™

JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 14, 315-339 (1992) o

Optimal Mapping of Neural-Network Learning on Message-Passing
Multicomputers®

Lon-CHAN CHU AND BENJAMIN W, WAH

Center for Reliable and High Performance Computing, Coordinated Science Laboratory, University of Illinois at Urbana—Champaign,
1101 West Springfield Avenue, Urbana, Iinois 61861

In this paper, we study the optimal mapping of the learning
process in multilayer feed-forward artificial neural networks
{ANNS) on message-passing multicomputers, with an objective of
minimizing the completion time of the given learning algorithm.
This optimization problem is NP-hard in general and cannot be
solved directly even for a small number of neurcns. By observing
the dominance of the computation time of a parallel neural-net-
work learning algorithm over its communication time, we present
a novel approximation algorithm for mapping large neural net-
works on multicomputers, given a user-specified error degree that
can be tolerated in the final mapping. The target ANNs we study
are learned by a static learning rule, such as the back-error-propa-
gation learning algorithm. We study both static and dynamic
mapping schemes for systems with static and dynamic back-
ground workload. Experimental results for mapping on systems
with static background workload, which include a network of Sun
workstations and an Intel iPSC/2 Hypercube multicomputer,
are found to be very close to those predicted by analysis. Experi-
mental results for mapping on multicomputers with dynamic
background workload are obtained by simulations. © 1992 Academic

Press, Inc.

1. INTRODUCTION

Artificial neural networks (ANNs) show promising po-
tentials in artificial intelligence applications [13, 14].
However, the technologies of implementing them in
hardware are not fully mature; only simple and medium-
scale ANNs can be implemented in VLSI at this time [81.
The flexibility of hardware implementation of ANNs is
limited because its topology cannot be changed once it is
implemented in hardware. As a result, ANNs are usually
designed by simulations on existing computer systems.
These simulations require a large amount of computa-
tional time and can be carried out more efficiently by
parallel processing.

There are two approaches to improving the turnaround
time of learning in ANNs. First, we can code the original

* This research was supported by National Science Foundation
Grant MIP 88-10584, National Aeronautics and Space Administration
Contract NCC 2-481, and Joint Services Electronics Program Contract
N00C14-90-1-1270..

learning algorithm in an existing programming language,
parallel execution is detected either by a parallelizing
compiler or by user-specified annotations. Second, we
can map the learning algorithm on a parallel computer,
achieving the same objective but running more effi-
ciently. We choose the second approach in this paper
because a greater amount of parallelism can be exploited
given the well-defined nature of the learning algorithm.

The target ANNs we are studying are multilayer net-
works trained by the static learning rule, e.g., back-error
propagation. Larger networks with an arbitrary intercon-
nection are not considered in this paper because the map-
ping of these networks is not solvable under the con-
straints of computer resources at the present time. The
target multicomputers consist of processors with local
memory and dynamic background workioad.

We study both static and dynamic mapping algorithms.
In the static case, we assume that the mapping is un-
changed throughout the learning process. We formulate
the optimal mapping problem using integer programming,
with constraints on feasibility, configuration, resource,
and dependence. Since the general mapping problem is
NP-hard, we reduce its complexity by first partitioning
the multicomputer into disjoint partitions of processors
according to the ratio of communication to computation
times, before the neural network is clustered and mapped
on the partitions. In the dynamic case, we assume that
the background workload is time varying; hence, it may
be necesasry to remap the neurons as workload changes.
We approximate the dynamic mapping of neurons by a
sequence of static mappings based on the variance of
dvnamic background workload and the expected time to
finish the remaining learning tasks. We take this ap-
proach because it is difficult to assess the history of back-
ground workload and predict the behavior of future
workload.

Related works on this problem include parallel soft-
ware simulations on multiprocessors, design of generic
multicomputers for ANN simulations, and implementa-
tions of computers and VLSI chips for ANNs. Kung and
colleagues mapped layered ANNs on WARP, a linear
array of 10 processing cells [16}. They proposed two ap-

319

0743-7315/92 $3.00
Copyright © 1992 by Academic Press, Inc.
Al rights of reproduction in any form reserved,

320

proaches: network partitioning and data partitioning. The
partitioning of an ANN into slices is optimal because the
target machine is a ring of processors, and the neural
network is assumed to be layered. In partitioning data,
they used the first nine cells in WARP for performing
operations in the forward production phase and the tenth
cell for computing weight updates in the backward train-
ing phase; that is, one weight update was done for every
nine training patterns. They assumed that weight updates
were usually small and that consecutive weight updates
could be neglected by running several iterations of the
simulations with fixed weights before updating them. In
practice, weight updates are not necessarily small and the
range of updates are highly application dependent. More-
over, the scheme may not be satisfactory when a large
number of cells (or processors) are concerned.,

Hwang and Ghosh designed generic microcomputers
suitable for ANN simulations [7, 9]. They discussed de-
sign issues with regard to the processing elements and the
communication-bandwidth requirements, and proposed
several guidelines for designing generic multicomputers
for ANN simulations. However, they used datagram
routing, which might result in unpredictable network
congestion, The performance of their scheme was also
dependent on the system-supported routing algorithm.

The weight-update process in a multilayer ANN can be
considered a sequence of matrix—vector multiplications.
By exploiting this approach, Kung and Hwang trans-
formed ANN learning to recursive matrix operations,
then to data dependency graphs, and finally to a linear
systolic array with a fast interconnection network [10,
11]. Active neurons in each layer were evenly distributed
to the processing cells of the systolic array, and full re-
source utilization was obtained in many cases. In fact, we
show in this paper that their scheme was optimal when
the ANN is layered and the interconnection network is
fast. However, they did not consider the case when the
bandwidth of links was limited and nonuniform and the
processors had different computational capacity. In the
latter case, active neurons may not be evenly distributed
to all processing cells.

A number of other multiprocessor simulations have
been reported. Researchers at Edinburgh simulated ANN
learning on a transputer-based Computing Surface with
42 processors [5]. Rescarchers at Rochester used a 128-
node BBN Butterfly multicomputer for simulating ANNs
f4]. Lin et al. described parallel implementations of neu-
ral network computations on fine-grain mesh-connected
SIMD computers {12].

This paper addresses some of the deficiencies found in
previous studies which either assumed a tightly coupled
system or presented a heuristic mapping algorithm for a
set of heterogeneous processors. The approximation al-
gorithm we present allows ANN simulations to be carried
out on a network of heterogeneous processors with a

CH®! AND WAH

completion time bounded from the optimal completion
time. Our results are useful for designing special-purpose
computers for ANN simulations and for determining the
suitability of an existing system for ANN applications.

Results we present in this paper are significant exten-
sions from our earlier work [18], in which we studied only
static mappings on systems with static background work-
load. In this paper, we present new optimality conditions
for static mappings and study algorithms for dynamic
mappings.

This paper is organized into eight sections. Sections 2,
3, and 4 define the models of the ANN, the target multi-
computer, and the mapping scheme, respectively. Sec-
tion 5 formulates the mapping problem as an integer pro-
gramming problem and presents the related constraints.
Section 6 discusses the solution strategies and tech-
niques. Decomposition and partitioning algorithms, re-
lated theorems, and a branch-and-bound search are de-
scribed. Section 7 describes our experiments on
multicomputers with static and dynamic background
workload. These include a 16-node Intel iPSC/2 com-
puter (with static background workload) and a bus-based
network of heterogeneous Sun workstations (with both
static and dynamic background workload). Finally, Sec-
tion 8 draws the conclusion.

2. MODEL OF THE ARTIFICIAL NEURAL NETWORK

In this section, we describe the operations of an ANN,
show its representation using a task graph, and present a
formal model. Our model works for ANNs with a static
learning rule; in particular, we focus on the back-error-
propagation learning rule. A static learning rule is one
whose tasks are time invariant and hence can be repre-
sented by a static task graph. We only considered multi-
layer ANNs; ANNs without a layer structure are first
transformed into a multilayer one before being mapped.

Before we present the model, we define the convention
we use in this paper for representing symbols. A symbol
in this paper may have a different number of subscripts,
and each subscript is like a placeholder. A symbol with
fewer subscripts means that it is more general than the
same symbol with more subscripts. For example, tpq IS
more general than 1, , ., and a property described for trg
is about 1, ., for every possible k. A symbol used may
also have multiple superscripts. The first superscript de-
notes the meaning of the symbol, while the second one
denotes the meaning of the symbol including the first
superscript. For example, ¢* denotes the optimal z*
among all possible {7 values,

2.1. Basic Operations of ANN

An ANN can be characterized by several major com-
ponents: a set of neurons, pattern of interconnection,

MAPPING OF NEURAL-NETWORK LEARNING

propagation rule, activation rule, output function, and
learning rule,

A neuron is the basic processing unit, which is charac-
terized by its state, an activation function, and an output
function. The activation function transforms the input
signals associated with their weights and its state value to
a new state value. The output function transforms the
state value to an output signal.

Neurons can be classified into three types: input neu-
rons, hidden neurons, and output neurons. Input neurons
receive inputs from the external environment; output
neurons send signals to the external environment; and
hidden neurons are invisible to the external environment.

The learning rule specifies the mechanism of modifying
the strengths of connections. The neural network can
learn though incremental modifications of connection
weights. In general, the modification of a connection
weight is a function of four terms: (1) the state value of
the destination neuron of this connection; (2) the output
value of the source neuron of this connection; (3) the
current connection weight; and (4) the reaching input,
which is the expected output value of the output neuron.

A multilayer neural network can be clustered such that
if one cluster is connected to another cluster, then all
neurons in the first cluster are connected to all neurons in
the second. A special case is a multilayer neural net with
one cluster in each layer. Note that all neurons in a clus-
ter are homogeneous in the sense that they receive the
same inputs, perform the same operations, and send their
outputs to the same clusters of neurons.

The operations of an ANN can be classified into two
phases: production phase and learning phase. The ANN
works by alternating between these two phases. In the
production phase, it receives input signals from the ex-
ternal environment and produces output signals to the
external environment. In the learning phase, it receives
teaching inputs, if they are provided, and modifies the
connection weights according to the learning rule.

2.2. Constrained Task Graph

An ANN can be represented by an undirected configu-
ration graph. A node in the configuration graph repre-
sents a cluster of identical neurons (called neural cluster,
or simply cluster) that perform similar operations in the
production and learning phases; a link represents the
communication path between two clusters. The size of a
node is defined as the amount of computations to be per-
formed. The width of a link is defined as the amount of
communication between the two clusters.

