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ABSTRACT

In the generalized traveling-salesman problem (GTSP), we are given a set of cities
that arc grouped into possibly intersecting clusters. The objective is to find a closed path
of minimum cost that visits at least one city in each cluster. Given an instance G of the
GTSP, we first transform G into another instance G’ of the GTSP in which all the
clusters are nonintersecting, and then transform G’ into an instance G” of the standard
traveling-salesman probiem (TSP). We show that any feasible solution of the TSP
instance " can be transformed into a feasible solution of the GTSP instance G of no
greater cost, and that any optimal solution of the ‘TSP instance G” can be transformed
into an optimal solution of the GTSP instance G.

1. INTRODUCTION

In the standard traveling-salesman problem (TSP), we are given a set of
cities and the distances (costs) between theni; the objective is to find a tour
(which is a closed path visiting each city exactly once) of minimum cost [1].
In the generalized traveling-salesman problem (GTSP), the cities are grouped
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into possibly intersecting clusters, and the objective is to find a g-tour
(which is a closed path visiting at least one city in cach cluster) of
minimum cost [2]. :

For many real-world problems that are inhcrently hicrarchical, the
GTSP offers a more accurate model than the TSP. As an example, a
traveling salesman may want to visit all his dealers in the country. To
reduce the traveling cost, for each state, he would meet all the local
dealers in only one out of several possiblc citics in the state. His objective
is then to choose a set of cities, with one city for each state, and a route
through them so that all the dealers can be visited in the minimum cost.
As another example, a Post Office administrator may want to choose for
each residential area a location out of several possible ones for a central
mailbox in the area, as well as a route through these mailboxes so that the
mail can be collected in the minimum cost. As a final example, in the
layout of a ring network, the designer may have to select for each region a
site out of several possible ones as the concentrator, as well as a loop
through these concentrators so that all the regions can be connected at the
minimum cost. These three problems can all be formulated as the GTSP.

The GTSP, of which the TSP is a special case, is obviously NP-hard.
Polynomial-time heuristics are thus needed for solving this problem, espe-
cially when the problem size is large. In this paper, we study thosc cases of
the GTSP for which the distance measures satisfy the triangular incquality.
We develop a sct of techniques to transform the GTSP into the TSP. With
this transformation, polynomial-time heuristics for the TSP can be applied
directly to solve the GTSP.

An obvious way to transform the GTSP to the TSP is by decomposing a
GTSP instance into multiple smaller size TSP instances, each of which is
defined by a distinct set of cities, with one city from each cluster. The
different TSP instances correspond to the different possible choices of the
cities from the clusters. A tour of any of these TSP instances is obviously a
g-tour of the original GTSP instance. Further, since we assume that in the
GTSP instance the distance measure satisfies the triangular inequality,
there always exists an optimal g-tour that visits only one node in each
cluster. Such an optimal g-tour can be obtained by finding a tour of
minimurn cost among all the optimal tours of the corresponding TSP
instances.

On the other hand, in the transformations that we develop in this paper,
a GTSP instance is transformed into exactly one TSP instance of larger
size. Any tour of this TSP instance can be transformed into a g-tour of the
GTSP instance of no greater cost, and any optimal tour of this TSP
instance can be transformed into an optimal g-tour of the original GTSP
instance. Since this transformation methcod only requires solving a single
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TSP instance of larger size, rather than solving many TSP instances of
smaller size, this method is more efficient if polynomial-time. heuristics arc
used to solve the TSP, but less efficient if exponential-time algorithms are
used instead. Another important difference between the two transforma-
tion methods is that in the resulting TSP instance, the triangular Inequality

on distance measure is preserved under the first method, but not under
the second.

2. PRELIMINARIES

inequality (that is, for any three distinct nodes wu,wel dlu,v)+
d(v,w) > d(u,w)). Given any two paths Py =y, -y, - ... =y and P, =y,
Uy > in G, we use P, — P, to denote the path v, -y, - ...
i Uy DUy = -y For all positive integers k, we use [k] to denote the
set {0,1,...,4), and [£]* to denote the set {1,2,..., k).

