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In this paper, we study an efficient scheme for disseminating status information in
a distributed computer system connected by multiple contention buses. Such a
scheme is critical in resource sharing and load balancing applications. The collection
of status information in these systems usually incurs a large overhead, which may
impede regular message traffic and degrade system performance. Moreover, the status
information collected may be outdated due to metwork delays. We describe our
scheme with respect to the load balancing problem, although the scheme developed
applies to resource sharing applications in general. We first reduce the decision prob-
lem for job migration in a system with multiple contention buses to the ordered-
selection problem. A heuristic multiwindow protocol that utilizes the collision-detec-
tion capability of these buses is proposed and analyzed. The proposed protocol does
not require explicit message transfers and can identify the ¢ smallest variates out of ¥
distributed random variates in an average of approximately (0.8 logyt + 0.2 log, ¥
-+ 1.2) contention steps. @ 1989 Academic Press, Inec.

1. INTRODUCTION

Advances in communication technology have resulted in the development
of high-speed media, such as optical-fiber links and coaxial cables, for local
computer networks. Although the potential bandwidth of these media is very

* Research supported by the National Science Foundation under Grant MIP 85-19649 and
the National Aeronautics and Space Administration under Contract NCC 2-481.

391

0743-7315/89 $3.00
Copyright © 1989 by Academic Press, Inc.
All rights of reproduction in any form reserved.



392 JUANG AND WAH

large, the current bandwidth used on most of these media is less than 50
million bits per second (Mbps). The scheduling schemes of current commu-
nication subsystems are built around networks of low bandwidth, such as the
notable Ethernet and token-ring networks [15, 19, 20], and are not effective
when higher bandwidth is available. Such a limitation is illustrated in the
contention-resolution mechanism of Ethernet. When a bandwidth much
higher than the currently popular 10 Mbps is used, the time taken for data
transmission is shortened, while the time taken for contention resolution
remains unchanged due to the speed-of-light limitation. To have better over-
all utilization of the channel for data transmission, it may be necessary to
partition the single high-bandwidth channel into multiple low-bandwidth
channels. A frequency-multiplexed configuration is becoming popular and
practical with optical-fiber networks [6].

In this paper, we study an efficient protocol for disseminating status infor-
mation for resource sharing in a local computer system connected by a set of
contention buses, cach behaving as an independent Ethernet. The protocol is
described with respect to load balancing, although the same scheme applies
to other resource sharing applications in general. The multiple buses can
either be frequency multiplexed in a single high-bandwidth bus or exist as
separate physical links. It is further assumed that job arrivals at processors
are independent and may have different arrival rates and work demands. As
a result, some of the processors may be heavily loaded while others may
be idle.

There are three major issues that affect the design of a resource scheduling
algorithm in a resource sharing computer system: network blockage (or
packet congestion ), request conflicts, and imbalance in workload. In such a
system, a task may be assigned to one of a set of resources, and multiple
requests may contend for the same resource. If the resource has no buffers,
then all requests except one must be rescheduled again. This problem is
called resource conflicts. On the other hand, if resources have local buffers,
then the tasks can be queued at the resources regardless of conflicts, and
load balanced when workload is not balanced. In a system with unbalanced
workload, backlogged jobs waiting in heavily loaded processors can be mi-
grated to lightly loaded processors and executed there. This has the effect
of reducing the average response time and increasing the average processor
utilization. A balanced workload can be achieved by either distributing users
uniformly on the system or allowing them to migrate from one processor to
another. These remote executions of jobs and virtual terminal protocols [ 8,
22] are common in many local computer systems. This form of load balanc-
ing balances workload on a per-session basis but cannot effectively reduce
the number of backlogged jobs, since a session is a mix of user think time
and job-execution time. In contrast, user-transparent load balancing
schemes have been proposed to balance the workload on a per-job basis.
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They determine whether a job is to be executed locally or migrated to another
processor for execution. If a job is to be migrated, it is passed to the message-
transfer subsystem to be sent. The message-transfer subsystem also allows
the migrated job to access data from and return results to its originating site.
Note that a resource scheduling scheme that minimizes resource conflicts
(or perfectly balances the workload) is not necessarily optimal, since
paths leading from a requesting source to the designated resource may be
blocked in a circuit-switched mode or may be heavily congested in a packet-
switched mode.

Three issues are identified in making job-migration decisions in a user-
transparent load balancing scheme: deciding the times to initiate job migra-
tions, determining the jobs to be migrated, and finding the places to send
the migrated jobs. Previous studies have provided various answers to these
guestions. In ECN [8], LOCUS [26], MACH [1], and V [4], a migration
decision is made upon the arrival of a new job, and the location to migrate
the job is determined by polling other processors. In a second approach [3],
a job is transferred to a neighboring processor whenever it is possible, and is
rippled to a proper site later. In the approach using thresholds, job migrations
are carried out whenever the workload in the local processor exceeds a
threshold. The place to send a migrated job is based on a dynamic load table
maintained at each processor [17]. For instance, jobs in Rediflow are mi-
grated according to the difference between the local “internal pressure” and
the neighboring “‘external pressure” of jobs [12]. In another approach using
thresholds, a processor tries to bid for a job whenever it becomes idle [14].
Jobs can also be preempted and migrated to another processor when the
workload in the current processor increases, as demonstrated in the Univer-
sity of Wisconsin systern [13]. No previous work addresses the issue on the
jobs to be transferred.

A Ioad balancing scheme that supports migration by dynamic thresholds
in multiple-contention-bus networks is presented in this paper. Status infor-
mation and the overhead of collecting it are two critical factors in effective
load balancing. In Section 2, the problems of global job bidding and individ-
ual job-migration decisions are formulated into an optimization problem
and are shown to be equivalent to performing ordered selections. A multi-
window protocol to perform ordered selections without explicit message
transfers is discussed in Section 3. Section 4 presents the correctness proof
and evaluates the performance of the protocol, and Section 5 draws con-
clusions.