In this paper, we assume that each neuron is simulated
on only one processor and cannot be split across pro-
cessors. The ANN simulation can be characterized by a
constrained task graph (CTG) formed by putting two
configuration graphs back to back and replacing links

321

with arcs. The first configuration graph, with arcs point-
ing from input neurons to output neurons, represents op-
erations in the forward production phase. The second
configuration graph, with arcs pointing from output to
input neurons, represents operations in the backward
learning phase. One important constraint in the CTG is
that if a task node z in the first configuration graph and
another task node z' in the second configuration graph
represent the same cluster, then both task nodes z and 2’
must be mapped to the same set of processors.

An advantage of using the task-graph representation is
that we do not need to go through the details of the ANN
operations. Another advantage is that the task-graph rep-
resentation is independent of the learning rule, as long as
the learning rule is static.

2.3. Formal Neural Network Model

Our neural network model, Many, is defined formaily
as (Ng, Ig), where Ng is a set of task nodes and I;; is a
matrix indicating the interconnection of task nodes. Let
Z denote the number of task nodes in the CTG. Each task
node z can be represented by a ternary tuple {n,, n,, o),
where #; is the number of neurons in this task, , is the
amount of computation for each neuron, and o, is the
space used for each neuron. Example 2.1 shows the spec-
ification of a three-layer ANN, with full interconnection
between adjacent layers.

ExampLE 2.1. Consider a three-layer neural network
with 500, 1000, and 200 neurons in layers 1, 2, and 3,
respectively, and full interconnection between adjacent
layers. The ANN can be specified as follows.

Neural Network Model Mynn = (Ng, Ig)
Task Node Set Ng = {z1, 22, 73, 21, 2, 23}, Z = 6.
hy = ng = 500, n;, = ny = 1000, n,, = ny = 200.
Ny = 2.49, m,, = 2.49, n,, = 4.94, n, = 2.73,
1z = 5.31, n,; = 10.63.
= o, = 501 (words), o,, = o = 501 (words),
= o, = 1001 (words).

9
I

Interconnection Matrix I =

o o o o o
Lo e R o o N e
L= R = i = e =)
=R =R = - =]
[R = R = R = Y
=R T e I e S = N =

2.4. Nonlayered ANNs

The target ANNs we study in this paper are multilayer
ANNs. In general, an ANN may not be layered. To map

~322

a nonlayered ANN using our mapping algorithm, it is
necessary to restructure the ANN or the CTG before-
hand. The restructing methods are discussed in the fol-
lowing. Errors incurred due to restructuring are dis-
cussed in Section 6.3.

(a) Restructuring Nonlayered ANNs into Multilayer
ANN5s. A nonlayered ANN can be first restructured into
a “multilayer’” ANN, before it is modeled formally as a
CTG. Finding the best restructured ANN is more difficult
than the original optimal mapping problem, since the
quality of restructuring cannot be determined until the
optimal mapping has been found. Consequently, heuris-
tics are used, and some errors may be incurred. Note that
it may not always be possible to restructure a nonlayered
ANN into a multilayer one. A nonlayered ANN, how-
ever, can always be restructured into wavefronts of clus-
ters such that clusters in a wavefront are active concur-
rently, and neurons in the same wavefront are
independent. Since a cluster in a wavefront may commu-
nicate with clusters not in its neighboring wavefronts, we
call the restructured ANN with wavefronts a semilayered
ANN; its mapping on multicomputers can be found by
our proposed algorithm.

(b) Restructuring Constrained Task Graph. Another
way to cope with a nonlayered ANN is to restructure the
CTG. This is especially useful for handling singular task
nodes in the CTG, whose size is very limited as com-
pared to the majority of task nodes in the CTG. Since a
singular task node is relatively small, it can be merged
with another task node. The error incurred by restruc-
turing can be derived based on the ratio of the size of the
singular task node to the size of the larger task node into
which the singular one is merged. Note that the optimal
restructuring of a CTG is difficult; heuristic restructuring
algorithms with a guaranteed error bound are studied in
this paper.

3. MODEIL. OF THE MULTICOMPUTER

In this section, the basic architecture of a multicompu-
ter and its dynamic¢ background workload are described.
We then formalize the model of the multicomputer.

3.1. Architecture of the Multicomputer

A multicomputer is a system consisting of a set of pro-
cessors with local memory, a set of communication links
connecting these processors, background workioad de-
scriptors, and queuing disciplines.

A processors consists of a processing unit, its back-
ground workload descriptor, local memory, and a set of
communication ports through which it can communicate
with other processors. The computational power of a
processor is characterized by the execution time per unit
computation, which includes processing and memory-

CHU AND WAH

access activities, The size of local memory of each pro-
Cessor is a constraint in our mapping problem.

The interconnection networks in most multicomputers
can be classified into one of four classes: point-to-point,
multistage interconnection networks, crossbar, and bus,
The complexity of the routing problem is highly depen-
dent on the interconnection network and the traffic on it.
The routing problem for a bus is the simplest, while that
for a point-to-point network is the most difficult. The
latter can be simplified if a broadcast mechanism is sup-
ported. In this paper, we consider only point-to-point and
bus networks. We treat multistage and crossbar networks
as fully connected point-to-point networks.

The load due to traffic in the interconnection network
is considered part of the background workload of proces-
sors. This simplification is appropriate since the parallel
simulation of an ANN alternates between computation
and communication, and communication can be included
as part of the computational overhead. Hereafter, we re-
fer to the background workload as the combined effect of
the real background workload in a processor and the ran-
dom traffic in the interconnection network.

A communication link i can be modeled by a setup time
7, a transfer rate r;, and a set P""® of processors it sup-
ports. The communication setup time includes the setup
time of the physical link and the overhead for processing
the setup. This parameter can be obtained for a real sys-
tem by measuring the time for sending a null message.
The transfer rate of a link indicates the number of unit
data that can be transmitted via this link per unit time.
The overhead for processing transmission is included in
computing the transmission time. The transmission time
71 per unit datum is the reciprocal of the transfer rate.
‘The processors supported by a link are those that com-
municate with other processors via this link.

Note that overlapped computations and communica-
tions are allowed. If the associated overhead is small,
then such overlap should be exploited in the mapping.

3.2, Dynamic Workload

In general, several processes may be active in a pro-
cessor during the simulation, and the dynamic workload
may affect the optimal mapping. This effect was not con-
sidered in our earlier work [18] and is included here.

In this paper, the background workload is defined as
the reciprocal of the processor utilization, which mea-
sures the percentage of computational power allocated to
the ANN simulation; that is, a high background workload
means a low processor utilization. Specifically, the work-
load w;, in processor i and time quantum g is 1/,
where u;, is the associated processor utilization. Note
that 0 <y, , = 1 and w;, = 1, and that the time quantum
is large enough to allow Hiq to be nonzero. Without loss
of generality, the time quantum is set to be the time for
one iteration of the parallel ANN simulation.

MAPPING OF NEURAL-NETWORK LEARNING

In a degenerate case, w; is 1 for every processor i. This
is the single-user case considered in our earlier work [18].
Another interesting case is one in which the workload is
highly unbalanced; an example is a server—client organi-
zation. Given the information on background workload,
the distribution of neurons will be inversely related to the
workload of processors.

3.3. Formal Model of the Multicomputer

A multicomputer model My is defined formally as
{MC, PS, LS}, where MC is the multicomputer configura-
tion, PS is the processor specification, and LS is the link
specification.

The multicomputer configuration MC is a 5-ary tuple
(P, Iy, L, Py, Pg), where P is the set of processors, Iy is
the interconnection matrix specifying the interconnection
of processors, L is the set of links, P; is the set of proces-
sors that have input facilities, and Py is the set of proces-
sors that have output facilities.

The processor specification PS8 is a 5-ary tuple {r¢, m,
k%, 7o WL), where 7° is the execution time per unit
computation, m is the size of the local memory, k® is a
binary variable specifying overlapped computations and
communications, 7° is the overhead of overlapped opera-
tions, and WL is the background workload descriptor. If
overlapped computation and communication are al-
lowed, then x® = 1; otherwise, k% = (.

The synthetic background workload descriptor WL is a
6-ary tuple { po, py, p2, 8, b,, by), where py, p;, and p, are
the probabilities that the background workload in the
next iteration of parallel ANN simulation will remain the
same, increase, or decrease, respectively; 8 is the slope
of change in background workload if the background
workload increases or decreases, and b, is the upper
bound and b, is the lower bound on background work-
load. Note that py + p; + p2 = 1. The detailed procedure
of generating synthetic background workload is de-
scribed in Section 7.2.

The flink specification LS is a ternary tuple {r, =+,
Pswer), where r is the data transfer rate of this link, 7% is
the corresponding setup time, and P is the set of pro-
cessors supported by this link. Note that only one pro-
cessor is assumed to transmit on a link at any time. If &
processors need to transmit on link [/ concurrently, then k
virtual links /), ..., I can be used instead of a single real
link.

The above definition must be specified for each differ-
ent processor and each different link in the multicompu-
ter. Example 3.1 illustrates the model of a network of
three heterogencous Sun workstations with dynamic
background workload.

ExampLE 3.1. Consider a network of three heteroge-
neous Sun workstations connected by Ethernet and hay-
ing dynamic background workload.

323

Multicomputer Model My = (MC, PS, LS)
Multicomputer Configuration MC = (P, Iy, L, P;, Pg)
Processor Set P = {0, 1, 2}, P = 3.

0 1 1
Interconnection Matrix Iy = {1 0 1
1 1 0

Link Set L = {0}, L = |L| = 1. /* Ethernet Bus */
Input Processor Set P, = {0, 1, 2}
Output Processor Set Pg = {0, 1, 2}
Processor Specification PS = {7¢, m, «*, 7°, WL)
Execution Time Per Unit Computation 7¢:
75 = 28.5 (ms), r{ = 25.5 (ms), 75 = 16.7 (ms).
Local Memory Size m (max {local real memory, disk
swap space}):
Mg = 3 (Mwords), m; = 5(Mwords),
ni; = 10(Mwords).
Overlapping Feature ¢ = 0, V i.
Overlapping Overhead 77 =0, V i.
Background Workload Descriptor WL = (py, p|. p2,
85 bu; bl)
Machine 0: py = 0.24, p; = 0.71, p; = 0.05,
8§=070,b,=25 b =1
Machine 1: pg = 0.13, p; = 0.57, p, = 0.30,
& =078, b, =25, b =
Machine 2: py = 0.29, p; = (.33, p, = 0.18,
8=10.59,b6,=255H=1
Link Specification LS = {r, 15, Psurr)
Data Transfer Rate r(1/7%) = 0.188 (word/us)
Setup Time 7% = 108.36 (ms) (one-time cost)
Supported Processor Set Pseee = {0, 1, 2},

4. MAPPING SCHEME

The mapping of an ANN simulation on a multicompu-
ter includes the assignment of neurons (or simulation
tasks) to processors and the routing of data across the
interconnection network. The assignment of neurons
must meet constraints on integrity, feasibility, and re-
sources. The routing scheme must meet constraints on
dependency, feasibility, resources, and configurations,
These constraints are specified in detail in Section 5.2.

