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Abstract-The performance of parallel combinatorial OR-tree 
searches (or OR-tree searches in short) is analytically evaluated in this 
paper. This performance depends on the complexity of the problem to 
be solved, the error allowance function, the dominance relation, and 
the search strategies. The exact performance may be difficult to predict 
due to the nondeterminism and anomalies of parallelism. We derive 
the performance bounds of parallel OR-tree searches with respect to 
the best-first, depth-first, and breadth-first strategies, and verify these 
bound by simulations. We show that a near-linear speedup can be 
achieved with respect to a large number of processors for parallel OR- 
tree searches. Using the performance bound developed, we derive suf- 
ficient conditions for assuring that parallelism will not degrade the per- 
formance, and necessary conditions for allowing parallelism to have a 
speedup greater than the ratio of number of processors. These bounds 
and conditions provide the theoretical foundation for determining the 
number of processors to assure a near-linear speedup. 

Index Terms-Anomalies, approximation, combinatorial search, 
dominance test, heuristic search, lower-hound test, OR-tree, parallel 
processing, performance bounds. 

I. INTRODUCTION 
N a wide class of combinatorial search problems in ar- I tificial intelligence, operations research, decision mak- 

ing, and various scientific and engineering fields, it is 
necessary to find one or more, optimal, suboptimal, or 
feasible solutions in a large problem space. A combina- 
torial search, in short a search, enumerates some or all 
elements of the problem space until the solutions are 
found. Combinatorial search problems can be classified 
into two types. The first type is decision problems that 
decide whether at least one solution exists and satisfies a 
given set of constraints [30]. Theorem-proving and expert 
systems belong to this class. The second type is combi- 
natorial extremum-search or optimization problems which 
are characterized by an objective function to be mini- 
mized or maximized and a set of constraints to be satis- 
fied. Many practical problems, such as finding the short- 
est path, planning, finding the shortest tour of a traveling 

' 

salesman, job-shop scheduling, packing a knapsack, ver- 
tex cover, and integer programming, belong to this class. 

Approximations and parallel processing are two major 
approaches to enhance the efficiency of combinatorial OR- 
tree searches. Owing to the exponential nature of many 
search problems, optimal solutions are usually infeasible 
to obtain. In practice, approximate solutions are accept- 
able alternatives. Experimental results on vertex-cover, 
0- 1 knapsack, and some integer-programming problems 
reveal that a linear reduction in accuracy may result in an 
exponential reduction of the average computational time 
[33]. On the other hand, parallel processing is applicable 
when the problem is solvable in polynomial time, or when 
the problem is NP-hard, but is solvable in polynomial time 
on the average [31], or when the problem is heuristically 
solvable in polynomial time. Parallel processing is gen- 
erally useful for improving the computational efficiency 
of solving a given problem, and not in substantially ex- 
tending the solvable problem size of the problem [34]. 

A search problem can be represented as either a tree or 
a graph. The nonterminal nodes in a search tree (or graph) 
can be classified as AND-nodes and OR-nodes. An AND- 
node represents a problem (or subproblem) that is solved 
only if all its descendent nodes have been solved. An OR- 
node represents a problem (or subproblem) that is solved 
only if any of its immediate descendents is solved. Based 
on these two kinds of nodes, a combinatorial search can 
be classified into an OR-tree search, an AND-tree search, 
and an AND/OR-tree search [34]. 

An OR-tree is a state-space tree in which all nonter- 
mina1 nodes are OR-nodes. It is important because it rep- 
resents nondeterminism, which is a natural property of 
many decision problems. Moreover, methods for solving 
OR-tree-search problems provides a basis to solving many 
general AND/OR-tree (or AND/OR-graph) search prob- 
lems. A lot of the heuristic search procedures, such as A*, 
B*, AO*, SSS*, and dynamic programming, can be for- 
mulated as a general branch-and-bound (B&B) procedure 
193, 1161, [26i. Likewise, evaluating a logic program can 
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when the parent and its descendants are searched in dif- 
ferent processors. In the corresponding OR-tree search, 
these broadcasts are eliminated because state information 
is only passed between the parent and one of the descen- 
dents that it activates. This savings in communication 
overhead is achieved at the expense of performing redun- 
dant search in the tree. A second reason for preferring 
OR-trees over OR-graphs is that, for some problems, the 
redundant nodes in the search tree are not apparent at pro- 
gram design time, and have to be found, usually at great 
overhead, at run time. For these reasons, we focus only 
on the efficiency of OR-tree searches in this paper. 

OR-parallelism and its efficiency has been studied ex- 
tensively in the literature [2], [ 171, [23]. One of the im- 
portant issues addressed is linear scaling, that is, when a 
large number of processors are used, how can an OR-tree 
search be scheduled without any reprogramming such that 
the speed of computation increases in direct proportion to 
the number of computing elements. Rao and Kumar ana- 
lyzed linear scaling in terms of an iso-efficiency function 
[ 171. It has been reported that linear scaling does not usu- 
ally hold for parallel game-tree searches [ 11, [4] and par- 
allel processing of forward-chaining rule-based expert 
systems [5]. Simulation results have also revealed that 
using more processors in parallel OR-tree searches might 
degrade the performance or might result in superlinear 
speedup when the communication overhead is ignored 
[ 181, [20], [28]. A number of conditions and methods to 
cope with anomalous behavior of branch-and-bound al- 
gorithms have been developed [18], [19], [21]-[23]. 

This paper presents new results on the efficiency of 
evaluating parallel OR-tree searches in the presence of an- 
omalies. Results are derived with respect to finding one 
of the optimal (or suboptimal) solutions in the problem 
space, although they can be generalized to finding all op- 
timal solutions. Our results are useful for designers to un- 
derstand the existence of anomalies and modify existing 
algorithms to cope with these anomalies. They can also 
be used to determinate a good search strategy and predict 
the maximum number of processors under which a near- 
linear speedup can be achieved. Our results are derived 
with respect to the conventional best-first, depth-first, and 
breadth-first search strategies. Performance is measured 
in terms of the number of nodes expanded for a given 
number of processors. Modified search strategies, such as 
the IDA* [ 131, RTA* [ 141, and modified A* search using 
a virtual memory system [35], consider tradeoffs between 
computational resources and evaluation efficiency. The 
derivation of performance bounds for these modified 
strategies is much harder as performance has to be eval- 
uated with respect to the actual execution time, rather than 
the number of nodes expanded. 

11. PARALLEL COMBINATORIAL OR-TREE SEARCHES 
A combinatorial OR-tree search procedure can be char- 

acterized by four constituents: a branching rule, a selec- 
tion rule, an elimination rule, and a termination condi- 
tion. The first two rules are used to decompose problems 

into simpler subproblems and to appropriately order the 
search. The last two rules are used to eliminate subprob- 
lems generated that are not better than the ones already 
known. Appropriately ordering the search and restricting 
the region searched are key ideas behind any OR-tree 
search algorithm. 

In contrast to conventional B&B algorithms, combina- 
torial OR-tree search algorithms allow approximate lower- 
bound and dominance tests as general elimination rules, 
and a generalized heuristic function as the selection rule. 
These rules are briefly explained in this section [6]. 

Let P, E ,  and T be, respectively, sets of subproblems, 
edges, and feasible solutions in the OR-tree. Let PI be the 
i th subproblem, PI, be the j th subproblem decomposable 
from PI , and f( P,)  be the value of the best solution ob- 
tained by evaluating all subproblems decomposable from 
P I .  For minimization problem, the lower-bound function 
satisfies the following properties. 

a) g ( P , )  5 f ( P l )  for PI E P. (2.1) 

b) g ( P , )  = f ( P l )  for PI E T.  (2.2) 

c) d P I )  I d P , )  for PI,) E E .  (2.3) 

If a subproblem is a feasible solution with the best ob- 
jective-function value so far, then its solution value be- 
comes the incumbent z .  The incumbent represents the best 
solution obtained so far in the process. During the search 
of an OR-tree, an active node PI is terminated if 

E 2 0, z I 0 (2.4) 

where E is an allowance finction specifying the allowable 
deviation of a suboptimal value from the exact optimal 
value, and an active node is a subproblem that has been 
generated but not expanded. (In searching for an optimal 
solution, the corresponding elimination condition is g ( P I )  
2 z . )  The final incumbent value zF obtained by the ap- 
proximate lower-bound test deviates from zo, the optimal 
solution value, by 

5 ZO I ZF E 2 0 ,  20 I 0. (2.5) 
ZF 

l + E  

Approximations significantly reduce the amount of inter- 
mediate storage and the time needed to arrive at a sub- 
optimal solution. In the following sections, L denotes the 
lower-bound cutoff test, that is, P,LP, means that PJ is a 
feasible solution and that f ( P J ) / (  1 + E) 5 g ( P , ) ,  
E I 0. 

Dominance tests are powerful elimination rules that are 
systematically applied in dynamic programming algo- 
rithms to reduce their complexity of enumeration [25]. In 
contrast to lower-bound tests which compare the incum- 
bent with the lower bounds of all active nodes, dominance 
tests use a set of parameters to compare pairs of nodes in 
the search tree. These nodes can be either nonterminal or 
terminal nodes, and either active or expanded nodes. In 
this sense, lower-bound tests can be regarded as a special 
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case of dominance tests. A lot of the well-known elimi- 
nation rules, such as a-0 pruning in game-tree searches, 
are actually dominance tests. Dominance tests, in the best 
case, can reduce the problem complexity from exponen- 
tial to polynomial. For example, the shortest-path and the 
two-stage flowshop scheduling problems require expo- 
nential time using lower-bound tests only, but can be 
solved in linear time on the average with dominance tests 
[SI. 

A dominance relation is a binary relation such that 
PiDPj  implies that Pi dominates Pj [7], [12]. Hence, for 
minimization problems, the subtree rooted at Pi contains 
a solution node whose value is no more than the minimum 
solution value of the subtree rooted at P j .  Thus if Pi and 
Pj are generated and P, DP, , then Pi can be terminated. 
As an example, in the knapsack problem, it is necessary 
to pack objects into a knapsack of fixed capacity such that 
the total profit is maximized. Subproblem Pi dominates 
Subproblem Pj if the two subproblems involve the same 
set of objects, and the total profit of Pi is larger than or 
equal to that of Pj , while the total weight of Pi is smaller 
than or equal to that of P j .  Some results on the parallel 
implementation of dominance tests have been reported 
1201, WI. 

