International Journal on Artificial Intelligence Tools, Vol. 1 No. 3 (1992) 369-397
@® World Scientific Publishing Company

COMBINATORIAL SEARCH ALGORITHMS WITH
META-CONTROL: MODELING AND IMPLEMENTATIONS

BENJAMIN W. WAH and LON-CHAN CHU
Center for Reliable and High Performance Computing, Coordinated Science Laboratory

University of Hllinois at Frbana-Champaign, 1101 West Springficld Avenue, Urbane,
Hlinois 61801, USA

Received 29 January 1992

ABSTRACT

In this paper, we model search algorithms with meta-control, allowing resource con-
straints, approximation, and parallel processing to be incorporated easily in the search
process. The basic building block of the model js a hierarchical search process (HSF)
consisting of context-free and context-sensitive grammars classified according to problem-
independent and problem-dependent parts. The context-sensitive components are used
mainly for evaluating decision parameters and in ordering production rules in the context-
free grammar. The execution of the grammars for given initial conditions may invoke
other HSPs already defined in the system. We describe ISE (acronym for Integrated
Search Envirenment}, a tool that implements hierarchical searches with meta-control.
By separating the problem-dependent and problem-independent components in I1SE, new
search methods based on a combination of existing methods can be developed easily by
coding a single master control program. Further, new applications sclved by searches
can be developed by coding the problem-dependent parts and reusing the problem-
independent parts already developed. We describe the organization of ISE and present
experiments carried out on the system.

Keywords: Approximation search, heuristic search, hierarchical search process, meta-
control, Teal-time constraints, and resource constraints.

1. Introduction

Search, an important and powerful method for solving problems in artificial
intelligence and operations research, has been modeled extensively in previous re-
search. The earliest model for representing problem solving is due to Karp and Held
[7], who developed the discrete decision process using finite antomata for solving
discrete optimization problems. Gnesi, Martelli, and Montanari (5] later formulated
search as the traversal of an acyclic AND/OR graph in a bottom-up fashion. Ku-
mar and Kanal [11] developed the composite decision process (CDP) that models
search spaces by context-free grammars. Recently, Helman [6] formulated search as
an algebraic combinations of conjuncts.

Previous schemes aim at modeling solution spaces or search spaces but not
search algorithms; hence, they are models of search problems from different aspects.

369

470 B. W. Wah # L.-t! Chy

These schemes can be augmented to represent search algorithms, although the re.
sulting representations are usually too complex to be useful, especially for searcheg
involving meta-control. Searches with meta-control include iterative or recursive
searches built from olher search methods, and searches under resource constraints.
Iixamples of the former include iterative deepening A* (IDA¥) [8], dynamic-contro]
IDA* (MIDA*) {18], 3FS* [15], and iterative refining A* (IRA*) [14] while exam.
ples of the latter are real-time A* (RTA*) [9], time-constrained A* (TCA*) [16],
time-constrained guided depth-first search (TCGD) [17), and real-time search (RTS)
[4).

Our goal in this paper is to develop a basic module, called the kierarchical search
process (HSP), that can be used as a building block of search algorithms with meta-
control. We represent such search algorithms as a hierarchy of invocations of HSPs.
This representation is natural because many new and efficient search algorithms
can be built by composing existing search algorithms. Instead of representing such
composite search as a single task, modeling using HSPs provides a uniform way
for representing meta-control of more primitive searches and for providing standard
interfaces hetween calls and returns of Primitive searches. Such a representation
corresponds to the notion of software reusability, in which complex searches can be
butlt by calling primitive searches in a library.

The HSP we develop can be decomnposed according to the type of formal lan-
guages that are nsed (o represent its functions. We have chosen to decompose
a module into components that can be represented by context-free and context-
scnsitive grammmars. The context-free component represents the framework of the
scarch, while the contex(-sensitive component evaluates the state of the search and
provides guidance to the context-free component. The latter may include the eval-
uation of parameters for controlling the search, ordering of production rules in the
grammars, and evaluating solutions based on parameters of the problem instance
solved. All these clements are related to the dynamic state of resources and past
performance of the search in progress,

The separation of the grammars for representing functions in a HSP into context-
scusitive and context-free components defines clearly information that can be var-
ied according to the enyironment or the problem instance being solved. Context-
sensitive components include information on resources available and properties that
depend on parameters of the problem instance being solved (such as the computa-
tion of the lower-bound value), whereas context-free components define the search
algorithm or problem. This separation, therefore, distinguishes definitions from
implementation details.

The context-free and context-sensitive components are further decompased into
a problem-dependent part, like branching and evaluation function, and a problem-
independent part, like search control and performance monitoring. This separation
simmplifies the development of new search algorithms and the support of new ap-
plications using search. ' developing a new search algorithm, only the problemn-
inaspendent parts ueed g be added, and all existing applications can be used to

Combinatorial Searck Algorithms with Meta-Conirol: ... an

test the new search method. On the other hand, in developing a new application us-
ing search, only the problem-dependent parts need to be enhanced, and all existing
search algorithms can be applied and tested.

Our implementation of the HSP is ISE (acronym for Integrated Search Environ-
ment), a versatile tool for applying search on different applications and for devel-
oping and testing new search methods [2}. The design goals of ISE include a) par-
titioning of search algorithms and applications in such a way that new apphcation-
independent search methods can be added without affecting existing ones and that
new applications can fully utilize search methods already coded, b) collection of
statistics for performance evaluation and tuning, and c¢) provision of a user-friendly
interface. Our system allows complex meta-control above the original branch-and-
bound algorithm to be modeled, especially those involving dynamic resource control.
By compiling routines from the problem-dependent and problem-independent direc-
tories, a single program implementing various search algorithms for solving a given
application can be generated.

ISE supports finding solutions for optimization and decision problems. An opti-
mization problem entails the search of the optimal solution in the feasible-solution
space, whereas a decision problem requires a “yes” or “no” answer to the ques-
tion raised. The search methods supported by ISE include approximate, resource-
constrained, sequential, or concurrent OR-tree and AND-tree searches. By using
appropriate primitive searches, AND/OR-graph searches can also be supported.

This paper is organized into five sections. Section 2 describes the background
on search problems. Section 3 describes our model and illustrates it by representing
various search algorithms with meta-control. Section 4 describes the software archi-
tecture of ISE, We present a) issues on search control, memory management, user
interface, and concurrent searches, b) metheds for coding search algorithms and
applications, and ¢) our experience on programming and experimentation. Finally,
concluding remarks are drawn in Sec. 5.

2. Background

In this section, previous work on search is described. The first subsection
presents terminologies in search. This is followed by a description of methods for
modeling and representing search problems, and techniques for assessing the quality
of a search algorithm,

2.1. Search

Search is the process of traversing a search tree or search graph in order to find
a solution that optimizes the given objective, while satisfying the given constraints.
The branch-and-bound {B&B) search [10] is a general search algorithm consisting of
four componenis: a} selection rules that select the node to expand next; b) pruning
rules that prune inferior nodes according to approximation degree, thresholds, or
dominance; ¢) decomposition rules that expand a search node; and d) termination

372 B. W. Wah & L.-C. Chu

rules that determine when the search should be stopped. Note that each of these
rules may involve problem-independent and problem-dependent elements.

A B&B search can be used as a building block for more complex searches em-
ploying meta-control. For example, an IDA* search (8] can be formulated as a se-
quence of depth-first B&B searches, while the RTS algorithm [3] can be considered
as a sequence of guided depth-first B&B searches with proper selection of pruning
mechanisms in between two consecutive searches. Meta-control, like the basic com-
ponents of a B& B search, may involve problem-independent and problem-dependent
components,

The problem-independent component of a search can further be divided into
context-free and context-sensitive parts. Rules in the contexi-free part are inde-
pendent of the environment, while rules in the context-sensitive part depend on the
state of the environment and/or progress of the search. Here, the environment refers
to the state of the dynamic variables involved in controlling the search, resources
remaining, and historical behavior. For example, in the RTS algorithm [3], the se-
lection of pruning mechanism is context-sensitive because it depends on the resource
remaining and the past performance observed. In contrast, the meta-control of RTS
algorithm that specifies a sequence of guided depth-first searches is context-free.