A solution to the mapping problem is called a mapping
scheme (@) and is defined formally as a 4-ary tuple
D(Mann, My, @4, Br), where Myyy is the ANN model,
My is the multicomputer model, ®, is the assignment
scheme, and ®g is the routing scheme. &, and by are
related since the routing of data cannot be determined
until the clusters involved have been assigned to proces-
S0r's.

@, can be represented as an integer-valued assighment
matrix A of size Z-by-P, Recall that Z is the number of
task nodes and P is the number of processors. The ele-
ment a;; of matrix A indicates the number of neurons in

324

task node { assigned to processorj, When a;; > (0, proces-
sor j is called a home processor of task node i (or home
processor of the corresponding neural cluster).

The computation of an ANN simulation can be broken

into several computation segments (or simply segments)
according to the dependence constraints. Each segment
can start only after all its predecessors have finished. A
segment is defined by its entry and exit points. An entry
point of a segment at a particular processor pinpoints the
time at which this processor receives the first frame from
its predecessor processors, which simulate neurons that
send outputs to this segment. An exit point pinpoints the
time at which this processor sends the last frame to its
successor processors, which simulate neurons receiving
data from this segment. The overlap of computation and
communication in a processor is the interval between the
entry point and the commit point, which identifies the
time at which this processor finishes receiving the last
frame from its predecessor processors for the current
segment.
Formally, the jth segment in processor 7 is denoted by s; ;
= (S5, sE™™, 53T, where sPYY, sfommit and s$% are the
entry, commit, and exit points, respectively. Note that
two processors may have different entry and exit points
for the same segment. Let % denote the height of the
ANN, which is the number of clusters encountered along
the longest acyclic path from the input cluster to the out-
put cluster. In a multilayer ANN, 4 is simply the number
of layers. Let K, denote the set of task nodes (or clusters)
involved in segment g. The maximum number of seg-
ments is 2 4, since h segments are needed for the produc-
tion phase, and another 4 for the learning phase. For the
ANN in Example 2.1, 4 is 3.

@y can be represented by a routing vector of cardinal-
ity L. Recall that L is the number of links. The /th ele-
ment of R is a set of =, of 4-ary tuples that keeps the
statistics of communication on link /. The 4-ary tuple is
(D) fraks Bty ol 1), where p’ denotes the processor
that transmits frames via link /, Jo.o.k denotes the data
frame produced in processor £ and used in computation
segment ¢ in processor p, tf,‘,i,_k denotes the start time for
transmission using link /, and 5%, denotes the time pe-
riod for using link /. The component of the routing vector
is a set rather than a number, because a link can be used
at different times by different processors and all usage
must be described.

ExampLE 4.1. Consider the ANN presented in Ex-
ample 2.1 and the multicomputer in Example 3.1. Part of
a possible assignment matrix A showing the mapping of
neurons to processors is

96 157 247
195 312 493
39 62 99

CHU AND WAH

One possible 4-ary member of the set Sois(p’' =0, fi20,
1§90 = 26198 (us), 190 = 319 (us)). This means that
processor 0 transmits the frame it produces for computa-
tion segment 2 in processor 1, and the transmission via
link O starts at time 26198 us and takes 319 S,

5. PROBLEM FORMULATION

The objective of the mapping problem is the minimiza-
tion of the completion time for training the ANN, which
is a function of computation and communication times.
The computation time includes the time for computing
neuron outputs in the production phase and the time for
updating weights in the learning phase. The communica-
tion time includes the time for sending neuron output
signals to the successor processors in the production
phase and the time for sending error signals to the succes-
$Or processors in the learning phase.

5.1. Mathematical Formulation

The optimal mapping problem can be formulated math-
ematically as follows. Given a neural network model
Mann and a multicomputer model My, find an assign-
ment matrix A and a routing vector R to achieve the
optimal objective function OBJ.

OBJ = min max TEXFC (A, R), 3.1
P

AR pe

such that A and R satisfy the constraints on feasibility,
configurations, resources, and dependence. A maximiza-
tion is carried out to find the compietion time that is
determined by the last processor that finishes the simula-
tion. For brevity, T;**C is used instead of TEXEC (A, R)
in the following discussion.

T5*5C of a processor can be formulated as the sum of
the times 77X for segment g in processor p. Since there
are 2k segments,

2h
THXC = ;1 TEC, (5.2)

T4 should include the computation time T5MF and
the communication time T59"™. The computation time of
a segment is the sum of execution times of simulations for
neurons corresponding to it:

COMP _ _¢
Tgg" = Tp 2 Qip Nz-
€K,

(5.3)

Recall that K, is the set of task nodes (or clusters) in-
volved in scgment g. The communication time TSOMM jg
the time interval from the previous exit point to the cur-
rent commit point:

MAPPING OF NEURAL-NETWORK LEARNING

commit __ exit

COMM __
Tp.q = Ipy Ipg-1-

(5.4)

Communication can be overlapped with computation
after the first frame arrives. The idle time between the
previous exit time and the time at which the first frame
arrives is called the bubble time and is denoted by
TBUBBLE Note that Tha PrF = TSOMM. The execution
time for segment ¢ in processor p can be written as
T‘IDE!};EC - Kgl TRI;BBLE " (1 _ KEI) TpCEMM + T_E.QMP- (55)
By substituting Eqs. (5.5) and (5.2} into Eq. (5.1), the
objective function OBJ can be rewritten as

Zh
OBJ = min max >, (x5 Ty 5LE
AR peEP 4=1

- (1=) TEP - TS

(5.6)

The bubble time TEYBBLE s equal to the time interval
between the exit point of segment g — 1 and the time at
which the first useful frame arrives. To determine the
arrival time of the first frame, the arrival time of each
frame must be known. Let ¢35 be the arrival time of the
frame containing values produced in processor & for seg-
ment g in processor p. If &k = p, then 121 is set to 1551
Hence, TEYPBLE js

BUBBLE 4 : arrival __ gexit
Tp,q = rfelrl.‘l(tp,q.k tp.q*l .

(5.7)

The arrival time of each frame depends on the exit point
of the previous segment at the source processor and the
traffic along the communication path. It can be formu-
lated as

parival o gexit | TPATH (A L), (5.8)
where TPATH (A,) is the time needed to send the frame
containing values produced in processor k for segment g
in processor p, and A, ., denotes the path consisting of
links. This represents the average transmission time
along the path from processor & to processor p and the
average traffic delay at the intermediate processors. This
time can be written as

TPATH(A,)

>

% € Ap
y is the next link o x
in path Ap g

(IB:;,R + TDELAY(f:D,q,k s Xy J’)); (5.9)

where TPELAY (£, ¢, x, vy} is the delay time in the proces-
sor between links x and y. Recall that 7,74 is the link
usage time and is defined by 7} + oy, 7y, where gy, _ is
the size of frame f, ;. The delay time is highly dependent

325

on traffic on links x and y, with frames arriving first being
transmitted first. The delay function for frame f;, , can be
written as

TOELAY (f %,) & 15%e — (E5%e 35). (5.10)

The entry time :Z5¥, the commit time ¢35, and the
exit

exit time ¢;%; are defined as

150 & min 230 (5.11)
k=P

150 A max 75 (5.12)
kEP

SO S i (5.13)

The link start times 7575 and ;% « and the link usage time
o in Eq. (5.10) are specified in the mapping scheme.

In summary, the objective function OBJ for a mapping
scheme can be completely determined by combining Eqs.
(5.6) through (5.13).

As an example, the objective function for mapping the
neural network in Example 2.1 on the multicomputer in
Example 3.1 is

2h
OBJ = min max > (750 + T59MF). (5.14)
AR pEP 4=1
When a mapping scheme is determined, a,,, =™, and

25 can be determined accordingly. Then, by using Egs.

(5.3) and (5.4) the above objective function can be calcu-
lated.

5.2. Constraints

Four groups of constraints must be satisfied: feasibil-
ity, configuration, resource, and dependence.

The feasibility constraints include the feasibility of as-
signment (Eq. (5.15a)) and the feasibility of link alloca-
tion (Eg. (5.15b)). The feasibility of assignment requires
that all neurons in each cluster be assigned to a subset of
processors and each neuron be assigned to exactly one
processor, This constraint is involved when assigning the
neurons. Note that the feasibility of assignment is
checked only when the production task nodes are
mapped, since the assignments of the learning task nodes
are constrained to be the same as those for the produc-
tion task nodes. The feasibility of link allocation requires
that a communication link not be allocated again during
the period when it is used. This constraint is involved
when mapping communication.

FEASIBILITY CONSTRAINTS

P-i
Sag;=n Yz=1,.. 272 (5.15a)
i=0

326

155k & Ugw, i gw + 13 k]
Yp #$p.g +q k +k,

Vi=0,...,L—-1. (5.155)

The configuration constraints include constraint on the
transmitting processor (Eq. (5.16)). This constraint re-
quires that the processor transmitting a data frame via a
link be a member of the set of processors supported by
this link. This constraint is involved when the transmit-
ting processor is granted.

CONFIGURATION CONSTRAINTS

p'E PRI, VD, fogks Bk thgr) € iy

Yi=0,..,L—-1, (5.16)

The resource constraint is the constraint on local mem-

ory (Eq. (5.17)), which requires that the total amount of

space allocated for computation in a processor not ex-
ceed the limit of its local memory.

RESOURCE CONSTRAINTS

Z72
zaz.J'Uszi, Vi=0,..,,P—-1 (5.17)
z=1

The dependence constraints include the usage depen-
dence (Eq. (5.18a)) and the production dependence (Eq.
(5.18b)). The usage dependence requires that an output
value of a neuron be used only after its value has been
produced. This constraint is involved when the neuron
output value at its home processor is to be transmitted to
other processors. The production dependence requires
that an output value be produced only after all its re-
quired input data arrive. This constraint is involved when
an output value is to be produced.

DEPENDENCE CONSTRAINTS

to(frp(zr p) = 1) <t (mlz, p) =1,

ifa,,>0.Vp=0,..,P~1,¥z=1,..,2, (518a)
Llma(z, py = 1) < t(my(z, p) =1,
Yp=0,..,P~-1,¥z=1,...2Z, (518b)

where #, is the production-occurrence function, m, is the
usage occurrence function, m, is the arrival-occurrence
function, and ¢, is the occurrence-time function. The oc-
currence function is 1 if the corresponding event occurs;
otherwise, it is 0. For example, my(z, p} = 1 if outputs of
task node z are produced in processor p, otherwise, 0. ,
and m, are defined accordingly.

