274) [EEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 3, MARCH 1996

Optimal Synthesis of Algorithm-Specific
Lower-Dimensional Processor Arrays

Kumar N. Ganapathy and Benjamin W. Wah, Fellow, IEEE

Abstract—Processor arrays are frequently used to deliver high performance in many applications with computationally intensive
operations. This paper presents the General Parameter Method (GFPM), a systematic parameter-based approach for synthesizing
such algorithm-specific architectures. GPM can synthesize processor arrays of any lower dimension from a uniform-recurrence -
description of the algorithm. The design objective is a general nonlinear and nonmonotonic user-specified function, and depends on
attributes such as computation time of the recurrence on the processor array, completion time, load time, and drain time. In addition,
bounds on some or all of these attributes can be specified. GPM performs an efficient search of polynomial complexity to find the
optimal design satisfying the user-specified design constraints. As an illustration, we show how GPM can be used to find optimal
linear processor arrays for computing transitive closures. We consider design objectives that minimize computation time, or
processor count, or completion time (including load and drain times), and user-specified constraints on number of processing
elements and/or computation/completion times. We show that GPM can be used to obtain optimal designs that trade between
number of processing elements and completion time, thereby allowing the designer to choose a design that best meets the specified
design objectives. We also show the equivalence between the model assumed in GPM and that in the popular dependence-based
methods [1], [2]. Consequently, GPM can be used to find optimal designs for both models.

Index Terms-—Design constraints, objective function, optimal design, polynomial-time search, processor arrays, transitive closure,

uniform recurrence equations.

1 INTRODUCTION

ROCESSOR arrays (or systolic arrays), due to their struc-

tural regularity and suitability for VLSI implementa-
tion, are frequently used to meet performance requirements
of many computationally intensive applications. The fun-
damental concept behind a processor array architecture is
that the Von-Neumann bottleneck is greatly alleviated by
repeated use of a fetched data item in a physically distrib-
uted array of processing elements [3]. This paper discusses
systematic ways of mapping regular and computationally-
intensive algorithms onto specialized processor arrays. An
overview of various existing methods to generate processor
arrays systematically can be found in reference [4].

The techniques discussed here apply to algorithms de-
scribed as recurrences, either by mathematical expressions
or by high-level-language programs. Section 1.1 provides a
precise characterization of the class of algorithms for which
our results are valid. The techniques are illustrated by ex-
amples involving linear arrays of processors (one-
dimensional processor arrays); however, unless otherwise
stated, the results can be extended to processor arrays of
arbitrary dimensions. We choose to study linear arrays be-
cause they are easier to build and program than arrays of
higher dimension.

- o K. Ganapathy is with the Telecommunications Division, Rockwell Interna-
tional, 4311 Jamboree Road, P.O. Box C, M/S 501-364, Newport Beach,
CA 92658-8902. E-mail: kumar@nb.rockwell.com.
e B.W. Wah is with the Department of Electrical and Computer Engineering
and the Coordinated Science Laboratory, University of Hllinois, Urbana, IL
61801. E-mail: wah@manip.crhc.uiuc.edu.

Manuscript received Jan. 13, 1992; revised Oct. 1, 1994.
For information on obtaining reprints of this article, please send e-mail to:
transactions@computer.org, and reference IEEECS Log Number D95074.

The general notation used in this paper is as follows.
Vectors are in lower case with arrows on top, and matrices
are in upper-case bold font. The transpose of vector 7 and
matrix M are denoted by 7 and M/, respectively. The abso-
lute value of vector 7 is denoted by |7|, and notation 7 > i
means that every component of 7 is greater than or equal to
the corresponding component of i . Vector 0 denotes a row
or column vector whose entries are all zeroes. The dimen-
sions of vector 0, and whether it denotes a row or column
vector, are implied by the context in which it is used. The
scalar product of two vectors v; and 7,, and the product of
vector ¥ and matrix M are written (without transposes) as
0, -0, and - M (or M-), respectively. The product of two
matrices M,;, M,, and a scalar s and a vector ¥ are simply
written as My, M, and s3 without any dot symbol.

1.1 Algorithm Model

Affine dependence algorithms can be used to model a large
number of computation-intensive applications in image
processing, digital signal processing, and other scientific
applications. Such algorithms can be described as nested
DO loops as follows. '

DO (]‘1:51,u1 o a=houy
H(J); Hy(); ...; HA]);

i Jn= Lo tty)

END : ‘
The column vector | =[f,,j,,~,j,I' is the index vector (or
index point). Hi(f), i=1,.,t, are f assignment statements
in iteration | having the form

Z{y(7)) = o[, (x(7).-

Sz 12isn @

1045-9219/96$05.00 ©1996 1EEE

GANAPATHY AND WAH: OPTIMAL SYNTHESIS OF ALGORITHM-SPECIFIC LOWER-DIMENSIONAL PROCESSOR ARRAYS 275

Affine recurrence equations (ARE) with a convex polyhedral
domain can be used to model the above program if

1) all loop bounds [; and u; are affine functions of loop
variables j;, ..., iy

2) indexing functions y() and x,(), k = 1, -+, 7, are affine
functions of the form A - | + ﬁi; and

3) branch statements do not go outside the loop con-
taining the branch statement.

If iteration | depends on iteration J”, then this depend-

ence can be described by a dependence vector d = | - J’,
which is the vector difference of the index vectors of these
two iterations. The dependencies in the algorithm can be
shown by a dependence graph (DG) over an n-dimensional
(nD) domain (integer lattice), where nodes are labeled by
index vectors corresponding to the operations in the inner-
most loop body, and arcs correspond to the loop-carried
dependencies between two instances of the loop body.
Hence, the loop body for scheduling is the set of statements
in loop nests enclosing all the branch statements.

Uniform dependence algorithms or uniform recurrence equa-
tions (URE) form a subclass of AREs, where indexing func-

tions y() and x,) are of the form J —d (matrix A is the

identity matrix now), and d is a constant vector of 1 ele-
ments. Hence, each of the statements H,(J) is given by

20 =daf-a)..z(-4). @

There exist “uniformization” techniques for transforming
AREs to UREs. (See, for example, reference [5].) The basic
idea is to select a few basic integral vectors (which are the
uniform dependencies) such that all affine dependencies of
the ARE can be expressed as non-negative integer linear
combinations of the basis vectors. This uniformization also
removes the undesirable broadcasts of data in a VLS proc-
essor array.

In this paper, we focus on algorithms that can be mod-
eled as uniform recurrences and affine recurrences that can
be uniformized. Hence, the starting point of our mapping
assumes a convex polyhedral domain and a set of constant
dependence vectors collected into a matrix called the de-
pendence matrix D.

EXAMPLE 1. Matrix multiplication of two N X N matrices A
and B is a well known example of an URE, where

CG,j,) = CG,j,k—1)+ AG,BBK), 1<i,j,k<N. (3)

The index set consists of all the integer points in a
cube of side N. Input A(, k) (resp., B(k, /)) is used in
several computations to generate C(, j, k) for all val-
ues of j (resp.,). After pipelining and localizing the af-
fine dependencies, [0, j, 01 and [1, 0, O, we get

AG,j, ky=AG,j-1,k; BGjk=Bi-1,jk

CG,j, k) =CG,j, k-1) + AG, j, BG, j, k), 4)

which is a set of uniform recurrence equations. O

EXAMPLE 2. Consider a 3-Dimensional (3D) recurrence with
n=3,r=>5.

Z(k, 1,7y =Xk, DYG, k) + Zk=1,i+1,j+1) +

Zk-1,i+1, D+ 2Zk-1,i,j+1) 5
After pipelining and uniformization, (5) becomes

20,0,) = XU, i, j- DYk, i=1,)) + Zh-1,i+1,j+ 1) +
ZU~1,i+1,)+ Z0=1,i,j+1) ©)

The dependence vectors collected into a matrix are

00 1 1 1
D=0 1 -1 -1 0

10-1 0 -1)
XYy z z Z
This example is used as a running example through-

out this paper.

1.2 Previous Work

There has been a lot of research in developing design meth-
ods to map uniform dependence algorithms to processor
arrays. Most of these methods are based on or derived from
the Dependency Method (DM) [1], [2]. In DM, the problem of
mapping an algorithm to a processor array is characterized

IS]} where I is the schedule

vector and S is the allocation matrix. The design of the array
is then equivalent to determining the elements of T. This
general representation of a feasible design as a particular
mapping matrix allows DM to be applied to uniform as well
as nonuniform recurrences. However, in DM, the generality
in representation leads to large search spaces for optimal de-
signs, as the problem of finding optimal designs is posed as
an integer programming problem [6], [7]. In contrast, the
method presented in this paper, the General Parameter Method
(GPM), is restricted to uniform recurrences, but can be used
to generate optimal designs for user-specified objectives
(including nonmonotonic and nonlinear ones) using efficient
search techniques of polynomial complexity.