Similarly, the problem-dependent component can also be divided into context-
free and context-sensitive parts. For example, a decomposition rule may involve
selecting an attribute of a search node to decompose (which is context sensitive)
and break a node into smaller nodes {which is context, free). Similarly, a pruning
rule may invaolve context-sensitive parts (such as the incumbent value collected at
run time} and context-free parts (which terminate a node by approximation or
thresholding).

In general, a search algorithm can be considered as a hierarchy of search pro-
cesses, each controlled by processes up in the hierarchy. For this reason, we call
a search process in this hierarchy a hierarchical search process (HSP). The above
discussion also shows that a HSP can be divided into four components with respect
to problem dependency and context sensitivity. The HSP is discussed formally in
Sec. 3.

2.2. Model of search problems

The discrete decision process {(DDP} of Karp and Held (7] is a ternary tuple.
DDP = (%, ©, ¢), where ¥ is a finite alphabet, {2 1s the set of all feasible strings from
alphabet ¥, and ¢ is an assessment function defined over . ¢ can be real-valued
or integer-valued for optimization problems, or can give a “yes” or “no” answer for
decision problems. In traditional optimization problems, T represents the set of
solution enfities that are elements for constructing solutions, corresponds to the
space of feasible solutions, and ¢ is a cost or utility function. Note that DDP is a
model of problems rather than a search process, since the method for generating Q
is not defined.

&
&
|
;

Combinatorial Search Algorithms with Meta-Control: ... 373

To model the generation of (2, Kumar and Kanal proposed a composite decision
process (CDP) [11), consisting of a context-free grammar as the key component. A
context-free grammar is a 4-ary tuple G = (N, T, P, 5), where N is a finite set
of nonterminal symbols, T is a finite set of terminal symbols, P is a finite set of
production rules, and S is the start symbol. Each production rule is of the form
o« — 3, where a is a symbol in N, and 3 is a string of symbols from (N UT). A
CDP is a ternary tuple,

CDP = (G(N, T, P, 5}, ¢V, ¢7) , (2.1

where ¢ and ¢7 are assessment functions associated with nonterminal and terminal
symbols respectively. Note that the search process is primarily specified by the
generating grammar G, and that the terminal symbols in the generating grammar
are solution entities.

The search process can be characterized by the derivation tree derived from
the generating grammar such that each nonterminal node in the derivation tree
corresponds to a nonterminal symbol in the grammar, and that branching from
this nonterminal node corresponds to a production rule in which the nonterminal
symbol appears on the left-hand side. Likewise, each terminal node corresponds to a
terminal symbol. Without ambiguity, nodes and symbols are used interchangeably
henceforth. Consider nonterminal node n and its corresponding production rule
Pn — G147 ...ag, ¢ (n) is defined as

QSN(n) & an(¢N(al): ¢N(a2)1 LRI ¢N(ak)) y (22)

where f,, is the cost function associated with production rule py.

Note that the previous models can express either explicit enumeration (enumer-
ating solutions one by one) or implicit enumeration (enumerating solutions via a
search graph). Explicit enumeration may require much more time than implicit
enumeration because the former cannot apply pruning to reduce the search space.
The DDP represents explicit enumeration since enumeration is carried out over set
), whereas the CDP is more like an implicit enumeration since the feasible space
can be derived systematically by the generating grammar. In this sense, the DDP
is a model for representing problems, whereas the CDP is for representing scarch
spaces.

2.3. Problem transformations

The target problems we study in this paper are combinatorial search problems
consisting of a set of objectives to achieve and a set of problems and resource
constraints. In this paper, we consider only state-space searches.

Combinatorial search problems can generally be classified as decision problems,
optimization problems, and feasibility problems. A decision problem returns a “yes”
or “no” answer to the question raised; an optimization problem finds the optimal

ot -t ot ¢

374 B. W. Wak & L.-C. Chu

solution optimizing the objective; and a feasibility problem finds n feasible solutions
regardless of quality. Without loss of generality, we only consider minimization
problems in our discussion, as all problems can be transformed into minimization
ones using techniques described in this section.

2.3.1. Transforming maximization problems to minimization problems

A maximization problem P* can be characterized by a set of problem variables
VM a set of problem constraints CM, and an objective function M (VM) The
problem is specified as Mooar

e 0 @
such that CM are satisfied
Let ¢ be the assessment function in the search, and ¢7, ¢%, ¢V, and ¢% be the
corresponding assessment functions for terminals, nonterminals, upper bounds, and
lower bounds respectively.

A maximization problem can be transformed into a minimization problem P™
that is characterized by a set of problem variables V™ = VM 4 get of problem
constraints C™ = CM and an objective function ¥™(V™) = —¢pM(VM), A mini-
mization problem is, therefore, specified as

; meymy Moy My MM
min 7 (V™) = min —yT(VH) = max M (V) (2.4)
such that C™ are satisfied .

An example of an assessment function is the approximation degree, which for
minimization problems is formulated as

U-1L
=

7

(2.5)

where U and L are the upper and lower bounds respectively. For a minimization
problem, the lower bound is an under-estimate of the solution value, and the upper
bound may be either an over-estimate or the value of a feasible solution. In contrast,
for a maximization problem, the upper bound is an over-estimate of the solution
value, and the lower bound may be either an under-estimate or the value of a feasible
solution. To retain the same interpretation of the degree of approximation ™ for
maximization problems, ¢ is formulated as

o _U—1L

= T (2.6)

Besides negating the objective function in transforming a maximization problem
to a minimization problem, the upper and lower bounds need to be negated as well.
The degree of approximation ¢* for the transformed problem (i.e., a minimization
problem) becomes

el G0 UL
i /R R 27

Combinatorial Search Algorithms with Meta-Contral: ... 375

where —L and —U are, respectively, the upper and lower bounds in the transformed
problem.

2.3.2. Transforming decision problems to optimization problems

A decision problem is one whose solution 1s either “yes” or “no.” Omnce a solution
is found, the problem is solved. Define a completeness function F(s) to measure the
completeness of a proposed solution s such that

F(s)=1, ifsis a feasible solution ; {2.8a)

F(s) =0, ifsistheroot; {2.8.b)
'

F(s) = l—i~§—(-'—g—l, if 5 is not a feasible solution (2.8.c)

Note that s’ is a parent node of s during the search. In this way, solving a decision
problem is equivalent to solving a maximization problem with ¢T(s) defined in
Eq. (2.8.2) and ¢V (s) defined in Egs. (2.8.b) and (2.8.c). The optimal value is 1.

2.3.3. Transforming feasibility problems to optimization problems

A feasibility problem is one that finds n feasible solutions regardless of their
quality. Once these solutions are found, the problem is solved. Define a completeness
function F(s) to measure the completeness of the n sclutions snuch that

F(s) = %, if s is the k' feasible solution ; (2.9.2)
F(s) =0, if no solution is found yet . (2.9.b)

In this way, solving a feasibility problem is equivalent to solving a maximization
problem with ¢7 (s) defined in Eq. (2.9.a) and ¢V (s) defined in Eq. (2.9.b). The
optimal value is 1.

2.4. Methods for assessing solution quality

There are four popular metrics for assessing solution quality: approximation,
accuracy, completeness, and belief. In the following, we assume the assessment
values are positive.

