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Efficient Reordering

MARKIAN M, GOOLEY, stupest MEMBER, 15K,

Abnraclhf‘mlog programs are olten ineHicientt exceution Curre-.
spends to a depth-first traversal of an ANDI/OR graph; traveesing
sulsgeraphs in annther order can be-less expensive. We show how reor-
dering of clauses within Prulog predicates, and especiully of goals wilhin
clauses, cun prevent unnecessary search. We characterize and show
how Lo detect restrictions on reordering. We propuse a new systern of
calling medes for Prolog, gezred tn reordering, and discuss ways Lo
infer them automatically. We summarize the information needed for
sale reordering, and consider which types can be inferred automati.
cally and which must be provided by the user. We present an impraved
method for determining 3 good arder Tor the goals of Prolog cluuses,
#nd use it as the basis for a reordering system, showing how the proper
Infermation can guide it to generate reordered Prodog that behaves
correctly.

Index Terms—Restfirst search, logic programming, Markov chains,
Prolog, query optimization,

L. InTRODUCTION
A. Motivation for Our Research

PROLOG programs tend to be inefficient. The infer-

ence engine that executes a Program must traverse an
AND/OR graph [14] depth first, It will often traverse sev-
eral large subgraphs, each corresponding to a goal, only
10 fail on a Jater goal. On failure, the engine backtracks,
searching the subgraphs again 10 find another way 1o sat-
isfy its conjunction of goals. Experienced Prolog pro-
grammers, when they can, arrange Prolog clauses so that
inexpensive goals that are likely to fail (e.g., tests) are
near the beginning of 2 clause £23): if an inexpensive goal
fails, the rest of 2 clause need not be evaluated, Similarly,
they purt clauses last whose heads are unlikely 10 match a
query to their predicate (but a good compiler or Prolog
engine renders this less useful, as we shall see).

The best order for goals or clauses is often problematic,
even for small programs; in some cases it will be different
for differemt calls of a predicate. Programmers tend 1o
write code in orders that arc casy to understand, espe-
cially if the constitvent goals or clauses seem to have about
the same cost and chance of success. For large, complex
predicates, efficiency may well be sacrificed for clariy,

B. Defining the Problem

We wamt to reorder Prolog clauses and goals w0 mini-
mize, or at least reduce, the cost of evaluating a query,
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(We measure this as the number of predicate calls or unj-
tications; CPU time is wo coarse 4 measure and some-
times misleading. ) Ideally, a sysiem for reordering shouly
require little intervention from the user; in practice, we
find that programs often need annotations. The reorderced
program need not be formally equivalent to the original,
but must be correct in some sense, as we discuss later.

C. Assumptions and Definirions

The reader should know as mucl about Prolog as he
might by having rcad the first faw chapters of an intro-
ductory text, such as Clocksin and Mellish [6] or Sterling
and Shapiro [23]. Examples are in the de Jacie standard
DEC-10 Prolog {20] notation.

A predicate with name name and number of arguments
arity is written nName/arity. A variable not set to an atom
or functor is uninstantiared or Jree; else it is instantiared
or bound. A tuple of instantiations corresponding to the
arguments of a goal is called a mode: a goal calls a pred-
icate in one mode and returns from it in {usually) another.
If a predicate will not function in certain modes (i.c., it
produces a run-time error or an infinjte recursion), it de-
mands a particular instantiation or mode,

A predieate that performs an action unrelated to the
logic of a program, one tha cannot be undone by buck-
tracking (i.c., built-in predicates for VO or modifying the
program), has a side-effect and is called exira-logical, A
predicate that uses no built-in predicates is pure, approx-
imating theoretical logic programning under Prolog’s ex-
ecution mechanism {23]. Our techniques are not Jimited
te pure Prolog, although we do assume thar the program
we are restructuring is free of errors.

We treat certain built-in predicates cursorily, viz, not/
1 and the set-predicates bagof/3 and setof/3. We forbid
variable goals, whether written explicitly or using cali/1,
and we do not consider nssertion and retraction of clauses:
we have insufficient information about these before run-
time,

D. An Example of Improvemem

We express a family tree in Prolog. These predicates
give the relationships: wifes 2, mother/ 2, and female/
1. wifeljohn, jane). means that John and Jane are mar-
ricd, mether{john, joan}. means that Joan is John's
mother, and female {(jan}. means that Jan is female, fe-
malef1 is reserved for a female whae is not a wife ora
maother: axsunting no illegitimacy

female(Woman} ;- wifel _, Woman),
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aeconuts for married woraen (the underseore is the amon
yrrous varialle). Piis, someone is female if woe state thad
She is, or i she i§ & wife.

We live o litge coltevtinn "of such facts, and these
predicates i

grandmother IGC,GM} 1 —
grandparentlGC,GMI, femaiclGM).

grandparent{GC,GF} P—=
parent(P,GP), parent{GC.P).

parent{C,.P} : — mother (C,P).
parent{C,P) : — mother (C,M), wife{P,M}.

The query
:— grandmother {X,Y}.

finds all grandmother-grandchild pairs; however, it finds
a grandpareni-grandchild pair first, instantiating the vari-
ables GC and GM, and about half the time promptly re-
jecting it. Changing the first clause to

grandmother {GC,GM} : —
female{GM}, grandparent{GC,GM).

probably reduces the cost: femmale/1 takes al most {two
calls, whereas grandparent/2 can take far more. Note
also that femalef1 instantiates GM and thus the mode of
grandparent/ 2: thus, we consider fewer possibilities,
making the goal less costly. Unless only a tiny fraction of
the females in the database are grandmothers, the reor-
dering pays.

E. Previous Work

Warren {25] presented a method for reordering goals of
conjunctive queres in Prolog. The querics were auto-
mated translations of questions in English: a user typed
in a gquestion on geopraphy, and a parser generated a
query. The order of the goals in the query corresponded
10 the order of the words in the question, Such orders were
often inefficient. Warren gave ¢ach goal of each predicate
a number: the factor by which the goal multiplics the
nuimber of aliernatives the system must consider. (A goal
country{C}, with C uninstamiated, multiplics the num-
ber of possibilities by the number of countries in the
database—about 150. With C instantiated, the goal is 2
test; it eliminates possibilitics and geis a value less than
1.) Warrcn estimated this number crudely: he divided the
number of tuples of (answers e} a predicate by the prod-
uct of the sizes of the domains of each instantiated posi-
tion in the calling mode. (if borders/ 2—one country bor-
ders another—has 900 wples, and each argument has a
domain size of 150, the function gives 900 for an unin-
stantiated call, 6 for a panly-instantiated call, and 0.04
for an instantiated call.) Reordering to minimize this
yielded speedups up to several hundred times.

Warren reordered only top-level canjunctive gueries.

