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Resource Sharing Interconnection Networks in
Multiprocessors
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Abstract—In this paper, circuit-switched interconnection net-
works for resource sharing in multiprocessors, named resource
sharing interconnection nerworks, are studied. Resource schedul-
ing in systems with such an interconnection network entails the
efficient search of a mapping from requesting processors to free
resources such that circuit blockages in the network are mini-
mized and resources are maximally used. The optimal mapping is
obtained by transforming the scheduling problems into various
network flow problems for which existing algorithms can be
applied. A distributed architecture to realize 4 maximum flow
algorithm using token propagations is also described. The
proposed method is applicable to any general loop-free network
configuration in which the requesting processors and free
resources can be partitioned into two disjoint subsets.

Index Terms—Circuil switching, distributed resource schedui-
ing, interconnection network, linear programming, maximum
flow, minimum cost flow, multicommodity network flow, re-
source sharing.

I. INTRODUCTION

N THIS paper, we investigate the problem on the sharing of

computing resources in multiprocessors and the distributed
scheduling of shared resources by a circuit-switched intercon-
nection network.

A resource is a processing element to carry out a designated
function. Examples include a general purpose processor, a
special functional unit, a VLSI systolic array, an input/output
device, and a communication channel. A resource is accessible
by any processor via an interconnection network. A request
generated by @ processor can be directed to any one of a pool
of free resources that are capable of executing the designated
task. An interconnection network is an essential element of
these systems as it interconnects processors and resources. Iis
function is to route requests initiated from one poiat to znother
point connected on the network. The nerwork topology is
dynamic, and the links can be reconfigured by seting the
network’s active switching clements. The notable characieris-
tic of these networks is thut they operate with address
mapping. That is, 2 request is Initiated with a specific
destination or z set of destinations, and routing is done by
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examining the address bits. Routing of requests is usually done
in parallel. As classified by Feng [16]. these networks include
the singie or multistage networks and the crossbar switch.
Examples are the Banyan [20]. indirect binary n-cube [38],
cube [41]. perfect shuftle {43), Flip [3], Omega [27], data
manipulator {13]. augmented data manipuiator {42]. delta
(371, [11], baseline {46). Benes {5]. and Clos [9). Examples of
systems designed with interconnection nerworks are Trac [40],
Staran [3], C.mmp {47], Lliac IV [26]. Pluribus [34]. PASM
[48], Numerical Aerodynamic Simulation Facility {(NASF)
[2], the Ballistic Missile Defense testbed [32], MPP [4], and
the Connection Machine [23). The performance of resource
sharing systems under address mapping has been studied by
Rathi, Tripathi, and Lipovski [39], Fung and Torng [19], and
Marsan, Gregoreui, and Gerla [29], [3Q].

Wah proposed a network with distributed scheduling
intelligence, called resource sharing interconnection net-
work (RSIN) [45], [44]. Instead of using an address mapping
scheme, which requires a centralized scheduler to seek and
give the address of a free resource to a request before it enters
the network, the request is sent into the network without any
destination tags. It is the responsibility of the network to route
the maximum number of requests to the free resources. In this
way, the scheduling intelligence is distributed in the network.
Distributed resource scheduling aveids the bottlensck of a
centralized scheduler [39]. The objective of a good scheduling
scheme is to avoid network blockages and to maximize
resource utilization, which requires an efficient algorithm at
each switching node 1o collect the minimum amount of status
information.

The PUMPS architecture [see Fig. 1(gj] for image analysis
and pictorial database management [§] is z fypical example of
resource sharing multiprocessors, in which various VLSI
systolic arrays, each realizing an image processing function,
are organized -into a pool of resources. Most data flow
architectures can also be considered =3 resource Sharing
systems. For example, in Dennis’ architzciure {10] {see Fig.
1(b)], active instructions generated from celi blocks are routed
10 a processing unit for execution. Hence. th2 processing units
constitute the pool of resources, znd 2n RSIN connects them to
cell blocks. In a resource sharing sysiem wih load balancing.
processors are considered as resoeurces; thus, requests gener-
ated are queved @ the processors as well as the resources.
There may be an imbalunce of workload at the resources, and
load bualuncing schemes are uscd 10 redistrihule reguests

AUng resources.

The design of an RSIN with optunal ronuree scheduling
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Fig. 1. Examples of resource sharing systems. (a) PUMPS: An example of a
multiprocessor with shared systolic arrays. (b) A data flow computer is a
resource sharing system (cell blocks are processors, while processing units
are resources).

studied in this paper. The results are derived with respect to
multistage interconnection networks, called multistage re-
Source sharing interconnection networks {MRSIN), and are
applicable to any general loop-free network configuration in
which the requesting processors and free resources are
partitioned into two disjoint subsets. Central to the design of
such an interconnection nerwork is the development of an
efficient distributed algorithm to disseminate status informa-
tion through the complex interconnection structure. The
algorithm to be presented is simple, efficient, and independent
of the interconnection topology. For a typical interconnection
structure, such as the Omega network [27], network blockages
can be reduced to less than 5 percent. In the next section, the
model of MRSIN is reviewed, and the issues on resource
scheduling are discussed. In Section III, we present transfor-
mation methods for various scheduling disciplines, These
transformations allow optimal request-resource mappings to
be obtained through the evaluation of network flow al-
gorithms. Architectures 10 carry out these algorithms are
presented in Section I'V. Conclusions are drawn in Section V.

1. RESOURCE SHARING INTERCONNECTION NETWORKS

The model of the RSIN used in this study is summarized us
follows.
1) Cireuit switching is assumed rather than packet swirching
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for the following rcasons. First, packet switching is used in
conventional networks with address mapping because it allows
a network. path to be shared by more than onc request
concurrently. In an RSIN, reducing the packet delay by
balancing traffic among alternate routing paths is less critical
because a request can always search for another available
resource if the network is free. Moreover, the overhead of
rerouting a packet when a path or resource is blocked is higher
than that of rerouting a resource request. Second, owing to the
resource characteristics, a task cannot be processed until it is
completely received. The extra delay in breaking a task into

.multiple packets may decrease the utilization of resources, and

hence increase the response time of the system.

2) One or more types of resources may exist in the system.
An RSIN connecting only one type of resource is called a
homogeneous RSIN, while an RSIN connecting multiple
types of resources is a heterogeneous one.