Another method to reduce the search space is to order 
the subproblems expanded. If the list of active subprob- 
lems is maintained in a first-inlfirst-out order, then the 
algorithm is called a breadth-jirst search. If the list is 
maintained in a last-in/first-out order, then the algorithm 
is called a depth-first search. Lastly, if the list is main- 
tained in increasing order of lower bounds, then the search 
algorithm is called a best-$rst search. Ibaraki mapped 
these searches into a general form called heuristic 
searches' [6]. A heuristic function defines the order in 
which subproblems are selected and decomposed. The al- 
gorithm always decomposes the subproblem with the min- 
imum heuristic value. In a best-first search, the lower- 
bound values define the order of expansion. Therefore, 
the lower-bound function can be taken as the heuristic 
function. In a breadth-first search, subproblems with the 
minimum level numbers are expanded first. The level 
number can be taken as the heuristic function. Lastly, in 
a depth-first search, subproblems with the maximum level 
numbers are expanded first. The negation of the level 
number can be taken as the heuristic function. 

A generalized heuristic function can be used to unify 
depth-first, breadth-first, and best-first searches. A heu- 
ristic function is said to be monotone when 

h ( P i )  < h ( P j )  if Pj is a descendant of Pi.  (2 .6)  

Ibaraki also proved that, for any heuristic function, there 
exists an equivalent monotone heuristic function [6]. A 

'The definition of general heuristic searches used in  this paper is taken 
from Ibaraki's definition [ 6 ] .  Depth-first. breadth-first, and best-first 
searches are considered as special cases of heuristic searches. This is dif- 
ferent from the conventional definition of heuristic searches in artificial 
intelligence. 

heuristic function is said to be unambiguous when 

(2 .7)  
Notice that the heuristic functions defined conventionally 
for best-first, depth-first, and breadth-first searches are 
ambiguous because more than one node in the active list 
can have the same heuristic value. In subsequent sections, 
the properties on monotonicity and unambiguity are dis- 
cussed with respect to predicating the performance and 
coping with anomalies of parallel OR-tree searches. 

To resolve the ambiguity on the selection of subprob- 
lems, distinct heuristic values must be defined for the 
nodes to allow ties to be broken. A path number can be 
used to define an unambiguous heuristic function [20], 
[23]. The path number of a node in a tree is a sequence 
of (h  + 1 ) integers representing the path from the root to 
this node, where h is the maximum number of levels of 
the tree. The path number E = eOel . * e h  is defined 
recursively as follows. The root Po exists at Level 0 with 
a path number 000 - . 0. A node PI, on Level L,  which 
is the j t h  child (counting from the left and starting from 
zero) of P, with path number E, = eOel . . , 
has path number E!, = eo el * * . eL - j00 . . Accord- 
ing to this definition, nodes can have equal path numbers 
only if they have the ancestor-descendant relationship. 
Since these nodes never coexist simultaneously in the ac- 
tive list, the subproblems in the active list always have 
distinct path numbers. For example, the path numbers of 
all nodes in the tree in Fig. 1 are shown next to the nodes. 
Relations " > " and " e " on path numbers are defined in 
the usual sense as those of integers. 

In best-first and breadth-first searches, the path number 
can be included in the general heuristic function as a sec- 
ondary key to resolve ties in the primary key, which is 
still the lower-bound value or the level number. In depth- 
first searches, the path number serves as a primary key. 
That is, 

h ( P , )  # h(P, )  if Pi # PI P i ,  PI E P. 

eL - 000 . * 

(level number, path number) 

breadth-first search 

(path number, level number) 

depth-first search 

(lower bound, level number, path number) 

or (lower bound, path number, level number) 

h ( P , )  = 

[ best-first search 

where the level number, path number, and lower bound 
are defined for Pi. For a best-first search, nodes with iden- 
tical lower bounds can be searched in a breadth-first or 
depth-first fashion. In general, unambiguous heuristic 
functions are not restricted to the use of path numbers. 
Any tie-breaking rule can be adopted as long as (2.7) is 
satisfied. 

The definition of the path number dictates that a partial 
order exists among successors of any given node in the 
search tree, and such an order is used consistently by both 



16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. I ,  JANUARY 1990 

level 0 

level 1 

level 2 

level 3 

level 4 

01110 01111 

Fig. I .  The path numbers of a tree 

the sequential and parallel algorithms. Such a partial or- 
der implies that the same algorithm for decomposing a 
given node into successors is consistently used in both the 
sequential and parallel search. An attribute for defining 
this partial order may be needed if successors of a given 
node are generated in a random order. The lower-bound 
values can serve to define this partial order. 

OR-tree searches have inherent parallelism. Each of the 
four rules of serial OR-tree search algorithms can be im- 
plemented by parallel processing. When k processors are 
used, if the number of active subproblems is greater than 
or equal to k in an iteration, then k subproblems with the 
k smallest heuristic values can be selected for decompo- 
sition; otherwise, all active subproblems can be selected. 
Parallel computer architecture for OR-tree searches have 
been studied elsewhere [20], [32]. 

111. BOUNDS ON COMPUTATIONAL EFFICIENCY OF 
PARALLEL OR-TREE SEARCHES 

To predict the number of processors needed to assure a 
near-linear speedup, we need to derive the bounds on 
computational efficiency of a parallel OR-tree search. The 
results in this section indicate the relationship among the 
number of nodes expanded in a parallel search, the num- 
ber of processors used, and the complexity of the problem 
to be solved. 

A. Model of Eficiency Analysis 
In analyzing the performance bounds, a synchronous 

model is assumed, that is, all processors must finish the 
current iteration before proceeding to the next iteration. 
The performance is difficult to evaluate if the parallel 
search algorithm were evaluated asynchronously. The 
performance results for synchronous models form a lower 
bound to that of asynchronous models. 

The parallel computational model used here consists of 
a set of processors connected to a shared memory. In each 
iteration, multiple subproblems are selected and decom- 
posed. The newly generated subproblems are tested for 
feasibility (and the incumbent updated if necessary), 
eliminated by (exact or approximate) lower-bound tests 
and dominance tests, and inserted into the active list(s) if 
not eliminated. In this model, eliminations are performed 

after branching instead of after selection as in Ibaraki's 
algorithm [7] in order to reduce the memory space re- 
quired. 

The shared memory in the above computational model 
may seem to be a bottleneck of the system. However, this 
model can be transformed into a second model in which 
all processors have a private memory and are connected 
by a ring network. We have found that the efficiency of 
parallel OR-tree search algorithms in the transformed 
model is very close to that of the original model, and the 
performance is not affected by whether the active sub- 
problems are kept in a single list or multiple lists [23], 
[32]. Since subproblems are decomposed synchronously 
and the bulk of the overhead is on branching operations, 
the number of iterations, which is the number of times 
that subproblems are decomposed in each processor, is an 
adequate measure in both the serial and parallel models. 
The speedup is thus measured by the ratio of the number 
of iterations with respect to the different number of pro- 
cessors used. Once the optimal solution is found, the time 
to drain the remaining subproblems from the list(s) is not 
accounted for since this overhead is negligible as com- 
pared to that of branching operations. 

The results proved in subsequent sections show the per- 
formance bounds of parallel best-first, depth-first, and 
breadth-first searches, respectively. The proofs of these 
theorems require the following definitions on essential 
nodes and basic nodes. A node expanded in a serial OR- 
tree search under a given heuristic function is called an 
essential node for that heuristic function; otherwise, it is 
called a nonessential node. The speedup of a parallel OR- 
tree search under a given heuristic function depends on 
the number of essential nodes selected in each iteration. 
An iteration is said to be perfect if the number of essential 
nodes selected is equal to the number of processors; oth- 
erwise, it is said to be imperfect. We denote T , ( k ,  E ) ,  

Td ( k ,  E ), and T,. ( k ,  E ) as the number of iterations required 
to find a single optimal (or suboptimal) solution using k ,  
k L 1, processors and an allowance function E in a best- 
first, depth-first, and breadth-first search, respectively. 
The subscripts b ,  d ,  or r are omitted when the context 
refers to more than one search strategy. 

A basic node is the node with the smallest heuristic 
value in each iteration. It is easy to show that if P, is a 
basic node and Pi is any node with a smaller heuristic 
value, then Pj must be either expanded or terminated when 
Pi is expanded [20]. 

Let 4rk ,  k I 1, be the set of nodes expanded in the OR- 
tree using k processors. In fact, +' is a set of essential 
nodes. The following theorem states that any heuristic 
search with an unambiguous heuristic function can be 
guaranteed to expand at least one node in 4r' in each it- 
eration of the parallel search, when an exact optimal so- 
lution is sought and dominance tests are inactive. 

Theorem 3.1: Let E = 0 and D = I ,  i.e., an exact op- 
timal solution is sought and dominance tests are inactive. 
For any parallel heuristic search with a heuristic satisfy- 
ing (2.6) and (2.7), all basic nodes are essential nodes, 
i.e., all basic nodes belong to 9'. 
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Proof: The proof is omitted due to space limitation 
1221 3 t231. 0 

B. Parallel Update of Incumbent 

When the search is done in parallel, the way in which 
the incumbent is updated plays an important role in de- 
termining the lower bound of T ( k ,  E )  and in coping with 
anomalies in approximate search. When more than one 
feasible solution is obtained in an iteration, updating the 
incumbent with the minimum feasible solution does not 
always result in a smaller search overhead and better so- 
lution. This phenomenon is demonstrated in an OR-tree 
search in Fig. 2(a) with E = 0.1. The suboptimal solution 
found in a serial depth-first search is F7 (with value 70), 
and subtree T is eliminated. When the same tree is 
searched by four processors using a parallel depth-first 
search, five feasible solutions, F , ,  - , F5,  are generated 
in the fourth iteration. If the minimum among the five 
feasible solutions is chosen as the incumbent, F, (with 
value 75)  will become the incumbent, which eliminates 
P4 and P5 by approximate lower-bound tests (2.4). As a 
result, Subtree T, which may be very large, has to be ex- 
panded. To avoid this problem, the following algorithm 
updates the incumbent in a consistent fashion when mul- 
tiple feasible solutions are obtained in an iteration. 

Serial/Parallel Incumbent-Update Algorithm: 
a) When multiple feasible solutions are obtained in 

an iteration, they are compared to the incumbent. A fea- 
sible solution is eliminated if either its value is larger than 
or equal to the current incumbent, or the lower bound of 
its parent is not less than [incumbent/( 1 + E ) ] .  If all 
feasible solutions are eliminated, then exit. 

b) If there is one or more feasible solution whose 
value is less than the current incumbent and the lower 
bound of its parent is less than [incumbent/( 1 + E ) ] ,  

then the feasible solution with the smallest heuristic value 
is chosen as the new incumbent and eliminated from fur- 
ther consideration. If there are no remaining feasible so- 
lutions, then the algorithm exists; otherwise, the entire 
Incumbent-Update algorithm is repeated. 

Since the number of incumbents in an OR-tree search 
is usually small, it rarely happens that two or more incum- 
bent-updates are needed in the same iteration. 

