IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 5,

QOCTOBER 1995 763

Genetics-Based Learning of New Heuristics:
Rational Scheduling of Experiments
and Generalization

Benjamin W. Wah, Fellow, IEEE, Arthur Teumwananonthachai,
Lon-Chan Chu, and Akiko N. Aizawa, Member, IEEE

Abstract—In this paper we present new methods for the auto-
mated learning of heuristics in knowledge-lean applications and
for finding heuristics that can be generalized to unlearned do-
mains. These applications lack domain knowledge for credit as-
signment; hence, operators for composing new heuristics are gen-
erally model-free, domain independent, and syntactic in nature.
The operators we have used are genetics-based; examples of
which include mutation and cross-over. Learning is based on a
generate-and-test paradigm that maintains a pool of competing
heuristics, tests them to a limited extent, creates new ones from
those that perform well in the past, and prunes poor ones from
the pool. We have studied three important issues in learning bet-
ter heuristics: 1) anomalies in performance evaluation, 2) rational
scheduling of limited computational resources in testing candidate
heuristics in single-cbjective as well as multiobjective learning,
and 3) finding heuristics that can be generalized to unlearned
domains. We show experimental results in learning better heuris-
tics for 1) process placement for distributed-memory multicom-
puters, 2) node decomposition in a branch-and-bound search,
3) generation of test patterns in VLSI circnit testing, and 4) VLSI
cell placement and routing.

Index Terms—Branch-and-bound search, generalization, ge-
netics-based learning, heuristics, knowledge-lean applications,
performance evaluation, process mapping, resource scheduling,
VLSI circuit testing, VLSI placement and routing..

1. INTRODUCTION

T HE design of problem solving algorithms for many appli-
cations generally relies on the expertise of designers and
the amount of domain knowledge available. This design is
difficult when there is little domain knowledge of when the
environment under consideration is different from which the
algorithm is applied. In this paper we study two important
problems in designing efficient algorithms: 1) automated de-
sign of problem solving heuristics in knowledge-lean applica-
tion environments, and 2) systematic search of heuristics that
can be generalized to unlearned domains.

A problem solver (PS) can be optimal or heuristic. An op-
timal problem solver is a realization of an optimal algorithm
that solves the problem optimally with respect to certain ob-

Manuscript received Aug. 10, 1991; revised Dec. 12, 1994,

B.W. Wah and A. leumwananonthachai are with the Center for Reliable
and High-Performance Computing, Coordinated Science Laboratory, Uni-
versity of lllinois at Urbana-Champaign. 1308 W. Main St., Urbana, 1L
61808; e-mail; b-wah@uiuc.edu.

L.-C. Chu is with Microsoft, inc., Gne Microsoft Way, Redmond, WA 98052.

AN, Aizawa is with the National Center for Scicnee Information System.
3.29-1 Otsuka. Bunkyo-ku, Tokyo 112, Japan.

{EEECS Log Number K96066.

jectives. In contrast, a heuristic problem solver has compo-

nents that were designed in an ad hoc fashion, leading to pos-
sibly suboptimal solutions when applied. When there is no
optimal algorithm, the design of effective heuristics is crucial.
Without ambiguity, we simply use “problem solvers” in this
paper to refer to “heuristic problem solvers.”

Heuristics, in general terms, areé “rules of thumb” or
“common-sense knowledge” used in attempting the solution of
a problem [22]. Newell, Shaw, and Simon defined heuristics as
“A process that may solve a given problem, but offers no guar-
antees of doing so” [20]. Pearl defined heuristics as “Strategies
using readily accessible though loosely applicable information
to control problem-solving processes in human being and ma-
chines” [22]. In this paper, we define a heuristic method (HM)
to mean a problem solving procedure in a problem solver.
Without loss of generality, an HM can be considered as a col-
lection of interrelated heuristic decision elements (HDE) or
heuristics decision rules. As illustrated in Fig. 1, a problem
solver takes a problem instance (or test case) and generates a
solution, Note that the solution is generally subopfimal since
heuristics are used,

Problem Subdomain

Problesm solving procedure in PS
= Heuristic Method (HM)

Suboptimal
solution

X
/ | _missipg feedback

Lest-cast Heuristic Decision Element (HDE}

Fig. !. A heuristic method applied to a problem instance in a knowledge-lean
application domain.

Heuristics are usually designed by experts with strong ex-
pertise in the target application domain, or by automated
learning systems using machine learning techniques. Both
methods focus on explaining the relation between heuristics
and their performance, and on generating “‘good” heuristics
based on observed information or explained relations. There
are threc major issues in designing good heuristics.

1) Generation of heuristics. The way that heuristics are
generated depends on domain knowledge available in the ap-
plication environment. An application environment can be
knowledge-rich or knowledge-lean with respect to the heuris-

1041-4347/95504 00 © 1995 IEEE

764 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 7. NO. 5. OCTOBER 1995

tics to be designed. In knowledge-rich domains, a world model
helps explain the relationship among decision, states, actions,
and performance feedback generated by the learning system or
measured in the environment. This model is important in iden-
tifying good heuristics that otherwise may be difficult to find.
In contrast, such models do not exist in knowledge-lean do-
mains. In this case, the heuristics generator cannot rely on per-
formance feedback (or credit assignment as shown in Fig. 1) to
decide how new heuristics should be generated or how existing
heuristics should be modified. Note that we can use credit-
assignment algorithms that do not rely on the world model;
however, their effect on performance improvement is weak.

In this paper, we study the Jearning of heuristics in knowl-
edge-lean application domains. Since credit assignment is dif-
ficult in these domains, operators for composing new HMs are
usually model-free, domain-independent, and syntactic in na-
ture. Heuristics are generally represented in a form that can be
modified syntactically; examples include bit strings and col-
lections of symbols and numbers. The operators We use are
based on those in genetics-based learning (such as mutation,
cross-over and random generation) that perturb existing pa-
rameters and rules in order to obtain new ones 6l

Genetics-based learning, [6] also called population-based
learning [11, [31), of HMs is based on a generate-and-test
paradigm that maintains a pool of competing HMs, tests them
to a limited extent, creates new ones from those that perform
well in the past, and prunes poor ones from the pool. It in-
volves the application of genetic algorithms to machine learn-
ing problems. Examples of such learning include genetic pro-
gramming [16] and classifier-system learning [6].

Genetics-based learning is suitable for learning perform-
ance-related HMs but not for learning correctness-related ones.
An HM is said to be performance related if the constraints of
the target problem are trivially satisfied, and the goal of learn-
ing is to improve the performance of the resulting solution,
where performance is characterized by the quality of the result-
ing solution and the cost of getting it. In contrast, an HM is
correctness related if the constraints of the problem are hard
to satisfy, and the goal of learning is to find HMs that lead to
efficient as well as feasible solutions. In knowledge-lean appli-
cations, HMs that are performance related are easier to learn
than those that are correctness related. For this reason, we only
study performance-related HMs in this paper.

2) Testing of heuristics and evaluating their performance.
HMs generated are tested on a set of problem instances (or test
cases) in a problem domain. In this paper, we are interested in
two types of application domains: a) those with a large number
of test cases and possibly an infinite number of deterministic
HM:s for solving them, and b) those with a small number of test
cases but the HMs concerned have a nondeterministic compo-
nent, such as a random initialization point, that allows different
results to be generated for each test case. In both types, the per-
formance of an HM is nondeterministic, requiring multiple
evaluations of the HM on different test cases (type 1) or multipie
evaluations of the HM on the same test case (type 11). Conse-
quently, we need to define valid statistical metrics for comparing

two HMs without exhaustively testing all test cases using these
HMs. This requires identifying subsets of test cases whose col-
lective behavior on an HM can be evaluated statistically. We
present in Section II issues on selecting appropriate aggregate
metrics in petformance evaluation of heuristics.

An important issue in implementing a learning system is the
scheduling of finite computational resources for testing a pos-
sibly infinite set of test cases and infinitely many variations of
HMs. This entails apportioning computational resources (0
tests so that the best HM is found when resources are ex-
pended. The problem is especially difficult when tests are ex-
pensive and noisy. (The latter means that multiple tests are
necessary in order to determine the performance of an HM.)
We study in Section IV the scheduling of computational time
for learning.

3) Generalization of heuristics learned to unlearned do-
mains. Since the problem space is very large and learning can
only cover a small subset, it is necessary to generalize HMs
learned to test cases not studied in learning. Generalization is
difficult when HMs do not perform consistently or have differ-
ent performance distributions across different test cases. Sec-
tion V examines issues in generalization.

In short, we study in this paper the automated learning and
generalization of performance-related heuristics by genetics-
based learning methods for knowledge-lean applications. We
assume that the performance of an HM is represented by one
or more statistical metrics and is based on evaluating multiple
test cases (noisy evaluations). The major issues that we study
are methods to cope with inconsistencies in performance
evaluation of heuristics (Section II), resource scheduling of
tests of heuristics {Section IV), and generalization of learned
heuristics to unlearned domains (Section V). Section Il pres-
ents the overall learning framework, and experimental results
are shown in Section VL

II. HEURISTICS

In applying an HM, a problem solver applies a sequence of
decisions defined in the HDEs of the HM, one after another,
until an input test case is solved. These decisions, initiated by
the problem solver at decision points, change the state of the
application environment evaluated by a number of user-
defined performance measurables. The problem solver then
uses the performance measured to make further decisions.

A solution in this context is defined as a sequence of deci-
sions made by the HM on an input test case in order to reach
the final state.

The performance of an HM on a test case depends on the
quality of the solution found by the M for this test case as
well as the cos? (e.g., computation time) in finding the solu-
tion. Here, we define guality (resp., cost) of a solution with
respect to an input test case to be one or more measures of
how good the final state 1s {resp., how expensive it is to reach
the final state) when the test case is solved, and be independent

the
> as
ahu-
with
5 of
ach
Jent

WAHET AL.: GENETICS-BASED LEARNING OF NEW HEURISTICS: RATIONAL SCHEDULING OF EXPERIMENTS

AND GENERALIZATION

163

TABLE 1
EXAMPLES OF KNOWLEDGE-LEAN APPLICATIONS AND THEIR LEARNABLE DOMAIN-DEPENDENT HEURISTICS
Application Objective(s) Domain-Dependent Heuristic Example(s}
Parametric Heuristics Elements of Element
Process mapping for Minimize overall If (processor utiliza- Numeric threshold 1.10
placing a set of completion time, and tionfaverage utilization of all value
processes on a minimize time to find processors) > (threshold),
multi-computer [14] such mappings then evict one process
Load balancing in Minimize completion If (average WL(®) > Workload function WL(e), 2.0
distributed systems time of an incoming {threshold)), then migrate this | WL, numeric thresh-
{19] job process old value
Simulated anneal- Minimize area of lay- If {(acceptance ratio) > Numerical threshold 0.9, C(+),
ing: TimberWolf out with fixed maxi- (threshold)), then reduce value, cost function, T(+)
[26] mum number of layers temperature to next lower temperature function
level
Depth perception Minimize error in Marr and Poggio’s iterative {low edge-detection (0.6, 2.0,
in stereo vision range estimation algorithm threshold, channel 5.0)
[25} ' width, high thresh-
old)
Genetic search of Maximize fault coverage Controls used in the genetic Numeric values, fit- (2,3,42,3.2,
the best VLSI test algorithm: iteration, rejection ness function 100), H{=)
sequence [24] ratio, sequence depth, control
factor, frequency of usage
Branch-and-bound Minimize cost of tour If a node has the smallest Symbolic formula Lower bound
search for finding a while satisfying con- decomposition-function value + upper
minimum-cost tour | straint on visiting each among all active nodes, then bound of
in a graph node exactly once expand this node node
Designing a blind Minimize convergence Object (error) function for Symbolic formula of E(*)
equalizer time, accumutated gradient descent the error function
errors and cost; maxi-
mize S/N ratio

of the intermediate states reached. Note that cost and quality
are in turn defined as functions of measurables in the applica-
tion environment. We call quality and cost performance meas-
ures of an application.

In this section, we discuss issues related to the performance
evaluation of HMs. We show that an HM can be found to be
better or .worse than another HM depending on the evaluation
criterion. Such inconsistencies are called anomalies in this
paper and are attributed to the different methods of evaluating
performance and the different behavior of HMs under different
conditions. We propose methods to cope with these anomalies.
When such anomalies cannot be avoided, alternative HMs
should be learned and generalized so that usets can pick the
best HM(s) to apply.

E A Example Applications

A problem solver in general consists of a domain-

E independent part and a domain-dependent part. The domain-
:. independent part is a general solution method that is applicable
E across different applications. For example, a divide-and-

conquer method is domain-independent because it can be ap-

t plied to many different applications. In contrast, the domain-
I dependent part is specific for a particular application. For ex-

3 b ample, the mechanism of partitioning a problem in a divide-
and-conquer method is domain-dependent.

The domain-independent and domain-dependent parts inter-
act with each other to make decisions during the solution proc-
ess. The domain-dependent part provides information on the
current state to the domain-independent part, which returns a
decision according to the information provided. The domain-
dependent part then applies the decision to change the state of
the application environment.

Heuristics can be used in the domain-dependent part to im-
prove the solution cost or the solution quality (or both). In
Table I, we present examples of practical applications and
identify their domain-dependent heuristics. :

B. Problem Subspace and Subdomain

In an application domain, different regions of its problem
space may have different characteristics, each of which can
best be solved by a unique HM [23]. Since learning is difficult
when test cases are of different behavior and it is necessary to
compare HMs quantitatively, we need to decompose the
problem space into smaller partitions before learning begins.
In the following, we define the concepts of problem subspace
and problem subdomain.

A problem subspace is a user-defined partition of a problem
space so that HMs for one subspace are learned independently
of HMs in other subspaces. Such partitioning is generally
guided by common-sense knowledge or by user experience I
solving similar problems. To identify a problem subspace, Wé
need to know one or more attributes to classify test cases and a

766 JIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 5. OCTOBER 1995

set of decision rules to identify the subspace to which a test
case belongs.

For instance, consider the development of HMs for CRIS
[24), a genetic-algorithm package for generating test patterns
in order to test sequential VLSI circuits. (More details are
provided in Section VL.C.) CRIS aims to find a test sequence
in order to discover as many faults as possible in a circuit.
(Fault coverage measures the percentage of faults that can be
detected by a test pattern generated by CRIS.) Previous expe-
rience shows that sequential circuits require tests that are dif-
farent from those of combinatorial circuits. As a result, we can
partition the problem space into two subspaces, one for com-
binatorial circuits and the other for sequential circuits.