Let G=(V,E) be a graph for which V= Vo, vy,...,u). The nodes in IV
arcgrouped - into g - | possibly intersecting, noncmpty  subscts,
Co,Cy,...,C,,, such that Co={v,}; for all i€[m]t, CoNC;=; and
UiZoCi=V. We call these subsets clusters. For all ; e [m
C; an intersecting cluster if there exists some j €[m] such thar J#i, and
CGNC+; and a nonintersecting cluster otherwise. By definition, C, is a
nonintersecting cluster, A path v, — Uy 7 2y in G s called a rour if
() I=n+1; (i) Ly=1i;=0; and (iii) for al| Lkell]*, i;#i,. The path is
called a g-tour if (i) m -+ 1<l<n+1; Gi) ip=1i,=0; (iii) for all Lkell]t,
ij#iy; and (iv) for all ke[m]t Ckﬂ{vil,viz,...,vil_l)9&@. The cost of a
tour or a g-tour is given by Z_f;‘od(v,-k,qm). By definition, a tour is a
special case of a g-tour,

For the case in which all clusters in G are nonintersecting, we call an

edge (v, v) an intercluster edge if v, and Y, belong to two distinct clusters
and an intracluster edge otherwise; we call a g-tour nonredundant if the
tour visits each cluster exactly once. These three terms are defined only on
those graphs in which ajj the clusters are nonintersecting,

Given a graph G with a distance measure d, the TSP is the problem of

finding a tour of Mmimum cost among all possible tours in G. Given that
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3. THE TRANSFORMATIONS

Given an instance G of the GTSP with possibly intersecting clusters, we
transform it into an instance G” of the TSP through two transformation

steps. In the first step, G is transformed irto an instance G’ of the GTSP

without intersecting clusters such that every g-tour in G' can be trans-
formed into a g-tour in G of no greater cost, and every optimal g-tour in
G’ can be transformed into an optimal g-tour in G. We call this transfor-
mation the I-N transformation (intersecting cluster to nonintersecting
cluster). In the second step, we transform G' into an instance G” of the
TSP such that there is a one-to-one correspondence between the tours in
G" and the nonredundant g-tours in G’, and such that the tour and the
nonredundant g-tour in any corresponding pair have the same cost. Since,
as shown below, there always exists a nonredundant g-tour in G’ that is
optimal, an optimal g-tour in G’ can be obtained from an optimal tour in
G". We call this transformation the G-S$ transformation (generalized TSP
to standard TSP). Under these two transformations, any tour in G” can be
transformed into a g-tour in G of no greater cost, and any optimal tour in

G" can be transformed into an optimal g-tour in G. If all the clusters in G

are nonintersecting, then the I-N transformation can be omitted, and the
G-S transformation can be applied dircctly with G’ = (.

As shown in the next two subsections, the graph G’ is also a complete
graph, with a distance measure satisfying the triangular inequality; neither
of these properties, however, holds for the graph G”.

3.1. THE I-N TRANSFORMATION

Let G=(V,E) be a graph with clusters Cy,Cy,...,C,,, some of which
are intersecting. The nodes in V are denoted by 0,1,..., n. For all x€[n),
let S, ={ilie[m], and x€C}; S, is the set of indices of all the clusters
containing the node x. We have Co={0}; C, is a nonintersecting cluster;
and §,={0}. For all x&[n], let q,.=IS.l. |

We transform G into a graph G'=(V', E') with m + 1 nonintersecting
clusters C{, {»--+,C,. For each node x in V, we create q, nodes in V',
These nodes are called the replicas of x, and are denoted by u, ;, for all

I€S,, with u, , in C/. The edges in E' are defined as follows.

(i) For all x&[n), and for all distinct i,j€S8,, we create an edge
(u, ;,u, ;) of zero cost.

(ii) For all distinct x, y & [n], corresponding to each edge (x, y) in E, we
create for all i€ S, and all JES,, the edges (u,;su, )in E' of the same
cost.
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By the definition of E’, the graph G’ is a complete graph. For all
x €[n], let h, be a path of length ¢ _—1 that connects all replicas of the
node x in some arbitrary, fixed order, that is, he=u,, DU o

a.iy,-,» Where for all distinct k,/&[q, ~ 1], i, %4, ang i1, €8, We call h,

graphs, but to simplify the figure, most of their edges are omitted. Figure 1
also shows a g-tour in G and its corresponding g-tour in G* (the corre-
spondence between the g-tours in G and the g-tours in G is established in
Theorem 6).

Lemma 1 shows that the distance measure on E' also satisfies the
triangular inequality. :

LEMMA 1. The distance measyre d (from the set E' to the ser of reals)
satisfies the triangular inequali

.

Proof. Let q, b, and ¢ be three arbitrary, distinct nodes in V’. We want
to show that d(a, b)+d(b, ¢)>d(a,c). There are three cases.