2. LOAD BALANCING IN A COMPUTER NETWORK WITH MULTIPLE BUSES

In this section, we describe a load balancing scheme for a distributed sys-
tem connected by ¢ (£ = 1) contention buses. We first discuss the general
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problem of load balancing. Then we show that the collection of the necessary
status information for load balancing in such a system can be reduced to
ordered selections. Last, we describe a distributed interval-resolution scheme
to support ordered selections.

2.1. Load Balancing in Computer Networks

Maintaining updated status information is essential in load balancing.
Useful status information for load balancing includes processor workloads,
network status, and the characteristics of the arrival processes [5]. There is
a trade-off between the overhead spent on maintaining accurate status infor-
mation in the processors and the increase in response time caused by using
outdated status information. In this section, we describe a mechanism for
processors to coordinate in making job-migration decisions, assuming that
accurate status information is available. The method for obtaining this infor-
mation is discussed later.

The status of a processor can be characterized by two random variables:
its current workload and the response time of a job when migrated to this
processor {called virtual load). Let L be a set of observations, each of which
represents the current workload of a processor, and R be a set of virtual loads,
one for each processor, A global job bidding decision can be made by defin-
ing a { possibly many-to-one ) mapping Q from R to L. Note that more than
one job may be mapped to a single processor. For a given mapping, it is
necessary to evaluate the associated cost. A utility function b of migrating
Job i can be defined as a function of r;, the response time of this job after
migration; y;, the load of the remote processor; and 4,, the cost of such a
migration. An optimal mapping can be obtained by maximizing the total
utility over all possible mappings,

IR]

S(R! L) = max Z b(ri! Vis 61’)5 (1)

QERXL ;_,

where |R| is the cardinality of R, and S(R, L) is the utility of the best
mapping.

It is hard to obtain a general solution te the above optimization problem
because it is difficult to estimate the costs of migrations and predict the work-
loads of remote processors after the migrations. Multiple jobs may be
mapped to the same processor, and a more complicated utility function may
be needed to account for this effect. A possible way to solve this problem is
to generalize the performance of a processor to a set of virtual loads. The jth
virtual load of Processor 7 is the predicted workload after Processor 7 has
received j migrated jobs. The resulting formulation using this generalization
is still very complicated because there may be network interference when
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more than one job is sent to the same destination. Further, the costs of send-
ing jobs to the same destination may not be a linear function of the number
of jobs sent.

"The mapping problem in Eq. (1) can be simplified in some special cases.
In the next section, we discuss such a special case for a network with multiple
buses, It is assumed in this network that there is no interference in sending
jobs across the multiple buses, and that the costs of sending jobs are constant,
independent of the source and destination.

2.2. Migration Decision in a Computer Network with Muitiple Buses

The cost of migrating a job in processors connected by a bus is indepen-
dent of the source and destination processors, but depends on the current
network traffic (in terms of communication delays ) and the additional traffic
incurred due to job migrations. It is not easy to characterize either one of
them in general because they involve complicated interactions among the
migrating jobs, the workload of the processors, and the interference on regu-
lar message traffic.

To simplify the job-migration decisions while retaining good performance,
the following assumptions are adopted. (a) The preference of a job to be
migrated is characterized by a bidding parameter that measures the expected
improvement in response time. It is a function of the local response times,
the volume of data involved in the migration, and the average packet delay.
There is also minimal interference of migrating multiple jobs to the same site
using multiple buses, hence the bidding parameters are not affected in such
a case. (b) Load balancing is carried out only when there are no regular
messages to transmit. As a result, the impact of job migrations on regular
message transfers can be neglected. This policy can be implemented by as-
signing a higher priority to packets containing regular messages than to those
used for load balancing. It can be supported by CSMA /CD protocols that
facilitate transmissions with priority [7, 9, 16, 18,23, 25].(c) When a job s
migrated, the necessary data and control information is sent to the remote
processor at the same time. If this is not done, then the migration-decision
problem becomes a task-allocation problem involving piecemeal communi-
cations in a dynamic environment [21], which is outside the scope of our
study for supporting load balancing by low-level network protocols. (d) All
jobs are stochastically identical, hence any job in the queue can be migrated.
(e) The number of buses used to send or receive data simultaneously is a site-
dependent parameter. It is assumed that special interface circuits are built to
process status information from all buses simultaneously and that the inter-
ference of receiving jobs from multiple buses concurrently is minimal. (f)
Each bus is used to send one job at a time. A migrated job cannot start untii
all the necessary packets have been received by the remote processor. Multi-
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plexing packets of multiple migrated jobs simultaneously on a single bus
delays the completion of all these jobs, hence is not effective. {g) The buses
are reliable and information broadcast can be received by all processors si-
multaneously and correctly. (h) All processors in the network participate in
identifying the sources and destinations of load balancing, hence the number
of virtual loads and bidding parameters in the network is constant. (i) All
bidding parameters and virtual loads are assumed to be uniformly distrib-
uted between L and U, If not, statistical distributions collected from infor-
mation received are used to adjust the random variates according to the
equation

X, =F(xi ) (U-L)+ L, (2)

where x7} ; is the jth local variate of Processor i, and F is the statistical distri-
bution of the random variates. F is identical among the processors as they
receive identical information from the buses.

With the above assumptions, the job-migration cost can be reduced to the
delays of transferring the job to and returning the result from the remote site.
Due to the assumption on minimal interference of migrating multiple jobs
to the same site using multiple buses, the total utility can be truly represented
as a summation of the utilities of individual migrated jobs.

