
1098 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 8, AUGUST 1989

GAMMON: A Load Balancing Strategy for Local
Computer Systems with Multiaccess Networks

KATHERINE M. BAUMGARTNER, MEMBER, IEEE, AND BENJAMIN w . WAH, SENIOR MEMBER, IEEE

Abstract-This paper investigates an efficient load balancing
strategy, GAMMON (global allocation from maximum to mini-
mum in constant time), for distributed computing systems
connected by multiaccess local area networks. The broadcast
capability of these networks is used to implement an identifica-
tion procedure at the applications level for the maximally and the
minimally loaded processors. The search technique has an
average overhead which is independent of the number of
participating stations. An implementation of GAMMON on a
network of SUN workstations is described. Its performance is
found to be better than other known methods.

Index Terms-Broadcast, collision detection, dynamic pro-
gramming, load balancing, multiaccess networks.

I. INTRODUCTION

OAD balancing uses communication facilities in a L distributed computing system to support remote job
execution in a user-transparent fashion in order to improve
resource utilization and reduce response time. A decision to
load balance a job is made if the job is likely to be finished
sooner when executed remotely than when executed locally.
Load balancing has been found to be essential because a job
will almost always be waiting for service at one processor
while another processor is idle in a system with ten or more
processors [151.

Load balancing decisions can be made in a centralized or in
a distributed manner. A centralized decision implies that
status information is collected, and decisions to load balance
are made at one location. An example would be a system with
a job scheduler at one location that collects jobs and dispatches
them to stations for processing. Theoretical studies on
centralized load balancing have been made by Chow and
Kohler [5] and Ni and Hwang [17]. The disadvantage of
centralized scheduling is the overhead of collecting processor
status information and jobs. When this overhead is large,
scheduling decisions are frequently based on inaccurate and
outdated status information. In contrast, a distributed load
balancing scheme does not limit the scheduling intelligence to

Manuscript received September 21, 1988; revised April 10, 1988. This work
was supported by the National Aeronautics and Space Administration under
Contract NCC 2481 and the National Science Foundation under Grant DMC 85-
19649.

K. M. Baumgartner is with Digital Equipment Corporation, Maynard, MA
01754.

B. W. Wah is with Depar!ment of Electrical and Computer Engineering and the
Coordinated Sciences Laboratory, University of Illinois at Urbana-Champaign,
Urbana, IL 61801.

IEEE Log Number 8928532.

one processor. It avoids the bottleneck of collecting status
information and jobs at a single site and allows the scheduler to
react quickly to dynamic changes in the system state.

Load balancing can also be classified as state-dependent or
probabilistic [5]. A decision based on the current state of the
system is state-dependent. A decision is probabilistic if an
arriving job is dispatched to the processors according to a set
of branching probabilities which are collected from previous
experience or are based on system characteristics. In the case
that the branching probabilities are derived from the service
rates of processors, the strategy is called proportional
branching [5]. It was found that a probabilistic strategy for a
single job class performed better than a proportional branching
strategy with a single arrival stream [17]. An optimal
probabilistic algorithm for multiple job classes was found to be
easier to implement than state-dependent strategies. An
optimal probabilistic load balancing algorithm with multiple
arrival streams has also been shown [19]. Other research on
load balancing include studies characterizing state-dependent
load balancing, determining appropriate state information [8],
proposing efficient algorithms [4], [7], [13], [15], [25], and
topology-dependent strategies [6], [lo]-[121, [2 11, [22].

State-dependent load balancing is implemented on the
Purdue Engineering Computer Network, which is a system of
computers connected by a hybrid of Ethernet and point-to-
point links [9]. The load balancing decisions are distributed:
each processor decides whether to send its jobs for remote
execution. A processor polls other processors for status
information about their loads, decides which processor has the
lowest load, and sends the job for remote processing if the
turnaround time is shorter.

Some results of these previous studies are as follows.
1) A network with load balancing performs better than a

network without load balancing.
2) State-dependent load balancing strategies perform better

than probabilistic strategies, but have higher overhead.
3) Probabilistic strategies are sometimes insensitive to

dynamic changes in system load and may result in suboptimal
performance.

4) Load balancing decisions considering the state of the
source only do not have the potential for performance
improvement that decisions considering the state of the
destination do [25].

5) Extensive state information is not needed for effective
load balancing and can be detrimental to system performance

6) Status information used in a state-dependent decision
171.

0018-9340/89/0800-1098$01.00 0 1989 IEEE

1099 BAUMGARTNER AND WAH GAMMON LOAD BALANCING SYSTEM

Load from
E ~iernal Amvals

Lcad h m
External Amvals

-
Result
Return

I remote processors

Result
Return

3
1 1 d

Processor Processor

Fig. 1. Queueing diagram of a system of processors connected by a
broadcast bus.

must be readily available. Decisions based on outdated or
inaccurate status information could degrade performance.

7) Load balancing increases network load which can impede
message transmissions.

This study considers load balancing on local computer
systems connected by multiaccess networks. These networks
have a broadcast bus topology that allows only one job or
message to be sent across the network at a time. Response time
is the amount of time elapsed from job submission to job
completion and is an indication of the processor load. Due to
the constraint of sending one job at a time across the bus, an
efficient load balancing strategy is to send a job from the
processor with the maximum load to the processor with the
minimum load when the overhead of sending these jobs and
identifying the participating stations is small. This paper
proposes a strategy for load balancing that can be implemented
at the applications level on existing systems. The strategy uses
an efficient technique to identify the minimally and the
maximally loaded processors with constant average overhead.
The strategy is called GAMMON: global allocation from
maximum to minimum in constant time.

The organization of this paper is as follows. The section
following this introduction gives an overview of GAMMON.
Section I11 shows a window protocol that can be used for
distributed extremum search on bus networks and that requires
hardware modification to existing network interfaces. Section
IV extends this protocol for implementation on existing
systems without hardware changes. The implementation of
GAMMON is described in Section V, and concluding remarks
are drawn in Section VI.

11. GLOBAL SCHEDULING STRATEGI

A model of the system under consideration is shown in Fig.
1 . There are multiple identical processors connected by a
broadcast bus. Each processor can have arrivals external to the
system or from the bus. Jobs are modeled as independent
tasks. If jobs are migrated to a processor across the bus, the
results must be returned to the originating processor when
execution is completed. Moreover, the queue at each proces-
sor is finite: only a limited number of jobs may be waiting for
execution.