There have been several earlier attempts to map algo-
rithms onto lower dimensional arrays [8], [7], [9]. Important
steps towards a formal solution were first made by Lee and
Kedem [8]. They presented the concept of data-link colli-
sions (two data tokens contending for the same link simul-
taneously) and conditions to avoid them. They also pre-
sented a method that analyzes all computations in the do-

by a linear mapping matrix T = [

main of the recurrence in order to detect computational

conflicts (two computations scheduled to execute simulta-
neously in the same processor). To identify feasible designs,
they provided necessary and sufficient conditions for de-
signs that avoid computational and data-link conflicts.
However, they did not present any systematic procedure
for finding optimal designs. Subsequently, Shang and For-
tes [6] have developed closed-form conditions for a map-
ping to be free of computational conflicts. These closed-
form conditions also eliminate data-link conflicts for active
data' participating in the computations.

In general, in DM, feasible designs are found heuristi-
cally by first specifying a “good” allocation matrix §, and

1. The lifetime of a data token in a processor array can be viewed as con-
sisting of an active phase, where the token is involved in its chain of com-
putations, and a passive phase, where the token is moving from the input
peripheral processor to becoming active, or is moving to an output periph-
eral processor after its active phase.

276 |IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 3, MARCH 1996

then subsequently determining the schedule vector IT that
minimizes the computation time. Note that the number of
choices for matrix S could be very large or even infinite,
making it difficult (or impossible) to enumerate over them.

Initial work on parameter-based methods was done by
Li and Wah [10] for a restricted set of uniform recurrences.
They considered specifically 3D and 2D recurrences and
mapped them to 2D and 1D processor arrays, respectively.
The structure of the recurrence was such that the depend-
ence vectors were unit vectors and the dependency matrix,
an identity matrix. This paper generalizes the above initial
work into a powerful and efficient array-synthesis tech-
nique (called General Parameter Method or GPM) by mak-
ing important and non-trivial extensions (listed in Section 6).
In addition, we show the equivalence between DM and
GPM by providing necessary transformations between the
parameters in GPM to those in DM, and vice versa. DM can
be considered as a mapping problem in the Cartesian coor-
dinate system with unit vectors as basis vectors, whereas
GPM can be considered as mapping in a possibly non-
orthogonal coordinate system with dependence vectors as
basis vectors.

The potential simplicity of GPM over DM is explained
by observing that in mapping an #n-D algorithm to an m-D
processor array, the number of variables to be determined
in DM is (m + 1) x n, whereas the number of parameters in
GPM is (m + 1) x g, where g = rank(D). Since g <n (as D is
an 1 x r matrix), the number of variables in GPM is often
less than that in DM, and is at worst equal to the number of
variables in DM. Hence, there is potential reduction in
complexity by performing the transformation, especially if
there are only a few dependence vectors in a high-
dimensional space.

Our transformation between GPM and DM extends the

“work of O’'Keefe, Fortes, and Wah [11], who showed the
equivalence between DM and GPM for 2D and 3D uniform
recurrences. Our transformation also allows efficient search
strategies developed in GPM to be used to find optimal
designs in DM. Consequently, designers familiar with DM
can obtain better (or optimal) array designs using GPM.

Periods

Application Uniform s . fEgs 9 Displacements &
Problem Recurrénce Objective (I1, S Wl 11) . -
! “ Objective (t,,k,-)
Dependence-Based Search Procedure
Methods (DM) (Sec. 4.3}
imal Optimal ¢, k;
Opl n, 5 and 11} r

General Parameter
Method (GPM)

Fig. 1. Application of GPM to find optimal designs in DM.

Referring to Fig. 1, after defining an objective (possibly
non-linear and nonmonotonic) in terms of the representa-
tion chosen (i.e., IT and S), the designer converts the objec-
tive in terms of the parameters of GPM using (9)-and (11)
(to be discussed in the next section). Once the objective and
variables have been converted, GPM is used to generate
optimal arrays efficiently. The solutions obtained by GPM
are then converted to IT and S in DM using (9) and (11)
again. This step involves solving two sets of simultaneous

equations for I1 and S from the periods and displacements
in GPM, and has a worst-case complexity of o).

The next three sections describe the parameters used in
GPM, the constraints that must be satisfied for correct. op-
eration, the specification of the objective function, and the
search strategy. We assume that processing elements are
equally spaced in m dimensions with unit distance between
directly connected processing elements, and that buffers
between directly connected processing elements, if any, are
assumed to be equally spaced along the link.

2 GENERAL PARAMETER METHOD: PARAMETERS

The intuition behind GPM is as follows. It is known that the
semantics of processor arrays can be formally described by
uniform recurrence equations; l.e., processor arrays are
“isomorphic” to uniform recurrences. This implies that as
long as the computations defined by an URE are well-
formed, there is a direct mapping from the recurrence to a
processor array. In fact, this mapping is equivalent to a lin-
ear transformation of the index set. Hence, for a linear
mapping, the time (resp., the distance) is constant between
execution of any two points I; and I, in the index set sepa-

rated by a dependence vector d, where I = I, +d. This

constant is equal to I1-d (resp., S-d) independent of index
points f] and fz. For recurrences with uniform indexing
functions (i.e., UREs and uniformized AREs), the depend-
ences are constant vectors and homogeneous (i.e., the set of-
dependence vectors at any point in the index set is the same
as any other in the index set). Thus, the computation of a
recurrence on a processor array. is periodic in time and
space along dependence vectors in the index space. This
periodicity is succinctly captured and exploited in GPM,
which considers mapping problems in a possibly nonor-
thogonal coordinate system with dependence vectors as
basis vectors. In other words, in GPM, a representation that
captures the above periodicity is used, which allows the
optimal target array to be found efficiently.

In GPM, the characterization of the behavior, correct-
ness, and performance of a processor array is defined in
terms of a set of scalar and vector parameters. When a uni-
form recurrence is executed on a processor array, the com-
putations are periodic and equally-spaced in the processor
array. GPM captures this periodicity by a minimal set of
parameters defined as follows. ~

PARAMETER 1: PERIODS. These capture the time between exe-
cution of the source and sink index points of a depend-
ence vector. Suppose the time at which an index point
I (defined for the uniform recurrence equation) is exe-
cuted is given by function 7 (I). The period of com-

putation #; along dependence vector 3]- is defined as
=t +d)-7(D), j=1,2 1. ®)

The number of periods defined is equal to 7, the number
of dependencies in the algorithm. In terms of DM, period ¢,

is related to I1, the schedule vector in DM, by the following
equation [12].

GANAPATHY AND WAH: OPTIMAL SYNTHESIS OF ALGORITHM-SPECIFIC LOWER-DIMENSIONAL PROCESSOR ARRAYS 277

=10d. ©

PARAMETER 2: VELOCITY. Vj, velocity of a datum along de-

pendence vector ﬁj, j =12, is defined as the di-

rectional distance passed during a clock cycle. Since
PEs are at unit distance from their neighbors, and
buffers (if present) must be equally spaced between
PEs, the magnitude of the velocity must be a rational
number of the form x/y, where x and y are integers
and x <y (to prevent broadcasting). This implies that
in y clock cycles, a datum propagates through x PEs
and y — x buffers. All tokens of the same variable have
the same velocity (both in speed and direction) which
is constant during the execution in the processor ar-
ray. The total number of velocity parameters is r (one
for each dependence vector) with each velocity an m-
element vector, where m is the dimension of the proc-
essor array. Hence, velocity 17] is given by,

(10

where IE/ is the (vector) distance between execution

locations of the source and sink index points of ﬁj. In
the notation of DM, S, the allocation matrix, is related
to Ej and 5]. as follows.

ki=$-d. an
PARAMETER 3: SPACING OR DATA DISTRIBUTION. Consider
variable Q; pipelined along dependence vector d,,
1 <i < r. Data token Qi(f - Eli) is used at index points
T+t3i, t=-..,-1,01, -, in computing the recur-
rence. In other words, this token moves through the
processors that uise datum €; at index points (I + #d;).
Consider another token Qi(f - Hj) of the samervari—
able @, that is used at index points (aI- Ei + tat.),j # 1.
The directional distance in the processor space from
token Q,(I —d;) to Q,(I —d;) is defined as spacing pa-
rameter gi, i Since there are r variables Q,, 1 i<, each
associated with dependence vector Eli, there are r— 1

nontrivial spacing parameters for each variable and one
trivial spacing parameter, S;; = 0. These denote the r

distances for variable i: Qi(f - ﬁj) - Qi(f - &i),]' =1,2,
---, 1. Each spacing parameter 51-,1 is an m-D vector,

where m is the dimension of the processor array. The
notation §; ; denotes that it is the jth spacing parame-
ter of the ith variable. A total of r(r — 1) nontrivial

spacing parameters are defined. In the notation of
DM, we have

S Vjtv—Vvt.
]

1

i j it (from Theorem 1 to be presented in Section 3.1)

=Vt

fis (from (10))

t. (from (10) and (11))
(12)

=S.4d —-—1S.4
=84, i S - d; (from (9) and (10))

The total number of parameters defined is r x (r + 2) of
which 7 of them are periods (scalars); the remaining P ar
are m-D vectors, of which r of them are velocities and 7 are
spacings (r of these spacings are trivially zero).