Degree of Approximation. The degree of approzimation ¢ indicates the de-
viation of the solution s obtained from the optimal solution s*. For a minimization
problem,

114

¢7(s) ~ 7 (s7)
€ 5T(5) , (2.10)

while for a maximization problem,

¢7(5*) — ¢7 (s)
T (s%) '

>

(2.11)

376 B. W. Wah & L.-C. Chu

In minimization problems, the pruning rule due to approximation determines that
symbol s; is inferior to symbol s; and prunes s, when

¢t (s1) > f(_f_(_s_%l

2.12
s Bl (2.12)

where ¢* and ¢V denote the lower and upper bound functions respectively. Like-
wise, for a maximization problem, s; can be pruned when

¢V (s1) < ¢ (s2)/(1 —¢) . (2.13)

The solution obtained is guaranteed to have approximation degree € if the search
was started with an approximation degree € and used pruning rule (2.12) (or (2.13))
for minimization (or maximization) problems. In fact, the actual solution obtained
should have an approximation degree better than or equal to £ because the optimal
solution is unknown during the course of the search process, and ¢Y(s2) in Eq. (2.12)
for minimization problems (or ¢*(s2) in Eq. {2.13) for maximization problems) is
usually inferior to the optimal solution. The degree of approximation of the optimal
solution is 0.

Degree of Accuracy. The degree of accuracy o indicates how close is s, the
solution obtained, to s*, the optimal solution. For a minimization problem,

s 07 (s")
27 2.14
while for a maximization problem,
T
(@4 % E‘:-(i)“ . (215)
()

In minimization problems, symbol s; is considered inferior to symbol sg with
respect to the degree of accuracy and can be pruned if

¢ (s1) > a x ¢V (s3) . (2.16)

Likewise, for maximization problems, s, = pruned when

Y (sy) < ¢8(s2) (2.17)

The solution obtained is guaranteed 1o have accuracy degree o if the search
was started with an accuracy degree o and used pruning rule (2.16) (or {2.17)) for
minimization (or maximization) problems. The solution obtained should have an
accuracy degree better than or equal to o because the optimal solution is unknown
during the course of search, and ¢Y(s3) in Eq. (2.16) for minimization problems (or
' (s2) in Eq. (2.17) for maximization problems) is usually inferior to the optimal

S0
nc
de

m o n

Combinatorial Search Algorithms with Meta-Control: .., 377

solution. The accuracy degree is a value between 0 and 1 if ¢7, ¢, and ¢V are
non-negative. The degree of accuracy of the optimal solution is 1. Note that the
degree of accuracy is related to the degree of approximation by

l—-a

£= for minimization , (2.18a)

[a]

e=l—o for maximization . (2.18b)

Degree of Completeness. The degree of completeness x indicates the com-
pleteness of the solution s obtained by the search process. The solutions obtained
may be incomplete because all resources were expended and the search has to be
terminated prematurely. Typical examples can be found in robotic routing against
deadlines [13]. The degree of completeness is a value between 0 and 1. A complete
solution has a completeness degree of 1,

Degree of Belief. The belief degree 3 indicates heuristically or statistically
the belief that solution s found by the search is the one desired. This is useful in
searching in a fuzzy environment, and when various heuristics are scheduled against
a deadline. The degree of belief is a value between 0 and 1. A totally confident
solution has a belief degree of 1.

Thresholding. In a minimization problem with threshold ¢, a node with lower
bound larger than @ is pruned. The pruning rule used in search with thresholding
is

¢L(s) > 8. (2.19)

Note that searches using degree of completeness or belief can be transformed into
searches with thresholding by maximizing the solution value in terms of the com-
pleteness or belief degree.

3. Search algorithms with meta-control

In this section, we propose a model for search algorithms with meta-control and
illustrate the model by showing the formulations of familiar search algorithms.

A previous model that represents search spaces is the CDP. CDPs are, how-
ever, inadequate in modeling search algorithms, especially those with rmeta-control.
A CDP has one context-free grammar for characterizing context-free search con-
trol, including the problem-dependent and problem-independent parts. Hence, in a
search with meta-control in which one component may call other basic search algo-
rithms, a single context-free grammar implementing the entire control may result
in complex interactions between the context-free and context-sensitive parts.

A better model to represent search algorithms with meta-control, such as IDA¥*,
RTS, MIDA* and IRA*, is a hierarchical model in which grammars associated
with each control mechanism are partitioned. In the next section, we present the
hierarchical search process.

378 B. W. Wah & L.-C. Chu

3.1. Hierarchical search process

We model the basic building block of a search algorithm as a Hierarchical Search
Process (HSP) that consists of four components:

(i) PI/CF: problem-independent context-free component,

(i) PI/CS: problem-independent context-sensitive component,
(iii) PD/CF: problem-dependent context-free component, and
(iv) PD/CS: problem-dependent context-sensitive component.

Figure 1 shows the four components and their interactions in terms of flow of
information from one component to another. The PI/CF component is the entry
point to the search, representing the definition (or framework) of the search algo-
rithm involved. It invokes the PI/CS and PD/CS components. The former uses
specific problem-independent control information in the search, such as the sta-
tus of resources, while the latter represents the definition of the application to be
solved. The last component, PD/CS, involves application-specific information, such
as assessments and past performance obtained in the application.

PROBLEM DEPENDENCE
Independent dependent
PI/CF PD/CF
D e context-free
T I CONTEXT
l l SENSITIVITY
[P
context-sensitive
PI/CS PD/CS

Fig. 1. The four components of a hierarchical search process. Arrows indicate interactions in terms
of flow of information from one component to another.

The context-sensitive component in the definition of the HSP can be viewed as
a mechanism for selecting production rules specified in the context-free grammars.
In other words, the search isolates the context-free grammars from the context-
sensitive search controls by employing the latter to carry out context-sensitive re-
solution on the former. A search can, therefore, be viewed as a tree derived from
the generating grammar specifying the PI/CF search control resolved according
to the PI/CS component. A leaf of this tree consists of a context-free grammar
specifying the PD/CF search control, the PD/CS component, and a finite set of
initial conditions.

The execution of the grammars defined in a HSP may result in the invocation of
grammars defined in other HSPs. If a HSP does not invoke other HSPs, it is called

Fi
im
fre

Combinatorial Search Algorithms with Meta-Control: ... 379

P oCs _CF _CS
HSPy .10 PLa Pl L)

Fig. 2. Hierarchy of calls generated when HSF; 1 is invokad. (A dotted box indicates all the HSPs
invoked when the root of the subtree is invoked. A horizontal arrow indicates the fow of results
from one HSP to another.}

a primilive search. Examples of primitive searches are depth-first and best-first
searches. Figure 2 shows an example of the sequence of HSPs called when HS Py ;
is called. HSP),1 invokes four other HSPs, where HS P2y and HS5 Py 3 are primitive
searches, and HSPy 3 and HS5P3 4 each invokes two other primitive searches.

Formally, a hierarchical search process (HSP) is defined as a mapping from a
quinfuplet to a triplet,

HSP: (v, & R)— HSP(ICF, I°%, P°F, P°% L), (3.1)

where ICF, I€S PCF and PSS specify, respectively, the PI/CF, PI/CS, PD/CF,
and PD/CS grammars, and L is a finite set of initial conditions specifying the envi-
ronment, such as the initial conditions of the resources and the problem parameters
when the search is started. Note that L can be considered as part of the context-
sensitive component of the HSP. However, we separate it from the context-sensitive
component because we wish to distinguish the context-sensitive component from
inputs supplied initially by users.

Each of the context-free grammars in Eq. (3.1) is defined by a 4-ary tuple
(NS, 7€ PG, %), where N is a finite set of nonterminal symbols, T9 is a finite
set of terminal symbols that are solution entities used in constructing a solution,
PG is a finite set of production rules, and 56 is the start symbol.

380 B. W. Wah & L.-C. Chu

The PI/CF grammar defines the generation of child HSPs. For example, in
Fig. 2, the PI/CF grammar of HSP;; “calls” the PI/CF grammars of HSP;),
}{SPQ,Q, }ISPQ'a, and I'ISPQ';;.

The context-sensitive components in Eq. (3.1) include PD/CS elements that
make decisions based on performance, such as the branching function, and those
that schedule the search according to a predefined schedule, such as the depth of
the lookahead horizon in the RTA* search. They also include PI/CS elements that
schedule the search according to the resources available and past performance, such
as the strategy used in MIDA* [18] that sets thresholds based on resources remaining
and past performance.