A good load balancing procedure should avoid the occur-
rence of the idle-while-waiting condition, as well as any state

which makes idle-while-waiting more likely. In a batch
processing system, idle-while-waiting will not occur when
there is at least one job at each processor at any time. Hence,
the likelihood of idle-while-waiting can be minimized if jobs
are evenly distributed. In a multiprogrammed system, assur-
ing that processors are busy is not sufficient to minimize the
occurrence of the idle-while-waiting condition; it is important
to distribute all available jobs evenly in order to have a
reasonable response time for every job.

The strategy discussed here uses the queue length of active
jobs at a processor as a metric to indicate workload. A queue
length imbalance will make the idle-while-waiting condition
more likely. Hence, load redistribution is needed when there is
significant difference between queue lengths, such that the
estimated total overhead of migrating a job and queueing delay
at a remote processor and later returning results is less than the
delay a job would experience at its source processor.

An important point here is that the number of jobs at a
processor, while frequently a good reflection of load, is not
always adequate. Other factors that may contribute to the
workload at a processor include physical differences of
processors (such as speed or size of main memory), paging
activity, and the ratio of processing activities and inputioutput
activities in jobs. Future work will involve investigating a
more inclusive measure of processor load [24].

An ideal redistribution of jobs, given that the metric used is
the queue length at each processor, is to have equal number of
jobs at each processor. Since a single bus connects all the
computers, only one job can be migrated at any one time. The
best strategy is to take a job from the maximally loaded
processor, and send it to the minimally loaded processor. Such
a strategy is both source- and sink-initiated. Furthermore, it
requires the minimal amount of status information transferred.

Three basic scheduling operations are required for this
redistribution on a bus network: identification of the maxi-
mally and the minimally loaded processors, job migration, and
result return. Migrating jobs and returning results are straight-
forward because existing communication facilities can be
used. However, identifying processors with the load extremes
efficiently is more difficult. Such an operation should have
very low complexity, preferably independent of the number of
processors connected to the bus. Any centralized scheduling
algorithm, such as polling, is not suitable here. Efficient
algorithms are studied in Sections IV and V.

The three basic scheduling operations, in addition to regular
message transfers, must be prioritized in order to achieve the
best performance. Regular message transfer is assigned the
highest priority, since it is the original purpose of the network.
The priorities of the remaining tasks are determined by
considering the relative overheads in terms of the additional
total system delay (the sum of the delays of all jobs) incurred.

First, the relative priority of identifying the ith maximally/
minimally-loaded-processor pair and migrating the job be-
tween the (i - 1)th pair is determined. Two cases are
considered. The first is when there are idle processors. If job
migration is done first, then the migrated job can begin
execution immediately upon arrival at the destination proces-
sor, so its delay is increased by the time required to send it

1 loo IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 8, AUGUST 1989

across the network. In contrast, if the max/min identification
is done first, then the same job will incur the delay of that
operation as well, Clearly, migrating the job first is better. The
second case is when there are no idle processors. The ordering
of the tasks is not critical in this case, since migrating the job
first does not immediately contribute to reducing the job delay,
as the job may not begin execution upon arrival at the
destination. This result is true for any job migration and max/
min identification, and performing the migration first will
result in a total delay equal to or smaller than performing the
max/min identification first. Consequently, job migration
should have priority over max/min identification.

Next, the relative priority between result return and job
migration is considered. When there are no idle processors,
delay is added directly to the job waiting for result return.
Since the job waiting for job migration will not be able to
begin execution immediately upon arrival at the destination,
result return should take precedence. When there are idle
processors, reducing either the delay for job migration or the
delay for result return will reduce the overall delay. In short,
performing the result return first always improves the overall
performance as much or more than performing job migration
first. It is also easy to see that result return should always have
precedence over max/min identification by a similar argu-
ment.

In summary, the priority ordering for tasks using the bus
network is 1) regular message transfer, 2) result return, 3) job
migration, and 4) max/min identification.

The scheduling strategy GAMMON consists of two steps
that are executed repeatedly. The first is to determine which of
the current tasks has the highest priority, and the second step is
to execute that task. Due to the ordering of the priorities, only
one job will ever be waiting for job migration, but potentially
more than one may be waiting for result return.

A consideration with priorities are the overhead of priority
resolution among tasks and the overhead of the tasks themsel-
ves. The discussion above assumes that each of the steps has
similar overhead. If the overheads associated with tasks are
considerably different, priority enforcement changes. A spe-
cific case is processors sharing a common secondary storage.
Job migration and result return have lower overhead in such a
system than in one with a shared disk. File transfer is not
explicitly needed as all processors have access to the common
secondary storage. Furthermore, if the overhead of resolving
priorities is large, then it is more efficient not to schedule tasks
according to priorities. Such a tradeoff is performed in the
implementation of the load balancing algorithm, which is
presented in Section V.

111. WINDOW PROTOCOL FOR DISTRIBUTED EXTREMUM SEARCHES

Carrier-sense-multiaccess net works with collision detec-
tion (CSMA/CD) are a type of local-area network with
packet switching and a bus topology [18]. CSMA/CD net-
works evolved from CSMA networks that have listen-before-
talk protocols to avoid overlapping transmissions. The colli-
sion-detection ability of CSMA/CD networks allows
processors to additionally listen- while-talk, so collisions

resulting from simultaneous transmissions can be detected and
stopped immediately.

There are three types of protocols for contention resolution
CSMA/CD networks. Collision-free protocols strictly sched-
ule bus accesses, so no collisions occur. Contention protocols
function at the other extreme by allowing processors to
transmit whenever they find the bus idle. When collisions
occur because of simultaneous transmissions, processors stop
transmitting, wait for some prescribed amount of time, and try
again. The backoff algorithm of Ethernet [16] is an example in
this class. The disadvantage of collision-free protocols lies in
the overhead of waiting for transmission, while the disadvan-
tage of contention protocols is the time wasted during
collisions. A third type of contention-resolution protocol is the
limited-contention protocol. This type of protocol chooses a
processor for transmission from among those waiting to
transmit based on a priori information, such as the channel
load.

The virtual-window protocol (VWP) proposed by Wah
and Juang [lo], [21]-[23] is an example of a limited-
contention protocol. It is based on a three-state collision-
detection mechanism. After each attempted broadcast, there
are three possible outcomes: collision (more than one broad-
cast), idle (no broadcast), and success (exactly one broadcast).
The protocol can be adapted easily to perform distributed
extremum searches in a load balancing strategy. In the
remainder of this section, we briefly explain this protocol and
discuss its limitations.