We have experimented with reordering the predicates of

simple, nearly pure Prolog programs (i.c., & few buili-in
predicates, but none with side-cflects) such as Tamily

vees. We taitor a version of the predicate o cach mode,
renaming buth the new verston and the vonls that caii v
This replages a predicnte with i set of new prodicates, oy
cor cach mode: 27 all modes appear. (Arity is usually
two for a family tree.) Speadups are typically 3w du,
mrely under | (slowdowns): somewhat better than War-
ren’s, considering that our database of facts is abaut an
order of magnitude smaller than his.

Both Warren's method and our ¢xtension have diaw-
backs. Finding a good heuristic is not easy! it should be
easy (o evaluate, yet account for both probability and vost
of goals. Although it seems effective, Wiren's Tunction
considers only the number of solutions, not their costs.
Further. domain size for an argument is problematic even
for database programs [23]. Our extended wicthod is ex-
pensive: we call each predicate, forcing repeated back-
tracking, and count the solution-tuples. This is impracti-
cal even for “'toy'” problems like family trees, and would
obviously be useless for predicates with unpredictuble it
stantiations or data structures.

Li and Wah [14] model Prolog clauses as Markov
chains, allowing one to compute approximately the cost
and probability of success for a clause from their values
for each goal; one need provide them only for ground
clauses because they propagate upwards. Goals can be
reordered to minimize the cost, We describe this method
in detail later because it provides a good way ta evaluate
different orders of execution.

F. Approach and Goals of This Paper

We describe the problem of inefficient search more pre-
cisely, and consider reordering of both clauses and goals.
We show how impure features of Prolog restrict reender-
g, and how o collect information on restricsions. We
look at restrictions due 0 males, comparing the trad
tional mode system for Prolog compilers with a new sys-
tem of legal modes suited 10 reordering and parallzl pro-
cessing. We review ways to infer modes automatically.
We extend the Markov-chain model, add impure features
and mode restrictions, and look at the problems of imple-
menting a real reordering system. We present current re-
cults. summarize, and suggest extensions to our methods
and ideas for future work,

I1. EQUIVALENCE
A, Levels of Equivalence

A reordered Prolog program will, in general, not b-
have like its original. By reordering, we have Prolog
search a different program tree, simulating an execution
mechanism that is more efficient. We wilifully change the
program, yet we still wam it to retain enough equivaience
10 be useful.

**Equivalence,’” for the purposes of this paper, means
equivalence of autput. We informally define four fevels
of equivalence between a pragram and a renrdered ver-
sion. They are as follows.

1} Reflexive: The relation between o program and il-
self. For a given query, refiexively cguivalent progrms
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produce the samie sets of resells in the same order, They
fail on the same queries.

2) Ser: The reordered program has the same set of re-
sults as its original, but they may occur in a dilieren? or-
der. The new program's tree (graph, if it is recursive) will
have reorderad subtrees, hut any pruning (as done by the
Treut”) will affect she same subtrees in the original. The
programs fail on the same gueries.

3) Tree: Pruning of the new program’s tree {graph) af-
fects different subtrees, so that the set of results differs
from that of the original, and the programs may fail on
different queries. (This happens, for instance, when goals
preceding a cut are reordered.) The new program pro-
duces results that are a subset or superset of the original’s.

4) Inequivaelence: The results of the new program are
not necessanily a subset or superset of the original's; side-
effects may alsg be expressed too often, not often enough,
or in the wrong order.

B. Applications

Transformation systems for Prolog’s usually try to
preserve reflexive equivalence (e.p., Debray's methed for
making tail recursions [8]). This may be too restrictive;
for many applications, such as databases, the order of an-
swers is not important and set-equivalence suffices. If only
onc answer, any answer, is needed out of a set, tree-
equivalence may suffice; in a tree-equivalent reordering,
we iry to make the Prolog engine find the least costly an-
swer and commit to it. In practice, however, the chance
that a tree-reardered program will fail when its original
succeeded (or vice versa) probably renders it ynaceept-
able,

The permiuted reorderings described in this paper pre-
serve sel-equivalence at worst. They can be used freely
on predicates for which the order of answers is not vital,
We will discuss in detail the role of the cut in destroying
set-equivalence.

III. REORDERING OF CLAUSES AND GoaLs

We want to reduce the expected cost of evaluating a
Prolog query by reordering the elements of the predicates
it calls. Clauses of a predicate and goals of a clause may
be reordered, with centain restrictions. The two types of
reordering are distinct: they do not compete but are syn-
ergistic,

Standard Prolog. in execuling a predicate, tries iis
clauses in the order they are written, Should the calling
goal fail to unify with the head of a clause. or if it does
unify bt the clause fails despite backiracking ameong its
goals, the system tries the next clause, Similarly. the
Prolog engine evaluaes the goals of 4 clause in order from
left to right; on a failure, it successively backlracks., first
1o altenative clauses of the predicate ealled by the failing
goal, and then to those of earlicr gaals.

Intuitively, we can see that we should Iy B0 put a clause
early in & predicate if it is likely to succeed and is inex-
pensive to eviluute: we get an initial answer 1o 1 query as
quickly und incxpensively as possible, Similarly, we

Pt sy,
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should try o put a goul carly ina cliuse il o s inexpen-
sive and likely to fail: if the cliuse does faii, we have
made it fail ay inexpensively und cheaply as possible.

Note that there is some formal justification lor chonsing
these new orders for clauses and goals. Consider again o
Prolog program as an AND/OR graph, with predicates as
OR-nodes and clauges as AND-nodes. Nodes of onc type
have children of the other, Suppase that for 2 depth-first
scarch (Prolog execution) the children 7 of a node (the
clauses of a predicate or the goals of a clause), succeed
with independent probabilitics Pi (and, hence, fail with
probabilities ¢, = 1 -— £i), and cost ¢; to execute. Lj and
Wah [14] have proven that ordering the children of an
OR-node (clauses) by decreasing (p;/¢;), and the chil-
dren of an AND-node (goais) by decreasing (g;/¢;) min-
imizes the expected cost of a depth-first scarch. Of course,
the costs and success-probabilities of clanses and goals in
Prolog are not independent of each other: in fact, they can
vary greatly with order. Still, this result shows that the
intujtive ordering has some theoretical basis.

A. Reordering of Clauses

Fig. 1 shows an example of what we seck to do. The
subtrees arc marked with probabilities of success P, COS1S
¢ {boldface), and the matio {p/c) (italic).