3) A priority level may be associated with a request to show
the urgency of the request. A preference value may be
associated with a resource to show the desirability of being
used for service. The costs of allocation are inversely related
to the priorities and preferences,

4) Each request needs one resource only. When multiple
resources are needed, they can be requested from multiple
ports concurrently, or can be requested sequentially from a
single port,

J) A processor can transmit one task at a time to the
resources. Other tasks arriving during the task transmission
time are queued. The circuit between a processor and a
resource can be released once the request has been transmit-
ted. The processor can continue to make other requests, while
the resource will be busy until the task is completed.

We have not investigated the problem on the selection of the
number of rescurces in each type and their placements in the
output ports. This problem has been studied by Briggs et a/.,
who have considered the problem of choosing the number of
resources in each type in which one resource is connected to
each output port and one resource is requested each time {7].
We have not considered the case in which more than one
resource or multiple types of resources are requested by one
request. Here, the scheduling algorithm is dependent on the
number of resources in each type, the way that resources are
distributed to the output ports, and the network characteristics.
Furthermore, deadlocks may occur, and distributed resolution
of deadlock may have a high overhead.

The goal of the scheduling algorithm is to find a request—
resource mapping such that the total cost is minimized. In the
special case in which all requests are of equal priorities and all
resources have equal preferences, the scheduling problem
becomes the mapping of the maximum number of requests to
the free resources.

The maximal request-resource mapping may be hampered
by blockages in the system. In a conventional address-mapped
interconnection network, blockages may be caused by con-
flicts in cases when cither the same resource is requested by
more than onc request or a network link is requested by two
circuits. In un RSIN, a resource conflict can be resolved by
rerouting all but one request 10 other free resources. However,
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Processors Switching Boxes Aesources

(b)

Fig. 2, Example 10 illustrate Transformation 1. (a) An MRSIN embedded in
an 8§ x 8 Omega network (thick shaded paths in the network show circuits
that are already occupied; processors py, pi, Ps, Pr, and pg are making
requests; resources ry, ry, fs, 7, and rg are available). (b) The flow network
obtained from the MRSIN in Fig. 2(a) using Tranformation 1 (the number
associated with each arc is the amount of flow assigned to it by the
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maximum flow algorithm; all arcs have unit capacity).

this may not always lead to better resource utilization because
the allocation of one request to a resource may block one or
more other requests from accessing free resources. A schedul-
Ing algorithm that schedules requests according to the state of
the network and resources is, therefore, essential. The
necessity for a proper scheduler to give the maximum resource
utilization is illustrated in the following example. Consider an
8 X 8 Omega network! [see Fig. 2(a)] with switchboxes that
can be individually set to either a straight or an exchange
connection. Processors py, ps, ps, p7, and pg are requesting
one resource each, and resources ry, ry, r5, £, and ry are
available. The circuits between g, and £ and p; and r, have

! The input ports are numbered in a different way from Lawrie’s Omega
network [27] becavse all resources are homogeneous, and the permutation of
requesting processors will not affect the resource utilization. Brosdeast
connection is aot needed in the switchboxes since cach reguest necds one
TENAITCR .

been established previously. pg is not making a request, and 7,
is busy. Al free resources will be atlocated if one of the
following request-resource mappings is used: {(p,, r3), { 23,
75)s (Psy 1)y (P, 11), (Ps, 18)} o1 {( Py, 73), (3, 78)s (D3, 72,
(P, 11)s (Pss 15)}. But if the request-resource mapping {( p1,
r!)’ (p3! ri)v (pSs rB)a (.p‘h f7), (Ps: f'g)} is USCd, then a
maximum of four out of five resources can be allocated, since
the path leading from p; to 73 is blocked. Simulation results
showed that the average blocking probability can be as low as
2 percent for an MRSIN embedded in an B % 8 cube network
[44], [22). If a heuristic routing algorithm is used, then the
average blocking probability increases to around 20 percent.
In the simulation, the nctwork is assumed to be completely
free, t.c., no link is occupied for other purposes. If the
newwork is not completely free, then there will be fewer paths
available for resource allocation. In this case, u heuristic
routing algorithm may have poor performance. An optinl
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scheduling algorithm will be able to better utilize these paths,
and result in a low blocking probability (although it will be
higher than that of the case when the nctwork is completely
frec). If extra stages arc provided, there witl be more paths
available. Resources may be fully allocated in most cases even
when an arbitrary resource-request mapping is used. Finding
an optimal mapping becomes less critical.

II1. OpTIMAL RESOURCE SCHEDULING IN MRSIN

To bind a request to a resource in the system, an RSIN
determines a mapping from pending requests to free resources,
and provides connections to as many request-resource pairs as
possible. The objective of a scheduling algorithm is to obtain
the optimal mapping that optimizes certain performance
indexes, such as resource utilization. In this section, methods
to optimize request-resource mappings are discussed. Exhaus-
tive methods that examine ail possible ordered mappings have
exponential complexity. In a homogeneous MRSIN, suppose X
processors are making requests, ¥ resources are available, and
the network is completely free. The scheduler has to try a
maximum of Ci-yt {for x = y) or Cl-xt (for y = x)
mappings to find the best one, where C7 is the number of
combinations of choosing / objects out of j objects [44], [22].
Suboptimal heuristics can be used but it is only practical when
Xx and ¥ are small.

In this section, we transform the optimal request-resource
mapping problem into various network flow problems for
which many efficient algorithms exists f21], [24]. The basic
concepts of flow networks are briefly reviewed first.

A. Flow Networks

A flow network is usually represented by a digraph in which
each arc is associated with a capacity and possibly a cost. Let
D = (¥, E) be a digraph with two distinct nodes: s (source)
and 7 (sink). A capacity function c(e) is defined on €Very arc
of the graph, where c(e) is 2 nonnegative real number for all e
€ E. A flow function fis an assignment of a rea} number f(e)
to arc e such that the following conditions hold.

1) Capacity limiration: For every arc e € E,

O0=f(e)=c(e).

2) Flow conservaiion: Let a(v) [resp., B{v)] be the set of
incoming (resp., outgoing) arcs of vertex v. For everyv & V

— {s, 1},
> @)= fe.

eSaly) o€ 3y}

The capacity constraint restricts the amount of flow that can be
assigned to a link; while flow conservation implies that an
intermediate node in the flow network does not absorb or
create flows.