To uniquely define the sequence of feasible solutions 
generated under a given heuristic function and a fixed 
number of processors, a feasible solution F, is said to ap- 
pear before another feasible solution 4 in the sequence 
of feasible solutions if either F, and 4 are obtained in the 
t,th and tJth, t, < t, , iterations, or they are obtained in the 
same iteration and h ( F , )  < h ( F J ) .  The following theo- 
rem proves the correctness of the Incumbent-Update al- 
gorithm. 

Theorem 3.2:  In an OR-tree search with D = I ,  the 
sequence of distinct incumbents obtained in the serial and 
parallel searches are identical regardless of E and the 
number of processors used if the following conditions are 
satisfied: a) a feasible solution F, appearing before an- 
other feasible solution FJ implies that h ( F ,  ) < h ( 4  ) in 

f=90 95 100 80 75 85 70 80 
Fi Fz Fa F, FI F6 F ,  FB 

(a) 

/ serial 
,---. ,/--\, 

depth- 
first 

FI Fz F ,  F+ F6 F I  Fa search 
1, I z  I ,  

(b) € = 0.1 

/------ -. . 
, parallel 

depth- 
first 
search 

,' 

d- 
F >  FI F ,  F I  FI F6 F, F I  
I !  I p  I5 

(C) 
Fig. 2. The SeriaUParallel Incumbent-Update algorithm. (Nodes pointed 

to by dashed arrows are eliminated by lower-bound tests. I , ,  I , ,  and I ,  
are three distinct incumbents obtained during the serial and parallel 
searches.) (a) Complete search tree with feasible solutions indicated as 
shaded nodes. (b) Sequence of incumbents generated and pruned in a 
sequential depth-first search. (c) Sequence of incumbents generated and 
pruned using the Serial/Parallel Incumbent-Update algorithm. 

both the serial and parallel cases, and b) the Serial/Par- 
allel Incumbent-Update algorithm is used. 

Proof: The theorem is proved by induction. Let the 
sequence of all possible feasible solutions as ordered by 
the corresponding heuristic values be F l ,  , F,,. The 
initial feasible solutions (or incumbents) in the serial and 
parallel cases before the search begins are identical. (An 
infinite value is taken as the first incumbent if there is no 
heuristic method to find the initial feasible solution.) Sup- 
pose that the sequence of the first k distinct incumbents in 
the serial and parallel searches are identical and that Fi is 
the kth incumbent. Let 6, j > i, be the ( k  + 1)th distinct 
incumbent in the serial case. We now show in the parallel 
search that any feasible solution F,, i < x < j ,  cannot 
become an incumbent and that 4 must be the ( k  + 1 )th 
distinct incumbent. Note that for all possible feasible so- 
lutions F,, i < x < j ,  either a) f ( F , )  > f ( F ; ) ,  or b) 
g ( P , )  1 f ( F , ) / (  1 + E ) ,  rn I i, where P, is the parent 
of F, .  In Case a), F, will be eliminated by F j  in the par- 
allel case. In Case b), F, must also be eliminated by Fi in 
the parallel search according to (2.3) and Step a) of the 
SeriaVParallel Incumbent-Update algorithm. Since f ( 4  ) 
< f ( F j )  and g ( P j )  < f ( F j ) / (  1 + E ) ,  4 cannot be elim- 
inated in the parallel search, where Pj is the parent of Fj . 
Further, h ( 4 )  has the smallest heuristic values among 
those of all possible feasible solutions F,, j I y I n,  
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hence FJ has to be selected as ( k  + 1 )th incumbent in the 

The example in Fig. 2 illustrates the SeriaUParallel In- 
cumbent-Update algorithm and demonstrates the result in 
Theorem 3 . 2 .  In this OR-tree, using a depth-first search 
satisfies the condition that F, appearing before FJ implies 
that h ( F , )  < h(F, ) .  The sequence of feasible solutions 
obtained in the parallel depth-first search with four pro- 
cessors is F I ,  . , F8. During the parallel search, five 
feasible solutions, F , ,  * , F5, are obtained in the fourth 
iteration. According to the SeriaUParallel Incumbent-Up- 
date algorithm, F2, F3, and F5 are eliminated in Step a), 
and F4 becomes the second incumbent. In the next itera- 
tion, F6 and F, are eliminated, and F7 is the final incum- 
bent. Hence the sequence of incumbents is F I ,  F4, and F7, 
which is identical to that of the serial case. 

To derive the performance bounds of parallel depth-first 
and breadth-first searches, the following corollary is 
needed. 

Corollary 3.1: In a parallel OR-tree search with 
D = I ,  all essential nodes under a given heuristic function 
must be expanded if the following conditions are satis- 
fied: a) the sequences of distinct incumbents are the same 
in the serial and parallel cases, and b) PI L P, and Pk is the 
parent of PI imply that h ( P k )  < h ( P , ) .  

Proof: Suppose that an essential node P I  is elimi- 
nated by Node P,,  and that P,  is the parent of P, ,  then 
h ( P 3 )  must be less than h ( P I  ) from Condition a). Since 
in a serial search, the nodes are expanded according to the 
heuristic values, P3 should be selected before P I .  From 
Condition b), the feasible solution P2 must be obtained in 
the serial case as well, hence P I  must also be eliminated 
and cannot be an essential node. A contradiction! 0 

Note that Condition a) of Theorem 3.2  and Condition 
b) of Corollary 3.1 are not satisfied for all OR-trees and 
search strategies even if the SeriaUParallel Incumbent- 
Update Algorithm is used. In particular, we have found 
that for E I 0, the conditions are satisfied for all OR-trees 
searched by a breadth-first search, and an OR-tree with 
feasible solutions at the bottom-most level and searched 
by a depth-first search. The proof for the case using a 
depth-first search is shown in Corollary 3 . 2 .  The proof 
for the case with a breadth-first search is straightforward 
and is not shown here. In both cases, the same sequence 
of distinct incumbents to be generated in the serial and 
parallel searches can be maintained by the Incumbent-Up- 
date Algorithm. Counterexamples can be designed to 
show that the conditions are invalid when an OR-tree with 
an arbitrary structure is searched by a best-first or a depth- 
first search. 

C.  Purullel Best-First Searches 
The performance bounds of a parallel best-first search 

are shown in the following theorem. 
Theorem 3.3: Suppose that E = 0, D ,= 1. Let the root 

be in Level 0 and h be the maximum number of levels in 
an OR-tree. If the heuristic function satisfies ( 2 . 6 )  and 
( 2 . 7 ) ,  then the following bounds hold for the parallel best- 
first search with k processors. 

parallel search. 0 
- 

where TL ( 1, 0 )  is the number of essential nodes in a serial 
best-first search with lower bounds less than the optimal- 
solution value. 

Proof: All the required iterations to find an optimal 
solution can be classified into either perfect or imperfect, 
and imperfect iterations cause degradation in performance 
in parallel processing. The proof of the upper bound cen- 
ters on finding the maximum number of imperfect itera- 
tions. Let hmln(x) be the level with the minimum level 
number in which some active essential nodes reside in the 
xth iteration, which is an imperfect iteration. For levels 
less than h, , , (x) ,  all active nodes are nonessential. We 
show that Iteration x may be imperfect only if all essential 
nodes in hmln(x)  are selected for expansion. Suppose that 
Iteration x is imperfect and that an essential node, say P I ,  
in h,,, ( x )  is not selected for expansion, then this contra- 
dicts the selection rule of a heuristic search, since in this 
case at least one node with a heuristic value greater than 
h ( P I )  is selected. (Note that all nonessential nodes have 
heuristic values greater than those of essential nodes.) 
Thus after Iteration x is carried out, h, , , (x)  must be in- 
creased by at least one, that is, k,,, ( x  + 1 ) > (h , , ,  (x) 
+ 1) .  

As h,,, ( x  + 1 ) must be less than h ,  the maximum num- 
ber of levels, and the root is defined at Level 0, there can 
be at most h imperfect iterations. When E = 0 and D = 
I ,  it is true that once all essential nodes are expanded, the 
optimal solution must be found. Recall that in each iter- 
ation at least one essential node must be selected accord- 
ing to Theorem 3 . 1 .  The upper bound of Th ( k ,  0)  satisfies 

To find the lower bound of Th ( k ,  0),  we know that when 
E = 0 and D = I ,  all essential nodes with lower bounds 
less than the optimal-solution value must be expanded in 
a parallel best-first search. On the other hand, the first 
iteration during which the root node is expanded is im- 
perfect for k > 1. Hence 

0 

The bounds in ( 3 . 1 )  are tight in the sense that examples 
can be generated to achieve one of these bounds. In the 
case that a feasible solution must be located in levels 
greater than or equal to h ' ,  then h' iterations are neces- 
sary, and T h ( k ,  0)  > max ( h ' ,  ( T i (  1 ,  0)  - l ) / k  + 1 ) .  
In this paper, we assume that [ ( T i (  1 ,  0 )  - l ) / k  + 1 J 
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Lower No. of Upper Speedup Lower No. of Upper Speedup 
bound iterat. bound bound iterat. bound 

2 h’. Notice that if we know L,,,, the maximum level in 
which at least one essential node exists, i.e., there is no 
essential node in levels larger than L,,,, then the upper 
bound can be tightened by substituting L,,, for h in (3.1). 
In practice, the information on L,,, is not available in 
advance [ 191, [20]. 

In (3. l ) ,  h is a function of the problem size. However, 
Tb( 1, 0)  and Ti (1 ,  0)  reflect the complexity of the prob- 
lem to be solved and are unknown before the solution is 
found. Tb( 1, 0)  can be estimated, as in the analysis of 
Alpha-Beta algorithms [ l ] ,  [ l l ] ,  [27], by defining a 
branching factor a. 

The branching factor measures the average number of 
branches of an essential node and can be estimated statis- 
tically. For example, a is close to 1.1 for knapsack prob- 
lems when all profits and weights are independent and are 
generated from uniform distributions. Ti (1, 0) can be es- 
timated by sampling methods from the problem charac- 
teristics and the distribution on the number of subprob- 
lems generated. 

Let w be Tb( l , O ) / h .  w can be viewed as the “average 
width” of an OR-tree, which only consists of essential 
nodes. Equation (3.2) can be rewritten as 

(3.3) 

Equation (3.3) shows that if w >> k, then the speedup is 
close to k ;  whereas if w << k , then the lower-bound 
speedup is close to w. 

