal theory and Wald’s ¢cqua-
tion give E[D,| = ENT,) - ElQ)or

4D} 4 T®
I, +2 3m, 25— 1 + 7,

E[T) = (A-10)

E(T,]is the cxpected number of page accesses due to the
loading of the s-buffer between two successive replace-
ments.
From its definition, 7 may be written as
_ELLL ELT
" E[D]
Substituting (A-6). (A-9). and (A-10) into (A-11) yiclds

s—1+m, 4 T ®
¢ 3n, + 25 — 1 + m,

(A-11)

‘,7:

6(n, +1 - v)

1 e e

n,

()
(g | e
.<|—<l—al‘,‘{|>>z'

ArPENDIX B
ExprECTED OVERHEAD FOR THE MODIFIED B&B
ALGORITHM
This is based on the wall model [34], 136] of a best-
first search. In this model, the front wall represents the
jower bound of the subproblem being expanded, while the
back wall represents the incumbent. These values are nor-

+

(A-12)
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malized by the lower bound of the initial problem, g(Py)
= g¢,. For any subproblem P, let A(P)) = g(P)) = 8o
[nitially the front wall is at A(Py) = 0, and the back wall
is at infinity. The front wall always moves to the right in
2 best-first search as the lower bound of a subproblem is
always greater than that of its parent. The back wall al-
ways moves to the left and moves to A(P,) when a better
feasible solution P, is generated. Successive subproblem
cxpansions cause the front and back walls to approach
cach other, and the process terminates when the two walls
meel. :

When the front wall is at position x, let N(x)and M(x)
denote the numbers of expanded and generated subprob-
lems, respectively. It is assumed that the difference be-
tween the lower bounds of a subproblem and its parent
subproblem is an exponential random variable with den-
sity function, fi(y) = Ne “M (this distribution has been
verified experimentally to be gamma with « < | for in-
teger-programming and knapsack problems {34}, [36]; the
exponential distribution is used here as an approxima-
tion). Further, cach subproblem expanded is assumed to
generate s subproblems. The expected value N(x) has
been shown before [34], {36] to be

E[N(x)] = ;-j—:——le“"_"" e _l_ (B-1)

and .
M(x) = sN(x) + L. (B-2)
LetZy, - - -, 2y, be iid random variables with distri-

bution £.(z | x, ¥ = 2). Suppose that Z; has value z;, and,
without loss of generality, let 2 =+ = Iy As the
N(x) expanded subproblems are independent of each
other, it is assumed that Z; is stochastically identical to
A(P;). The expected number of expanded subproblems
that have values not greater than 2, 2 < x, is EIN(2)],
where

N(x) F(z|x x 2 2) = E[N(2)]. (B-3)

Substituting (B-1) into (B-3),
(se)‘(s-—l)z — l)

. X o= = e B-4

F(z|x x> 2) (s = 1) N(x) (B-4)

Difterentiating (B-4) yields the density function, f; (2 | x).

sxeh(.\“l):
flz|lxxz )= N ) (B-5)

LetIl.j= 1, .N() be the N(x) expanded sub-
problems and ¥, k = 1, =", M(x) be the M(x) gen-
erated subproblems when the front wall is at x. Suppose
that ¥, is generated by the expansion of subproblem II;,
and that /, is the increase in lower bound due to this ex-
pansion. Then,

A(\l") = A(Hj) + Ik = Zl + l‘.

RYR 25 N
both Z,, - -

(B-6)

, A Way(ay) will be iid random variables, as
s Zney, and 1y, oo, Dy are sets of iid

random variables. Let v, (x) be the probability that
A(Y ) k=1, -, M(x)lies within the range of Stack
i, (thatis, (4; — go) < &(¥,) = (44, — £o)) when the
front wall is at x. By (B-6) and the assumption that /, is
an exponentially distributed random variable, v; (x) for
given Z; is

LY TR Bl (| Bl
(‘y,(x)|Z, =3z) = S e ™ dy

y=ui—g—2

= (e—)‘(u.—xu) — e“X(MiOI‘X\)))eXZ.

(B-7)
Unconditioning (B-7) and applying (B-5), we have
’ x 1 ¥4
) - “Auy =g} _ - Muier—g0) she
= |t e VNG«
= ﬁ (e-Mu.-xu) - e-Muiu—go))e)u'x. (B-B)

Of the M(x) generated subproblems, the expected num-
ber of subproblems in the region [#; — 8o, ¥i+1 ~ 8o) is

E[W;(x)] = M(x) v;(x) = sN(x) vi(x). (B-9)
Substituting (B-8) into (B-9) yields
E[W,-(x)] = (e-Mu.—gu) - e—x(u...—xo))sem. (B-lO)

Suppose that g, is the value of the optimal solution
and that S, is the solution stack (i.e., 4, < Zopt = Uyt )-
Let E[q]| r] be the expected number of expanded sub-
problems when the algorithm terminates with the optimal
solution in S,. In the moditied B&B algorithm, S, is ex-
panded in a LIFO fashion, so the number of expanded
subproblems when the algorithm terminates will be greater
than N( gop)- I s extremely difficult to model the LIFO
expansion of subproblems in S,. Moreover, g,y is un-
known before the problem is solved. A possible simpli-
fication is to assume that all subproblems in S, are ex-
panded. Then

Elqlr] = E[N(“r+| - 80)]

s eME D e = g0),

(B-11)

s—1

Let x, be the probability that S, is the solution stack.