A legal flow is a flow assignment that satisfies the capacity
and flow conservation constraints. In a network flow problem,
it is necessary to find the legal flow that optimizes a given
objective function. For example. in the maximum flow
problem, it is necessary to find £, the maximum amount of
flow that can be advanced from source 1o sink under the
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capacity and flow conscrvation constraints, Given a flow

network G(V, £, s, 1, ¢), the maximuin flow problem can be

formulated as a linear programming problem as follows.
Maximum Flow Problem:

Maximize F
subject to
-F v=y
D S f@-3% fle=1 F v=t
e€a(r) €8 0] otherwise

(flow conservation)

2y O<fle)=c(e) foralle € E

(capacity limitation).

Many other examples of network flow problems, including the
minimum cost flow and the transshipment problems, can be
found in the literature [21].

B. Optimal Resource Mapping in Homogeneous MRSIN

A switchbox in an MRSIN is a crossbar switch without
broadcast connections. We establish the following theorem to
show that setting a nonbroadcast switch is equivalent to finding
a legal integral flow assignment in a flow network of unit
capacity. Note that an integral flow is a flow assignment in
which the amount of flow assigned 10 each link is of integral
value.

Theorem 1: For any MRSIN, there exists a flow network
for which a legal integral flow is equivalent to a valid request—
resource mapping.

Proof: Consider an # X m switchbox, where 2 is the
number of input ports and 77 is the number of output ports. A
nonbroadcast switch setting is one in which an input link is
connected to at most one output link and vice versa. This
switchbox can be transformed to a node v in a flow network
with 7 incoming arcs and m outgoing arcs, i.e., ja@)| = #
and | 8(v)| = m. The capacities of these arcs are set to unity.
If one unit of flow is assigned to arcs for which their
corresponding links -of the switch are connected, then the flow
conservation and link capacity constraints are satisfied at node
v. Therefore, a switch setting is equivalent 10 an integral flow
assignment for the corresponding node in the flow network. In
other words, there is a direct correspondence between a
switchbox and a node, and between a switch setting and a flow
assignment. O

To use existing algorithms to solve a flow problem, an
MRSIN has to be transformed into a flow network such that
the optimization of request-resource mappings is equivalent to
the optimization of the corresponding objective function in the
flow network. To this end, additional nodes may be intro-
duced, the capacity of a link may be greater than one, and a
cost may be associated with a link.

The following transformation produces a flow network such
that the optimal request-resource mapping can be derived
from its maximum flow.

Transformation ]: Generate o flow network G (V,FE. 5 ¢,
¢), from i homogencous MRSIN,

(T1) Create three node sets £, Y. and R ior processors,
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switchboxes, and resources, respectively. fatroduce two addi-
tional nodes: source s and sink 1. Let

Vr={stt U PUXUR.

(T2) Add an arc leading from the source s to every node
associated with a processor. Denote this set of arcs by §, i.¢.,

S={(s, Vv € P}.

Add an arc between every node associated with a resource and
the sink ¢, This set of arcs is called T,

T={(v, }lv € R}.

For each link in the MRSIN that connects two switchboxes, or
a processor to a switchbox, or a switchbox to a resource, add
an arc between the corresponding nodes in the flow graph.
Denote this set of arcs by B.

B={(v,wivE PU X, w&€ XUR}
Define
E'=5U TUB.

(T3) Assign link capacities according to the following
function.

0 associated link is occupied or
nonexistent in the MRSIN
associated link is free

cle)=
Fi-3:] 1

cle)=

{0 associated processor does not generate reguest
&S

1 associated processor generates request

c{e)=

eET

{0 associated resource is unavailable
1 associated resource is available.

{T4) Obtain arc set £ by removing those arcs with zero
capacity.

E=E'—-{ele € E’, c(e)=0}.

Obtain node set V by deleting those nodes that are not
reachable from s.

Applying the above transformation to the MRSIN in Fig.
2(a) results in the flow network in Fig. 2(b}. The following
theorem shows that Transformation 1 can be used to find the
optimal request-resource mapping.

Theorem 2: In a homogeneous MRSIN, the number of
resources allocated by a mapping is equal to the amount of
integral flow that can be advanced from the source to the sink
in the flow network obtained by Transformation 1.

Proef: The nodes in the flow network transformed from
a multistage interconnection network can be divided into
stages, and an are is assigned either zero or one unit of flow. In
a flow network corresponding to a loop-free intcrconnection
network with an arbitrary configuration, dummy nodes can be
added to equalize all s—¢ paths and organize the network into
stages. An integral flow assignment to nodes in stage § defines
a one-10-one mapping g; that maps a subset of incoming arcs 1o
a subset of outgoing arcs. Henee, a4 legal inegral flow
assigmiment in such # network can be represenied by @
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composite function /t = gy gz * - - £, where L is the number of
stages. Since g; is one-to-one, /1 is aiso onc-to-onc. For a one-
to-one function. the norm of its domain is equal to the norm of
its range. According to Transformation 1, the stage next to the
source is comprised of nodes associaied with the requesting
processors, and the stage next o the sink is comprised of
nodes associated with the free resources. Each node in these
two stages has a single incoming are and a single outgoing are.
Therefore, the one-to-one mapping of 4 implies the same
number of nodes involved in the flow assignment in each of
these two stages. Furthermore, the flow assignment defines a
path for a requesting processor to a free resource, and the free
resource can be allocated to the requesting processor through
this path. The norm of /4 is equal to the total flow leaving the
source and entering the sink. Thus, |I} = |O]| = F, where I
and O represent the domain and range of g, and Fis the value
of the flow. As a result, every legal integral flow defines a set
of F nonoverlapping paths from s to 7, and the number of
resources allocated is equal to the value of the corresponding
flow in the flow network. O

From Theorem 2 and a known result that the maximum flow
of a network with integral capacity is integral [6], we conclude
that the optimal request-resource mapping can be derived
from the maximum flow in the transformed flow network.