Equation (3.1) shows that a near-linear speedup can be 
achieved when a large number of processors are used. As 
an example, if h = 50, Tb( 1, 0) = lo6 (for a typical 
traveling-salesman problem), and k = 1000, then 
Tb( 1000,O) I 1049. This means that a near-linear speed- 
up can be attained with one thousand processors. In Table 
I, the theoretical bounds derived above are compared with 
the simulation results of parallel best-first and depth-first 
searches for solving two 35-object knapsack problems. In 
generating the knapsack problems, the weights, w (  i ) ,  
were chosen randomly between 0 and 100 with a uniform 
distribution, and the profits were set to be p (  i )  = ( w (  i )  
+ 10). This assignment is intended to increase the com- 
plexity of the randomly generated problems. The results 
demonstrate that the bounds on parallel best-first searches 
are very tight, hence its performance can be predicted ac- 
curately. Table I also shows that the speedup depends 
strongly on w. In Case 1, w t: 2023 and a near-linear 
speedup of 0.93k is achieved with 256 processors. In Case 
2, w = 188 and a speedup of 0.48k is obtained with 256 
processors. Other simulation results also demonstrate a 
similar behavior. 

From Theorem 3.3, it is easy to determinate the maxi- 
mum number of processors to guarantee a near-linear 
speedup. Assume that the speedup required is 

I Parallel Depth-First Search I 

or 

k I (” T6(l, 0) + 1). 
Ilh 

For instance, if 11 = 0.9, h = 50, and Tb( 1.0) = lo6, 
then k I 2223. That is, a minimum of 0.9k speedup is 
obtained if 2223 or less processors are used. 

Note that in parallel best-first searches with E = 0, es- 
sential nodes can be eliminated only if their lower-bounds 
are equal to the optimal-solution value. When E > 0, other 
essential nodes can also be eliminated because it is pos- 
sible for a feasible solution whose value is slightly larger 
than the optimal-solution value to be found early in the 
parallel case, while this solution is found quite late or even 
not found in the serial case. A looser lower bound with 
respect to approximate best-first searches is derived in 
Sections IV-C-3. 

D. Parallel Depth-First Searches 
The performance of a parallel depth-first search can be 

analyzed in terms of the generalized heuristic function. 
The following theorem shows the performance bounds of 
parallel depth-first OR-tree searches. The range of bounds 
on parallel depth-first searches are larger than that of par- 
allel best-first searches. 

Theorem 3.4: For a parallel depth-first search with k 
processors, E = 0, D = I ,  and a generalized heuristic 
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function h ( P j )  = (path number, level number), then 

+ - [ ( c  + 1)h  - c ]  k 

where c is the number of the distinct incumbents obtained 
during the serial depth-first search, and Ti( 1, 0)  is the 
number of essential nodes in a serial best-first search with 
lower bounds less than the optimal-solution value. 

Proof: The sequence of iterations obtained during a 
serial depth-first search can be divided into ( c  + 1 ) sub- 
sequences according to the c distinct monotonically de- 
creasing incumbents obtained. Let the c feasible solutions 
and their corresponding parents be denoted by F , ,  . - - , 

F, 
are obtained in the ilth, , i,th iterations, respectively. 
Hence iterations from 1 to i l  belorig to the first subse- 
quence, and iterations from ij + 1 to i, + , belong to the 
j t h  subsequence. 

Consider the first subsequence of iterations. Suppose 
that the j th ,  1 5 j 5 i l ,  iteration is imperfect. This im- 
perfect iteration occurs because either less than k nodes 
are selected due to insufficient active subproblems, or 
some nodes are expanded in the parallel depth-first search 
but are eliminated in the serial case. In the latter case the 
heuristic values of these nodes must be greater than h ( P I  ) 
because the incumbents used initially in the serial and par- 
allel cases were identical, and if the heuristic values of all 
expanded nodes in an iteration were less than h ( P I  ), then 
this iteration is necessarily a perfect iteration. Let h,,, (x) 
be the minimum level in which some active nodes with 
heuristic values less than h ( P I  ) reside in the xth imper- 
fect iteration. Similar to the proof of Theorem 3.3, we 
have 

F,, and P I ,  - - , P,. Further, assume that F 1 ,  . 

hrnin(x + 1 )  2 (hmin(x) + 1). 

Consequently, after at most h imperfect iterations, F 1 ,  the 
first feasible solution better than the initial incumbent, 
must be found. 

Analogous to the above argument, we can prove that in 
the ith, 1 < i I c,  subsequence of iterations, at most h 
imperfect iterations will be encountered before a better 
feasible solution is obtained. During the last subsequence 
of iterations, since the optimal solution has been gener- 
ated, all iterations are imperfect only if less than k nodes 
are selected in each iteration. In other words, an imperfect 
iteration implies that all currently active nodes are se- 
lected and expanded, and only descendents of these nodes 
can be active in the next iteration. Hence no active node 
remains after at most h imperfect iterations in the last sub- 
sequence. The previous analysis shows that at most 
( c  + 1 ) h imperfect iterations can appear in a parallel 
depth-first search. Since at least one node in each iteration 
in the parallel case belongs to +I, the upper bound of 

T,l(k,  0)  can be derived as 

In the above discussion, the expansion of the root is 
counted in each of the ( c  + 1 ) subsequences. Since the 
root is only expanded once, the above upper bound should 
be compensated by the additional number of times that the 
root is expanded (3.4). 

The lower bound on Td( k ,  0)  can be proved easily be- 
cause all essential nodes in a serial best-first search with 
lower bounds less than the optimal solution must be ex- 

0 
For problems such as integer programming and 0-1 

knapsack, all feasible solutions are located in the bottom- 
most level of the OR-tree. In this case, the following cor- 
ollary shows that all essential nodes of a serial depth-first 
search must be expanded in a parallel depth-first search, 
and a tighter lower bound is obtained. 

Corollary 3.2: In searching an OR-tree using a parallel 
depth-first search and a heuristic function of (path num- 
ber, level number), if all feasible solutions are in Level 
h ,  and the SeriaUParallel Incumbent-Update strategy is 
used, then 

panded in the parallel depth-first search. 

where A is the maximum number of levels of the OR-tree. 
Proof: First we show that under the given assump- 

tions, Pi L P, implies that h ( P k )  < h ( P, ) ,  where Pi is in 
Level h ,  Pj is in Level j ,  j < h,  and Pk is the parent node 
of P i .  Suppose that Pi L Pj and h ( P , )  < h ( P k ) ,  then when 
Pk is expanded, an ancestor of P,,  say Pa,  has to be ex- 
panded simultaneously from the defined selection rule and 
(2.6). Note that when P,  is active, h ( P , )  < h ( P k ) ,  that 
P ,  is in Level ( h  - 1 ), and that P,  is in a level less than 
( h  - 1 ). Let P,,, be the first common ancestor of Pi and 
P,.  By carrying out the above argument repeatedly, P ,  
has a child P,' which is expanded simultaneously with an 
indirect descendant P; , where PA is an ancestor of P,, and 
Pi is an ancestor of P k .  It is also seen that P; is at a level 
number larger than that of P,'. Thus when P ,  is expanded, 
all descendant nodes between P ,  and P; must be gener- 
ated simultaneously, which is an impossible situation. 

The above argument also shows that a feasible solution 
P, obtained before Pi implies that h ( P , )  < h ( P i ) .  By 
using the Serial/Parallel Incumbent-Update strategy dis- 
cussed in Section 111-B, the sequences of distinct incum- 
bents are the same in the serial and parallel cases accord- 
ing to Theorem 3.2. By Corollary 3.1, all essential nodes 
must be expanded in a parallel depth-first search. The 

0 
The bounds in Theorem 3.4 are tight in the sense that 

we can construct examples to achieve the lower-bound and 
upper-bound computational times. These degenerate cases 
occur rarely. Simulations have revealed that for a number 
of OR-tree search problems, Td( k ,  0)  may be very close 

lower bound of T d ( k ,  E )  is derived immediately. 
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to Tb(k, 0). The second part of Table I shows the simu- 
lation results of solving two cases of the 0-1 knapsack 
problems using a depth-first search. Note that when the 
number of processors is large, the number of essential 
nodes in each imperfect iteration of the parallel depth-first 
search is usually larger than one. In contrast to the upper 
bound in (3.4), which was derived with the assumption of 
one essential node in each imperfect iteration, Td( k,  0)  
may be much smaller than the upper bound. 

Although c ,  the number of distinct incumbents, is un- 
known until the solution is found, c is usually small and 
can be estimated when integral solutions are sought. It has 
been observed that c is less than 10 for vertex-cover prob- 
lems with less than 100 vertices. For most integer pro- 
gramming problems, c = 1 .  In these cases, the bounds 
given in Theorem 3.4 are tight. 

E. Parallel Breadth-First Searches 
The following theorem presents the performance bounds 

on parallel breadth-first searches. 
Theorem 3.5: For a parallel breadth-first search with k 

processors, D = I ,  and a generalized heuristic function 
satisfying (2.6) and (2.7), and using the Serial/Parallel 
Incumbent-Update strategy, then 

+ 

where c is the number of distinct incumbents obtained 
during the serial breadth-first search. 

Proof: For a parallel breadth-first search, there are 
two possible cases in which imperfect iterations may ex- 
ist. First, when the number of active subproblems is less 
than k,  an imperfect iteration occurs and may happen at 
most h times from our discussion in Theorems 3.3 and 
3.4. Second, imperfect iterations may occur if there exist 
some nodes that are eliminated by a feasible solution in 
the serial case but are expanded simultaneously with the 
parent of this feasible solution in the parallel case. From 
Theorem 3 . 1 ,  it is easy to show that at least one essential 
node must be expanded in a parallel iteration. T r ( k ,  E )  is, 
thereby, bounded by 

k - 1  ") + - ( c  + h ) ) .  T,(k, E )  I (% 
k 

On the other hand, in breadth-first searches, all essential 
nodes have to be expanded in the parallel case (Theorem 
3.2 and Corollary 3.1) .  Thus T,.(k, E )  has the following 
lower bound. 

U 

Since the performance bounds of Tr(k, 0)  are tighter than 
those of Td(k, 0), the performance of parallel breadth- 
first searches can be predicted more accurately. 

1 v .  COPING WITH ANOMALIES I N  PARALLEL OR-TREE 
SEARCHES 

Up to now, the efficiency of parallel OR-tree searches 
have been little studied. When comparing the efficiency 
between using k ,  processors and k2,  1 I k l  < k 2 ,  pro- 
cessors, a k2/kl-fold speedup (ratio of the number of it- 
erations in the two cases in our model) is expected. How- 
ever, simulations have shown that the speedup can be a) 
less than one (called a detrimental anomaly) [lo], [18], 
[24]; or b) greater than k2/kl  (called an acceleration 
anomaly) [lo], [18]; or c) between one and k 2 / k l  (called 
a deceleration anomaly) [lo], [ 181, [24]. So far, all known 
results on parallel OR-tree searches showed a near-linear 
speedup for only a small number of processors. 