If we need only one answer to a predicate, reordering
of clauses makes it likely that we find the answer of low-
est cost. {Of course, if we need al] answers, we have
gained nothing: the search tree is no smaller than before,
and we must still search it all.) For example, consider
again the predicate depicted in Fig. 1. Suppose that we
want only a single solution. If we assume that the success-
probabilities for the clauses are independent, the expected
cast for a single solution of the original tree is (0.7)( 100}
+ (1 = 0.7){0.8)(100 + 80) + (1 - 0.1 -
0.8)(0.5)(100 + B0 + 100) + () ~ 0.7)(1 - 0.8)(1
— 0.5)(0.9)(100 + 80 + 100 + 40), or 130.24. The
{optimal} expected cost for the new tree is only 49.64,

Reordering of clauses can also prevent futile attempts
at unification. For instance, many predicates that process
lists handle a list recuarsively, repeatedly decapitating it:
a clause with the empty ltist in its head ends the recursion,
Faor example

length{[ _|List],C,L) : ~
C1is C+1, lengthiList,C1,L).
length(llL,L).

is in a2 **good""* order: atthough the second clause costs far
less to evaluate than the first. it witl match only the enipty
fist. Were it first, the Prolog cngine would atiempt unifi-
cution on every call. Clanse indexing 127} can have the
sume effect; at run-time, the engine cheeks the type of the
argoments to a call (usually just the first argument) and
tries only the clauses for which those arguments and the
call’s might unify. However, unless the engine always in-
dexes on the proper arpuments, reordering can still be
useful here,
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Fig. 1. Reordering a predicate.

B. Reordering of Goals

Fig. 2 shows an example for this case. This time the
probabilities ¢ are for failure, and the ratio given (again
in italics} is (g/c¢). For this example, we can readily show
how reordering will reduce the expected cost of a failure.
Originally, a failure costs (0.8)(70) + (0.2)(0.1){70
+ 100) + (0.2){0.9)(0.3)(70 + 100 + 100) +
(0.2)(0.9)(0.7}(0.6){70 + 100 + 100 + 60), or
98.928; after reordering, the expected cost is only 78.968.

Apait from tending to moke failing clauses fail earlier,
rcordering of goals also reduces backiracking. By way of
comparison, intelligent backiracking (IB) [3] lets Prolog
backirack to the first predecessor goal that might provide
fresh instantiations, avoiding later goals that cannot.
Thus, [B is only a palliative: it does not prevent expensive
goals from being tried first, as reordering does. Further,
:[1 gf;ﬂl implementation requires NP-hard computations
29].

As with the extended Warren’s method we provide a
different version of cach predicate for cach mode, In the
worst case, this again replaces a predicate with 27 new
predicates of the same size. In practice, this tends not 1o
occur: predicates of high arity can rarely funetion in more
than two or three modes. Thus, we make a program larger
that it might be faster: a program’s dynamic use of mem-
ory, not the size of its code, is usvally what limits its
utility.

C. Necessities

In order 10 go beyond ““loy™ problems and reorder real
Prolog, we must determine what constiucts restrict reor-
dering, and take the restrictions ino account for any

method of reordering. Recursive and built-in predicates

cawse the two classes of restrictions: restrictions on me-
bility and restrictions due w modes.

Section IV is about restrictions on mobility. We show
how cven a single side-cffect cen make many reorderings
impossible, and describe the exceptions, Control predi-
cates and recursions have milder eflects, except for the
““eut,”” Section V is about modes: specifically. the restric-
tions they cause and 3 special type of mode intended for

“reordering: the fegal mode, Section VI presents the basic

reardering method, first for o subset of pure Prolog, then
for real programs: the infonmaion gained by the methods
of Sections IV und V prevems incorrect reorderings. These
techniques work wgether; Fig, 3 shows thent as modules

|
i
Fen | Beben | I

goats T nfaeie

Teotdered
progrim

Fig. 3. The reordering system,

between which various pieces of information flow: pro-
gram code, declarations by programmers, and informa-
tion infetred automatically. Note that the system informs
the programmer when it cannot infer properties of the pro-
gram, and when declarations are inconsistent.

1V, RESTRICTIONS ON MOVEMENT
A. Introducrion

We cannot reorder carelessly. In all but the simplest
programs written in pure Prolog, unconstrained reorder-
ing is risky: we cannot guarantee any sorn of equivalence
or freedom from infinite recursion. Certain built-in pred-
icates have side-effects that cannot be undone by back-
iracking; others provide control. Neither can be treated
lightly.

B. Predicares with Side-Effecrs: Fivity

Many predicates built into standard dialects of Prolog
have side-effects: in particular, predicates that do input/
output {11Q). (Predicates that madify the program, such
as asserta/1, retract/ 2, and abolish/ 2. which we are
not considering, also have side-cffects.) 1/Q predicates in-
clude read/t, write/1, get/1, put/1, 2nd mos! of the
file-handling predicates. It happens that goals cailing these
predicates are immodbile within a clause; they therefore act
as barriers 10 permutation of other goals.

Imagine three goals a, b, and ¢, in that order siihough
not nccessarily consecutive, within the body of 4 clause.
b has a side-efiect. The variables of the goals are instun-
tiated cnough that sny permutation will work. Exchange
a und b. Suppose that when the clause executes. 3 fuils,
But b has sueceeded. and is side-effect cunnot be undane
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by backirucking. Originally, the failure of a would have
kept b from being reached. Similarly, exchanging b and
¢ is wrong because if ¢ fails it prevents b from having its
side-effect as in the original program. Unless a or ¢ is
certain to succeed, we cannot move b, We may justly call
b and the like fixed predicates, and other predicates mo-
bile. Fixed goals can in a few cascs be moved (if neigh-
boring goals are bound- to succeed, if fixity depends on
mode), but this requires deeper analysis of the program
and may prove unprofitable,

Clauses of a predicate are also fixed by fixed goals.
Suppose that a1, a2, and a3 are clauses of the predicate
a, and a2 has a goal that writes. The three clauses have
identical heads, Exchange a1 and a2. a is called in 2 way
that will make any of the three clauses succeed when it is
selected. Thus, 82 succeeds and writes. Had a1 been first,
it would have succecded without writing. Now a poal
calling a might be followed—perhaps not immediately or
even in the same clause-~by a goal that writes. If so,
swapping a1 and a2 will change the output of the pro-
gram: a will now write before the other goal, when in the
original it would not have. Again, further analysis of the
program (lesting whether clauses are mutually exclusive,
analyzing /O globally) might show cenzin reorderings to
be safe, but it might also prove (oo costly; for now, we
consider a clause fixed if it calls a fixed goal.

The restriction is actually far worse than these exam-
ples show. Any predicate that has a fixed predicate as a
descendant is itself fixed. If write/1 within a clause of
the predicate w prints something, a predicate x that calls
w might print as well. A predicate y that calls x might
also print, and so forth. Predicates are responsible for the
actions of their descendants: in this way, a single fixed
goal can contaminate most of a program.