Stations wishing to transmit packets participate in a conten-
tion period that consists of a number of contention slots.
Each station generates a random number called a contention
parameter that is used for the entire contention period. The
parameter is in an interval with upper and lower bounds U and
L , respectively. Without loss of generality, assume that the
station with the minimum contention parameter is sought. The
results developed apply to the case in which the station with
the maximum contention parameter is to be found. Successive
choices of smaller intervals in each contention slot attempt to
isolate the minimum contention parameter.

For regular message transfers, each station has equal chance
of being chosen for transmission, so the contention parameters
are random numbers generated from a uniform distribution in
the interval (0, 11. The stations maintain a common window
(or interval) for contention. In a contention slot, stations
having contention parameters within the window broadcast a
short signal to contend for the channel. If a collision or no
transmission occurs, the window boundaries are adjusted in
parallel for the next contention slot. Stations having contention
parameters outside the window stop contending and wait for
the next contention period. The above steps are repeated until
a single station is isolated in the window. This station is the
winner and is allowed to transmit its packet. The distribution
of the contention parameters and an estimate of the channel
load are used to update the window efficiently, so the number
of contention slots is kept to a minimum.

The global window required in the protocol can be
maintained by updating an initially identical window with a
common algorithm and using the identical information broad-

BAUMGARTNER AND WAH. GAMMON: LOAD BALANCING SYSTEM 1101

; x4 x3 XI ;
I , - I I . I ’ I

I ’ ’
I w3 I U= 1 .o M . 0

(ci

Fig. 2. Example of the virtual-window protocol. The dashed lines indicate the
portion of the interval k i n g searched dunng the current contention slot. The
current window. enclosing stations eligible to contend, is delimited by (I . (a)
First iteration. (b) Second iteration. (c) Third iteration.

cast on the bus. Assuming that the information broadcast is
received correctly by all stations, the global window will be
synchronized at all sites.

An example of the VWP is shown in Fig. 2. There are five
processors contending, and station i has contention parameter
xi . In this example, x I = 0.48, x2 = 0.90, x3 = 0.35, x4 =
0.30, and x5 = 0.75. These contention parameters were
chosen arbitrarily, but for different purposes they may reflect
processor loads or priorities. The windows chosen in these
examples are not the optimal windows but are chosen to
illustrate the characteristics of the protocols. w,, the upper
bound for the first window chosen, is 0.51. All stations with
contention parameters less that or equal to 0.5 1 are allowed to
broadcast; in this case, stations 1, 3, and 4. The result of this
contention slot is a collision; the interval to be searched is
updated to (0, 0.511; and stations 2 and 5 are eliminated from
further contention. w2, the upper bound for the next window, is
0.25. The result of the second contention slot is idle (no
broadcast), so the interval is updated to (0.25, 0.511. No
stations were eliminated as a result of this contention slot. For
the third contention slot, the upper bound of the window is
chosen to be 0.32. The result is a successful transmission, so
station 4 is isolated and “wins” the contention.

The window-selection process can be formulated as a
dynamic programming algorithm, and details have been
shown elsewhere [22]. Analyses and simulations have shown
that contention can be resolved in an average of 2.4 contention
slots, independent of the number of contending stations and the
distribution function of the contention parameters, if the
parameters are independent and identically distributed [2 11.

A major limitation of the VWP is that its implementation
requires minor hardware modifications of existing Ethernet
interfaces [22]. At the applications level, such modifications
are not always possible. Many existing networks do not make
three-state collision-detection information available to the
applications software because a contention slot is a small
amount of time (50-100 ps) relative to the time required to
propagate information through all levels of software to the
applications level (hundreds of microseconds). Consequently,
a different protocol must be developed for distributed extre-
mum search at the application level. Several alternatives are
discussed in the next section.

IV. WINDOW PROTOCOLS WITH TWO-STATE COLLISION
DETECTION

At the applications level, each station has an independent
search parameter, and an iteration is a broadcast slot which
is a contention resolution at the network interface followed by
a broadcast of a message to all stations. A broadcast slot has
two possible outcomes, idle (no stations attempt to broadcast),
or transmission (one or more stations attempt to broadcast
resulting in contention resolution, and one station broadcasts
its search parameter). A broadcast slot may consist of a
number of contention slots, and information about each
contention slot is not sent to the applications level.

There are a number of differences between searching at the
applications level and the network level.

1) The contention parameters are the search parameters for
the VWP, which is not the case for the window protocol at the
applications level.

2) An iteration of the VWP is a contention slot with three
possible outcomes: idle, collision, and success. An iteration of
the window protocol at the applications level is a broadcast slot
with two possible outcomes: transmission and idle.

3) An iteration of the VWP takes less time than an iteration
of the window protocol at the applications level. Normally. a
contention slot takes tens of microseconds, while broadcasting
a short message takes hundreds of microseconds.

Since the information available for window selection is
different at the applications level, the decision process has to
be modified. Three possible window-search strategies to
identify the minimum are described below. The identification
of the maximum is similar and is not described. Further details
about these strategies can be found elsewhere [I] , [2]. In
contrast to the VWP, dynamic programming methods to
optimize window choices cannot be used here because the
Principle of Optimality is violated. The performance of these
strategies is compared using the number of broadcast slots they
require to isolate the minimum search parameter. These
strategies assume that information about the distribution of
search parameters is available. This distribution is character-
ized experimentally in Section IV-D.

A . One-Broadcast Strategy
The one-broadcast strategy allows a maximum of one

broadcast slot per iteration. Starting with an interval (L , U] ,
each station has a search parameter x, in the interval. The
stations maintain a global window in the interval. Stations with
parameters within the window attempt to broadcast their
search parameters, and if there are one or more parameters in
the window, there will be a contention resolution followed by
a broadcast of one of the search parameters. The upper bound
of the interval will be updated to the value broadcast. If there
are no parameters within the window, the lower bound of the
interval is updated to the upper bound of the window used, and
the protocol continues. The minimum is identified when the
lower bound of the interval is equal to the upper bound.

An example of the one-broadcast strategy is shown in Fig.
3. The stations and parameters are the same as those in Fig. 2.
In the first iteration [Fig. 3(a)]. the upper bound of the window
chosen is 0.51. Stations 1, 3, and 4 attempt to broadcast their

1102 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 8, AUGUST 1989

I x4 ?I

T
L=d.O

I

U= 1.0

I 4
I 3 1

I
I

L = u.0 2 3 I U= 1.0
(C)

Fig. 3. Example of the window protocol using the one-broadcast strategy.
The dashed lines indicate the portion of the interval being searched during
the current broadcast slot. The current window is delimited by (1. (a) First
iteration. (b) Second iteration. (c) Third iteration.

parameters. Suppose that station 3 is the winner and transmits.
The next interval to be searched is (0, x3). Let the upper bound
of the next window chosen be 0.33. Only station 4 trys to
transmit its parameter, and x4 is broadcast. The search has not
concluded even though x4 is the minimum because the fact that
it was the only station broadcasting is not available to station 4
or to the other stations. The next window chosen is 0.25.
There is, of course, no broadcast. This process will continue
until the bounds of the window isolate x4, and the minimum is
globally known.