For mapping the neural network in Example 2.1 on the

CHU AND WAH

multicomputer in Example 3.1, constraints (5.15a) can be
written as

aie t ay + a ;= 500,
a30 + das + 32 = 200.

axo + @21 + axx = 1000,

Constraint (5.17) can be written as

501 arg + SO1 azg + 1001 @z = 3 X 106,
501 day + 501 az,; + 1001 @) =5 X 106,
501 ayp + 501 a2, + 1001 @35 =< 1 X 107,

5.3. Complexity

The integer programming formulation described in the
last two sections has a nonlinear objective function as
well as nonlinear constraints (Egs. (5.15b) and (5.16)). To
understand the complexity of the formulation, we first
derive the number of variables it uses. These variables
are due to the elements of the assignment matrix A and
those of the routing vector R. n4, the number of variable
items in matrix A, is simply equal to half of the number of
elements of matrix A because the production and learn-
ing phases have the same assignment, i.e.,

ns, = Z P/2, (5.19)
The number of elements in vector R is equal to its cardi-
nality, i.¢., L. However, each element E; in the routing
vector R is itself a set of 4-ary tuples, each with three
variable items, p, f, and ¢,. The number of tuples in set =;
is dependent on the number of routing problems (24),
number of processors (P), and diameter (Dy) of the
multicomputer, For an ANN with only one cluster in
each layer, each layer in the CTG is accompanied by a
routing problem. Hence, there are 24 routing problems.
The diameter of a multicomputer is the maximum length
of the shortest path between any pair of processors if
each link has unit length. Let ng be the number of vari-
able items in vector R. Then,
R S ngp> = 6hLPDy. (5.20)
e, the number of variable items in the mapping, is equal
to the number of variable items in A and R:

P
n¢:nA+ngsn$a"=ZT+6hLPDM.

(5.21)
n3™* is very large in most cases; however, simplification
of the mapping problem with negligible error is possible
because the computation time generally dominates over
the communication time. These simplification techniques
are introduced in Section 6.1.

MAPFPING OF NEURAL-NETWORK LEARNING

For mapping the neural network in Example 2.1 on the
multicomputer in Example 3.1,

Ha=3%x3=9 andng®* =6 x2 x1x3x1=36

For mapping the same ANN on a 16-node Hypercube
computer,

ny=3x 16 =48 and
afE* = 6 x 2 x 32 x 16 X 4 = 24,576,

nE®™ for the 16-node Hypercube is very large, though it
can be reduced dramatically through simplification tech-
nigues. For example, if the 16-node Hypercube is
grouped in two partitions, then

nrﬁlax,simpliﬁed =& x 2% 1 %X 2 X 1 = 24.

The complexity of the integer programming formuation
also depends on the number of possible values that each
variable can acquire.

The complexity of the routing problem is illustrated as
follows. Consider a case in which each processor is asso-
ciated with a set of frames to be migrated, and each frame
is also associated with a set of destination processors.
The routing problem entails the migration of every frame
from its home processor, which produces this frame, to
its destination processors so that the completion time is
minimized. This routing problem, called the multiple par-
tial broadcasting problem, is very hard to solve for large
interconnection networks because its complexity is
higher than that of traditional NP-complete communica-
tion problems, such as the optimum communication
spanning tree and the minimum broadcast time [6] prob-
lems.

The mapping problem formulated degenerates into the
traditional precedence constrained scheduling problem if
the communication overhead is neglected. The latter has
been proven to be NP-complete by transformation from
3SAT [17].

5.4, Dynamic Mapping Strategy

Since the multicomputer may have dynamic back-
ground workload, the mapping of an ANN simulation
should be adjusted when the background workload
changes. As it is difficult to determine the best time for
migrating a cluster, we choose to remap the ANN simula-
tion whenever the background workload changes signifi-
cantly and the benefit of migration exceeds its cost,

The decision to perform remapping depends on (1) the
current simulation time t¥™ for one iteration of paraliel
ANN simulation; (2) the predicted simulation time 5™
for one iteration of ANN simulation; (3) the expected
mapping time ™2 for finding the optimal mapping; (4) the

327

remaining simulation time t™™ which predicts the time
for finishing the remaining simulation tasks based on the
current simulation time £51; and (5) the predicted remain-
ing simulation time §"™ which predicts the time for finish-
ing the remaining simulation tasks based on the predicted
simulation time 75, By definition, ™™ is

~s
- ! S1m
trem = tlem b4

(5.22)

rsim '

Let t#* denote the gain due to remapping. It is com-
puted as the difference between the remaining simulation
time without remapping and the total simulation time af-
ter remapping and the expected remapping time. That is,

pgain A grem _ frem — fmap, (5.23)
Remapping should be carried out if there is a positive
gain,

After the new optimal mapping is found, the data for
neuron states must be migrated across different proces-
sors, and the ANN simulation resumed. In our analysis,
the time for migrating data is included in the mapping
time.

6. SOLUTION STRATEGIES, TECHNIQUES, AND
PROPERTIES

The mapping problem can be simplified with negligible
error when the computation time dominates the commun-
ication time. This dominance occurs cither when the
number of neurons in each cluster is large or when the
communication time is relatively small. Using this domi-
nance, we describe a formulation of the optimal mapping
problem and present an approximation algorithm for find-
ing a mapping with a guaranteed deviation from the opti-
mal one.

6.1. Overall Strategy for Solving the Mapping Problem

The mapping problem can be simplified by observing
that the computation time dominates the communication
time, at least within a local subset of processors called a
partition. Within a partition, routing can be carried out
heuristically. Our strategy involves three steps.

(1) Partition the multicomputer into disjoint groups
such that the ratio of the heuristic communication time of
neural network simulation to the best computation time
within a partition does not exceed a user-specified error
degree e. Let g, be the maximum of the ratios for all
partitions. Then &, = &. (The calculation of these ratios
and the partitioning algorithm are described in Section
6.2.)

(2) Map the ANN simulation to the partitions such that
the completion time of the mapping deviates from the

328

optimal one by an error bound &, which is a function of ¢
and g,. (This mapping can be found by an approximation
search algorithm, and the error bound &, is computed in
Theorem 6.5 in Section 6.3.)

(3) Find the heuristic intrapartition routing for each
partition. :

The mapping found inclides the assignment of neural
clusters to the partitions, the interpartition routing, and
the heuristic intrapartition routing. The first two assign-
ments deviate from the real optimal one (based on the
given partitions) by an error bound z., while the final
mapping deviates from the real optimal one (based on the
entire multicomputer) by the user-specified error bound
. The guarantee of the error bound is discussed in Theo-
rem 6.1 in Section 6.2.

Our strategy is more general than a traditional strategy
that finds the optimal assignment to processors as weil as
the optimal routing among all processors, since our strat-
egy degenerates to it when s = 0. It is better than one that
finds a mapping heuristically without an error bound. It is
also more powerful than one that simply reports an error
bound, because the error bound in our strategy is speci-
fied by the user, and the best mapping that deviates from
the optimal one by the error bound is found.

6.2. Partitioning of the Multicomputer

In this section, the partitioning algorithm and strategies
to guarantee the error bound of the mapping are de-
scribed. We characterize the dominance of the computa-

CHU AND WAH

tion time by the ratio of communication to computation
times, The symbols we use in this section are summa-
rized in Table 6.1 and are explained briefly below.

For a given partitioning of processors, the optimal
mapping of neurons and routing of communications on
these partitions can be found by a branch-and-bound
search algorithm. As stated before, these two problems
are tightly coupled and cannot be solved independently.
t§.:. the computation and intrapartition communication
times for cluster { in the optimal case, satisfies

14 = 15 + th. (6.1)

Figure 6.1 illustrates the neural network, the decompo-
sition of clusters into partitions of processors, the map-
ping of clusters within a partition, and the mapping of
clusters on the entire multicomputer. In Fig. 6.1b, the
timing diagram for the three processors in partition 1 is
shown. The three blocks on the left represent the three
segments of cluster 1 that are processed concurrently by
the processors in partition 1. Note that 5, includes all
times during which one or more processors are perform-
ing computations for cluster 1, while 5 ; represents the
unoverlapped intrapartition communication times be-
tween computations in cluster 2 and cluster 4. If overlaps
between communications and computations are allowed,
(24, + t§)) represents the minimal interval between the
time at which computations of the last segment in cluster
2 are completed and the time at which the first computa-

TABLE 6.1
Summary of Symbols Used and Their Interpretations
Symbol Meaning Symbol Meaning
orn* Optimal mapping of neural clusters on the given multicom- Qpart Optimal assignment {without considering intrapartition
puter communication delay), optimal interpartition routing,
and heuristic intrapartition routing
184 For rt* time interval during which one or more proces- 1o, For @, time interval during which one or more proces-

sors in partition Q are performing computations or
communications for neural cluster {, with no overlap
with computations in the next neural cluster to follow

M For ®r*, time interval during which one or more proces-
sors in partition Q are performing computations for
neural cluster §

t&f,‘— For ®vrt* time interval during which all processors in
partition Q are performing intrapartition communica-
tions for neural cluster i, with no overlap with computa-
tions in this neural cluster or the next cluster to follow

I For @rt* same as 35 except that interpariition commun-
ication times are concerned
ng; Number of neurons in neural cluster / assigned to
partition Q
g = g % |Ql/ng,
prefx Optimal mapping of neural clusters on the reference multi-
computer
ti (= t%.) for @rt* time interval during which virtual pro-

cessor Q is performing computations for neural cluster {

sors in partition Q are performing computations or
communications for neural cluster {, with no overlap
with computations in the next neural cluster to follow

th. For #", time interval during which one or more proces-
sors in partition Q are performing computations for
neural cluster §

to. For $=n, time interval during which all processors in
partition Q are performing intrapartition communica-
tions for neural cluster i, with no overlap with computa-
tions in this neural cluster or the next cluster to follow

th For ®Pr, same as 1§, except that interpartition communni-
cation times are concerned
Yo = todths = 165G
e = 19, % [Ql/ng,
T=(Py Completion time based on mapping ¢ on the reference
multicomputer
8 (= t§)) for ®f* communication times not overlapped

with computation

MAPPING OF NEURAL-NETWORK LEARNING

b : Ve :
| _-D- ['
o1 |]
‘ e g
For , For H oo For)
Chuster 1 . Cluster2 R L Cluster4
proc. 2’ \ l I |
0 1 1 1
' I R '
i f 1 H 1
[S e .
S I R —
i ! v]
. T ‘
1 ; : ! b] L& |
‘ f "l"'\'_f"' 4.1
: -
1 e
ta time,
g g g -
c
]] 1 1
) 1 1]
' TR t)
4,1
¥ RE R ¥y * vy
time
1 1 1 13
1 1] "
: A :
i 2 + taz L 2 Y,
time
FIG. 6.1. Mapping five clusters of neurons on two partitions of

processors. (a) Decomposing five clusters on two partitions of proces-
sors. (b) Timing diagram showing mapping within partition 1. (¢) Timing
diagram showing overall mapping.

tion in one of the segments of cluster 4 can begin. Figure
6.1c shows the time diagrams on simulating the five clus-
ters in two partitions of processors,

Similarly, the definition of zg; satisfies

n .
tos = 1 + 1 = ol X UFP + FT. (62)

In this case, the neurons in a cluster are first allocated by
ignoring their communication requirements. It is obvious
that an even distribution of the neurons according to the
computational power of processors in partition Q of pro-
cessors will result in the minimal completion time tg,; (a
more general result is proved in Theorem 6.2). Note that
. is a lower-bound estimate.