Before we try to rearder, we must find out which pred-
icates are fixed. We start at a predicate which is not calied
by any other predicaies of the program (an entry or fop-
level predicate} and scan its descendants top-down, mim-
icking program execution. We maintain a list of ancestor
predicates so that when we reach a goal that calls a fixed
predicate, we can declare its ancestors fixed as well. We
can assen this information or. better yer, store it in a
partly-instantiated binary tree (dictionary) [23], writing
the collected information 1o a file as facts.

C. Semifixiry ’

Some predicates retum very different resulis in different
mades. For example, the built-in varf1 succeeds only
when its argument is uninstantiated, We must preserve the
modes of such predicates under rcordering, or at least
those of the arpuments responsible for the changed be-
havior: otherwise. the reardered program will be wrong,
Both built-ins and some user predicates can depend on
modes in this way: usually the problem is a unification or
test that always succeeds or fails in some mude, but due
10 a cut has no altemative, For example,

aX, Y. by -1,

alX, ¥, 2} : - c(x.Y), diY,2Z).
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will match only its fiest clause i none of its argements are
instantiated, but probably enly its second if the last ar-

Lgument is. A reordering that changes the latier situation

to the former is wrong. We call such predicates semifived,
In this case the third argument is the cdprit, and o vari-
able as the third argument of a call to a would be a culpris
variable.

An casy way to preserve the mode of a culprit variable
is ta fix the semifixed goa! with respect to other poals thar
might change the variable's instantiation; for example,
suppose that s{X,Y) Is semifixed in its first argument, and
we have

tX,Y.2) :— alX), blY), clY.Z), siX,Y), dtX).

1€ X is uninstantiated and a{X) does not instantiate it, but
d(X} does, then a{X} and d[X} may not cross s{X,Y},
although b{Y} and ¢(Y¥,Z) might. If we call t/3 with X
instantiated, s{X,Y) does not restrict reordering. (Hence,
the term **semifixed.’") !

Semifixity propagates to ancestors if a culprit variable
also appears in the head of a clause. It is usually less re-
strictive than fixity, but it demands far more bookkeeping
and care when aliasing of variables is possible.

D. Control Predicates

Prolog includes control predicates that allow program-
mers to alter its default behavior. These predicates can
force or prevent backiracking, provide explicit disjunec-
tion or an if-then—else construct, or serve as shorthand
notation.

1) The Cur: The cur, written 1, is notorious for altering
program bchavior. When a cut is cncountered as a goal
during forward execution, it succecds immediately, When
it is reached during backtracking, it acts as a barrier:
backtracking must stop at the cut, and no other clauses of
the predicate are 1o be tried. Backtracking to z cut means
that the call 10 its parent predicate has failed.

A cut-bearing clause is essentially fixed within its pred-
icate. If several clauses in a predicaie are mutually exclu-
sive for a particular mode (i.c., for any call in that mode,
at most anc of their heads will maich), they may be
swupped even if some of them have cuts. This exception
is trivial: such reordering will at most bolster an inade-
quate indexing system.

Au first glance, a cut appearing in the body of a clause
seems to behave almost like a fixed goal: it is not mobile,
but it does not fix the ancestors of the predicate comaining
the clause. Instead, it immobilizes every descendunt of
every goal that precedes it in the clause, which is far inore
restrictive.

Consider the goals of a clause that occur before the cut.
They instantiate their variables in 2 panicular way, form-
ing an initial answer that satisfies their conjunction. The
cut commits the system 10 this instantiotion. Unless we
fnow that reordering the goals or their descendants will
not give a diffcrent fisst answer, we cannot reorder any of
them. Reordering such goals preserves tree-vquivalence
but not set-cquivalence.
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2) Disjunciion: A predicate is a disjunction of s
clauses. Prolog, however, also allows expticit disjune-
tions within clauses, If two clauses have identical heads,
we cnn write them as one disjunctive clavse. For example

citizen{X} : - native_born{X),
citizen[X) : — naturalized{X}.

can hecome
citizen{X) : — native_born{X) : naturalized{X}.

where ; represents disjunction. This is not always mere
shorthand: sometimes it saves repeating a costly unifica-
tion. We can also, side-cffects perminting, make two
clauses that share initial goals into a single disjunctive
clause, so that the initial goals run only once.
Disjuiction provides a ‘*semipermeable™ barrier 1o
reordering: clearly, we cannot move goals between
halves. or between either half and the outside. We can
move 2 goal from outside to inside by putting a copy of
it in cach half, if it is not fixed or a cut, Once the copy is
inside, we can permute it with the rest of its half. Simi-

larly, if we can move duplicate mobile goals in each half’

to the front or back of their halves, we can geplace them
with one goal outside the disjunction.

3) Implication: The implication is Prolog’s analog o
the if-then statements of algorithmic languages. Only if
we can satisfy a set of goals p do we try to satisfy a set
of goals q: written p — q. This can be the first half of a
disjunction, forming an if-then-else. Impiication behaves
as if defined by

P-0Q:-P Q.

We can treat the then and else much like any other dis-
junction: a mobile goal common to both can be moved
before the premise or after the disjunction. The goals of
the premise arc immobile, exacily like goals before a cut.

4} Failure-Driven Loops: In purc Prolog, a failing
clause does nothing, because the instantiations it makes
are undone on failure. In real implementations, goals call
predicates with side-effects that failure cannot undo. For
instance, a clause can call complicated predicates, print
the results of their computation, and then fail. Prolog sys-
tems without garbage collection often require such code,
because stack and heap space is reclaimed on failure.

Several varicties of these loops are common in Prolog
programs. We can force failure by using the built-in pred-
icate fuil; for example

show_ali:— tX,Y,2}, write((X,Y.Z}}, ol, fail.
show _all.

This prints out all wples of 1/3: it finds vne, prints it and
i new-ine character, and then fails, forcing backtracking
to find another; when all arc found, the second clause
makes the predicate suceeed. Goals of a failurc-driven
loop must remain within it, but we may reorder them as
usual.

5) Negation: The buili-in not/t, also written 4,
wakes # conjunction of goaly for an argument. i bchaves

as idelined by

not{X! - X, I, fail.

not{X].

When it is ealled 2g a goad, it sueceeds onty s argwment
fails. not/1 never instantintes the varables in s angu-
ment, bt its areument way demand certain instiniatons.
For now we treat 3 negation as semifixed in all its vani-
ables, but reorder multiple goals within its argment.

6) Set Predicares: The built-ins baygof/3 and setot/d
generate lists of erms thai satisfy cerain prapeitics spee-
ified by a conjunction of goals. We reorder the intenual
goals, as with not/ 1 but treat calls to these predicates as
semifixed. pending further study.