Case 1. The three nodes are the replicas of the same node.

In this case, the edges among a, b, and ¢ all have zero cost. Thus,
d(a,b)+d(b, c)=d(a,c).

Case 2. Two of the nodes are replicas of the same node, while the third
nede is the replica of a different node.

Without loss of generality, we assume that g and p are replicas of the
same node, say x, and c is the replica of a different node, say y, such that

x,y€[n] and x#y. We have d(a, b)=0, d(a,c)=d(b, c)=d(x, y). There-
fore, d(a,b)+d(b,¢) = d(a,c).

Case 3. a, b, and ¢ are replicas of three distinct nodes.

Let a, b, and ¢ be the replica of X, ¥, and z, respectively, where

X,¥,Z2&€[n], and x#y+#2z. Since the graph G satisfies the triangular in-
equality, we have

d(a,b) +d(b,c) =d(x,y) +d(y,z) >d(x,z) =d(a,c).
Since the triangular inequality Is satisfied in all three cases, the lemma
follows. [ |

Lemma 2 shows that if there is a g-tour in G’ that visits two replicas of
the same node in a nonconsecutive order, then we can always construct
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G’ Co < ™ g-tour

Fig. 1. Example of I-N transformation.

another g-tour in G’ of no greater cost, in which the two replica are visited
consecutively in some arbitrary order, and except for these two replicas,
the two g-tours visit the same sequence of nodes.

LEMMA 2. Assume thatr T' = Ugo = U - Uy viney
—u _’uxkn.iku = u _)uxl,i/—)uxlu.iln ) “’ux,,i,“"uo,o:

where m <r<n, is a g-tour in G' such that k,lelr]*, I>k+1, and X, =x,.

. - .
Ty uxz-’z

Xy iy Xi-nipoy



{ET AL.

¢ visited
replicas,

uxk-lvik—l
—Upos

r ’

i.xk =x,.

TRANSFORMATION OF GTSP INTO STANDARD TSP 183

Then T* =y, — Ue i ™ U —a—->b-uy

i X0y Xempoigoy Tratobpag
. , Y .- = . .
Xoniy T Mag i, Us,i, = Ug,0, where {a, b} {uxkv’k’ uxl"l}’

is also a g-tour in. G' of no greater cost.

—_> vae -ﬁl“

— e -—)u

Proof. We first assume that a=u, ; and b=u, . Since G' is a
complete graph, T* is a closed path in G’'; since T* visits the same set
of nodes as T' T* is a g-tour in G'. Further, X, =x; implies that
Upi, and u, . are the replicas of the same node in G. Thus, we have

du,, ;, u, ;)=0 and d(”xbil’”xm,im)=d(”xk,ik’ Ure.rir,)- Further, by
Lemma 1, we have
d(u” i W, i) _\_d(ux,_ iy u_‘.h,'l) + d(uxh,-,, Uer i)

Therefore, T* has a cost no greater than the cost of 7.

The proof for the case with a =U,,; and b =U,, i 1S similar, and thus
omitted. |

Lemma 3 shows that given any two replicas of the same node, if there
exists a g-tour in G’ that visits only one of the two replicas, then we can
always construct another g-tour in G’ of the same cost, in which both
replicas are visited constructively in some arbitrary order, and except for
the additional replica, the two g-tours visit the same sequence of nodes.

LEMMA 3. Let T'=uyg-u T ou

Sy . . -y .
X1ty X2:42 Th-1rlp -y Xrr bk

u, . " U Uy o beag-tourin G wherem <r<n, and k €[r]*.
Xia ks X0, 0,0 ’

Assume that there exists some JES,, such that Upj 18 not in T'. Then
* = . . . . A .

r uovo—)u"fnll —)uxz:'z . xk—lv’k—l_)a_:)b—_)/uxk+lv‘k+l I A

Uy o, where {a, b} = {uxk, ip s, ) is also a g-tour in G of the same cost.

-— ees _-)u

Proof. We first assume that g =u,.; and b =u, ;. Sincc G' is a
complete graph, and since all the nodes visited by 7" are visited by T*,T*
is also a g-tour in G’. Since d(uxk,,.k,uxk,j)-tO and d(uxk',.k,uv‘.k,,.“vl)=
d(uy, juy, ;. ), T* has the same cost as T"s.