The choice of the window in each broadcast slot is based on
the probabilities of the two states, transmission and idle, which
are dependent on previous broadcasts. If a previous broadcast
slot resulted in the transmission of a value, say xbl, then any
subsequent transmissions must be less than xb I . This implies
that any subsequent xi’s broadcast were eligible to broadcast
during the iteration that xb] was broadcast, but lost the
contention. The probability of the subsequent transmissions
must be conditioned on the fact that any xi’s in the current

/ k

values and corresponding upper
bounds of windows stored in the k-
element arrays u k and qk, respec-
tively;
the probability of a transmission in the
interval (a, w], given that there have
been k previous broadcasts with val-
ues and corresponding upper bounds
of windows stored in the k-element
arrays uk and qk, respectively;
the probability of idle in the interval
(a, w], given that there have been k
previous broadcasts with values and
corresponding upper bounds of win-
dows stored in the k-element arrays u k
and qk, respectively.

&(a, b, w, vk , qk):

OE(a, b, w, u k , qk) :

The notation u k and qk indicates a set of k values broadcast
and the corresponding upper bounds of windows used. uk and
q k are the kth value and the corresponding upper bound of
window used. It follows directly from the above definitions
that

+ E (~ , b, W , Uk, qk)+eE(ar b, W , U k , q k) = 1.0. (1)

After k successful broadcasts, there are 2(k + 1) subinter-
vals in the interval (a, U] . They are (a, wl , (w, U k l , (U k , q k l ,
(q k , uk- 11, * * , (UI, QI], and (ql, U] . For reference, they can
be numbered from left to right and from 1 to 2(k + 1). Let s
be a set of elements { s i } , where s; is the number of xi’s in the
ith subinterval. Let S be the set of s that are possible with the
previous windows and values broadcast, and let I be a subset
of S such that s1 = 0. The set I is the subset of S that
corresponds to a distribution of xi’s such that there will be no
xi’s in (a, w] and that the result of the broadcast slot is idle.
Then

(2)

(Pr[arrangement s]

(Pr[arrangement s]

Pr[u; broadcast with a window upper bound q; I s]

Pr[u; broadcast with a window upper bound q; I s]

g - S E I i : 1

) -
E -

i = 1

window did not broadcast when they were eligible during
previous iterations. The choice of the window is, thus,
dependent on previous broadcasts, and the Principle of
Optimality is not satisfied. As a result, the choice cannot be
optimized by dynamic programming methods.

Assume that station i has an independent search parameter xi
with distribution F(x) and density f (x) . The following
definitions are used to formulate the problem of choosing the
upper bound of the next window as a recurrence after k
broadcasts.

NEl(a, 6, u k , qk): the minimum expected number of
broadcast slots to isolate the minimum
x; in the interval (a, b] using a one-
broadcast strategy, given that there
have been k previous broadcasts with

The probability of a given arrangement is found using the
distribution function F(x) . Let b(a, b, i) = [F(b) - F(a)]’
then

* b(ul, q1, SZk+l)b(ql, U, s2k+2). (3)

Pr(Uk broadcast with a window upper bound qkls) is easily
determined because each station in the subinterval search has
equal probability of winning and broadcasting in a broadcast
slot, so

BAUMGARTNER AND WAH: GAMMON: LOAD BALANCING SYSTEM 1103

Pr(u, broadcast with a window upper bound q, I s)

Using a conditional density function

the choice of the upper bound of the next window is
formulated as a recurrence. Let

then

with

NEI (a , 6, vk, q k) = 1 for all b = a. (8)

The first term on the right-hand side of (7) counts the current
broadcast. The second term is the expected number of
additional broadcast slots to isolate the minimum if the current
broadcast slot results in a transmission. y is the weighted
average number of broadcast slots for the value broadcast, xb,
and the probability that this value was broadcast. The third
term is the number of additional broadcast slots if the current
broadcast slot is idle.

Boundary conditions must be set to terminate the evalua-
tions after a reasonable number of broadcast slots. In practice,
the xi's may represent indistinguishable physical measures
when their difference is less than 6. It is assumed that when the
window size is smaller than 6, the probability that two stations
have generated parameters in this interval is so small that
contention can always be resolved in one step. The boundary
condition becomes

NEI(a, 6, u k , q k) = 1 for all (b - a) < 6 . (9)

The optimal window choices found in (7) and (9) can be
organized by the decision tree shown in Fig. 4. The top of the
structure contains the roots of decision trees with different
numbers of processors. For a given n,, there is an initial
window wl, I , and two pointers to substructures corresponding
to the two outcomes: transmission and idle. Note that the
substructure for a transmission contains windows for each of
the possible values that can be transmitted in the subii ,terval.
Each box in the structure corresponds to a decision point, and
the contents of the box, ~ , , b , ~ , is the window upper bound for
the current broadcast slot. The subscripts of the window upper

m\ 1 2 . . .

TRANSMISSION IDLE

TRANSMISSION IDLE TRANSMISSION IDLE

Fig. 4. Data structure for the exact solution of the one-broadcast strategy.
The data structure shows a method for storing the windows and indicates the
tree-structured progression of window choices.

bound indicate the iteration number, whether the last iteration
outcome was transmission or idle (transmission = 1, idle =
2), and the value broadcast if the last iteration was a
transmission. There are two branches from each decision point
corresponding to the two possible outcomes in each broadcast
slot. Starting from the root, if the broadcast slot results in a
transmission of b, then the search will terminate if (b - L) <
6; otherwise, the search will continue with a new decision
point corresponding to the interval (L , b] . If the broadcast slot
is idle, then the search will terminate if (U - wI,l) < 6 ;
otherwise, the search continues with the interval (wl, I , U].

