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ABSTRACT

In this paper, we study the performance of various IDA*-style searches and investigate
methods to improve their performance by predicting in each stage the threshold to be
used for pruning. Without loss of generality, we consider minimization problems in this
paper. We first present three models to approximate the distribution of the number of
search nodes by lower bounds: exponential, geometric, and linear, and illustrate these
distributions based on some well-known combinatorial search problems. Based on these
distributions, we show the performance of an idea! IDA* algorithm and identify reasons
why existing IDA*-style algorithms perform well. In practice, we will be able to know
from experience the type of distribution for a given problem instance, but will not be able
to know the parameters of this distribution until the instance is solved. Hence, we develop
RIDA*, 2 method that estimates dynamically the parameters of the distribution, and
predicts the best threshold to be used in each stage. Finally, we compare the performance
of several TDA*-style algorithms — Korf’s IDA* and RBFS, RIDA*, IDA*_.CR and DFS*
-~ on several application problems, and identify cenditions under which each of these
algorithms will perform well.

Keywords: iterative search, IDA* algorithm, lower-bound distribution, regression.

1. Introduction

Search is an important tool in problem solving and is applied in many areas in
artificial intelligence [1]. In general, blind-search algorithms are inefficient because
they treat a search space syntactically without domain-specific information. To
improve the performance of a search algorithm, heuristic information about the
nature and the structure of the problem domain must be used to limit and guide
the search.

Search algorithms for solving an application problem can broadly be classified
into two classes according to whether they find optimal or suboptimal (feasible)

t Regearch was supported partially by National Science Foundation Grant MIP 92-18715 and by
National Aeronautics and Space Administration Contract NAG 1-613.
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solutions. Examples of search methods that find optimal solutions include best-
first search, A*, IDA* and depth-first branch-and-bound search. Examples of
search methods for finding suboptimal solutions include hill-climbing methods,
beam search and anytime algorithms. In this paper, we focus on algorithms for
finding optimal solutions.

Many application problems in finding optimal solutions in combinatorially large
solution space are NP-hard and are solved by search algorithms that may require
exponential time and space. The search algorithm that expands the minimum
number of nodes before finding the optimal solution is the best-first search (BFS); a
familiar example is the A* algorithm [1,2]. The drawback of BFS is that it requires
an exponential amount of space; hence, it often exceeds the maximum memory
capacity even for a relatively small problem. A guided depth-first search (GDFS or
depth-first branch-and-bound search), on the other hand, requires memory space
that is linear in the size of the problem. However, with a lack of a good pruning
function that prunes futile searches beyond a certain level of a search tree, GDFS
is prone to search far deeper than where the optimal solution lies.

The idea of sterative deepening was originally used successfully in a program
called CHESS 4.5 [3]. In his seminal paper, Korf presented iterative deepening A*
or IDA* [4], a search method that operates in a memory space linear in the size of
the problem and that can approach asymptotically the behavior of A* (a best-first
search with an admissible heuristic function). Because of its efficiency with respect
to memory space, IDA* became the first heuristic search algorithm to find optimal
solutions for the 15-puzzle problems within reasonable time and space constraints.

Like A*, IDA* requires an admissible lower-bound function. Tt is a variant of
depth-first iterative deepening (DFID): a series of distinct depth-first searches to
progressively greater depths to mimic a breadth-first search. As was originally de-
scribed, TDA* initially sets its threshold to the (lower-bound) value of the root node
s, searches depth-first from s, and backtracks when it reaches a node whose value
exceeds the threshold. Such a depth-first search is called a stage or an iteration. If
a solution is found in a stage, then this solution is optimal; if not, IDA¥* sets the
threshold to the smallest value borne by any of the leaves of the stage. Then it
starts the next stage — a new depth-first search that searches from the root and
discards the results of the previous stage.

