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GAMMON: A Load Balancing Strategy for Local 
Computer Systems with Multiaccess Networks 

KATHERINE M. BAUMGARTNER, MEMBER, IEEE, AND BENJAMIN w .  WAH, SENIOR MEMBER, IEEE 

Abstract-This paper investigates an efficient load balancing 
strategy, GAMMON (global allocation from maximum to mini- 
mum in constant time), for distributed computing systems 
connected by multiaccess local area networks. The broadcast 
capability of these networks is used to implement an identifica- 
tion procedure at the applications level for the maximally and the 
minimally loaded processors. The search technique has an 
average overhead which is independent of the number of 
participating stations. An implementation of GAMMON on a 
network of SUN workstations is described. Its performance is 
found to be better than other known methods. 

Index Terms-Broadcast, collision detection, dynamic pro- 
gramming, load balancing, multiaccess networks. 

I. INTRODUCTION 

OAD balancing uses communication facilities in a L distributed computing system to support remote job 
execution in a user-transparent fashion in order to improve 
resource utilization and reduce response time. A decision to 
load balance a job is made if the job is likely to be finished 
sooner when executed remotely than when executed locally. 
Load balancing has been found to be essential because a job 
will almost always be waiting for service at one processor 
while another processor is idle in a system with ten or more 
processors [ 151. 

Load balancing decisions can be made in a centralized or in 
a distributed manner. A centralized decision implies that 
status information is collected, and decisions to load balance 
are made at one location. An example would be a system with 
a job scheduler at one location that collects jobs and dispatches 
them to stations for processing. Theoretical studies on 
centralized load balancing have been made by Chow and 
Kohler [5] and Ni and Hwang [17]. The disadvantage of 
centralized scheduling is the overhead of collecting processor 
status information and jobs. When this overhead is large, 
scheduling decisions are frequently based on inaccurate and 
outdated status information. In contrast, a distributed load 
balancing scheme does not limit the scheduling intelligence to 
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one processor. It avoids the bottleneck of collecting status 
information and jobs at a single site and allows the scheduler to 
react quickly to dynamic changes in the system state. 

Load balancing can also be classified as state-dependent or 
probabilistic [5]. A decision based on the current state of the 
system is state-dependent. A decision is probabilistic if an 
arriving job is dispatched to the processors according to a set 
of branching probabilities which are collected from previous 
experience or are based on system characteristics. In the case 
that the branching probabilities are derived from the service 
rates of processors, the strategy is called proportional 
branching [5]. It was found that a probabilistic strategy for a 
single job class performed better than a proportional branching 
strategy with a single arrival stream [17]. An optimal 
probabilistic algorithm for multiple job classes was found to be 
easier to implement than state-dependent strategies. An 
optimal probabilistic load balancing algorithm with multiple 
arrival streams has also been shown [19]. Other research on 
load balancing include studies characterizing state-dependent 
load balancing, determining appropriate state information [8], 
proposing efficient algorithms [4], [7], [13], [15], [25], and 
topology-dependent strategies [6], [lo]-[ 121, [2 11, [22]. 

State-dependent load balancing is implemented on the 
Purdue Engineering Computer Network, which is a system of 
computers connected by a hybrid of Ethernet and point-to- 
point links [9]. The load balancing decisions are distributed: 
each processor decides whether to send its jobs for remote 
execution. A processor polls other processors for status 
information about their loads, decides which processor has the 
lowest load, and sends the job for remote processing if the 
turnaround time is shorter. 

Some results of these previous studies are as follows. 
1) A network with load balancing performs better than a 

network without load balancing. 
2) State-dependent load balancing strategies perform better 

than probabilistic strategies, but have higher overhead. 
3) Probabilistic strategies are sometimes insensitive to 

dynamic changes in system load and may result in suboptimal 
performance. 

4) Load balancing decisions considering the state of the 
source only do not have the potential for performance 
improvement that decisions considering the state of the 
destination do [25]. 

5) Extensive state information is not needed for effective 
load balancing and can be detrimental to system performance 

6) Status information used in a state-dependent decision 
171. 
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Fig. 1. Queueing diagram of a system of processors connected by a 
broadcast bus. 

must be readily available. Decisions based on outdated or 
inaccurate status information could degrade performance. 

7) Load balancing increases network load which can impede 
message transmissions. 

This study considers load balancing on local computer 
systems connected by multiaccess networks. These networks 
have a broadcast bus topology that allows only one job or 
message to be sent across the network at a time. Response time 
is the amount of time elapsed from job submission to job 
completion and is an indication of the processor load. Due to 
the constraint of sending one job at a time across the bus, an 
efficient load balancing strategy is to send a job from the 
processor with the maximum load to the processor with the 
minimum load when the overhead of sending these jobs and 
identifying the participating stations is small. This paper 
proposes a strategy for load balancing that can be implemented 
at the applications level on existing systems. The strategy uses 
an efficient technique to identify the minimally and the 
maximally loaded processors with constant average overhead. 
The strategy is called GAMMON: global allocation from 
maximum to minimum in constant time. 

The organization of this paper is as follows. The section 
following this introduction gives an overview of GAMMON. 
Section I11 shows a window protocol that can be used for 
distributed extremum search on bus networks and that requires 
hardware modification to existing network interfaces. Section 
IV extends this protocol for implementation on existing 
systems without hardware changes. The implementation of 
GAMMON is described in Section V,  and concluding remarks 
are drawn in Section VI. 

11. GLOBAL SCHEDULING STRATEGI 

A model of the system under consideration is shown in Fig. 
1 .  There are multiple identical processors connected by a 
broadcast bus. Each processor can have arrivals external to the 
system or from the bus. Jobs are modeled as independent 
tasks. If jobs are migrated to a processor across the bus, the 
results must be returned to the originating processor when 
execution is completed. Moreover, the queue at each proces- 
sor is finite: only a limited number of jobs may be waiting for 
execution. 