EXAMPLE 3. For the recurrence in (6), the parameters defined
are as follows. There are five periods t;, t,, t3, t,, t5, and
five velocities V;,V,,V,,V,,Vs. There are 25 spacing

parameters gi,j, i,j=1,2,3, 4,5 where §i’i =0. For in-

stance, for variable X, §1,2' 5113,31’4, 51,5 define dis-
tances (X(k, i) —» Xk, i — 1)), Xk, i) =» Xk - 1,1+ 1)),
Xk, 1) - X(k-1,1+ 1)), and X(k, i) = X(k - 1, 1)), re-
spectively. O

3 GENERAL PARAMETER METHOD: CONSTRAINT
EQUATIONS

In Section 2, a set of #* + » parameters have been introduced
to define a mapping on the target processor array. Assign-
ment of values to the parameters defines a specific proces-
sor array with a particular number of processors, buffers,
and data-input pattern. It is also easy to see that all proces-
sor arrays that solve a given algorithm (or uniform recur-
rence) correspond to some assignment of values to the pa-
rameters. Hence, choosing different values for these pa-
rameters leads to different array configurations with differ-
ent performance, and the problem of array design has been
reduced to that of choosing appropriate parameter values.

The choice of values for all (* +) parameters are not in-
dependent of each other. In this section, constraint equa-
tions relating the parameters are given such that the set of
values for the parameters is meaningful and defines a valid
processor array. Theorems 1 and 2 provide the fundamental
space-time relationship that must be satisfied by the pa-
rameters for correct systolic processing. Computational and
data-link conflicts are avoided by enforcing the condition in
Theorem 3.

The following notation is introduced to simplify the
presentation of the theorems. Let T =1t t,,---,t,]' be a
vector composed of periods, and let K = [121, Ez, ey IE,] be a
matrix (of size m x r, where m is the dimension of the proc-
essor array) composed of displacements k; = V,. Note that
T isan r x 1 column vector, and that 121. is an m x 1 column
vector. The displacement k; is synonymous with velocity
V., because the choice of one immediately determines the
other. In searching for parameter values, we choose to con-

~ sider l_(.i and not ‘71

3.1 Constraints for Correct Systolic Processing of
UREs

The following theorem relates the parameters defined in GPM
in the necessary conditions for correct systolic processing.

278 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 3, MARCH 1996"

THEOREM 1. The parameters velocities, spacings, and periods
must satisfy the following constraint equations for correct
systolic processing of the uniform recurrence equation:

Vit =Vt 45, i,j=1,2,,r. (13

PROOF. See reference [13]. |

.These constraints ensure that in computing an index

point I at any processor in the array, all the participating
data tokens are present at the processor at the same time,
moving from their respective processors where they were

used earlier. A total of r* vector constraints are obtained
from Theorem 1.

3.2 Constraints for Linearly Dependent Dependence
Vectors

LetS = [] ,i=1,2,-,r,beanrxr “matrix” (actually, a
matrix of vectors) of spacings such that the (i, j)th element
of the matrix is S, .. Note by definition that S;; = 0. Let S, be
the ith “row” of S; i.e., S, = [SZ l,S 51.,,] (where S; is an m

X r matrix). Since Si,j = Vjt]- - Vitj = k]- - 171-7,‘]- from Theorem

1, S, can be written in matrix form as

S, =K-V.®T, (14)

where T is a vector composed of periods, and ® is the
= [ﬂib/]'
The next theorem characterizes the constraints on the pe-
riods and displacements if the dependence vectors in the
recurrence are not linearly independent.
Let g .be the rank of dependency matrix D. Therefore, N,
the null space of D, has (r ~ g) columns (as D has r col-

outer product or tensor product; i.e., 7 ® b =ab'

umns). Let N = [551,5:2~-55 ‘be an 7 x (r — g) matrix,

r-g
where &;,i=1,2, - (r — g), are the basis vectors of the null
space of D. Hence,

D-a =0, 1<i<(r—g). (15)

THEOREM 2. The periods t; and the displacements k are related

as follows:
T-N=0 (16)
CKN=0 17
where N is the matrix consisting of the baszs vectors of the
null space of D.
PROOF. See reference [13]. O

Theorem 2, therefore, provides a total of 2(r — ¢) con-
straints: (r — g) scalar constraints and (r — g) vector con-
straints.

The following corollary shows the constraints on spac-
ings that follow from Theorem 2. In-fact, these constraints
can be shown to be equivalent to those in Theorem 2. The
implication of this corollary is that, of the r spacing pa-
rameters for each variable, only (¢ — 1) of them are inde-
pendent, one of them is zero, and the rest can be expressed
as hnear combinations of the (g 1) independent ones.

COROLLARY 1. The spacing parameters S, = [éi 1 ~~§i/,] are con-

strained by the equations SN =0,i=1,2, ---, v, where N
is the matrix consisting of the basis vectors of the null space
of D.

PROOF. From (14), we know that S, = K -V, ® T". Using the
property of outer products that (7 ® b) ¢ =(b- &),
we get

;- =K-a,-(T: ocl) =0
for any column &; of matrix N. The corollafy is
proved by applymg Theorem 2. O

EXAMPLE 4. From Theorem 1, the constraint equations for
the recurrence in (5) (excluding the trivial constraint
Vit = Vit + 5,) are -

Vit = Vot +8,, = Vil + 8, =Vt + 5, = Vst + 55|
Similarly, there are 16 additional equations related to
Voty, Vats, Vit and Vit

D defined in (7) has rank 3. Hence, N comprises of
two basis vectors.

1 1
0 1
N=|1 1
-1 0
0 -1

From Theorem 2, the additional constraints are

fo=t + 1t ts =ty + 15 (18)
ky=k+ky, k=k+k (19)
In this example, there are a total of 27 vector con-
straints and two scalar constraints. O

To summarize, a total of + 7) vector parameters and 7
scalar parameters have been defined whose values have to be
determined. Theorems 1 and 2 give a total of 7* + (7 — Q) vec-
tor constraints and (v — g) scalar constraints. Hence, g of the
scalar parameters (periods) and g of the vector parameters
have to be chosen such that the other (r — g) scalar parameters
and 7 + (r — & vector parameter values can be determined
from the chosen scalar and vector parameters. Since the per-
formance of the design can naturally be expressed in terms of
the periods and displacements, our strategy is to choose the g
periods and g displacements to optimize a given perform-
ance criterion. The remaining (r — g) periods, (— g) dis-
placements, and all of the spacings can be determined from
Theorems 1 and 2. All the vector equations are solved i in m-D
space in order to obtain m-D vector parameters.

3.3 Constraints to Govern Valid Space- Tlme
Mappings

The validity of a space-time mapping is governed by the
following fundamental necessary and sufficient conditions:
1) Precedence Constraints. An index point should be
executed only after all the index points on which it
depends on have been executed. In DM, I1-D > 0.
2) Avoidance of Computational Conflicts. No two index

GANAPATHY AND WAH: OPTIMAL SYNTHESIS OF ALGORITHM-SPECIFIC LOWER-DIMENSIONAL PROCESSOR ARRAYS

points should be executed at the same processor at the
same time. In DM, II. f] =11 Tz, implying that
S-I,#S-1,.
3) Avoidance of Data-Link Conflicts. No two data to-
kens should contend for a given link at the same time.
Having established the parameters and the basic relation-
ship among them in Theorems 1 and 2, we show how the
fundamental conditions for valid space-time mappings are
satisfied in GPM.

By definition, periods denote the time difference between
the source and sink of dependencies. Hence, the precedence
constraint is satisfied by simply enforcing t; 21, i=1,---,7. In
the array model, all tokens of the same variable move with the
same velocity. Hence, data-link conflicts can exist if and only if
two tokens of a variable are input at the same time into the
same processor and travel together contending for links. This
condition is called a data-input conflict in GPM, as two data
tokens are in the same physical location and conflict with each
other as they move through the processors together.

It is important to note that in GPM, computational conflicts
can exist if and only if data-input conflicts occur. This can be
seen by the following simple argument. If two index points are
evaluated in the same processor at the same time, then for
each variable, at least two distinct tokens exist together in the
same processor. Hence, if there is at least one non-stationary
variable, then there are data-input conflicts for the tokens of
that variable. Otherwise, all variables are stationary, and the
entire computation is executed in one processor; i.e., there is
no processor array. Hence, by enforcing that no data-input
conflicts exist, both computational and data-link conflicts are
avoided. Theorem 3 below presents conditions under which
data-input conflicts can be eliminated.

Consider the spacings of variable i. Let S] beanm x (g—1)
matrix:

87 =[8185 S 5] (20)

where §i,1§i/2, ey §,., g1 are the (g — 1) independent spacings.

Let &, B,7 be vectors with (¢ — 1) integral elements. Let L,

U,j=1,2,-,8-1be defined such that the position of all

the tokens of the input matrix can be represented by

f;ll §i, B, where L; < § < U, and L; and U are functions
of the size of the input matrix.

THEOREM 3. Data-input conflicts occur in the input matrix of
nonstationary input i if and only if S, & =0, where
a=lay, 0y 000, 20, and o € [L; = U, ...,

(L;+ U] for all i such that 1 <i< g —1[14].

PROOE. The position of any element of input i can be described
as S} B, where B=I[p,,...,8,,] and L, < § < U,
Therefore,

Data - input conflicts & S/-=S5-7,
where B # 7 and L <7, B, <,
S B-1=0

o S5 -a=0,
whered = -7 %0, o, e [(L; = U)),..., (L, + U]

279

Note that in Theorem 3, we have defined conservative
bounds on ¢, Better estimates can be obtained [15] and will
result in less overhead when the conditions in Theorem 3
are checked in the design process.