Many algorithms have been developed to obtain the
maximum flow in a flow network. The algorithm by Ford and
Fulkerson [17] is a primal-dual algorithm in which the flow
value is increased by iteratively searching for flow augmenti-
ing paths until the minimum cut-set of the network is
saturated. At this point, no more flow can be advanced since
the minimurm cut-set is the bottleneck. A flow augmenting path
is an s-¢ path through which additional flow can be advanced
from the source to the sink. When an arc e on the s-r path
points in the same direction as the s-¢ path, additional flow
may be advanced through e if the current flow assigned to e is
less than c(2), the capacity of the arc. In contrast, if arc e
points in the opposite direction as the s-r path, then additional
flow may be pushed through the s-¢ path by cancelling its
current flow, Advancing flow through an zugmenting path in
this way will always increase the total amount of flow, and the
flow conservation and capacity limitations will not be violated.

As an example, in Fig. 3(a), an original flow fis assigned
along path s-a-d-t. Path s-c-d-a-b-r is a possible flow
augmenting path [see Fig. 3(b)]. Advancing one unit of flow
through this augmenting path results in 2 new flow assignment
J*. Two units of flow are pushed through two separate paths 5-
a~-b-~t and s-c-d-t according to this assignment [see Fig.
3(c)l.

In an MRSIN, advancing a flow through an augmenting
path is equivalent o a resource reallocation, i.e., a permuta-
tion of the possible request-resource mappings. Consider the
MRSIN in Fig. 4(a), which is a counterpart of the flow
network in Fig. 3.2 The original flow f is cquivalent to the
request-resource mapping {( 2., ra), (e, 7p)}- The allocation

weaitchhoxes are combined with the rOCERSOIS OF TeXiITves
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Fig. 3. An illustration of advancing Row through a flow augmenting path
(all ares have unit capacity). (a) A flow network with an initial flow
assigned 10 path s-2-d-1. (b) A flow augmenting path 5-c~d-g-b-r exists in
the network. (c) Final flow assignment after advancing a unit of flow
through the flow augmenting path.
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of resource 7, 0 request p. is blacked in this mapping. The
cexistence of the flow augmenting path s-c-d-a-b-1 shows that
this blockage can be removed. Fig. 4(b) shows that advancing
flow through this augmenting path results in 2 new mapping
{{Pas 75)s (Pey ra)} and the allocation of both resources. As
another example, applying the maximum flow algorithm to the
flow network in Fig. 2(h), the flow assignment as shown in the
figure is obtained, and the request-resource mapping {{p,
1), (P3, rs)y (Ps, rs), (P71, 1)y (s, r7)} is derived. Those
mappings that cannot allocate all the free resources are
eliminated by the maximum flow algorithm. Note that there
may be more than one optimal mapping. For example, another
possible optimal mapping in Fig. 2(b) is {(py, 1), ( 3, 75),
(ps, r8)s (P5s 11), (g, 1)}

Finding a flow augmenting path from the source to the sink
in a flow network is central in most maximum flow al-
gorithms. The improvement lies in the efficient search of flow
augmenting paths [13], [12]. For example, in Dinic’s al-
gorithm, the shortest augmenting path is always advanced first
with the aid of an auxiliary layered network, and hence the
computational complexity is bounded by O(|E|*) for general
networks. In our case, the links have unit capacity, and the
time complexity is reduced to G(}¥|¥3-]E|) {35].

C. Homogeneous MRSIN with Request Priority and
Resource Performance

In a homogeneous MRSIN with request priority and
resource preference, each request is associated with a priority
level, and each resource is assigned a preference value. Many
application-dependent attributes, such as workload, execution
speed, utilization, and capability, can be encoded into request
priorities and resource preferences. The objective of resource
scheduling here is to maximize the number of resources
allocated, while requests of higher priority are to be allocated
and resources of higher preference are to be chosen. However,
it is not necessary for requests and resources to be allocated in
order of their priorities and preferences. The allocation of a
resource to a request may be blocked by requests of higher
priority, and the resource may be allocated to a request of
lower priority. A similar argument applies to resources,

With respect t0 a flow network, the priority of a request can
be considered as the cost of carrying a flow through the path
associated with this request. Likewise, the preference of a
resource can be considered similarly. As a result, the request-
resource mapping problem in the class of MRSINs can be
transformed into the minimum cost flow problem, which secks
a flow assignment to minimize the total cost of flows in the
network,

Consider 2 flow network G(V, E, 5, 1, ¢, W), in which
w(e), the cost per unit flow, is associated with arc e € E. In
the minimum cost flow problem, a legal s-f flow assignment is
sought that allows a given amount of flow F, o be circulated
from source to sink with the minimum cost. The objective is 10
determine the set of least expensive s—¢ paths through which
the fixed amount of flow £ can be advanced. The constraings
in this probiem are the same as those in the maximum flow
problem. The problem may be defined in a linear program-
ming formulation.
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Minimm Cost Flow Problem:
Minimize Y.z wie)f{e)

subject to
— ifo=s
DS fle)-—F fleoy=] F if o=
cEalv) o2 () 0 otherwise

(flow conservation)

2) 0=f(e)=c(e) foralle € E

{capacity limitation).

In allocating resources, the objective is to find a correspond-
ing flow network whose optimal flow leads to an optimal
request-resource mapping. The main idea behind the transfor-
mation is to embed priority and preference information into
the objective function by proper cost assignments on links.
The amount of flow to be circulated can be considered as the
number of requests pending for allocation. However, this
amount may exceed the capacity of the flow network or the
number of available resources, and additional paths have to be
introduced to prevent overflow. A possible transformation is
given as follows.

Transformation 2: Generate a flow network G(V, E, s, 1,
¢, w), from a2 homogeneous MRSIN with request priorities and
resource preferences.

{T1) Create node sets P, X, and R for processors,
switchboxes, and resources, respectively, and introduce spe-
cial nodes: source s, sink #, and a bypass node u. Let

Vi={s,t,u} UPUXUR.

(T2) Create arc sets S, 7, and B as in Step (T2} of
Transformation . Further, add an arc from the node
associated with a processor to the bypass node, and connect
the bypass node 1o the sink. This set of arcs is denoted as L.

L={(v, ¥)v € P} U {(x, O)}.
Define
E'=5UTUBUL.

(T3) Define capacity function ¢ as in Step (T3) of
Transformation i. In addition, define

<~ {lacw

(T4) Define cost function w that represents the cost of
advancing one unit of flow through a link as follows.

ex(u, t)
e={u, ).