A good load balancing procedure should avoid the occur- 
rence of the idle-while-waiting condition, as well as any state 

which makes idle-while-waiting more likely. In a batch 
processing system, idle-while-waiting will not occur when 
there is at least one job at each processor at any time. Hence, 
the likelihood of idle-while-waiting can be minimized if jobs 
are evenly distributed. In a multiprogrammed system, assur- 
ing that processors are busy is not sufficient to minimize the 
occurrence of the idle-while-waiting condition; it is important 
to distribute all available jobs evenly in order to have a 
reasonable response time for every job. 

The strategy discussed here uses the queue length of active 
jobs at a processor as a metric to indicate workload. A queue 
length imbalance will make the idle-while-waiting condition 
more likely. Hence, load redistribution is needed when there is 
significant difference between queue lengths, such that the 
estimated total overhead of migrating a job and queueing delay 
at a remote processor and later returning results is less than the 
delay a job would experience at its source processor. 

An important point here is that the number of jobs at a 
processor, while frequently a good reflection of load, is not 
always adequate. Other factors that may contribute to the 
workload at a processor include physical differences of 
processors (such as speed or size of main memory), paging 
activity, and the ratio of processing activities and inputioutput 
activities in jobs. Future work will involve investigating a 
more inclusive measure of processor load [24]. 

An ideal redistribution of jobs, given that the metric used is 
the queue length at each processor, is to have equal number of 
jobs at each processor. Since a single bus connects all the 
computers, only one job can be migrated at any one time. The 
best strategy is to take a job from the maximally loaded 
processor, and send it to the minimally loaded processor. Such 
a strategy is both source- and sink-initiated. Furthermore, it 
requires the minimal amount of status information transferred. 

Three basic scheduling operations are required for this 
redistribution on a bus network: identification of the maxi- 
mally and the minimally loaded processors, job migration, and 
result return. Migrating jobs and returning results are straight- 
forward because existing communication facilities can be 
used. However, identifying processors with the load extremes 
efficiently is more difficult. Such an operation should have 
very low complexity, preferably independent of the number of 
processors connected to the bus. Any centralized scheduling 
algorithm, such as polling, is not suitable here. Efficient 
algorithms are studied in Sections IV and V.  

The three basic scheduling operations, in addition to regular 
message transfers, must be prioritized in order to achieve the 
best performance. Regular message transfer is assigned the 
highest priority, since it is the original purpose of the network. 
The priorities of the remaining tasks are determined by 
considering the relative overheads in terms of the additional 
total system delay (the sum of the delays of all jobs) incurred. 

First, the relative priority of identifying the ith maximally/ 
minimally-loaded-processor pair and migrating the job be- 
tween the (i - 1)th pair is determined. Two cases are 
considered. The first is when there are idle processors. If job 
migration is done first, then the migrated job can begin 
execution immediately upon arrival at the destination proces- 
sor, so its delay is increased by the time required to send it 
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across the network. In contrast, if the max/min identification 
is done first, then the same job will incur the delay of that 
operation as well, Clearly, migrating the job first is better. The 
second case is when there are no idle processors. The ordering 
of the tasks is not critical in this case, since migrating the job 
first does not immediately contribute to reducing the job delay, 
as the job may not begin execution upon arrival at the 
destination. This result is true for any job migration and max/ 
min identification, and performing the migration first will 
result in a total delay equal to or smaller than performing the 
max/min identification first. Consequently, job migration 
should have priority over max/min identification. 

Next, the relative priority between result return and job 
migration is considered. When there are no idle processors, 
delay is added directly to the job waiting for result return. 
Since the job waiting for job migration will not be able to 
begin execution immediately upon arrival at the destination, 
result return should take precedence. When there are idle 
processors, reducing either the delay for job migration or the 
delay for result return will reduce the overall delay. In short, 
performing the result return first always improves the overall 
performance as much or more than performing job migration 
first. It is also easy to see that result return should always have 
precedence over max/min identification by a similar argu- 
ment. 

In summary, the priority ordering for tasks using the bus 
network is 1) regular message transfer, 2) result return, 3) job 
migration, and 4) max/min identification. 

The scheduling strategy GAMMON consists of two steps 
that are executed repeatedly. The first is to determine which of 
the current tasks has the highest priority, and the second step is 
to execute that task. Due to the ordering of the priorities, only 
one job will ever be waiting for job migration, but potentially 
more than one may be waiting for result return. 

A consideration with priorities are the overhead of priority 
resolution among tasks and the overhead of the tasks themsel- 
ves. The discussion above assumes that each of the steps has 
similar overhead. If the overheads associated with tasks are 
considerably different, priority enforcement changes. A spe- 
cific case is processors sharing a common secondary storage. 
Job migration and result return have lower overhead in such a 
system than in one with a shared disk. File transfer is not 
explicitly needed as all processors have access to the common 
secondary storage. Furthermore, if the overhead of resolving 
priorities is large, then it is more efficient not to schedule tasks 
according to priorities. Such a tradeoff is performed in the 
implementation of the load balancing algorithm, which is 
presented in Section V. 

111. WINDOW PROTOCOL FOR DISTRIBUTED EXTREMUM SEARCHES 

Carrier-sense-multiaccess net works with collision detec- 
tion (CSMA/CD) are a type of local-area network with 
packet switching and a bus topology [18]. CSMA/CD net- 
works evolved from CSMA networks that have listen-before- 
talk protocols to avoid overlapping transmissions. The colli- 
sion-detection ability of CSMA/CD networks allows 
processors to additionally listen- while-talk, so collisions 

resulting from simultaneous transmissions can be detected and 
stopped immediately. 