The data structure in Fig. 4 shows the final window choices,
but during computation of the best window choice for each
decision point, all possible choices of windows have to be
tried. This evaluation process is extremely complex. For each
possible window, there can either be a transmission or no
transmission. If there is a transmission, all possible values
within the window must be considered as the possible value
broadcast. Each level of the tree indicates the outcome of an
iteration. For every decision in the exact solution, the entire
tree above the current decision point, which is determined by
u k and qk, must be taken into consideration in computing the
next set of branching probabilities. With 6 = l /(lOn), and n
= 5, there are 69 007 690 decision points, and for n = 6, the
number increases to 8 501 194 726. The number of decision
points increases so rapidly that the problem becomes intracta-
ble. Fortunately, reasonable results can be obtained using a
heuristic decision based on the current upper and lower bounds
only.

In the approximate solution, the probabilities of transmis-
sion and idle are assumed to be independent of previous
broadcasts and are computed without information from pre-
vious broadcasts. The following definitions are used.

NA] (a , 6): the minimum expected number of broadcast
slots to isolate the minimum x, in the interval
(a , b] using an approximate solution of the one-
broadcast strategy, given that all x,'s are in (a,
U] , and that at least one x, is in (a, b] ;

$A (a, b, w): the probability of a transmission in the interval

1104 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 8, AUGUST 1989

(a, w], given that all x,'s are in (a, U] , and that
at least one xi is in (a, b] ;

OA(a, b , w): the probability of no transmission in the inter-
val (a, w], given that all xi's are in (a, U], and
that at least one xi is in (a, b] .

It is obvious that

$A(ar b , w)+OA(a, 6 , w) = l . O . (10)

There are two cases to consider when calculating OA(a, b , w),
namely, b = U and b # U. When b = U, it is uncertain
whether there is an x; at b, and all arrangements of the n xi's
must be considered, so

When b # U, there must be a station at 6 , since b is only
updated to a value of x, in the event of a transmission. In this
case, we are only concerned with the placement of at most (n
- 1) of the xi's,

(F (U) -F(w))"-'
(F (U) - F (a))"-

. (l lb) dA(a, b , w)lb=U=

The recurrence for choosing the window is

N A I (a , b) = min
a < w < b

Again, the three terms on the right-hand side of the above
equation count the current broadcast slot, additional broadcast
slots in the event of a transmission, and additional broadcast
slots if the current broadcast slot is idle.

The assumption that contention can be resolved in one step
when the window size is smaller than 6 holds, so the following
boundary condition is used again.

N A I (a , b) = l for all (b - a) < 6 . (13)

The decision tree is the same as for the exact solution, but
there is a savings since many of the nodes at different levels
are duplicates. The data structure for storing the windows is
simply a two-dimensional array. The number of decision
points for the approximate solution is determined by the values
of a and b. The total number of unique nodes with 6 = 1/
(10n) is ((10n)2 + 30n)/2, which is determined by counting
the decision points indicated by the above recurrences. For n
= 5 and n = 6, the numbers of decisions points are 1325 and
1890, respectively, and the complexity of the solution is
considerably reduced from the exact solution.

The performance results of the one-broadcast strategy will
be discussed in Section IV-C.

B. Other Strategies

Other strategies were considered to determine if it were
possible to improve the performance of the one-broadcast
strategy, particularly in reducing the number of iterations after
the station with the minimum search parameter has broadcast.
The one-broadcast strategy continues until the interval is so
small that it is certain that there were no stations with
parameters in that interval. An alternative is a two-broadcast
strategy, which allows up to two broadcast slots per iteration
and uses the second slot to determine whether there are any
stations with search parameters smaller than the parameter
broadcast in the first slot. Initially, as with previous strategies,
the intervals is (L , U] , and each station has a search parameter
x; in the interval. A global window is determined, and stations
with parameters within the window attempt to broadcast their
search parameters. If there are no search parameters in the
window, the strategy proceeds as in the one-broadcast
strategy: the lower bound of the interval is updated to the
window's upper bound, and the protocol continues. The
difference between the one- and two-broadcast strategies
occurs when there are parameters within the window. In this
case, the upper bound is updated to xbl, the value broadcast,
and a second broadcast slot is allowed for all stations with xi <
xbl. If the second slot is idle, xbl is the minimum, and the
algorithm terminates. If there is a broadcast, the next iteration
begins with XbZ, the second value broadcast, as the upper
bound of the interval. Note that xbz is smaller than xbl.

A problem in the two-broadcast strategy is that the window
for the second broadcast slot is chosen suboptimally when
there are stations with search parameters smaller than the
current broadcast value. Therefore, a better solution is a
combined strategy, which combines the one-broadcast and
two-broadcast strategies and makes a decision in each iteration
whether one broadcast or two broadcasts will be used. Again,
the objective is to minimize the expected number of future
broadcasts.

Analyses and complexities of the two-broadcast and the
combined strategies are similar to those of the one-broadcast
strategy. They are not presented here because of space
limitation and of their inferior performance as compared to the
one-broadcast strategy. Interested readers can find them in [I]
and [2].

C. Simulation Results for the Approximate Distributed
Searches

The simulation results for the distributed window search
using the three strategies are shown in Fig. 5. The windows
were generated using the equations derived in Sections IV-A
and in [l] and [2]. The broadcast parameters were generated
from a uniform distribution in (0, 11, and sufficient cases were
simulated until a confidence interval of 0.95 was reached. The
average number of broadcast slots is bounded by 2.7 for the
two-broadcast strategy, and by 2.6 for the one-broadcast and
combined strategies. The two-broadcast strategy is not as good
as the one-broadcast strategy because, although it can reduce
the number of broadcast slots after the minimum has been
identified, it uses suboptimal window choices for earlier
broadcast slots. The combined strategy always chooses the

BAUMGARTNER AND WAH. GAMMON: LOAD BALANCING SYSTEM

Load
Average

2 -

1-

0-

1105

2

Number
of

Broadcast
Slots 1

0

. . .Q Combined Strategy

b - 4 Two Broadcast Strategy - One Broadcast Strategy

I I I I I I
0 10 20 30 40 50

Number of Processors

Fig. 5 . Simulations results for different window-warch strategies

one-broadcast strategy, so their results are identical. The
overhead for the combined strategy is higher than that of the
one-broadcast strategy because the strategy for each decision
point must be stored in addition to the window choices. For
these reasons, the one-broadcast strategy is superior to the
other two.

Note that the broadcast parameters are assumed to be
independent and uniformly distributed in (0, U] in the
simulations. In case that the distribution function is nonuni-
form but independent and identical for all broadcast parame-
ters, a uniformly distributed broadcast parameter can be
obtained from the original broadcast parameter by the follow-
ing formula:

(14)

where x is the original broadcast parameter with distribution
F, and z is the new broadcast parameter with a uniform
distribution.