7} Recursion: Reordering the goals of a recursive
predicate is often unsafe. Consider this example {23) writ-
ten in pure Prolog

select{X, [X!Xs],Xs}.
select{X, [Y]|XsLIY|Ysh :— selectiX,Xs,Ysl.

permutation(Xs, [X|Ysl) : —
select{X,Xs.Zs), permutationiZs, Ys).
permutation{[], {1}

permutation/1, given a list as its first argument. pro-
duces (on backtracking) all of its permutations. Given a
variable instead, it will go into an infinite loop. If we swap
the two goals of the first clause of permutation/1, we
will get an infinite loop if the second argument is 2 vari-
able. Thus, reversing two goals changes a safe mode for
an unsafe one.

Better implementations of Prolog include at least a par-
tial form of tail-recursion optimizadon [27). A tail-re-
cursion is one in which the recursive call is the fast goal
of its clause; the optimization lets stack space be re-
claimed on each such call, saving memory and speeding
execution somewhat. [t is tempting to reorder a recursion
so that the recursive goal is lase: Debray [8) has a method
that works for some cases, bul we know of none that works
in general.

Because we have no reliable way 1o reorder recursive
clauses, we assume for now that the programmer declares
a predicate recursive and provides necessary information
1o the reorderer. We can easily detect recursion automat-
jcally, using n methed similar to the one for finding fixcd
predicates: traverse the program top-down, keeping 2 bist
of predicates being scanned, and check if each new goul
is 2 member of the list.

Table | summarizes the results of this section. For cach
type of resiriction, it shows the constructs respomsible for
it, the effects they have upon clauses and goals, znd the
way that they might propagate 10 other parts of the pro-
gram.

V. Lecal Mobus
A, Imtroduction

Some Prolog campilers, notably the classic ane for
DEC-10 {20], et users specify the medes in which 2 pred-
icate will be celled. The compiler then gencrates object
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code for those modes only; the result is more compact and
faster than the general-purpose version,

Many Prolog predicates function in more than one
mode. When we reorder goals, we usually change their
calling modes; therefore, the more modes we can show
“‘safe’” or legal, the mare reorderings we can attempt,
The usual mode declarations do ot tell us what modes
are legal, merely which might arise during the executjon
of the original program,

What makes a mode legal? As we have Seen, some poals
demand particular instamiations: 2 lepal mode satisfies
these demands, without which the goals give run-time er-

gal—often worthwhile even though limc-consuming and
ITer-prone—or we can infer them automatically,

B. Restrictions Dye lo Modes

Fixity, semifixity, and control structures already reduce
the ways that we May permute the goals of a clause or the
clauses of a predicate; modes reduce them further. Built-
i, semifixed, angd recursive predicates are the usual
sources of mode restrictions,

Most buili-in predicates have modes in which they can-
ROt function: they demand that certain subsets of their ar-

larly, given a name and number ag jts Jag; Lwo arguments,
it constructs 1 pew lenm as its first, Give functor only a
hame or arity, and it wilp not work: ‘in SB-Prolog [10],
for cxample, it gives a run-time error and fails.

Recursive predicatcs chiefly build or madify recursive
Mrctures such as listg or trees, Given the wrong modes,
they enter unproductive infinite recursions, or produce ip-
linite sets of solutions an backtracking. Consider delete/
3:

delete(X, [X'Y),y).
delete(ld, [Xin,IXfV]J = d’elele(U.Y,V).

FOLL RO DECEMIGK juse
With s atem e iy st angument and a lisg o ey as
ity secomd, delote se1s ms third 1o o copy of the list wilk
one instince of the first-nrgument atom deleied. How-
cver, il only it fiest Argument is instantiated, j produces
an infinite set of selutions. The first ACRLIent appears in
SUCCESSive positions of a bist ad infinirgem.

Unfonuzmtcly, we cannot always tell beforehang what
medes yield infinie recursions. A solution sufficient for
MOst cases will probably invojve showing that for an jn-
finite recursion in a panticulyr made, a struciyre grows
larger but is essentialiy unchanged, and nothing in the
predicate can Stop the growsh £13]. Barring that, the pro-

C. Mode Systems

Mode declarations forthe DEC.10 Prolog compiter (20)
(and many SUcCessors) are clauses of the form : — mode
< predicate > (< modes >). Such a clause assigns
< predicate > (he modes denoted by the tuple
<modes >. < modes > has one element, or mode
item, for each argument of the predicate; an clement is +
if the argumen will be instantiated, -~ jf i will be unin-
Stantiated, or ? if jt might be either (so thar a tuple of all
'sis superfluous), :

The DEC-10 notation, although we will consider mod-
ifications of i, suffices for reordering; the conventional
mode declarationg themselves do not. Recall that for safe
reordering we need the maodes in which a predicate deliv-
€15 a usefu] result, not the modes arising in the original
program, DEC-10 declarations need not be exacr: they
can give a superset of the actuzl modes. If they include

Ours muost give a
(preferably improper) subset of the legal modes: any il-
legal mode makes 3 prograin wrong,

Cenain modes are safe when calling a given predicate:
its legal inpur modes. Each predicate also has an oulput
mode, at least ag instantiated as jts input mode. We can
write Input and output modes as pairs: for instance, da-
lete/3 has the pairs {(?,+,7), t+, 4+, 411, [{+,2,4),
{+.,+,+), and [(—.—, 4}, {=.2.+)1. The last of these
may seem incorrect, but wipl only its third argument in-
stantiated (to a list), delete insents its firs argument into
a copy of its third, ang retumns the result in jts second.,
This result is parﬂy-insmmr‘mcd, and we use ? to show
that,

D. Mode Systems and Run-Time Texrs

A three-syimbol SYstem might not scem CXPressive
cnough. One apparen problem is coupled (or aliased )
vatiables, These hyve different names by have been
unificd 1agether, losing their distinciness: instantisting one
instantiates the other., If two variables are coupled byt we
take no account of i, one might appear to bhe uninstin-
tiated when neither is: this would no cause iHepal calls,
but it mighy prevent lepal rearderings,
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Partly-instantiated sLnctuees vase anotber potential Jig-
icudty. b our lask exaumple with delete, we mentioned
that it can mitke a list containing nninstantiated vaniables;
we considered the Hst to lave the made-iter 7. Had we
treated it as 4 and fed (000 o recnsive predicate that de-
mands an instantiated argument, the predicate woubd atter
a few calls have exposed the variable and gone (say) into
aninfinite recursion. Consider ”

appendUX|YLZAXIWIL i~ appendtY.Z, W).
appendl{1.X.X).

In mode {+,—, 1 it appends he variable of the second
argument to the list in the first, yiclding a list whose tail
is the variable: a form of a uselu! structure called a dif-
ference list [23].

Now consider

build{l1,L2,1.3,L4} 1 -
transform(L2,12a), transform(L3,L33),
append(i1.L.2a,12b), appondiL2b,L3a,L4).