Let the utility of migrating Job i in this class of load balancing schemes be
B(x;, Q(x;)), where x; is the bidding parameter of Job i, and @ is a mapping.
The search for the best mapping can be formulated as

IR|

S(R.L) = max 3 B(x;, ¥x)). (3)

QERXL ;|

With ¢ buses, a processor can receive or distribute at most ¢ jobs simulta-
neously and can make at most t migration requests. Let job-load pairs be
ranked according to their utilities of migration. Equation ( 3) can be reduced
10 the form

S(R,L)= max é B(x:, Qx)), where

QERXL [ (4)

Blx, ¥x))) < B(x;, (x))  for i<

Based on this formulation, the following theorem can be established.

THEOREM 2.1. To maximize the utility of load balancing in Eg. (4}, ¢ re-
quests of the largest bidding parameters should be mapped to the t smailest
virtual loads if 8 is a nondecreasing function of the job bidding parameter and
a nonincreasing function of the virtual load.
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Proof’ The theorem is proved by contradiction. Let x,, . .., x, be the bid-
ding parameters selected by £ such that the corresponding utilities are among
the smallest ones. Assume that the mapping Q is optimal, but selects at least
one processor whose bidding parameter x,, 1 < p < ¢, is not among the
largest ones. Therefore, there is a bidding parameter x,, g > f, which isamong
the 7 largest ones (accordingly, x, > x,) but 8(x,, ¥x,)}) is not. Since £ is an
increasing function of the x;s, the inequality

B(x,, Ux,)) = B(x,, Ax,)) for x,>x, and l1=p<t<g (5)

holds. Let Q... be ancther mapping obtained by exchanging x, with x,.
Then,

Z S(XJ, Qnew(xj)) = Z .B(X_js Qnew(-x))) + B(-xq: Q(Xp))
J=1 J=lLi+#p

Z IB(-xjs Qnew(xj)) + ﬁ(xp9 Q(-xp)) (6)

j=tLj#p

= 2 B(x;, x;)).
i=1

W

The above inequality indicates that Q,., has a higher utility than £, hence
contradicting the assumption that Q is optimal. To obtain the optimal map-
ping, jobs with the largest bidding parameters must be chosen. With a similar
argument, processors with the smallest virtual loads should be selected. =

According to the above theorem, when load balancing is to be carried out
on M processors using ¢ buses, the # smallest virtual loads out of a maximum
of N = M-t virtual loads and the 7 largest bidding parameters out of a maxi-
mum of N = M-t bidding parameters are to be selected. N is constant in load
balancing because all processors participate in identifying the sources and
destinaticns. Identifving the smallest (or the largest) numbers among a set
of random variates is the classical ordered-selection problem. Since all the
numbers concerned are distributed physically, one soclution is to collect them
to a central site before sorting them. As this information is costly to collect
and may be outdated by the time the selection is done, it calls for an efficient
distributed ordered-selection scheme.

2.3. Distributed Ordered Selection on Multiple Contention Buses

An interval-resolution scheme for priority resolution is described here, It
is a recursive scheme that partitions and tests the domain of random variates.
An interval is resolved if it is empty or contains exactly one rumber (i.c., a



398 JUANG AND WAH

success). An unresolved interval is partitioned recursively until it is resolved.
To test whether an interval is resolved or not, a resolution scheme with bi-
nary questions and ternary responses is used. A processor is asked whether
it generates a number in the interval [a, b) and will answer “yes” or *“no”™
without further description. The same question is directed to all processors,
and the aggregated response is of the ternary type, i.e., no, one, or more than
one processor responded positively. Such a question-answering session is iso-
morphic to the collision detection of a CSMA /CD network. In such a net-
work, a processor is either transmitting or not transmitting during a conten-
tion slot. A transmission is equivalent to answering “‘yes,” while no transmis-
sion is equivalent to answering “‘no.” The capability of a collision-detection
mechanism to detect whether there is none, one, or more than one processor
transmitting is equivalent to obtaining the ternary response from the pro-
CeS80TS.

The above analogy suggesis that interval resolution can be done by conten-
tions on a bus. In the algorithm proposed in this paper, a subinterval to be
resolved, called a transmission window, is assigned to a bus. A processor con-
tends to transmit its random number on the bus if its random number falls in
this subinterval. By inierpreting the outcome of collision detection, a ternary
status of the subinterval can be determined. As the interval-resolution pro-
cess proceeds, the domain of random variates is partitioned into subintervals.
Each of these subintervals is in one of the four possible states: empty, success,
collided, or unsearched. Assuming that all the random variates lie in the
interval [L, U7}, the order of a random variate x; can be determined if the
interval between L and x; has been partitioned into subintervals, each of
which has been resolved to be either success or empty. Since verifying the
status of a subinterval is independent of verifying other subintervals, multi-
ple subintervals can be resolved sequentially or in parallel, depending on the
number of contention buses available.

The example in Fig. 1 illustrates the interval-resolution process. In this
example, the order of 10 random variates generated by six processors is to
be determined, and two contention buses are available. The windows used
in each step are labeled w, and w,, and the status of each subinterval after a
contention step is marked in the figure. After three contention steps, one of
the numbers generated by Processor 3 is determined to be the minimum,
and the second minimum is also identified. To determine the order of others,
further contentions must be carried out.

Processors invelved in ordered selections must know the windows used in
each contention step. This may be done by assigning a processor to generate
the appropriate windows and broadcast them to others. This approach is
ineflicient as broadcasting a message and synchronizing all the processors
incur a significant overhead. Alternatively, if all processors are evaluating an
identical algorithm with identical inputs, then the windows are synchronized
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FiG. 1. An example iltustrating an intervai-resolution procedure for ordered selection
{windows used in each step are labeled-as w, and w).

automatically without any message transfer. The identical inputs needed are
information readily available from the collision-detection mechanism.