As another example, consider solving a vertex-cover prob-
lem whose goal is to find a minimal set of vertices in a graph
such that all edges have at least one of their vertices covered
by this set. In designing a decomposition HM in a branch-and-
bound (B&B) search for deciding which vertex to be included
in the covered set, previous experience on other optimization
problems indicates that HMs for densely connected graphs are
generally different from HMs for sparsely connected ones.
Consequently, the problem space of all graphs may be parti-
tioned into two subspaces, one for tightly connected graphs
and one for loosely connected ones.

Given a subspace of test cases, we next define a subdomain. A
problem subdomain is a partitioning of a problem subspace into
smaller partitions so that one or more HMs can be designed for each
partition. The reason for this partitioning is to allow quantitative
comparison of performance of HMs in a subdomain, which may be
difficult across subdomains. In comparing the performance of HMs,
it is necessary to aggregate their performance values into a small
number of performance metrics (such as average or maximum).
Computing these aggregate metrics is not meaningful when perform-
ance values are of different ranges and distributions. Hence, we de-
fine a subdomain as a maximal partitioning of test cases in a sub-
space so that different HMs in a subdomain can be compared quanti-
tatively based on their aggregate metrics. It is important to point out
that performance values may need to be normalized with respect to
those of the baseline HM before aggregated.

In the same way that test cases are partitioned into sub-
spaces, we need to know the attributes to classify test cases
and a set of decision rules to identify the subdomain to which a
test case belongs. For example, in solving a vertex-cover
problem, we can treat graph connectivity as an attribute to
classify graphs into subdomains.

In some applications, it may be difficuit to determine the
subdomain to which a test case belongs. This is true because
the available attributes may not be well defined or may be too
large to be useful. For instance, in test-pattern generation for
sequential circuits, there are many attributes that can be used
to characterize these circuits (such as length of the longest path
and maximum number of fan-ins and fan-outs). However, none
of these attributes is a clear winner. When we do not know the
attributes to classify test cases into subdomains, we can treat
each test case as a subdomain by itself. This works well when
the HM to be learned has a random component: by using dif-
ferent random seeds in the HM, we can obtain statistically

valid performance values of the HM on a test case. We have
used this approach in the two circuit-related applications dis-
cussed in Section VI and have chosen each circuit as an inde-
pendent subdomain for learning. Another possibility is to learn
one HM for each subdomain, but apply multiple HMs when a
new circuit is encountered.

After learning good HMs for each subdomain, we need to
compare the performance of HMs across subdomains. This
comparison may be difficult because test cases in different
subdomains of a subspace may have different performance
distributions, even though they can be evaluated by a common
HM. As a result, it may be difficult to compare the perform-
ance of test cases statistically.

It should now be clear that there can be many subdomains in
an application, and learning can only be performed on a small
number of them. Consequently, it is important to generalize the
HMs learned to unlearned subdomains. Informally, generali-
zation entails finding a good HM from the set of learned HMs
so that this HM has a high probability of performing better
than other competing HMs for solving a randomiy chosen test
case in the subspace. In some situations, multiple HMs may
have to be identified and applied together at a higher cost to
find a solution of higher quality. In Section V, we propose a
method for generalizing learned HMs,

To illustrate the importance and difficulty in generalization,
consider an HM developed for the previously described CRIS
[24]. An HM in this application is a vector of seven parameters
and a random seed used in the genetic algorithm in CRIS. As
mentioned earlier, we treat each circuit as a separate subdo-
main in learning because we do not know the attributes to
group circuits in subdomains. Note that different fault cover-
ages can be obtained for a circuit by varying the random seed
used in an HM. Table II shows the maximum and average fault
coverages (over ten random seeds) of an HM we have learned
and generalized for CRIS across six circuits. It shows that
a) the HM behaves differently across different circuits—not
only is the range of fault coverages different, but it may per-
form better than CRIS [24] and HITEC (a program that uses a
deterministic search to find good patterns) [21] for one circuit,
but worse for another; b) multiple applications of the same
HM using different random seeds can improve the coverage;
and c) there are limitations in CRIS that may render it difficult
to improve over HITEC,

TABLE i
FAULT COVERAGES OF A LEARNED AND GENERALIZED HM Usep in CRIS
ON 51X CIRCUITS AS COMPARED TO FAULT COVERAGES
OF THE ORIGINAL CRIS [24] anD HITEC [21]

Total Fault Generalized HM

Circuit Faults Coverage for CRIS
1D HITEC CRIS Avg. Max.
5344 342 95,9 93.7 96,1 96.2
s382 399 20.9 68.6 72.4 8£7.0
s641 467 86.5 832 85.0 36.1
s832 870 93.9 42.5 44,1 45.6
51238 1355 94.6 90.7 88.2 89.2
53378 4603 70.3 65.8 65.3 699

WAH ET AL.: GENETICS-BASED LEARNING OF NEW HEURISTICS: RATIONAL SCHEDULING OF EXPERIMENTS AND GENERALIZATION 167

As another example, we show in Table III the results of
learning and generalization of decomposition HMs used in a
B&B search for solving vertex-cover problems. Here, we treat
all test cases to belong to one subspace, and graphs with the
same average degree of connectivity are grouped into a subdo-
main. We applied genetics-based learning (to be discussed in
Section III) to find two HMs, one for each of two subdomains
with connectivities 0.1 and 0.5, We then applied our generaliza-
tion procedure (to be discussed in Section V) to find one HM
that can generalize across the two subdomains. Finally, we veri-
fied the speedups of the generalized HM on six subdomains. The
results in Table III show that the generalized HM is not the top
HM learned in each subdomain, indicating that the best HM
learned in each subdomain may be too specialized to the subdo-
main. Further, we have found one HM that performs better than
the baseline HM across the six subdomains.

. TARBLE III
AVERAGE SPEEDUPS OF LEARNED HMS AND GENERALIZED HMS USED
IN A B&B SEARCH FOR SOLVING THE VERTEX-COVER PROBLEM

Subdomain | Speedups of HM Learned Generalized

DC DC=0.1 DC =05 HM

0.1 1.035 0.993 1.260
0.2 0.950 1.001 1.086
0.3 1.012 0.988 1.074
0.4 1.043 0.980 1.106
0.5 0.993 1.013 1.009
0.6 0.997 1.012 1.042

All speedups are normalized with respe(_:r to those of the baseline HM. Sub-
domains are classified by degree of connectivity—DC.

C. Anomalies in Performance Evaluation

To design a good and general ‘HM for an application, we
must compare HMs in terms of their performance. There are
two steps in accomplishing this task. First, we must compare
HM:s in the same subdomain [31]. Second, we must compare
the performance of HMs across multiple subdomains. Ac-
complishing the first step is necessary before we can deal with
the second step. In this section, we present issues involved in
these two steps.

C.1. Anomalies within a Subdomain

Recall that HMs studied in this research have nondetermi-
nistic performance, implying the need to evaluate each HM
multiple times in a subdomain. Further, performance may be
made up of multiple inter-related measures (for instance,
higher guality may require higher cost).

To compare the performance of different HMs, it is necessary
to aggregate performance values before comparing them. This is,
however, difficult, as the objectives of an HM as well as their
trade-offs may be unknown with respect 10 its performance
measures. A possible solution is to derive a single objective
function of the performance measures with tunable parameters,
and to find a combination of values of these parameters that lead
to the HM with the best trade-off. Using this approach, we have
observed the following difficulties before [31].

e 1t is difficult to find a good combination of parameter
values in the objective function so that HMs with the best
quality-cost trade-offs can be found. We have seen simi-
lar difficulties in the goal attainment method [12].

e 1t is difficult to compare the performance of two HMs
when they are evaluated on test cases of different sizes or
behavior.

» Inconsistent conclusions (anomalies) about the perform-
ance of two HMs may be reached when they are com-
pared using either different user-defined objective func-
tions, or the same objective function with different pa-
rameters. In fact, it is possible to show that one HM is
better than another by finding a new parametric objective
function of the performance measures.

We have proposed before [31] three solutions to cope with
these difficulties.

1) Identify a reference or baseline HM upon which all other
HMs are compared. A good choice for an application is
the best existing HM for this application.

2} Normalize each raw performance measure of a new HM
with respect to the same measure of the reference HM
(evaluated on either the same set of test cases or test
cases with the same distribution of performance) so that
it is meaningful to compare two HMs based on their
normalized measures.

3) Compare two HMs based on individual normalized per-
formance measures, not on a single parametric function
of the measures. We have proposed before a multi-
dimensional graphical representation of performance val-
ues, representing each performance measure in a separate
axis {15] Two HMs are, therefore, compared based on
their relative positions in this multi-dimensional plot.
(This method is discussed later in Section VLA.)

In this section, we extend the anomalies found earlier [31]
and classify all the anomalies into three classes. Note that
anomalies happen because there is more than one dimension of
performarnce variations.

1} Inconsistent performance across different test cases.
When an HM is evaluated on a set of test cases, we must de-
termine a) the number of tests to be made and b) the evaluation
method (or metric) for aggregating performance values (such
as mean, maximum, average rank). Inconsistent conclusions
may be reached when one HM is better than another on one set
of test cases, but worse on a different set of test cases.

TABLE IV
INCONSISTENT PERFORMANCE OF HMS ACROSS TEST CASES
Quality Test Case j Average
Measure 1 2 3
ty 1474.80 | 1665.38 | 1381.34 || 1, = 1507.20
Iy 126925 | 1513.14 | 1988.42 || 4 = 159027

Let t;; be the completion time of test case j using HM; HM3 has better aver-
age rank and berter average completion sime than HM, after two tests, but
worse average completion lime and belier average rank after three fesis.

768 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 5, CCTOBER 1995

For example, assume that performance is evaluated by either
the average metric or the average-rank metric. Each of these
metrics may improve or degrade when more tests are done,
changing the ordering of HMs. Table IV illustrates this phe-
nomenon using HMs developed for Post-Game Analysis (PGA)
(to be discussed in Section VI.A). These HMs were used to map
a collection of communicating processes on a network of com-
puters. This example shows that different conclusions can be
drawn depending on the performance metrics used.

In general, we must first select a method for aggregating per-
formance values of each measure. This can usually be deter-
mined from the application requirements. In this paper, we use
the average metric as the primary method for comparing HMs,
assuming that performance values of tests in a subdomain are
iid. In addition, we must examine the actual distribution ob-
tained in the experiments, since the average metric alone is not
enough to show the spread of performance values. HMs that
have good average behavior but have large spread in perform-
ance are not desirable, On the other hand, when the metric is
unknown, alternative HMs should be found for different metrics,
and users can select the appropriate HM(s) to use.

2) Multiple objectives with unknown trade-offs. The per-
formance of an HM may be evaluated by multiple objectives
(such as quality and cost). Of course, we would like to find
HMs with improved quality and reduced cost. However, this
may not always be possible. The problem, generally known as
the multiobjective optimization problem [12], involves trade-
offs among the objectives.

In evaluating HMs with multiple objectives, we must evaluate
them based on individual performance measures and not com-
bine multiple measures into a single parametric function [31].
During learning, the learning system should constrains all but
one measures and optimize the single unconstrained measure.
An HM is pruned from further testing when one of its perform-
ance constraints is violated. The goal is to find an HM that satis-
fies all the constraints and has the best performance in the un-
constrained measure. If a good HM satisfying the constraints can
be found, then the constraints are further refined, and learning is
repeated (see Section V.B). A similar approach has been used in

- MOGA, a multiple objective genetic algorithm [11}. The diffi-
culty with this approach is on setting constraints. We study in
this paper the case when there are two performance measures.
The general case in which there are more than two performance
measures is still open at this time

3) Inconsistencies in normalization. Normalization involves
choosing a baseline HM and computing relative performance
values of a new HM on a set of test cases in a subdomain by
the corresponding performance values of the baseline HM.
This is necessary when performance is assessed by evaluating
multiple test cases (type i as discussed in Section I), and is not
needed when nondeterminism in performance is due to ran-
domness in the problem solver (type ii as discussed in Section
I). In the former case, performance from different tests may be
of different ranges and distributions, and normalization estab-
lishes a reference point in performance comparison. In the
latter, raw performance values within a subdomain are from
one test case and presumably have the same distribution.

Normalization may lead to inconsistent conclusions about
the performance of HMs when multiple normalization methods
are combined. This anomaly is illustrated as follows.

EXAMPLE A. Referring to Table IV, if we use HM, as the base-
line for normalization, we can compute the average normal-
ized speedup of HM, by one of the following methods:

E ILJ,_IZOO _

31

1J an

= 0986 OF = =
=t i1 f2, —1200

4 = 1900. (1)
Since the average normalized speedup of HM; is one, HM,

is found to be worse using the first methods and better using
the second. &

Inconsistencies may also occur when pormalization over-
emphasizes or deemphasizes performance changes. For in-
stance, the speedup measure is biased apainst slowdown (as
slowdowns are in the range between O and 1, whereas speed-
ups are in the range between 1 and infinity). Consider the fol-
lowing example. '

EXAMPLE B. Suppose the speedups of an HM on two test cases
are 10 and 0.1. Then the average speedup is 5.05, and the
average slowdown is also 5.05, where the average slow-
down is defined as the average of the reciprocals of
speedup. Hence, the average speedup and average slow-
down are both greater than one. :]

In general, when normalizing performance values, it is impor-
tant to note that the ordering of HMs may change when using a
different normalization method, and that the spread of perform-
ance values may vary across subdomains in an application. Here,
we propose three methods to cope with anomalies in normaliza-
tion. First, we should use only one normalization method consis-
tently throughout learning and evaluation, thereby preserving the
ordering of HMs throughout the process. Second, we need to
evaluate the spread of normalized performance values to detect
bias. This can be done by detecting outliers and by examining
higher-order moments of the performance values. Third, to avoid
placing unequal emphasis on normalized values, we need a nor-
malization method that gives equal emphasis. to improvement as
well as to degradation.

To simplify understanding, we describe this' symmetric
normalization method using the speedup measure. We define
symmetric speedup as

Speedup—1 if Speedup 21
SpeeduPypmmerric = {1 ——t—— if 1> Speedup 20
Speedup '

where Speedup is the ratio of the time of the original HM with
respect to the time of the new HM. Note that stowdown is the
reciprocal of speedup, and that symmetric speedup is com-
puted for each pair of performance values. Equation (2) dic-
tates that speedups and slowdowns carry the same weight:
speedups are in the range from zero to infinity, and slowdowns
are in the range from zero to negative infinity.