EXAMPLE 5. For the recurrence in (5), if the array sought is
1D, then the spacing parameters are all 1D scalars. Let
S,, and S, 5 be the two independent spacings for in-
put X, and we choose the values of L; = L, =1 and U,
= U, = N. According to Theorem 3, data-input con-
flicts occur in input X if and only if

s = o

[51,251,5][05;] =0
where -(IN- 1) < ¢, & < (N —1) and ¢4, o # 0. For in-
stance, if N = 5 and 51,2 =6 and 51’5 = 4, then condi-

@D

tions [oq = 2] and [, = 3] satisfy (21). (In one dimen-
sion, the vector spacings are positive or negative num-
bers.) Hence, there are data-input conflicts in input X. [

3.4 Constraints in Preloaded Data

If the velocity of a variable is zero, then the data corre-
sponding to the variable have to be preloaded in the proces-
sors before computation begins. This problem involves de-
signing a schedule that can overlap as much as possible the
preloading of data with systolic computations without de-
laying these computations. A general approach is to decide
when a particular stationary datum needs to be used in its
first computation, and to develop a preloading schedule so
that the bandwidth constraint of the processor array is satis-
fied and that the first computation can begin with the mini-
mum delay. We like to point out a) that data do not have to
be preloaded in any order that is governed by a dependence
relation (as in systolic processing) as long as they do not con-
flict in using the inter-processor links, and the bandwidth of
the input ports is not exceeded; b) that the optimal preload-
ing schedule may depend on the velocities and data distri-
butions of the moving data; and c) that preloading data may
result in problem-size-dependent memory in each processor
(a design alternative often disallowed in systolic arrays).

We discuss in Section 5 the effect of preloading data on
computation/completion time for the transitive-closure
problem.

4 DEesSIGN METHOD
4.1 Formulation of the Search Problem

The design of a feasible processor array is equivalent to
choosing an appropriate set of parameters in order to satisfy
the constraints imposed by dependency and application re-
quirements for a specific uniform recurrence equation and a
specific problem size N. The search for the “best” design can
be represented by the following optimization problem.

Minimize b(N,t,...,t Kk,k) 22)
1<t, i=1..,7,
<lkl|l<t, i=1,..,
Subject To: 0 ‘k" iv ! ! (23)

constraints defined in Theorems 1, 2, and 3
#PE<#PE™and T, <T.°

280 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 3, MARCH 1996

The objective function b defined in (22) is expressed in
terms of attributes such as T, computation time of the
algorithm, T, load time for the initial inputs, T,,,;,, drain
time for the final results, and #PE, number of processing
elements in the design. Note that the completion time of
evaluating a recurrence is
(24)
All the attributes are then expressed in terms of the pa-
rameters defined in GPM.

The first two constraints in (23) follow directly from the
definition of the parameters in GPM. Since the target array

Tc = Tcomp + Tlond + Tdmin

is systolic, displacement ‘E,I should not exceed period f; in

order to prevent data broadcasting (velocities should not

exceed one). In addition, the constraints ¢, >1,i=1,2, ..., 7,
mean that precedence constraints are satisfied.

The third constraint indicates that the recurrence is
evaluated correctly by the processor array, satisfying de-
pendency requirements (Theorems 1 and 2) and be free of
data-link and computational conflicts (Theorem 3).

The fourth constraint indicates bounds on T, and #PE
imposed on the design to be obtained. For instance, the
following are two possible formulations of the optimization
problem:

¢ Minimize T, for a design with a maximum bound on
#PE, #PE"";

e Minimize #PE for a design with a maximum bound
onT, TCUB.

Both of these formulations represent trade-offs between T
and #PE.

The optimal design for the formulation given by (22) and
(23) is found by a search algorithm. Since, in general, the
objective function is nonlinear, involving functions such as
ceiling, floor, and maximum/minimum of a set of terms, it
is difficult to describe a comprehensive algorithm that cov-
ers all possible cases. In the rest of this section, we first de-
scribe a pruning strategy used in our search algorithm, fol-
lowed by a discussion on searches with objectives that are
functions of T, T,y Ty, and #PE. We then present the
search algorithm and show its application for special cases
of optimizing T, and #PE.

4.2 Pruning Strategy

The search space defined by the constraints in (23) results in
a worst-case complexity of

o[i(t;naxy] - of(zz)*).

i=1

(25)

seq
where Tmmp

is the time needed to process the recurrence
sequentially, and ™ is the maximum value of period ¢
< T . Equation (25)

such that the computation time T, comp*
is true because we iterate in the worst case all combinations

comp
of t; and ‘l{‘ <t, i=1,...,r. Note that this search space is

polynomial in terms of the parameters in GPM and the size
of the URE to be evaluated.
To reduce this search space, we need to develop effective

pruning strategies so that suboptimal designs do not have
to be evaluated. In this section, we present one such strat-
egy that prunes suboptimal designs based on the incum-
bent design obtained so far in a search. Our pruning strat-
egy takes the objective function b (assuming to be mini-
mized) and decomposes it as follows:

BNy, .ot Ky, KD
t

fltyee stk ettt K K)),(26)

where N is not represented explicitly since it is a constant in
the optimization. The decomposition is done in such a way
that e()* is a monotonic function of its variables, which may
be a subset of t],...,t,,E],...,Er. The intuition behind this
decomposition is as follows.

If the objective function b(t,,...,t,, k..., k) is a mono-
tonic function of its variables, then the optimal value of
the parameters can be found by enumerating combina-
tions of values of variables from their smallest permissible
values (given by (23)) until a feasible design that satisfies
Theorems 1, 2, and 3 is found. Since b() is monotonic, the
first feasible design obtained is also the optimal design.

The above idea of enumerating values of a monotonic
function can be extended to the general case of non-
monotonic objective functions. This is done by first identi-
fying e(), a monotonic component of the objective that can
be enumerated efficiently. The search proceeds by enu-
merating designs so that values of e() grow monotonically.
(The combination of parameter values used in e() are sub-
stituted into (23), and the constraint equations are solved
to see if there exists a feasible design.) Whenever a feasi-
ble design is obtained, an upper bound on e() is computed
by setting variables in b() that are not included in e() to
their extremum values. (This upper bound means that no
optimal design will have an objective value whose mo-
notonic component ¢() is larger than the upper bound.)
The search is then repeated, refining the upper bound
each time a feasible design is found. It stops when the
upper bound on e() is smaller than or equal to e() of the
best feasible design.

For complex objective functions, rewriting the objective
in terms of composite variables (expressed in terms of the
primary variables ¢,,...,t,, ’;1/ e, Er) can simplify the choice
of the extremum values for variables other than those in ().
This is illustrated as follows:

Consider an objective expressed as a function of com-
posite variables T, Tipaa Tarain and #PE as follows.

B= b(TCDmp/ Tlnnd/ Tdrm'm #PE) (27)

It is easy to see that T, = T,,(t;, ..., t,) is monotonic with
respect to the g periods t,, ..., t,. (An exact characterization
is shown in Lemma 1 in Section 5.1 for the transitive-
closure problem.) Hence, we choose T, as the monotonic
component of objective function b() and enumerate the pe-
riods t,, ..., f, in an increasing order from their smallest

permissible values (i.e., unity).
TUB

comp CAN be refined if b() is monotonically increasing

2. For notational ease, we denote functions without their arguments.

GANAPATHY AND WAH: OPTIMAL SYNTHESIS OF ALGORITHM-SPECIFIC LOWER-DIMENSIONAL PROCESSOR ARRAYS 281

with T, Tistr Tirain and #PE. In this case, T8 can be ob-

comp

tained by Setting Tluﬂd = Tdrnin = 0’ T, = Tm::ﬂ’ and #PE =

comp ~ “co

#PE™™ and solving

inc usB min min min
B = b(Tcnmp' Tload ’ Tdrain’# PE) (28)
= b(Ton,/ 0, 0,# PE™) 29

where B™ is the objective value of the incumbent design
obtained so far. Hence,
TUB — b—l(BinL‘ Tmin Tmin #PEmin)

comp load 7 ~drain’

(€)]

where b™() is the inverse function of b() that rearranges (29)

B .
to compute Tcu in terms of known constants.

omp
TUB

comp €an further be refined if #PE can be expressed as a

function of 112,‘,..‘,’12,’. In this case, #PE is minimum when

l;,v‘s is 1, and the rest of the]12,.

(An exact characterization is shown in Lemma 2 in Section
5.1 for the transitive-closure problem.)
For instance, if the objective function is

exactly one of the

,j#1,are0.