Korf originally demonstrated the performance of IDA* using the 15-puzzle prob-
lem [4]. Since the lower-bound value of a child node in this problem either increases
by 0 or 2, threshold values in successive stages always increase by multiples of 2.
By noting that there is an exponential growth in the number of search nodes from
one stage to another, it is guaranteed that the last depth-first search, which finds
the optimal solution, has an overhead that overwhelms the total overhead of all
depth-first searches in previous stages. Korf further noted that the original IDA*
does not perform well on the traveling-salesman problem (TSP), and suggested im-
provement by using thresholds sufficiently exceeding the value of the minimum leaf

of the previous stage [5].
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In general, IDA*-gtyle algorithms can be extended to gituations where the heuris-
tic function is not admissible or non-monotonic; examples include path planning
problems, chess and Prolog. In these cases, the solutions found are not guaranteed
to be optimal, and the discussion is beyond the scope of this paper. In the following
subsection, we discuss the various mechanisms for controlling thresholds in applying
IDA*-style searches to solve minimization problems.

1.1. Mechanisms for controlling thresholds in IDA *-style algorithms

A very important component of IDA*-style algorithms is the thresholding mecha-
nism; the design of which depends on the search objective, information available,
and admissibility of the heuristic functions. There are two threshold-control strate-
gies used in IDA*-style algorithms (assuming minimization searches).

(a) Using additional memory space to store search-related information. One
class of IDA*-style algorithms use extra memory space to store active nodes and
useful information in order to avoid re-expanding some search nodes. These include
MREC [6], MA* [7], SMA* [2] and ITS [8]. For instance, MREC [6] uses extra
memory to save active nodes near the root and to avoid expanding these nodes
in future stages. The operations of MREC is illustrated in Figure 1. Initially, m
active nodes are generated and are stored in the memory. Each stage starts with
these m nodes, and the next threshold is the minimum cost of all nodes whose costs
exceeded the current threshold. Note that IDA* is a special case of MREC with
m = 1. The problem with these algorithms is that for large problems the cost of
managing the stored information is usually higher than the benefit of expanding
fewer nodes.

(b) Dynamic control of thresholds. This class of algorithms control the increase
in thresholds in consecutive stages of an IDA* search. Examples include the original
IDA*, DFS*, IDA*_CR, RBFS,

@ optimal solution
(O expanded node initial expansion to genefrale
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m nodes evaluated
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nodes expanded in
the first iteration
boundary of nodes
expanded in a
best-first search
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the jast iteration
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Fig. 1. An illustration of MREC. (Nodes in the tree are by their lower-bound values; thresholds
indicate lower-bound values of nodes ezpanded.)
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The original IDA* and MREC use as the next threshold the minimum lower-
bound value of all active nodes exceeding the current threshold. This strategy works
well when lower-bound values are discrete and the cumulative distribution of the
number of search nodes by lower-bound values is geometric. This is the case in the
15-puzzle problem. The strategy does not work well when lower-bound values are
continuous or when the distribution is not geometric.

In DFS* [9], the algorithm initially behaves like IDA* but increases the thresh-
old more liberally by doubling it from one stage to the next. When a feasible
solution is found, the algorithm switches to GDFS immediately and proceeds until
the optimal solution is found. Thus, in the last stage in which the optimal solution
is found, there may be some overshoot if the threshold chosen is larger than the
optimal-solution value. The strategy works well when the cumulative distribution
is linear and allows the number of nodes searched in successive stages to grow in a
geometric fashion. This is the case in the maze problem.

IDA*_CR [10] is a variant of IDA* that collects some statistics in the search
process to help determine the threshold in the next stage. It finds an approximate
distribution of lower-bound values by dividing the possible lower-bound values into
a set of discrete buckets, each recording the number of search nodes pruned in this
stage whose lower bounds fall in the range of the bucket. It chooses the next thresh-
old so that the total number of nodes in the buckets within this threshold is larger
than a predefined number b*, where b is the branching degree and ¢ is the stage
number. The strategy is hard to apply in practice because the proper choice of the
ranges of buckets may be problem-instance dependent.

Recently, Korf proposed Recursive Best-First Search (RBFS) [11] and showed
significant improvement over IDA* in certain application problems. RBFS is a re-
cursive best-first search that runs in linear space and always expands new nodes
in a best-first order regardless of whether the cost function is monotonic or non-
monotonic. It is similar to IDA*, but uses a local cost threshold for each recursive
call instead of the global threshold in TDA*. When cost values from the root to
a leaf node are non-monotonic, RBFS shows significant improvement over IDA¥*.
However, the improvement is not significant when cost values along a path are
monotonic. Further, as RBFS extends thresholds in a similar way as IDA*, it has
the same problem as IDA* in determining proper thresholds when cost values of
nodes are mostly unique.