WAH ET AL.. GENETICS-BASED L

In a similar way, we can define symmetric slowdown as

Slowdown—1 if Slowdown 2 1

i .= 1 .
Slowdowh ymmetric =] = ————o if 1> Slowdown 20
Slowdown

3
It is easy to prove that Speedup ymmerric = —Slowdown,ymmerric:
thereby eliminating the anomalous condition in which average
speedup and average slowdown are both greater than one or
both less than one.

In Example A discussed earlier, the average symmetric
speedup is —(.059 which shows that HM, is worse than HM,.
In Example B, both the average symmetric speedup and aver-
age symmetric slowdown are zero, hence avoiding the anom-
aly where the average speedup and average slowdown are both
greater than one.

To further illustrate the difference between speedups and
symmetric speedups, we show in Fig. 2 the distributions of
speedups as well as symmetric speedups of an HM to solve the
vertex-cover problem.

Avg. Speedup
11

JAs

1

09
08
0.7
0.6
0.5

l_fn i i H i I
1 2 3 4 6 7 8 % 10 11 12
Subdomain

Avg. Sym-SU
- 0.1

-0.1

-0.2
0.3
-0.4

..... 05
7 8 9 101112

2 3 4 5 6
! Subdomain

Fig. 2. Contour plots showing the distribution of performance values of one
HM on 15 test cases for solving the vertex-caver problem.

C.2. Anomalies ACross Subdomains

We now discuss the difficulty in comparing performance of
HMs across multiple subdomains. This comparison is difficult
when there is a wide discrepancy in performance across sub-
domains.

To illustrate this point, consider two HMS learned for CRIS
(Table V). These HMs behave differently in different subdomains:
not only can the range and distribution of performance values be
different, but a good HM in one subdomain may not perform well
in another. With respect © circuit s444, HMq has worse fault

EARNING OF NEW HEURISTICS: RATIONAL SCHEDULING OF EXPERIMENTS

AND GENERALIZATION 769

coverages and a wider distribution of coverage values than HMsss,
but performs better than HM ;5 for circuit s1196.

TABLEV
INCONSISTENT HM BEHAVIOR IN WV ARIOUS SUBDOMAINS
Fault Coverage (%)

Circuit | HM Random Seeds used in HM Max. | Avg.

1D 61801 98052 15213
sd44 101 60.3 139 11.2 60.3 28.5
535 81.9 86.3 86.3 £86.3 84.8
s1196 101 93.2 94 4 94.9 94.9 042
535 93.2 92.5 93.6 936 | 93.1

The major difficulty in handling multiple subdomains is that
performance values from different subdomains cannot be ag-
gregated statistically. For instance, it is not meaningful to find
the average fault coverage of HM g, in Table V. Scaling and
normalization of performance values are possible ways 1o
match the difference in distributions, but will lead to new in-
consistencies for reasons discussed in 3) in the last subsection.
Another way is to rank HMs by their performance values
across different subdomains, and use the average ranks of
HMs for comparing HMs. This does not work well because it
does not account for actual differences in performance values,
and two HMs with very close or very different performance
may differ only by one in their ranks. Further, the INAXIMUM
rank of HMs depends on the number of HMs evaluated,
thereby biasing the average ranks of individual HMs.

To address this problem, we propose in Section V a new
metric called probability of win. Informally, the probability of
win is a range-independent metric that evaluates the probabil-
ity that the frue mean performance of an HM in one subdo-
main is better than the true mean performance of another ran-
domly selected HM in the same subdomain. The advantage of
using this measure is that it is between 2er0 and one, inde-
pendent of the number of HMs evaluated and the range and
distribution of performance values,

111. TEACHER:
A SYSTEM FOR LEARNING NEW HEURISTICS

In this section, we discuss TEACHER, an acronym for TEch-
niques for the Automated Creation of HEuRistics. TEACHER is 2
genetics—based learning system we have developed in the last six
years [31]. Preliminary designs of TEACHER have been studied
with respect 1o learning process—placement strategies for a network
of workstations [19], learning proccss-placement strategies on
distributed-memory multicomputers [15}; tuning parameters ina
stereo-vision algorithm [25), finding smaller feed-forward neural
networks {291, and learning heuristics for B&B search (18], 331
We have also studied resource scheduling strategies in genetics-
based learning algorithms.

Our present learing system 18 aimed toward methods of
coping with anomalies in performance evaluation, general ré-
source scheduling strategies in multiobjective learning, and
finding HMs that can be generalized. By combining the fol-
lowing three features, OUr system is unique as compared 10
other genetics-based learning studies.

770 1EEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 7. NO. 5, OCTOBER 1995

Pert

Leaming SELECT SUBDOMAIN LEARN HMs FOR GENERALIZE HMs TO
Lavel WITHIN SUBSPACE {Subdomain, SUBHOMAIN ALL EUBDOH{\INS
Grenersto o seled st Durstioe) Fiod HMy, s, Por- Cluater ssbdomains,
el 1 formm a wbdemain Verity performance fammance Cost-quality irade-oils
P Teoroanen) | e,
Generale &
GENERATE/SELECT HM VERIFY HMs FULLY
TestLavel ks FOR SUBCOMAIN | _ass, | TE0 T
Select subset of existisg HMs Buntios) | EvaluisHMson | (Good HMs, | Fully tost Ty selected
andior graerate new HMas cusreat subdotiin | Partlal per-
- — Fertormaven)
Tusi Lavel SELECT HM & GENERATE/ TEST HM ON
SELECT TEST-CASE | @M, TEST CASE
Seloct HM and generuie/iosl Tent-cass} Apply problem
teat-cmaa for corment HM solver on test case

Fig. 3. The learning and generalization phases in TEACHER.

e Our environment is noisy so that the performance of an
HM cannot be evaluated using a single test.

» We consider applications in which HMs behave differ-
ently under different sitnations (subdomains). Existing
methods generally ignore this problem and focus on only
one set of statistically related test cases.

» We assume that the cost of evaluating an HM on a test
case is expensive. This forbids performing extensive tests
on each HM. In the applications presented in Section VI,
one to two thousand tests are what can be performed in a
few days on a fast workstation, This is in contrast 10
many other studies that assume that tests are inexpensive
and that many tests can be performed in the time allowed
[16]. For simplicity, we consider logical time in this pa-
per in which one unit of time is needed for performing
one test of an HM.

The goal of resource scheduling is to learn, under limited
computational resource, good HMs for solving application
problems and to generalize the HMs learned to untearned sub-
domains. We use the average metric for comparing HMs, and
examine the spread of performance values when HMs have
similar average performance. When there are multiple objec-
tives in comparing HMs, we constrain all but one objectives
during learning, and optimize the unconstrained objective. In
this case, our learning system proposes more than one HMs,
showing trade-offs among these objectives.

A. Three Phases of Learning in TEACHER

There are three phases of learning in TEACHER: classifi-
cation, learning, and generalization. The first phase partitions
the test cases in an application into distinct subsets. There are
two steps in this phase.

1) Subspace classification. As is discussed in Section IL.B,
the problem space is first partitioned into a small number
of distinct subspaces so that new HMs are
learned/designéd for each. Such partitioning is guided by
common-sense knowledge expressed in the form of deci-
sion rules. By applying these rules, we can determine for
a new test case the subspace it belongs to.

2) Subdomain classification. For a problem subspace, we
need to partition it into subdomains so that the perform-
ance of HMs in each subdomain can be represented col-

lectively. by some meaningful statistical metrics. As we
have seen in Sections ILB and ILC, the performance of
HMs may not be comparable across subdomains in a
learning experiment.

In the learning phase, the goal is to find effective HMs for
each of a limited set of subdomains. The tasks in this phase
and the generalization phase are shown in Fig. 3. To perform
learning, the system first selects a subdomain, generates good
HMSs (or uses existing HMs) for this subdomain, and schedules
tests of the HMs based on the available computational re-
sources. When learning is completed, the resulting HMs need
to be fully verified, as HMs obtained during learning may not
be tested adequately. Note that learning is performed on one
subdomain at a time. There are three key issues in this phase.

1) Heuristics generation. This entails the generation of

good HMs given the performance of “empirically good”
HMs. As is discussed in Section I, we use weak genera-
tion operators here [6], [16].

2) Performance of HMs in a subdomain. This problem is

related to the performance evaluation of HMs during
learning, given that there may be multiple performance
measures, and that there is no defined relationship among
them (Section I1.C.1).

3) Resource scheduling. The issues here are on the selection

of HMs for further testing, the termination of the current
generation, and the initiation of the next generation,
given performance information of HMs under considera-
tion, These problems are important when limited compu-
tational resources are available and tests of HMs are ex-
pensive and noisy. We schedule computational resources
rationally by choosing a) number of tests on each HM,
b) number of competing HMs to be maintained at any
time, and ¢) number of problem subdomains to be used
for learning and for generalization. We study in Section
IV two related problems in resource scheduling: sample
allocation and duration scheduling.

The last phase is the generalization phase whose goal is tO
find an HM from the set of learned HMs and see if it has the
same high level of performance improvement ¢n unlearned
subdomains. There are two key issues here.

1) Performance of HMs across subdomains. As is discussed

in Section I1.C, HMs may have different distributions of

WAH ET AL.. GENETICS-BASED LEARNING OF NEW HEURISTICS: RATIONAL SCHEDULING OF EXPERIMENTS AND GENERALIZATION 771

performance values in different subdomains; hence, these
values cannot be compared directly. We present in Sec-
tion V a method to evaluate the performance of HMs for
a group of subdomains.

2) Cost-quality trade-offs. This involves determining efficient
HM:s that perform well in the application. Should there be
multiple HMs to be applied (at a higher total cost and bet-
ter quality), or should there be one HM that is costly to run
but generates high-quality results? These issues are studied
in Section VI when we present experimental results on
learning new HMs for four applications.

B. Architecture of Learning System for One Subdomain

Fig. 4 shows the architecture of our resource-constrained
learning system for one subdomain [31]. There are five main
components in the sysiem:

1) Resource Scheduler, which decides the best way to use
the available resources,

2) Internal Critic, which provides feedback based on the
performance measured to indicate how well a particular
HM has perfermed,

3) Population-Based Learning Element, which generates
new HMs and maintains a pool of existing ones and their
past performance,

4) Test-Case Manager, which generates and maintains a
database of test cases used in HM evaluation, and

5) Problem Solver, which evaluates an HM using a test

case.
gressTnenensnne T T T |
1 S]
| patomancs «——| Population-Based Leraing Elomeat i
1: Database HM Pool M .:
:: m;:mo:l — Generator i
' ;
E scheduling HM Tnzw aggregate E
! decisions performance H
! :
' 1
5 Resource Resource |{_ . Enterna !
1 Constraints Scheduler Critic .
' '
i S SRR TSR R 4
HM test cuses to use
Problem * Test-case
measured
Solver Manager pertormance
I test cases
decision
(Application Environment

Fig. 4. Architecture of learning system for one subdomain.

In this paper, we assume that the application-specific prob-
lem solver and test-case manager are user-supplied. In our
current implementation, the test-case manager selects from a
user-supplied pool of test cases. :

The internal critic normalizes the performance value of each
test case tested by a candidate HM against the performance

value of the same test case evaluated by the baseline HM. It
then updates the performance metrics of the candidate HM.
Note that this is similar to updating the fitness values of HMs
in classifier-system learning.

In general, the internal critic performs credit assignment
[28] that apportions credit/blame on HDEs using results ob-
tained in testing (see Fig. 1). Credit assignments can be classi-
fied into temporal credit assignment (TCA) and structural
credit assignment (SCA). TCA is the first stage in the assimi-
lation of feedback and precedes SCA during learning. It di-
vides up feedback between current and past decisions. Meth-
ods for TCA depends on whether the state space is Markovian:
Non-Markovian representations often require more complex
TCA procedures. On the other hand, SCA translates the
(temporally local but structurally global) feedback associated
with a decision point into modifications associated with vari-
ous parameters of the decision process.

In knowledge-lean applications we consider in this paper,
we are missing a world model that relates states, decisions, and
feedback signals generated by the learning system or measured
in the environment. As a result, credit assignment has much
weaker influence on performance improvement. An example
of such a TCA algorithm is the bucket-brigade algorithm in
classifier-system learning [6]. Note that the lack of a world
model for credit assignment is the main reason for maintaining
competing HMs in our learning system.

The Resource Scheduler schedules tests of HMs based on
the available resources. Note that scheduling is critical when
tests are computationally expensive. Two related problems,
sample allocation and duration scheduling, as well as the
scheduling of tests under multiple performance objectives, are
studied in the next section.

IV. SCHEDULING TESTS IN GENETICS-BASED LEARNING

Resource scheduling of tests in learning is crucial when
tests are expensive. To illustrate the importance of scheduling,
consider the testing of HMs in the vertex-cover problem dis-
cussed in Section ILB. Suppose we have identified two sub-
domains: Da (with graph connectivity of 0.1) and Dg (with
graph connectivity of 0.6). To illustrate the effect of schedul-
ing, we generated randomly 100 decomposition HMs and
evaluated each on D4 and Dp. Table VI shows the average
symmetric speedups of HMs selected under three resource
schedules with respect to those of the conventional HM. The
results show that a) there are trade-offs between the number of
HM:s tested and the performance of the best HM found, and
b) more detailed evaluation of several top HMs at the end of
learning is beneficial.

In this section, we discuss our model and assumptions on
the sample-allocation and duration-scheduling problems, is-
sues on designing resource scheduling strategies, and our pro-
posed scheduling algorithms.

772 [EEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 5, OCTOBER 1995

TABLE VI
$YMMETRIC SPEEDUPS OF THE BEST HMS BASED ON
THREE DIFFERENT SCHEDULES AND 150 TESTS

Schedule Sub- Sym-Speedup of the Best HM
domain Run 1 Run 2 Run 3
10 HMS of 15 Dy ~0.56 -2.08 0.01
tests each - Dy -0,22 -0.16 —0.01
75 HMs of 2 D, 0.01 0.01 0.01
times each Dy -0.03 -0.03 —0.03
20HMs of 5 D4 0 -0.56 0.01
tests each;
the 5 best HMs Dg 0 -=0.16 —0.01
10 times each

HMs in each run are selected randomiy from a pool of 100 HMs. The aver-
age speedup is evaluated using 15 randomly generated test cases.

A. Model and Assumptions

We describe in this section a statistical model for schedul-
ing tests in our learning system. A general comprehensive
model is too complex to be analyzed since many parameters
are unknown a priori. Here, we find good scheduling strategies
based on a simplified model and apply these strategies as heu-
ristics in practice.