B = (Toppp + Tioas + Tirain)” X #PE. (31)
According to (29), we have
B" = (T, +0+0)*x# PE
= T4 = [B"[# PE"™ (32)

Similarly, if the objective function to minimize completion
time T,
B=T =T

comp

_ Biu(_ (T}:,’:,:; + Tmiu) _ Bin(—(0+ 0) _ Binr

drain

+ Tland + Tdrm'n

=T =T (33)

comp

I
T8

conp 18 refined continuously as new incumbent designs
are found in the search. The search stops when there is no

< TUB

combinationof t, i =1, ..., r, that satisfies T comp*

comp

A special case of the optimization is to find a design with
the minimum computation time T, (not including load
and drain times). This was done in our earlier work [14],
[16]. Here, T'% = B

comp

=Ti , and the first feasible design

comp
is the optimal design that minimizes T,

comp*

4.3 Search Procedure

In this section, we illustrate our search procedure by
showing how we can minimize b(#PE, T.) = (T ompr Tioaar
T jrains #PE) (27), where T

comp

T jrain are functions of t,,..., ¢,

k

is a function of #,, ..., t,, T},,e and

k, k,|, and #PE is a func-

AREN]

tion of 'E]‘,...,

A}

1) Choose g periods and g displacements to be uncon-
strained parameters. Without loss of generality, let
these periods and displacements be ¢, and E,v 1<i<g,
respectively.

I uB seq
2) Initialize Tmmp to be Twmp,

the computation time re-
quired to evaluate the recurrence sequentially.

3) Set the values of all the g unconstrained periods ¢,, i
=1,...,,8 tobe unity.

4) Choose the magnitude of the ¢ unconstrained dis-

lacements |k, i=1, ..., &, to be zero.
P : &

5) Compute the values of the other dependent (r - g) pe-
riods and (r ~ g) displacements using the conditions
of Theorem 2.

6) Compute T

comp using the periods and displacements

found, where T

comp 18 the computation time (without

load and drain times) required for processing the re-

currence. T, is found by substituting the current

comp

values of ¢, i = 1, ..., r; an exact function is exempli-
fied in Lemma 1 later. (Note that the design may not
be feasible at this time.) If T > T8

compu > Teomp then exit with
the incumbent design.

7) Solve for the spacing parameters from (13) defined in
Theorem 1.

8) Check for data-input conflicts on the spacing pa-
rameters using Theorem 3; also, check whether the con-
straints on T, and #PE are violated (Constraint 4 in (23)).

9) If the solution is not feasible, then increment one of

the ’ic}'s and repeat Steps 5, 6, 7, and 8 until all ’Eil

equal t, i=1, ..., r. If all |l€,- equal f; and no feasible

design is found, then go to Step 10. If a feasible design
is found, then go to Step 11.
10)Increment one of the periods such that ch;:;p“ in-

creases by the lowest possible value. Go to Step 4.
11)Compute B™
current incumbent design found. If B" < B™, then

, the objective value achieved by the

set B" = B, and compute T“® for the current de-

compu

sign using (30). Increment one of the ‘Ei’s so that

TEMY

compu

to Step 5.

is increased by the lowest possible value. Go

For a design that minimizes #PE, the search procedure
described above needs to be changed. In this case, e()

E’I , and the
search should start iterating with the smallest combinations
of 'El Jeees]Eg[. (See Lemma 2 in Section 5.1.)

Joeers

should be defined as a function of |E1

5 APPLICATIONS: TRANSITIVE CLOSURE

Path-finding problems belong to an important class of op-
timization problems, which include computing transitive
closures and shortest paths of a graph. 2D processor arrays
for finding transitive closures have been presented before
[171, [18]. In this section we synthesize a one-pass linear
processor array for this problem using the Warshall-Floyd
path-finding algorithm.

The transitive-closure problem is defined as follows.

282 ‘ IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 3, MARCH 1996

Given an N-node directed graph with an N x N Boolean
adjacency matrix Ci, jl, 1 < i, j < N, the transitive closure
Ci, jl = 1 if there exists a path from node 7 to node j, where
Cli, j1 = 1 if there is an edge from node i to node jor i = j,
and C[i, j] = 0 otherwise. That is,
fork,i,j=1,N
CG, /) =CGp+CGKCkH G
The dependence structure of a general dynamic-
programming formulation of the transitive-closure problem
is irregular and difficult to map on a regularly connected
planar processor array. To cope with this mapping prob-
lem, Kung et al. have converted the transitive-closure algo-
rithm into an reindexed form and have mapped it to 2D
spiral and orthogonal arrays [17]. Based on their algorithm,
we obtain the following five dependence vectors after pipe-
lining the variables. '

=(0, 0, 1) for (k,i,) « (k,i,j—-1',2<j<N,

d,=(0,1,0) for ki,)} « k,i-1), 2<i<N,

dy =1, -1, -V for (k,i, k) « (k-1,i+1,j+1),
2<k<N,1<i,j<N-1

d, =1, 1,0 for ki, N « (k-1,i+1,N),
2<k<N,1<i<N-1,

d; =1, 0, -1 for (k,N,) « (k—=1,N,j+1),
2<k<N,1<j<N-1 35)
where f1 — fz means that the data at point fz is used at
point I,. For nodes on the boundary of the dependence
graph, where i = N (resp., j = N), dependence &4 (resp., 35) is
present instead of dependence d—3. For other interior points,
only three dependencies, &1, 32, 513, exist.

The key observation is as follows. Matrix C (whose
transitive closure is to be found) is input along depend-
ence vector 513. Inputs along other dependence vectors
ﬁl, 32,34,35' are nonexistent; i.e., they are never sent into
the array from the external host. Hence, there are no data-
input confli¢cts along these dependence directions. As a
result, we need to consider data- mput conflicts only along

direction d Since dependencies d3,d4, and d never co-
exist, there are only two spacings for data along direction
d}, namely, 5311 and 33,2.

A total of eight relevant parameters are defined for the
transitive-closure problem: three periods (t;, #, f;), three
displacements (k;, k,, k,), and two spacings (53/1, §3,2). For a
linear processor array, all the parameters are scalars. As
derived in Example 4, the periods and velocities along di-

rections a4 and 35 are given as iy = f; + Iy, f5 = 1, + {3 (18),

124 = 121 + Es , and Es = Ez + %3 (19), respectively. From Theo-
rem 1 and (10), we get

L bk -tk - bk, — bk

5, = 3 13,532: 3l T iy

/ t, : f

(36)
3

We illustrate in the rest of this section the following for-
mulations of the optimization of linear processor arrays:

1) Temyoptimal designs without bound on #PE;

2) T-optimal designs without bound on #PE;

3) #PE-optimal designs without bound on T, or T,
and ;

4) optimal designs with specific bounds on Tcom,, or #PE;
and

5) optimal designs with specific bounds on T, or #PE.

5.1 Performance Attributes and Constraints

Before optimal designs can be found, we need to express
performance attributes in the objective function in terms of
the parameters in GPM. The attributes we are interested are
Tl:ompr Tlorzd/ Tdmim #PE, and Tc/ where Tc = Tload + Tcomp + Tdmin-
In this section, we show three lemmas that express these

performance attributes in terms of the parameters defined.
We also show two constraints that refme the constraints

defined in Theorem 3.

LEMMA 1. The computation time T, without load and drain
times for finding an N x N transitive closure is given by

Teomp = (N =128 + 24, + £5) + 1 (37)
PROOF. The critical path in the execution is as follows:
(N-Dt (N-Dt, (N-Dt,
1,1, D %(11N) %(1NN) —
(N-D)t, (N-1)t,
(N,1, 1D a(NlN) —>(NNN)
Thus, Teom, is (N —~1)(28; + 2t + 15) + 1. O

LEMMA 2. #PE, the number of processor for computing an N x N
transitive closure on a linear processor array satisfying the
dependencies in (35), is given by

#PE = (N = Dl |+ &y |+ e, + K, + Ep+1 G38)
PROOF. See reference [13]. O

LEMMA 3. Assuming that the input matrix is nonstationary,
Touar the load time, and T ,,;,, the drain time, for computing
an N x N transitive closure on a linear processor array
satisfying the dependencies defined in (35) are given by

Tload = Tdmin =
LN fg{fj(a,lg) +Gky, k) + Gl + Ky +Ky), ;;3]}

fe
+ (N =D[G(S,),) +G(E,), (k) (39)
where
GE,7) = {|x| Lfthaér;zzfey are in opposite directions 40)
PROOF. See reference [13]. o |

Lemma 3 does not cover the case when the input matrix is
stationary. As pointed out in Section 3.4, stationary inputs
need to be preloaded in the processor array before compu-
tations begin. Since there is only one input matrix C, we
assume that preloading takes a lower-bound time com-
puted as the floor of the number of elements to be pre-
loaded divided by the maximum number of input ports. A
similar assumption is made when the final stationary results
need to be drained. Even with this optimistic assumption,

GANAPATHY AND WAH: OPTIMAL SYNTHESIS OF ALGORITHM-SPECIFIC LOWER-DIMENSIONAL PROCESSOR ARRAYS

283

TABLE 1
T cou-OPTIMAL LINEAR PROCESSOR ARRAYS
FOR FINDING TRANSITIVE CLOSURES OF N x N MATRICES

GPM: T.omp-Optimal Linear-Array Designs
N [Periods Distances | Schedule | Allocation Min Teomp Designs 5510/30
(tl, tz,tg) (k1, kg,ka) 1I S (ﬂoad:Ttamprdmin) | #PE (sec')
3 (1,1,2) (0-1,1y | {(4¢11) | (0,-1,0) (5,13,5) 3 -
af (1,13) | (0-11) | (51,1) | (0,-1,0) (10,22,10) 4 .
sl (115 | (0-1,3) | (1.,1) | (2-1,0) (15,64,15) 22 -

16 (1,25 | (0-23) | (821 | (1,-2,0) (61,166,61) 46 .