A potential discrepancy happens when more than one variate are gener-
ated in a processor and fall in a single transmission window, while no other
variates in other processors fall in this window. In this case, the potential
collisicn is only known to the local processor, and other processors interpret
that a successful contention has been made for this transmission window. A
simple solution to this problem is for the processor concerned to transmit a
special code to indicate self-collision. This code is received by all processors
in the system, which refines the transmission window concerned in a way
similar to that of collided ones.

2.4. Organization of the Load Balancing Mechanism

Based on the distributed ordered-selection algorithm described above, an
architecture that supports load balancing is shown in Fig. 2. In this architec-
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Fic. 2. Architecture of a processor to support load balancing in a computer network with
multiple contention buses.

ture, the job scheduler requests the migration-decision mechanism to com-
pute a bidding parameter for each job concerned, A collection of bidding
parameters and the processor’s virtual loads are sent to the ordered-selection
protocol. Given that there are ¢ buses available, two ordered-selection opera-
tions are then invoked in sequence: one identifies the # smallest virtual loads
in the network, and the other identifies the ¢ largest bidding parameters. This
information will be passed to the migration-decision mechanism in which a
mapping is generated. The local job scheduler will be notified if any migra-
tion request is accepted. The accepted job is then scheduled to migrate
through the message-transfer subsystem. The message-transfer subsystem
will also be notified to prepare buffers to receive migrating jobs from other
Processors.
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The average packet delay in the network may be obtained by piggybacking
timing information of packets or by monitoring bus activities. However, an
accurate estimation of the delays is very complex and is a subject for future
studies. In the remaining part of this paper, we focus on the design of an
ordered-s¢lection protocol.

3. MULTIWINDOW PROTOCOL FOR ORDERED SELECTIONS

A key issue in an interval-resolution scheme for ordered selection is to
determine a proper transmission window for each bus. Previously, we devel-
oped a window-control scheme for the degenerate case of a single contention
bus [9, 25]. In this section, we describe a multiwindow control scheme for
parallel interval resolutions on multiple buses.

In the multiwindow control scheme, window generations in different pro-
cessors are synchronized by collision detections. A confention step consists
of the generation of transmission windows, one for each bus; the contention
of each bus; and the acquisition of interval status by collision detection.
Transmission and collision detection can be done in one contention slot,
which is a fixed system parameter of a CSMA /CD network. The generation
of transmission windows involves local processing and must be optimized.

3.1. Optimal Multiwindow Control

The set of windows used in a contention step is abbreviated as the window
vector in the sequel. A window vector is chosen from unresolved subinter-
vals, including collided and unsearched ones. For convenience, unresolved
subintervals are represented by vector V. Each element of V is a subinterval
represented by a triplet that consists of the lower and upper bounds and the
status of the subinterval (empty, success, collided, or unsearched). Based on
such a representation and since the Principle of Optimality is satisfied, the
optimization of multiwindow control can be formulated in dynamic pro-
gramming.

Consider the case in which the 7 smallest numbers are to be selected from
N distributed random numbers, and the current unresolved subintervals are
represented by V. Given V, a contention step using window vector W will
result in another set of unresolved subintervals U. Denote the expected num-
ber of contention steps to complete the ordered selection by Clv. The dy-
namic programming formulation for window generation may be expressed
recursively as

¢
Civ=min {1+ 3 Z pnuvu(W) - Ciliv}, (7

=1 U
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where pu,;vu(W )} is the probability of successfully isolating the i smallest
numbers with window vector W, and the set of unresolved subintervals
changes from V to U in this process. The optimal window vector is the one
that minimizes the total utility defined by Eq. (1).

To evaluate Eq. (7), all py,,v,u{ W )’s must be known. Since as many as ¢
buses can be assigned to resolve a subinterval, there are K* possible ways of
assigning f buses to resolve K subintervals. For each assignment, there exists
a large number of combinations of window sizes to be determined. This leads
to an exponential number of combinations, each with a different
Privu({W). Consequently, Eq. (7) is too complex to be evaluated exhaus-
tively. Suboptimal solutions to the window-generation problem are pre-
sented in the next section.

3.2. A Multiwindow Protocol with Heuristic Window Control
(i) Heuristic Window Control

To solve the window-generation problem heuristically, the following ob-
servations are made. First, random variates of the smallest values are to be
selected, hence unresolved subintervals at the end with the smaller values are
to be searched first. Second, given an interval of size ¥ with N uniformly
distributed random variates, the proper windows to maximize the probabil-
ity of having exactly one random variate in each can be shown to have a size
of u/ N each (see the Appendix). It can also be shown that the average num-
ber of random variates falling in a subinterval of size u/N, given that colli-
sion is detected, is less than 2.4 (see the Appendix). In such a case, it is
reasonable to divide the collided subinterval into two equal halves and search
each independently.

Initially, the entire domain [L, U) of size ¥ (=U — L) to be scarched
is taken as an unsearched interval. Given ¢ buses, this interval is parti-
tioned into (¢ + 1) subintervals [L, L + u/N), [L + u/N,L +2u/N), ...,
[L+ (¢t~ 1)yu/N, L+ w/N),[L+tu/N,U), where N is the number of
random variates in [L, U). The size of the first ¢ subintervals is /N each.
Unresolved subintervals at the part of the domain containing the smaller
values are searched first. Note that there is only one unsearched subinterval
[L + tu/N, U) at the end of the domain containing the larger values. A
processor is allowed to coniend for a bus if it has a random variate falling
in the subinterval assigned to that bus. After a contention step, a collided
subinterval is partitioned into two equal halves, each of which is considered
as an unresolved subinterval. The contention and partitioning steps are re-
peated until either the ordered selection is done or all subintervals except [ L
+ tu/N, U) have been resolved. In the latter case, the search is extended
into the unsearched subinterval [ L. 4 11/ N, U), and the search procedure is
repeated. A variable ® is kept in each processor to indicate the lower bound
of the unsearched subinterval. When the search is extended into the un-
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searched subinterval, O, the number of random variates successfully isolated
in [L, &), is used to estimate the upper bound of the number of random
variates in [®, I/). The unsearched subintervals are divided into smaller sub-
intervals of size ( I/ — ®)/( each.