We assume that the performance values of HM,; over a
problem subdomain constitute a population with a distribution
fix). Each evaluation of HM; is equivalent to drawing a per-
formance value from the distribution. We make the following
assumptions in our study.

« In multiobjective applications, we assume that there are k+1
performance metrics {Ci, ... Co Q), where {C i = 1,0, k}
are constrained metrics, and Q is an unconstrained metric
(see Section IL.C). We define ¢; ¢;, and 6; to be, respec-
tively, the expected value, the approximated mean value,
and the maximum acceptable expected value for con-
strained metric C,. Here, f{x) is the distribution of perform-
ance metric Q. We assume that Q for test cases in the sub-
domain is to be maximized, while the other performance
metrics must satisfy the constraints.

e f(x) is generally unknown and non-identical for different
is, and tests drawn from fi(x) may be dependent. In our
simplified analysis, we assume that samples drawn from
fi(x) are i.i.d.

» The means of populations belong to a distribution that is
hard to estimate. Further, cross-overs and mutations ap-
plied at the end of a generation may change this distribu-
tion in an unknown fashion. For simplicity, we ignore
this effect in our simplified model.

e We assume that the time to evaluate one test case using
one HM is one unit. That is, we consider only logical
time in our scheduling study.

B. Previous Work

In this section, we discuss two problems in resource
scheduling and their solutions in our population-based learning
system; sample-allocation and duration-scheduling.

1) Sample-allocation entails the scheduling of tests of HMs
in a generation, given fixed numbers of tests in the generation

and HMs to be tested. This problem is known in statistics as
the (sequential) allocation problem [4] [30] and the scheduler,
the local scheduler. The original problem suggested by Bech-
hofer in 1954 [4] is to decide the optimal allocation of picks,
given a fixed total number of picks, assuming that the popula-
tion mean and variance are known. The objective of these
strategies is to maximize P(CS), the probability of correctly
selecting the population with the highest population mean
when time is expended. Optimal solutions to problems in this
class are unknown, and many extensions have been proposed
to accommodate various trade-offs and relaxed assurmptions.
Existing strategies can be classified into static and dynamic.

Static sample-allocation strategies have 2 selection se-
quence fixed ahead of time, independent of the values of the
picks obtained during selection. They are easier to analyze duc
to their simplicity. The most commonly used static strategy is
the round-robin strategy, which takes samples from each
population in turn. It allocates T/n tests to each population,
given T tests and n population, while maximizing the worst-
case P(CS) when all populations have the same variance. Its
drawback is that it tests the worst population to the same €x-
tent as the best, an obviously inefficient way of using re-
sources. This is also the most commonly used strategy in ge-
netics-based learning systems (5], [6], {13].

Dynamic (or adaptive) sample-allocation strategies select the
population for testing based on previous sample values and other
run-time information. Although more flexible, they are more
complicated. One such strategy was developed by Tong and
Wetzell to optimize P(CS) when the selection process ends. It
focuses on populations with high sample means, but also tests
others with smaller means if they were not tested enough [30].

Sample-allocation strategies developed in statistics are not
directly applicable in our learning system because they were
developed with different objectives. In statistical sample allo-
cation, the objective is to maximize P(CS), given a finite num-
ber of populations. In contrast, our objective is to maximize
the expected population-mean value of the population selected,
given infinitely many populations initially. Since the maximum
number of tests in learning is limited, we are interested in how
close the actual performance of the selected HM is to the
maximum performance within a pool of HMs.

We have developed before a minimum-risk scheduling
strategy [15] which is a dynamic sample-allocation strategy
with the above objective in mind. The goal of the strategy is to
minimize the risk of the best population:

minimize risk = minimize E[(,um“ - ,&m)Z] 4)

In our derivation, we assume that the distribution of each
population is normal with a common variance, an obviously
restricted assumption for many applications.

2) Duration scheduling entails deciding when to terminate an
existing generation and to start a new one. A common strategy is
to allocate a fixed duration to each generation, although better
decisions can be made if past information is used. Duration-
scheduling strategies can be classified as static and dynamic.

A static (or fixed) duration-scheduling strategy simply sets
the duration of each generation to a predetermined value, Pre-

g AR T

WAH ET AL.: GENETICS-BASED LEARNING OF NEW HEURISTICS: RATIONAL SCHEDULING OF EXPERIMENTS AND GENERALIZATION 773

vious work [10] has shown that the most apptopriate duration
is dependent on the total time allocated to learning and the
target application. To find a proper duration size for a given
time limit, experiments with different durations must be run.
The overhead for this is deemed 00 high to be useful.

A dynamic (or adaptive) strategy, on the other hand, uses
run-time information to determine when each generation should
end. A new set of HMs should be generated when the expected
improvement from the new HMs are larger than the expected
improvement from further testing the current set of HMs. There
is very little research on this problem in statistics. One strategy
we have studied extends our minimum-risk sample-allceation
strategy [15] by estimating the distribution of new populations to
be generated in the next generation using statistics collected in
previous generations [2], [3]. (In the first generation, samples
have to be drawn to estimate the initial distribution.) This strat-
egy is restricted because it assumes that all populations have
normal distributions with the same variance.

Another dynamic strafegy we have studied is based on Bay-
esian analysis [2], [3], which results in a strategy that increases
the duration size as the variance ratio (ratio of sample variance
to variance of the u;s) decreases. When the variance of the s
is large, it is easy to identify good populations; hence, the du-
ration should be small, In general, the variance ratio is large
when learning begins, and decreases as learning proceeds.
Consequently, the duration size should be small initially and
increases gradually. The difficulty with this strategy is that it is
hard to find the correct duration without making simplifying
assumptions on the distributions.

Instead of varying the duration size, 2 dual strategy is to fix
the duration of a generation but varies the number of popula-
tions in it [15]. This is less flexible because it is difficult to
adjust the population size dynamically.

The main shortcoming of existing work is that it assumes
that HMs generated always have acceptable performance, even
though most HMs may be pruned after a few tests. This is es-
pecially true in multiobjective applications in which we set
constraints on performance metrics, and there may not be any
acceptable HMs at the end of a generation. We address this
problem in Section IV.D. :

C. Nonparametric Minimum-Risk
Sample-Allocation Strategy -

A general sample-allocation strategy should not require in-
formation on the distributions of performance measures, as
they change dynamically and are difficult to estimate. In this
section, we propose a nonparametric sample-allocation strat-
egy for determining HMs to be evaluated based on run-time
performance information of populations. Our nonparametric
minimum-risk strategy is extended from the parametric mini-
mum-risk method we have developed earlier {15].

The objective of resource scheduling is to find the best HMs
when all resources are exhausted. In general, this objective
cannot be achieved since we cannot model changes in distri-
butions between generations. To cope with this problem, we
restrict our objective on sample allocation within a generation
to the following objective: “minimize the risk that the popula-

tions selected for generaling new HMSs when the generation
ends are wrong.” Note that this objective is for scheduling
within a generation, but not across generations.

Consider a generation of X populations. Population i is
characterized by information such as n; {number of tests per-

formed), 4 (unknown population mean), 0',-2 (unknown popu-
lation variance), f; (sample mean), S,-2 (sample variance),
F; (true fitness value), and f; (sample fitness value), where
F, 2 wi—c, fi z fi;, —c, and c is a constant that is usually set
to the minimum fitness value of all populations. Note that f; is
an unbiased estimator of Fj, since _EL; and Si-2 are unbiased es-
timators of p; and o‘,-z, respectively. In this paper, we use the
average metric as the fitness function.

We define the loss due to believing f; as L; 2 E[(f; - F,-)Z].
Given fi; and o (or S;), we can calculate the value of L;, not-
ing that E[(f; - F)*] = Varlfi— Fi]

L =2k ' (5)

The probability that population i will be selected for gen-
erating new ones is defined as F, = £ / z; f; . The schedul-

ing problem can be formulated (heuristically) as follows:

K
minimize ¢ 2 Y AL
: i=1
< 6)
subject to z”f =N.
i=1
where N is the number of tests performed in the current gen-
eration. By using a Lagrange multiplier, we have

K
minimize ¢ 3 o+ R{N—Eni]. N
i=i

By equating 8&)/ dn; to zero, we have the optimality criteria as
follows

2 2
po; _Foi
p) 2

Ry 5

A=

S fori# j. 8)

At any time t, the strategy is to minimize (6) for time (¢ + 1);
i.e., only one of the ;s can be increased by 1.

ONE-STAGE POLICY:

2

pPol Po;
n. en,+1 where max—5-=—-5" (9)
e ion n?

i J

Equation (9) says that the population to be tested is one that
has large fitness value (i.e., large probability of being chosen
for reproduction in the next generation) and that has large
variance (i.e., large uncertainty in its mean). Note that (9) oniy
tries to find the next population to be tested. In this case, P,
generally changes slowly (P'=P), and P; can be approxi-
mated using information in the current generation.

THd IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 5, OCTOBER 1995

In our experiments, we use S; as an approximation to o;. To
estimate S, at least two tests must be performed in each popu-
lation (preferably four tests or more). Note that the Lagrange-
multiplier procedure is valid only when performance values
are continuous.

As an example, consider population i with four samples:
0.971, 1.006, 0.988, and 1.055. In this case, £, Si, and n; are
1.005, 0.036, and 4, respectively. Assuming that there are a
total 30 populations and that the minimum ft is 0.910, then the
fitness value of population i is jI; —0.910 = 0.095. Further,
assume the current total fitness of the remaining 29 popula-
tions to be 0.781. Hence, P; is 0.095/(0.781 + 0.095) = 0.108,
and the risk value of this population is £ Sf / n,-2 ,(=8T8X 107%).
Assuming that population i has the largest risk value, and a
new sample with value 0.920 is drawn from it. With this new
sample, i;, Si, i, fi, and P; become 0.988, 0.049, 5, 0.078, and
0.001, respectively, and the new risk value is reduced to
7.59 x 10°°. This example shows that populations with high
mean (hence, high P;) and high .S',-2 /n,- are more likely to have
high risk values and be tested. Generally, risk values are re-
duced as more samples are drawn..

D. Duration Scheduling for Multiobjective Applications

This subsection presents duration scheduling methods for
multiobjective applications. As discussed in Section ILC, we
must constrain all but one objectives and optimize the uncon-
strained objective. However, all HMs may be pruned during
learning when constraints are t00 tight. Applying random gen-
eration at that point is not helpful because random generation
is the weakest of all generation methods, and it is unlikely that
newly generated HMs will satisfy the constraints. To avoid this
undesirable scenario, we must relax our original goal and find
HMs as close as possible to the desired level of constraints,
given the available resources. To this end, we must first start
with loose constraints and gradually tightens them as learning
proceeds.

D.1. Constraint Handling

We outline in the following a method for determining the
likelihood that an HM satisfies the given constraints using the
notations defined in Section IV.A. It is not possible to prune
every HM violating one or more constraints {¢; > @) on one or
more test cases because a) ¢; is unknown and the estimated ¢,
is used instead, b) there is uncertainty in determining ¢;. and
¢) it is not possible to set worst-case performance bounds of an
HM on a test case because by the nature of heuristics, their
worst-case behavior may not be bounded.

We want to penalize HMs based on P, the probability of
satisfying the given set of constraints. Since the problems we
study have high evaluation cost, we need to prune HMs that
are unlikely to satisfy the constraints (P, << 0.3). Further, we
like to give higher chance to HMs with P, close to 1 for fur-
ther reproduction and testing.

Given the performance values of an HM over n test cases
with sample mean ¢; and sample variance §%(¢;} for each con-

strained metric C;, random variable (¢, c,-)\/z /S(c,-) has Stu-
dent’s {-distribution with n - 1 degrees of freedom [9]. Ac-
cordingly, we can compute the probability that this HM satis-
fies threshold value & on C..

P[ci = 6,-] = F,[n—l, ?(66‘1—;/%],

where Fi(v, x) is the cdf of Student’s ¢ distribution with v de-
grees of freedom, It is important to point out that (10) is only
valid when c; is the average metric,

When there are multiple constrained metrics, the probability
that all constraints (6; for i = 1,.., k) are satisfied is equal to
Pley €6, .. Mg & 6,]. Based on probability theory, we
know that

[Pl < 6:]< Pu =Pl 26, NNy £6;]

(10}

(1)

< mjnP[c[< 9,-].
i
Hence, we use min{Pc; = 8;1) as an approximation to P.
!

D.2. Dynamic Multiobjective Duration-Scheduling
Strategy (DMDS)

Using the relaxed goal, the learning system jteratively finds
HM:s using increasingly harder constraints, instead of trying to
find HMs that satisfy the final target constraints immediately.
The initial set of constraints are selected in such a way that
almost all randomly generated HMs will be accepted. This will
ensure that some HMs are available for gencrating new HMs
in the next generation. To set constraints in successive itera-
tions, we apply an iterative refinement method we have devel-
oped in a real-time search algorithm for solving time-
constrained combinatorial optimization problems [7]. We set
new thresholds so that the times used in learning with succes-
sive thresholds grow in a geometric fashion. In this way, a
smal] portion of the total time is used in intermediate itera-
tions, and most of the effort is spent in the last iteration.

Using this iterative method, we need to set intermediate
thresholds on constrained variables {C;} that are easier fo
achieve than the final target thresholds. We define the jth set
of intermediate thresholds on k performance metrics as

{él.;" él,j' ék,j }. Since we want increasingly tougher con-
straints, we have the following property.

°°=én‘,0>éj,1>‘“>é,-’°.,=95,i=1,...,k (12}

where @, is the final target threshold for C;, and é,-,o is the ini-

tial threshold at the start of learning.

To control both the duration of each generation and the in-
termediate thresholds, we have developed the DMDS duration
scheduling strategy. This strategy has two stages.

1) Stage 1: 3C; with é,-,j > 8, (not all target thresholds are
satisfied). In this stage, DMDS decides the time for up-

dating constraints and the values of the thresholds. It -1

starts a new generation and a new set of thresholds when
HMs satisfying the current constraints have been found,

WwAH ET AL GENETICS-BASED LEARNING OF NEW HEURISTICS: RATIONAL SCHEDULING OF EXPERIMENTS AND GENERALIZATION 175

and most HMs violating the current constraints have been
eliminated. DMDS determines new thresholds based on
profile data collected on thresholds during learning and
the amount of time spent in finding acceptable HMs us-
ing these thresholds. The thresholds are set so that the
time spent in each iteration 0 find feasible HMs satisfy-
ing the constraints grows geometrically.