We call build/4 in mode (4,1 ,,~); transform/2
works in modes {+.7), and appand/3 in modes {+,7, 1}
and (2,7,4). Now we try 1o reorder (he clause, If we say
that append{+-,—,—} rcturns {1, -, ~) (the third argu-
ment has a variable in its wil, aficr all), the following
good order is rejected:

build{L1,L2,L3,L.4} :—
append(L1,L2a,L2b), transform{L2,1.2a},
append{l.2b,L3a,L4), transform(L3,L3a).

On the other hand, if we say that append(+,—,—) re-
weas (+,~,+], this illegal onler is penernted

build(L1,L2,L3,L4} . - _
append{lL.1,L22a,L2b}, appendiL2b,L3a,.14),
transform(LZ,L2a), translorm(L3,L3a).

We must forego the first rather shan risk the second; can
we do bester?

In an earlier version of thix paper {11] we presented 2
scheme which made the legal-iode system more expres-
sive by making it more complex, We gave it the flavor of
a typing system {18], [22] by ailing notation for incom-
plete structures and lists, aliasing, and so forth, Such a
complex system of mades might allaow better reorderings,
but it makes annotation diflicult aud ¢rror-prone, and stul-
tifies automatic programs for made-inference [9].

Testing instantiations al run-tinw enn yield many of the
advantages of a complex systems of modes. The necessary
tests are already pant of Prolog, .y, nonvar/ 1 succeeds
if its argument is instantiated. -« /2 gucceeds only for a
pair of identical tems (such ax aliised variables). Such
tests involve only comparison gl flags ar addresses [26).
Suppose that a promising reondesing is safe only if partic-
ular variables, whose nuntime insttintions we are unsure
of, are instantiated. We can ivplace the origina clause’s
body with an if-then-else: e temy are the if, the rcor-
dered version is the then, and die orisiaal is the else, If
the variahles pass the tests, we was ihe new order and gain

eflivieney i they il we se the original oder and o
only the coss of the ests.

£, Muode Inference

There has been increasing interest over the past fon
yeurs in abstract interpretation or flove analysis (2], 131
[91. {15]-{17], 128) of Prolog progeams. The ides is w
execute a program symbolically over an abseract donain,
usually a complete lattice or complete partial ordering af
finite height. This *abstract execution'” yields a finite Je-
scription of the program’s behavior ducing an actual =X-
ecution [28]. To infer modes, we let the elements of the
abstract domain be the mode-symbols.

Most researchers consider mode-inferance as an appli-
cation when they present methods for abstract interpreta-
tion: Bruynooghe and his cotleagues (2}, {4]. and Debray
and his [9], {28], appear to place the most emphasis on
modes. Debray’s work is panticularly interesting because,
rather than finding modes by exccuting a program on an
abstract interpreter, he generates a trunsfoermed progrim
that, when executed conventionally, yields the mode in-
formation. Running the transformed program takes far less
time than interpreting its original. It appears to be possi-
ble to medify Debmay’s technique to find legal modes: it
even generates output modes internaily, so that we need
only save them [9].

V1. MARKOV-CHAIN METHOD FOR REORDERING

We want 1o know the expecied cost and probability of
success for a legal call 1o a predicate, given those for the
predicates its clauses call. We model the body of a Prolog
clause as an absorbing Markov chain [12] after Li and
Wah [14). The expected cost of executing the clutse body,
and the probability that it succeeds, both follow from
propeniies of its chain. Wy combine these with the prob-
abilities that the clause heads will match the call, and from
this obtain the results for the predicate.

A. Pure Prolog

We give the method for a subset of pure Prolog, viz. na
recursions, and variable arguments in 2 clause head unless
the clause is a fact. We extend it to full pure Prolog, then
1o real-life Prolog.

1) Overview: Consider k:— a, b, ¢, d. Suppose thut
we know the success probability p; and-¢; for each goal &
To find the expected probability and cost of only a single
solution to the clause body {e.g., if we called k/O inter-
actively and wanted only onc solution, or for k as a gaal
preceding a cut), we model it as the Markov chain of Tig.
4. We give cach goal a state, libel the arcs with success
and fuilure probabilities, and add absorbing states 8 {only
onc solution) and F for success and failure,

Transitions of the chain mimjc Prolog exccution. We
start in the state of a, proceeding to b il a succeeds, or
going 1o F if it fails. In every § we move forward (prab-
ability p; ), or backtrack ( probubility 1 — p; ). Eventually,
we slop in an absorbing state: success or failure.

If we want the cost of finding sl solutions to a con-
junction of goals, as is more usual, we add an are of prob-
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Fig. 5. A clause body as a Markov chain (all solutions).

ability ! from 5 back to the last goal, as in Fig. 5. When
we find a solution we backtrack, looking for another, unril
we fail,

Note that this model only approximates the way the
Prolog engine execuies a clause body. It is the basis of a
heuristic method: it glosses subtleties of execution that
would make analysis impracticai. The Prolog engine pre-
serves its state on a stack [26], but a Markov process is
memoryless, keeping no history of how it reaches a state.
A goal within a clause body succeeds some number of
times (perhaps zero), with varying probabilities, and then
fails; a transition between states of the chain has a single
fixed probability. Probabilities that goals succeed are not
necessarily independent; probabilities of transitions are,
In retum for making these approximations, we obtiin a
practical way to predict the behavior of a clause,

2) Deriving Probabiliry and Cost for a Clause
Body: To find the probability pp.y, that a clause body suc-
ceeds, we use the single-solution chain of Fig. 4, even if
we are looking at a multiple-solution clause. We take ppou
as the probability that the process ends in state 5. For the
expected cost of a solution we use the appropriate chain.
a1 c;v;, for the i goals of the body., is the expected cost
of all the solutions put together, ¢; being the expected cost
of goal i, and v, the mean number of visits by the process
to state i. Hence, the expected cost for solving a single-
solution clause is

Clingle = Z LYE¥]

and the expected cost for one solution of a multiple-so-
tution clause is

C,

mulriple ==

where vg is the number of visits to the success-state 5.
Calculating p.g and all the #, is textbook [12] mathe-
matics. Begin with the transition matrix £ for the single-
solution case. An clement p; is the probability of 2 tran-
sition from state ¢ to siate j1 $ has index 1 and £ index 2.
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The chain has £ states, ¥ of which are trunsient. Consider
four submairices of the £ X r matrix "

1., 0]
_R Q.