There are three types of protocols for contention resolution 
CSMA/CD networks. Collision-free protocols strictly sched- 
ule bus accesses, so no collisions occur. Contention protocols 
function at the other extreme by allowing processors to 
transmit whenever they find the bus idle. When collisions 
occur because of simultaneous transmissions, processors stop 
transmitting, wait for some prescribed amount of time, and try 
again. The backoff algorithm of Ethernet [16] is an example in 
this class. The disadvantage of collision-free protocols lies in 
the overhead of waiting for transmission, while the disadvan- 
tage of contention protocols is the time wasted during 
collisions. A third type of contention-resolution protocol is the 
limited-contention protocol. This type of protocol chooses a 
processor for transmission from among those waiting to 
transmit based on a priori information, such as the channel 
load. 

The virtual-window protocol (VWP) proposed by Wah 
and Juang [lo], [21]-[23] is an example of a limited- 
contention protocol. It is based on a three-state collision- 
detection mechanism. After each attempted broadcast, there 
are three possible outcomes: collision (more than one broad- 
cast), idle (no broadcast), and success (exactly one broadcast). 
The protocol can be adapted easily to perform distributed 
extremum searches in a load balancing strategy. In the 
remainder of this section, we briefly explain this protocol and 
discuss its limitations. 

Stations wishing to transmit packets participate in a conten- 
tion period that consists of a number of contention slots. 
Each station generates a random number called a contention 
parameter that is used for the entire contention period. The 
parameter is in an interval with upper and lower bounds U and 
L ,  respectively. Without loss of generality, assume that the 
station with the minimum contention parameter is sought. The 
results developed apply to the case in which the station with 
the maximum contention parameter is to be found. Successive 
choices of smaller intervals in each contention slot attempt to 
isolate the minimum contention parameter. 

For regular message transfers, each station has equal chance 
of being chosen for transmission, so the contention parameters 
are random numbers generated from a uniform distribution in 
the interval (0, 11. The stations maintain a common window 
(or interval) for contention. In a contention slot, stations 
having contention parameters within the window broadcast a 
short signal to contend for the channel. If a collision or no 
transmission occurs, the window boundaries are adjusted in 
parallel for the next contention slot. Stations having contention 
parameters outside the window stop contending and wait for 
the next contention period. The above steps are repeated until 
a single station is isolated in the window. This station is the 
winner and is allowed to transmit its packet. The distribution 
of the contention parameters and an estimate of the channel 
load are used to update the window efficiently, so the number 
of contention slots is kept to a minimum. 

The global window required in the protocol can be 
maintained by updating an initially identical window with a 
common algorithm and using the identical information broad- 
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Fig. 2.  Example of the virtual-window protocol. The dashed lines indicate the 
portion of the interval k i n g  searched dunng the current contention slot. The 
current window. enclosing stations eligible to contend, is delimited by ( I .  (a) 
First iteration. (b) Second iteration. (c) Third iteration. 

cast on the bus. Assuming that the information broadcast is 
received correctly by all stations, the global window will be 
synchronized at all sites. 

An example of the VWP is shown in Fig. 2.  There are five 
processors contending, and station i has contention parameter 
xi .  In this example, x I  = 0.48, x2 = 0.90, x3 = 0.35, x4 = 
0.30, and x5 = 0.75. These contention parameters were 
chosen arbitrarily, but for different purposes they may reflect 
processor loads or priorities. The windows chosen in these 
examples are not the optimal windows but are chosen to 
illustrate the characteristics of the protocols. w,, the upper 
bound for the first window chosen, is 0.51. All stations with 
contention parameters less that or equal to 0.5 1 are allowed to 
broadcast; in this case, stations 1, 3, and 4. The result of this 
contention slot is a collision; the interval to be searched is 
updated to (0, 0.511; and stations 2 and 5 are eliminated from 
further contention. w2, the upper bound for the next window, is 
0.25. The result of the second contention slot is idle (no 
broadcast), so the interval is updated to (0.25, 0.511. No 
stations were eliminated as a result of this contention slot. For 
the third contention slot, the upper bound of the window is 
chosen to be 0.32. The result is a successful transmission, so 
station 4 is isolated and “wins” the contention. 

The window-selection process can be formulated as a 
dynamic programming algorithm, and details have been 
shown elsewhere [22]. Analyses and simulations have shown 
that contention can be resolved in an average of 2.4 contention 
slots, independent of the number of contending stations and the 
distribution function of the contention parameters, if the 
parameters are independent and identically distributed [2 11. 

A major limitation of the VWP is that its implementation 
requires minor hardware modifications of existing Ethernet 
interfaces [22]. At the applications level, such modifications 
are not always possible. Many existing networks do not make 
three-state collision-detection information available to the 
applications software because a contention slot is a small 
amount of time (50-100 ps) relative to the time required to 
propagate information through all levels of software to the 
applications level (hundreds of microseconds). Consequently, 
a different protocol must be developed for distributed extre- 
mum search at the application level. Several alternatives are 
discussed in the next section. 

IV. WINDOW PROTOCOLS WITH TWO-STATE COLLISION 
DETECTION 

At the applications level, each station has an independent 
search parameter, and an iteration is a broadcast slot which 
is a contention resolution at the network interface followed by 
a broadcast of a message to all stations. A broadcast slot has 
two possible outcomes, idle (no stations attempt to broadcast), 
or transmission (one or more stations attempt to broadcast 
resulting in contention resolution, and one station broadcasts 
its search parameter). A broadcast slot may consist of a 
number of contention slots, and information about each 
contention slot is not sent to the applications level. 

There are a number of differences between searching at the 
applications level and the network level. 

1) The contention parameters are the search parameters for 
the VWP, which is not the case for the window protocol at the 
applications level. 

2) An iteration of the VWP is a contention slot with three 
possible outcomes: idle, collision, and success. An iteration of 
the window protocol at the applications level is a broadcast slot 
with two possible outcomes: transmission and idle. 