2) Stage 2: é,-, ;= 8, for all i (all target thresholds have been

reached). When all the performance constraints are satis-
fied in a generation, the learning system finds the best HM
that satisfies all the constraints. To do so, good HM:s found
in this generation are tested more thoroughly to ascertain
that they satisfy the constraints to within a high degree of
certainty before the next generation begins..

We defer until Section VI to show the effects of the various
scheduling algorithms discussed in this section.

V. FINDING GENERAL HEURISTIC METHODS
FOR ALL SUBDOMAINS

One of the key reasons in learning is to find a good HM that
can generalize 1o test cascs in new problem subdomains. Gen-
eralization is important because we perform learning on a very
small number of subdomains, and there may be infinitely many
subdomains in an application. Further, it is desirable to have
one or very few HMs to be used in an application rather than a
new HM for each problem instance.

The goal of generalization is somewhat vague: we like to
find one or more HMs that perform well most of the time
across multiple subdomains as compared 1o a baseline HM (if
one exists). There are four issues to achieve this goal.

e How to compare the performance of HMs within a sub-
domain in a range-independent and distribution-
independent fashion? :

» How to define the notion that one HM performs well
across multiple subdomains?

» How to find the condition(s) under which a specific HM
should be applied? '

e What are the trade-offs between cost and quality in gen-
eralization?

A. Probability of Win within a Subdomain

There are many ways to address the first issue raised in this
section, and the solutions to the remaining problems depend on
this solution. As is discussed at the end of Section 11, scaling,
normalization, and ranking do not work well. In this section, we
propose a metric called probability of win to select good HMs.

P, the probability-of-win of HM, within a subdomain, is
defined as the probability that the true mean of HM, (with re-
spect to one performance measure) is better than the true mean
of HM; randomly selected from the pool. When HM, is applied
to test cases in subdomain dm, We have :

Pwiu(HMi’dm)

~m = o 3
=\s\1__lzP[#£" >PT\#?,UT.H;",#’J’.“O—T‘H?], (13)
J#i

where sl is the number of HMs under consideration, d, is a
subdomain, and a*, &7, i1f", and (! are, respectively, the
number of tests, sample standard deviation, sample mean, and
true mean of HM; in dp.

Under the assumptions that 1) performance values of each
HM are normally distributed, 2} true variance o’,-2 of HM; is
known, and 3} HMs in a subdomain are independent, i;, the
sample mean for HM, can be assumed to have N([;,0; / Jr;)

distribution. Consequently, fi; - ii; has

N(,u,-—y,j, ,\}o?/nﬁc%/nj)
distribution, and
Z= ((ﬁ; ‘.a_f)‘(ﬂ.‘ '_.u'j))/ ot /n; +G%/”j
has N(O, 1) distribution.

From the above assumptions, the probability that HM,; is
better than HM; in dn, can now be computed approximately as
follows.

ap - By
Jor?/nr +a [n]
(14)
where ®(x) is the cumulative distribution function for the

Py > 3|, oF o B OF - 07) = @

" N(0, 1) distribution.

When n; > 30 and n; > 30, assumptions 1) and 2) above can
be relaxed. Using the Law of Large Numbers [91, the perform-
ance of each HM does not have to be normally distributed for
the condition stated in (14) to hold. In addition, G;, the sample

standard deviation, can be used in place of o the actual stan-
dard deviation, without signifinant loss in accuracy. In this
case, the following equation can be used instead:

Ry
N
(15)
Note that using (15) when n; and »; are less than or equal to 30
will result in less accurate prediction.

To illustrate the concept, we show in Table VII probabilities
of win of four HMs tested to various degrees. Note that prob-
ability of win is not directly related to sample mean but rather
depends on sample mean, sample variance and number of tests
performed. Further, the probability that h; is better than f; and
the probability that h; is better than &; are both counted in the

evaluation. Hence, the sum of P over all HMs will be half of
the number of HMs evaluated.

o i, 115, 7.7) -

TABLE Vi1
PROBABILITIES OF WIN OF FOUR HMS
h" ﬁl’ a-a' "y Pwl'n(hi)
1 432 135 10 0.4787
2 46.2 6.4 12 0.7976
3 44.9 2.5 10 0.6006
4 33.6 25.9 8 0.1231

T76 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 5, OCTOBER 1995

P, defined in (13), is range-independent and distribution-
independent because all performance values are transformed
into probabilities between O and 1. It assumes that all HMs are
i.i.d. and takes into account uncertainty in their sample aver-
ages (by using the variance values); hence, it is better than
simple scaling which only compresses all performance aver-
ages into a range between O and 1.

B. Probability of Win across Subdoemains

The use of probability of win leads to two ways to solve the
second issue posted earlier in this section, namely, how to de-
fine the notion that one HM performs better than another HM
across multiple subdomains.

First, we assume that when HM # is applied over multiple
subdomains in partition IT, of subdomains, all subdomain are
equaity likely. Therefore, we compute the probability of win of
h over subdomains in I, as the average probability of win of h
over all subdomain in I1,.

z Pwin(h‘ d)
_ dell,
o

Pa(nM,) =
where I, is the pth partition of subdomains in the subspace.
The HM picked is the one that maximizes (16). HMs picked
this way usuaily wins with a high probability across most of
the subdomains in T1, but occasionally may not perform well in
a few subdomains.
Second, we consider the problem of finding a good HM

(16)

across multiple subdomains in IT, as a multiobjective optirniza-
tion problem itself. As is indicated in Section ILC, evaluating
HM:s based on a combined objective function (such as the aver-
age probability of win in (16)) may lead to inconsistent conclu-
sions. To alleviate such inconsistencies, we should treat each
subdomain independently and find a common HM across all

subdomains in T1, satisfying some common constraints. For ex-
ample, let & be the allowable deviation of the probability of win
of any chosen HM from gy, the maximum P.;, in subdomain
m. Generalization, therefore, amounts to finding A that satisfies
the fol'lowing constraints for every subdomain m € I1,,.

P alh, m)2 (q,'fm —-5) foreverymeIl, (17)

In this formulation, 8 may need to refined if there are too many
or too few HMs satisfying the constraints. '

To illustrate the generalization procedure, consider the ver-
tex-cover problem discussed in Section ILB. Assume that
learning had been performed on six subdomains (with graph
connectivities 0.1, 0.15, 0.3, 0.4, 0.5, and 0.6, respectively),
and that the five best decomposition HMs were generated from
cach. After full evaluation of the 30 HMs across the six sub-
domains, we computed the probability of win for each HM in
each subdomain. Fig. 5 shows the probabilities of win of sev-
eral of these HMs. If we generalize HMs based on (16), then
HM 20 will be picked since it has the highest average Py, Int
contrast, if we generalize using (17), then HM o7 will be picked
because it has the smallest deviation from the maximum £ in
each subdomain. Note that bath HMs are reasonable choices

as a generalized HM that can be applied across all subdo-
mains. To narrow down to one single generalized HM, further
evaluations on the spread of performance values would be
necessary (see Section VLB).

Using probabilities of win to assess an HM across subdo-
mains, we can now address the last two issues raised earlier in
this section, which deal with the selection of multiple HMs.

CJBASE
188

Probability of Win

=129

AVG

01 0.15 0.3 04 05 0B

Connectivity

Fig. 5. Histogram showing probabilities of win of four HMs generalized
across six subdomains and those of the baseline HM. (FM 29 will be picked if
(16) is used as the selection criterion; HMz will be selected if (17} is used as
the criterion.).

There are two ways that multiple HMs can be used:

1) each HM is used in a nonoverlapping subset of subdo-
mains in the subspace (third issue), and

2) multiple HMs are always applied in solving a test case in
the subspace (fourth issue).

The issue of finding condition(s) under which a specific
HM should be applied is a difficult open problem. Solving this
problem amounts to designing decision rules to partition the
subspace of test cases into a finite number of partitions, each
of which can be solved by one HM. This is possible in some
applications that can be characterized by a small number of
well-defined attributes. For instance, in the vertex-cover prob-
lem discussed in Sections ILB, graph connectivity is a unique
attribute that aliows us to decompose the space of all random
graphs into partitions. For other applications, this may not be
easy. For instance, in Post-Game Analysis discussed in Section]
11.C.1, there are a few attributes that can be used to decompose
the subspace (e.g., number of processes in an application,]
number of processors in a multi-computer system). However,
none of them is a good choice. In the CRIS test-pattern gen- A
eration system [24] discussed in Section ILB, there are t00
many attributes that can be used to classify circuits (¢.g., num- _§
ber of gates, length of the longest path). In this case, it is not 3
clear which attributes should be used.

The last issue raised earlier in this section is on the trade- 3
offs between cost and quality in generalization. Since it may be
difficult to identify a unique HM for each test case in the sub- §
space, we can pick multiple HMs, each of which works well
for some subdomains in the subspace, and apply all of them §
when a new test case is encountered. This is feasible only

- WAH ET AL GENETICS-BASED LEARNING OF NEW HEURISTICS: RATIONAL S$CHEDULING OF EXPERIMENTS AND GENERALIZATION 777

when the added cost of applying multiple HMs is compensated
by the improved quality of the solutions. In this approach, the
cost reflects the total computational cost of applying all the
chosen HMs to solve a given test case.

The problem of selecting a get of HMs for a subspace
amounts to picking multiple HMs and assigning each to a sub-
domain in the subspace. Assuming that 1M1 such HMs are to be
found, we need to decompose the subspace into IH1 partitions
of subdomains, and assign one HM to all subdomains in each
partition. The overall probability of win over the subspace is
computed in a similar way as in (16). In mathematical form, let
Q) be the set of all HMs tested in the subspace and IT be the set
of all subdomains in this subspace, we are interested to find
H — Q such that IHl is constant and the average Puin 15 maxi-
mized. That is,

L %:Te% Pyin(h: d)
P‘.ﬂ;‘x (Q, n) - | H|=constant ‘ (18)

I

where ITT! is the number of subdomains in subspace I1.

One way to find H in (18) is to enumerate over all possible
ways of decomposing I1 and assign the best HM to each parti-
tion. The problem is equivalent to the minimum-cover prob-
lem: given a set IT of subdomains and a set £ of HMs (each of
which covers one or more subdomains), find the minimum
subset H of Q so that each element of T1 can be covered by one
HM in H. The problem is NP hard and is solvable in polyno-
mial time only when IH! is two.

Fortunately, by applying (17), we can make the number of
HMs arbitrarily small by choosing a proper 8. In this case, find-
ing a fixed set of HMs that can best cover ail subdomains in the
subspace can be obtained by enumeration. Experimental results
on such cost-quality trade-offs are presented in Section VIC.

C. Generalization Procedure

The procedure to generalize HMs learned for subdomains in
a problem subspace is summarized as follows:

1) Using the collective set of HMs obtained in the subdo-
mains learned, find the probability of win (using (13)) of
each HM in each subdomain learned or to be generalized.

2y Apply (18) to select the necessary number of HMs for
evaluating test cases in the subspace. Equation (17) can
be used to restrict the set of HMs considered in the se-
lection process.

V1. EXPERIMENTAL RESULTS

To illustrate the learning methods developed in this paper,
we present in this section results on learning and generaliza-
tion for the four applications discussed in Section IL.

A. Pracess Mapping on Distributed-Memory
Multicomputers

Process mapping involves placing a set of communicating
processes on a multicomputer system so that the completion
time of the processes is minimized. The problem is character-
ized by nondeterministic (data-dependent) execution times

between interprocess communications and amount of data
communicated between processes. It can be solved as a de-
terministic optimization problem using average execution
times and data volumes; however, the solution is inaccurate
when execution and communication activities change with
time. Further, a deterministic model does not account for de-
lays incurred due to blocked messages. Such unpredictable
delays can only be found when the processes arc actually exe-
cuted or simulated.

Yan and Lundstrom proposed Post-Game Analysis (PGA), a
simulation-based method for finding good mappings. Their
system collects an execution trace consisting of actual execu-
tion times in bétween communications and amounts of data
sent between processes, and uses them in a simulation system
to find the actual completion time of a specific mapping. It
then applies heuristics to propose 2 new mapping, evaluating
the effectiveness of the new mapping through the simulation
system. This iterative refinement is repeated until no further
improvement 13 possible. PGA can be applied in practice by
repeatedly collecting a trace for a short period of time, opti-
mizing the mapping by PGA on a different computer while the
original application program is run, and proposing a new
mapping for the application program fo use.

There are four components of the heuristics used in PGA:

1) proposal-generation heuristics for generating proposals
to perturb a mapping based on independent optimization
subgoals,

2) priority-assessment heuristics for prioritizing each site
and process,

3) transformation-generation heuristics for generating pos-
sible transformations from the ordered list of sites and
processes, and

4) feasibility heuristics
move.

for checking the feasibility of a

These heuristics are represented as expressions (or heuristic
decision elements—HDES) that combine values collected
during program execution and are applied to make decisions.

These four heuristics components interact extensively in
proposing alternative mappings. Consequently, we cannot iso-
late each set of heuristics and learned them independently.
Instead, we consider the four components to make up a PGA
HM, and learning aims to find the best collection of HDEs and
the proper value for each threshold. PGA HMs used in learn-
ing are generated randomly, as well as by cross-overs and
mutations.

PGA HMs are evaluated by two performance measures: qual-
ity of a mapping (process completion time of the mapping), and
cost of finding the mapping (PGA execution time). Learning
aims to find PGA HMs with the minimum completion time and
cost within a user-specified limit. This is necessary since PGA
has to be run concurrently with the application program, and 2
new mapping should be proposed within a time constraint.