It is shown in Section 4 that the window-control algorithm based on the
above steps is correct and performs satisfactorily. In the Appendix, we dis-
cuss the rationale behind the proposed window-control rule.

(ii) Sequencing and Termination

If the status of all subintervals is known, then the order of the selected
numbers and the termination condition of the selection process can be deter-
mined, However, it is hard for a processor with limited memory space to
keep track of the status of all subintervals as unresolved subintervals are par-
titioned iteratively.

To reduce the memory requirement, a constant-memory scheme is pro-
posed here. For Processor 7, only the order of the locally generated random
variates x; ;, . . . , X;, has to be known (assuming x; ; < X; 41, 1 <j<{¢).For
X; ;» 1t is necessary to know the number of subintervals between L and x; ;
that have been identified to contain exactly one variate each. This gives a
lower bound on the order of x;, in the N random variates and is kept in
X% An estimate on the number of variates in collided subintervals be-
tween L and x; ; may be useful, but not essential, to improve xraer,

x§7er is initialized to be 1 and is updated as follows.! In each iteration,
¢ subintervals as specified by W are assigned to the ¢ available buses for con-
tention resolution; [/, %) is assigned to Bus j, where Lzw ., wy<ly,and
2 < j < t — 1. The outcomes of coliision detection are represented by two #-
tuples, S = (sy,...,8)and D =(d,, ..., d), where

1 if contention for the jth bus in interval [/, u;)
5= results in successful transmission, (8a)
1 0 otherwise.
(1 if contention for the jth bus in interval [/, ;)
d;= 1 results in collision, (8b)
0 otherwise.

\

x¢¥e is updated by adding to it the number of successful subintervals be-
tween L and x; ; that have been resolved in the current iteration. Hence,

¢ x§mr could be initialized to be j initially. We did not do so in order to simplify the update
rules for X7 and xeverder
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i
xPfer= x4+ > S, where U S X<y, l<k<t, . =U.

if
p=1
(9
A selection process may be terminated when all numbers to be selected
are identified. The termination point in Processor i is set with respect to the
locally generated random variates. The search terminates in Processor ; when
either all locally generated variates are not among the 7 smallest variates in
the network or all subintervals less than the termination point have been
resolved. To set the termination point, xP$°"*" an improved lower bound
on the order of x; ;in the N random variates, is computed. In computing this
lower bound, it is assumed that only two random variates are contained in a
collided subinterval. Using x{7 computed in Eq. (9),

k
neworder _ ,.order
x2€ =Xy +2->2d, where (10)
p=1
ukéx,;j(_uk_,,l ].-<-.k~‘-<_f, U = U,

This improved lower bound cannot replace xf—ff,-der because the state of a col-
lided subinterval may be changed in subsequent contention steps, and a
more complicated adjustment to x 5" than that of Eq. (9) is needed when
this happens. 7', the termination point, is set as

T=x,, where — x[OMET < g xPORgRer (11)

A boundary condition that x5 = ¢ + 1 is assumed. The search process in
Processor / terminates when either x{"°"*" > ¢ or all subintervals in [, )
have been resolved.

The sequencing and termination controls described above are correct only
if all subintervals in [ L, T') have been searched. We show in Section 4 that
this is true if the proposed heuristic multiwindow protocol is used.

A multiwindow protocol based on the above interval-resolution procedure
with heuristic window control is outlined in Fig. 3. The function observe(S,
D) in the protocol is based upon the collision-detection mechanism of the
multiple CSMA /CD buses.

The following example illustrates the operations of the protocol. It is as-
sumed that there are three processors (M = 3) and two buses (7 = 2), and
that it is necessary to select two minima from the N (=M-7 = 6) random
variates uniformly distributed in [0, 1). Assume the set of random variates
tobe {0.11, 0.14, 0.35, 0.65, 0.78, 0.96 }. For Processor I, suppose that X1,
= 0.14 and that x, ; = 0.63. Initially, the window vector is W = {[0, 0.167),
[0.167,0.333) }. The termination indicator in Processor I is 7, = 1.0, and
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procedure multiwindow-protocol.site.i (N, £, X;, XF™);

[rN: total number of distributed random variates;

t number of random variates o be selected;

L & U:  lower & upper bounds of the domain of random variates;

X, ={X;1, - - - . X;), the set of random variates generated by Processor /;

Xorder = pyerder o xordeny where xP1% is the lower-bound order of x;; among the ¥
distributed random variates (Eq. {9));

Npoworder . (yneworder | yneworden) where P77 is the improved lower-bound order of x;;
among the N distributed random variates (Eq. (10))

w ={[h,th) ... [, u)}: window vector to be searched, one for each of the t buses;

Q: totai number of subintervals with one variate in each;

S &D: collison-detection vectors,
&: lower bound of the unsearched subinterval;
T termination indicator of Processorj */

begin
Ug=1L;
forj=1tot do
begin
S 0; oy 0; X1, Lw—uyy; u e+ U-LYN;
end;
RPOET o t+1; Q0 T, U; done < false; @« L+ (U-LN/N;
while ((not done) and (not all x”*">)) do
begin
transmit (X, WY  /* Transmit to the kth channel if §;<x; (<u;;, "/
observe (§, D);  /* Detect outcome of contention. ™/
fork=1totdo /" Update X% and X{®vore =
begin
/* accumulate total number of subintervals with one variate in each *f
Q—Q+5,;
compute x7/%*" using £q. (9):
compuie x/7¥°" using Eq. (10);
end
update T; using Eq. {(11);
if (all subintervals in [L, T) have been resolved) then
done « true
else
window (W, Q, D, T,, &) [* Determine the transmission windows */
end;
end multiwindow-protocol.site.f