The proof for the case with =u, ; and b=u, ; is similar, and thus
omitted. n

Lemma 4 shows that given an arbitrary g-tour 7' in G’, we can always
transform it into another g-tour T* in G’ such that (i) T* consists only of
a sequence of internal subtours, (ii) there is an internal subtour 4, in T*
connecting all the replicas of x if and only if T’ contains at least one of
the replicas of x, and (jii) the internal subtours appear in 7* in the same
order as the corresponding replicas first appear in 7.

LEMMA 4. Let T' = Uog DUy i DU, ", U be a g-tour
inG', wherem<r<n. Let 5, for 1 <s <r, be the number of distinct elements
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in the sequence X1, Xa,..., X, and let Y1 Y2505 ¥, be these s distinet elements
in the same order qs they first appear in the sequence X1,X3,...,X%,. Then
T =uy,, —h, —h, - - —h, Suy, isa &-tour in G' of no greater cost.

Proof. By Lemma 2, W€ can construct from 7' g g-tour 7' in G’ of no
greater cost such that (i) T visits the same set of nodes as T/, (ii) for all-
i€(s]*, those replicas of y; that are in T appear consecutively in some
arbitrary order in T, and (iii) for all Lj€ls]h if i< J» then the replicas of
Yi precede the replicas of y; in T. 3 )

By Lemma 3, we can next construct from T a g-tour T in G’ of no
greater cost such that (i) for al i€[s]*, T visits all the replicas of Y;» With
these replicas appearing consecutively in some arbitrary order in T, and
with the union of the replicas of YisY2,--., ¥, being all the nodes visited by
T; and (ii) for all i,je[s]*, if i<}, then the replicas of y, precede the
replicas of Y, inT. .

Since for all i €[5]", the order in which the replicas of Y; appear in 7 is
arbitrary, by making this order the same as the order in which these
replicas appear in the internal subtour h, , we have T'=T*, Therefore, T*
is a g-tour in G’ of a cost no greater than 7', n

Lemma 5 establishes the correspondence between the g-tours in G and
those g-tours in G, each of which consists only of a sequence of internal
subtours,

LEMMA 5. There is 4 g-tour Uoo—h, —h, > —h, suy, in G,
where 1 <s <n, if and only if there is a g-tour Up o Y12y, o >y — Ug g
in G of the same cost.

internal tour in G’ has zero cost; and (i) the cost of any edge (a,b) in G is
the same as the cost of any edge in G’ that connects a replica of a to a
replica of b. -

Theorem 6 states that any g-tour in G’ can be transformed into a g-tour
in G of no greater cost, and any optimal g-tour in G’ can be transformed
into an optimal g-tour in G.

THEOREM 6. Let T THo0 DUy DU i
in G', where m =r<n. Let s, where 1<s<r, be the number of distinct
elements in the sequence x, x,,...,x,, and let Y15 ¥Y2s-o05 ¥, be these s distinct
elements in the same order as they first appear in the sequence x,, x,,..., x,.
Then T=uy,->y, TY2 T DY U is a g-tour in G of no greater cost.
Further, if T' is an optimal g-tour in G', then T is also an optimal g-tour in
G.

Proof. Let T* =Ugg—h, —h, > - —h, =u;,. By Lemma 4, T* is
also a g-tour in G’ of a cost no greater than T"’s; by Lemma 5, T=u,,—
Yi72Va=2 =y >y s a g-tour in G of the same cost as T*s.
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We next show that if T is an optimal g-tour in G’, then T is an optimal
g-tour in G. Assume for contradiction that T is optimal, but 7 is not
optimal. This then implies that there is some other g-tour f”=uo‘0 -z >
227 7 2z Uy in G of a cost less than the cost of 7. Thus, by Lemma
5, there is a g-tour Up0—h, —h, > —h, >uy, in G’ of the same
cost as T°s, which is less than the cost of T'. This contradicts the
assumption that 7' is optimal. Therefore, T is an optimal g-tourin G. =

3.2. THE G-$ TRANSFORMATION

We now present the transformation of the GTSP with nonintersecting
clusters to the TSP. Let G’ be a graph with clusters Cy,Cl,...,C!, all of
which are nonintersecting. For all i€[m], let p,=|C/|. In this subsection,
We use v, o, ..., p~1 to denote the nodes in C/. We transform G’
into a graph G"=(V", E"), also with m+ 1 nonintersecting clusters

o Ci, ...,C. The nodes in P are obtained as follows.