3) An iteration of the VWP takes less time than an iteration 
of the window protocol at the applications level. Normally. a 
contention slot takes tens of microseconds, while broadcasting 
a short message takes hundreds of microseconds. 

Since the information available for window selection is 
different at the applications level, the decision process has to 
be modified. Three possible window-search strategies to 
identify the minimum are described below. The identification 
of the maximum is similar and is not described. Further details 
about these strategies can be found elsewhere [ I ] ,  [2]. In 
contrast to the VWP, dynamic programming methods to 
optimize window choices cannot be used here because the 
Principle of Optimality is violated. The performance of these 
strategies is compared using the number of broadcast slots they 
require to isolate the minimum search parameter. These 
strategies assume that information about the distribution of 
search parameters is available. This distribution is character- 
ized experimentally in Section IV-D. 

A .  One-Broadcast Strategy 
The one-broadcast strategy allows a maximum of one 

broadcast slot per iteration. Starting with an interval ( L ,  U ] ,  
each station has a search parameter x, in the interval. The 
stations maintain a global window in the interval. Stations with 
parameters within the window attempt to broadcast their 
search parameters, and if there are one or more parameters in 
the window, there will be a contention resolution followed by 
a broadcast of one of the search parameters. The upper bound 
of the interval will be updated to the value broadcast. If there 
are no parameters within the window, the lower bound of the 
interval is updated to the upper bound of the window used, and 
the protocol continues. The minimum is identified when the 
lower bound of the interval is equal to the upper bound. 

An example of the one-broadcast strategy is shown in Fig. 
3. The stations and parameters are the same as those in Fig. 2. 
In the first iteration [Fig. 3(a)]. the upper bound of the window 
chosen is 0.51. Stations 1, 3, and 4 attempt to broadcast their 
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Fig. 3. Example of the window protocol using the one-broadcast strategy. 
The dashed lines indicate the portion of the interval being searched during 
the current broadcast slot. The current window is delimited by (1. (a) First 
iteration. (b) Second iteration. (c) Third iteration. 

parameters. Suppose that station 3 is the winner and transmits. 
The next interval to be searched is (0, x3). Let the upper bound 
of the next window chosen be 0.33. Only station 4 trys to 
transmit its parameter, and x4 is broadcast. The search has not 
concluded even though x4 is the minimum because the fact that 
it was the only station broadcasting is not available to station 4 
or to the other stations. The next window chosen is 0.25. 
There is, of course, no broadcast. This process will continue 
until the bounds of the window isolate x4, and the minimum is 
globally known. 

The choice of the window in each broadcast slot is based on 
the probabilities of the two states, transmission and idle, which 
are dependent on previous broadcasts. If a previous broadcast 
slot resulted in the transmission of a value, say xbl, then any 
subsequent transmissions must be less than xb I .  This implies 
that any subsequent xi’s broadcast were eligible to broadcast 
during the iteration that xb] was broadcast, but lost the 
contention. The probability of the subsequent transmissions 
must be conditioned on the fact that any xi’s in the current 

/ k 

values and corresponding upper 
bounds of windows stored in the k- 
element arrays u k  and qk,  respec- 
tively; 
the probability of a transmission in the 
interval (a, w], given that there have 
been k previous broadcasts with val- 
ues and corresponding upper bounds 
of windows stored in the k-element 
arrays uk and qk,  respectively; 
the probability of idle in the interval 
(a, w], given that there have been k 
previous broadcasts with values and 
corresponding upper bounds of win- 
dows stored in the k-element arrays u k  
and qk,  respectively. 

&(a, b, w, vk ,  qk): 

OE(a, b, w, u k ,  qk) :  

The notation u k  and qk indicates a set of k values broadcast 
and the corresponding upper bounds of windows used. uk and 
q k  are the kth value and the corresponding upper bound of 
window used. It follows directly from the above definitions 
that 

+ E ( ~ ,  b, W ,  Uk, qk)+eE(ar b, W ,  U k ,  q k ) =  1.0. (1) 

After k successful broadcasts, there are 2(k + 1) subinter- 
vals in the interval (a, U ] .  They are (a,  wl ,  (w, U k l ,  ( U k ,  q k l ,  
( q k ,  uk- 11, * * , (UI, QI], and (ql,  U ] .  For reference, they can 
be numbered from left to right and from 1 to 2(k + 1). Let s 
be a set of elements { s i } ,  where s; is the number of xi’s in the 
ith subinterval. Let S be the set of s that are possible with the 
previous windows and values broadcast, and let I be a subset 
of S such that s1 = 0. The set I is the subset of S that 
corresponds to a distribution of xi’s such that there will be no 
xi’s in (a, w ]  and that the result of the broadcast slot is idle. 
Then 

(2) 

(Pr[arrangement s] 

(Pr[arrangement s] 

Pr[ u; broadcast with a window upper bound q; I s] 

Pr[ u; broadcast with a window upper bound q; I s] 

g - S E I  i :  1 

) -  
E -  

i =  1 

window did not broadcast when they were eligible during 
previous iterations. The choice of the window is, thus, 
dependent on previous broadcasts, and the Principle of 
Optimality is not satisfied. As a result, the choice cannot be 
optimized by dynamic programming methods. 

Assume that station i has an independent search parameter xi 
with distribution F(x) and density f ( x ) .  The following 
definitions are used to formulate the problem of choosing the 
upper bound of the next window as a recurrence after k 
broadcasts. 