329

ta., the intrapartition communication time, is com-
puted by a heuristic routing scheme. For simplicity, it is
assumed that each processor broadcasts its results ac-
cording to a minimum spanning tree, and that broadcasts
of different processors are done sequentially. As a result,
there is never any congestion involved in this communi-
cation scheme. It is, therefore, simple to compute 5,
the interval between the time at which the last interparti-
tion communication in cluster i is completed and the time
at which the first computation in cluster i begins. Note
that 1§, is an upperbound estimate.

Another observation about the definitions in Table 6.1
is that +§TP is the per-neuron average computation time
for cluster i, and that t§7™ is the per-neuron average
communication time for cluster i (based on a heuristic
routing scheme). Since 2§ is a lower-bound estimate and
to.; an upper-bound estimate, g, represents the worsi-
case communication-to-computation-time ratio that can
be experienced in partition Q for processing cluster i.

The last observation is that both ¢§; and tg; include the
execution times in the production and learning phases.

In our previous work [18], we showed a method for
reducing the problem complexity. Given an error bound ¢
of the communication-to-computation-time ratio, the
multicomputer can be partitioned into several disjoint
groups such that the communication-to-computation-
time ratio of each group for simulating part of a given
cluster is less than the bound &. We proved that the opti-
mal mapping on the optimally partitioned multicomputer
with a heuristic routing scheme within each group would
have a completion time no greater than (1 + g) times the
completion time of the optimal mapping on the original
multicomputer. The maximum of all communication-to-
computation-time ratios of the partitioned multicomputer
is called the error degree. A small error degree will result
when the number of neurons in all clusters is large or
when the partitions are small.

One problem with the above method is that it requires
knowing the optimal partitions, knowledge that is diffi-
cult to obtain without enumeration. Moreover, finding
the optimal partitioning of processors is more difficult
than finding the optimal mapping itself. In this paper, we
relax the above requirement on the optimal partitioning
and propose an approximate mapping that is within an
error bound from the optimal mapping. This is achieved
by Mapping Heuristic 6.1 and Heuristic Partitioning Al-
gorithm 6.2.

Mapping Heuristic 6.1

Neurons within a cluster can be mapped by a branch-
and-bound algorithm to one or more partitions of proces-
sors with the following assumptions: (a) routing across
partitions is optimal (with time ¢{};) and (b) routing within
partitions is suboptimal (with time g ;).

330

Heuristic Partitioning Algorithm 6.2

(1) Select one processor not included in any partition to
form a new partition. If all processors have been parti-
tioned, then exit.

(2) For a given partition and a processor not included in
any partition, if g, for all processors in this partition
{(including the newly selected processor) does not exceed
the error allowance &, then include the new processor in
this partition. This step is repeated for all partitions al-
ready formed and all processors not included in any parti-
tion. Go to step 1.

To prove that the final mapping is within the error
bound, a conceptual multicomputer, called a reference
multicomputer, is introduced. The reference multicom-
puter is a multicomputer consisting of a set of conceptual
processors, each corresponding to a partition of real pro-
cessors. The reason for using a conceptual processor is
that each partition is indivisible and there is no intraparti-
tion routing. In short, there are three types of multicom-
puters: original multicomputer (before partitioning), par-
titioned multicomputer, and reference multicomputer.

The following lemmas and theorems show that the er-
. ror bound can be guaranteed if Mapping Heuristic 6.1 is
used.

LEMMA 6.1, The completion time based on the opti-
mal mapping ®%" on the reference multicomputer is no
greater than the completion time based on the optimal
mapping ®P* on the original multicomputer. That is,

Tref((bref.*) - T(q)part,*)_ (6.3)

Proof. The optimal mapping ®#*** on the original
multicomputer is also a feasible mapping (ignoring the
corresponding intrapartition communication) on the ref-
erence multicomputer, Since there is no intrapartition
communication in the reference multicomputer, we have
Tref(rert.*) = T(Prat*), By the definition of optimality of
Pref¥ we have

Tref (q)ref.*) < Trcf((ppart.*) = T((I)part.*)_ [}

LEMMA 6.2. The difference between tq; and 1§, is
bounded from above by t§,; X vq.. That is,

to; = 1§ (1 + vq.)- (6.4)

Proof. Since ¢, is the optimal completion time on the
reference multicomputer, and ty; = £, by definition of
ICQ';, then

tr
tg; = thy T o = t_ﬁ.f (1 + ;?:gi) = {El 1+ vq:) W

W

LeEMMA 6.3. Consider a multilayer ANN with L lay-
ers, a multicomputer with P' disjoint partitions of pro-

CHU AND WAH

cessors, and the corresponding reference multicomputer.
Assume that every cluster i in every processor of parti-
tion Q has communication-to-computation-time ratio vyq,;
A 4TI no greater than a predefined value . Let
Tref (et *) gnd T(PP) be the completion times based on
Mapping Heuristic 6.1. Then

T(drart) = Tref(drlb*)(1 + ¢). (6.5)

Proof. Let K; be the set of clusters in layer I. The
completion time 77 (& f*) on the reference multicompu-
ter can be expressed as

L-1
T+ = max >, >, (%% + 18.)-
Q i=0 €K,

The completion time 7(®™") on the partitioned multi-
computer can be expressed as

L~1
T(®P*Y) = max », > %%+ 1)
Q I=0 icK

According to LLemma 6.2, simple algebraic manipulations
show that

L-1
T(®Pr) = max », >, (% + 10.)
Q

=0 ek

L—1
=max », 2, %+ (1+)1
Q =0 icK;

s L-1
= max > > (1 +)%+ 1§
Q =0 iek;

T (1 + £). W

THEOREM 6.1, Consider a multilayer ANN with L
layers, and a multicomputer with P’ disjoint partitions of
processors and its reference multicomputer. Assume that
every cluster i in every processor of partition Q has com-
munication-to-computation-time ratio yo; & 1§ /tgi"
no greater than a predefined value €. Let T(®") and
T(Drat*) pe the completion times based on Mapping
Heuristic 6.1 and on the optimal mapping, respectively,
Then,

1A

T(Drey = T{Prat¥)(1 + g).
Proof. By Lemmas 6.1 and 6.3, we have

(6.6)

T(@Pt) = Te(@rray(l +) < T(@P*)(1 + £). W

Theorem 6.1 guarantees that the bound on the error
with respect to the optimal mapping can be achieved
when Mapping Heuristic 6.1 and Heuristic Partitioning

MAPPING OF NEURAL-NETWORK LEARNING

Algorithm 6.2 are used. In our previous work [18], we
were unable to guarantee this error bound. This new
result is very important because it says that partitioning
does not affect the error bound of the optimality of map-
ping, as long as it satisfies the communication-to-compu-
tation-time ratio. Therefore, any partitioning algorithm
other than the optimal one will suffice.

The following theorem shows that distributing neurons
within a partition according to the computational power
or processors within the partition is optimal.

THEOREM 6.2. Assume that ng, neurons in neural
cluster i are assigned to a partition of processors Q and
that the computation time dominates the communication
time in partition Q. The optimal assignment on Q can bhe
obtained by distributing the ng,; neurons evenly accord-
ing to the computational power of processors. Processor
J completes at approximately x; ;7; + v;, where x;; is the
number of neurons in cluster i assigned to processor j. t;
and vy are, respectively, the execution time per unit com-
putation and the amount of time that processor j is not
available for ANN simulation.

Proof. Since the computation time dominates the
communication time in this partition, only the computa-
tion time must be considered in the proof. Let Xg,; be a
possible mapping of cluster / on Q, and Cy,, be the
completion time of mapping Xg,; namely, Cy,; =
max;eq {x;;7; + v;}. The optimal execution time can be
written as Cyg,, = ming,, Ciy, . Since Zjeq Xij = g,
Cix;,» can be derived easily as

Ho,i + Eng (Vj/’n'j)
EJ'GQ (1/1’1)

Cuxgn =

Assume that there exists another better assignment Xg,;
such that C<XQ = max;eq {xi 7 + v,} = Cxy,; then as-
signment x;; satlsﬁes an inequality x; 7 = Cixp 5 — v;. By
summing all x;;, we have

Cixoy — ¥; Cusy ~ ¥
ras= 3y = 3 S 3 ST,

I=0] JEQ 7 JEQ 7
A contradiction! Consequently, Ciy;, , = Ciys ., must hold;
that is, the optimal execution time is Cix;,. W
According to Theorem 6.2, x;; can be calculated by
using the equality
ngi + 2yeq (/7))
X = - ¥l
Zreq (1)

(6.7)

Note that if »; = 0 for every J, then a uniform distribution
according to the computational power of processors in Q

331

follows from Theorem 6.2. Further, note that if

no; + Zyeq (/1)) -

v, (6.8)
zj'EQ (IJITJ')

is true, then the most negative x; J (Eq. (6.7)) can first be

set to zero and x;; can be recomputed for every & # j in

the set of processors Q. This process may have to be

repeated several times in the worst case.

COROLLARY 6.1. In a sysiem with homogeneous pro-
cessors connected by a fast interconnection network
(such as a linear systolic array assumed by Kung and
Hwang [10, 111}, an even distribution of neurons in a
cluster to all processing cells results in the minimal com-
pletion time in learning.

Proof. Since the interconnection network is fast, the
computational overhead dominates the communication
overhead. According to Theorem 6.1, the entire system
can be considered one partition with negligible error with
respect to the optimal mapping. Further, according to
Theorem 6.2, neurons should be mapped evenly to all
processing elements. W

The resource parameters of a partition ¢, including the
set of processors Q, can be defined as follows (refer to
the definitions in Section 3.3):

los1 (6.9a)

Ty =0 TJ

m, = > m (6.9b)
i=Q

ki =1 ifk? =1 forsomej€Q, (6.9¢)
EjEQ T9

0 = =L 6.9d
Tq Q] (6.9d)

After the partitions are generated, the communication
links connecting one partition to another can be grouped
into conceptual links in such a way that a conceptual link
connecting two partitions includes all links connecting a
processor in one partition to any processor in the second
partition. The parameters of conceptual link A, consisting
of a set A of real links, can be defined as

= Z 3, (6.10a)
1EA

1_ E — (6.10b)

T}\ IEA T '

PsP* also needs to be modified accordingly.