FI1G. 3a. Multiwindow protocol for ordered selections.

xP9er = x9der = 1, After the first contention step, S = (0, 0), D = (1, 0).
Hence, we set x$9 = x5 = xPy o’ = |, x197°% = 3,and T, = 0.14. x, »
is eliminated because it cannot be among the two smallest variates in the
system. In the second contention step, W = {[0.0, 0.083), [0.083, 0.167)},
and we obtain S = (0, 0) and D = (0, 1). x{%, x79"°™ and 7| remain
unchanged. In the third contention step, W = {[0.083, 0.125), [0.125,
0.167)}, and we obtain S = (1, 1) and D = (0, 0). Hence, x99 = 2, and
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procedure window (W, Q, D, T, ®);

/N totaf number of distributed random variates;
t: number of random numbers to be selected;
L&U: lower & upper bounds of the domain of random variates;
w = {[l, ). ... [k )}, window vector defined for the t buses;
W' temporary storage for new search windows;
Q: accumuiated total number of subintervals with one variate in each;
D collision indicator;
P lower bound of the unsearched subinterval;
T termination marker */
begin

i<—1; j=1; [f*iistheindex for buses, jis the index for windows *f
while (i<t and u<T) do
begin
while (j<t and ¢;=0) do j <~ j+1; /* search for a collided window */
if (f <t)then /" still has unresolved collided subintervals */

begin /* altocate two buses to resolve a collided interval */
1P iy U™« (+u;)f2;
Y —ud®™, uy < ug
i [+2; j—iH
end;
else
begin

/* Insufficient number of collided subintervais to allocate to the t buses, search the
unsearched subinterval */

increment = (U—®WIN-Q—2-Z4_, d))

e = @;

fork=itotdo
begin
™ = I2® + increment;
if k<<t then 125%=up®"
end,;

B =P et

end,

end;
W o Whew,
end.

Fi1G. 3b. A heuristic window-control procedure.

the contention process in Processor 1 stops because all subintervals between
L and T have been resolved.

Since the windows are updated in each contention step and must be gener-
ated before the next contention step begins, a reasonable amount of time
must have elapsed between the completion of collision detection and the
initiation of the next contention step. To shorten this elapsed time, it may
be necessary to implement the proposed protocol in hardware.

In systems in which modification to existing hardware is impossible, the
multiwindow protocol can be implemented in software. Suppose that each
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bus is an existing Fthernet link with the broadcast capability and that proces-
sors can contend and communicate simultaneously and independently on
each bus. Processors with variates inside the window defined for a bus con-
tend for the bus. The processor that is granted the bus will broadcast its vari-
ate. However, in this case, it is not clear whether cxactly one processor or
more than one processor has variates inside the window. ( This is equivalent
to a network with a two-state collision-detection capability.) There are threc
alternatives here. First, all contending processors proceed to reduce the win-
dows after the variate has been broadcast (the one-broadcast approach). A
disadvantage of this approach is that it may take a substantial amount of
time to subdivide the interval containing no variate into smaller subintervals
until the boundary condition is reached. Second, a verification phase can
follow the broadcast to assert that the broadcast variate is the only variate in
this window (the two-broadcast approach). This verification phase can be
implemented as a timeout period, so other processors with variates in this
window can continue to contend and broadcast inside this timeout period.
If no processor broadcast in this timeout period, then this subinterval does
not have to be further partitioned. In each iteration of the multiwindow pro-
tocol, the channel must be contended twice, and two broadcasts of variates
must be made. Third, a judicious selection between the one-broadcast and
two-broadcast approaches can be made in each iteration (the combined
approach). We have studied the above three alternatives for the single-bus
case [ 2] and have found that the one-broadcast approach is the simplest and
performs almost as well as the other two approaches. The one-broadcast ap-
proach is also the best approach to apply in the multibus case, as each bus
operates independently.

4. CORRECTNESS AND PERFORMANCE EVALUATION

In this section, we prove that the proposed multiwindow protocol correctly
identifies the ¢ smallest variates. The performance of the protocol is also dis-
cussed.

4.1. Correctness
First, we show that the protocol terminates in a finite number of steps.

LEMMA 4.1. The multiwindow protocol terminates in a finite number of
steps if the random numbers to be selected are separable. Two random num-
bers, y;and y;, are separable if 1 [(N(y, — ¥;}) is finite.

Proof. The procedure terminates when all disjoint subintervals below the
termination indicator have been resolved. It is necessary to show that there
are a finite number of such subintervals and that these subintervals were
obtained from partitioning the search range in a finite number of steps. To
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search an unresolved subinterval, the window control determines subinter-
vals of nonzero size as transmission windows and partitions the search range
into a finite number of subintervals. These subintervals may be resolved or
remain unresolved after a contention step. If a subinterval remains unre-
solved, it is split into two halves of finite sizes. The maximum number of
steps to separate any two randem numbers is

- L
k= "logzN'a“ P (12)

where § = min{ |y, — y;|, 1 <{,j<t,and { # j}. Since 5 is finite, so is k.
Thus the procedure terminates in a finite number of steps. W

If two numbers to be selected are not separable, then they always fall in
the same subinterval and result in infinite collisions. Theoretically, the prob-
ability for two continuous random numbers to be unseparable is zero. In
practice, two random numbers generated may be identical because they are
represented in a limited number of bits. To prevent running into infinite
coilisions, each random variate may be augmented by either another site-
dependent constant, such as the site identifier, or a distinct sequence of small
random numbers such that the original order of random variates is not dis-
turbed.

The following lemma proves the correctness of the termination condition.

LEMMA 4.2. All subintervals in [ L, T') are resolved when the mudtiwindow
protocol terminates, where T Is the termination indicator.