A HSP returns a triplet (v, ®, R), where v is the solution if available, ® is a
finite set of assessment values, such as quality of the solution and any performance
estimates, and R is a specification of the resources remaining. The returned triplet
can be used by a subsequent HSP as inputs. The arrows in Fig. 2 indicate the flow
of results from one HSP to another.

Our formulation defined here is powerful enough to characterize different parsing
conditions and search graphs in a top-down or bottom-up fashion. In a top-down
search, the original problem representation (symbol S) is decomposed into subprob-
lem representations, which are repeatedly decomposed until a solution is found or
infeasibility is proved. It is used in searches like A*, AO*, and branch-and-bound
search. In contrast, in a bottom-up search, the solution associated with each sym-
bol is successively refined until the solution associated with the start symbol § is
solved. The search can also be characterized by the type of search graph it generates,
namely, an OR tree, an AND tree, or an AND/OR graph. This characterization is
implicitly represented in the generating grammar.

3.2. Search algorithms modeled using HSPs

In this section, we model a number of familiar search algorithms using HSPs.
These include a simple search (depth-first search), an iterative search (IDA*) [8], a
resource-constrained search (RTA*) [9], and a resource-constrained iterative search
(RTS) [3]. In each case, we model the primitive search and its meta-control as HSPs
and describe the PI/CF, PI/CS, PD/CF, and PD/CS components and ternary tuple
returned in each HSP. We use the traveling salesperson problem (TSP) as the target
application.

The depth-first search is an example of a simple search. Figure 3 shows a depth-
first search modeled using HSP in solving a TSP instance. In this example, we
have initial conditions that include the pruning mechanism, solution requirements,
resource constraints, and inputs. The depth-first search is divided into four compo-
nents according to the problem dependence and context sensitivity. The returned
triplet is not shown in the example.

We use the IDA* as an example of iterative search. In IDA*, the PI/CF compo-
nent of IDA*’s meta-control HSP consists of a grammar that defines a sequence of

B

T e S R PR

Combinatarial Search Algorithms with Meta-Control: . .. 381

Depth-First Search Algorithm

i | Inltlal Cenditions

Resource Constralnts: Context: :
time: none, initial incumbent: none, i

H space: inlinite, threshold: none, H
: PTOCessor: one. degree of approximatlon: zero. :
' Problem Independent Context-Free Components Pmblem-i)-e-_;a:r_:;i:n-:"x:
[PucE 1 [PoicF :
5 G(N,T,P,S) ‘

afs = GIN,T.P,$) N={R[]1=1, wsn}

T={r[Jl | hi=1, epn} H
P={ P1: RIL1}-->rfl,E}; :
P2: R[k] --> r[i,J] R[k-1] }

S=R{n] H
i 4 AN
! Problem Independent | Contexe-Sensitive Components | proptem Dependent
(PUCS 3 { poics)

Problem constraints

Depth-first, top-down parsing.
P B L & | = most_recent_visited (R[k])

Pruning by dominance. J1s notin ser_af_visited_city (RIk])
; Pruning by approximation, Eq. (2.12) Assessment functions
il Prunlng by thresholding, Eq, (2.19) @N(R[]_D = ¢T{r[i 1D '
Terminated when any resource — N T u :
is used up. P RIKD = ¢ (r[LiD + 6" (R[k-1D

H T
: & (r{L,J1) = distance between
cities { and j.

Fig. 3. Example showing HSP of depth-first search in solving an n-city symmetric TSP instance.

depth-first searches. In Fig. 4, we show the HSP used to model the meta-control of
IDA*. The pruning mechanism selects a threshold based on a value in the previous
depth-first search such that the threshold is equal to the minimum of the lower
bounds of children of nodes pruned by threshelding in the previous iteration. The
primitive search, or depth-first search, is similar to that shown in Fig. 3, except for
the initial conditions, which are shown in Fig. 4.

We use the RTA* as an example to illustrate a time-constrained search. The
RTA¥ itself works like a depth-first search, but at each search node, it looks ahead
several levels deeper to obtain a better heuristic estimate for guiding the search.
Therefore, during the depth-first search, each node is associated with another sec-
ondary depth-first search that corresponds to lookahead. The specification of the
secondary search is the same as that in the primary search except for one more
pruning mechanism that prunes nodes by depth. This extra pruning mechanism
defines the horizon of lookahead.

Figure 5 shows the H3P for moedeling RTA* in solving an n-city TSP. Only the
initial conditions of the RTA* search and the lookahead search are shown because

382 B. W. Wah 8 L.-C. Chu

IDA* Search Algorithm

E - ::
| Initial Conditions :
’ : Resource Constraints: Context:
' time: none, {nitial incumbent: none, H
H space: Infinite, threshold: none, :
processor: onc. degree of approximation: zero.
{ Probiem Independent Context-Free Components Problem Dependent :
HE: Y (PDICF Vi
i 1da > GINT,P,S) ;
il N=(IDA}
} T={ dfs, sel_th, ida } :
H P={ P1: IDA -->sel_th dfs ida; H
P2 IDA --> A } i
il s=IpA. :
Problem Independent | COntext-Sensitive Components | proplem Dependent |
(PICS PDICS W 5

| Depth-first, top-down parsing. sel_th -~ '.
! - g = min { lower bounds of chiidren }:
i of nodes pruned by thresholding |}
in the previous depth-first scarch } |!

. J H

Initial Condition of Depth-First Search in IDA* Search Algorithm

(nitiat Conditions

H

i Resource constraints: Context:

: time: none, initial incumbent: none,

I space: Infinite, threshold: g ,

EL processor: one. degree of approximation: zero.
L

Fig. 4. Example showing HSP of meta-control in IDA* for solving an n-city symmetric TSP
instance,

Initial Conditions of RTA* Search Algorithm

initlal Conditions

: Resource Constralnts: Context:
i time: none, initial incumbent: none,
¥ space: infinite, threshold: none,
processor: one. degree of approximation: zero.

Initial Conditions of l.ookahead Search In RTA* Search Algorithm

[nitlatl Conditlons

Resourece Constralnts: Context:
time: D*B units of logical tirne, initial Incumbent: none,
space: infinlte, threshold: none,
processor: one. degree of approximation: zero.

Fig. 5. Example showing initial conditions of HSPs of RTA* for solving symmetric TSP,

Combinatorial Search Algorithms wilh Meta-Cantrol; ... 383

the rest is the the same as the depth-first search shown in Fig. 3. Two search
parameters, D and B, are used in the initial conditions of the lookahead search. D
defines the depth of the lookahead horizon, and B is the average branching degree.
The product of D and B defines the amount of time to be expended in the lookahead
search.

Finally, we use the RTS as an example to illustrate a resource-constrained iter-
ative search. RTS [3], a search designed to be used in real-time applications, is a
generalization of IDA* using approximation and/or thresholding. It is an iterative
search that dynamically selects approximation degrees and/or thresholds based on
past performance and resoutces remaining.

The following example shows the HSP model of using RTS to solve a TSP
instance against a deadline. In this example, only the time constraint is considered
because RTS uses bounded amount of memory. As in the formulation of TDA*,
RTS is a sequence of guided depth-first searches and hence, its PI/CF grammar
in the meta-control defines this sequence. A noted difference with other searches
is that the selection of pruning mechanisms is problem—dependent and context-
sensitive because the solution depends not only on resources remaining but also on
past performance observed. In Fig. 6, we show the initial conditions of the guided
depth-first search; the rest of the guided depth-first search is similar to that shown
in Fig. 3 except for the selection function.

4. ISE - An Integrated Search Environment

In this section, we discuss our prototype that implements HSP. Our prototype
is developed with two classes of users in mind: a) application-oriented nsers who
wish to either develop new applications using search methods provided or solve
problems using gearches; and b) search-oriented users who want to develop and test
new search methods.