32| (1.3.6) | (0,-3,5) | (103,1) | (2,-3,0 (125,435,125) 156 .

64 | (1,57 | (0,-5,8) | (13,51) | (1,-5,0) (379,1198,379) 379 -
100 || (1,511) | (0,-59) | (17,51) | (4,-50) | - (694,2278,694) 892 1
200 || (1,8,13) | (1,-8,12) | (22,8,1) | (5,~8,1) (1792,6170,1792) | 2787 7
300 || (1,9,18) | (0,-9,17) | (28,9,1) | (8,-9,0) | (2991,11363,2991) | 5084 | 26

TABLE 2
TC-OPTHVIAL LINEAR PROCESSOR ARRAYS FOR FINDING TRANSITIVE CLOSURES OF N X N MATRICES
GPM: T,-Optimal Linear-Array Designs
N [Periods Distances | Schedule | Allocation Min T, Designs S510/30
(tla t21t3) (khkz.ka) II S (ﬂoad’Tcmp;Tdraiﬂ) I #PE (sec')
3 (2D | (0-L1) | (&21) | (0,-1,0) (3,15,3) 3 -
4 (1,3,1) (0,-1,1) (5,3,1) (0,-1,0) (4,28,4) 4 -
sl (115 | (0,~1,3) | (n11) | (2-1,0 (15,64,15) 22 -

18] (1,28) | (0,-15) | (9,21) | (4-10) (31,181,31) 76 -

2 (1,29 | (0,-27) | (12.21) | (5,-2,0) (94,466,94) 218 1

64 || (1,510) | (0,~2,9) | (165,1) | (7,~2,0) (190,1387,190) 568 5
100 || (1,4,15) | (0,-3,14) | (20,4,1) | (11,-3,0) (397,2476,397) 1387 14
200 | (6,1,19) | (-5,0,18) | (26,1,6) | (13,0,~5) | (1195,6568,1105) | 3583 | o1
300 || (1,7,24) | (0,-6,23) | (32,7,1) | (17,-6,0) | (2094,11961,2094) | 6878 | 265

we did not find any design with stationary inputs/outputs
that out-perform designs with moving inputs. Although
this observation is not true in general, we like to point out
that a schedule to preload data in the processor array needs
not be governed by the data dependence relations, and that
a general preloading schedule may depend on specific de-
sign parameters (such as values of the GPM parameters)
and architectural constraints (such as bandwidth and
memory).

For linear-array synthesis, since the spacings are scalars,

let 55, be ‘53’11 and s3, be ‘53,2’. In addition, the condition for
data-input conflict {Theorem 3) can be refined as follows.

THEOREM 4. Data-input conflicts occur in the N-by-N input

matrix C if and only if
S3,1 53,2
—=~ <N, and =~ <N 41
B S

where £ = GCD(sy, 3,) is the greatest common divisor of
531 and and s3,.

PROOF. See reference [13]. O

COROLLARY 2. For any feasible design, s31 + 53,2 N + 1.
PROOF. Assume for contradiction that s;; + 53, =x, x <N + 1.
Then 1 <83, 83, < (x — 1). If £is GCD(s3y, s3,), then

1 < S3,l

S

According to Theorem 4, data-input conflicts are pre-
sent, and the solution is not feasible. O

,S%Zs(x—l)sN

5.2 Time-Optimal and Processor-Optimal Linear-
Array Designs

Table 1 shows the optimal linear-array designs found by
the search procedure of GPM (see Section 4.3) in which the
objective is to minimize T, (computation time, not in-
cluding load and drain times) without bounds on #PE. In
finding these designs, ; is incremented before #, or £, in
Step 10 of the search procedure. This is done as it increases

Tomp by the smallest amount. Among all the designs that

have the minimum T,,,, we found designs that require the
minimum #PE, followed by finding designs that require the
minimum T,y and Ty, We list Tiws, Teomp Taraine #PES
needed, and the CPU time used by the search procedure
running on a Sun Sparcstation 10/30. We also list the
equivalent values of schedule vector I1 and allocation ma-
trix S of DM by solving (9) and (11).

In a similar way, we find designs that optimize T,
(completion time, including load and drain times) without
bounds on #PE. (See Table 2.) Note that these designs have
less total completion time and more #PEs than the corre-
sponding designs in Table 1. For instance, for N = 300, the
completion time for the design optimizing T, requires 7%
less completion time and 35% more PEs than the one opti-
mizing T, We also list the equivalent 1 and S in DM for
minimizing T..

Our results in Tables 1 and 2 demonstrate that GPM,
based on the equivalence between GPM and DM as shown

284

|IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 3, MARCH 1996

TABLE 3
PARAMETERS USED IN LK, SF, AND GPM
ON #PE-OPTIMAL LINEAR PROCESSOR ARRAYS
FOR FINDING TRANSITIVE CLOSURES OF N X N MATRICES

#PE-OPTIMAL LINEAR PROCESSOR ARRAYS FOR FINDING TRANSITIVE CLOSURES OF N x N MATRICES

Method ﬁ s (il, tz, ts) (]:7'1, Ez,]_4;3)
LK N -1,2,1F] [0,1, 1] [(1,2,2N -4) | (1,1,-2)
SF [, 1, 1]t 0,0, -1t | (1,1, N~2) | (-1,0,1)

GPM | [N+1,1,1) |[0,0, -1 | (1,1, N—1) | (-1,0,1)
TABLE 4

(PARAMETERS FOR GPM ARE SHOWN IN THEOREM 5 AND IN TABLE 3)

Designs by LK [7] Designs by SF [6 Designs by GPM

N (Tlaad: Tcomp) Tdruin) #PE (Tioad] Tcamps Td‘rm'n) #PE (Tlaady Tcomp: Tdrain) #PE

3 (5, 17, 5) 5 (3, 11, 3) 3 (5, 13, 5) 3
4 (13, 31, 13) 7 (7,19, 7) 4 (10, 22, 10) 4

8 (85, 127, 85) 15 (43, 71, 43) 8 (50, 78, 50) 8
16 (421, 511, 421) 31 (211, 271, 211) 16 (226, 286, 226) 16
32 (1861, 2047, 1861) 63 (931, 1055, 931) 32 (962, 1086, 962) 32
64 (7813, 8191, 7813) 127 || (3907, 4158, 3907) 64 || (3970, 4222, 3970) 64
100 ||* (19405, 19999, 19405) 199 || (9703, 10099, 9703) | 100 || (9802, 10188, 9802) 100
200 (788085, 79999, T8805) 399 || (39403, 40199, 39403) 200 |j (39602, 40398, 39602) 200
300 || (178205, 179999, 178205) 599 |l (89103, 90299, 89103) 300 || (89402, 90598, 89402) 300

in (9) and (11), can serve as a powerful tool to find optimal
designs in DM.

It is important to point out that the objective used
(whether to minimize T, or T,) depends on the applica-
tion. If the linear processor array is used to evaluate the
transitive closure of one matrix, then minimizing T, will be

“important. On the other hand, if the processor array is used
for pipelined evaluation of transitive closures of multiple
matrices, then minimizing T, may be important.

If the objective is to minimize #PE in the linear processor
array, then Theorem 5 characterizes the #PE-optimal design.

THEOREM 5. The combinations of parameters (t;, t,, t5) = (1,1, N —
1) and (121,122,123) =(0, 1, FD or (1, 0, ¥1) result in
linear processor arrays with a primary objective of mini-
mizing the number of PEs, and a secondary objective of
minimizing the computation time.

Proof. See reference [13].]

Table 4 shows the #PE-optimal designs obtained by
GPM as well as those obtained by Lee and Kedem (LK) {7]
and Shang and Fortes (SF) [6]. In this table, we show the
load and drain times, computation times, and #PEs for de-
signs derived by these three methods. IT, S, and the corre-
sponding parameters in GPM are summarized in Table 3.

Table 4 shows that both the SF and GPM designs require
the minimum number of PEs. The SF designs, however,
were developed based on different assumptions. According
to Lemma 1 and Table 3, the SF designs have a computation
time Tep = (N — D(N + 2) + 1. This computation time is
lower than that of the GPM designs characterized by Theo-
rem 5. This difference is attributed to the fact that Shang
and Fortes assumed that contention must only be avoided
after the first use of a variable and before its last use or gen-
eration. This is a valid assumption for systems with fast
1/0 (or where each PE has its own 1/0), or in cases where
inputs are preloaded and outputs need not be drained or

are post-drained. In GPM, we consider both contentions in
computations as well as in data links. Excluding designs
that have these contentions results in designs that require
slightly longer load, drain, and computation times.

To illustrate the point above, we compute using (36) the
spacings used in the SF design [6]: s3; = (N — 1)/(N - 2)
and sz, = —1/(N - 2)). These values of spacings result in
data-input conflicts between tokens (C;;and Cy, ;4),j =2, 3,
..., N, of input matrix C (Theorem 4).