Table 1 summarizes the information used in these algorithms and the corre-
sponding strategies. It also lists RIDA*, an algorithm discussed in Section 3.

1.2. Focus of this paper

We observe that previous IDA*-style algorithms use different information and
heuristics to predict the best threshold to be used in a stage. Since the infor-
mation and the heuristics used is generally problem dependent, it is possible to use
other run-time information to improve performance. We propose in this paper
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. Information used in each
Algorithm stage in setting thresholds Strategy
IDA*, MA*, Minimum lower bound
MREC & of active nodes exceeding Set the next threshold to this value.
RBFS* the current threshold
if a feasible solution has been found,
DFS* Current threshold value then swtltch to GDFS and continue m:'ml
the optimal solution is found; otherwise,
double the threshold.
Lower-bound values of ac Choose the next threshold so that the
. i g total number of nodes in the buckets
IDA* CR ;;Vilgggzﬁzzoaﬁi:{fd within this threshold is larger than b*,
where b is a user-defined factor and i is
ranges of buckets
the stage number.
Cumulative distribution Choose the next threshold so that the
RIDA* of lower-bound values of estimated number of nodes expanded in
nodes expanded the next stage grows by a constant ratio.

to use the cumulative distribution of the number of search nodes by lower-bound
values to help determine the proper thresholds in each stage. This prediction is
possible for the following reasons.

(a) Problem instances of the same application problem generally have the same
cumulative distribution, but the parameters of the distribution are problem-instance
dependent. Run-time prediction, therefore, entails estimating the parameters of
these distributions.

(b) Some problems have cumulative distributions that are hybrid of multiple
distributions. For example, an integer programming problem has a cumulative dis-
tribution that is bell-shaped: the growth is exponential before any feasible solution
is found, and is very small and quickly drops to zero after a feasible solution is
found. As another example, the maze problem has a cumulative distribution that
is made up two piecewise linear distributions (see Section 2). In this case, it is hard
to predict the switch-over point before the search begins, but it may be easier to
detect the switch-over using run-time statistics.

In this paper, we compare different prediction mechanisms for determining the
threshold to be used in the next stage of an IDA*-style search, and investigate when
and why certain algorithms perform well. Our results are summarized as follows.

o Different problem instances of an application problem generally have the same
cumulative distribution of the number of search nodes by lower-bound values but
with unknown parameters of the distribution. These distributions can be modeled
a priori (Section 2) and their parameters, estimated at run time {Section 4).

e Based on these models, we study the behavior of an ideal IDA* algorithm and
explains why existing IDA*-style algorithms perform well on some application
problems (Section 2). We further show that there is a large disparity in the
performance of an ideal IDA* algorithm when the rate of growth of nodes
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expanded in successive stages can be chosen from a range of values {Appendix
A).

» We present RIDA*, a new algorithm that uses regression to predict the threshold
to be used in the next stage of an TDA* algorithm so that the number of nodes
searched in successive stages grows in a geometric fashion (Section 3).

o Based on application problems evaluated (Section 4), we show conditions under
which a specific IDA*-style algorithm should be used (Section 5).

In this context, we define an ideal IDA* algorithm as one that sets the threshold
in each stage so that the number of nodes searched in the next stage always grows
by a constant ratio. The performance of an IDA*-style algorithm evaluated in this
paper is compared with that of A* for solving the same problem instance. Let
na« (resp., nrpas) be the number of nodes expanded by A* (resp., IDA*-style
algorithms) for solving a given problem instance. The objective of designing a good
thresholding strategy of IDA* is to

NIDAx (1.1)
T Ax

minimize

Note that any IDA*-style search can be evaluated using Eq. (1.1) and that the
objective value of a problem instance is unknown until the instance is solved.

2. Performance Modeling of an Ideal TDA* Algorithm

In this section, we analyze the performance of an ideal IDA* algorithm for searches
represented in state-space trees. We first present the performance of the ideal IDA*
algorithm. We then derive its performance when the distribution of search nodes
by lower bounds is exponential, geometric, or linear. Finally, we identify conditions
for selecting appropriate thresholds.