I, _ . the identity matrix, for transitions beiween absorb-
ing sttes: R, 5 X (r — 5), for transitions into absorbing
stales; @, 5 ¥ 5, for transitions between transient siates,
Fhe zero matrix, (r = 5) X &, shows 1hat nothing lenves
an absorbing state, Here is £ for our exunple

10 0 0 0 0]
o1 0 0 0 o
0 I - Pu 0 Pa 0 0
P = .
0 o l-p, O P 0
0 0 0 1-p. 0 P
._.Pd 0 0 0 i- Pd 0_

The matrix N = (I — @)~ provides our answers. Be-
cause we start in the first state, its first row contains the
numbers of visits u; for the transient states. The product
NR gives the py.4. the probability of success: the first
etement of the column of state S (column 1); we fake the
dot product of that columna of R and the first row of N.
We find N; numerically; if we have N goals, we inven an
N % N matrix, and do 2 N multiplications and sundry ad-
ditions for the probability and cost. If the reorderer is
written in Prolog, we might call a routine written in a
more-suitable lanpuage, such as C, 1o generate and inven
the matrix.

For the multiple-solution chain, § is no longer an ab~
sorbing state, and for our example the matrix P becomes

[ 0 0 0 o 0]
l—p, 0 Pa 0 0 0
0 l=p O P 0 0
P = 0 0 I —p. O p. 0 :
0 0 0 b —-ps 0 py
| 0 0 0 0 1 o]

It happens that in this case there is a tidy form for the ¢,
50 that the expected cost of a solution can be writien as

rnrrlllplr = Z ciy = 2.) ('(H p.-. )

tgint i=1 1 —p;

3) Applving the Results: For cuch calling-mode we find
the least-costly reordered version of a predicate. Differént
modes may need different orders, and the cost of a goal
varics with its inode. For the subset of pure Prolog we are
considering first. we can reorder the goals as we please,
choosing the best permutation. An a-goal clause has ul
pemutations; for n > 3, trying all of these can be expen-
sive,

-, TN M e v e A e .
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we canadapt an idea presented by Smith and Geneser-
eth {21} for reordering conjunctive queries whaose con-
juacts perfori no inference: use a best-first search such
as A* [1] 1 decide the deast-expensive order of goals. We
do 3 best-first search on a teee of ordered subscts of the
clause body, using as s heuristic the cxpected cost of find-
in» ull solutions to the Markov chain for a subset. Every
dime we expand a node, we choose the one with the least-
expensive sequence. Clearly, the all-salitions formula
pives an adimissible hearistie for A* 1], Devause the cost
the formula gives for a partial sequence ol goals is always
an underestimate of thar for the complete sequence that
begins the same way.

3) Initial Probabilities and Cosis: Cost and probabil-
inv of a clause come from those of its goals; in the subset
o Prolog we are considering at this point, these come
{rom costs and probabilities of facts. Facts may have non-
variable arguments, sa that their heads might fail. Eval-
uating a fact costs ane call; its success probability is prob-
lematic untess the call is uninstantiated, when it is unity.
We can, like Warmren {25], find domains for each argu-
ment; a domain might be the set of constants in that ar-
gument of the predicate, or perhaps the set of all constants
in the program. We take the probability as I [domain; |
for every position  with a constant in both fact and call.

If we allow full pure Prolog with recursion, it becomes
hard to tell the likelihood that a call unifies. If an argu-
ment-position has a variable in neither goal nor clause
head, the probability is no longer unity. For constants,
we can usc domains, as with facts. For structures, the
predicates are usually recursive, with a special casc
matching empty stuctures, The size ol a structure allects
both the probability and cost of a call; the system or user
must estimate sizes before nan-time. Some predicates may
require the user 1o provide an explicit probabitity of uni-
fication for each argument of each clause head.

B. Restricted (Real-World}

1} Restrictions: The restrictions discussed earlier for-
bid many attractive orders, but they greatly reduce the
number of permutations we need examing. For example,
if the third goal of a five-goal clause is fixed, the number
plummets from 5! = 120 to 2{2! = 4. Control predicates
restrict reordering as well. We can madel them using spe-
cial Markov chains [11], but this is impractical because it
is casier to handle the scparate conjunctive pans as if they
were bodics of short clauses,

Every goal must make a legal call to its predicate. A
reordering that prevemts this, instantiating u goat improp-
erly, is rejected. We generate a patential order by instan-
tiating # clause head with the mode and scanning the
clause goal by goal, keeping track of the variables cach
goal demands snd instantiates. As soon as an illegal mode
arises, we backirack to generate unoiher order, so that we
test only legal orders.

2) Implememation: Reordering requires much infor-
mation about a program, provided by the programmer or,

preferably, inferred autematically. This includes e 1ol

lowing:

legal moddes, input and output, for cach built-in or user
predicate, declared or inlvrred;

unificatiun probabitities for cerain clause heads inver-
ain modes:

probabilities and costs for buili-in predicates;

a tist of cury poings;

a tist of the fixed predicutes;

a list of the recursive predicites; .

probabifities and costs for recursive predicates.

These are Prolog facts, declared in the source file, in
files generated by inference programs, or in a hand-writ-
ten filz of information about built-in predicates. We van
read them into the clause space of 2 Prolog interpreter, or
compile them and load their object code; however, prob-
abilities and costs should be put in a dictiorary, 10 be
joined by others being inferred for the reordered program.
This lets us access ali such information uniformly without
the clumsiness of assenting new facts.

The reorderer loads the program and the extra facts. -
Starting at an entry point, it traverses the program depth-
first until it reaches a predicate whose clauses have goals
with known probability and cost; then jt works on the
clause one by one. If a clause contains control predicates,
the reorderer divides it into blocks of goals, deciding
which require the one-solution chain and which the mul-
tiple-solution. Choosing a legal mode of the predicate, it -
propagates to the goals the instantiations produced by thas
mode.

The reorderer Tooks, in onder, at the one or mwore blocks
of goats from the clavse, If a block is immobile, it uses
the one-solution Markov chain, calling an external pred-
icate (written in C) to construct and invernt the matrix; this
gives probability and cost for the block. T permutes other
blocks exhaustively and computes their cost, saving the
least expensive order; or, if 100 many permutations are
possible, it reorders them using best-first search. It finds
the success-probability by, for the best order, evaluating
a one-solution chain. It discards illegal orders,

Combining the probabilities and costs for the blocks of
goals vields values for the clause body; combining results
for clause bodies with match probabilities for heads yiclds
an estimated probability and expected cost for a call o
the reordered predicate in that legal mode. The reorderer
stores the reordered version under a new name, along with
mode, probability, and cost. It repeats this for every legal
mode of the predicate. Working upwards, the rearderer
handles every user predicatc in the program, changing
goal names as necessary to commespond to the new predi-
cale names.

VII. PERFORMANCE
Our renrdering methods are most uselul for predicates
with the following propertics.
1} Mobility: We need something o reorder: several
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mobile guals in a clause or cliauses ina predicite. Restae-
tions and short clauses prevent this,

2) Noadeterminism: 1f a predicate is deternministic,
reordering will ot improve its exécution: our methods
cannot generate an improved deterministic algorithm,

3) Diverse Probabilitics and Cosis: If probabilities and
costs of goals are too similar for different goals. they give
no guidance towards a better order.