(i) For the node Uy in Cy, we create two nodes @y, and ¢, , in C.
(i) For all i€[m)* and all Jelp,—1], corresponding to each node v
in C/, we create three nodes 4, b; ;, and ¢; j in C}; these nodes are
referred to, respectively, as the a-node, b-node, and c-node in G" corre-
sponding to v, j in G'.
(iii) For all i €[m]*, corresponding to each cluster C/ in V', we create
a node e; in C/.

The cluster Cjj consists of the nodes a, 4 and ¢y, and or all ; €[m]*,
the cluster C; consists of the node e; and all the g-nodes, b-nodes, and
c-nodes corresponding to the nodes in Ci. All the clusters are noninter-
secting.

We next construct the edges in E”. Given any two nodes u,v in G”, we
say that u is connected to v if the edge (u,v) is in E”

() In the cluster Cp, the node Co,0 1S connected to ay,0 with an edge
of zero cost,

(ii) For all €[m]*, in the cluster C/, all nodes, except e;, are
connected into a cycle 4i0b; g —>c; =4, 2b > o 24,
bip~1¢; —a;,; for all je[p,—1), b; ; is connected to a; ;; all the
c-nodes are connected to ¢;; and e, is connected to all the b-nodes. All
these edges have zero costs,

(iii) For all distinct Lke[m] all J€[p;—1], and all l€[p, —1], corre-

sponding to every intercluster edge (v, ;,v, ,) in E’, there is an intercluster
edge (a; ;,¢, ) in E” of the same cost.
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Note that as opposed to the graphs G and G', G" is not complete.
As a result, the distance measure on E” does not satisfy the triangular
inequality. . :

An example of applying the G-S transformation on the graph G’ to
obtain the graph G” is given in Figurc 2. To simplify the figure, most of
the edges in G' and G” are omitted. The {igure also shows a nonredun-
dant g-tour in G’ and its corresponding tour in G” (the correspondence

Fig. 2. Example of G-S transformation.
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between the nonredundant g-tours in G’ and the tours in G” is cstablished
in Theorem 10).

Since cvery intercluster cdge in E” is directed from an a-node to a
¢-node, every tour in G" enters a cluster through one of its c-nodes and
leaves the cluster through one of its a-nodes,

For all i€[m]* and for aJ] JELp;—1] let Si,j=a;;=>b; ;>c; ;, and let

L= Cii ™S ey IETRIET Sl T Siapi-1y € b, —a;

where the addition is modulo p;- The path 4;,; visits all the nodes in C’.
We call ¢, j the complete subtour of the cluster C; at ¢;,j» The cluster C”
has p; distinct complete subtours. For the special case of cluster Cy, we
define its complete subtour to be ¢y, = a4 ,. For example, in the graph G”
shown in Figure 2, the path ¢, | —»aq, =bg—c e, —by,—>ay, is the
complete subtour of cluster Ci at ¢, .

LEMMA 7. A tour visits every cluster in G” using one of its complete
subtours.

Proof. Let T" be an arbitrary tour in G”. For the clusters C}, since it
only has two nodes ao0 and ¢y, T" must visit Cy using the path
Co,0 ™ 4ay 4, which is the unique complete subtour of Cq.

We next prove the lemma for all the other clusters. In the following, we
use — to denote an intracluster edge and = to denote an intercluster
edge. Let i be an arbitrary index in [m]*. Let ¢;,;» Where j€[p.—1], be
the first node in Ci' visited by T”. We show that T visits all the nodes in
C/ using the complete subtour at ¢;,; by establishing the following three
claims.

Claim 1. The path =c; o —e b j>a; ;= - isin T
Since ¢; ; is the first node in Ci' visited by T” and since b; ; has only

/

’

two outgoing edges, one to a; ; and the other to ¢ ;» T" leaves b,;toa; i
otherwise, 7" would have visited c; ; at least twice. This, in turn, implies
that 7" enters b; ; from e, because b; ; only has two incoming edges, one
from a;;,» and the other from e;. Since a;; has only one intracluster
outgoing edge, which is to b, T" leaves a; ; using an intercluster edge.
Finally, since all the edges connected to €; are intracluster, and all the
outgoing edges of ¢;; are intracluster, the path = e —e; b -

@ ;= - isin T”,

Claim 2. T" enters and exits C!" exactly once.
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By Claim 1, if 7" enters C/ at a particular c-node, then it enters the
corresponding b-node from the e-node of the cluster. Since the e-node can
only be visited once, the claim follows, ’