2.1. Performance of ideal IDA¥ searches

We present in this section the performance of an ideal IDA* algorithm based on a
general statistical distribution of lower-bound values in & search tree. Let h(g) be
the lower-bound value of node i, where h is an admissible function (h(#) < h(j) if
is a successor of i). Let f(z)} be the distribution of the number of nodes whose lower
bounds are less than or equal to z. Further, let 81, 82,...,6,41 be a sequence of
thresholds in successive stages of an ideal IDA* algorithm, where é; is the threshold
used in the first stage, and 6,,, is the last threshold. (The search always starts
with the root, which is considered as stage 0.) Note that £, is chosen heuristically
when the search starts, and that f{(6;) is the number of nodes expanded in the
first stage.

When the optimal solution v, is found in the last stage, B < Uppt < Onyr. If
the number of nodes expanded by A* is ng. = f(vope) and r is the growth ratio
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maintained by the ideal IDA* algorithm in successive stages, then

- f{é?i)l) = f(f,) =7""1f(Bh), fori=2,...,n. (2.1)

Since f(f,) = 171 f(61) < f(vopt) < f(Bns1) = r™ f(61), this implies that

o= )

The number of nodes searched by the ideal IDA* algorithm is, therefore,

n-—-1

nipax = Y f8:) + f'(Bnsr) = £(61) > ot f1(Bnga)

i=1 =0

= f(61) ( ) + f'{Bns1) - (2.3)

r"—1
r—1
where f'(fn41) is the number of nodes searched in the last stage, and f(8,) <
FBny1) < F(Bng1). F'(Pas1) generally depends on how many search nodes get
pruned when the incumbent value is found in the last stage. If GDFS were used
in the last stage instead of a regular DFS, then the number of nodes expanded is
usually much less.

Given Eq. (2.3), the objective of designing an ideal IDA* algorithm is to choose
r such that

il r* -1 + e
min MIDA* — min f( 1) —1 ) f( n+1) (2.4)
re(l,0) Max  r€(l,00) f(Vopt)

From Eq. (2.2), when f(vop:) < f(81), there will only be one stage in the IDA*
algorithm (n = 1). On the other hand, when 7 — 1, we have n — oc and the
algorithm reduces to setting f(8;} = f(B:—1) + 1. It is obvious that a suitably
chosen value of 7 will minimize Eq. (2.4).

In the extreme case in which the optimal solution has a value that is slightly
larger than the threshold used in the n'th stage (f(vVopt) = f(fn) + 1) and all
nodes defined by @, are expanded in the (n + 1)’st stage (f'(Bns1) = f(Ont1)),
then nipa«/nax in Eq. (2.4) is approximately r2/{r - 1}, and the optimal r that
minimizes it is 2. (A similar result has been reported by Korf before.) Note that
this is the value of  that minimizes the overhead of the ideal IDA* algorithm in
the worst case. In the average case, the optimal r depends on the performance of
GDFS and is difficult to characterize analytically.

For a specific value of r, we need to choose the @’s properly, which are directly
related to distribution f. In the next three subsections, we model f using an
exponential function, a geometric function, and a linear function.
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2.2. Ezxponential model

In this model, the distribution profile of a search problem is approximated by the
following continuous exponential function.

flx) = cu® (2.5)

where, ¢, @ and u are positive real constants, and u is the branching factor.
Since r can be any real number, Eq. (2.1) becomes

Cf(8) et ey
"= F(8._1)  cusbi-r v ' (2.6)

To achieve the given r, §; is set as

0; = 0y + BT (2.7)
alogu

This means that by increasing #; by a constant a—'?fg’;, IDA* keeps f(8;) increasing
in a geometric fashion by ratioc r.