NEl(a, 6, u k ,  qk): the minimum expected number of 
broadcast slots to isolate the minimum 
x; in the interval (a, b]  using a one- 
broadcast strategy, given that there 
have been k previous broadcasts with 

The probability of a given arrangement is found using the 
distribution function F(x) .  Let b(a, b, i )  = [F(b)  - F(a)]’  
then 

* b(ul, q1, SZk+l)b(ql, U,  s2k+2). (3) 

Pr(Uk broadcast with a window upper bound qkls) is easily 
determined because each station in the subinterval search has 
equal probability of winning and broadcasting in a broadcast 
slot, so 
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Pr( u, broadcast with a window upper bound q, I s) 

Using a conditional density function 

the choice of the upper bound of the next window is 
formulated as a recurrence. Let 

then 

with 

NEI (a ,  6, vk, q k )  = 1 for all b = a. (8) 

The first term on the right-hand side of (7) counts the current 
broadcast. The second term is the expected number of 
additional broadcast slots to isolate the minimum if the current 
broadcast slot results in a transmission. y is the weighted 
average number of broadcast slots for the value broadcast, xb, 
and the probability that this value was broadcast. The third 
term is the number of additional broadcast slots if the current 
broadcast slot is idle. 

Boundary conditions must be set to terminate the evalua- 
tions after a reasonable number of broadcast slots. In practice, 
the xi's may represent indistinguishable physical measures 
when their difference is less than 6. It is assumed that when the 
window size is smaller than 6, the probability that two stations 
have generated parameters in this interval is so small that 
contention can always be resolved in one step. The boundary 
condition becomes 

NEI(a, 6, u k ,  q k ) =  1 for all ( b - a ) < 6 .  (9) 

The optimal window choices found in (7) and (9) can be 
organized by the decision tree shown in Fig. 4. The top of the 
structure contains the roots of decision trees with different 
numbers of processors. For a given n,, there is an initial 
window wl, I ,  and two pointers to substructures corresponding 
to the two outcomes: transmission and idle. Note that the 
substructure for a transmission contains windows for each of 
the possible values that can be transmitted in the subii ,terval. 
Each box in the structure corresponds to a decision point, and 
the contents of the box, ~ , , b , ~ ,  is the window upper bound for 
the current broadcast slot. The subscripts of the window upper 

m\ 1 2 . . .  

TRANSMISSION IDLE 

TRANSMISSION IDLE TRANSMISSION IDLE 

Fig. 4. Data structure for the exact solution of the one-broadcast strategy. 
The data structure shows a method for storing the windows and indicates the 
tree-structured progression of window choices. 

bound indicate the iteration number, whether the last iteration 
outcome was transmission or idle (transmission = 1, idle = 
2), and the value broadcast if the last iteration was a 
transmission. There are two branches from each decision point 
corresponding to the two possible outcomes in each broadcast 
slot. Starting from the root, if the broadcast slot results in a 
transmission of b, then the search will terminate if (b  - L )  < 
6; otherwise, the search will continue with a new decision 
point corresponding to the interval ( L ,  b ] .  If the broadcast slot 
is idle, then the search will terminate if (U - wI,l) < 6 ;  
otherwise, the search continues with the interval ( wl, I ,  U]. 

The data structure in Fig. 4 shows the final window choices, 
but during computation of the best window choice for each 
decision point, all possible choices of windows have to be 
tried. This evaluation process is extremely complex. For each 
possible window, there can either be a transmission or no 
transmission. If there is a transmission, all possible values 
within the window must be considered as the possible value 
broadcast. Each level of the tree indicates the outcome of an 
iteration. For every decision in the exact solution, the entire 
tree above the current decision point, which is determined by 
u k  and qk,  must be taken into consideration in computing the 
next set of branching probabilities. With 6 = l /( lOn),  and n 
= 5, there are 69 007 690 decision points, and for n = 6, the 
number increases to 8 501 194 726. The number of decision 
points increases so rapidly that the problem becomes intracta- 
ble. Fortunately, reasonable results can be obtained using a 
heuristic decision based on the current upper and lower bounds 
only. 

In the approximate solution, the probabilities of transmis- 
sion and idle are assumed to be independent of previous 
broadcasts and are computed without information from pre- 
vious broadcasts. The following definitions are used. 

NA ] (a ,  6): the minimum expected number of broadcast 
slots to isolate the minimum x, in the interval 
(a ,  b ]  using an approximate solution of the one- 
broadcast strategy, given that all x,'s are in (a, 
U ] ,  and that at least one x, is in (a, b ] ;  

$A (a, b, w): the probability of a transmission in the interval 
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(a, w], given that all x,'s are in (a, U ] ,  and that 
at least one xi is in (a,  b ] ;  

OA(a, b ,  w): the probability of no transmission in the inter- 
val (a, w], given that all xi's are in (a, U], and 
that at least one xi is in (a,  b ] .  

It is obvious that 

$A(ar b ,  w)+OA(a, 6 ,  w ) = l . O .  (10) 

There are two cases to consider when calculating OA(a, b ,  w), 
namely, b = U and b # U.  When b = U, it is uncertain 
whether there is an x; at b,  and all arrangements of the n xi's 
must be considered, so 

When b # U,  there must be a station at 6 ,  since b is only 
updated to a value of x, in the event of a transmission. In this 
case, we are only concerned with the placement of at most (n 
- 1) of the xi's, 

( F (  U )  -F(  w))"-' 
( F (  U )  - F (  a))"- 

. ( l lb )  dA(a, b ,  w)lb=U= 

The recurrence for choosing the window is 

N A I ( a ,  b ) =  min 
a < w < b  

Again, the three terms on the right-hand side of the above 
equation count the current broadcast slot, additional broadcast 
slots in the event of a transmission, and additional broadcast 
slots if the current broadcast slot is idle. 

The assumption that contention can be resolved in one step 
when the window size is smaller than 6 holds, so the following 
boundary condition is used again. 

N A I ( a ,  b ) = l  for all ( b - a ) < 6 .  (13) 

The decision tree is the same as for the exact solution, but 
there is a savings since many of the nodes at different levels 
are duplicates. The data structure for storing the windows is 
simply a two-dimensional array. The number of decision 
points for the approximate solution is determined by the values 
of a and b. The total number of unique nodes with 6 = 1/ 
(10n) is ((10n)2 + 30n)/2, which is determined by counting 
the decision points indicated by the above recurrences. For n 
= 5 and n = 6, the numbers of decisions points are 1325 and 
1890, respectively, and the complexity of the solution is 
considerably reduced from the exact solution. 