Our objective is to support users so that new applications can be coded ea-
sily and that new search methods can be tested with little effort. To accomplish
this objective, our design goals of ISE inctude a) succinct partitioning of search
algorithms and apphications in such a way that new application—independent search
methods can be added without affecting existing ones and that new applications
can fully utilize search methods already coded, b) flexible collection of statistics for
performance evaluation and tuning, and ¢} provision of a user-friendly interface.

Our system consists of problem-independent and problem-dependent parts. The
problem-independent part includes modules for primitives searches, meta-searches
calling primitive searches, and performance monitors. The problem—dependent part
implements application-speciﬁc functions and procedures called by the problem-
independent modules. By compiling and linking appropriate problem—independent
and problem—dependent modules, an applica.tion—speciﬁc object code can be gener-
ated. This object code is specific to the application but contains all the different
search algorithms implemented. The alternative that compiles all the applications

AT

384 B W. Wah & L.-C. Chu

RTS Algorlthm

[nitial Conditions

Resource Constraints: Context: :'
e T units of logical titne, initial incumbent: nene, :
spaca: infinite, threshold: none, ;
H processor: one. degree of approximation: zero. H
S — H
{ Problam Independent Context-Free Components Problem Dependen: ;
H ~ 1
i pucE ("PD/CF i
i| rts-->Gm,T,P,5
| N={RTS} i
i| T={dfs, se!_approx, scl_th, rts } ;
{| P={PL: RTS --> sel_approx scl_th :
i dfs rts ; ;
i P2: RTS > 2 } :
i| S=RTS. :
HY 4 J L i

Problem Independent Contexe-Sensitive Components | proplerm Dependent

[puCs (PpiCS
scl_apprex -—->

£ js a functien of past performance,
q—scl_th -

Depth-first, top-down parsing.

8 is « function of past performance.

..

initial Condition of Depth-First Search in RTS Algorithm

Initial Conditions

Resource constraints: Context:
fre! L units of logical time, initial incumbent: last final incumbent,
space: infinite, threshold: 6.) .
processor: one. degree of approximation: g.

Fig. 6. Example showing HSP of meta-control in RTS for solving symmetric TSP.

into a single program and selecting the appropriate search routine at run time is
not chosen because the capability to switch dynamically to different applications is
not needed.

For performance tuning of searches and for finding a suitable search method
for a given application, our system provides routines for monitoring performance.
Performance measure can be either logical or physical. In a search, logical time
refers to the number of nodes expanded or generated, while physical time is the
processing time expended. Likewise, logical space is the maximum number of active
search nodes at any time during the search, while physical space is the maximum
memory space used for keeping the active search nodes. Note that logical metrics
are machine independent, whereas physical metrics are machine dependent.

Our current system implements only top-down searches. Extensions to bottom-
up and bidirectional searches are straightforward, since bottom-up and top-down
searches are equivalent, and bidirectional search can be built using top-down and
bottom-up searches.

Combinatorial Search Algorithms with Me

4.1. Software architecture of ISE

The software architecture of ISE,
the logical HSP model. ISE includes two major groups:
control and the other related to peripheral services.
of the four comnponents according to problem dependency and context sensitivity,
each located in one or more physical directories. How
context-sensitive components may share th
algorithm, primitive, and solver. The
is context free, some parameters used, such as prunin
constraints, are determined from the current conte
of these components are combine

calls.

shown in Fig. 7, is the implementation of
one related to search
Both are represented in terms

fa-Control: ...

ever, some context-free and
e same directory, such as in directories
reason i that although the component
g mechanism and resource
xt. For efficiency reasons, some
d into a single routine to avoid excessive procedure

PIICF
isa/algorithm

framework of meta control

PL/CF

imsa/solver
problem deflnition
decomposition strategy

L

—
pICs PD/CS
i isa/algorithm isa/sclver
i meota-control scheduler pssessmenis
H ima/primitive hranching resolution {
H selectlon strategy feastbillty test H
H ina/opan
H node Manager L

— "
PIICF PL/CF
isa/intacface
command line parser
{ output generator

— —r
PICS PD/CS
iza/karnal H

resource monitor
performance moonitor
resource and performanse profller L

Fig. 7. Software architecture of ISE.

In the rest of this section, we describe the functions implemented in a) search
control, which includes codes of search algorithms, primitive searches, and applica-
tions, b) resource monitoring and performance profiling, ¢) memory management,
and d) user interfaces for specifying input, profiling, and output commands.

i e A et Pt

386 B. W. Wah & L.-C. Chu

4.1.1. Search control

The search-control group consists of four subdirectories: a) algorithm with al
search algorithms available in ISE, b) primitive with all primitive scarches avail-
able in ISE, ¢) open containing memory managers for different search algorithms,
and d) selver including all applications implemented in 1SE.

In the PI/CF component, the meta-control of search algorithms are coded. For
example, the meta-control of IDA¥ calls a sequence of depth-first searches, while
that of RTS calls a sequence of guided depth-first searches.

The PI/CS component serves three funciions. First, it implements the mefa-
conirol scheduler that selects pruning mechanisms and assigns resources in between
two primitive searches based on the past performance and/or resource constraints.
Second, it implements the selection strategy that selects a node to expand during
the search. In general, a selection strategy can be formulated as a function such that
the node with the best functional value is selected. A selection strategy is static if
the function only needs to be evaluated once for a node; examples include depth-first
and best-first searches. A selection strategy is dynamic if the function needs to be
re-evaluated for all active nodes every time selection is done. Third, it implements
the node manager that allocates and de-allocates space for each selection strategy.
Issues on memory management are discussed later.

The PD/CF component defines the target application and specifies the decom-
position strategy. The latter is context free because it does not depend on the
state of the search; instead, the expansion is defined by the branching resolution (a
PD/CS element) and is related only to the current node to be expanded.

The PD/CS compeonent contains modules for assessment, branching resolution,
and feasibility test. Assessmeni refers to functions for evaluating the quality of
a solution or search node. Typical examples inciude the lower-bound and upper-
bound functions. Branching resolution serves as a preprocessor for decomposition
and selects an appropriate attribute for decomposition based on the staie of the
search node.

Currently, the search algorithms implemented in ISE include depth-first search,
best-first search, guided depth-first search, generic branch-and-bound search, band
search [4], Lawler and Wood’s time-constrained approximation search [12], IDA*
[8], RTS [3], MIDA* [18], TCA* [16], TCGD {17}, DFS* [15], IRA* [14], and scme
of their parallel versions. The applications implemented in ISE include symmet-
ric traveling salesperson problem (STSP), asymmetric traveling salesperson prob-
lem (ATSP), knapsack problem (KS), production planning problem (PP}, resource
constrained scheduling problem {RCS), vertex cover problem (VC)}, scheduling for
minimizing weighted completion time (WCT), maze solver® (MAZE}, and N-puzzle
solver (PUZZ). These applications have been used in experimenting with the various
search algorithms. Note that the problem solvers we implemented are optimization

2The maze generator was written based on the maze program in X11R4.

Combinatorial Search Algorithms with Meta-Conirol: ... 387

solvers. Decision problems and feasibility problems can be transformed into and
solved as optimization problems (see Sec. 2.3).

Table 1 shows a classification of minimization problems with respect to the diffi-
culty 1n finding feasible solutions as upper bounds. Finding feasible solutions in the
applications we implemented in ISE range from easy to impossible. Finding feasi-
ble solutions is considered easy when the corresponding algorithm has polynomial
complexity (as a function of problem size). Greedy algorithm is a typical method
in this case. Finding feasible solutions is hard when the corresponding algorithmn
requires exponential complexity in the worst case. The exact complexity, however,
depends on the constrains posed. If the constraints are tight, then there may be few
or no solution in the entire search space, and finding a feasible solution is almost
as hard as solving the original problem. If the constraints are loose, then feasible
solutions are plenty and can be found in polynomial time. In the third class of
applications, there are no constraints imposed, and finding a feasible solution is as
hard as solving the original problem. Note that we do not consider problems whose
upper bounds can be found by solving a restricted problem. These upper bounds
are not useful because they cannot be used as feasible solutions when the search is
terminated prematurely.