0 fore € B
max { You + 1, Gina [ ? »
wieys { | FYmas G+ 1) fore & I‘
Yowax — ¥p fore € 5, 12 € r
Goar — G fore € T, w & i)

where v, is the highest priority level, v, is the priority of
request ITom processor g, Gaa, is the highest preference tevel,
Note thu

and ¢, is the preference of resource w. HNY Cost
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function that is inversely related to priorities and preferences
can be used, fore € Sande € T

(T5) Create arc set E and node set ¥ as in Step (T4) of
Transformation 1.

(T6) Set the total flow Fy to the number of requests.

As an example, in the MRSIN in Fig. 5(a), each request is
attributed a priority level, and an available resource is given a
preference value. The preference and priority levels range
from 1 to 10. A minimum cost flow network obtained from
Transformation 2 is shown in Fig. 5(b).

The following theorem proves the correctness of Transfor-
mation 2. '

Theorem 3: The optimal request-resource mapping on a
homogeneous MRSIN with request priority and resource
preference can be derived from the minimum cost integral
flow of the flow network obtained by Transformation 2.

Proof: 1t is easy to verify that a feasible flow always
exists since one can always push the required amount of flow
F, through the bypass node 1. A flow passing through the
bypass node means that the associated request it not allocated.
Thus, minimizing the cost of a flow assignment is equivalent
to assigning as much flow as possible to the part of the flow
network other than the bypass node. This is achievable if the
minimum cost flow assignment minimizes the amount of cost
flow through the bypass node. The theorem can be proved by
contradiction. Assume that the minimum cost flow assignment
does not define the maximum resource allocation, then there
exists an s-¢ path such that the bypass node # is not on this
path, and the path is not saturated such that at least one unit of
flow can be advanced through it. The additional flow that
could have passed through this s-7 path will pass through the
bypass node u. According to the cost function w defined in
Transformation 2, the cost of advancing flow through such an
s-t path is less than that of advancing the same amount of flow
through a path passing through node u. The total cost couid be
reduced if more flow is pushed through this s-7 path instead of
passing through the bypass node u. The existence of such a
path implies that the original assignment is not minimum,
which contradicts the assumption. ]

Edmonds and Karp have developed a scaled out-of-kilter
algorithm to obtain the minimum cost flow of a general flow
network in polynomial time [18], [13]. For a flow network of
0-1 capacity, the time complexity is bounded by
O(| V|- £]?). Furthermore, in the minimum cost flow assign-
ment obtained, the flow assigned to a link is integral if the
links have integral capacities. Thus, the optimal request-
resource mapping of homogeneous MRSIN with request
priorities and resource preferences can be obtained efficiently.

As an example, applying the minimum cost flow algorithm
on the flow network in Fig. 5(b) results in the reguest-
resource mapping {{ p1, s}, (s, 1), (P, r3)}. The selected
paths are shown as bold lines in Fig. 5(b). Note that the
minimum cost flow obtzincd may not be unigue, although
alternative mappings will not improve the cost of allocation.

D. Optimal Resource Scheduling in Heterogeneous
MRSIN

A heterogencous MRSIN consists of muitple types of
resources, and i processor may generae a reguest of u given
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Fip. 5. Example to iliustrate Transformation 2. {a) An MRSIN with request
priority and resource preference (highest priority is 10; highest preference
is 10; thick shaded paths in the network are already occupied; processors
P35, Ps, and pyg are making requests; resources s T3y Fey, ey and #y are
available). (b} The flow network transformed from the MRSIN in Fig. 5(a)
using Transformation 2 (nonzero flows assigned by the out-of-kilter
algorithm are shown as thick dark lines in the figure: all arcs have unit
capacity: cost of arc is zero except where indicated),

type of resource. Such an MRSIN is equivalent to a flow
network carrying different types of commodities. A multicom-
modity flow network has multiple source-sink pairs, each of
which is associated with one type of commodity. A flow
coming out of a source of a given commodity can only be
absorbed by the sink of the same type of commodity. Flows of
different commodities may share a link as long as the total
flow does not cxceed the capacity of the tink.

For a flow network with & types of commodities. there are &
source-sink pairs. (54, 1), for i = 1to k. Let 7 be the (low of
the fth commadity. The search for the maxintum flow can be
formutated as a lincar progrumming problem [1].

Multicommodity Maximum Flow Problem;
Maximize TX  F/
subject to

— Ff v=si
H S fiey- 3, fitey=y F! vt
eEalx) cEB) 0 otherwise

(flow conservation)
fori=1, -+, &k

I

&
) ()-_:Ef’(e}gc(e) foralle € £
Y

{capacity lntation),
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A multicommodity flow network may be visualized as the
superposition of & single-commodity flow networks. Each
layer in the superposition represents a single-commodity flow.

To obtain the optimal request-resource muipping in a
heterogencous MRSIN without priority and preference, a
transformation similar to Transformation 1 can be applied to
obtain a single-commodity flow network for each type of
resource, and the single-commodity flow networks are super-
posed to form a multicommodity flow network.

The optimal mapping for a heterogeneous MRSIN with
request priorities and resource preferences can be obtained by
transforming the problem into the multicommodity minimum
cost flow problem. Let wi(e) be the cost per unit flow for the
ith commodity on edge e, and f#() be the corresponding flow.
The problem can be formulated as follows.

Multicommodity Minimum Cost Flow Problem:

Minimize £, T, wie) S (e)

subject to
—Fi v=s!
N Y fitey= Y fiey=§ Fy vt
e€aly) ¢€3(v) 0 otherwise

(flow conservation)
fori=1, ---, k

2) Osi Sie)=cle) foralle € E

=1

{capacity limitation).

The equivalent flow network consists of & source-sink pairs
and k bypass nodes, where &k is the number of types of
requested resources. Similar to the case before, this flow
network may be regarded as the superposition of & single-
commeodity flow networks. and Transformation 2 can be
applied to each of them.

The problem of finding the maximum integral flow in a
general multicommodity flow network has been shown to be
NP-hard. Fortunately, interconnection networks of restricted
topology have transformations that belong to a class of
multicommedity flow networks in which the optimal flow
values are always integral [14]. For this class of flow
networks, the integral muliicommodity optimal flows can be
obtained efficiently by the Simplex Method, which has been
shown empirically to be a linear time algorithm [31].