Claim 3. T" visits C/ using the complete subtour at ¢ i

For the case that P:=1, Claim 3 follows trivially from Claim 1. We thus
assume that p.> 1. In the following analyses, all arithmetics are modulo D;.
By Claim 1, 7" ¢nters ! oat i and exits €7 gy a; i By Claim 2, 1 only
cnters and exits €' once. Therefore, T cnters alj the other c-nodes of
the cluster using intracluster edges, and also exits all the other a-nodes of
the cluster using intracluster edges. Since an a-node has only one intra-
cluster outgoing edge, which is directed to its corresponding b-node, and a
c-node has only one intracluster incoming edge, which is directed from iis
corresponding b-node, for all k€[ p,—1] such that k #j, the path a;
by —c,, isin T",

Further, for all ke [p;—1], ¢; « has only two outgoing edges, both being
intracluster, with one to ¢; and the other to @ik +1- Since the path --- =¢;
- —+e,~—>b,-yj—>a,v,j=° “risin 77, T” cannot leave Cij-1 to a; ;, but
must leave ¢, j-1 to e;. This, in turn, implies that for a kelp,— l]l such
that k+j—1,"T" leaves Cik 10 a; ;.. Therefore, T" visits C/ using the
complete subtour Ci,j ™ Sij41 7> 42 Sijap—17€ —b;; —a; . n

The previous lemma implies that every tour in G” consists only of a
Seéquence of complete subtours, Lemma 8 establishes a one-to-one corre-

spondence between the nonredundant g-tours in G’ and the tours in G”.

LEMMA 8. There is 4 nonredundant g-tour Y0 Y, ;, Dy, ;= o o
Uiim V0,0 in G' if and only if there is a tour Qo,0 28 j D, > >
ipjm €00 g4 in G of the same cost, where for all ketm]’L, i €[m]*,

and j, € [pl.k —1].

Proof. The lemma follows from the following two properties: (i) all the
intracluster edges in G” have zero cost; and (ii) the cost of an edge (x, y)
in G’ is the same as the cost of the corresponding intercluster edge in G”
that connects the g-node of x to the c-node of y. [ |

Given a g-tour T' in G* and a node x in T, we say that x is a redundant
node in T' if there exists some other node y in T’ such that x and y
belong to the same cluster in G,

LEMMA 9. There exists ar least one optimal, nonredundant g-tour in G,

Proof. Since G’ is a complete graph, there always exists some optimal
gtour 7' in G'. If T' is nonredundant, we are finished; otherwise, we
want to show that we can always construct ap optimal, nonredundant
g-tour from 7', Assume that 7" s redundant. Let C/, where ; e [m]*, be a
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cluster in G’ that is visited by T at least twice. We have T’ = Vg™ =
Vij > PUDY P w o s sy where j ke[ p,~ 1], and u,we V' (u
may equal to v, ; and w may equal to v, ). Let T* =Yg DY
—u—=w— e >y such that, except for omitting the node Vi, T* visits
the same sequence of nodes as T'. T* is also a g-tour in G', with one less
redundant node than T'. Since the distance measure on G’ satisfies the
triangular incquality (Lemma 1), T* has a cost no greater than T,
Further, since 7" is optimal, 7' and T* have the same cost, implying that
T* is also optimal. By applying the procedure described above repeatedly
for r~(m+1) times, where r is the length of T’, we can construct a
sequence of optimal g-tours, each of which visits one less redundant node
than its predecessor in the sequence, with the last one in the sequence
being nonredundant. |

THEOREM 10. There is a one-to-one correspondence between the nonre-
dundant g-tours in G' and the tours in G", with the tour and the nonredun-
dant g-tour in any corresponding pair having the same cost. Furthermore, an
optimal g-tour in G' can be obtained from an optimal tour in G".

Proof. By Lemma 7, every tour in G” consists only of a sequence of
complete subtours. Thus, by Lemma 8, we establish a one-to-one corre-
spondence between the tours of G” and the nonredundant tours of G !
with the tour and the nonredundant g-tour in any corresponding pair
having the same cost. Further, by Lemma 9, there exists at least one
nonredundant g-tour in G’ that is optimal. Therefore, an optimal g-tour in
G’ can be obtained from an optimal tour in G”. n

4. SUMMARY

By the I-N transformation and the G-S transformation presented in
this paper, given an instance G of the GTSP with intersecting clusters, we
can transform G into an instance G” of the TSP such that any tour in G”
can be transformed into a g-tour in G of no greater cost, and any optimal
tour in G" can be transformed into an optimal g-tour in G.
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