The objective of this section is to develop, using the 
results in Section 111, conditions ro cope with the anom- 
alous behavior of parallel OR-tree search algorithms in 
the possible presence of approximations and dominance 
tests. Anomalies are studied with respect to the same 
search strategy. In general, anomalies should be studied 
with respect to the best serial algorithm and the best par- 
allel algorithm (with possibly a different search strategy 
than that of the serial algorithm). However, conditions to 
resolve these anomalies would be problem dependent and 
may result in a large number of cases that cannot be 
enumerated. Anomalies are also studied with respect to 
the assumption that all idle processors are used to expand 
active subproblems. In fact, detrimental anomalies cannot 
happen if some processors can be kept idle in the presence 
of active subproblems. The number of processors to be 
kept idle is problem dependent and is very difficult to find 
without first solving the problem. 

The conditions to resolve anomalies are described with 
respect to serial-to-parallel processing, which is process- 
ing between using one and k processors, and parallel-to- 
parallel processing, which is processing between using k ,  
and k 2 ,  1 < k l  < k2 processors. The conditions to cope 
with serial-to-parallel anomalies and parallel-to-parallel 
anomalies are different. These conditions we developed 
are useful for designers to understand the existence of an- 
omalies and to modify existing algorithms to prevent det- 
rimental anomalies and enhance acceleration anomalies. 

A .  Anomalies of Parallel OR-Tree Searches 
In this section, some anomalies on parallel OR-tree 

searches are illustrated. A single list of subproblems is 
assumed, and generalizations to multiple lists are dis- 
cussed later. 

For the OR-tree in Fig. 3(a), the order of nodes ex- 
panded in a serial depth-first search is po,  P I ,  P , ,  all nodes 
in T, resulting in a feasible solution P,' with value 6 ,  P k ,  
and all nodes in Tk resulting in the optimal solution of 
f ( P ; )  = 5 .  PJ is terminated by the lower-bound test with 
P,' . In contrast, when two processors are used, PI and P2 
are expanded concurrently. P, is terminated as a result of 
dominance by Pk. Since T, is terminated, T, is expanded 
next. If T, is large, then the combined time of expanding 
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( C )  

Fig. 3. Examples of detrimental anomalies. (Nodes pointed to by solid 
arrows are eliminated by dominance tests; nodes pointed to by dashed 
arrows are eliminated by lower-bound tests. Shaded nodes indicate fea- 
sible solutions. Dark nodes indicate infeasible solutions.) (a) With lower- 
bound and dominance tests, T, , (2 ,  0 )  > T I (  I ,  0 ) .  (b) With approximate 
lower-boundtests,T,,(3,0.1) > T , , ( 2 , 0 . 1 ) ; T , , ( 3 , 0 . 1 ) >  T,,(2,0.1).  
(c) Without lower-bound and dominance tests in  a depth-first or best-first 
search T ( 4 ,  0 )  = 5 .  T ( 5 .  0 )  = 6. (The number inaide the node is the 
evaluation order using four processors; the number outside the node is 
the evaluation order using five processors.) 

and Tk using one processor can be smaller than the com- 
bined time of expanding and Tk using two processors. 

Fig. 3(b) illustrates a detrimental anomaly under an ap- 
proximate depth-first or best-first search with E = 0.1. 
When two processors are used, f( P 8 ) ,  the optimal solu- 
tion, is found in the fourth iteration. Assuming that the 
lower bounds of nodes in T3 are between 8.2 and 9, all 
nodes in T, will be eliminated by lower-bound tests with 
P8 since [9/(  1 + E ) ]  < 8.2. When three processors are 
used, P3 is expanded in the third iteration. P,, P6, and P, 
are generated and will be selected in the next iteration. If 
T3 is large, T ( 2 ,  E )  < T ( 3 ,  E )  will occur. 

An example of an acceleration anomaly with an ap- 
proximate depth-first or best-first search is shown in Fig. 
4(a). When three processors are used, the optimal solu- 
tion is found in the second iteration, and P4 and P5 are 
eliminated. If two processors are used, subtrees T4 and T5 
have to be expanded. T ( 2 ,  0.1 ) / T (  3 ,  0.1 ) will be much 
larger than 3 / 2  if T4 and T, are very large. 

Fig. 4(b) illustrates another example of acceleration 
anomalies with dominance tests under a best-first, depth- 

first, or breadth-first search strategy. When three proces- 
sors are used, P4 will be dominated by P6, and four iter- 
ations are required to complete the search. In contrast, 
when two processors are used, P4 is expanded before P6 
is generated. If no dominance relation exists between P6 
and the descendants of P4 (which is possible), then T4 has 
to be searched, and T ( 2 ,  O ) / T ( 3 ,  0 )  > 3 / 2 .  

Anomalies may occur even when both the lower-bound 
and dominance tests are inactive. Fig. 3(c) shows a det- 
rimental anomaly in a depth-first or best-first search. The 
example in Fig. 4(c) illustrates that acceleration anoma- 
lies may occur regardless of the search strategy. 

Fig. 4(d) shows an acceleration anomaly when the sub- 
problem list is decomposed into local lists, and domi- 
nance relations are restricted to subproblems in the local 
lists only. This phenomenon is described in Section 

Table I1 illustrates the anomalous behavior of parallel 
OR-tree search of a vertex-cover problem. In this prob- 
lem, the minimum number of vertices to cover all edges 
in an undirected graph is to be found. That is, all edges 

IV-C-4. 
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\ / 

' \ - / A '  

List 2 

(d) 
Fig. 4. Examples of acceleration anomalies. (Double nodes iuurcate fea- 

sible solutions. Crossed out nodes indicate infeasible solutions.) (a) With 
approximate lower-bound tests; Tb(2 ,  O . I ) / T , ( ~ ,  0 .1) > :; ~ , , ( 2 ,  
0 . 1 ) / T d ( 3 ,  0.1)  > :. (b) With dominance tests only; dominance tests 
are consistent with g and h for all search strategies; T ( 2 ,  O ) / T ( 3 ,  0) 
> 2 .  ( c )  Without lower-bound and dominance tests for all search strat- 
egies; T ( 2 ,  O ) / T ( 3 ,  0 )  = > i. (d) With two subproblem lists and 
local dominance tests only; T (  1, O ) / T ( 2 ,  0 )  = 2. 

TABLE I1 
EXAMPLES OF ANOMALOUS BEHAVIOR OF PARALLEL OR-TREE SEARCHES FOR 

A VERTEX-COVER PROBLEM W I T H  80 VERTICES, t = 0,  A N D  USING A 

DEPTH-FIRST SEARCH ( c  = 3 ) .  (S-P INDICATES SERIAL TO-PARALLEL 
ANOMALIES; P-P INDICATES PARALLEL-TO-PARALLEL ANOMALIES.) 

in the graph emanate from at least one of the included 
vertices. In the simulations, the graphs were generated 
randomly by assigning an edge between a pair of vertices 
if a random number generated was larger than 0.2. 

Many anomalous examples can be created for various 
combinations of search strategies, allowance functions, 

and elimination rules. However, the important point here 
is not in knowing that anomalies exist, but in understand- 
ing why these anomalies occur and in developing strate- 
gies to cope with these anomalies. It is desirable to find 
the sufficient conditions to ensure that 7 ' ( k2 ,  E )  I 
T ( k l ,  E )  as well as the necessary conditions for T ( k , ,  E ) /  

T ( k 2 ,  E )  1 k 2 / k l .  The necessary conditions to eliminate 
detrimental anomalies are not evaluated because they are 
problem dependent. A condition necessary to avoid det- 
rimental anomalies depends on the sequence of nodes ex- 
panded and the size of the resulting subtrees. There are 
many possible combinations, and it is difficult to enumer- 
ate them for a given problem. Further, the necessary con- 
ditions developed for one problem cannot be generalized 
to other problems. For a similar reason, sufficient condi- 
tions to preserve acceleration anomalies are not evalu- 
ated. 

B. Coping with Serial-to-Parallel Anomalies 
In this section, we discuss results when dominance tests 

are active. Some results on coping with serial-to-parallel 
anomalies without dominance tests have been derived 
elsewhere and are only summarized here [20], [ 2 3 ] .  

1 )  Suficient Condition to Eliminate Serial-to-Parallel 
Detrimental Anomalies: 

a )  Finding an Exact Optimal Solution: In this sec- 
tion, we show that T ( k ,  0)  I T(  1 ,  0 )  holds if the heu- 
ristic function is monotone and unambiguous, and the 
dominance relation satisfies some consistency require- 
ments on the lower-bound and heuristic functions. 

The following concept on transitivity of lower-bound 
and dominance tests is needed. Recall that Pi D P ,  implies 
that f ( P l )  I f ( P k ) ,  but the converse is false because 
some nodes are incomparable (otherwise, the number of 
active nodes can always be reduced to one). When lower- 
bound and dominance tests are used together, it is impor- 
tant to note that dominance tests are not transitive with 
lower-bound tests. That is, P,LP, and P,DP, do not im- 
ply P , L P k .  Similarly, P,DP, and P,LP, do not imply 
P I D P k .  In both cases, only f ( P l )  I f ( P k )  can be de- 
duced. 

To combine the dominance and lower-bound tests, con- 
ditions are defined for a special class of dominance rela- 
tions. A dominance relation D is said to be consistent with 
a heuristic function h if P, DP, implies that h ( P I  ) < h ( P, ) 
for all P I ,  PJ E P.  A dominance relation D is said to be 
consistent with the lower-bound function if Pi DP, implies 
that g ( P , )  I g ( P , )  for all P I ,  P, E P .  To show that 
T ( k ,  0)  I T (  I ,  0), it suffices to prove: i) that at least 
one node belonging to 9' is expanded in each iteration of 
the parallel search, and ii) that once all the nodes in 9' 
are expanded or terminated, the parallel heuristic search 
must terminate. 

Theorem 4.1:  T ( k ,  0 )  I T (  1 ,  0)  holds for heuristic 
searches that satisfy (2.6) and (2.7) and that has domi- 
nance relation D which is consistent with the lower-bound 
function g and the heuristic function h.  