332

16000
1000 -

100 4
Mapping Time
e} 0.

14

0.1

I T 1 T T
1 2 3 4 5

Number of Partitions (without Error Allowance)

FIG. 6.2. [Execution time for finding the optimal mapping of ANN
FC-1 on different numbers of partitions.

The complexity of the mapping problem is dependent
on the number of partitions, the interconnection of multi-
computers, and the resource parameters. Figure 6.2
shows the mapping times for solving the optimal mapping
of ANN FC-1 (which is described in Section 7) on differ-
ent numbers of partitions. (In the special case in which
there is one processor in each partition, the problem is
equivalent to finding the optimal mapping of the ANN.)
Note that the execution time grows exponentially with
respect to the number of partitions, since the mapping
problem is NP-hard. Figure 6.3 shows that the mapping
times for solving the optimal mapping of fully connected
ANNs with different numbers of clusters on a three-parti-
tion multicomputer. It is observed that the mapping times
grow exponentially with the number of clusters.

6.3. Decomposition of Error Allowance

Our approach to solving the optimal mapping problem
consists of two stages, as described in Section 6.1. Each
stage can incur certain error degree in order to reduce the
mapping time. The following lemma and theorems show
that the total error incurred can be computed by the error
degrees incurred in each stage.

1000

100 -4
Mapping Time

(sec)
10

T T T T
3 4 5 &
Number of Neural Clusters in an ANN

FIG. 6.3. Execution time for finding the optimal mapping of fully
connected ANNs with different numbers of clusters on a three-partition
multicomputer,

CHU AND WAH

LEMMA 6.4, Consider a two-stage problem solver,
say 8, and S,, each stage incurring certain error degree,
say gy and e:. Then g, 5, the total error degree incurred, is
bounded by

812 = s'ﬂ%x =g + & + g8;. (611)

Proof. Let t* be the optimal solution value (the com-
pletion time based on the optimal mapping in the mapping
problem). Also let ¢; and 7 be the solution values after
error degrees ¢ and &, respectively, have been incurred.
Then, we have

h=*l+g) and 5 = (1 + g).

By combining the two equations above, we obtain
L=+ g1 + &) = r%(1 + & + 85 + £183).
Therefore, the maximum of the total error degree is
el =g + &, + g8.

The lemma is proved by taking this maximum as the up-
per bound. W

THEOREM 6.3. Consider an n-stage problem solver,

say S, ..., Sq, each stage incurring certain error degree,
say ey, ..., £,. The total error degree e, incurred is
bounded by

"
El,nSZ E H Eiy

k=1 VP&l ieP;

(6.12)

where Py is a permutation (i), ..., Iy) from (1, ..., n), and
Ty is the set of all possible permutations consisting of k
items.

Proof. This theorem can be proved by applying
Lemma 6.4 iteratively. First, ¢'*, the composite error
bound incurred in stages S| and S, can be calculated by
Eq. (6.11). Next, stage S; is included and £7%*, the com-
posite error bound based on =M%* and &,, is calculated
using Eq. (6.11). Iteratively, 4" can be calculated based
on ei'tty and g;. Finally, £ can be calculated. =

The accumulation of error degrees gives the worst-case
upper bound of the total error degree. For n = 3, the
error bound is
el =g + & + &3+ g8 + £183 + £ 81 + £,828.

(6.13)

The transformation of nonlayered ANN into an ANN
with wavefronts (discussed in Section 2) can be treated as

MAPPING OF NEURAL-NETWORK LEARNING

a sequence of merges, each of which is a merge of activa-
tions from the previous state. A merge may incur an error
degree bounded by the communication-to-computation-
time ratio. By applying the result in Theorem 6.3, the
maximum total error degree incurred in the transforma-
tion can be calculated. If the error allowance is specified,
we can determine whether the maximum error incurred
in the transformation is within the error allowance.

The transformation of singular task nodes (discussed in
Section 2.4) is also a sequence of merges. The error in-
curred in a merge of a given singular task node to a larger
task node is bounded by the ratio of their execution
times.

If the total error degree allowed is given and the error
degree incurred in partitioning the multicomputer is
known, then the error degree allowed in the mapping
algorithm can be set based on the total error degree al-
lowed and the error degree incurred in partitioning the
multicomputer (see section 6.1). The following theorems
show the error degrees allowed in this approach.

THEOREM 6.4. Consider a problem solver consisting
of two stages, say Sy and 8. If the total error allowed is
limited to &2 and the error degree incurred in stage 8,18
&1, then the ervor degree that can be incurred in stage Sz
is bounded by

_Eip T B
= 1a (6.14)

61 = e

Proof. To achieve the largest error allowance, let
75" be g,z in Eq. (6.11). We have

max
max _ £L12

— £
e =
2 1+8]

€12 — &
1+E| '

max

The theorem is provided by taking &3
bound. W

as the upper

The decomposition of errors in the n-stage problem can
also be done by rearranging the terms in Eq. (6.12). By
determining the error degree allowed in each stage so that
each can be solved as an independent problem, the com-
plexity of the mapping problem is reduced significantly.

THEOREM 6.5. If the error allowed in the mapping
problem is e and the error degree (by ignoring communi-
cation time) incurred in partitioning the multicomputer is
&p, then s, the error degree allowed in mapping the neu-
rons to the partitions, is

_E- &
&= T o o (6.15)

Proof. Since we solve the optimal mapping problem
in two stages, the result in Theorem 6.4 can be applied.

333

By substituting & = &2, £, = £, and & = & into Eq.
{(6.14) and assuming that g; is the worst-case error allow-
ance, the theorem is proved. W

6.4. Branch-and-Bound Search

The mapping problem formulated by nonlinear integer
programming can be solved by a branch-and-bound
search. During the search, each node represents either an
assignment of a cluster to a partition or the choice of a
route between two layers. One important feature of this
representation is that the search branches on neural clus-
ters instead of individual neurons. Each node is associ-
ated with a lower-bound and an upper-bound completion
time. A node can be pruned if its lower bound is larger
than the least upper bound. The upper-bound completion
time can be obtained by a greedy search. Detailed formu-
lations of the lower and upper bounds are described else-
where [2] and are not shown here due to space limita-
tions,

When the size of an ANN grows, the computation time
will become more dominant over the communication
time. This phenomenon is illustrated by the following
example. Consider a simple multilaver ANN with L lay-
ers and N neurons in each layer. Assume the number of
processors in the target multicomputer to be P. The com-
putation time for a neuron is O(N), resulting in a total
computation time for a layer of O(N?2). However, the
communication in each layer requires N neuron outputs
to be sent to a maximum of P processors. Hence, the
total communication time for a layer is Q(PN), and the
computation time is substantially larger than the com-
munication time. This phenomenon is significant since
larger ANN imply relatively small overhead on commun-
ication.

7. EXPERIMENTAL RESULTS

1n this section, experimental results on multicomputers
with both static and dynamic background workload are
shown. Cases with static workload include a set of three
heterogeneous Sun workstations connected by an
Ethernet, and an Intel iPSC/2 Hypercube computer with
16-node, 8-node, and 4-node configurations. Cases with
dynamic workload studied include the network of Sun
workstations described above, and a multicomputer with
10 processors, 25 processors, and 100 processors, con-
nected by either high-speed or low-speed communication
links. Note that our experiments on dynamic background
workload do not include the iPSC/2 Hypercube computer
because it runs in a single-user mode.

We implement a program called NeuMap that parti-
tions the multicomputer and solves the optimal mapping
problem. We implement another program called Dsim
that simulated multicomputers with dynamics back-

334

CHU AND WAH
TABLE 7.1
Summary of Important Symbols Used in Section 7
Symbol Meaning Symbal Meaning
Tsea Compiletion time of one iteration of sequential ANN simu- i Completion time of one iteration of paralle] ANN simula-
lation on the fastest processor in the physical multicom- tion on the physical multicomputer, with user-specified
puier approximation degree
Trred Completion time of one iteration of parallel ANN simula- Tsim Completion time of one iteration of paraliel ANN simula-
tion predicted by NeuMap, with user-specified approxi- tion on the Dsim simulator, with user-specified approxi-
mation degree mation degree
Y Speedup of parallel ANN simulation to sequential ANN guser Error allowance specified by the user such that the com-
simulation (¥ & Tsea/Tl) pletion time of the mapping found by NeuMap will not
. deviate from that of the optimal mapping by this error
g pred Deviation between T! and Trred (gored & | Tored — i}/ 71) gsim Deviation between TV and Tsim (gsim 4 |7sim — T/
Tetatic Completion time of N jterations of ANN simulation on Tdyn Completion time of N jierations of ANN simutation on
Dsim plus the time for excecuting NeuMap once in Dsim plus all the times for executing NeuMap in dy-
static mapping namic mapping
g Gain in using dynamic mapping strategy over static map- ny Number of neurons in neural cluster &
ping strategy (g & Tstav/Tdyn)
¥ max Maximum possible speedup of parallel processing of ANN g max Maximum possible gain in using dynamic mapping strategy
simulations (equal to the number of processors if all - over static one (obtained by performing remapping in
processors are homogeneous) every iteration of ANN simulation and ignoring the
mapping overhead)
¥ Speedup efficiency (¥ 4 ¥/ ¥max) g Gain efficiency (g & g/gm)
prec; Set of predecessor neural clusters of neural cluster k suce; Set of successor neural clusters of neural cluster &
Ny Amount of computation per neuron for task node Zk» N Amount of computation per neuron for task node F
which represents neural cluster & in the production which represents neural cluster & in the learning phase
phase

ground workload. Dsim allows communicaton on point-
to-point links as well as broadcast buses. During dynamic
mapping, Dsim is the master process: whenever Dsim
decides to remap the neurons (based on the rules de-
scribed in Section 5.4), Dism calls NeuMap and waits for
a new mapping before proceeding with the parallel simu-
lation. We implement Dsim as a simulator because it is
difficult to reproduce a variety of dynamic background
workloads on a physical computer.