The space-time diagrams of a linear processor array op-
timizing T, for N = 3 is shown in Fig. 2. This design has pa-
rameters (t, f, £3) = (1, 2, 1) and (k;, k,, k;) = (0, =1, 1). It
minimizes both T, and #PE, and, therefore, minimizes any
objective of the form # PE" - T? for x, y > 1. Note that the
load and drain times are not shown in these disgrams.
Further, for correct execution of the Floyd-Warshall algo-
rithm, control signals are needed to govern the index-
dependent assignments performed by the PEs in the array.
These assignments are given in Tables I and II in reference

{8l

5.3 Processor-Time Trade-Offs

Comparing the results in Tables 2 and 4, we found, for in-

stance, that for a problem of size of 200, the T -optimal de-
sign is 13.35 times faster than the #PE-optimal design in
terms of completion time, and uses 17.9 times more PEs
than the #PE-optimal design. (The T,-optimal design for N =
200 requires 8,958 time units and 3,583 PEs, whereas the #PE-
optimal design requires 119,602 time units and 200 PEs.) A
designer might be unwilling to settle for eithér the large
number of PEs required in the minimum-time design or the
long completion time of the minimum-processor design. In
realistic design situations, there may be bounds on the
numbetr of processors or the completion time or both.
Hence, a possible objective could be to have as few proces-

GANAPATHY AND WAH: OPTIMAL SYNTHESIS OF ALGORITHM-SPECIFIC LOWER-DIMENSIONAL PROCESSOR ARRAYS 285

Input Matrix on Link 3

Tme PE 1 PE 2 PE 3 Ct1 Ci2 C13 C21 C22 €23 C31 C32 C33
1C11 >
1 1C11 V=1
1611 3
1¢12
2 111
2C12 ,_’——_J
3 1013 ;gg} 1 1
1C11 N
3C13 1¢c11 H 2 —> D" 2
4 1022 i 8=—71 PE |3
2C21 4
2C22 "‘SD— fe— 4
2022 1C23 1 ca1 5
5 1c2z 2C21 3631 E —
1C22 3C13 1C11
2023 1ca2
6 1022 3C31
2C23 2012
2c21 2032 1033
7 1c22 2C32 3631
3C21 1C22 3613
2C33
8 2C32
2023
3C33 2C31
9 1033 2032
1C33 3021
3C31 x (2.3.2) oxooutcs
10 1633 Index (2,3.2) cxceutes
2C31
3c32 3C13
11 1C33 2C1
3C32 1C33
3011
12 2C13
2C31
3C12 3623
13 2C13 3523
3Ca2 1633
1621
14 3C23
2¢C31
3c22
15 3C23

Fig. 2. Linear processor array for transitive closure of a 3 x 3 matrix
with (t, &, &) = (1, 2, 1) and (k,, k,,k;) = (0, —1, 1). The array is

optimal for minimum T, minimum #PE, and minirum # PE™ x T/, x,
y=1. The PE used is'the same as in Lee and Kedem’s design.

sors as possible, so long as the time is within a preset upper

limit, TC"b (or Tc'f,fnp), or to minimize T, (or T, with #PE

less than a given upper bound #PE".
In the following discussion, let T and #PE™ be, re-

cDmp
spectively, the computation time and #PE of the minimum-
T oy design. Designs with #PE > #PE™ would not be useful

as their computation times have to be at least TC';;‘; On the

other hand, let T™ and #PE™ be, respectively, the com-

comp
putation time and #PE of the minimum-processor design
= N). Again, there is

max
> Twmp, as the

min

(from Theorem 5 and Lemma 2, #PE

no benefit in obtaining designs with T,

number of PEs cannot be reduced below #PE™™. In this case,
we are interested to find designs with computation time

greater than T"" and #PE less than #PE"™.

comp
Fig. 3 shows how #PE varies with T, for three different
problem sizes: N = 100, 200, and 300. The y-axis #PE is
normalized by #PE™, and the x-axis T, is scaled by T,;, -~

comp'
This lets us compare results of the different problem sizes
uniformly on the same scale. The stepped curves are ob-
tained by bounding T,,,, and finding the #PE-optimal de-
signs for specific recurrence sizes. These curves are stepped

09
08 |i
07
06 F |
05 -
04

Normalized #PE

03 |

02 |
0.1 | -

0.1 0.2 0.3 04 05 06 07 0.8 0.9 1
Normalized Computation Time
Fig. 3. Performance trade-offs: Variation in (a) minimum #PE with time
bound T2

eomp

plots are shown for N =100, 200, and 300.

and (b) minimum T, with processor bound #PE". The

because there are only a small and finite number of proces-

sor-array configurations that can satisfy the given time con-
straints. If the goal is to find #PE-optimal designs, then we
will have a small number of array configurations; for each
configuration, we will select the one with the minimum
computation time.

Given the bound T'?

comp (1ESP., #PE") the designer can use

Fig.3 to find the minimum #PE (resp., T, required, and
decide (possibly from a cost perspective) if it is acceptable.
Again, the designer can exploit the initial steep decline in the
plots to choose an alternative design that trades performance
for cost. For instance, the minimum #PE for N = 200 drops by
43% for only a 19% increase in computation time.

If both T, and #PE are bounded from above, then the
design with the minimum #PE for a given time bound is
determined using Fig. 3. First, a horizontal line is drawn
across the graph for the desired bound on #PE. The inter-
section between this line and the stepped curve represents
the minimum T, needed for any feasible design. If this
minimum T, is less than the desired T,,,, then a feasible
design can be obtained by the procedure discussed in Sec-
tion 4.3. This now represents the best design under both
time and processor constraints.

Another observation from Fig.3 is that the plots for
larger N decrease more rapidly than those for smaller N.
Hence, for larger N, there is a substantial reduction in #PE
(resp., T,omy) for a relatively small increase of the computa-
tion time (resp., #PE) from the optimum. Hence, for large N,
there are more attractive alternatives than the time- or #PE-
optimal designs.

Fig. 4 shows a similar plot as in Fig. 3 except that we de-
pict the difference between trade-offs obtained on T, and #PE
versus trade-offs obtained on T, and #PE. Two sets of
curves are shown, one for designs that minimize T, and

the other for designs that minimize T,, for N equal to 100 and
200, respectively. The y-axis of these curves is normalized

with respect to #PE when T, is minimum (since these de-

286

: T T T T T T T T
00 L i N =100, T_comp — |
’ i N = 100, T_¢c -~
08 ! N =200, T_comp -- i
' %l N =200, T_¢c -
0.7 |
m i
& 06
3
é‘ 0.5
g 04 [~
03 |
02 |
0.1 |
0 1 ! 1 1 1 { 1 1 1
0 0L 02 03 04 05 06 07 08

Normalized Completion Time

Fig. 4. Performance trade-offs: Variations in #PE with T, and #PE with

Toomp- The plots are given for two problem sizes, N =100 and 200.

signs require more PEs and less T,), and the x-axis is normal-
_ minax
- Tcomp .

show the difference between designs obtained by different
objectives. Given a bound Tcub, we can see that the number of

ized with respect to T, when T, These graphs

omp

IEEE TRANSACTIONS ON PARALLEL -AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 3, MARCH 1996

processors obtained by minimizing T, is less than or equal to

the number of processors obtained by minimizing T,

6 FINAL REMARKS

Algorithm-specific processor arrays can be systematically
designed with the help of the general parameter-based ap-
proach (GPM) discussed in this paper. This work general-
izes the initial work on a parameter based approach [10] by
making three important and nontrivial extensions.

1) We consider the recurrence model as a general n-D
recurrence with arbitrary constant dependence vec-
tors instead of a specific 3D one. The target processor
arrays are also allowed to be of any lower dimension
m, where 1 <m < n. We provide new necessary condi-
tions to guarantee the correctness of systolic process-
ing in mapping high-dimensional recurrences to
lower-dimensional processor arrays. These conditions
define a search space polynomial in complexity with
respect to the size of the recurrence to be mapped. In
contrast, previous methods for finding optimal de-
signs are based on integer linear programming witha
search space of exponential complexity.

/

TABLE 5

COMPARISON BETWEEN DEPENDENCY-BASED
AND PARAMETER-BASED METHODS [12]

i Generalized Parameter Method

[

Homogeneous uniform recurrences or uni-
formized affine recurrences.

Periods and Displacements: they are rep-
resented in a possibly non-orthogonal co-
ordinate system with dependence vectors
as basis vectors; hence, for uniform re-
currences, the representations in DM and
GPM are equivalent and are derivable
from each other by a coordinate (linear)

I Feature Dependency-Based Method
Applicable General and applicable to uniform as well
Recurrences as non-uniform recurrences,
Representation Schedule Vector and Allocation Matrix:

they are represented in the Cariesian co-

ordinate system with unit vectors as basis

vectors; for the dimension-reduction tech-

nique [6], the mappings are rank-deficient;

(i.e., dand § yield T where 7ank(T) <

n).

) transformation.

Characteristics Non-uniform in the general case by spec-

of controls in
Processor array

ifying a general processor allocation ma-
trix; processor arrays derived may have in
the general case arbitrary speed/direction
changes for data tokens and have aperiod-
ic computations.

Uniform controls throughout the proces-
sor array, resulting in constant velocities
and periodic computations.