Traveling salesman problems (TSP), production planning problems (PP), and
integer programming problems (IP) are examples whose distribution of the number
of nodes by lower bounds follows an exponential model. {A detailed description
of these problems is shown in Section 4.) As an illustration, we show in Figure 2
the cumulative distribution for a 20-city Euclidean TSP. The end of the line in the
top right-hand corner represents the point when the optimal solution is found. To
verify that the distribution is exponential, we regressed a linear function on the
log plot and found a coefficient of determination R? (0 < R? < 1) very close to 1,
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Fig. 2. Cumulative distribution of nodes in the search tree by lower-bound values for a 20-city
Euclidean TSP problem instance.
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which indicates a good fit. In Table 2, we show the mean and standard deviation of
R? for 50 random instances of each of the 20-city Euclidean TSP, 18-period PP, and
30-variable IP problems. Note that R? for these problems have means very close to
1 and very small standard deviations.

Table 2. Average coefficient of determination R? of 50 random instances of the Euclidean TSP,
PP, IP and MAZE problems. (Distribution f for the first three problems is exponential, whereas
f for the maze problem is piecewise linear.)

| Problem [[ Mean of R? | Std. Dev. of B2 |
20-city TSP 0.977 0.021
18-period PP 0.977 0.027
30-variable IP 0.972 0.032
40-by-40 MAZE 0.947 0.032

2.3. Geometric model

In this case, the lower bounds are drawn from a discrete distribution, and the
distribution function and r are defined as follows.

flz) = cules) (2.8)

T f(Bim1)  culefi-u

Here, u is not the branching factor of the search tree but rather the average ratio of
the number of nodes with lower bounds at one discrete value to the number of nodes
at the next discrete value. We call u in the discrete case the heuristic branching
factor. Note that r is restricted to 1,u,%2%,...,u®,..., where s is the number of
discrete lower-bound values between the thresholds used in two successive stages of
an IDA*-style algorithm. The objective of IDA* as defined in Eq. {1.1) becomes

af;
. F(8:) culatil — ylatil—tefio1) (2.9)

min P4 (2.10)
re(u*]s=0,1,2,...) ThAx

Eq. (2.10) indicates that we need to find a value of s that minimizes this objective

for given u, a, and ¢. In the following, we assume that the optimal solution is on

the L’th discrete level (that is, f(vopt) = f (81)u""* + 1), and compute the optimal

s in the worst and average cases.

(a) Best s in the worst case. In the worst case, the optimal solution is not found
in the n’th stage because it is pruned, and IDA* expands all nodes within threshold
0,41 in the n + 1’st stage before finding the optimal solution. Here, 81 defines
the (L + s — 1)’st discrete level. Hence,

f(Onsr) = fBni) = FO T (2.11)



502 B, W. Wah & Y. Shang

The approximate total number of nodes expanded (as defined in Eq. (2.3)} is

uL+23-1
nipa. = ORI A b U b ) = fO) T (212)
Hence, s = k is better than s = k£ + 1 when
yE+2E—1 g L2k ot
f(91)—u—k_—15f(31)mm>(u —u—1)(x—1)20. (2.13)

Since w > 1, s = 1 is better than s = 2 when u > 1.618; s = 2 is better than
s = 3 when u > 1.325; s = 3 is better than s = 4 when u > 1.221; and so on. When
u approaches 1, s approaches infinity. Figure 3 shows the optimal s for different .

5§ 8 3
Worst  1.07 : N 1.5 T 2.0 2.5
‘— ‘+ u
Case 3:41 =3 ' s=2 e | g=1
= 2 = b=
Average 1 moZis 32 20 o 25
Case @ +—+-o— | o> u
sed4  s=3 s=2 s=1

Fig. 3. Optimal s to minimize RID AT Aw:

(b) Best s in the average case. The exact analysis in the average case is in-
tractable because it depends on the pruning mechanism in GDFS and where the
incumbent lies. In the following, we present a simplified analysis.

In the last stage in which the optimal solution is found, #,4, can be one of
the following discrete levels: L, L+1,...,L +s— 1. For simplicity, assume that
f,41 can have any of these levels with equal probability 1/s. (This probability is
assumed to be independent of the number of nodes in each level in the search tree.
A similar analysis can be carried out if we assume 8,41 to have a probability that
depends on the number of nodes in a level.)