Proof. In providing this lemma, it is necessary to show that the value of the
termination indicator becomes smaller as the resolution process proceeds.
Without loss of generality, assume that Processor / has generated a random
variate x; ; to be sent on the rth bus. After the first contention step, there are
two possible outcomes.

X ijurdcr <t

x Eiworder =t

—1
}, where XIS xomer 2 S g (13)

p=1

If xP5¥°"" < r and since x{77* = 1, it implies that 2. 27} d, < ¢, and that the
number of unresolved subintervalsin [ L, 7') is less than the number of avail-
able buses. Hence, the resolution process must be extended into the un-
searched range in the next contention step. The positions of the termination
indicators in all processors remain unchanged.

Since subintervals are repeatedly partitioned as contention proceeds,
x5V will increase, and eventually x7"™" > ¢, In this case, there are more
subintervals to be resolved than the number of available buses and more than
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t variates with values smaller than the termination indicator. There exists an
index k, 1 < k< t, such that

XU +2. % dy=

J=1

. (14)
t+1, collision in the rth bus,

=1 {t, success in the rth bus,
where Xx;; is another random variate generated to contend for the rth bus. As
a result, the termination indicators in all processors are moved to a point
smaller than the upper bound of window used in the rth bus. The same
argument can be repeated, and the value of the termination indicator is
monotonically nonincreasing. Eventually, all subintervals in [L, T') will be
resolved when the process terminates. W

The correciness of the proposed multiwindow protocol can be summa-
rized in the following theorem.

THEOREM 4.1. The multiwindow protocol with the proposed window-con-
trol heuristic performs an ordered selection correctly.

Proof In Lemma 4.1, we have shown that the protocol terminates in a
finite number of steps. According to Lemma 4.2, all subintervals in [L, T)
are resolved when the process terminates. From the way the termination
indicators are set, it is easy to show that there are at least ¢ numbers being
isolated in these subintervals. Since resolved subintervals are disjoint and
follow a linear ordering relation, the numbers isolated in these subintervals
can be ordered correctly. ®

4.2, Performance

Simulations have been conducted to evaluate the performance of the mul-
tiwindow protocol. The simulator was coded in F77 and runona VAX 11/
780 computer. In the simulator, each processor generates a random number
uniformly distributed in [0, 1). A collision-detection mechanism is modeled
by a counter that counts the number of random variates in a given subinter-
val. Different combinations of N and ¢ were evaluated, each of which was
run a number of times with different seeds until 2 95% confidence interval
of less than 0.2 was obtained. The simulation results are shown in Tables 1
and I1. They show that the average number of contention steps to identify
the ¢ smallest variates out of N random variates can be approximated by a( N,
£}(=0.8-logyt + 0.2 .log, N + 1.2} with less than a 5% error. This approxima-
tion was obtained under the assumption that ¢ buses are employed when ¢
numbers are to be identified.

Hardware implementation of the multiwindow protocol has been dis-
cussed elsewhere and will not be shown here [10]. Such a hardware imple-
mentation does not rely on message exchanges and requires the time of one
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TABLE1
AVERAGE NUMBER OF CONTENTION $TEFS (C'} FOR IDENTIFYING THE ! SMALLEST
NUMBERS AMONG N DISTRIBUTED RANDOM VARIATES USING THE PROPOSED
ORDERED-SELECTION PROTOCOL

N=20
H 2 4 6 8 10 12 14 16 18 20
c 297 3.65 4.20 4.49 4.78 4.99 5.20 5.33 5.51 5.53
alN, )y 2.86 3.66 4.13 4.4% 4,72 4.93 5.11 5.26 5.40 5.52

N=100

r 10 20 30 40 50 60 70 80 90 100

C 5.19 377 6.46 6.65 7.00 7.15 7.37 7.56 7.67 175
alN,ty 5.19 5.96 6.46 6.79 7.04 7.26 7.43 7.59 7.72 7.84

N =500

¢ 50 160 150 200 250 300 350 400 450 500
C 7.39 8.12 8.42 8.85 8.96 9.14 9.51 9.87 9.8 100
alN, 1) 751 8.31 877 9.11 9.36 9.57 9.75 991 10.0 10.2

Note. Nis fixed; aN, 1} = 0.2 logN + 0.8 log,t + 1.2 is given here for comparisons.

contention slot for each iteration. In contrast, in previous systems, messages
are transmitted through the message passing subsystem and many layers of
protocol conversions are required. Hence, the proposed protocol can be sev-
eral orders of magnitude more efficient than previcus protocols. Likewise, in
a software implementation of the proposed protocol, the number of itera-
tions required is the same as that of a hardware implementation, except that

TABLEI1
AVERAGE NUMBER OF CONTENTION STEFS (C) FOR IDENTIFYING THE { SMALLEST
NUMBERS AMONG N DISTRIBUTED RANDOM VARIATES USING THE PROPOSED
ORDERED-SELECTION PROTOCOL

=10

N 30 60 90 120 150 180 210 240 270 300
< 4.88 4.93 5.09 5.13 5.18 5.20 5.40 5.50 5.54 5.58
N,z) 484 5.04 5.16 5.24 5.31 5.36 5.40 3.44 5.48 5.51

=30

N 50 100 150 200 250 300 350 400 450 500
C 6.77 7.04 7.22 7.26 7.28 7.40 7.37 7.47 7.60 7.60
(¥, 1) 6.85 7.05 717 7.25 7.31 7.37 7.41 7.45 7.48 7.51

Note. ¢ is fixed; (N, 1) = 0.2 logaN + 0.8 log,# + 1.2 is given here for comparisons.
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each iteration is the time to contend for the bus and broadcast a random
variate. This is still more efficient than conventional protocols that collect
all variates to a centralized sitec and perform the scheduling there.