The performance results of the one-broadcast strategy will 
be discussed in Section IV-C. 

B. Other Strategies 

Other strategies were considered to determine if it were 
possible to improve the performance of the one-broadcast 
strategy, particularly in reducing the number of iterations after 
the station with the minimum search parameter has broadcast. 
The one-broadcast strategy continues until the interval is so 
small that it is certain that there were no stations with 
parameters in that interval. An alternative is a two-broadcast 
strategy, which allows up to two broadcast slots per iteration 
and uses the second slot to determine whether there are any 
stations with search parameters smaller than the parameter 
broadcast in the first slot. Initially, as with previous strategies, 
the intervals is (L ,  U ] ,  and each station has a search parameter 
x; in the interval. A global window is determined, and stations 
with parameters within the window attempt to broadcast their 
search parameters. If there are no search parameters in the 
window, the strategy proceeds as in the one-broadcast 
strategy: the lower bound of the interval is updated to the 
window's upper bound, and the protocol continues. The 
difference between the one- and two-broadcast strategies 
occurs when there are parameters within the window. In this 
case, the upper bound is updated to xbl, the value broadcast, 
and a second broadcast slot is allowed for all stations with xi < 
xbl. If the second slot is idle, xbl is the minimum, and the 
algorithm terminates. If there is a broadcast, the next iteration 
begins with XbZ, the second value broadcast, as the upper 
bound of the interval. Note that xbz is smaller than xbl. 

A problem in the two-broadcast strategy is that the window 
for the second broadcast slot is chosen suboptimally when 
there are stations with search parameters smaller than the 
current broadcast value. Therefore, a better solution is a 
combined strategy, which combines the one-broadcast and 
two-broadcast strategies and makes a decision in each iteration 
whether one broadcast or two broadcasts will be used. Again, 
the objective is to minimize the expected number of future 
broadcasts. 

Analyses and complexities of the two-broadcast and the 
combined strategies are similar to those of the one-broadcast 
strategy. They are not presented here because of space 
limitation and of their inferior performance as compared to the 
one-broadcast strategy. Interested readers can find them in [I] 
and [2]. 

C.  Simulation Results for the Approximate Distributed 
Searches 

The simulation results for the distributed window search 
using the three strategies are shown in Fig. 5. The windows 
were generated using the equations derived in Sections IV-A 
and in [ l ]  and [2]. The broadcast parameters were generated 
from a uniform distribution in (0, 11, and sufficient cases were 
simulated until a confidence interval of 0.95 was reached. The 
average number of broadcast slots is bounded by 2.7 for the 
two-broadcast strategy, and by 2.6 for the one-broadcast and 
combined strategies. The two-broadcast strategy is not as good 
as the one-broadcast strategy because, although it can reduce 
the number of broadcast slots after the minimum has been 
identified, it uses suboptimal window choices for earlier 
broadcast slots. The combined strategy always chooses the 
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Fig. 5 .  Simulations results for different window-warch strategies 

one-broadcast strategy, so their results are identical. The 
overhead for the combined strategy is higher than that of the 
one-broadcast strategy because the strategy for each decision 
point must be stored in addition to the window choices. For 
these reasons, the one-broadcast strategy is superior to the 
other two. 

Note that the broadcast parameters are assumed to be 
independent and uniformly distributed in (0,  U ]  in the 
simulations. In case that the distribution function is nonuni- 
form but independent and identical for all broadcast parame- 
ters, a uniformly distributed broadcast parameter can be 
obtained from the original broadcast parameter by the follow- 
ing formula: 

(14) 

where x is the original broadcast parameter with distribution 
F, and z is the new broadcast parameter with a uniform 
distribution. 

The proposed scheme is practical as a result of the constant 
expected number of broadcast slots. The time required for a 
contention slot is approximately 50 p s ,  and the time required 
to broadcast a search parameter may be estimated at approxi- 
mately 100 p s .  It follows that each broadcast slot would 
require on the order of 220 p s  if 2.4 contention slots [22] were 
required to resolve contention. If it takes 120 p s  to resolve 
contention and 100 p s  to transmit a one-kbyte packet, then the 
overhead of each load balancing decision to identify the 
maximally and the minimally loaded processors is equivalent 
to transmitting 5.2 one-kbyte packets. 

D. Distribution of Load Averages 
The knowledge on the distribution of workload (or load 

averages) is needed in the distribution search in order to 
choose the windows. In this section, we present statistics of 
load averages on a system experiencing a real workload. The 
study consisted of measuring the load on a system of ten Sun 
workstations (servers and clients). Every sixty seconds, the 
one-minute load average was measured and logged. The load 
data were analyzed using an adjusted Komolgorov-Smirnov 
test [ 141, [20]. This goodness-of-fit test can be used to detect 
differences between a normal distribution and the empirical 
distribution indicated by the measured data. The agreement 
was measured over time. The results indicate that the 

z = F -  ’ (x) 

‘j 3 

I I I 

0 500 loo0 
Sample Number 
(a) 

4 1  A 
XJ  I I I 

0 -I -j I 
I I I I I I I I 

1080 1090 1100 1110 1120 1130 
Sample Number 

(b) 

one day. (b) Load maxima and minima for one hour. 
Fig. 6 .  Load maximums and minimums. (a) Load maxima and minima for 

distribution of load averages can be estimated using a normal 
distribution. During 80 percent of the time when the system is 
active, the distribution is within 0.215 of a normal distribu- 
tion. 