1V. ArCHITECTURE 0F MRSIN 1o StuprorT OPTIMAL
SCHEDULING

The optimal scheduling algorithms described in Section II
can be supported by various architectures. An efficient design
is nceded to avoid an intelerable overhead.

In a conventional interconncction network using address
mapping, resource binding is done at the requesting processor.
To obtain an optimal mapping, a requesting processor has to
know the status of the netwark, availability of resources, and

" all requests generated by other processors. This information is

very costly to obtain hecause it changes dynamically. In
practice. resource binding is done without global inform:ation,
A tesource mapping so chinined may be suboptimal and may
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lead to heavy resource contention and severe cireuit blockage.
n contrast. it 1s less costiy to maintain global status informa-
tion in the network, Thus, by carrying out resource binding in
the RSIN, the overhead of obtaining an optimal resource
mapping can be reduced.

Two architectures of an MRSIN for carrying out the optimal
resource scheduling algorithms have been studied. In the first
approach, a dedicated monitor is responsible for resource
scheduling (see Fig. 6). It maintains the status of the
interconnection network and resources. The monitor enters a
scheduling cycle when there are pending requests. Requests
received or resources released during a scheduling cycle will
not be processed until the next cycle. In a scheduling cycle, a
flow network is generated according to the status of the
network. The optimal request-resource mapping is derived by
the monitor using a flow algorithm implemented in software.
The monitor then sends an acknowledgment to each requesting
processor that has been allocated a resource, notifies resources
that are allocated, and establishes paths in the network. The
implementation is sequential, and the overhead is measured by
the number of instructions executed in the algorithm.

A distributed architecture, on the other hand, distributes the
scheduling intelligence in the switchboxes of the interconnec-
tion network. Optimal scheduling is achieved through cooper-
ation among processes in the switchboxes. No transformation
to a network flow problem is necessary because the network
flow algorithm is carried out in a distributed fashion in the
switchboxes. The complexity of the process in each switchbox
is central to the design of the distributed architecture. Cur
previous study shows that the maximum fiow algorithm for
homogeneous MRSIN without priority and preference can be
efficiently implemented in a distributed fashion [25]. For
systems with heterogeneous resources or with priorities and
preferences, there is no significant advantage of a distributed
implementation over a monitor architecture except for reasons
such as faul: tolerance and modularity.

In the following sections, we describe a distributed realiza-
tion of Dinic's maximum flow algorithm to obtain the optimal
request-resource mapping.

A. Dinic’s Maximum Flow Algorithm

Dinic’s algorithm is based on the flow-augmentation
method described in Section HI-B. It improves over Ford and
Fulkerson's aigorithm by advancing flow through the shortest
augmenting path, which can be found from a layered nerwork
derived from the original flow graph. A flow chart summariz-
ing Dinic’s algorithm is shown in Fig. 7. it comprises two
alternating phases. In the first phase, a layered network is
constructed, while in the second phase, an increment 1o the
flow assignment is determined by finding the maximal flow in
the layered network. The algorithm alternzies between these
two phases until no more flow can be augmented.

in the layered network, nodes of the original flow network
arc organized into fayers. The first layer consists of the source
node(s) of the network, and the remaining layers are con-
structed teratively., A luyer consists of nedes that are not
included in the previous layers and have cither an unssturated
are or an are with nopzero flow originating irom any node in
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Fig. 6. A monitor architecture to carry out optimal resource scheduling in an
RSIN.

the layer before it. These two types of arcs, called useful
links, are transformed to arcs in the layered network.
Depending on the direction of the associated useful link, its
capacity in the layered network can be either the remaining
capacity or its current flow. As a result, nodes in a layered
network are arranged into disjoint subsets, Vg, Vi, -, V,,
such that no arc points from V;to V; for i < j.

A legal flow in a layered network is said to be maximal if
every (s, ¢)-directed path in the layered network is saturated.
Note that it is not necessary to find the maximum flow of the
layered network. Finding a maximal flow is sufficiemt since
the objective of the layered network is to obtain a net increase
to the total flow assignment in each iteration. Moreover,
computing the maximal flow is easier than computing the
maximum flow. In Dinic’s algorithm, the maximal flow is
obtained by a depth-first search.

Since the amount of flow that can be advanced through an
Y arc in the layered network is the net increase of flow 10 the
associated arc in the original network, the maximal flow

Construct
the next iayer

g8

iF le

230N 1

R
Laycred network constriction —

Maximum
flow assignment
abaned

sink {1} in
the layer?

o Yes obtained in the layered network is a net increment o the
_ existing flow. Moreover, since the maximum flow of 2 flow
Search fos £ network is finite, it can be obtained in a finite number of
iy S¢  iterations in constructing the layered network. |
_:§§ An example illustrating the construction of a layered
£ newwork is shown in Fig. 8. Fig. 8(a) is a flow network

associated with an MRSIN in which three processors, p;, ps,
and p,, are making requests and three resources, i, i, and ry,
arc available. The flow assignment shown by darkened arcs in
Fig: B(a) results in a mapping such that p, is mapped to r; and
P+ is mapped o ry. The request generated by p, is blocked.
Frg. 8(b) is & layered network construcied from the flow
network in Fig. 8(a). The layered network sitows that there is o
h 4 flow augmenting path from p, to /. This puth includes the are

i current

Finding maxiny

Advance flow
dirough the pah

Fig, 7. Conirol low of Dinics algorithen. ' leading from node 6 to node 5, which is ussociated with the arc
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Fig. 8. An iliustration of a layered-network construction (all ares have unit
capacity). (a) A flow network (transformed from a 4 X 4 MRSIN) in which
flow is advanced through the two dashed paths. {b) The layered network
derived from the flow network in (a). The darkened (s, f)-path is a flow

augmenting path.

leading from node 5 to node 6 in the original network [see Fig.
8(a)]. It indicates that the flow leading from node 5 to node 6
can be cancelled. New flow should be routed through two
other arcs: one from node 4 to node 6, the other from node Sto
node 7. This flow augmenting path shows that all three
resources can be allocated if py is reallocated to r3 and p; is
reallocated to 7.