Proof: The proof is not shown due to space limita- 
tion [21], [22]. 0 
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The requirement on the consistency of D with g is sat- 
isfied in many practical problems, such as the shortest- 
path problem [9], the traveling-salesman problem [25], 
the n-job two-machine mean-completion-time flowshop 
problem [3], and the n-job one-machine scheduling prob- 
lem with deadlines [29]. However, the requirement on the 
consistency of D with h may not be satisfied in general. 
The detrimental anomaly illustrated in Fig, 3(a) for a 
depth-first search is caused by the inconsistency of D with 
h. The dominance relation for the 0-1 knapsack problem 
is consistent with the upper-bound function (instead of the 
lower-bound function for maximization problems). How- 
ever, the conventional definition of dominance relations 
for the 0-1 knapsack problem may result in detrimental 
anomalies, since when the profit and weight of PI are the 
same as the corresponding profit and weight of P,, it is 
possible that either PI D PJ or P, DP, . If h (PI  ) < h (P, ) 
happens but P,DP, is true, then D is inconsistent with h. 
For the knapsack problem, detrimental anomalies can be 
avoided if the dominance relation is redefined as follows. 
For P, and P, defined on a given subset of objects, PI DPJ 
if i) the profit of PI is larger than or equal to that of PJ and 
the total weight of PI is less than that of P,; or ii) the profit 
of PI is larger than that of PJ and the total weight of PI is 
less than or equal to that of P,; or iii) the profit and weight 
of PI are equal to the corresponding profit and weight of 
PJ and the heuristic value of PI is less than that of PJ . 

In general, Theorem 4.1 pinpoints the problem when 
detrimental anomalies happen and serves as a useful 
guideline to eliminate them. 

b) Finding an Approximate Solution: When approxi- 
mations are allowed, Theorem 4 .1  is not always true. 
The reason for the detrimental anomaly is that L,  the 
lower-bound elimination rules under approximation, 
are not transitive. That is, PILI', and P,LPk do not im- 
ply P,LPk, since f ( P l ) / ( l  + E )  I g(P,) and 

rather thanf(P,) / (  1 + E )  I g(Pk). Although the lower- 
bound tests are not transitive, the conditions in Theorem 
4.1 are sufficient to avoid detrimental anomalies for best- 
first searches. 

Theorem 4.2: T b ( k ,  E )  5 Tb(1, E ) ,  E > 0, holds for 
best-first searches when h, the heuristic function, satisfies 
(2.6) and (2.7), and D,  the dominance relation, is con- 
sistent with h and g. 

Proof: The proof is omitted due to space limitation 

To avoid detrimental anomalies in approximate breadth- 
first and depth-first searches, the sufficient conditions dre 
more restricted than those of Theorem 4.2. A possible set 
of sufficient conditions are shown below. 

Theorem 4.3: Suppose i) that the heuristic function sat- 
isfies (2.6) and (2.7), ii) that the dominance relation is 
consistent with h and g,  and iii) that the sequences of fea- 
sible solutions obtained in the serial and parallel cases are 
identical, then T ( k ,  E )  I T (  1, E ) ,  E 2 0. 

Proof: Suppose that P I ,  a basic node in the parallel 
search, is eliminated in the serial case by a feasible so- 
lution P2 and that P3 is a parent of P 2 ,  then h(P , )  < 

f ( P j ) / ( 1  + e )  5 g(Pk)implyf(Pi) / ( l  + E l 2  5 g(pk)  

t221,[231. U 

h ( P l ) .  From the definition of basic nodes and the as- 
sumption that the sequences of feasible solutions are the 
same in the serial and parallel cases, P3 must be expanded 
in the parallel case, and P2 is obtained before PI is ex- 
panded. Hence PI has to be eliminated by P2 in the par- 
allel case. A contradiction! 0 

In general, the sequences of distinct incumbents in the 
serial and parallel cases are usually not identical. How- 
ever, for breadth-first searches and some special cases of 
depth-first searches, such as the case when all feasible 
solutions are in the bottommost level of the OR-tree, the 
conditions of Theorem 4.3 are satisfied if the SeriaUPar- 
allel Incumbent-Update algorithm is used in both the se- 
rial and parallel cases (Theorem 3.2). 

2) Necessary Conditions to Allow Serial-to-Parallel 
Acceleration Anomalies: In this section, the necessary 
conditions for T ( k ,  0 )  < T(  1 ,  O ) / k  are developed. One 
of these conditions is based on the complement of the spe- 
cial class of dominance relations defined in Section 
IV-B-1. A dominance relation, D,  is said to be inconsist- 
ent with h if there exist two nodes Pi and Pj such that 
Pi DPJ and h (P i )  > h ( Pj). Another condition is based on 
the complete consistency of heuristic functions. A heuris- 
tic function h is said to be consistent (resp. completely 
consistent) with the lower-bound function g if h ( Pi)  C 
h(Pj )  implies thatg(P,)  I g(Pj )  (resp. g ( P i )  < g(Pj ) )  
for all P i ,  Pj E P. A heuristic function, h,  is said to be not 
completely consistent with g if there exist two nodes Pi 
andPjsuchthath(Pi)  > h ( P j ) a n d g ( P i )  I g(Pj) .  Note 
that if g ( Pi) = g ( Pi) is allowed, then the heuristic func- 
tion for a best-first search is consistent, but not com- 
pletely consistent, with the lower-bound function. 

Theorem 4.4: The necessary condition for T ( k ,  0) < 
T(  1 ,  O ) / k  is either i) that the heuristic function is not 
completely consistent with g ,  or ii) that the dominance 
relation is inconsistent with h .  

Proof: The proof is omitted due to space limitation 

According to Theorem 3.5, it is easy to show that if 
E = 0 and dominance tests are inactive, then no serial-to- 
parallel acceleration anomalies exist when a breadth-first 
search is used. However, if a best-first search is used, 
then the heuristic function is not completely consistent 
with the lower-bound function when multiple subprob- 
lems can have identical lower bounds. Hence acceleration 
anomalies can occur, but detrimental anomalies can be 
prevented by the use of an unambiguous heuristic func- 
tion. The depth-first search has a similar behavior. 

Note that the conditions in Theorem 4.4 are not nec- 
essary when approximate solutions are sought; that is, ac- 
celeration anomalies may occur in this case even though 
h is completely consistent with g and the dominance tests 
are consistent with h. The corresponding necessary con- 
ditions are studied in Section IV-C-3. 

1221, 1231. 0 

C. Coping with General Parallel-to-Parallel Anomalies 
In Sections 111-C through 111-E, we have derived three 

theorems for the performance bounds with respect to dif- 
ferent search strategies. From these results, we can in- 
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vestigate the relative efficiency between using k ,  and k 2 ,  
1 < k ,  < k,,  processors. First, we discuss the simple 
cases with E = 0 and D = I in Sections IV-C-1 and 2. 
Then strategies for cases with approximate lower-bound 
and dominance tests are studied in Sections IV-C-3 and 4. 

1)  Suficient Conditions to Eliminate Parallel-to- 
Parallel Detrimental Anomalies When E = 0 and 
D = I: First, we derive a sufficient condition to assure 
the monotonic increase in computational efficiency with 
respect to the number of processors. 

Corollary 4. I: Suppose that a parallel best-first search 
satisfies the assumptions of Theorem 3.3, then Tb ( k 2 ,  0 )  
I T b ( k l ,  0 )  when 

(4 .1)  
where r;l = T i (  1 ,  O)/T’( 1, 0) .  

Proof: FromTheorem3.3,atleast((Th)(l,O) - I ) /  
k ,  + 1)  iterations are needed for k ,  processors, and at 
most ( T b ( l ,  O ) / k 2  + ( k 2  - 1 ) / k 2  h )  iterations are 
needed for k2 processors to find an optimal solution in a 
given OR-tree using a best-first search. The sufficient 
condition for Tb ( k 2 ,  0 )  I Tb ( k , ,  0)  is 

To derive (4.1), we use a stronger condition such that 

0 

For the example in Fig. 3(c), Tb( 1, 0)  = 15, k ,  = 4,  
k2 = 5 ,  h = 4,  and rh = 1. Equation (4.1) is not satisfied, 
hence an increase in the number of processors from four 
to five may not ensure an improvement in performanct. 
As another example, for h = 50, Tb( 1, 0)  = lo6, and 
rh = 1 ,  there will not be any detrimental anomalies for 
any combinations of k ,  and k2 such that 1 I k ,  < k2 I 
141. 

As mentioned in Section 111-C, the term T/7 ( 1,O) / h  can 
be viewed as the average width of the essential OR-tree 
consisting of essential nodes only. Intuitively, detrimen- 
tal anomalies can be prevented if the essential OR-tree 
searched is wide enough. On the other hand, for a given 
problem, the average width is fixed. If k2 is not too large, 
k , / k l  is sufficiently large, and rj, = 1 ,  then Tb( k 2 ,  0)  will 
be less than T, , (k , ,  0).  If rj, << 1 ,  that is, there are a 
large number of active nodes with lower bounds equal to 
the optimal-solution value, then the condition in (4.1) may 
not be satisfied, and detrimental anomalies may happen. 

Similarly, for a depth-first search, the corresponding 
sufficient conditions can also be determined. The condi- 
tions derived are more restricted than (4.1) because the 
range on T d ( k ,  0)  are larger (Theorem 3.4). To simplify 
the sufficient conditions, the following bounds on 
T , ( k ,  0)  are used. 

I T,,(k,  0) I (y + (c  + 1 ) h  
k 

Corollary4.2: L e t r $ =  T’( l ,O) /To( l ,O)  I 1 . I n a  
parallel depth-first search that satisfies the assumptions of 
Theorem 3.4, T d ( k 2 ,  0 )  I T , ( k , ,  0)  when 

(4 .2)  
where c is the number of the distinct incumbents obtained 
during the serial depth-first search. 

Proof: The proof is similar to that of Corollary 
4.1. U 

From Corollary 4.2, we can conclude that the existence 
of parallel-to-parallel detrimental anomalies in depth-first 
searches depends on Ti ( 1, 0 ) ,  r:, and c. If r; = 1, c is 
small, and Th)( 1, 0 )  is very large, then (4.2) will be sat- 
isfied. Our simulation results reveal that for some prob- 
lems, such as the 0-1 knapsack and vertex-cover prob- 
lems, T</( l ,  0 )  is close to TL(1, 0) ,  hence r:l = 1. 
Moreover, if the feasible-solution values must be inte- 
gers, then c is often small. For this kind of problems, 
detrimental anomalies can be prevented for parallel depth- 
first searches when Th) ( 1, 0 )  is large and k2 is relatively 
small. However, the range of parallel processing within 
which no detrimental anomalies occur for depth-first 
searches is smaller than that for best-first searches. 

Corollary 4.2 can be verified by using the example in 
Table I1 in which r$ = 1 ,  c = 3, h = 80, and T,/( 1, 0 )  
= 4134. From (4.2), we found that no detrimental an- 
omalies occur when k2 I 4. The detrimental anomaly ob- 
served when k is 13 is beyond the predicted range. 

The following theorem proves that detrimental anom- 
alies do not occur when a breadth-first search is used. Note 
that this theorem is not a corollary of Theorem 3.5. 

meorem 4.5: In a parallel breadth-first searcll, If 
D = I and the generalized heuristic function satisfies (2.6) 
and (2.7), then T,.(k2, 0)  I T , ( k , ,  0 ) ,  1 < k l  < k2.  