In learning PGA HMs, we chose an application based on a
divide-and-conquer algorithm: each process computes for a
random amount of time, sends a message (0 gach of its child
processes to start their computation, and waits for the results
from its descendents before reporting to its parent. We used

_‘__________————

778 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA BNGINEERING, VOL. 7, NO. 5, QCTOBER 1995

TABLE VIII
QUALITY-COST COMPARISON OF LEARNED AND CIENERALIZED HMS USING A COST CONSTRAINT OF 30% OF THE ORIGINAL PGA CoOST
Subdomain Generalized HM(s) Learned HM(s) Normalized
Learning
1D Architecture Processes Quality Cost Quality Cost Cost
| * 3-by-3 mesh 100 0.934 (.251 0.934 0.251 583.3
2+ 4-by-4 mesh 100 0.933 0.231 0.948 . 0.277 349.9
3+ 5-by-5 mesh 100 0.954 0.235 0.951 0.230 428.8
4 * 3-by-3 mesh 200 0.993 0.283 0.993 0.283 503.8
5+ 4-by-4 mesh 200 0.986 0.244 0.993 0.274 348.0
6+ 5-by-5 mesh 200 0.964 0.274 0.961 (.269 416.9

Subdomains with “*” are learned: subdomains with "+ " are generalized from subdomeins with the same number of processes. {Subdomains 1-3 belong o
one partition, and subdomains 4-6 belong to another.} The cost of learning is the sum of normalized execution times with respect iv the baseline HM.

three machine architectures (3-by-3, 4-by-4, and 5-by-5
meshes) and two process sizes (100 and 200 processes), result-
ing in six subdomains. All subdomains were assumed to be-
long to one problem subspace. Each PGA test case specifies
the number of processes in the divide-and-conquer tree, the
execution time of each node of the tree, one of the machine
architectures, and an initial mapping of the processes on the
architecture. All experiments were performed on a Sun
SparcStation 10/30. For the applications we have used, testing
a PGA HM on one test case is time consuming: a smail learn-
ing experiment with 6,400 evaluations (six subdomains, each
with 800 tests for learning and 400 tests for final verification)
took between seven to 11 days of CPU time.

We first evaluated three resource scheduling strategies:
DMDS duration scheduling with minimum-risk sample alloca-
tion, fixed duration with minimum-risk sample allocation
(MR), and fixed duration with round-robin sample allocation
(RR). For each strategy, we performed five learning experi-
ments of 80O tests over each of the six subdomains, using a
cost constraint of 30% of the cost of the original PGA HM by
Yan and Lundstrom [32]. We studied six cases of retaining 1,
3,5, 10, 15, and 20 HMs at the end of Jearning for full verifi-
cation, and compared the best and average qualities of the
HMs achieved over five runs of each scheduling strategy.

I}
8

E[Normalized Performance]
o4
]

am b

o) ax3 w3 4x4 dx4 4x4 Sx5 x5 x5
Number of Sites

[c1eop @ 200 Processes |

Fig. 6. Average quality of HMs selected under a cost constraint of 30% of the
original PGA HM for three resource scheduling strategies: DMDS, MR and
RR. (The number of HMs retained for full verification is five.)

Fig. 6 shows the average speedups (quality) of HMs
achieved by the three scheduling strategies over the six sub-
domains. Since the cost constraint is tight and all performance
values represent slowdowns, we do not use symmetric speed-
ups here. All these HMs have significantly lower costs and
slightly worse qualities than those of the original PGA HM.
Further, DMDS performs the best in four out of six subdo-
mains and the second best in two other subdomains. Other
results are similar, with smaller differences in quality as the
number of HMs retained for verification increases.

DMDS also consistently finds better HMs more often than
the two fixed-duration scheduling strategies when the cost
constraint is tight. Of the 30 experiments performed under a
30% cost constraint, DMDS failed once when the five best
HMs were retained for verification (RR failed five times and
MR, four times). When the cost constraint is loose, DMDS
does not perform better than the other scheduling strategies.

Our next experiments address the generalization of the HMs =
learned. We used three subdomains (3-by-3 mesh with 100 and . ¢
200 processes and 5-by-5 mesh with 200 processes) for learn- :
ing, and generalized the HMs learned to the remaining three
subdomains. In learning, 800 tests were performed for each
subdomain, and the best five HMs that satisfied the cost con-
straint were selected for full verification. We considered two
cost constraints: 30% and 100% of the cost of the original
PGA HM by Yan and Lundstrom [32]. :

By applying (18), we have found that under the 1.0 cost . :
constraint, ail subdomains should belong to one partition and |
can be evaluated by one HM, and that under the 0.3 cost con- '
straint, there are two partitions (pattition 1 contains three sub-
domains with 100 processes, and partition 2, the remaining
three subdomains with 200 processes). In this case, the PGA
HMs learned do not generalize well and are biased towards the
number of processes in the application program. Table v
shows the costs and qualities of the generalized HMs as com,
pared to those of the learned HMs. We see that both have
similar costs and qualities. In contrast, the cost of learning i
around 500 times higher than that of the generalized HMs.

Next, we show the performance of the learned PGA HMS
when generalized across the three multicomputer architectur
under various combinations of cost constraint and number 0
processes in the application program. As discussed in Se

tion 11.C, performance values related to each objective in a

wAH ET AL GENETICS-BASED LEARNING OF NEW HEURISTICS: RATIONAL SCHEDULING OF EXPERIMENTS AND GENERALIZATION e

515 aaeh 100 prowtaes -~
o

323 etk 200 procomse -
«

dxd mesh 200 procesaes = - |
.

$x5 mesh 200 proccares -~
n

e 9

55 mcah 100 peoceatts. —1-
. o

x5 mech 200 procemes =1

X

408 o 200 procemies — [
A

558 mank 200 procemes =4
%

|

()

Fig. 7. Performance of PCiA HMs leamned for a 3-by-3 mesh architecture and (a)
Top—100 process cubdomain and 1.0 cost constraint, (b) Second—200 process
subdomain and &0 cost constraint, (c) Third—100 process subdomain and 0.3 cost
constraint, and (d) Bottorn—200 process subdomain and 0.3 cost constraint.

multiobjective application need to be considered independ-
ently in order to avoid inconsistencies in evaluation.

To this end, we plot in a two-dimensional graph the distri-
bution of the normalized quality of an HM on a test case and
the corresponding normalized cost of the same HM and test
case. Using a method we have developed earlier to show cost-
quality trade-offs [15] we identified a 90% constant probabil-
ity contour for each HM after removing outliers, checking for
bivariate normality, and finding the 90% constant probability-
density contour of the bivariate distribution.

Fig. 7 shows the cost-quality of generalized PGA HMs on
various architectural configurations and numbers of nodes in
the divide-and-conquer tree. Each of these four graphs repre-
sents the performance of one HM obtained by learning in one
subdomain and generalizing to two other subdomains.

The HM used in Fig. 7a (resp., 7b) was obtained by general-
izing HMs learned in a 100-process (resp., 200-process) sub-

" domain under a 1.0 cost constraint and a 3-by-3 mesh architec-

ture to the two remaining architectural configurations. Like-
wise, the HM used in Fig. 7¢ (resp., 7d) are HM, (resp., HM,)
in Table VIIL. In learning the HMs, the fixed-duration mini-
mum-risk strategy (resp., DMDS minimum-tisk strategy) were
used in Fig. 7a and 7b (resp., Fig. 7c and 7d). We see in
Fig. 7a and 7b that all the contour plots are clustered together,
implying that the PGA HMs selected under the 1.0 cost con-
straint generalize well to other subdomains. Further, these
HMs have lower costs than the original HM (normalized to 1)
while having qualities close to Or better than the original HM.
In Fig. 7c and 7d, we find both generalized HMs 10 have
similar quality levels, but the HM generalized from the
100-process subdomains have higher costs than those from the
200-process subdomains. In this case, HMs that perform well
for the 200-process subdomains would violate the cost con-
straint for the 100-process subdomains. This happens because
the achievable cost for each subdomain in the 0.3 cost-
constraint case is lower; for larger test ¢ases, there i more
room for improvement in terms of cost, and a lower relative
cost can be achieved.

Similar conclusions can be drawn by computing P FOT
instance, the average Puix for a single HM generalized across
all six subdomains is 0.78 for the 1.0 cost-consiraint case, and
0.61 for the 0.3 cost-constraint casc. In the latter case, the
PGA HMs learned tend to specialize to the number of proc-
esses in the application program. For instance, the average Puin
for two partitions in the problem subspace, one for the
100-process subdomains and the other for the 200-process
subdomains, are 0.79 and 0.85, respectively. We have also
observed similar results that generalization 13 easier for differ-
ent divide-and-conquer trees or different applications problems
when the cost constraint is loose [15} but more difficult when
the cost constraint is tight.

B. Branch-and-Beund Search

A branch-and-bound (B&B) search algorithm is a system-
atic method for traversing a search tree or search graph in or-
der to find a solution that optimizes a given objective while
satisfying given constraints. It decomposes a problem into

780 1EEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 5, OCTOBER 1995

smaller subproblems and repeatedly decomposes them until a
solution is found or infeasibility is proved. Each subproblem is
represented by a node in the search tree/graph. The algorithm
has four sets of HMs:

1) selection HM for selecting a search node for expansion
based on a sequence of selection keys for ordering search
nodes;

2) decomposition HM (or branching mechanism} for ex-
panding a search node into descendents using operators
to expand (or transform} a search node into child nodes;

3) pruning HM for pruning inferior nodes in order to trim
potentially poor subtrees; and

4) termination HM for determining when to stop.

In this paper, we -apply learning to find only new decom-
position HMs; preliminary results on learning of selection and
pruning HMs can be found in the reference [8]. We consider
optimization search, which involves finding the optimal solu-
tion and proving its optimality.

We illustrate our method on three applications: traveling
salesman problems on incompletely connected graphs mapped
on a 2D plane (TSP), vertex-cover problems (VC), and knap-
sack problems (KS). Table IX shows the parameters used to
generate a test case in each application. All subdomains are
assumed to belong to one problem subspace.

TABLEIX
GENERATION OF 12 SUBDOMAINS OF TEST CASES FOR
TESTING DECOMPOSITION HMS IN A B&B SEARCH

Appl. Subdomain Attributes
VC | ¢ Connectivity of vertices is (0.05, 0.1, 0. 15,0.2,
025, 0.3, 0.35,0.4,0.45, 0.5, 0.55, or 0.6)
Number of vertices is between 16 and 45
TSP Distributions of 8-18 cities (uniformly distributed

between 0-100 on both the X and Y axes, uni-
formly distributed on one axis and normally dis-
tributed on another, or normally distributed on
both axes).

¢ Graph connectivity of cities is (0.1,0.2,0.3,0r 1.O)

KS |* Range of both profits and weights is {(100-1000),
(100-200), (100-105)}

e Variance of profit/weight ratio is (1.05, 1.5, 10,
100}

4 13-60 obiects in the knapsack

The problem solver here is a B&B algorithm, and a test case
is considered solved when its optimal solution is found. Note
that the decomposition HM is a component of the B&B algo-
rfithm. We use well-known decomposition HMs developed for
these applications as our baseline HMs (see Table XI). The
normalized cost of a candidate decomposition HM is defined in
terms of its average symmetric speedup (see (2)), which 1s re-
lated to the number of nodes expanded by a B&B search using
the baseline HM and that using the new HM. Note that we do
not need to measure quality as both the new and existing HMs
when applied in a B&B search look for the optimal solution.

Our first experiments study the effects of fixed-duration
strategies (RR and MR) on learning. DMDS was not used be-
cause there is only one objective measure. Fig. 8 shows the

quality of HMs found as a function of Jearning time for the two
scheduling strategies. Each point in the graph was obtained by
averaging the symmetric speedups of HMs selected if learning
had been stopped at that point,

Fig. 8 shows that MR outperforms RR, that MR is more
likely to identify the top HM, and that MR requires less HMs
to be retained for full verification at the end of learning. For
this reason, we use the fixed-duration MR scheduling strategy
in the remaining results in this subsection. Fig. 8 also shows
that verifying more HIMs at the end leads to better HMs (albeit
higher verification cost}.

0.05 v
{ -
0.04 / Min-Risk —+—
/ Round-Robin -+
/ Top Min-Risk -a--
Top Round-Robin -+

0.03 b i

Average Performance over 5 Experiments
160 Tests per Generation .

Average Symmetric-Speedup
o
8

001 | i

[: e v:) :

.) a L L 2 1 I

1 2 3 4 5 6 7 8 9 10

Fig. 8. Average performance over five runs of the HMs selected for the VC
problem with edge connectivity of 0.15 using the MR and RR scheduling
strategies. (Top-RR and Top-MR mean that only one HM was retained for
vetification; RR and MR mean that five HMs were retained.}

Next, we generalize the HMs learned to new subdomains.
For each application, we selected six subdomains and per-
formed learning on each using 1,600 tests. We then selected
the top five HMs from each learned subdomain, fully verified
them on all the learned subdomains, and selected one final HM
to be used across all subdomains. Table X summarizes the
learning, generalization, and validation results. For learning,
we show the average symmetric speedup of the top HM
learned in each subdomain and the normalized cost of learn-
ing, where the latter was computed as the ratio of the total
CPU time for learning and the harmonic mean of the CPU
times required by the baseline HM on test cases used in learn-
ing. The results show that a new HM learned for a subdomain
has around 1-35% improvement in its average symmetric
speedups and 3,000-16,000 times in learning costs.

Table X also shows the average symmetric speedups of the
generalized HMs. We picked six subdomains randomly for
learning. After learning and full verification of the top five
BEM:s in each subdomain, we applied (18) to identify the gen-
eralized HM across all 12 subdomains. Qur results show that
the generalized HMs have between 0-8% improvement in av-
erage symmetric speedups. Note that these results are worse
than those obtained by learning, and that the baseline HM is
the best HM in solving the knapsack problem.

;

WAH ET AL.: GENETICS-BASED LEARNING OF NEW HEURISTICS: RATIONAL SCHEDULING OF EXPERIMENTS AND GENERALIZATION 781

TABLE X
RESULTS OF LEARNING AND GENERALIZATION FOR v, TSP, aNDKS
Perform- Subdomain
Type [Appli-] aoce Avetage
cation | Measure|| 1 2 3 4 5] 7 8 9 10 11 12

Sym-SUYH 0,000 | 0.011 G504 | 0.000 | 0.044 | 0.022 | 0.008 | £.OL3 0000 | 0000 | 0.000 | 0.000 || 0.012
Comt |R6343.5 |23570.9]21034.1 [12951.6[11034.3 124144 5871.0| 80933 | 68780 50512 4826,2 | 31073 1117563
Sym-SU[[0.194 | 0.073 | 0.288 0378 | 0.106 | 0.068 | 0267 | D382 | 0.048 0.165 | 0208 | 0.083 | 0.188
Cost H2846.6 | 1543.9 | 2077.7 | 22077 | 23149 1865.6 | 1869.9 | 1847.5 | 2509.7 | 15470 14454 | 1958.8 || 2037.9
Sym-SU|[0.000 | 0.000 j 0.000 D.000 | 0000 | 0.000 | 0.893 | 0.000 | 0263 | 0.107 2.840 | 0.089 j| 0:349

Cost |[25707.7]|32587.8] 9671.6 |26408.1|24003.6 373001 | 3648.1 | 7943.1[8114.7 | 64762 772.9 |10684.4/114935.6
Genera| VC | Sym-SUJ| 0.218 |0.283* 0031 | 0.068% | 0054 [0.060* [0.017 0.049* | 0016 —0.000* [-0.011]0,028* |} 0.068
\ization | TSP |Sym-SUJ 0.072* [0.004 0082% | 0225 |0.005* {0.061* | 0.139 0155 [—0.010f 0.054 |0.050*|0.083* || 0.080
KS |Sym-SUJt0.000* | 0.000* 0000 | 0000 | 0.000 | 0.000* [0.000* | 0,000 {0.000 0.000 | 0.000 | D.000* || 0.00C
Yalia. | VC |Sym-SUJ| 0.070 | 0.638 | D.241 0078 | 0073 | 0.020 |-0.013{-0004 —0.018] ~0.000 | -0.019] —0.010|| 0.088
ation | TSP | Sym-SU| 0417 | 0.036 D144 | 0.135 | 0331 | 0364 |1.161 | 0.101 0108 | 0008 0022 | 0131 || 0231
K5 |Sym-SU[l 0.000 | 0.000 D00C | 0.000 | 0,000 | 0,000 | 0.000 | 0.000 5.000 | 0.000 | 0.000 | 0.000 || 0.000

vC

| TSP
ing

KS

In the results on generalization, numbers with “*” are the ones learned; only one common HM is generalized to all 12 subdomains.