Table 7.1 shows the important symbols used in this
section for describing our experimental results. Table 7.2
shows the parameters of the ANN benchmarks used in
our experiments. These parameters are measured with
respect to the computational power of one of the three
Sun workstations described in Example 3.1. For the
IPSC/2 Hypercube computer, due to memory limitations,
the number of neurons in each cluster is reduced to haif.
For multicomputers with dynamic background workload,
the number of neuros in each cluster is extended by 10
times that listed in Table 7.2,

Table 7.3 shows the communication parameters used,
including those for the Sun workstations and the iPSC/2
computer. The communication setup time is obtained by
measuring the transmission time for a null frame,
whereas the transmission time per word is obtained by
applying a linear approximation over communication
times for different frame sizes. Note that all communica-

tion parameters inchide preprocessing and postprocess-
ing times.

7.1. Experiments on Multicomputers with Static
Background Workload

When the background workload is static, it means that
the workload is either time invariant or changing very
slowly. This is the case in the Hypercube computer or in
the network of Sun workstations running in a single-user
mode. Note that all experiments are measured with re-
spect {0 one iteration of the parallel ANN simulation, as
all iterations are identical in processing time.

7.1.1. Experiments on Workstations with Static
Background Workiocad

The target multicomputer is a network of three hetero-
geneous Sun workstations specified in Exampie 3.1 in
Section 3.3, Machine 1 has the lowest computational
power, and machine 3 has the highest. Machine 3 is used
as the base machine to calculate the amount of computa-
tion in each cluster listed in Table 7.2. Each processor is
assumed using virtual-circuit communication with a one-
time setup cost. Broadcasts on Ethernets using data-
grams are not used in our experiments due to the small
number of processors, though it will be useful when the
number of processors is large.

MAPPING OF NEURAL-NETWORK LEARNING

335

TABLE 7.2
Summary of ANN Benchmarks Used in Our Experiments

Cluster & prec, SHEC, fy Nk M Ay ek T Hy Mk My
Fully connected multilayer feed-forward ANNs

ANN topology FC-1 FC-2 FC-3
1 IN 2 300 2.49 2.73 600 2.99 3.28 200 1.06 1.08
2 1 3 1000 2.49 5.31 200 2.99 6.41 1500 1.06 2.13
3 2 OouT 200 4.94 10.63 500 .05 2.15 200 7.35 15.98

Hybrid multilayer feed-forward ANNs

ANN topology ML-1 ML-2 ML-3
i IN 2,3, 4 500 2.53 2.80 200 1.05 1.14 800 4.26 4.60
2 1 5 200 2.53 5.52 300 1.03 2.17 300 4.26 8.80
3 1 3.6 500 2.53 5.52 500 1.05 217 200 4.26 8.80
4 1 6 300 2.53 5.52 200 1.05 2.17 400 4.26 8.80
5 2,3 7 400 3.56 7.58 600 3.97 8,55 200 2.73 5.34
6 3,4 7 600 4.13 8.56 400 347 7.46 500 3.19 6.43
7 5.6 OUT 200 5.08 10.69 200 4.94 10.65 400 3.74 7.51

Nonlayered feed-forward ANNs

ANN topology NL-1 NL-2 NL-3
1 IN 2,3, 6 300 1.65 1.73 200 4,33 4.95 400 2.01 2.14
2 1 4,5 800 1.65 3.36 500 4.33 9.02 300 2.01 4.35
3 1 8 600 1.65 3.29 400 4.33 8.75 200 2.01 4.30
4 2 8 300 427 8.97 400 2.76 5.46 200 1.52 3.18
5 2 7 700 4,27 8.90 800 2.76 5.39 400 1.52 3.26
6 1 8 400 1.65 3.29 400 4.35 8.75 500 2.01 4.30
7 5 8 600 31.76 7.63 500 4,35 8.51 300 2.02 4.31
8 3,4,6,7 ouT 300 11.32 22.50 200 8.89 18.10 400 5.89 12.86

The predicted and experimental results are shown in
Table 7.4. The experiments are conducted assuming
user-specified error allowances %% = 0 for FC-1, FC-2,
and FC-3, and gvs" = 1% for other ANNs. Note that the
predicted error ef*¢ is around 1-2% larger than gusr,
because we did not account for overheads in synchroni-
zation, problem-partitioning, and page faults. gsim the
error incurred in simulation using Dsim, is also found to
be very small.

1t is observed in Table 7.4 that the amount of communi-
cation required has little effect on the speedup efficiency:
Y is slightly higher for fully connected ANNSs, which
have a lower communication requirement.

7.1.2. Experiments on Hypercube Computers

The 16-node iPSC/2 Hypercube computer [1, 3] can be
configured as 16-node, 8-node, and 4-node configura-
tions. It provides virtual cut-through for interprocessor
communication [15], allowing the network server to route
frames by concurrent asynchronous broadcasts. Note
that the broadcast parameters in Table 7.3 are measured
under the condition that all processors broadcast concur-
rently and asynchronously rather than one processor
broadcasting at a time.

The predicted and experimental results in simulating
the nine ANNs listed in Table 7.2 are summarized in

TABLE 7.3
Summary of Communication Parameters Including Preprocessing and Postprocessing Times

Workstation Hypercube compuier
Communication Node-to-node 16-node 8-node 4.node
parameter Bus link broadcast broadcast broadcast
75 (ms} 108.36 0.65 6.5 3.6 2.0
Tt (us) 5.33 3.95 103 48 21

336

CHU AND WAH

TABLE 7.4
Summary of Predicted and Experimental Results in Simulating Nine ANNs Listed in Tabie 7.2 on Three Sun Workstations
ANN Tered () Tt (s) grred (95) T4 (35) Y I'g Tsim (5) £5m (%)
FC-1 100.95 102.22 1.25 225.47 2.23 0.995 101.190 1.09
FC-2 54.03 54.83 1.47 121.23 2.21 0.986 54,33 0.92
FC-3 74.15 74,95 1.07 167.88 2,23 0.995 74.20 1.01
ML-1] 193.31 195.42 1.07 435.80 2.23 0.995 193.96 0.74
ML-2 139.06 141.02 1.39 310.40 2.20 0.982 139.52 1.06
MI.-3 221.83 225.63 1.71 485.18 2.15 0.960 222.61 1.34
NL-1 318.82 319.67 0.26 704.88 2.21 0.987 320.26 0.18
NIL.-2 344.36 355,88 3.24 748.07 2.10 0.938 346,91 2.52
NL-3 150.81 154.87 2.62 338.93 2.19 0.978 151.84 1.95

Table 7.5. The experiments are conducted assuming
user-specified error allowance £*°* = 1% for the 4-node
cube and &% = 2% for the 8-node and 16-node cubes. As
in the case with workstations, the predicted error gpred jg
around 1-3% larger than the user-specified error allow-
ance £"*". This happens because synchronization and
problem-partitioning overheads are not included in our
model.

It is interesting to observe that the speedup efficiency
is higher for smaller cubes. This occurs because in a
farger cube each node has less computation, resulting in
more dominance of the synchronization and problem-
partitioning overheads in the performance. Further,
larger cubes have higher overheads in interprocessor
communication. It is also interesting to note that for the
same cube, the speedup changes slowly with respect to
the communication requirements, as in the workstation
case.

A major limitation in using the Hypercube for ANN
simulations is its limited memory space in ¢ach proces-
sor, The system lacks a virtual-memory facility from
each processor to the common secondary memory, and
all accesses to the secondary memory must be handled by

the Cube Manager. When the number of neurons mapped
to each processor is larger than the local memory capac-
ity, part of the data must be kept in the Cube Manager.
This resuits in high traffic between the Cube Manager and
the rest of the system.

7.2. Experiments on Multicomputers with Dynamic
Background Workload

When the background workload is dynamic, it means
that it changes with time, and sometimes the changes
may be large or fast. The static (one-time) mapping of the
ANN simulation cannot adapt (o the dynamic workload;
the ANN simulations should be remapped if the back-
ground workload changes significantly.

The parallel ANN simulation is performed on Dsim
using synthetic background workload instead of being
carried out on a real multicomputer as in the previous
two experiments. The major reason is that it is very diffi-
cult to reproduce a real background workload on a physi-
cal computer in order to test alternative mappings and to
determine the effects of background workload on the
ANN simulations.

TABLE 7.5
Summary of Predicted and Experimental Results in Simulating the Nine ANNs Listed in Table 7.2 on the iPSC/2 Hypercube
Computer of Different Sizes

4-node hypercube

8-node hypercube

16-node hypercube

ANN Tered (s) T (s) ePrd (97) Y Treed (s) T (s) ePred () ¥ Tered (5) Ti (s} gPred (9%) Y

FC-1 2.239 2.248 0.40 3.89 1.154 1,170 1.37 7.48 0.645 0,645 .00 13.57
FC-2 1.177 1.180 0.25 3.91 0.612 0.627 2,39 7.37 0.354 0.355 0.28 13.01
FC-3 1.672 1.667 0.30 31.87 0.880 0.880 0.00 7.34 0.528 0.524 0.76 12.32
MI-t 4.273 4.300 (.63 3.64 2,244 2,302 2.52 6.80 1,329 1.359 2.21 11.52
ML-2 3.154 3.185 0.97 3.60 1.684 1.701 1.00 6.73 1.051 1.033 1.74 .09
ML-3 4,727 4,799 1,50 3.65 2.465 2.556 3.67 6.86 1.428 1.495 4.48 11.72
NL-1 6.797 6.848 0.74 3.68 3.540 3.585 1.26 7.03 2.044 2.031 0.64 12.41
NL-2 7.228 7.311 1.14 3.67 3.736 3.784 1.27 7.09 2.103 2,150 2.19 12.48
NL-3 3,369 3.382 0.38 .64 [.798 1.816 0.99 6.78 1.12] 1,153 2,78 10.67

MAPPING OF NEURAL-NETWORK LEARNING

In generating the synthetic background workload, each
machine is associated with a background workload de-
scriptor that is defined in Section 3.3 as a 6-ary tuple
WL = {py, p1, P2, 8, by, b), where py, p,, and p, are the
probabilities that the background workload in the next
iteration of parallel ANN simulation will remain the
same, increase, and decrease, respectively; & is the slope
of change in background workload if the background
workload increases or decreases; and b, and &, are the
upper and lower bounds on background workload, re-
spectively. Note that py + p; + p» = 1. Given the back-
ground workload descriptor for each machine, after the
kth iteration of ANN simulation, the background work-
load w for the (k + 1)th iteration is generated based on the
descriptor and o in the kth iteration. The procedure for
generating a synthetic background workload is summa-
rized in the algorithm below.