The value of the optimal solution is assumed to be uni-

formly distributed over the range [ go, gom). This assump-

tion is very difficult to verify and is made here for math-

ematical tractability. For a problem with real-valued
solutions,

= Ury — Uy
g:;p( - 8o

Similarly, for a problem with integer-valued solutions,
(Luier] — Lui])

T, = .

(Lgsn) — Laod)

Elt,|. the expected computational overhead, is

T, (B-12)

(B-13)
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n-1

2_:0 Elq|r] h.m.

E(t)

n=1
- 20 <s: ‘C,)\(.\‘—l)luru-gu)) h,x, (B-|4) ‘

shere h, is the mean computational time for cxpanding a
ubproblem.

Only the secondary-memory overhead due to the trans-
er of subproblems will be considered in this analysis.
2ach frame holds 7, subproblems, and no more than n,,
rames are allowed in the main memory. 1o of these frames
re reserved for the current stack to be used in a depth-
irst expansion.

Let m;, be the number of subproblems in §; when it be-
.omes either the current stack or an climinated stack.
Equation (B-10) may be used to derive an approximatc
sxpression for E[m; | 7], the expected value of m; given
hat S, is the solution stack. For 1 = i = r, m, is the
aumber of subproblems in §; when it becomes the current
stack. The approximation that E[m; | r] = EIW, (u; —
go) ] can be used if few subproblems in §; have been cho-
sen for expansion prior to S; becoming the current stack.
For(r+ 1) si =< (n- 1). m; is the number of sub-
problems in §; when S; is eliminated. If no stacks are elim-
inated prior to the generation of the optimal solution, then
E{m|r] = EIW;(ur+i — 801 This is a good approx-
imation when the number of feasible solutions generated
is small, such as the integer-programming and vertex-
cover problems. Thus,

E[Wi(“i “'gn)]
l<i=<sr

E[Wi(ur+| - &'0)]
(r+)=sis(n-1)

E[m|r] =

~AHi — TR T

((’ wi—g) o, (10 41 un)S(,)nlu )
Ilsi=r

(e—-)\(n,—mn . (,'Mu.'r ,u:n))x(,)\.\iu,»t = m)

(r+l)si$(n—-l). g
(B-15)

Once S; becomes the current stack. subproblems in S,
are expanded in a depth-first fashion. Since n, frames have
been reserved for the current stack. subproblems pushed
onto the current stack are not written (o the secondary
memory. Also, no subproblems will be pushed onto a
stack once it has been climinated. Thus, m; is the maxi-
mum number of subproblems in Stack §; that will be writ-
ten to the secondary memory.

Denote the cquivalent number of frames in S; by b;. Its
expected value given the solution stack S, is

B ‘E[mf\r]\

-t | 21
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(,')\(NM | ’-,L'M) ‘,(,)\A\(n,“,um ‘

\ ((,—Mu.—mn -
np

‘ (‘, NG - o)

l<i<sr

(,-MM, N —,L'nl) s.‘,k\tu, 0

2 \
N,,

(n=1).

(r+1)y<sis=
(B-16)

Let ¢; be the number of frames allocated to B; when S,

becomes either the current stack or an climinated stack.

If1 < i < r.and no stack has been previously climi-
nated. then there will be (1 — @~ 1) noncmpty buflers
that occupy frames when this occurs. Similarly, if (r +
1)y<i<(n-—1).andno stack has been climinated prior
to the generation of the optimal solution. there there will
be (n — r — 1) buffers occupying frames. Since subprob-
lem cxpansions arc assumed to be independent, the num-
ber of frames allocated to cach buffer will be proportional
to the number of subproblems in the corresponding stack.
The expected value of ¢ when the solution stack S, is
known can be expressed as

((,~Mu.'-—,cn) _ (,—Mu.'u -,L'u))

((, “AlHauncir s TR0 L, “N i m.)) ("m - "())
n-1
X E[h]rl = -
E[Cilrl -— j-=min(i.r&l) [)’lr] ("m "”)
E[bi"']
n-\
_ Z | Elb;|r) < (ny — ny) .
j=mintir+ 1)
(B-17)

The cquivalent of (b, — ¢;) frames of subproblems will
be written into file F;. These subproblems will cventually
he read back into the main memory only if S, becomes the
current stack. and will be discarded if S; is climinated.
Thus the expected secondary-memory overhead for S,
given the solution stack S, will be

0 i=0
2(Elbi|r] - Elci|r])ha
Eld\r] = | <is<r
(E|b;i|r] = Elc | r1) ha
(r+1)<si=<s(n-1)
(B-18)
where I, is the overhead for cach page read. Uncondi-

tioning the solution stack S, yields

neln=1

Elt,| = 2 2 Eld]|r]m,. (B-19)
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Fhe expected overhead for n stacks and a boundary as-
signment {ug, = * * , Un} is

E[D(n)] = max (E[¢], E[t.]). (B-20)
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