Next, we find nrpa. for each of these possible threshold values. Assuming that
the optimal solution is on level L and that successive thresholds are separated by s
levels, we identify two distinct situations where €54 can lie: (i) ng1 = L +s—1,

In the first case, 8,41 = L + s — 1, which implies that #, = L~ 1. Since
the optimal solution is on level L, the search in the last stage can be terminated
immediately once the optimal solution is found. (Note that 8, = L —1 implies that
all nodes with lower-bound values below level L have been searched in stage n.)
Assume on the average that half of the nodes in stage n + 1 are expanded.

FBnar) = 3BT (214)
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The total number of nodes expanded is, therefore,

uL+s—1 L1 s
nIDA*|9n+1=L+s—~1 = f(gl) 5 +f(91)u - (1+’:,r,'s +u "+ )

= f(O yultt (% + ! ) (2.15)

u® —1
In the second case, L < 8,41 S L+3-2, which implies that 8, < L—1. When a
feasible solution is found in Level L in stage n+ 1, the search cannot be terminated
because nodes in levels between #, and L have not been searched completely. To
prove that this solution is indeed optimal, it is necessary to continue the search.
Assume on the average that the search expands half of the nodes between level
L and threshold @,.; before finding the feasible solution, that mo other feasible
solution is found in stage = + 1 once the first feasible solution has been found,
and that it expands all nodes with lower bounds less than level L afterwards, The

average number of nodes expanded in the last stage is

Bpyi) — f(B, Opy1) + f(O)ul™?
F(Ong1) = f( +1)2 f(6n) ¥ f(B,) = f(Bnt1) zf( 1)u (2.16)
O ) (ul+i + ult
FOnitonyi=1+i = 1(6:)( 5 ) {2.17)
where i = 0,...,s — 2. Therefore, the total pumber of nodes expanded by IDA* is
niparlons=L+i = F(O1) [—-—2“—‘ +ultis(ldu ™ a4+
{1 1 ul-t
_ Li [ =
= f(6:) [u (2 + == 1) + ] : (2.18)
Using Eq’s (2.15) and (2.18), the average overhead of IDA*, assuming that ¢ can
have one of the values of 0,...,s — 1 with equal probability, is
s—1
Elnipas] = 3 2”1DA*16,1+1=L+1'
f(61) - Lyif 1 1 ul~t Lis—1 [ 1 1
s g[u (§+u5—-1)+ 2 ]—I-u (§+u5—1)
ul(u® —1) {1 1 (s — Nul?
_ LI I i) L 2.
f(91)[ s(u — 1) (2+u5-—1) + Zs ] (2.19)

To know when s = k is better than s =k + 1, we solve

£(60) [%%_)1_) (-;— b 1) + Q“..‘_;’):‘_Lf_l]

uL(’Lbk+1 _ 1) i 1 [(k + 1) — 1]uL—1
5f(91)[(k+1)(u—1) (§+uk+1_1) + 2(k+1) ]

== [ku*+? - (k + Duft! — 1] > 0, where > 1Lk > 0, f(61) >0. (2.20)
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Note that 1 is eliminated in the analysis, and the condition derived in Eq. {2.20) is
independent of the optimal-solution value L. Eq. (2.20) shows that s = 1 is better
than s = 2 when u > 2.206; s = 2 is better than s =3 when u > 1.618; s = 3 is
better than s = 4 when u > 1.416; and so on. Figure 3 shows the optimal s values
for the average case.

Vertex-cover (VC) and 15-puzzle problems are example applications whose dis-
tribution of number of nodes by lower bounds can be modeled by a geometric
distribution. Table 3 shows the statistics of an instance of a 30-vertex VC problem
with an optimal solution of 19 and an average u of 7.7. We have also collected the
average value of « for 50 random instances of the 30-vertex VC problem, and have
found the average v to be 9.23 and standard deviation to be 5.22. For the first
50 15-puzzle problems studied by Korf [4], the average u is 10.22, and standard
deviation is 8.24. For these problems, s = 1 is the optimal choice. (Our analysis is
approximate since in any search problem, u is not constant.) This choice coincides
with Korf’s original IDA* algorithm in solving the 15-puzzle problem.

Table 3. Distribution of nodes in the search tree by lower-bound values of a 30-vertex VC problem.