The proposed scheme is practical as a result of the constant
expected number of broadcast slots. The time required for a
contention slot is approximately 50 p s , and the time required
to broadcast a search parameter may be estimated at approxi-
mately 100 p s . It follows that each broadcast slot would
require on the order of 220 p s if 2.4 contention slots [22] were
required to resolve contention. If it takes 120 p s to resolve
contention and 100 p s to transmit a one-kbyte packet, then the
overhead of each load balancing decision to identify the
maximally and the minimally loaded processors is equivalent
to transmitting 5.2 one-kbyte packets.

D. Distribution of Load Averages
The knowledge on the distribution of workload (or load

averages) is needed in the distribution search in order to
choose the windows. In this section, we present statistics of
load averages on a system experiencing a real workload. The
study consisted of measuring the load on a system of ten Sun
workstations (servers and clients). Every sixty seconds, the
one-minute load average was measured and logged. The load
data were analyzed using an adjusted Komolgorov-Smirnov
test [141, [20]. This goodness-of-fit test can be used to detect
differences between a normal distribution and the empirical
distribution indicated by the measured data. The agreement
was measured over time. The results indicate that the

z = F - ’ (x)

‘j 3

I I I

0 500 loo0
Sample Number
(a)

4 1 A
XJ I I I

0 -I -j I
I I I I I I I I

1080 1090 1100 1110 1120 1130
Sample Number

(b)

one day. (b) Load maxima and minima for one hour.
Fig. 6 . Load maximums and minimums. (a) Load maxima and minima for

distribution of load averages can be estimated using a normal
distribution. During 80 percent of the time when the system is
active, the distribution is within 0.215 of a normal distribu-
tion.

The results of the study are shown in Fig. 6. Fig. 6(a) shows
the maximum and minimum load averages over time. The
minimum is almost always zero and the maximum varies. The
peak utilization is between sample number 700 and 1400
which reflects the load from 1 p.m. until midnight. From 1
a.m. until 11 a.m., the loads measured were uniformly low
(5 1). Fig. 6(b) shows one hour of the minimum, average, and
maximum load averages.

V. IMPLEMENTATION
The Sun system on which GAMMON has been imple-

mented consists of servers and clients connected by Ethernets.
The servers have secondary disk storage, and the clients do
not. A client can access a server’s disk via the network, and is
allocated a portion of the server’s disk for swap space.
Swapping over the network is a part of the regular message
transfer. A network file system (NFS) allows transparent
access to remote file systems. This mechanism allows uniform
access by the clients to the secondary storage.

The Sun system is multiprogrammed; when a process is
initiated on a server or a client, a core image of that process
containing run-time information exists in the swap space

1106

Number of % of searches
processors unresolved

3 20.0

4 18.6

5 20.1

6 21.8

7 21.4

8 20.5

9 23.1

10 21.8

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 8, AUGUST 1989

% resolved searches
finding minimum

78.00

76.04

73.97

73.66

72.26

70.57

72.82

74.04

TABLE I
RESULTS OF SIMULATION FOR THE TRUNCATED SEARCH (RANK OF THE

MINIMUM IS 0)

average rank
of result

0.194

0.2%

0.268

0.252

0.279

0.292

0.256

0.256

% difference of
result from minimum

2.790

2.192

2.086

1.665

1 SO6

1.495

1.151

0.959

associated with that server or client. This core image may be
quite large (on the order of several megabytes). Since it is not
possible to copy data from one swap space to another, the only
way to transfer the core image is over the network. Due to the
size of the core image, this transfer would have high overhead
(on the order of seconds); consequently, the current imple-
mentation migrates jobs only at their entry point. Future
enhancements to GAMMON will study preemption strategies.

There are two program modules (daemons) that comprise
GAMMON in the current implementation: the searcher and
the job migrator. The search daemon periodically participates
in a search for the minimum. Job migration is performed by
sending the necessary information of a job at entry point to a
remote processor; result return is performed when execution
of the migrated job is completed. Priorities of the various
phases in load balancing, as discussed in Section 11, are not
enforced because the overhead of explicit priority resolution is
very high and is not compensated by the resulting reduction in
response time.

A. Implementation of the Distributed Search
The search for the minimum load normally takes 2.6

broadcast slots on the average (see Section 111). Table I shows
the simulation results of the search truncated at one broadcast
slot. This table shows that, under this condition, the absolute
minimum is located 70-78 percent of the time and there are
18.6-23.1 percent of the unresolved cases in which all search
parameters are in the interval (w,, U] and no workload
information is broadcast. Unresolved searches are not critical
here because they reflect a condition in which no processors
are lightly loaded enough to accept additional jobs. For cases
that are resolved, those that do not find the absolute minimum
have a one to two percent difference from the absolute
minimum. Since workload information is heuristic in nature,
small errors in identifying processors for load balancing are
not critical. An important tradeoff we have achieved is that
reasonable results are obtained at substantially lower over-
head.

The minimum search as implemented on the Sun network is
shown in Fig. 7. Execution is initiated, as mentioned above,
by an alarm signal, or by a packet arriving from another search
module. When an alarm is received, the processor’s current

load is compared to the lower bound of the window. If the load
is smaller than the lower bound, it is broadcast with a
time stamp and processor address. If a packet is received, the
load is accepted as the minimum and is stored with the current
time. If more than one processor sends a load packet due to
their both receiving an alarm simultaneously, the minimum
load is accepted. If the loads are identical, the processor
address is used as a tie breaker. The alarm is set when packets
are received, so the process is loosely synchronized. The
search daemon obtains load information (in the current
implementation the load average) directly from the kernel.

The contents of received packets are written to a file to
reflect the current status of the network. As the status (the
minimum load, and the location of the processor with the
minimum load) is stored, the current time is also stored. When
the status information is read from the file, its time stamp is
used to determine if the load value is out of date. If the status
information is out of date, the processor considers itself
ineligible for job migration until it receives another status
packet. This time stamping allows an unreliable communica-
tion mechanism to be used to communicate load information
(broadcast datagrams) and reduces network traffic in the form
of acknowledgments. If load information is lost by a proces-
sor, that processor does not migrate packets. This has a
minimal affect on the overall performance of the scheduling
strategy. Moreover, since packet loss is a relatively rare
occurrence, acknowledgments are unnecessary.

The search was tested on two Sun systems: one with a
server (Aquinas) and two clients (Calvin and Hobbes), and one
with a server (Dwarfs) and ten clients. On Aquinas, the search
was resolved in 50-80 ms, and on Dwarfs, the searches were
resolved in 150-180 ms. The performance on Dwarfs can be
considered the worst case because the Ethernet cable the
clients are connected with is at the allowable length limit. The
results for both Aquinas and Dwarfs were consistent with the
simulation results in which the absolute minimum was located
70 percent of the time for resolved searches.