The results of the study are shown in Fig. 6. Fig. 6(a) shows 
the maximum and minimum load averages over time. The 
minimum is almost always zero and the maximum varies. The 
peak utilization is between sample number 700 and 1400 
which reflects the load from 1 p.m. until midnight. From 1 
a.m. until 11 a.m., the loads measured were uniformly low 
(5 1). Fig. 6(b) shows one hour of the minimum, average, and 
maximum load averages. 

V. IMPLEMENTATION 
The Sun system on which GAMMON has been imple- 

mented consists of servers and clients connected by Ethernets. 
The servers have secondary disk storage, and the clients do 
not. A client can access a server’s disk via the network, and is 
allocated a portion of the server’s disk for swap space. 
Swapping over the network is a part of the regular message 
transfer. A network file system (NFS) allows transparent 
access to remote file systems. This mechanism allows uniform 
access by the clients to the secondary storage. 

The Sun system is multiprogrammed; when a process is 
initiated on a server or a client, a core image of that process 
containing run-time information exists in the swap space 
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% resolved searches 
finding minimum 

78.00 

76.04 

73.97 

73.66 

72.26 

70.57 

72.82 

74.04 

TABLE I 
RESULTS OF SIMULATION FOR THE TRUNCATED SEARCH (RANK OF THE 

MINIMUM IS 0) 

average rank 
of result 

0.194 

0.2% 

0.268 

0.252 

0.279 

0.292 

0.256 

0.256 

% difference of 
result from minimum 

2.790 

2.192 

2.086 

1.665 

1 SO6 

1.495 

1.151 

0.959 

associated with that server or client. This core image may be 
quite large (on the order of several megabytes). Since it is not 
possible to copy data from one swap space to another, the only 
way to transfer the core image is over the network. Due to the 
size of the core image, this transfer would have high overhead 
(on the order of seconds); consequently, the current imple- 
mentation migrates jobs only at their entry point. Future 
enhancements to GAMMON will study preemption strategies. 

There are two program modules (daemons) that comprise 
GAMMON in the current implementation: the searcher and 
the job migrator. The search daemon periodically participates 
in a search for the minimum. Job migration is performed by 
sending the necessary information of a job at entry point to a 
remote processor; result return is performed when execution 
of the migrated job is completed. Priorities of the various 
phases in load balancing, as discussed in Section 11, are not 
enforced because the overhead of explicit priority resolution is 
very high and is not compensated by the resulting reduction in 
response time. 

A. Implementation of the Distributed Search 
The search for the minimum load normally takes 2.6 

broadcast slots on the average (see Section 111). Table I shows 
the simulation results of the search truncated at one broadcast 
slot. This table shows that, under this condition, the absolute 
minimum is located 70-78 percent of the time and there are 
18.6-23.1 percent of the unresolved cases in which all search 
parameters are in the interval (w,, U] and no workload 
information is broadcast. Unresolved searches are not critical 
here because they reflect a condition in which no processors 
are lightly loaded enough to accept additional jobs. For cases 
that are resolved, those that do not find the absolute minimum 
have a one to two percent difference from the absolute 
minimum. Since workload information is heuristic in nature, 
small errors in identifying processors for load balancing are 
not critical. An important tradeoff we have achieved is that 
reasonable results are obtained at substantially lower over- 
head. 

The minimum search as implemented on the Sun network is 
shown in Fig. 7. Execution is initiated, as mentioned above, 
by an alarm signal, or by a packet arriving from another search 
module. When an alarm is received, the processor’s current 

load is compared to the lower bound of the window. If the load 
is smaller than the lower bound, it is broadcast with a 
time stamp and processor address. If a packet is received, the 
load is accepted as the minimum and is stored with the current 
time. If more than one processor sends a load packet due to 
their both receiving an alarm simultaneously, the minimum 
load is accepted. If the loads are identical, the processor 
address is used as a tie breaker. The alarm is set when packets 
are received, so the process is loosely synchronized. The 
search daemon obtains load information (in the current 
implementation the load average) directly from the kernel. 

The contents of received packets are written to a file to 
reflect the current status of the network. As the status (the 
minimum load, and the location of the processor with the 
minimum load) is stored, the current time is also stored. When 
the status information is read from the file, its time stamp is 
used to determine if the load value is out of date. If the status 
information is out of date, the processor considers itself 
ineligible for job migration until it receives another status 
packet. This time stamping allows an unreliable communica- 
tion mechanism to be used to communicate load information 
(broadcast datagrams) and reduces network traffic in the form 
of acknowledgments. If load information is lost by a proces- 
sor, that processor does not migrate packets. This has a 
minimal affect on the overall performance of the scheduling 
strategy. Moreover, since packet loss is a relatively rare 
occurrence, acknowledgments are unnecessary. 

The search was tested on two Sun systems: one with a 
server (Aquinas) and two clients (Calvin and Hobbes), and one 
with a server (Dwarfs) and ten clients. On Aquinas, the search 
was resolved in 50-80 ms, and on Dwarfs, the searches were 
resolved in 150-180 ms. The performance on Dwarfs can be 
considered the worst case because the Ethernet cable the 
clients are connected with is at the allowable length limit. The 
results for both Aquinas and Dwarfs were consistent with the 
simulation results in which the absolute minimum was located 
70 percent of the time for resolved searches. 