B. A Distributed Architecture for Homogeneous MRSIN
without Priority

A distributed MRSIN embedded in an 8§ x 8 Omega
network is shown in Fig. 9. In this architecture, a processor s
connected to the network through a request server (RQ), a
resource is monitored by a resource server (RS}, and each
switchbox is controlled by an independent process (NS). A
common status bus connects these components together. The
scheduling intelligence is distributed in the switchboxes of the
MRSIN. In each switchbox, there is an autonomous process
implemented as a finite-state machine. The process communi-
cates with other processes via direct links. Processes are
synchronized by exchanging status information via the status
bus to cooperatively realize a distributed Dinic’s algorithm. In
general, the design of a distributed Dinic’s algorithm is not
trivial. However, it can be greatly simplified in the MRSIN
due-to the property of unit flow capacity.

A scheduling cycle beging when there are pending requests
and rcady resources. A request generated in the middie of a
scheduling cycie has to wait until the next cycle. A scheduling
cycle consists of many iterations. In cach iteration, protocals
governing process interaclions are carried out to perform
layered-netwark construction and maximal flow assignment.
Distributed data structures are also needed for representing the

Request Servers (RQ) /Switchin‘g Roxes (NS)\ Resource Servers (RS)
' ¥ v
Yoo Byg Bag
o—¥ \ N -0
H Po1 Byy i bay l'—O
O—#- O
H b b,, 1 [} ’g—o
Ny

I

B0
B0

'y
Staws Bus -~ |
Processors MRSEIN Resources

Fig. 9. A distributed MRSIN embedded in an 8 > 8 Omega nerwork.

layered network, flow assignment, and other intermediate
resulis.

In the proposed architecture, flow augmentation is donc by
token propagations. Tokens are propagated in the network to
iteratively search for flow augmenting paths and rearrange
resource mappings until the optimum is obtained. Because
cach link is of unit capacity and is not to be shared by multiple
allocated paths, a token can simply be represented by a signal
traversing from one clement to another. It ecarries ncither
identification nor other information. Its type is determined by
the function heing performed. With such kinds of tokens.
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scheduling speed is limited only by the switching delay of
togic gates. The layered network obtained in cach iteration can
be represented implicitly by recording the token propagation
status in a bic array associated with each port. The bit pattern
for the token propagation status is rcferenced as a port
marking in the seguel. A flow augmenting path in the layered
network can be identified by token propagation markings
along the path.

During a flow augmentation process, a free link may
become ‘“registered’’ if the two ports associated with it are
marked. On the contrary, a registered link may become free if
the flow assigned to it is cancelled and port markings are
erased. A scheduling cycle consists of a request-token-
propagation phase for constructing a layered network, a
resource-token-propagation phase for finding the maximal
flow of the layered network. and a path registration phase for
registering paths associated with the maximal flow. At the end
of a scheduling cycle, any surviving registered link becomes
“‘occupied;’’ that is, it will be used in an allocated path. A
request will be bonded to a free resource when a request token
has successfully propagated to the resource in the request-
token-propagation phase, and a resource token has success-
fully propagated to the requesting processor in the resource-
token-propagation phase. This corresponds to finding a
maximal flow of the layered network in Dinic’s algorithm.

Since a token is nothing but a propagating signal, Dinic’s
algorithm is in fact realized by distributing tokens in the
network. Token propagation rules for carrying out each
function and the mechanism for synchronizing token propaga-
tions are described next.

1) Token Propagation jor Layered Network Construc-
tion: At the beginning of the request-token-propagation phase,
each RQ with unbonded pending request sends a token to its
output port, which is connected to an NS in the first stage of
the MRSIN.

For every NS receiving a request token through its input
port, it duplicates the token and sends one to each of its free
output ports and registered input ports. Note that an input port
may be registered in previous iterations of the reguest-token-
propagation and resource-token-propagation phases. All re-
ceiving and sending ports in an N3 receiving request tokens
are marked.

Token propagation is clocked. i.e.. each token traverses
across one link in a clock period. Propagation direction
depends on the status of the link over which the token is
traversing. The token traverses forward if the link is free, and
backward if the link is registered. Accordingly. an NS may
receive a request token either from its free input ports or from
its registered output ports. Tokens may arrive at an NS during
any clock period. Only the first batch is considered. All of the
rest are discarded; that is, subsequent token arrivals will not
caus¢ a port to be marked if the NS had received tokens
previously. If a token goes backward to a bounded RQ, it is
absorbed by the RQ. This phasc comes to an end when one or
more R8s has received a token. In the [ollowing thearem, we
show that the layered network will be abtained correctly by the
propagation of request lokens.

Theoreen: <@ A layvered network can be constructed correctby
by propagating tokens sccording o the rlex doscribed above.
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Proof: Since request tokens are only gencrated by RQ's
in the first clock period of 4 request-token-propagation phase,
the RQ's making requests in this phase can only be included in
the first layer. A virtual source node can be considered to be
connected to every RQ in the first layer. Next, we would like
to show that, given a layer, the next layer can be determined
uniquely by token propagations. In each clock period, tokens
are distributed from the current layer to unmarked free output
ports and unmarked registered input poris, and they traverse
exactly one link, Thus, only those elements that are directly
connected to the current layer may receive a token. By
eliminating those that had received tokens before. we obtain a
set of elements corresponding to those nodes in the next layer
of the layered network. If no RS is included in the next layer,
then these nodes are responsible for token propagation in the
next clock period. If an RS does appear in the layer, all tokens
stop propagating, and a virtual sink node is implicitly
generated in the last layer, aithough no actual token propaga-
tion is necessary to construct this virtual laver. In summary,
given a layer. the next layer can be constructed correctly by

.request-token propagations. By induction. the theorem is

proved. |

2) Token Propagation to Find Maximal Flow: The RS’s
receiving a token in the request-token-propagation phase
represent resources that have not been allocated to any request
so far and can possibly be allocated with some rearrangement
of resource mapping. Since the rearrangement is done by flow
augmentation in Dinic’s algorithm, a new phase of token
propagation is started to find the maximal flow in the layered
network after the layered network has been constructed.