The search for the maximum load is not performed
explicitly. It was observed that if a processor’s load was above
the upper bound of the initial window in the minimum search,
its load was the maximum the majority of the time. As a result,
processors with loads above the upper bound of the initial

BAUMGARTNER AND WAH. GAMMON. LOAD BALANCING SYSTEM 1107

Dearnon

search

broadcast

who

/ *

*

*

*
*
*
*
*

Cumulative Cumulative Total
System Time User Time Number of
in Seconds in Seconds Broadcasts

0.1094 0.0137 65

0.2593 0.03 16 181

0.2633 0.0613 181

INTERVAL: constant indicating time interval at which search is performed
packet{ information contained in the packets exchanged
load: processor load
source: processor address

1
load-status (information contained in load status
time st amp : timestamp of the load status
minimum-load : load at the minimally loaded processor
minimum - location: location of the minimally loaded processor

1
currenttime(): function returning the current time
current-load(): function returning the current load at a processor
set-alarm () : function to set an alarm signal ARGUMENT seconds from now
on-alarm() : function that sets a call to the argument when an alarm occurs
reset-alarm(): function to reset the alarm signal to ARGUMENT seconds from now
wait - arrival(): function that waits for the arrival of a packet
write () : writes to a file

* /

structure load-status load-status; / * global structure containing load status * /

procedure main;
on - alarm(sendqacket ()) ;

set-alarm (INTERVAL) ;
while (TRUE)

andwhile
receive-packet () ;

end

procedure send-packet;
if (current-load () < window) then

packet.load = current load();.
packet.source = m-ADDRESS:
broadcast (packet) ;

-

Pndif
set-alarm (INTERVAL) ;

end

procedure receivegacketo;
wait-arrival(packet);
reset-alarm(1NTERVAL);
if (current-time () > load-status.time) then

load-status.minimum-load = packet-load;
load - status.minimum-location = packet-source;
load status.timestamp = current-time();
write (load-status) ;

andif
end

Fig. 7. Procedures for the minimum search

window can migrate the current job if the minimum load is
current. and an exdicit search Of the maximallv loaded COMPARISON OF OVERHEAD FOR STATUS DISTRlBUTlON OF THREE

TABLE I1

processor is not needed.
A potential problem with not explicitly identifying the

maximally loaded processor is that a lightly loaded processor
may be swamped by jobs from more heavily loaded ones.
There are two solutions to resolve this problem. First, a
processor may only be allowed to migrate jobs if it has a load
higher than the upper bound of the initial window and a new
arrival. Second, a processor may be allowcd to migrate at most
one job between searches. Our performance data indicate that
swamping is not a problem for a moderate number of
participating processors. However, if preemption were imple-
mented, it would be necessary to identify a unique maximum,
as a large fraction of the processors may be preempting jobs at
any time.

Another obvious technique for distributing status informa-
tion is to broadcast it periodically, as is done with the rwhod
daemon in Unix. To determine the savings of using the
proposed method as opposed to using the technique of the
rwhod daemon, the resource utilization of both was measured
for the period of one hour. The overhead is summarized in

Table 11. For comparison, a daemon that only broadcasts the
load average value is studied (as opposed to the rwho daemon
which broadcasts other information as well). Recall that the
daemons perform a search every minute. When a search using
GAMMON is performed, it is possible for daemons at two
computers to start a broadcast simultaneously; hence, the total
number of broadcast is slightly above 60 (first value in the last
column of Table E). When the broadcast or rwhod daemons
are used, each computer initiates a broadcast every minute
independent of other computers.

1108 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 8, AUGUST 1989

TABLE 111
PERFORMANCE OF THE GLOBAL SCHEDULING STRATEGY

The results in Table I1 indicate that both the rwhod and the
simple broadcast daemon introduce considerably more com-
munication overhead than the search daemon proposed here.

B. Implementation of Job Migration and Result Return
In the general case, result return and job migration require

that input file (and executable files if necessary) be sent over
the network from the source processor to the destination
process, and that output files be sent back. In the Sun
environment, it is not necessary to send files from the source
to the destination because all processors and clients have
access to the same secondary storage. In this environment, job
migration requires sending the command from the source to
the destination, and result return requires sending any error
information back.

In the procedure for job migration, the current load of the
processor is first compared to the upper bound of the initial
window for the maximum search. If the load is above this
upper bound, then the global minimum location and its
time stamp are read from a local file. If the timestamp indicates
the minimum is current, the job is executed on the processor
with the minimum load using a remote shell. This causes any
error messages associated with the remote execution to be send
back directly. The remote shell uses the reliable TCP/IP
protocol, so execution of the job is guaranteed. Further details
of this implementation can be found in [3].

C. Performance of GAMMON

We evaluate GAMMON by comparing the response time of
a system with GAMMON to that of a system without global
scheduling. The server, Aquinas, with two clients, Calvin and
Hobbes, are used. First, workload was generated by processes
that either initiated a CPU-bound job or slept for the amount of
time the job consumed during its last execution with equal
probability. As these processes were executed, the load and
the amount of time consumed by executing processes was
tabulated. Also, a history of the initiation of jobs was created.
Next, the global scheduling strategy was enabled and the jobs
were initiated according to this history. Again the load was
monitored and the execution time tabulated.

The results summarized in Table I11 show a small improve-
ment for the server and a much larger improvement for the
clients. This is expected as the server is about 2.7 times faster
than the clients and has direct access to the secondary storage
through the VME bus rather than the Ethernet. As a result, the
clients will benefit more by sending jobs to the server.

VI. CONCLUDING REMARKS

In this paper, we have presented an efficient technique for a
distributed extremum search and a load balancing protocol
using this technique. The search technique can be imple-
mented at the applications level on existing distributed
computing systems connected by multiaccess networks. This
is important because it is typically not possible to make
hardware modifications to existing networks. The maximum
or the minimum of a set of numbers, which reflect the
workloads, can be identified in a small bounded number of
broadcast slots on the average. Since the search technique has
a constant average behavior, the GAMMON strategy using
this efficient search technique is feasible. GAMMON was
implemented on a network of Sun workstations. Performance
measurements indicate that the system with GAMMON allows
improvement in overall performance as well as improved
individual processor performance.

ACKNOWLEDGMENT

We gratefully acknowledge the help of R. M. Kling, who
has participated in developing the implementation on the
network of Sun computers.