Proof: Suppose that there are m imperfect iterations 
when k2 processors are used. The sequence of iterations 
can be divided into ( m  + 1 ) subsequences, each of which 
ends in an imperfect iteration except (possibly) the last 
one. Consider an arbitrary subsequence, say subsequence 
j ,  which contains x perfect iterations and ends in an im- 
perfect iteration. The theorem can be proved by showing 
that, when k ,  processors are used, the total number of it- 
erations required to expand some of the nodes while elim- 
inating other nodes in subsequence j must be greater than 
or equal to ( x  + 1 ) .  

To account for the iterations expanded in subsequence 
j when k ,  processors are used, we adopt the convention 
that any node expanded in conjunction with nodes in sub- 
sequence ( j + 1 ) is not counted. When k2 processors are 
used, an imperfect iteration occurs in a breadth-first search 
only when either a) the number of active nodes is less than 
k , ,  or b) at least one new incumbent is found in this it- 
eration, and one or more nodes expanded in this iteration 
have lower-bound values larger than the new incumbent. 
Let Pi be the node having the smallest heuristic value in 
the imperfect iteration of subsequence j considered, and 
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PJ be the node with the largest heuristic value in subse- 
quence j .  If the imperfect iteration in subsequence j be- 
longs to Case a) above, then when kl  processors are used, 
all nodes with heuristic values larger than h ( P , )  cannot 
be expanded simultaneously with P I ,  because all of them 
are descendents of nodes belonging to the imperfect iter- 
ation. If the imperfect iteration in subsequence j belongs 
to Case b) above, then when kl  processors are used, node 
PI also cannot be expanded simultaneously with nodes 
having heuristic values larger than h ( P , ) ;  otherwise, the 
number of nodes expanded in this iteration would be larger 
than k , .  Therefore, Node P, has to be included in subse- 
quencej when counting the number of iterations under kl  
processors. 

Since there are x perfect iterations in subsequence j ,  
from Corollary 3.1, all k2 x essential nodes must be ex- 
panded when kl  processors are used. Among nodes in 
subsequence j ,  the minimum number of nodes that must 
be expanded when kl  processors are used is ( k2 x + 1 ). 
Hence the minimum number of iterations with respect to 
kl  processors is 

1 < kl < k2. 

Since the above inequality holds for any subsequence, we 
0 

2) Necessary Conditions to Allow Parallel-to-Parallel 
Acceleration Anomalies When E = 0 and D = I :  From 
Theorem 3.3, we can derive a necessary condition for ac- 
celeration anomalies with respect to k l  and k2 processors 
in parallel best-first searches. 

Corollary 4.3: In a parallel best-first search that satis- 
fies the assumptions of Theorem 3.3,  

obtain T, (k , ,  0 )  5 T , ( k l ,  0 ) .  

T b ( k l ,  0 ) / T b ( k 2 ,  O) > k 2 / k l  

only if 

( T b ( 1 ,  0 )  - TL(1, 0))  > (k2 - 1 - (ki  - 1 ) h )  

(4 .3 1 
for 1 < kl  < k 2 .  

Proof: From Theorem 3.3, when k ,  processors are 
used, at most ( T b ( l ,  O ) / k l  + ( k ,  - l ) h / k l  iterations 
are needed. When k2 processors are used, at least 
( TL ( 1, 0 )  - 1 ) / k 2  + 1 ) iterations are needed. The nec- 

Note that this necessary condition cannot be obtained 
from the looser lower bound Tb( k ,  0)  2 Tb( 1, O ) / k  de- 
rived by Lai and Sahni [ 181. 

Fig. 4(b) illustrates the acceleration anomaly that 
T b ( 2 ,  O)/T,(3, 0)  > 3 / 2 ,  which obviously satisfies 
(4.3). Usually, if kl  and k2 are close to each other and h 
is large, then acceleration anomalies may occur in prac- 
tice, even if a best-first search is adopted and all lower 
bounds are distinct. However, for best-first searches, 
T b ( k l ,  O ) / T b ( k 2 ,  0)  cannot be much larger than k 2 / k l  
due to the tight bounds on Tb(k ,  0). 

For depth-first searches, the necessary condition for ac- 
celeration anomalies is as follows. 

essary condition follows directly. 0 

Corollary 4.4: In a parallel depth-first search that sat- 
isfies the assumptions of Theorem 3.4,  

Td(kl2 O) /Td(k2 ,  0 )  > k2/kl 
only if 

> (k2 - 1 - (kI - 1 ) [ ( ~  + 1 ) h  - c ] )  (4.4) 
for 1 < k ,  < k 2 .  

Proof: The proof is similar to that of Corollary 
4.3.  0 

Obviously, the necessary condition in (4.4) is readily 
satisfied, and T d ( k l ,  O ) / T d ( k 2 ,  0)  may be much greater 
than k 2 / k l .  Table I1 shows that acceleration anomalies oc- 
cur frequently. If all solutions are located at the bottom- 
most level of the OR-tree, then the corresponding neces- 
sary condition is simplified as (from Corollary 3.2): 

kz - 1 
( ( e  + 1 ) h  - c )  > - kl - 1 '  1 < kl < k2. (4.5) 

Analogous to Corollaries 4 .3  and 4.4,  we can derive 
from Theorem 3.5 the necessary condition for accelera- 
tion anomalies to exist in a parallel breadth-first search. 
That is, 

k2 - 1 
kl - 1 '  

I < kl < k2 .  (4.6) ( c  + h )  > - 

3) Coping with Parallel-to-Parallel Anomalies in Ap- 
proximate Searches: It should be noted that Theorem 4 .2  
is no longer valid when comparing T b ( k l ,  E )  and 
T b ( k 2 ,  E ) .  Fig. 3(b) gives a counterexample showing that 
Tb(3, 0.1) > T , ( 2 ,  0 . 1 )  even if all lower bounds are 
distinct. This happens because a node with a larger lower 
bound (not a basic node) may be expanded before nodes 
with smaller lower bounds in the parallel case, and nodes 
with smaller lower bounds may be eliminated by approx- 
imate lower-bound tests. 

Analogous to the proof of Theorem 3.3, the upper 
bound on Tb ( k ,  E ) can be derived. To find the lower bound 
on T b ( k ,  E ) ,  let f, be the optimal-solution value and 
MINTb ( E ) be the minimum number of nodes that are ex- 
panded in the approximate best-first search. MINT, ( E )  

represents the number of nodes whose lower bounds are 
less than fo/( 1 + E ) ,  since these nodes must be expanded 
in the best case. Tb ( 1, E ) may not achieve MINT, ( E ) be- 
cause essential nodes may be eliminated by approximate 
lower-bound tests in the parallel search. 

MINTb ( E )  may be estimated from the distribution of 
the number of subproblems with respect to lower bounds. 
From simulations on the 0- 1 knapsack and vertex-cover 
problems, it was observed that the distributions are ex- 
ponential. In this case, let aRdg,  a > 1, be the number of 
subproblems whose lower bounds are between g and 
( g  + dg). It is easy to show that 
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When kl  = 1 and k2 = k ,  the corresponding necessary 
condition becomes 

(Td(1 ,  E )  - MINTb(E)) > ( k  - 1). (4.14) 

If all feasible solutions are located at the bottommost 
level of the OR-tree and the SeriaUParallel Incumbent- 
Update strategy is used, then a weaker sufficient condition 
to eliminate detrimental anomalies can be derived from 
Corollary 3.2. That is, 

(4.15) 

In this case, the necessary condition to allow acceleration 
anomalies is the same as that stated in (4.5). 

Corollary 4.7: Suppose that a parallel breadth-first 
search satisfies the assumptions of Theorem 3.5 and that 
the SeriaUParallel Incumbent-Update Strategy is used, 
then T , ( k 2 ,  E )  I T , ( k , ,  E ) ,  and the necessary condition 
to allow acceleration anomalies is the same as (4.6). 

Proof: If the Serial/Parallel Incumbent-Update strat- 
egy is used, then Theorem 4.5 holds regardless of the 
value of E .  

4)  Coping with Parallel-to-Parallel Anomalies Under 
Dominance Tests: When dominance tests are considered, 
the above corollaries are no longer valid. Figure 4(b) 
shows an example in which none of the necessary condi- 
tions discussed previously is met, but the acceleration 
anomaly that Tb(2,  0 ) / T b ( 3 ,  0 )  > 3 / 2  still occurs. The 
reason for the anomaly is that P, DP, does not imply the 
dominance of PI over the descendants of P, . For instance, 
in a 0/1 knapsack problem, P,DP, only if the weight of 
PI is less than or equal to that of P,, and P,  and P, are 
defined on the same subset of objects. However, for des- 
cendants of PJ , their weights may be greater than that of 
P I ,  and the dominance relation may not exist. One way to 
alleviate the detrimental anomalies in this case is to up- 
date the dominance test as follows. If a newly generated 
node is not dominated, then it is necessary to test whether 
any of its ancestors is dominated by an active node (it is 
not necessary to check all expanded nodes). If so, the 
newly generated node can be eliminated. Although addi- 
tional overhead may be incurred in this strategy, the dom- 
inance relation may be applied more often, and more 
nodes may be pruned. When the number of active nodes 
is not very large, the new dominance-test procedure is 
acceptable, and detrimental anomalies can be reduced. 

When dominance tests are applied with approximate 
lower-bound tests, the sufficient conditions would be the 
conjunction of the corresponding ones in both cases. In 
general, there is no realistic sufficient condition to avoid 
detrimental anomalies. In contrast, the necessary condi- 
tions are the disjunction of the corresponding necessary 
conditions in both cases. These conditions are loose and 
are satisfied in most cases. 

T d ( l y  E )  > ( c  + l )k lk2  
h k2 - kl . 

From the above analysis, we get 

( " ( I '  + k-l h). (4.7) 
k 

I Tb(k, E )  5 7 
Similarly, for depth-first searches, 

Corollary 4. 5:2 In parallel best-first searches that sat- 
isfy the assumptions of Theorem 3.3 with the exception 
that E > 0,  T b ( k 2 ,  E )  I T b ( k 1 ,  E )  when 

(4 .9)  
where rb = MINTb(E)/Tb(l ,  E ) .  Similarly, 
Tb(ki7 E) /Tb(k2 ,  E )  > k2/k1 when 

(Tb(1, E )  - MINTb(6)) > (k2 - 1 - (kl - l)h), 

1 < kl < k2. (4 .10)  

If ( k ,  + 1 ) / k 2  < rb, then we can predict that no det- 
rimental anomalies occur if k2 I d T b (  1, E)/h. As (4.10) 
is quite loose, it is often satisfied. When k l  = 1 and k2 = 
k ,  the corresponding necessary condition becomes 

( T b ( 1 ,  E )  - MINTb(c)) > ( k  - 1). (4.11) 

For depth-first searches with approximate lower-bound 
tests, the following corollary shows the required condi- 
tions. 