Table f. Classification of applications with respect to difficulty in finding feasible solutions as
upper bounds.

Class Class 1 Class I1 Class 111
Degree of Easy (Polynomial Hard {Exponential Not Possible
Difficulty Complexity) Complexity Until Problem

or Above) is Solved
Exxamples STSP, KS, PP, RCS ATSP and MAZE. PUZZ.
WCT, and VC.

4.1.2. Resource and performance monitoring

These are part of peripheral services (see Fig. 7} designed for resource monitoring
and performance profiling. They are application independent but context-sensitive
and can be employed for all applications. All the programs are located in the kernel
subdirectory.

The resource monitor keeps track of resource usage, such as time and space
used, cumulated space-time product, and processor utilization, in both physical and
logical units. An option is available to specify only a subset to be monitored. The
monitor periodically checks whether any resource constraint is violated, signaling
the corresponding module when resources are expended.

The performance monitor keeps track of the progress of search, reporting on
measures such as the solution quality and the resources used. By specifying an
option in the command line, measurements in either physical or logical units can be

388 B. W Wah & [.-C. Chu

collected. The marginal improvement in the quality of solution against the marginal
amount of resources expended ¢an be used to trade between performance and cost.

The resource and performance profiler reports performiance statistics versus re-
source usage during the course of the search. In particular, it provides the time
used versus various measures, including space used, cumulative space-time product,
degree of approximation, incumbents obtained, and maximum space used. The dis-
tribution of search nodes by their lower or upper bounds can also be collected. The
profiles are generated in such a form that can be used directly by plotting tools.

4.1.3. Memory management

Memory management includes routines for allocating and de-allocating space
as well as access to and maintenance of the active list of search nodes.

ISE has a search-node manager that maintains a poal of free search nodes in the
form of a stack. Whenever space for a free node is needed in the search, the manager
is called to allocate space from the pool. Likewise, whenever space for a search node
is to be de-allocated, the manager is called to insert the search node into the top
of the stack. This scheme favors the “least recently used” replacement strategy
in virtual memory and tries to preserve spatial and temporal localities during the
search. When the manager runs out of space, it calls the operating system to
allocate a new block of space. The size of this block is problem-dependent since the
size of a search node may vary over several orders of magnitude. Usually, the block
size varies between 256 and 1024 search nodes,

The management of active nodes in a search is algorithm dependent because
different algorithms may require different amount of memery space and memory
management methods. Search algorithms like best-first search generate a large
number of active nodes. In this case, a B+ tree is used because the location and
retrieval of the best search node can be done in logarithmic time. Moreover, search
nodes with lower-bound values exceeding a threshold can be pruned easily. Other
search algorithms like depth-first search use a relatively small amount of space. In
this case, the active list is simply a stack, because the most recently generated node
will be expanded first and the stack size is bounded by the depth of the search tree.
For a guided depth-first search, a linked list is more efficient because it expands a
search node, sorts its children by a given criterion, and picks the child with the best
value to expand. Here, the number of search nodes in the active list is bounded
by the product of the maximum branching degree and the maximum depth of the
search tree. In the general case where pruning and selection are carried out using
different functions or criteria, it may be more efficient to maintain the active list as
a linked list. Maintaining a single B+ tree ordered by the selection criterion may
result in excessive overhead when pruning is applied to all active nodes. For this
reason, some implementations of the B&B algorithm organize the active nodes by
the selection criterion and delay pruning until the node is actually selected. More
complex managerment routines, such as those in MA*[1], can also be implemented.

B SR Ctat Er 2 i

Combinatorial Search Algorithms with Meta-Control- . . | 389

4.1.4. User interfaces

User interfaces are the PI/CF component of peripheral services (see Fig. 7).
They are designed to be flexible to be used by programmers and users. There are
three levels of interfacing. a) The algorithm-level interface includes protocols and
paraineter-passing interfaces between the search algorithms and the numerous ISE
modules, such as application programs, search primitives, performance /resources
profiler, and output reporter. b) The application-level interface includes protocols
and parameter-passing interfaces between the application programs and the numer-
ous ISE modules. c) The user-level interface is primarily for the command-line
processor and the versatile report generator. All these routines are stored in the
subdirectory interface.

The command-line processor parses the command line and transforms the com-
mand into an internal format of search controls and parameters. Users can define
the search algorithm to be applied, algorithm-specific parameters, inputs for spec-
ifying one or a set of problem instances, the unit used in measurement {whether
logical or physical), random seed used for generating a random problem instance,
resource constraints, the quality of the target solution, profiling controls, and output
formats. Most parameters have their own defaults and do not need to be specified
fully. They can also be specified in any order.

A line-oriented command-line parser is designed in ISE. The command line can
be parsed by a regular grammar, called the command-line grammar, whose rules
are surnmarized in Fig. 8. The alternative of using a screen-oriented command-
line processor is not taken in ISE because the set of parameters may be problem
dependent, and it is difficult to invoke scripts in testing a sequence of searches.

"The parameters following the keyword “:prob” must be specified in order for
ISE to know the problem size, the number of problem instances to solve, and the
surrogate, which is a seed used to reset the random number generator.

ISE currently provides five levels of debugging information, increasing in the
amount of output as the level is increased. The user can specify the level desired
by an integer following the keyword “:dbg.”In the lowest level, only calls to search
algorithms and the solutions returned are reported. In the highest level, debugging
information down to the level of branch decisions and bounds evaluated are output.

Users can select one of the following types of outputs after the keyword “:io”:
a) custom-designed output, b) explanatory summary, c) tabular listing, and d)
profiling output. The custom-designed output can be any format specified by a
user; an example would be one in which the outputs can be piped to another
program. The explanatory summary is meant for presenting the results to users.
The tabular listing is used by plotting packages. The parameters specified for the
output formats can be stored in a file to reduce the complexity in the command
line.

Profiling can be collected in either intra or tnter mode. In intra-search-process
profiling mode, profiling statistics is collected for a single primitive search algorithm,

390 B.W. Wah & L..C. Chu

COMMAND ::= SOLVER PROBLEM OPTION .

PROBLEM ::= ":prob" num_of_instances problem_size surrogate .

OPTION ::= MEASURE | REPORT | SEARCH | CONSTRAINT | QUALITY |
DEBUG | I0 | PRUFILE | PARAMETER }J) .

MEASURE ::= ":virtual" | ":real" ,

REPORT ::= ":report" report_filename .

SEARCH ::= ":aearch" search_primitive search_algorithm .

CONSTRAINT ::= ":constr" time [apace [cost [...]]]

QUALITY ::= ":approx" quality_degree .

DEBUG ::= ":dbg" level_of_details .

I0 ::= ":j0" LIST_UF_FILE_NAMES .

PROFILE ::= ":pf" LIST_OF_FILE_NAMES .

PARAMETER ::= ":param" LIST_OF_VALUES .

Fig. 8. Command-line grammar of ISE (“[” means optional parameters, and * | " means alternative
ones}.

while in inter-search-process profiling mode, profiling statistics is collected over
a sequence of primitive searches. The latter mode is important in showing the
performance of search algorithms with meta-control, such as RTS and IDA*, which
call a sequence of primitive searches, each with its own intra-search-process profile.

4.1.5. Other considerations

In this section, we discuss generalizations to HSPs we have developed in ISE.
These include concurrent implementations, and searches based on AND-trees and
AND/OR graphs.

Conceptually, the lowermost level of control in a search is at the search nodes.
This bottommost level in the control hierarchy corresponds to the search-node pro-
cess (SNP) that handles a single search node during the search. It corresponds to
a production rule in the context-free grammar of HSP. In a stale-space search, the
SNP takes care of decomposing (or branching of) a search node, testing its feasi-
bility, evaluating the bounding functions, pruning, and updating search attributes,
such as the incumbent, if necessary. In this way, a search is a sequence of homoge-
neous or heterogeneous SNPs.