The search for the maximum load is not performed 
explicitly. It was observed that if a processor’s load was above 
the upper bound of the initial window in the minimum search, 
its load was the maximum the majority of the time. As a result, 
processors with loads above the upper bound of the initial 
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Dearnon 

search 

broadcast 

who 

/ *  

* 

* 

* 
* 
* 
* 
* 

Cumulative Cumulative Total 
System Time User Time Number of 
in Seconds in Seconds Broadcasts 

0.1094 0.0137 65 

0.2593 0.03 16 181 

0.2633 0.0613 181 

INTERVAL: constant indicating time interval at which search is performed 
packet{ information contained in the packets exchanged 
load: processor load 
source: processor address 

1 
load-status ( information contained in load status 
time st amp : timestamp of the load status 
minimum-load : load at the minimally loaded processor 
minimum - location: location of the minimally loaded processor 

1 
currenttime(): function returning the current time 
current-load(): function returning the current load at a processor 
set-alarm ( )  : function to set an alarm signal ARGUMENT seconds from now 
on-alarm() : function that sets a call to the argument when an alarm occurs 
reset-alarm(): function to reset the alarm signal to ARGUMENT seconds from now 
wait - arrival(): function that waits for the arrival of a packet 
write ( )  : writes to a file 

* /  

structure load-status load-status; / *  global structure containing load status * /  

procedure main; 
on - alarm(sendqacket ( )  ) ;  

set-alarm (INTERVAL) ; 
while (TRUE) 

andwhile 
receive-packet ( )  ; 

end 

procedure send-packet; 
if (current-load ( )  < window) then 

packet.load = current load();. 
packet.source = m-ADDRESS: 
broadcast (packet) ; 

- 

Pndif 
set-alarm (INTERVAL) ; 

end 

procedure receivegacketo; 
wait-arrival(packet); 
reset-alarm(1NTERVAL); 
if (current-time ( )  > load-status.time) then 

load-status.minimum-load = packet-load; 
load - status.minimum-location = packet-source; 
load status.timestamp = current-time(); 
write (load-status) ; 

andif 
end 

Fig. 7. Procedures for the minimum search 

window can migrate the current job if the minimum load is 
current. and an exdicit search Of the maximallv loaded COMPARISON OF OVERHEAD FOR STATUS DISTRlBUTlON OF THREE 

TABLE I1 

processor is not needed. 
A potential problem with not explicitly identifying the 

maximally loaded processor is that a lightly loaded processor 
may be swamped by jobs from more heavily loaded ones. 
There are two solutions to resolve this problem. First, a 
processor may only be allowed to migrate jobs if it has a load 
higher than the upper bound of the initial window and a new 
arrival. Second, a processor may be allowcd to migrate at most 
one job between searches. Our performance data indicate that 
swamping is not a problem for a moderate number of 
participating processors. However, if preemption were imple- 
mented, it would be necessary to identify a unique maximum, 
as a large fraction of the processors may be preempting jobs at 
any time. 

Another obvious technique for distributing status informa- 
tion is to broadcast it periodically, as is done with the rwhod 
daemon in Unix. To determine the savings of using the 
proposed method as opposed to using the technique of the 
rwhod daemon, the resource utilization of both was measured 
for the period of one hour. The overhead is summarized in 

Table 11. For comparison, a daemon that only broadcasts the 
load average value is studied (as opposed to the rwho daemon 
which broadcasts other information as well). Recall that the 
daemons perform a search every minute. When a search using 
GAMMON is performed, it is possible for daemons at two 
computers to start a broadcast simultaneously; hence, the total 
number of broadcast is slightly above 60 (first value in the last 
column of Table E). When the broadcast or rwhod daemons 
are used, each computer initiates a broadcast every minute 
independent of other computers. 
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TABLE 111 
PERFORMANCE OF THE GLOBAL SCHEDULING STRATEGY 

The results in Table I1 indicate that both the rwhod and the 
simple broadcast daemon introduce considerably more com- 
munication overhead than the search daemon proposed here. 

B. Implementation of Job Migration and Result Return 
In the general case, result return and job migration require 

that input file (and executable files if necessary) be sent over 
the network from the source processor to the destination 
process, and that output files be sent back. In the Sun 
environment, it is not necessary to send files from the source 
to the destination because all processors and clients have 
access to the same secondary storage. In this environment, job 
migration requires sending the command from the source to 
the destination, and result return requires sending any error 
information back. 

In the procedure for job migration, the current load of the 
processor is first compared to the upper bound of the initial 
window for the maximum search. If the load is above this 
upper bound, then the global minimum location and its 
time stamp are read from a local file. If the timestamp indicates 
the minimum is current, the job is executed on the processor 
with the minimum load using a remote shell. This causes any 
error messages associated with the remote execution to be send 
back directly. The remote shell uses the reliable TCP/IP 
protocol, so execution of the job is guaranteed. Further details 
of this implementation can be found in [3]. 

C. Performance of GAMMON 

We evaluate GAMMON by comparing the response time of 
a system with GAMMON to that of a system without global 
scheduling. The server, Aquinas, with two clients, Calvin and 
Hobbes, are used. First, workload was generated by processes 
that either initiated a CPU-bound job or slept for the amount of 
time the job consumed during its last execution with equal 
probability. As these processes were executed, the load and 
the amount of time consumed by executing processes was 
tabulated. Also, a history of the initiation of jobs was created. 
Next, the global scheduling strategy was enabled and the jobs 
were initiated according to this history. Again the load was 
monitored and the execution time tabulated. 

The results summarized in Table I11 show a small improve- 
ment for the server and a much larger improvement for the 
clients. This is expected as the server is about 2.7 times faster 
than the clients and has direct access to the secondary storage 
through the VME bus rather than the Ethernet. As a result, the 
clients will benefit more by sending jobs to the server. 

VI. CONCLUDING REMARKS 

In this paper, we have presented an efficient technique for a 
distributed extremum search and a load balancing protocol 
using this technique. The search technique can be imple- 
mented at the applications level on existing distributed 
computing systems connected by multiaccess networks. This 
is important because it is typically not possible to make 
hardware modifications to existing networks. The maximum 
or the minimum of a set of numbers, which reflect the 
workloads, can be identified in a small bounded number of 
broadcast slots on the average. Since the search technique has 
a constant average behavior, the GAMMON strategy using 
this efficient search technique is feasible. GAMMON was 
implemented on a network of Sun workstations. Performance 
measurements indicate that the system with GAMMON allows 
improvement in overall performance as well as improved 
individual processor performance. 
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