REFERENCES
K. M. Baumgartner and B. W. Wah, “Load balancing protocols on a
local computer system with a multiaccess bus,” in Proc. Inc. Conf.
Parallel Processing. University Park, PA: Pennsylvania State Uni-
versity Press, Aug. 1987, pp. 851-858.
K. M. Baumgartner, “Resource allocation on distributed computer
systems,” Ph.D. dissertation, School of Electrical Engineering, Purdue
University, West Lafayette, IN, May, 1988.
K. M. Baumgartner, R. M. Wing, and B. W. Wah, “Design and
implementation of an efficient load balancing strategy for a local
computer system,” in Proc. Int. Conf. Parallel Processing.
University Park, PA: Pennsylvania State University Press, 1989.
T. C. K. Chou and J. A. Abraham, “Load Balancing in distributed
systems.” IEEE Trans. Software Eng., vol. SE-8, pp. 401-412, July
1982.
Y. C. Chow and W. Kohler, “Models for dynamic load balancing in a
heterogeneous multiple processor system,’’ IEEE Trans. Comput.,
vol. C-28, pp. 334-361, May 1979.
W. W. Chu, L. J . Holloway, M. T. Lan, and K. Efe, “Task allocation
in distributed data processing,” IEEE Computer, pp. 57-68, Nov.
1980.
D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive load sharing
in homogeneous distributed systems,’’ IEEE Trans. Software Eng.,
vol. SE-12, pp. 662-675, May 1986.
D. Ferrari and S . Zhou, “A load index for dynamic load balancing,” in
Proc. Fall Joint Comput. ConJ, Nov. 1986, pp. 684-690.
K. Hwang, W. J . Croft, G. H. Goble, B. W. Wah, F. A. Briggs, W. R.
Simmons, and C. L. Coates, “A UNIX-based local computer network
with load balancing,” Computer, vol. 15, no. 4, pp. 55-66, Apr.
1982. Also in Tutorial: Computer Architecture, D. D. Gajski, V. M.

BAUMGARTNER AND WAH: GAMMON: LOAD BALANCING SYSTEM 1109

Milutinovic. H. J . Siegel, and B. P. Furht. Eds. New York: IEEE
Computer Society, 1987. pp. 541-552.
J. Y. Juang and B. W. Wah. “Unified window protocols for contention
resolution in local multiaccess networks,” in Proc. INFOCOM, Apr.

~ , “Optimal scheduling algorithms for multistage resource sharing
interconnection networks,” in Proc. Compul. Software Appl. Conf.,
Nov. 1984, pp. 217-225.

~ . “Global state identification for load balancing in a computer
system with multiple contention busses.” in Proc. Comput. Software
Appl. Con/.., Oct. 1986. pp. 36-42.
A. Kratzer and D. Hammerstrom, “A study of load leveling,” in Proc.
COMPCON, Fall 1980, pp. 647-654.
A. M. Law and D. W. Kelton, Simulation Modeling and Analysis.
New York: McGraw-Hill. 1982.
M. Livney and M. Melman. “Load balancing in homogeneous
broadcast distributed systems,’’ in Proc. Modeling Perform. Eval.
Comput. Syst., ACM SIGMETRICS, 1982, pp. 47-55.
R. Metcalfe and D. Boggs, “Ethernet: Distributed packet switching for
local computer networks,” Commun. ACM, vol. 19. no. 7. pp. 395-
404, 1976.
L. M. Ni and K . Hwang. “Optimal load balancing strategies for a
multiple processor system,“ in Proc. 10th Int. ConJ. Parallel
Processing, Aug. 1981. pp. 352-357.
A. S. Tanenbaum, Computer Networks. Englewood Cliffs. NI:
Prentice-Hall. I98 I .
A. N. Tantawi and D. F. Towsley, “Optimal static load balancing in
distributed computer systems,” J . ACM, vol. 32. pp. 445-465, Apr.
1985.
K. S. Trivedi, Probability and Statistics with Reliability, Queuing,
and Computer Science Applications. Engleuood Cliffs, NJ: Pren-
tice-Hall, 1982.
B. W. Wah and J . Y. Juang, An efficient protocol for load balancing on
CSMAICD networks.” in Proc. 8th Conf. Local Comput. Net-
works, Oct. 1983, pp. 55-61.

~ -. “Resource scheduling for local computer systems with a
multiaccess network.” IEEE Trans. Comput., vol. C-34. pp. 1144-
1157, Dec. 1985.
~- , “An efficient contention resolution protocol for local mul-

tiaccess networks,” U.S. Patent 4630264. Filed Sept. 21. 1984.
Granted Dec. 16, 1986.

1984, pp. 97-104.

B. W . Wah and P. Mehra, “Learning parallel search in load
balancing.” in Proc. Workshop Parallel Algorithms Machine Intel.
Pattern Recognition, AAAI, Minneapolis. MN. Aug. 21. 1988.
Y . T. Wang and J . T. Morris, “Load sharing in distributed systems,”
IEEE Trans. Computers, vol. C-34. pp. 204-217. Mar. 1985.

Katherine M. Baumgartner (S’81-M’89) received
the B.S.E.E.. M.S.E.E.. and Ph.D. in electrical
engineering all from Purdue University. West La-
fayette, IN, in 1981, 1984, and 1988 respectively.

From 1986 to 1988 she was a Research Assistant
at the Coordinated Sciences Laboratory at the
University of Illinois, Urbana. Her research inter-
ests include architectures for parallel and distributed
computer systems and distributed operating sys-
tems. She is currently a Senior Engineer at the
Digital Equipment Corporation in Maynard, MA.

Benjamin W. Wah (S’74-M‘79-SM’85) received
the Ph.D. degree in computer science from the
University of California, Berkeley. CA, in 1979.

He was on the faculty of the School of Electrical
Engineering at Purdue University, West Lafayette.
IN , between 1979 and 1985. He is now a Professor
in the Department of Electrical and Computer
Engineering and the Coordinated Science Labora-
tory, University of Illinois at Urbana-Champaign.
Urbana. Between 1988 and 1989. he served as a
program director of the Microelectronic Systems

Architecture Program. National Science Foundation. His areas of research
include computer architecture. parallel processing. artificial intelligence.
distributed databases, and computer networks.

Dr. Wah is an Associate Editor-in-Chief of the IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING, an area editor of the Journal of
Parallel and Distributed Computing, and an editor of In formation
Sciences. He serves as a member of the Governing Board of the IEEE
Computer Society and a program evaluator for ABET (computer Engineering)
and CSAC (computer science).