The SNP level is important for concurrent searches, such as paralle]l searches
and bidirectional searches, where multiple search processes for solving the same
problem instance can coexist in a cooperative or independent fashion. As a result,
it is necessary to distinguish the scheduling at the SNP level from that at the search
level, and programuners must implement the scheduling of SNPs explicitly.

For nonconcurrent searches, the SNP is always carried out in a search process
and hence, the SNP can be integrated into the search process to avoid the extra
overhead of procedure calls.

i e A

Combinatorial Search Algorithms with Mete-Control: ... 391

Readers may notice that all the problems we implemented so far in ISE are
solved by OR-tree searches only. Other types of searches, such as AND-tree and
AND/OR-graph searches, are not implemented. The reason for this bias is that
the new search algorithms we developed [3, 4, 14. 16, 17] handle OR-tree searches
only. However, as shown in the following discussion, ISE is not limited to OR-tree
searches and can support AND-tree and AND/OR-graph searches as well.

The only difference between AND-tree and OR-tree searches is at the SNP level.
To complete an SNP, an AND-tree search requires all children spawned by the SNP
to be explored in order to obtain a solution, while an OR-tree search only requires
ene child spawned to be explored. To generalize the OR-tree searches we have
implemented in ISE, SNPs can be classified into one of two types: AND SNPs and
OR SNPs. An AND SNP forms a building block of AND-tree searches, while an
OR SNP is for OR-tree searches. The difference of AND-tree and OR-tree searches
lies in the type of SNPs they employ.

An AND/OR-graph search is a combination of OR-tree and AND-tree searches
with possible overlapping subtrees. In a canonical AND/OR-graph, each level con-
sists of either all AND nodes or all OR nodes, and two consecutive levels are of
different types. It is known that any AND/OR-graph can always be transformed
into a canonical AND/OR-graph, and for each node, its AND/OR-subgraph can be
transformed into a funciionally equivalent AND/OR-subtree with possible redun-
dancies in nodes searched. By checking redundancies of search nodes at the search
level, an AND/OR-graph search is conceptually equivalent to an AND-tree search
or an OR-tree search.

4.2. Programming and experimenting with ISE

In this section, we describe procedures for programming ISE with respect to
implementing new search algorithms and new applications. We also describe how
to carry out experiments on ISE.

4.2.1. Implementing a new search algorithm

A search algorithm can be represented by a problem-independent context-free
grammar, as shown in the problem-independent component in Fig. 7. The PI/CF
component contains the framework of the search algorithm, and the PI/CS compo-
nent contains the meta-control scheduler and selection strategy.

Before a search algorithm can be coded, it usually requires the following context-
sensitive information defined. a) Resource Constraints. A combination of time,
memory space, processors, cumulative space-time product, and cumulative
processor-time product may be specified as constraints. The search is terminated
whenever any of these constraints is violated. b) Pruning Mechanisms. Degree
of approximation, threshold, belief, completeness, and dominance may be specified
as pruning mechanisms. c)Resource/Performance Measures. Resource and perfor-
mance measures (in terms of physical or logical units) used at run time to control

392 B. W. Wak & L.-C. Cha

the search must be identified. d) Resource/Performance Profiles. Run-time profiles,
in terms of quality of solutions versus time consumed, and efficiency of using one
resource versus another, must be specified.

A search algorithm may use problem-dependent information defined in the ap-
plications. This is done by calling problem-dependent routines, which may include
the following: a) decomposition for decomposing a search node into child nodes, b)
bounding function for evaluating the application-dependent lower and upper bounds
of search nodes, ¢) feastbility test for checking whether a search node is a solution or
not, and d) dominance fest for pruning node y with respect to node # when the best
solution in the subtree rooted at node =z 1s better than that in the subtree rooted
at node y.

The procedure for programming a new search algorithm can be summarized as
follows. a) Model the search algorithm by HSPs, each with four components. There
may be several HSPs for a single search algorithm, b} For each component, check
whether the necessary routines have already been coded in ISE, and code modules
that are not available in ISE. All the compilations for generating the object code
for an application are issued by a makefile, as exemplified in Fig. 9. To produce the
executable code, simply run “make all”.

4.2.2. Implementing a new application

A new application is implemented by coding the problem-dependent compo-
nents. If the problem is not in the form of a minimization problem, it should
be transformed into one using techniques discussed in Sec. 2. The information
needed in implementing an application includes the following. a) Problem Defini-
fron. Problem-dependent data structures and global variables need to be declared,
and their initialization routines defined. b) Assessment Routines. The routines
for evaluating feasible and partial solutions during the course of the search have
to be defined. For optimization problerns, the upper- and lower-bound functions
have to be defined as well. c) Problem-Instance Generator. This is used to gen-
erate a problem instance based on given problem size and a surrogate, which is
a seed used to reset the random number generator. d) Search-Node Initialization
Routines. These routines allocate search nodes by calling search-node allocation
facility built in ISE, initialize its problem-dependent part, and set up links inside
it to problem-dependent size-dependent fields. e) Problem-Dependent Search Ele-
ments. These include the initialization of problem-dependent components of the
search environment, feasibility and infeasibility tests, and branching resclution.

4.2,3. Using ISE in resource-constrained search

In this section, we describe our experience in using ISE to experiment with
search algorithms in resource-constrained applications, especially for real-time sys-
tems. For a user, the command line and output files are the only interfaces to ISE;
therefore, we will focus our discussion on them.

Combinatorial Search Algorithms with Meta-Control: ... 393

application

TARGET_PROB = TSP

EXEC_CODE = ise.tsp

& flags

CC = cc -DDEBUG -DSYM_TSP -DLOWB_GUIDANCE

LoadFlags = -1m

directories

ISE = ise-src

APPL = $(ISE)/solver/ats.pgm

‘.h* files

DotHFilea = $(ISE)/include/limita.h $ (APPL)/+.h $(ISE)/include/*.h

BinFiles = algorithm.o include.c interface.o kernel.o open.o
primitive.o problem.o

commands

all: ${DotHFiles) $(BinFiles)

$¢CC) $(BinFiles) $(LocadFlage) -o $ (EXEC_CODE)

algorithm.o: $(DotHFiles) $(ISE) /algorithm/*.c

cat $(DotHFiles) $(ALG)/*.c | ${(CC} -c -o algorithm.o

include.o: $(DotHFiles) $(ISE)}/include/%.c

cat $(DotHFiles) $(ISE)/include/#.c | ${CC) -¢ -o include.o

interface.o: $(DotHFiles) $(ISE)}/interface/+.c

cat $(DotHFiles) $(ISE)/interface/*.c | $(CC) -c -o interface.o

xernel.o: $(DotHFiles) $(ISE)/kernel/+.c

cat $(DotHFiles) $(ISE)/kernel/+.c | $(CC) -c -o kermel.o

open.o: $(DotHFiles) $(ISE)/open/s.c

cat ${(DotHFiles) ${ISE)/open/*.c | $(CC) ~c -o open.o

primitive.o: $(DotHFiles) $(ISE) /primitive/*.c

cat $(DotHFiles) $(ISE)/primitive/*.c | ${(CC) -c -o primitive.o

problem.o: $(DotHFiles) $(ISE)/*.c

cat ${DotHFiles) $(APPL)/*.c | $(CC) -c -o problem.o

Fig. 9. The makefile in ISE for generating the object code for solving the symmetric traveling
salesperson problem.