5. CONCLUDING REMARKS

Load balancing can effectively enhance resource sharing and reduce re-
sponse times of jobs in a computer neiwork. Accurate system status informa-
tion is crucial to job-migration decisions in load balancing. There is a trade-
off between the overhead spent in collecting updated status information and
the benefit in making accurate migration decisions. In this paper, we have
shown that finding the necessary status information for a class of load balanc-
ing strategies in multiple contention-bus networks can be reduced to the
problem of ordered selections. An efficient multiwindow protocol for sup-
porting priority-based channel allocation using the primitive collision-detec-
tion mechanism of CSMA /CD networks was studied. It can identify the ¢
smallest (or the largest) random variates among N spatially distributed con-
tenders in approximately 0.8 logst + 0.2 logz N + 1.2 contention steps. An
architecture to implement the proposed protocol was also presented.

The proposed protocol can be applied to other resource sharing applica-
tions. The capability to perform ordered selection in a distributed environ-
ment allows various scheduling strategies, such as the first-come-first-serve,
priority, and shortest-job-first disciplines, and the sharing of a pool of re-
sources among a set of contending processors. Techniques developed earlier
to estimate the channel load of single contention buses can be adapted to the
case of multiple contention buses [10, 11, 25]. Due to the complexity of the
resulting dynamic programming formulation, an optimal solution similar
to that developed for a single contention bus [25] cannot be used. Greedy
heuristics using a good initial partitioning of the interval of random variates
usually perform satisfactorily.

APPENDIX: ANALYSIS OF HEURISTIC WINDOW CONTROL

First, we show that partitioning a collided interval into two equal halves is
a good heuristic rule. It has been proved that the binary-divide strategy is
optimal for resolving a collided interval if there are two variates uniformly
distributed in this interval [24]. Suppose that the size of the unsearched in-
terval is # and that the number of random variates falling in this interval is
N. Let the size of the window to be searched initially be u/ N, and Z be the
random variable representing the number of ¥;s in such a window, assuming
that a collision has been detected. Z has a binomial distribution since the y;’s
are uniformly distributed, and the probability that a given variate falls in the
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window is I /N. The expected value of Z conditioned on detection of a colli-
sion is

E(Z jcollision detected)
N
1y 1 \MV7 1V
2R ()
- 1\ 1 N—1 1 TR
(i) (=) ()

where the denominator is the probability that there is a collision in the win-
dow. When Nis 2, E(Z |collision detected ) is 2, while in the limiting case,

(A1)

-1
lim E(Z |collision detected) = 1—:_, = 2.392. {A2)

Nawoo 1-2.

A collided window contains between 2 and 2.392 variates on the average.
The arguments above indicate that a collided window often contains slightly
over two variates, and that the binary-divide rule is a good approximation to
the optimal window control.

The following lemma and theorem show that the heuristic rule of deter-
mining the interval size in the unsearched range is also an efficient strategy.

LemMA Al. Let p be a natural number, and w;, > 0. If 20, w; = ¢,
then [12., w; is maximized when the w,’s are equal. That is, w,=¢/p, i =1,

LD

Proof. The lemma is proved by mathematical induction. The induction
basis (p = 1)} is trivial. Consider the case in which p is greater than one,
Assume that

p—1
> w; = fe, where 0<pB<l. (A3)

i=1
Accordingly, w, = (1 — #)c. If pis equal to 2, then
wi-wy = c28(1 — B). (A4)

The RHS of Eq. (A4) is maximized when 8 = 0.3, so the lemma is true for
p=2.

Assume that the lemma is true for p = m, and consider p = m + 1.
Let wypey = (1 — 8)cand Z7, w; = Bc. Then [17, w, is maximized at w;
= Be/m. Hence, [1727! w; can be rewritten as
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m+1 m 56

I = (T - wmos = (1) (1 = e (AS)

i=1 j=
The RHS of Eq. (A5) is maximized at 3 = m/(m + 1), which yields w;
=¢/(m+ yfori=1,...,m+ 1. Therefore, the lemma is also true for
p=m+1l. 1

THEOREM Al. Let the total number of v;’s uniformly distributed in the

unsearched range [0, u) be n, and the boundaries of the ith window be [w;_,,
w,i=1,...,t Thenthe probability that all t of the y;’s are isolated in one
contention step is maximized ifw,—w,_ = ufn,i=1,.. . ,t

Proof. In general, the joint probability density function of the ordered sta-
tistics, ¥, ..., Vi1, 18

jj-ﬁl---y,.,.l(xls ] !-x£+1)

= mg(-xl)' g (1 -~ G(x 1)) (AB)

where g(x) and G(x) are the probability density function and distribution
function of the parent distribution, respectively, For a uniform distribution,
wehaveg(x)= land G(x)=x.So

J;}...y,ﬂ(xls---,xt+1)=—‘"““""'“_—(1_xz+1)n_t_l- (A7)
(n—t—1)

A selection is successful when y; € [w,_, wi}, i= 1, ..., ¢, and v,y € [w,
1), implying that y,2, ..., ¥ € [w, 1}. The success probability can be
expressed as

Pr{y. €[wimy,w). i=1,...,t,and y,., € [w, 1)}

[ D T e e da 4®)
Wi—1

— n! _ n—t .
e ,H,(W Wiet)-

Note that the value of JT.., (w; — w;_;) depends cn w; and the partitioning
of the interval [0, w,). It follows from Lemma Al that [T}, {w; — w,_,) is
maximized when w; — w,_, = w,/¢. Substituting this result into Eq. (A8)
yields
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Pr{yie [w.l'-*la W,'), i= 13 e sts andy£+] = [Wz, 1)}

n!

= m(l — w[)n—t(%) . (A9

The RHS of Eq. (A9) is maximized at w, = {/n, hence w; = i{/n. Last, the
w;’s must be adjusted by a factor of u if the random variates are distributed
in{0,u),andw, ~w;,_, =u/n. A

10.

11.

12,

13.

14,

15.
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