Heuristic Workload Generation Algorithm 7.1
Generate a random variable from a uniform distribu-
tion v € [0, 1].

if (e is not saqrurated, i.e., it is neither equal to b, nor
b)) then

begin

if (v < po) then
Wity 1= Wy

else if (v << py + p;) then
Wipl 1= Wi + &

else if (v = p; + p|) then
g+ 1= g — 8;

if ((L)k+l = bu) then
Wiy o= bu

else if (w;,; = b)) then
Wer1 = by

end.

if (wy is saturated to the upper bound, i.e., w; = b,) then

begin

if (v << py + p;) then
W] = Wy

else
Wi+ = Wi — o

end.

if (@, is saturated to the lower bound, i.e., w; =)} then

begin

if (v < py + p.) then
W] = Wy

else
Wiy = ay + 8

end.

Our workload generator is somewhat primitive and
could be improved in terms of modeling or synthesizing
real background workload. The exact reproduction of

337

real background workload on real machines is not critical
here as we only use the synthetic workload for evaluating
our dynamic mapping strategy {2]. Note that our work-
load generator is a Markov process since the new back-
ground workload is based only on the background work-
load in the previous state. Further, this synthetic
background workload can be reproduced because the
sced to the random-number generator can be controlled.

The descriptors for all machines in our experiments are
generated randomly. The lower and upper bounds on
background workload in our experiments are set to 1 and
25. Note that if the background workload is 1, it means
that the processor is totally dedicated to the ANN simu-
lation, whereas if the background workload is 25, it
means that only 4% of the processing time is for the ANN
simulation. The detailed numerical values used for the
descriptors in the experiments are presented elsewhere
[2].

The experimental results are shown with respect to the
3-processor, 10-processor, 25-processor, and 100-proces-
sor multicomputers in Table 7.6. The gain g is defined as
the gain in performance over the static one. Specifically,
for Nitr jterations, the gain is defined as g & dvn/psiatic
where 79" is the total simulated time in completing N iter
iterations of parallel ANN simulation plus the time ex-
pended in all the remappings in the dynamic case; 732t jg
the total simulated time in completing N*r iterations of
parallel ANN simulation plus one mapping time in the
static case.

The gain efficiency £ represents the goodness of the
dynamic mapping strategy with respect to the best gain
g'™* gbtained under the condition that remapping is car-
ried out for each iteration and that the time expended in
the mapping algorithm is negligible. Specifically, g &
g/g max '

The expected gains and gain efficiencies are shown in
Table 7.6 with 95% confidence intervals. Each result was
run for 10 iterations of the parallel ANN simulation. For
the cases with 3, 10, and 25 processors, the number of
samples is 100 each. For 100 processors, the number of
samples is only 10 each due to its long simulation time.

We see in Table 7.6 that the gain is usunally between 1
and 4, which is not significantly large. The reason is that
the dynamic mapping strategy can gain significantly only
when the background workload in each machine is
changing rapidly all the time. We also see in Table 7.6
that the gain efficiencies are very high, indicating that our
dynamic mapping strategy almost achieves full utilization
of the resources in the multicomputer.

It is interesting to note that larger multicomputers gen-
erally have better gains but worse gain efficiencies. The
reason for better gains is that a larger multicomputer is
more likely to have an imbalance in workload; the reason
for worse gain efficiencies is that the remapping over-
heads are relatively high.

338

CHU AND WAH

TABLE 7.6

Summary of Simulation Results in Multicomputers with Dynamic Background Workload

3 processors

10 processors

25 processors

[00 processors

ANN Workload Elg] £ig] E[g] E[¢] Efg] E[g] Efg] ELg]

FC-1 WL-1 1.46 £ 0.13 0.987 + 0.001 1.93 =0.01 0972 = 0.001 2.43 =0.01 0981 = 0.001 3.43 = 0.15 0.915 = 0.018
FC-2 WL-2 207 £001 09120002 224 +0.01 0970 = 0.001 2.69=0.01 0971 +0.001 4.12 = 0.20 0,934 = 0.017
FC-3 WL-3 LI0 £ 0.0 0.996 x 0.001 236 = 0.0 0906 = 0.001 2.83 + 0.01 0.987 + 0.001 4.33 = 0.20 0.953 + 0.013
ML-1 WIL.-4 1.42 £ 0.01 0978 £0.001 1.66 = 0.01 0.992 +0.001 237+ 0.02 0952 + 0.002 3.97 + 0.18 0.892 = 0.019
ML-2 WL-5 1.22 = 0.01 0.968 x 0.001 2.09 = 0.0f 0960 = 0.001 1.98:x0.02 0832+ 0.003 4.08 = 0.19 0.878 = 0.019
ML-3 WL-6 224 £ 0.01 0968 + 0.001 228 :£0.01 09650001 2.25=0,02 0.954=0.00] 435+ 0.19 0.873 £ 0.015
NL-1 WL-7 417 £ 002 0.959 = 0.001 2.09 £0.01 0962+ 0.001 2.12=0.02 0987 = 0.001 3.46 + 0.15 0.903 + 0.019
NL-2 WL-8 201 2001 0921 £0.0001 1.79 = 0.01 0.947 + 0.001 2.08 = 0.01 0972 + 0.001 3.70 + 0.16 0.507 = 0.021
NL-3 WL-9 159 = 001 0.893 0002 220% 001 0.98 % 0.001 2222 0.01 0945 = 0.001 3.76 = 0.13 0.813 = 0.018

Note. The results are shown with 95% confidence intervals of expected gains and gain efficiencies using our dynamic mapping strategy.

8. CONCLUSIONS

In this paper, we have studied the optimal mapping on
a multicomputer for a multilayer artificial neural network
based on a static learning algorithm. Processors in the
multicomputer may be heterogeneous, have dynamic
workload, and be connected by communication links of
different speeds. The mapping problem is NP-hard in
general and cannot be solved even for a network with a
small number of neurons. We derive a number of results
for simplifying the mapping problem so that neural net-
works with thousands of neurons can be mapped. Qur
results are useful for designing a special-purpose com-
puter for ANN simulations and for determining the suit-
ability of an existing computer system for ANN applica-
tions.

Our mapping algorithm is based on the observation that
the computation time dominates the communication time
in the learning process within a cluster of the neural net-
work. By starting with a user-specified error tolerance,
the mapping algorithm has three steps. First, the multi-
computer is partitioned in such a way that the deviation
in performance of a heuristic routing scheme from the
optimal one can be bounded. Second, the neural clusters
are mapped optimally on the partitions. Finally, heuristic
routes are determined for neurons communicating within
a partition. We show that the final error incurred by this
algorithm is within the error tolerance specified by the
user. Experimental results based on a 16-processor Intel
iPSC/2 computer and a network of three Sun worksta-
tions are found to be very close to the analytical results
predicted. Simulation results on systems with dynamic
background workload show that our dynamic mapping
strategy can almost always achieve full utilization of re-
sources.

10.

11,

12.

REFERENCES

. Arlauskas, R. iPSC/2 system: A second generation hypercube,

Proc. 3rd Conference on Hypercube Concurrent Computers and
Applications, 1988, pp. 38-42.

- Chu, L.-C, Optimal Mapping of Neural Networks on Multicompu-

ters. M.Sc. thesis, Department of Electrical and Computer Engi-
neering, University of Illinois, Urbana, IL., May 1991.

. Close, P. The iPSC/2 node architecture. Proc. 3rd Conference on

Hypercube Concurrent Computers and Applications, 1988, pp. 43—
50,

. Feldman, J. A., Fanty, M. A., Goddard, N. H., and Lynne, K. J.

Computing with structured connectionist networks. Comm. ACM
3, 2 (Feb. 1988), 170-187.

. Forrest, B. M., Roweth, D., Stroud, N., Wallace, D. J., and

Wilson, G, V. Implementing neural network models on parallel
computers. Comput. J. 30 (1987), 413-419,

. Garey, M. R., and Johnson, D. 8. Computers and Intractability.

Freeman, San Francisco, CA, 1979.

. Ghosh, J., and Hwang, K. Mapping neural networks onto message-

passing multicomputers. J. Paralle! Distrib. Comput. 6 (1989), 251
230.

- Graf, H. P,, Jackel, L. D., and Hubbard, W. E. VLSI implementa-

tion of a neural network model. Compurer21, 3 (Mar. 1988), 41-49.

- Hwang, K., and Ghosh, J. Critical issues in mapping neural net-

works on message-passing multicomputers. International Sympo-
siwm on Computer Architecture. ACM/IEEE, 1988, pp. 3-11.
Kung, 8. S., and Hwang, J. N. Parallel architectures for artificial
neural nets, Proc. International Conference on Systolic Arrays.
IEEE, 1988, pp. 163-174.

Kung, 8. Y., and Hwang, J. N. A unified systolic architecture for
artificial neural networks. J. Parallel Distrib. Comput. 6 (1989),
358-387.

Lin, W.-M., Prasanna Kumar, V. K., and Wojtek Przytula, K.
Algorithmic mapping of neural network models onto parallel SIMD
machines. Trans. Comput. C-40, 12 (Dec. 1991).

. Lippmann, R. P, An introduction to computing with neural nets.

Accoust. Speech Signal Process. Mag. (Apr, 1987), 4-22.

- McClelland, J. L., and Rumelhart, D. E, Parallel Distributed Pro-

cessing: Explorations in the Microstructure of Cognition, Vol. 1,
Foundations. Bradford Books, Cambridge, MA, 1985.

MAPPING OF NEURAL-NETWORK LEARNING

15. Nugent, S, The iPSC/2 direct-connect communication technology.
Proc. 3rd Conference on Hypercube Concurrent Computers and
Applications, 1988, pp. 51-60.

16. Pomerleau, D. A., Gsciora, G. S., Touretzky, D. S., and Kung,
H. T. Neural network simulation at warp speed: How we get 17
million connections per second. Proc. International Conference on
Neural Networks. IEEE, July 1988, Vol. H, pp. 143-150,

17. Ullman, J. D. NP-complete scheduling problems. J. Comput. Sys-
tem Sci. 10 (1975), 384-393.

18. Wah, B. W., and Chu, L. C. Efficient mapping of neural networks
on multicomputers. Proc. International Conference on Parallel
Processing. Pennsylvania State Univ. Press, Aug. 1990, Vol. I, pp.
234-241.

Received August 19, 1991; revised Octeber 9, 1991; accepted October
18, 1991

339

LON-CHAN CHU is a Ph.D. degree candidate in the Department of
Electrical and Computer Engineering at the University of Illinois, Ur-
bana—Champaign, where he received the M.S. degree in 1991, His re-
search interests include real-time scheduling for artificial intelligence,
search, approximate processing, learning heuristics, parallel process-
ing, and fault-tolerant neural networks.

BENJAMIN W. WAH is a professor of electrical and computer engi-
neering at the University of Illinois, Urbana—Champaign. He has pub-
lished extensively in the areas of computer architecture, parallel pro-
cessing, artificial intelligence, and computer networks. He is a
University Scholar of the University of Illinois and a Fellow of the
IEEE.