The bottom part of Table X shows the average symmetric . in the HM learned for the vertex-cover problem. This formula
speedups when we validate the generalized HMs on larger test can be interpreted as using [as the primary key for deciding
cases. These test cases generally require 10-50 times more which node to be included in the covered set, If the Is of two
nodes expanded than those used earlier. Surprisingly, our re- alternatives are different, then the remaining terms in the for-
sults show better improvement (9-23%). Further, six of the mula (n— Al are insignificant. In contrast, when the Is are the
twelve subdomains with high degree of connectivity in the same, then we use n — Al as a tie breaker.

vertex-cover problem have silowdowns. This is a clear-indica- In short, our results show that reasonable improvements can
tion that these subdomains should be grouped in a different be obtained by learning and by generalization. We anticipate
subspace and learned separately. further improvements by

TABLE XI 1) learning and generalizing new pruning HMs in a depth-
ORIGINAL AND GENERALIZED DECOMPOSITION HMS USED IN A B&B SEARCH first search,

2) partitioning the problem space into a number of sub-

Application and Variables Used Orig. Gen. .
in Constructing HMs HM HM spaces qnd Iearlnmg anew HM for ea_ch, and
Vertox.Cover Problem 7 1000 3) identitying _atmbutes that hel‘p explain why one HM per-
I = live degree of vertex (uncovered edges) +n forms well in some subdomains.
d = dead dogree of vertex (covered edges) - C. Heuristics for Sequential Circuit Testing
n = average hive degree of all neighbors . _
Al = difference between { from parent node CRIS is a genetic-search package developed by experts for

to current node generating test patterns to test VLSI circuits [24] It is based on
Traveling-Salesman Problem c m*c continuous mutations of a given input test sequence and on
¢ = length of current partial tour analyzing the mutated vectors for selecting a test set. The
m = min length to complete current tour package has been applied successfully to generate test patierns
a = avg. length to complete current tour with high fault coverages for large combinatorial and sequen-
I = number of neighboring cities not yet tial circuits

visited T o
4 = number of neighbors already visited In our application of TEACHER to improve FZRIS, we treat
CRIS as a problem solver in a black box. The inputs to CRIS

Knapsack Problem piw plw

are a set of eight parameters that we treat as our HM (see Ta-
ble XII). We were also given a suite of 20 sequential bench-
mark circuits [17] Since these circuits are from different appli-

p, w = profiyweight of object
s = weight slack = weight limit — current

weight
Proaor pmgin=max.fmin. profit of unselected cations, we cannot characterize them by some common fea-
object tures. Consequently, we treat each circuit as an individual sub-
Winaxr Wanin = Max./min. weight of domain. We further assume that all the circuits are from one
unselected object subspace, and wish to learn one common HM for all the cir-

The new HM lea.tmedjbr VC can be interpreted as Jollows: 1is the primary cuits. Note that parameter Pgis a random seed, implying that
key, and n — Al is the secondary key. . . . ,
CRIS can be run multiple times using different random seeds
Finally, Table XI shows the new decomposition HMs in order to obtain better fault coverages. (In our experiments,
learned for the three applications. We list the variables that Wwe used a fixed sequence of ten random seeds.)
were supplied to the learning system. In addition to these vari- A major problem in using the original CRIS is that it is hard to
ables, we have also included constants that can be used by the find the proper values of the seven parameters (excluding the ran-
heuristics generator. An example of such a constant is shown dom seed) for a particular circuit. The designer of CRIS manually

&—_ﬂ

782 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 5, OCTOBER 1995

tuned these parameters for each circuit, resulting in HMs that are
hard to generalize. This was done because the designer wanted to
obtain the highest possible fault coverage for each circuit, and
computation cost was only a secondary consideration. Note that
the times for manually learning these HMs were exceedingly high
and were not reported in the reference [24].

Our goal in learning and generalization is to develop one
common HM that can be applied across all the benchmark
circuits and that has similar or better fault coverages as com-
pared to those of the original CRIS. The advantage of having

Table XIIT shows the results after learning and generaliza-
tion. For each circuit, we present the average and maximum
(over 10 random seeds) fault coverages and the costs of the
learned and generalized HMs. These fault coverages are com-
pared against the published fault coverages of CRIS [24] as
well as those of the deterministic HITEC system [21]. Note
that the cost of generating the maximum fault coverage is 10
times the average cost.

TABLE XIII
PERFORMANCE OF HMS FOUND FOR CRIS

one HM is that it can be applied to new circuits without further -
. Ckt. || Fault Coverape|l HITEC Learned HMs Generalized HM
manual tuning.
. 1D CRIS |[HI-TEQ] Cost | Avg. | Max. | Cost Avg. | Max. { Avg.
In our learning experiments, we chose five circuits re | ke fe | re | cos
(subdomains) for learning. Each learning experiment had ten
. . . . *208 | 821 | 860 [[15984.0f 849 | 864 [15255.1f| 847 ; 864 | 109
fixed-duration generations with a total of 1,000 applications of
, , . s3¢4 || 937 | 959 || a7ssoll 961 | 962 |2230s3] 724 | 870 | 72
CRIS. The learning system started with a pool of 30 active
) L X +s382 | 626 | 009 [l43200d| 860 | 880 [126123)| 724 | 870 | 7.2
HMs in each generation and retained the top ten HMs at the
i of th r Th . Hisk te-allocati s386 || 60} 17l 618 || 780] 805 | 67506 775 | 789 | 3.5
. m- -
end ol the generation ne minmum-n sample-aflocatlon xsq00 || 847 | 899 [|46s60.0| 855] 888 |134028F 712 [857 | 8.4
strategy was used in learning. The 20 best HMs at the end of o | &3 | 573 Us79600 858 | 570 |t3sea6] 798 | €54 | 93
learnipg »:f;refseieﬁted f_;’;dfmfil venfxc;xt:(;nt.h five |) +s526 || 77.1 | 65.7 [liesasod 76.8 | 77.3 |172782F 700 | 771 | 100
Using the tive best HMs irom each ol the 1ve learning ex- 641 | 252 | 855 || 10800l 857 | 865 180143 850 | 861 | 195
periments, we evaluated the 25 HMs fully using ten random ol 57 [s1o | orz | 516 | 810 l2471a9] 813 | 810 | 230
seeds on the five subdomains used in learning and five new 20 | 53.1 | 956 [5796.0 w75 | 552 |ssoas0] 447 | 467 | 513
subdomains. We then selected one generalized HM to be used vz | 425 | 930 | e3360] 5.6 | 594 |s65262) 441 | 456 | 446
across the ten circuits. The generalized HM we have found is 11961l 950 | 997 | 918 || 939 | 952 |22aaad]| 920 | 041 [200
shown in Table XII. ve1238|| 907 | 946 || 1320 206 | 91.7 |26061.4f 882 | 802 [230
o1488 | 912 | 97.0 || 12060d] 04.4 | 963 [s7314.4f] 041 | 952 {856
TABLE XII +s1494f| 901 | 96.4 [687608 93.7 | 954 |88649.9] 932 | 941 | 855
HM PARAMETERS iN CRIS staaf| 70l 400 - | sss| 893 parosaq s20 | se3 |2104
Param. | Type | Range Step Definition Learned +s5378)1 65.8 1 70.3 - 71.5 | 73.7 |s60312.] 653 | 69 | 5018
Value am2910f| 83.0 | 850 - |l 85.4| 865 |pas233.4p 837 | 852 |3076 :
P int. 1-10 1 |felated to the 1 wavisll 750 | 720]| - || 806]| sus hersred 7o | sro {1499 +
number of stages tc100 | 70.8 | 805 _ | 758 | 768 baavsrq 726 | 750 [1638
iin a flip-flop Learned subdomains are marked by “*" and generalized subdomuins by
P, int. 1-40 1 sensitivity of 12 “+," The costs and fault coverages of.HIT EC are from the Iitemrurq, Costs
changes of state of our experiments are running times in seconds on a Sun SparcStation 3
¢ ﬁ fl 10/512, whereas costs of HITEC are running times in seconds on a Sun :
0 a- 1p-10p SparcStation SLC (around 4-6 times slower than a Sun SparcStation 10/512.
P int. 1-40 1 urvival rate of a 38
test sequence in
the next genera- TABLE XIV
tion SUMMARY OF COMPARISON OF QUR GENERALIZED HMs
P, float {1 0.1-100; 0.1 |no. of test vectors| 7.06 WITH RESPECT T0 HITEC AND CRIS
concatenated to Our HM wins/ties Generalized HM Learned HM
form a new veetor, with respect to
Py int. | 50-800 | 10 [umberof useless| 623 the following || Max. FC | Avg FC | Max FC | Avg FC
trials before quit- HITEC 6 1 2.0 72 6 0
> — 1% 1 ““gb - 1 CRIS 16, 1 1,0 || 20,0 15,0
mi. v number of gen-
5) B Both HITEC 5,2 3,0 7,2 5.0
lerations and CRIS
-1, . es ar . - - 5 S
Py float 0.1-1.0 0.1 o;v ger} h e 01 The first number in each entry shows the number of wins out of 20 circuits,
P 1ce-d in the and the second, the number of ties.
enetic algorithm
Ps mt. any 1 fseed for ﬂ;e ran- - Table XIV summarizes the improvements of our learned
;)a'::}?um et gen- and generalized HMs as compared to the published results of

The type, range, and step size were recommended 1o us by the designer of CRIS.

CRIS and HITEC. Each entry of the table shows the number of
times our HM wins (and ties) as compared to the method(s) in
the first column. Our results show that our generalized HM
wins five out of 20 circuits as compared to the best fault cov-

WAH ET AL.: GENETICS-BASED LEARNING OF NEW HEURISTICS: RATIONAL SCHEDULING OF EXPERIMENTS AND GENERALIZATION

erages of HITEC and CRIS. Learning can improve this further
to result in seven wins {and two ties) out of 20 circuits (albeit
much higher computational costs as compared to those of
HITEC and CRIS).

Our results are significant in the following aspects:

1) new faults detected by our generalized HMs were not
discovered by previous methods;

2) only one HM (rather than many circuit-dependent HMs)
was found for all the circuits.

D. Heuristics for VLSI Placement and Routing

In our last application, we use TimberWolf [27] as our
problem solver. This is a software package based on simulated
annealing to place and route various components (transistors,
resistors, capacitors, wires, etc.) on a piece of silicon. Its goal
is to minimize the chip area needed while satisfying constraints
such as the number of layers of poly-silicon for routing and the
maximum signal delay through any path. Its operations can be
divided into three steps: placement, global routing, and de-
tailed routing.

The placement and routing problem is NP-hard; hence,
heuristics are generally used. Simulated annealing (SA) used in
TimberWolf is an efficient method to randomly search the
space of possible placements. Although in theory SA con-
verges asymptotically to the global optimum with probability
one, the results generated in finite time are usually suboptimal.
As a resuli, there is a trade-off between quality of a result and
cost (or computational time) of obtaining it. In TimberWolf
version 6.0, the version we have studied, there are two parame-
Lérs 1o control the running time (which indirectly control the
quality of the result): fasi-n and slow-r. The larger the fast-n
is, the shorter time SA will run. In contrast, the larger the slow-n
is, the longer time SA will run. Of course, only one of these
parameters can be used at any time.

TimberWolf has six major components: cost function, gen-
erate function, initial temperature, temperature decrement,
equilibrium condition, and stopping criterion. Many parame-
ters in these components have been tuned manually. However,
their settings are generally heuristic because we lack domain
knowledge to set them optimally. In Table XV, we list the pa-
rameters we have studied. Our goal is to illustrate the power of
our learning and generalization procedures and to show im-
proved quality and reduced cost for the placement and routing
of large circuits, despite the fact that only small circuits were
used in learning.

In our experiments, we used seven benchmark circuits {17]
(5298, s420, fract, primaryl, struct, primary2, industriall).
Here, we have only studied the application of TimberWolf to
standard-cell placement, although other kinds of placement
(gate-array placement and macro/custom-cell placement) can
be studied in a similar fashion. In our experiments, we used
fast-n values of 1, 5, and 10, respectively. We first applied
TEACHER to learn good HMs for circuits s298 with fast-n of 1,
5420 with fast-n of 5, and primaryl with fast-n of 10, each of
which was taken as a jearning subdomain. We used a fixed
sequence of 10 random seeds (P, in Table XV) in each sub-
domain to find the statistical performance of an HM. Each

783

learning experiment involved 1,000 applications of Timber-
Wolf divided into ten generations. Based on the best 30 HMs -
(10 from each subdomain), we applied our generalization pro-
cedure to obtain one generalized HM. This generalized HM as
well as the default HM are shown in Table XV.