4) Unbalanced Search Graph: A balanced scarch graph
exacerbates the lack of the previous property: again, poals
appear too similar.

Prolog databases, some search programs, and nonde-
terministic programs in general gain the most. Standard
benchmark programs violate at least the first two of our
criteria; they are largely deterministic. and there is liule
in them 10 reorder.

Table Il shows some resulis of reordering a family-tree
program written in nearly pure Prolog. 55 constants in the
program represent people, We called each predicate in
each mode, with one call for each possible instantiation.
Therefore, testing mode {—, —) required one call, modes
{=,+) and [+, —1 required 53 apiece, and modes {+, +)
required 3025. All results were generated by an instru-
mented version of C-Prolog 1.5 [19). We give figures for
the original program, the reordered version, and for the
cheapest reordering possible (found by exhaustive enu-
meration when practical).

Fig. 6 pives pertinent predicates of the original pro-
gram. There are also 10 facts for girl/1, 19 for wife/2,
and 34 for mother/ 2.

Fig. 7 gives reordered versions of the above predicates.
(Clearly, predicates with clauses of one goal cannot be
teordered.) This is essentially raw output {rom the reor-
derer, with variables represented as numbers preceded by
underscores.

Note the new names for the versions of predicates 1hat
are wned 10 a particular mode: the terminal letters are for
uninstantiated and instantiated. Each predicate that the
user might call interactively will need a dummy predicate,
for example:

aunt{X,Y}:—
var (X —

{ variY) =
aunt_uul(X,Y)
aunt_uilX,Y)

{var(Y}) —
aunt_iu{X,Y}
aunt_ii{X,Y)

).

This luoks complicated. but actually the Prolog engine
neceds merely 10 (es1 two tag bits, In many cases, the reor-
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Lamade(X):= gLri(X).

fonale (X} - wifu(_,X}.

male{X):- not{female{X)}.

father(X,T) := mothar(X.2}. wifei¥,T}.

parant (¥, ¥):= mother (X.¥).

parant (X, ¥]:= Lather(X.¥).

married{X, ¥}~ wifa{X.¥].

marcied (X.Y) 1+ wifel[¥.X}.

aiblinge {X.¥) 1~ mather (X,2), sotheriY,Z). dnequseliX.T}.
Uhequal {X.¥) 1~ XwwY,

salarax{X,Y}1+ saiblinga {X.¥], femele(Y}.

brother{X,¥}:= alblings(X.X), sale(Y),

grandmothaz [X,Y) := patent(X.Z}, mother{Z,Y).

cousine (X,Y)t= parenc{X,I]. parent(T.¥), siblinge{W.2}.
cousing (X, ¥) i~ patant (X, 2], parant (Y. W}, siblings (W.V}, sarxled{V¥,Z}.
AunE{X. ¥} 1~ parent (X, ), sleter{I.Y}.

sunt {X,¥} 1~ parent{X, ), brother{Z W}, wife{W.¥}.

Fig. 6. Predicates from the family-tree program,

derer produces only one or two distinct versions of a pred-
icate, allowing fewer clauses and tests.

Gains are most impressive for the half-instantiated
modes. Apparently, partial instantiation is exploited by a
pood goul order, so thin large scarch trees are pruncd
early. This does not happen so readily for mode {(—, -k
the first goa! is called uninstantiated, and so must be called
in its most expensive form. Similarly, for mode (+,+},
cnough variables are alrcady instantiated that goal order
is not crucial; sometimes rcordered clauses are more ¢x-
pensive in this mode. .

We also restructured some rules from a corporate da-
tabase (over 100 employees) writien in Prolog: Table Il
summarizes the results. (These results and those in Table
IV were generated using SB-Prolog 2.3 [10].) The facts
in this database are indexed on the employee identifica-
tion number; once that is instantiated, many goals of the
rules become trivial. Reordering essentially becomes a
way to make the rules find. as quickly and inexpensively
as possible, the smallest superset of these numbers whose
owners szlisy the rule,

Table 1V shows results for several other programs; most
of them query small databases. p58 is Problem 58 from
**How to solve it in Prolog™ [7): meal plans meals and
team pencrtes project teams. kmbeneh is a substantial
program: u theorcm-proves running a set of benchmark
problems. Only 2 single clause of p58, meal, and
kmbench can be reordered; only four clauses of team
on two levels: the gains in perfomunee are less impres-
sive than with our other proprams,

W
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sunt_tu( 11302, 11300) t-parent_tu {11302, 11308), civtar 4u{ 12304, 11333},

annt]1u (10303, 110120 srpasant_tu {31333, T10313), Lest hat a7 313007 312348,
wife 13334, 11312). - -~

aung_11( 31311, _11317) r-vife 13313, 11312). beother_ut( 31334, 110133,
parant_LO[_ 11311, 11314). - -

sunt_Li{ 11302, 11303)s=par.at fu( 11302, 11304} .efetlur £f L32354._22328) .

Fig. 7. Reordered predicates from the Linily-tree program.

TABLE Il
RESULTS OF REORDERING A CORPORATE DATARASE PROGRAM

Markov-chain methad of heuristic reordering 1o cover full
Prolog. and presented some resubis of our work.

¢ search lrees are pruncd o [ e | Mo There is scope for some additional work. Better tech-
so readily for mode {~, ~-): E T T nigues for recursive predicates would be useful, as well
tipted, and so must be called poyi-i Jane,« il e i as an adaptation of some method of mode inference to
Similarly, for mode (++,+), Sl RS el deriving all legal modes of a progmm. The reordering
instantiated that goal order i AL B S L system should also estimate ncarly all probabilities and
Tdered clauses are more ex- fasiz; Junt I 1 COStx on its own, relying upon the programmer only as o

: : last resort. Unfolding of goals [24) (replacing them with
: rules from a corporate da- TABLE IV the poals of the clauses of the predicates they call) might

written in Prolog; Table 111
s¢ results and those in Table

RESULTS OF RECRDERING SEVERAL PROGRAMS

greatly increase the possibilities for reordering, especiaily
when clauses of a program are short and have many side-

-Prolog 2.3 110).) The facts Ratio of eflecis, Finally, we should integrate our techniques into
oh the emplovee identifica- M one svstemn, so that we can provide a program as input
taptiated, many goals of the Lyt and, with slight intervention by the user, receive a reor-
ering essentially becomes a Toemivny | D te m dered, improved program as output.

15 :quickly and inexpensively
rrget of these numbers whose

sc?vcml other programs; most
¢s, p58 is Problem 58 from

VIII. CoNCLUSIONS

‘We have presented a method for reordering Prolog for
more cfficient execution, We have shown what informa-
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