In this phase, each RS appearing in the last layer sends a
token (called resource token for convenience) back to the
layered network hoping to find a matching RQ. In effect, the
token serves as a positive acknowledgment o the request
tokens from the RQ’s. The token traverses across one link per
clock period, and an NS expects to receive tokens only from
those ports to which a request token was sent, that is, those
ports that were marked. A resource token is not duplicated by
an NS since an RS can be assigned to only one RQ. When
multiple resource tokens arrive at a point where a request
token was duplicated, only one of them is allowed to go
through the link from which the request token was received.
The rest have to backirack to find altermative paths. If
backtracking causes a token to return to its originating RS,
then the token is discarded. This means that the RS cannot find
a matching RQ in this iteration. The marking of a port is
cleared whenever a resource token backiracks through the
port. This prevents subsequent attempts of fruitless backtrack-
ing. The number of propagating resource tokens is reduced as
tokens are received by RQ’s or backiracked to RS’s. Resource
token propagation stops when the number of propagating
resource tokens is reduced to zero. It is easv 10 show that the
set of paths explored by successful resource token propaga-
tions represents the maximal flow of the tavered network.

The maximal flow of the layered network is the flow o be
augmented 1o the ariginal flow assignment in the currem
iteration. Flow rugmentation has 1o be dene before the next
iteration stants. To achicve this, the MRSIN enters a third

phase. All it needs in this phase 3 (o change the stale of those
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Fig. 10.

paths associated with the maximal flow to being ‘‘regis-
tered.”” These paths are readily known at the end of the
resource-token-propagation phase since they are the paths
through which resource tokens successfully propagated to
RQ’s. The RQ’s that received a resource token are bonded to
the corresponding RS’s. Their binding status bits are set 1o 1.

3} Synchronization via Status Broadcasting: To ensure
that each element of the MRSIN applies the right rule to
propagate tokens, phase transitions must be strictly synchro-
nized. A synchronization scheme based on message passing is
too slow to match the speed of the token-propagation scheme.
Although a broadcast bus can greatly simplify svnchroniza-
tion, especially when processes are located in close proximity
{25], the cost of maintaining the status of processes received
from the bus is too high. In this section, we propose the design
of an efficient status bus to address this problem.

Instead of being used as a transmission media for sending
messages, the swatus bus is in fact a specialized global
““memory’” device that can be accessed concurrently. Each bit
of the bus is associated with an event that reflects the collective
status of a subser of processes. To realize such a bus, each
process maintains its own status in a single-bit register, and the
output of the register is connected to a wire-or logic gate. The
output of the gate is then connected to the corresponding bit of
the status bus. Accordingly . the status observable from the hus
is the logical or of the status of associated processes.

To determine what are the necessary ovents that reguire
synchromization, possible phase transitions o an MRSIN are

cramined, and the resulis are summarized in o stste transiiion

Resource token
propagation

A state transition diagram of distributed MRSIN with a status bus.

diagram in Fig. 10. In an idle period, the MRSIN is in one of
the states in which either no pending request or no ready
resource exists, or no ready resource can be allocated 1o
pending requests. The MRSIN may enter a scheduling period
when there are requests pending and resources ready. How-
ever, to avoid repeated attempts of allocating blocked re-
sources (i.e., the case of cycling between states 4 and 5 in Fig.
10) and to improve the scheduling efficiency. the MRSIN may
choose to wait for more requests to arrive and more resources
to become available before entering a scheduling cycle. Each
scheduling ijieration consists of five states. To conclude a
scheduling cycle, the MRSIN enters the allocation state in
which registerzd paths are changed to being *‘bonded.”
Based on the state transition diagram, seven events that
require synchronization are identified. We have chosen 1w
implement the status bus with seven bits. The definition of
these events and their associated processes are shown in Table
I. Since these events are observable on the status bus, an
occurrence of a state transition can be disseminated instantly,
and processes ¢an react 1o the new state immediately. For
example, when an event vector (111000x) is observed on the
bus, an NS knows that the MRSIN is in a request-loken-
propagation phase. (Note that the “*pon’T carg’’ symbol “x™
in the state vector means that the designated bit can be O or 1.)
[t can determine immediately which rule to apply whenever it
reccives i toren. When propagating a token, elements on the
propagation path turn on their £y siatus bits for one clock
period in turn. This operation keeps bit 3 of the status bus on
whenever thers are tokens propagatng, The MRSIN moves 0
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a new state {111001x) when an RS sets Ej; to 1 upon receiving
a token. The MRSIN will stay in this state for one clock period
to allow all tokens 1o come to a stop. At the beginning of the
next clock cycle, £5 will be turned off, and E; will be turned
on. The MRSIN moves into state (110100x) representing a
resource-token-propagation phase. The next transition will
bring the MRSIN into a path registration state (110110x). E,
and E; will be wrned off after one clock period. Finally the
MRSIN returns to state (111000x) for a new iteration.

Since a token is simply a signal, token propagation rules can
be expressed in terms of Boolean functions. A distributed
process at an NS, RQ, or RS does nothing but distribute the
token according to the global status and local conditions. It can
be realized easily by a finite-state machine, the design of
which can be found elsewhere [25). The design has a very low
gate count and a very short token propagation delay.

Overall, the token-propagation architecture has two factors
that contribute to a significant speedup as compared to a
monitor architecture: 1) the augmenting paths are searched in
parallel. and 2) the time complexity is measured in gate delays
instead of instruction cycles. As a result, the scheduling
algorithm will run at 2 much higher speed than a software
implementation of the network flow algorithm.

V. CONCLUSIONS

An RSIN is suitable to support resource sharing in
muitiprocessors. Optimal request-resource mapping in an
RSIN with homogeneous resources and requests of equal
priority is obtained by maximizing the number of communica-
tion paths that interconnect pairs of processors and resources.
In this paper, we have transformed various request~-resource
mapping problems into network flow problems for which
efficient algorithms exist. Table II summarizes the results we
have obtained. The proposed method is independent of the
interconnection structure and is applicable to any network
configuration in which the requesting processors and free
resources can be partitioned into two disjoint subsets. In
particular, the method is applicable to networks with multiple
paths betiveen source-destination pairs. such as the daw
manipulitor [13]. augmented data manipulwor [33], and
samma network [36]. The resource utilization. however, will
depend on the nevwork confignration, the resources aivailable.
the arrangement of the various types of resources, aid the
arrangement ol thie requesting processors.,

TEEE TRANSACTIONS ON COMPUTERS, VOLL IS RO T JANGARY 1u5y

TABLE I

SUMMARY  OQF OPTIMAL RESOURCE SCHEDULING  SCHEMES  FOR
RESOURCE SHARING INTERCONNECTION NETWORKS
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