TABLE XV
PARAMETERS IN TIMBERWOLF {VERSION 6} USED IN Our HM
FOR LEARNING AND FOR GENERALIZATION

Pararm. Range Step Meaning Defanlt | Leamed
™M 0.1-2.5 0.1 |vertical path weight fo 1.0 0.9584
tiﬁmating the cost ,‘
nction
1 0.1-2.5 0.1 [vertical wire weight foxx 1.0 0.2315
tirnanang the cost
nction
P 3-10 1 |orientation ratio 6 10
Pa 03320 0.1 irange limiter window 1.0 1.2987
ichange ratio
bs 10.0-35.0 1.0 fhigh temperature 23.0 10.0416
Finishing point
Pe 50,0-99.0 1.0 fintermediate tempera-)| 81.0 63.6962
ture finishing point
)iz} 100.0-150.0] 1.0 [ow remperature 125.0 1 125.5509
finishing point
s 130.0-180.0) 1.0 ffinal iteration tern- 155.0 | 147.9912
: rature
P 0.29-0.59 | 0.01 [eritical ratio that 0.44 03325
determines accep-
ance probability
P 0.01-0.12 | 0.01 [temperature for con- 0.06 0.1124
oller um off
P integer 1 eed for the random - -
umber generator
T Y T =T T T
1k enaralized |
oy
4
g50.8 1 e
"3 default
0.6 b e
E ~
—
) S N
1 1] 1 1 1
0.5 1 1.5 2 2.5 3 a.s

Normalized Symmetric cost

Fig. 9. Comparison of normalized average performance between the defauit
and the generalized HMs. The plots are normalized with respect to the per-
formance of the baseline HM on each circuit using fast-n = 10. (See 2)).

Fig. 9 plots the quality (higher quality in the y-axis means re-
duced chip area averaged over 10 runs using the defined random
seedsy and cost (average execution time of Timberwolf) be-
tween the generalized HM and the default HM on all seven cit-
cuits with fast-n of 1, 5, and 10, respectively. Note that all per-

784 1EEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 7, NO. 5, OCTOBER 1995

formance values in Fig. 9 are normalized with respect to those of
fast-n of 10, and that the positive (resp., negative) portion of the
x-axes shows the fractional improvement (resp., degradation) in
computational cost with respect to the baseline HM using fast-n
of 10 for the same circuit. Each arrow in this figure points from
the average performance of the default HM to the average per-
formance of the generalized M.

Among the 21 test cases, the generalized HM has worse
quality than that of the default in only two instances (both for
circuit fract), and has worse cost in four out of 21 cases. We
see in Fig. 9 that most of the arrows point in a left-upward
direction, implying improved quality and reduced cost. Note
that these experiments are meant to illustrate the power of our
generalization procedure. We expect to see more improvement
as we learn other functions and parameters in TimberWolf.

VIL. CONCLUSIONS

In this paper, we have studied automated learning of per-
formance-related heuristics for knowledge-lean applications
using genetics-based learning methods. To sununarize, we
have derived the following results.

1) We have fouhd inconsistencies in performance evaluation
of heuristics due to multiple tests, multiple learning ob-
jectives, normalization, and changing behavior of heuris-
tics across problem subdomains. We have proposed
methods to cope with some of these anomalies.

2) We have studied strategies to schedule resources for tests
in learning. An improvement over previous strategies is
that our strategy is nonparametric and does not rely on
the underlying performance distribution of heuristics. We
have also proposed a scheduling strategy to cope with
one or more learning objectives. Our results show that
scheduling is important when tests are expensive and test
results are noisy.

3) We have studied methods to find good HMs that can

~ generalize to unlearned domains. Using a range-
independent measure called probability of win, we can
compare and rank heuristics across problem subdomains
in a uniform manner. In case that there are trade-offs
between cost and quality, our learning system will pro-
pose alternative heuristics showing such trade-offs.

4) We have found better heuristics for process mapping,
branch-and-bound search, test-pattern generation in cir-
cuit testing, and VLSI cell placement and routing..

There are several areas that we plan to study in the future.

1) One of these areas is the identification of problem sub-
domains for léarning and subspaces for generalization.
Since such demarcation is generally vague and imprecise,
we plan to apply fuzzy sets to help define subdomains
and subspaces. Fuzzy logic can also help identify heuris-
tics that can be generalized, especially when there are
multiple objectives in the application.

2) We plan to study metrics for performance evaluation be-
sides the average metric studied in this paper. One of
such metrics is the maximum metric that is useful when a

heuristic method can be applied multiple times in order
to generate better results at higher costs. This is also re-
lated to better generalization procedures that trades be-
tween improved quality and higher cost.

3) Finally, we plan to carry out learning on more applica-
tions. The merits of our system, of course, lie in finding
better heuristics for real-world problems, which may in-
volve many contradicting objectives. Our experience in
this paper is on an application with two objectives. To
cope with applications with many objectives, we need to
extend our scheduling and generalization strategies.

ACKNOWLEDGMENTS

The authors are indebted to Prof. C. V. Ramamoorthy who
processed the original submission in 1991 and the revised
submission in 1994. The authors would like to thank Dr. Jerry
Yan for letting us use his PostGame Analysis package de-
scribed in Section VI.A, The authors like to acknowledge Mr.
Yong-Cheng Li for interfacing TEACHER to TimberWolf and
for collecting some preliminary results in Section VI.D. The
anthors are grateful to Mr. Steve Schwartz who co-developed
the first version of TEACHER in 1991.

This research was supported in part by National Science
Foundation Grants MIP 92-10584 and MIP 88-10584 and Na-
tional Aeronautics and Space Administration Grants NCC 2-
481, NAG 1-613, and NGT 50743 (NASA Graduate Fellow-
ship Program).

REFERENCES

[1] D.H. Ackley, A Connectionist Muachine for Genetic Hill-Climbing.
Boston, Mass,: Kluwer Academic, 1987.

[2] AK. Aizawa and B.W. Wah, “Scheduling of genetic algorithms in a
noisy environment,” Eva!urionary Computation, vol. 2, no. 2, pp. 97-
122, 1994. .

[31 AN. Aizawa and B.W. Wah “A sequential samplmg procedure for -
genetic algorithms,” Computers and Mathematics with Applications, *
vol. 27, no. /10, pp. 77-82, May 1994,

[4] R.E. Bechhofer, “A single-sample multiple-decisiocn procedure for
ranking means of normal populations with known varances,” Ann.
Muath. Statist., vol. 25, no. 1, pp. 16-39, Mar. 1954,

[5] R.E. Bechhofer, A.). Hayter, and A.C. Tamhane, “Designing experi-
ments for selecting the largest normal mean when the variances are
known and unequal: Optimal sample size allocation,” J. Statistical
Planning and fnference, vol. 28, pp. 271-289, 199].

[6] L.B. Booker , D.E. Goldberg, and J.H. Holland, “Classifier systems and-
genetic algorithms,” Machine Learning: Paradigm and Metkods, 1.
Carbonell, ed., MIT Press, 1990, - -

[7]1 L.-C.Chu and B.W. Wah, “Optimization in real time,” Proc. Real Time 4
Systems Symp., pp. 150-159, Nov. 1991,

[8] L.-C. Chu, “Algorithms for combinatorial optimization in real time and
their sutomated refinement by genetic programming,” PhD thesis, Dept. of 3
Electrical and Computer Eng., Univ. of #llinois, Urbana, 1L, May 1994. 3

(9] J.L. Devore, Probability and Statistics for Engineering and the Sci-g
ences. Monterey, Calif.: Brooks/Cole, 1982, g

[10] LM, Fitzpatrick and J.J. Grefenstette, “Cenetic algorithms in noisy enviy
ronments,” Machine Learning, vol. 3, no. 2/3, pp. 101-120, Oct. 1988.

[£1] CM. Fonseca and P.). Fleming, “Genetic algorithms for multiobjective
optimization: Formulation, discussion, and generalization,” Proc. Fifth§
Int'l Conf. Genelic Algorithms, pp. 416-423, June 1993, E

[12] F.W. Gembicki, “Vector optimization for control with performance ancs
parameter sensitivity indices,” PhD thesis, Case Western Reserve Uni¥ ;:'
Cleveland, 1974. '

. WAHET AL.: GENE

[13]

e [i4]
[15]

{16]
£
[18]

1191

20
21]

[22]

[23]
(24
{23
[26]

27
(28]

[29]

(301

(311

32

(33

3.]. Grefenstette, C.L. Ramsey, and A.C. Schultz, “Learning sequential
decision rules using simulation models and competition,” Machine
Learning, vol. 5, pp. 355-381, 1990,

A. lenmwananonthachai, AN. Aizawa, S.R. Schwartz, B.W. Wah, and
1.C. Yan, “Intelligent mapping of communicating processes in distrib-
nted computing systems,” Proc. Supercomputing ‘91, pp. 512-521, Al-
buquerque, N.M., Nov. 1991.

A. leumwananonthachai, A. Aizawa, S.R. Schwartz, B.W. Wah, and
1.C. Yan, “Intelligent process mapping through systematic improvement
of heuristics,” J. Parallel and Distributed Compuiing, vol. 15, pp. 118-
142, June 1992,

IR. Koza, Genetic Programming. Cambridge, Mass.: MIT Press, 1992,

LayoutSynth92, International Workshop on Layout Synthesis, ftp site:
menc.menc.org in directory fpub/benchmark, 1992.

ML.E. Lowrie and B.W. Wah, “Learning heuristic functions for numberic
optimization problems,” Proc. Computer Saftware and Applications
Conf., pp. 443-450, Chicago, Oct. 1988,

P. Mehra and B.W. Wah, Load Balancing: An Automated Learning
Approach. World Scientific Publishing Co. Pte. Ltd., 1995,

A. Newell, 1.C. Shaw, and H.A, Simon, “Programming the logic theory
machine,” Proc. 1957 Western Joint Computer Conf., pp- 230-240,
1957.

T M. Niermann and J.H. Patel, “HITEC: A test generation package for
sequential circuits,” European Design Automation Conf., pp. 214-218,
1991,

). Pearl, Heuritstics—Intelligent Search Strategies for Compuler Prob-
{em Solving. Reading, Mass.: Addison-Wesley, 1984

C.L. Ramsey and 1.J. Grefenstette, “Case-based initialization of genetic
algorithms,” Proc. Fifth int’t Conf. Genetic Algorithms, pp. 24-91, June
1993.

D.G. Sagh, Y.G. Saab, and J.A. Abraham, “CRIS: A test cultivation
program for sequential VLSI circnits,” Proc. Int'l Conf. Computer
Aided Design, pp. 216-219, Santa Clara, Calif., 1992.

§.R. Schwarta and B.W. Wah, “Autortated parameter tuning in stereo
vision under time constraints,” Proc. Int’l Conf Tools for Artificial In-
telligence, pp. 162-169, Nov. 1992,

C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf placement
and routing package,” J. Solid-State Circuits, vol. 20, no. 2, pp. 510-
522, 1985,

C. Sechen, VLS[Placement and Global Routing Using Simuluted An-
nealing. Boston: Klawer Academic, 1988.

R.S. Sutton, “Temporal credit assignment in reinforcement learning,”
PhD thesis, Univ. of Massachusetts, Amherst, Mass., Feb. 1984.

C.-C. Teng and B.W. Wah, “An automated design system for finding
the minima} configuration of a feed-forward neural network,” Int'l Conf.
Neural Networks, vol. 3, pp. 1,295-1,300, June 1994.

Y.L. Tong and D.E. Wetzell, «allocation of cbservations for selecting
the best normal population,” Design of Experiments: Ranking and Se-
lection, T.). Santner and A.C. Tamhane, eds., pp. 213-224. New York:
Marcel Dekker, 1984.

B.W. Wah, “Population-based learning: A new method for learning
from examples under resource constraints,” [EEE Trans. Knowledge
and Data Engineering, vol. 4. no. 5, pp. 454-574, Oct. 1992.

1.C. Yan and S.F. Lundstrom, “The Post-Game analysis framework—
developing resource management strategies for concurrent systems,”
[EEE Trans. Knowledge and Data Engineering, vol. 1, no. 3, pp- 293-
309, Sept. 1989.

CF. Yu and B.W. Wah, “Learning dominance relations in combinato-
rial search problems.” (EEE Trans. Software Engineering, vol. 14,
no. 8, pp. 1,155-1,175, Aug. 1988.

TICS-BASED LEARNING OF NEW HEURISTICS: RATIONAL SCHEDULING OF EXPERIMENTS AND GENERALIZATION

785

Benjamin W. Wah received his PhD degree in
computer science from the University of California,
Berkeley, in 1979. He is currently a professor in the
Departrent of Electrical and Computer Engineering
and the Coordinated Science Laboratory of the Uni-
versity of Hlinois at Urbana-Champaign. Previously,
he served on the faculty of Purdue University (1979-
£3), as a Program Director at the National Science
Foundation (1988-89), as Fujitsu Visiting Chair
Professor of Intelligence Engineering, University of
Tokyo (1992), and McKay Visiting Professor of
Electrical Engineering and Computer Science, University of California, Ber-
keley (1994) In 1989, he was awarded a University Scholar of the University
of lllinois. His current research interests are in the areas of parallel and dis-
tributed processing, data and knowledge base management, artificial intelli-
gence, and nonlinear optimization.

Dr. Wah is editor-in-chief of [EEE Transactions on Knowledge and Dat
Engineering, and serves on the editorial boards of Journal of Parallel and
Distributed Computing, Information Sciences, International Journal on
Artificial Intelligence Tools, and Journal of VLS! Signal Processing. He has
chaired a number of conferences and will chair the 1996 International Con-
ference on Neural Networks. He served the IEEE Computer Society as a
member of its Governing Board, and is currendy serving on the [EEE-CS
Publications Board, Press Activities Board, and Fellows Committee, and as a
society representative to the (EEE Neural Network Council.

Arthur Jeumwananonthachai received his BS
degree in electrical engineering and computer sci-
ence from the University of Washingtion, Seattle, in
1986; and his MS degree in computer science from
the University of California, Los Angeles, in 1988,
Since then, he has been working toward his PhD
degree in electrical and computer engineering at the
“University of Illinois, Urbana-Champaign, under the
supervision of Prof. Benjamin Wah. His research
interests include computer networks, distributed
systems, and machine learning.

Lon-Chan Chu received his BS degree in electrical
engineering from the National Taiwan University in
1985, and his MS and PhD degrees in electrical and
computer engineering from the University of lilinois
at Urbana-Champaign in 1991 and 1994, respec-
tively. He joined Microsoft Corporation in 1893, His
research interests include real-time intelligent sys-
tems and real-time embedded systems.

Akiko N. Aizawa received her BS degree in 1985,
MS degree in 1987, and PhD degree in 1990, all in
electrical engineering from the University of Tokyo.
Since 1990, she has been with NACSIS (National
Center for Science Information System), Japan.
During 1990-92, she was a visiting researcher at the
University of llinois at Urbana-Champaign. Her
research interests include stochastic optimization
methods, knowledge engineering. networked infor-
matien, and communication protocols.