Corollary 4. 6:2 In parallel depth-first searches that sat- 
isfy the assumptions of Theorem 3.4 with the exception 
that E > 0,  Td(k2, E )  I Td(k l ,  E )  when 

(4 .12)  

where rd = MINTh(E)/Td( 1, E ) .  Similarly, 

( T d (  1, E )  - MI"l-'b(E)) 

Tt,(kl ,  E ) / T b ( k 2 ,  E )  > k 2 / k l  when 

> (kZ - 1 - ( C  + l ) ( k l  - l)h), 1 < kl < k2. 

(4 .13)  

'The proof is similar to that of Corollaries 4.1 and 4 .3 .  

D. Multiple Subproblem Lists 
When there are multiple subproblem lists, one for each 

processor, a node with the minimum heuristic value is se- 
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lected from each local list for decomposition. This node 
may not belong to the global set of active nodes with the 
minimum heuristic values. It is not difficult to maintain a 
global incumbent in a global data register and broadcast 
it to the processors. Hence when dominance tests are in- 
active ( D  = I ) ,  all the theorems and corollaries derived 
in Sections 111 and IV are applicable, and the behavior of 
using multiple lists is analogous to that of a centralized 
list. 

When dominance tests are active, these tests can be re- 
stricted to the local subproblem lists or can be performed 
globally. If global dominance tests are applied, then the 
behavior is similar to that of a centralized list. On the 
other hand, if dominance tests are performed for subprob- 
lems within each local list, then it is possible that PiDPj  
exists in the serial case and Pj is not terminated in the 
parallel case because Pi and Pj are stored in different pro- 
cessors. As a result, both detrimental and acceleration 
anomalies may occur. For instance, in Fig. 4(d), an ac- 
celeration anomaly may happen because P2 is eliminated 
in the serial case and not terminated in the parallel case, 
hence T3 is expanded in the serial case and pruned in the 
parallel case. Note that this acceleration anomaly will not 
appear in case of a single subproblem list. 

Before leaving this section, we must point out that the 
reasons for the anomalies discussed in Sections IV-B and 
C are not exactly the same. Therefore, some conditions 
obtained in Section IV-B cannot be derived directly from 
the corresponding conditions in Section IV-C by setting 
k l  = 1. The sufficient conditions for the latter case are 
usually stronger, while the necessary condition are 
weaker. 

V. COMPARISON OF BEST-FIRST, DEPTH-FIRST, A N D  

BREADTH-FIRST SEARCHES 
In this section, we answer the question on whether a 

parallel best-first search is the best search strategy as com- 
pared to a depth-first or breadth-first search when a con- 
stant number of processors are used. This fact has been 
established for serial searches when all subproblems can 
fit in the main memory [34]. However, anomalies have 
been found in parallel searches. This is illustrated in Fig. 
5 with two processors. Six iterations are' needed to com- 
plete the depth-first and breadth-first searches, whereas 
seven iterations are required for a best-first search. Anom- 
alies usually occur when the total number of iterations is 
small. Analogous to the proof of corollaries in Section IV, 
we can derive for the same problem to be solved the suf- 
ficient conditions that assure T , ( k ,  0) < T , ( k ,  0)  and 
T b ( k ,  0 )  < T d ( k ,  0 ) .  

( T $ ,  0 )  - T h ( 1 , O ) )  > ( k  - l ) ( h  - 1 )  (5.1) 

(T<,(L 0 )  - Th(1, 0 ) )  > ( k  - l ) ( h  - 1). ( 5 . 2 )  

and 

Equation ( 5 . 2 )  is valid if all feasible solutions are located 
in the bottommost level of the OR-tree. In general, if I(,, 
the number of imperfect iterations in a parallel depth-first 
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Fig. 5. Anomaly in performance between depth-first and best-first searches. 

(a) Parallel depth-first search with two processors (number in each node 
is the selection order). (b) Parallel best-first search with two processors 
(number in each node is the selection order, number outside each node 
is the lower bound). 

search, is greater than ( k  - 1 ) h ,  then a parallel best-first 
search will run faster than a parallel depth-first search. 
Since the average number of essential nodes in an imper- 
fect iteration is almost the same in both strategies, hence 
T b ( k ,  0)  < T d ( k ,  0)  when Id > h [22]. 

Simulation results have demonstrated that the number 
of imperfect iterations in a depth-first search is usually 
larger than that in a best-first search, especially when the 
number of processors used is relatively large. Therefore, 
the speedup in the depth-first search drops quickly. In 
Case 2 of Table I, when more than two processors are 
used in the depth-first search, the speedup is less than 
0.9k.  In contrast, in a best-first search solving the same 
problem, a 0.9k speedup is attained when 32 processors 
are used. 

From the viewpoint of coping with anomalies, a 
breadth-first search is a conservative strategy. There are 
neither detrimental anomalies nor serial-to-parallel accel- 
eration anomalies when dominance tests are inactive. In 
contrast, a depth-first search is an adventurous search 
strategy. It may gain a superlinear speedup but suffers 
from the risk of detrimental anomalies when approximate 
solutions are sought. For best-first searches, serial-to-par- 
allel detrimental anomalies can be avoided, while accel- 
eration anomalies may occur even if an approximate SO- 

lution is sought. Generally, linear speedups can be 
achieved in a larger range of the number of processors for 
parallel best-first searches than for depth-first and breadth- 
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first searches. In this sense, the best-first search is more 
robust for parallel processing. 

On the other hand, since the best-first search requires 
the secondary memory to maintain the large number of 
active nodes, the total time, including time spent on data 
transfers between the main and secondary memories, to 
solve a problem should be taken as a measure of effi- 
ciency. From this point of view, a best-first search may 
not always be desirable. Simulations have shown that the 
best OR-tree search strategy depends on the accuracy of 
the problem-dependent lower-bound function [33 J . Very 
inaccurate lower bounds are not useful in guiding the 
search, while very accurate lower bounds will prune most 
unnecessary expansions. In both cases, the number of 
subproblems expanded by depth-first and best-first 
searches will not differ greatly, and a depth-first search is 
better as it requires less memory space. When the accu- 
racy of the lower-bound function is moderate, a best-first 
search gives a better performance. In this case, either a 
good memory management system I351 is necessary to 
support the large memory space required, or a modified 
best-first strategy. such as the IDA* 1131, is applied. 

In Fig. 6, the average speedups of parallel best-first and 
depth-first searches for ten knapsack problems with thirty- 
five objects are compared. Note that for knapsack prob- 
lems, the lower-bound function is accurate. As a result, 
the performance of using the denth-first search i s  close to 
that of using the best-first search. (On the average, 
T d ( l ,  0) = 15 197, and T b ( 1 ,  0) = 15 180.) The 
speedups in best-first searches are a little larger than those 
of depth-first searches. When the number of processors 
are very large such that nodes in each level of the OR- 
tree can be expanded simultaneously, then T d ( k ,  0) = 
Tb ( k ,  0)  = h, where h is the height of the tree. Therefore, 
the two curves on speedups will coincide eventuately . 

Finally, we compare the space requirements between 
depth-first and best-first searches. In a serial search, the 
space required by a best-first strategy is usually more than 
that required by a depth-first strategy. Somewhat surpris- 
ingly, simulation results on 0- 1 knapsack problems show 
that the space required by a parallel best-first strategy is 
not increased significantly (but may be reduced) until the 
number of processors is so large that a near-linear speed- 
up cannot be kept. In contrast, the space required by a 
parallel depth-first search is almost proportional to the 
number of processors (Fig. 6). Note that the space effi- 
ciency is problem-dependent. For vertex-cover problems, 
the space required by a parallel best-first search is almost 
constant for the entire range of the number of processors. 

VI. CONCLUSIONS 
In this paper, we have derived the performance bounds 

of parallel best-first, depth-first, and breadth-first OR-tree 
searches, respectively. These bounds provide the theoret- 
ical foundation to determine the number of processors in 
order to assure a near-linear speedup. It is found that for 
best-first searches, the speedup is related to the problem 
complexity, which is reflected by Th( 1,  O ) / h ,  where 

a 

o b e s t - f i r s t  search 

A depth-f i r s t  search 

- average speedup 

average space 

Log2(number o f  processors) 

Fig. 6.  Average speedup and space requirements of parallel branch-and- 
bound algorithms for ten knapsack problems with 35 objects. 

Th ( 1, 0) is the number of iterations in a sequential opti- 
mal best-first search, and h is the maximum height of the 
tree. To guarantee a near-linear speedup, the number of 
processors must be much less than Th( 1, O ) / h .  For depth- 
first and breadth-first searches, the speedups are related 
to the number of incumbents obtained during the search 
in addition to the problem complexity. Since the perfor- 
mance bounds on best-first searches are tighter than those 
on depth-first and breadth-first searches, the range within 
which a near-linear speedup is maintained is usually larger 
for best-first searches. 

The anomalous behavior of parallel OR-tree searches 
have been studied thoroughly. Anomalies are caused by a 
combination of the following reasons: a) there are multi- 
ple solution nodes; b) the heuristic function is ambiguous; 
c) the elimination rule is not consistent with the heuristic 
function; d) the tree structure causes imperfect iterations 
when multiple processors are used; and e) the feasible so- 
lutions are not generated in the same order when different 
number of processors are used. The existence of a com- 
bination of these conditions causes the tree to be searched 
in a different order when a different number of processors 
is used. We have analytically investigated the conditions 
to eliminate detrimental anomalies and to preserve accel- 
eration anomalies with respect to different search strate- 
gies. A summary of the results proved in this paper are 
shown in Table 111. 

A best-first search is found to be a robust search strat- 
egy in the sense of the large range of the number of pro- 
cessors within which a linear speedup is achieved. How- 
ever, the best OR-tree search strategy depends on the 
accuracy of the problem-dependent lower-bound func- 
tion. A best-first search is more suitable for parallel pro- 
cessing when the accuracy of the lower-bound function is 
moderate and the memory-management scheme is effi- 
cient. On the other hand, a depth-first search is more ef- 
ficient when either the lower-bound function is very ac- 
curate in pruning unnecessary searches, or the heuristic 
function is inaccurate in guiding the search. 
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TABLE 111 
CONDITIONS TO COPE WITH ANOMALIES I N  PARALLEL OR-TREE SEARCHES 

Allow. 
functior 

Keys bfs: best-first search 
dfs: depth-first search 
brfs: breadth-first search 
anom.: 

exist: 

when multiple subproblem lists and local dominance 
tests are used, sufficient conditions are impractical 
necessary conditions are too loose 
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