Design objective
and constraints

Computation-time optimal designs or
processor-optimal designs with linear ob-
jective function and linear constrainis,

General non-linear objective function and
constraints with certain monotonicity
properties on the objective function; new
constraints have been developed that
avoid data-link conflicts.

Search methods
for finding pro-
cessor array de-
signs

Choose heuristically a processor alloca-
tion matzix, and find schedule vectors sat-
isfying processor-allocation constraints;
methods for finding designs are based on
linear/integer programming or intelligent
searches,

Search method is systematic enumeration
and pruning on a search space polynomi-
al in complexity with respect to problem
size. .

Designs Designs found are optimal in computa- || Trade-offs between number of processors

obtained tion time with respect to a given choice of || and computation time, or between num-
processor-allocation matrix; possible allo- || ber of processors and completion time (in-
cation matrices chosen are those that min- || cluding load and drain times) for a specific
imize the number of processing elements. || problem instance can be obtained.

Summary The two methods are equivalent representations for synthesizing uniform recur-

rences. The formulation of the design optimization problem and the search tech-
niques developed are equally applicable in both representations.

GANAPATHY AND WAH: OPTIMAL SYNTHESIS OF ALGORITHM-SPECIFIC LOWER-DIMENSIONAL PROCESSOR ARRAYS 287

2) We extend our search method to handle general non-
linear objectives that may vary non-monotonically with
the parameters, and introduce new pruning strategies
to prune suboptimal designs in the search space so that
optimal designs can be found efficiently. We show a)
optimal designs that include load and drain times in
the objective (which introduce non-linearity in the ob-
jective function and constraints), and b) optimal de-
signs with constraints on number of allowable proc-
essing elements and/or completion time. Such designs
cannot be found by previous methods.

3) We show the equivalence between DM and GPM by
providing necessary equations to transform parame-
ters used in DM to those used in GPM, and vice versa.
The equivalence allows the designers familiar with
DM to utilize the efficiency of GPM to find optimal
designs.

Table 5 summarizes the unique features of GPM and DM.

ACKNOWLEDGMENTS AND REFERENCES TO
EARLIER PAPERS

The authors are grateful to Prof. Jose Fortes, Wei-jia Shang,
and Michael Loui for commenting on earlier versions of this
work.

Research Supported by National Science Foundation
‘grants MIP 88-10584 and MIP 92-18715, Joint Services Elec-
tronics Program contract N00014-90-J-1270, and an IBM
graduate fellowship grant.

References [14], [16] describe preliminary versions of of
Theorems 1, 2, and 3. They show optimization of linear ar-
rays for computing transitive closures [14] and matrix mul-
tiplication [16] but did not show trade-off analysis and the
relationship of GPM to DM. More comprehensive results
comparing DM and GPM were shown in reference [12].
Applications of the method presented in this paper on the
matrix-multiplication problem were shown in reference
[19]. Compleéte proofs of all the theorems can be found in
Dr. Ganapathy’s PhD thesis [13]. Finally, electronic copies
of papers written by the authors can be obtained through
the World-Wide Web (http://manip.crhc.uiuc.edu).

REFERENCES

[1] RH. Kuhn, “Optimization and Interconnections Complexity for
Parallel Processors, Single Stage Networks, and Decision Trees,”
PhD dissertation, Dept. of Computer Science, Univ. of Illinois, Ur-
bana, Oct. 1980.

[2] D.I Moldovan, “On the Analysis and Synthesis of VLSI Algo-
rithms,” IEEE Trans. Computers, vol. 31, no. 11, pp. 1,121-1,126, Nov.
1982.

[3] H.T. Kung, “Why Systolic Architectures?” Computer, vol. 15, no. 1,
pp. 37-46, Jan. 1982

[4]].AB. Fortes, K-S. Fu, and B.W. Wah, “Systematic Design Ap-
proached for Algorithmically Specified Systolic Arrays,” Computer
Architecture: Concepts and Systems, V.M. Milutinovic, ed., pp. 454-
494. North Holland, 1988.

[5] Z. Chen and W. Shang, “On Uniformization of Affine Dependence
Algorithms,” Proc. Fourth Symp. Parallel and Distributed Systems, vol.
3, pp. 128-137, Dec. 1992,

[6] W. Shand and J.A.B. Fortes, “On Mapping of Uniform Dependence
Algorithms into Lower Dimensional Processor Arrays,” IEEE Trans.
Parallel and Distributed Systems, vol. 3, no. 5, pp. 350-363, May 1992.

[71 P-Z.Leeand ZM. Kedem, “Mapping Nested Loop Algorithms into
Multidimensional Systolic Arrays,” IEEE Trans. Parallel and Distrib-
uted Systems, vol. 1, no. 1, pp. 64-76, Jan. 1990.

[8] P.-Z.Lee and ZM. Kedem, “Synthesizing Linear Array Algorithms
from Nested for Loop Algorithms,” IEEE Trans. Computers, vol. 37,
no. 12, pp. 1,578-1,597, Dec. 1988.

[9] V.P. Roychowdhury and T. Kailath, “Subspace Scheduling and
Parallel Implementation of Non-Systolic Regular Iterative Algo-
rithms,” J.VLSI Signal Processing, vol. 1. Kluwer Academic, 1989.

[10] G.J. Li and B.W. Wah, “The Design of Optimal Systolic Arrays,”

IEEE Trans. Computers, vol. 34, no. 1, pp. 66-77, Jan. 1985.

M.T. O'Keefe,].A.B. Fortes, and B.W. Wah, “On the Relationship

Between Systolic Array Design Methodologies,” IEEE Trans. Com-

puters, vol. 41, no. 12, pp. 1,589-1,593, Dec. 1991.

[12] J.A.B. Fortes, BW. Wah, W. Shang, and KN. Ganapathy,

“Algorithm-Specific Parallel Processing with Linear Processor Ar-

rays,” Advances in Computers, M. Yovits, ed. Academic Press, 1994.

K. Ganapathy, “Mapping Regular Recursive Algorithms to Fine-

Grained Processor Arrays,” PhD dissertation, Univ. of Illinois, Ur-

bana-Champaign, Apr. 1994.

KN. Ganapathy and B.W. Wah, “Synthesizing Optimal Lower

Dimensional Processor Arrays,” Proc. Int’l Conf. Parallel Processing,

pp- 96-103. Pennsylvania State Univ. Press, Aug. 1992.

[15] J. Zue, “A New Formulation of the Mapping Conditions for the

Synthesis of Linear Systolic Arrays,” Proc. Application Specific Array

Processors, pp. 297-308. IEEE CS Press, 1993.

K.N. Ganapathy and B.W. Wah, “Optimal Design of Lower Dimen-

sional Processor Arrays for Uniform Recurrences,” Proc. Application

Specific Array Processors, pp. 636-648. IEEE CS Press, Aug. 1992.

S.Y. Kung, S.C. Lo, and P.S. Lewis, “Optimal Systolic Design for

Transitive Closure and Shortest Path Problems,” IEEE Trans. Com-

puters, vol. 36, no. 5, pp. 603-614, May 1987.

G. Rote, “A Systolic Array for Algebraic Path Problem,” Computing,

vol. 34, pp. 192-219. Springer-Verlag, 1985.

[19] KN. Ganapathy and B.W. Wah, “Designing a Coprocessor for
Regular Recurrent Computations,” Proc. Fifth IEEE Symp. Parallel
and Distributed Systems, pp. 806-813, Dec. 1993.

[11

[13]

[14]

[16]
[17]

[18]

Kumar Ganapathy received the BTech degree in
electrical engineering from the Indian Institute of
Technology, Madras, in 1987, the MS degree in
electrical and computer engineering from the Uni-
versity of Massachusetts, Amherst, in 1990, and
the PhD degree in electrical and computer engi-
neering from the University of lllinois at Urbana-
Champaign in 1994. After graduation, he joined
the Digital Communication Division at Rockwell
International, Newport Beach, California, where he
works on high-speed DSP archi-tectures, low-
power designs, and other aspects of VLSI signal processing.

Benjamin W. Wah received his PhD degree in
computer science from the University of California,
Berkeley, in 1979. He is currently a professor in
the Department of Electrical and Computer Engi-
neering and the Coordinated Science Laboratory
of the University of lllinois at Urbana-Champaign.
He previously served on the faculty of Purdue
University (1979-1985), as a program director at
the National Science Foundation (1988-198), as
Fujitsu Visiting Chair Professor of Intelligence
Engineering, University of Tokyo (1992), and
McKay Visiting Professor of Electrical Engineering and Computer Sci-
ence, University of California, Berkeley (1994). In 1989; he was awarded
a University Scholar of the University of lilinois. His current research
interests are in the areas of parallel and distributed processing, artificial
intelligence, and nonlinear optimization.

Dr. Wah is editor-in-chief of /EEE Transactions on Knowledge and
Data Engineering, and serves on the editorial boards of the Journal of
Parallel and Distributed Computing, Information Sciences, International
Journal on Artificial Intelligence Tools, and Journal of VLSI Signal Proc-
essing. He has chaired a number of conferences, including the 1995
Computer Software and Applications Conference and the 1996 Interna-
tional Conference on Neural Networks. He has served in the IEEE Com-
puter Society as a member of its Board of Governors and is currently
serving on the IEEE CS Publications Board, Press Activities Board, and
Fellows Committee.