Assume ISE is compiled for the symmetric traveling salesperson problem, and
we wish to solve it using IDA*. An example of the command-line input is

jse.tsp :prob 1 20 1 :search difs ida :pe 1 :pf rt st :io cdo es rwl rtp
stp

The problem-specific information is specified in :prob; in this case, it says that
one TSP instance with 20 cities is to be generated using 1 as the random seed.
The search algorithm is specified in :search; it says that the primitive search is a
depth-first search, with IDA* as the meta-control. The search process is to be run
on a single processor, as specified in :pe. The profiling mechanisms are specified

394 B W. Wah & L.-C. Chu

in :pf, requesting rt, the profiling of run-time approximation degree versus time,
and st, the profiling of memory usage versus time. The custom-designed output
is in file cdo, the explanatory summary is in file es, the row-wise listing is in file
rwl, and the profiling outputs are in files rtp for profiles of run-time approximation
degree versus time, and stp for profiles of memory usage versus time. The row-wise
listing is used for inter-search-process profiling, while the profiling outputs are for
intra-search-process profiling,.

Figure 10 compares the intra-search-process profile for solving a 20-city symmet-
ric TSP by A* and the corresponding inter-search-process profile of IDA*. Figure
10a shows the decrease in run-time approximation degree during the course of solv-
ing a 20-city symmetric TSP by A* and IDA* respectively. It is interesting to note
that IDA* achieves good run-time approximation degrees in the early stage, while
A* achieves better ones most of the time (note that the time scale is logarithmic).
This happens because IDA* goes deep into the search tree and may find a good so-
lution earlier; however, the global lower bound achieved by IDA* does not improve
as quickly as that of A*. Figure 10b shows the profiles of memory usage versus time
during the course of solving the same TSP. It shows that IDA* uses negligible space
as compared to that of A*. Figure 10c¢ shows the profiles of cumulative space-time
product versus time for solving the same TSP. Both A* and IDA* require exponen-
tial amounts of cumulative space-time product due to the exponential amount of
execution time.

Figure 11 shows the intra-search-process profile of a guided depth-first search as
compared to the inter-search-process profile for a version of the RTS[3]. We found
that by using meta-control, RTS achieves better approximation degree as compared
to a straightforward search algorithm without meta-control.

5. Concluding Remarks

In this paper, we model searches with meta-control as a hierarchy of HSPs (or
Hierarchical Search Processes), each represented using context-sensitive and
context-free grammars and further classified into problem-independent and
problem-dependent components. The new mode} facilitates the formulation of itera-
tive searches, recursive searches, and resource-constrained searches, especially those
with meta-control. It further simplifies the programming of search algorithms and
applications requiring searches, as software routines developed for one application
or search algorithm can be shared by others. We present ISE, a tool we developed
for supporting the programming and experimentation of search processes. Our tool
can significantly reduce programming efforts and can serve as a testbed for various
search algorithms and applications.

Acknowledgments

‘This research was partially supported by National Aeronautics and Space Adminis-
tration under contract NCC 2-481 and by National Science Foundation under grant
MIP 88-10584.

. ~ 5 . 3595
Combinatoria! Search Algoritkms ant Mete-Jontrol

0.3

Run-Time 02—

Approximation
Degree
0.1
-0
.——-—"‘——’—
I I
ted
1e2 1e3 °
Time Expended
(Number of Search Nodes Expandai}
(#) Run-time approximation degree versus time expended
ted
A* .
1€3 oy T
Logical ez |
Space Dar
Usage
lel
1e0
f I
le2 le3
Time Expended

(Number of Search Nodes Expanded}

(b} Memory usage versus time expended

. rofiles of IDA™
Fig. 10 Intra-search-process profiles of A* as compared to inter-search-rocess P
during the co

: s 1.
urse of solving a 20-city symmetric TSP instance with random seed

396 B. W. Wah & L.-C. Chu

1e7 — e .
le6 — o ’
1e5 o

Cumnulative

Space-Time

Product led]

1e3

le2 —

| I I
le2 1e3 led

Time Expended
(Number of Search Nodes Expanded)

(c) Curnulative space-time product versus time expended

Fig. 10. {Continued)

03 R
GDFS
0.2 4
! Run-Time 2
! Approximation
Degree
0.1 -

[I I
le2 le3 ted

Time Constraint
(Number of Search Nodes Allowed to Be Expanded)

Fig. 11. Intra-search-process profiles of guided depth-first search as compared to inter-search-
process profiles of RTS during the course of solving a 20-city symmetric TSP instance with random
seed 2.

rch-

lom

Combinatorial Search Algorithms with Meta-Controls oo 397

References

11 P. P. Chakrabarti, S Ghose, A. Acharya and 3. C. de Sarkar, «Heuristic search in

restricted memory” Artificial Intelligence 41 (1989) 197-221.

{21 L-C. Chu, ISE - An Integrated Search Environment: The Manual, Tech. Rep. CRHGC-
92-1, Center for Reliable and High Performance Computing, Coordinated Science
Lahoratory, University of Illinois, Urbana, 1L, Jan. 1892

3L C. Chu and B. W. Wah, sQptimization in real time”, Proc. Real Time Systems
Symposium, 1EEE, Nov. 1991.

[4] L-C. Chu and B. W. Wah, “Band search: an efficient alternative to guided depth -
first search”; Proc. Int'l Conf. on Tools for Artificial Intelligence, IEEE, Nov. 1992.

[s1 8. Gnesi, A. Martelli and U. Montanari, “Dynamic programming as graph gearching’,
J. ACM 28 (198‘2) 737-T51.

{6} P. Helman, «An algebra for search problems and their solutions”, Search in Artificiol
Intelligence, eds. 1,. Kanal and V. Kumar (Springer-Verlag, New York, 1988) PP 28—
90.

{1 R Karp and M. Held, “Finite state processes and dynamic programming”‘ SIAM J.
on Appl. Math. 15 (1967) 693-718.

(8] R. E. Korf, “Depth-first iterative deepening: an optimal admissible tree search”, Ar-
tificial Intelligence 27 (North-Holland, 1985) 97-109.

{9] R. E. Kori, “Real-time heuristic search”, Artificial Intelligence 42 {Flsevier Science
Publishers, 1090) 189-211.

{10} V. Kumar and L. N Kanal, “A general branch and bound formulation for under-
standing and synthesizing and/or tree search procedures”, Artificial Intelligence 21,
No. 1-2 (North—Holla.nd, 1983) 179-198.

1y v. Kumar and L. Kanal, “The CDP: A unifying formulation for heuristic search, dy-
namic programming, and branch—and«bound”, Search in Artificial Intelligence, eds. L.
Kanal and V. Kumar (Springer—Verla.g, New York, 1988} pp- 1-27.

[12] E. L. Lawler and D. W. Wood, “Branch and bound methods: 3 survey . Operations
Research 14 (ORSA, 1966) 699-719.

[13] V. R Lesser, J. Pavlin and E. Durfee, « p pproximate processing in real-time problem
solving”, Al Magazine, AAAI (Spring 1988) 49-61.

(14] G-L. Li and B. W. Wah, «Parallel iterative refining A*: an efficient search scheme
for solving combinatorial optimization pmblems”, Proc. Int’l Conf. on Parallel Pro-
cessing, St. Charles, 1L, Aug. 12-16, 1991,

f15] N. Rao Vempaty, v, Kumar and R. E. Korf, «Depth-first vs best-first gearch”, Proc.
National Conf. on Artificial Intelligence, AAAL Anaheim, CA, July 1991

[16] B. W. Wah and L.-C. Chu, «“TCA*-A time-constrained approximate A* search algo-
rithm”, Proc- Int’l Workshop ont Tools for Artificial Intelligence, IEEE (Nov. 1590}
PP- 314-320.

17} B. W. Wah and L.-C. Chu, «TCGD: A time-constrained approximate guided depth-
first serach algorithm”, Proc. Intl Computer Sympostum, Taiwan, China {Dec. 1990}
PP- 507-516.

(18] B. W. Wah, MIDA*: An IDA* Search with Dynarmic Control, Research Report CREHC-
91-09, Center for Reliable and High Performance Computing, Coordinated Science
Laboratotry, Univ. of Miinois, Urbana, 1L 61801, April 1991

l_
l
l
1