Lower-Bound Value Number of nodes Heuristic Branching
Velue Within Lower Bound Factor
13 1 —
14 12 12.00
15 102 8.50
16 369 3.62
17 2128 5.97
18 18994 8.93
19 141104 7.43

2.4. Linear model

The distribution of the number of nodes by lower bounds is modeled by the following

linear function:
flz)=az+b, {2.21)

where @ and b are constants and a > 0. Eq. (2.1) becomes

£8:) _ abi+b

T FO:)  afii+b (2.22)

=g, =70, +

, b{r — 1) .
a

In this case, 6; needs to be increased by at least a ratio of 7 to allow f(8;) to be

increased by a ratio of r. Since r = 2 is the optimal value in the worst case, doubling

@ in each stage is nearly optimal. This strategy was used in DFS* which doubles the

threshold in consecutive stages. As a result, DFS* performs very well for problems

in this class.
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The maze problem is an example whose lower-bound values follow a continu-
ous linear distribution. Figure 4 illustrates this fact for a 40-by-40 maze problem
instance generated using the X-maze program similar to that used by Vempaty,
Kumar, and Korf [9]. The distribution shown can be modeled by two piecewise
linear curves. This is verified by using the median of the smallest and the largest
lower bounds as a point to divide the curve into two parts, and by fitting each by
a linear line. We show in Table 2 the average coefficient of determination R? of
regression and the corresponding standard deviation of the two linear fits for 50
random instances of the maze problem. As the average R? is very close to 1, the fit
is close.
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Fig. 4. Cumulative distribution of nodes in the search tree by lower-bound values of a 40-by-40
maze problem instance.)

We have shown in this section suitable choices of thresholds that can minimize
the overhead of an ideal IDA* algorithm with respect to an A* algorithm. We have
also explained conditions under which Korf’s original IDA* algorithm and Vempaty,
Kumar, and Korf’s DFS* search will work well.

In general, it is hard to select thresholds so that a real IDA* algorithm behaves
like an ideal IDA¥ algorithm. A user may wish to set a desired 7 in a problem, but
the actual r may vary from stage to stage. This variation may lead to an unpre-
dictable overhead of the IDA* algorithm. Appendix A illustrates this phenomenon
by showing large variations in overheads for an ideal IDA* algorithm when 7 can
be chosen from a range between rmin and "ngz-

3. Dynamic Determination of Thresholds in RIDA*

We have shown in the last section that there exists an optimal r that can minimize
the number of nodes expanded for a problem instance. In this section, we propose
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RIDA*, a method that uses run-time distribution on lower bounds and applies
regression to determine the best threshold to use in each stage. Our goal is to allow
the overheads in successive stages to grow in a geometric fashion with a constant
ratio.

RIDA* assumes that the distribution function of lower bounds (exponential,
geometric, or linear) for an application problem is known. The parameters of the
distribution function, however, are estimated by regressing on the {partial) distri-
bution of lower bounds obtained at run time using a polynomial fit (first-order or
second-order) or an exponential fit. The threshold to be used in the next stage is
then estimated using the regressed function to achieve the desired growth ratio r.

In many search problems (such as Euclidean TSPs), feasible solutions can be
found easily. The best of these solutions is kept in an incumbent, which is used in
RIDA* to further reduce the search overhead. Recall that the overhead in the last
stage of an IDA* algorithm dominates the overhiead of all previous stages. Hence,
if we have an incumbent value that is slightly larger than the predicted threshold
for the next stage, then we can reduce the overall overhead by using the incumbent
value as the next threshold.

The procedure used in RIDA* is as follows. At the end of a stage when the
threshold for the next stage is set, the number of nodes f(vin.) with incumbent
value v;,., is calculated based on the estimated distribution function f. Assume
that the predicted threshold for the next stage is ;11 where f(f;41) = 7f (6;). We
set By 10 Vine if f{Vine) < 27f(8;). In this case, the search becomes a guided
depth-first branch-and-bound search. The reason for this is that if ;41 were used
as the threshold, then the search may have one more stage, and the cumulative
overhead would be larger than 27 f(;). In case that v, 1s very close to the current
threshold @;, this method cuts the overhead by nearly half. This procedure used
here is similar to that used in the last stage of DFS* [9].

In summary, RIDA* uses the following rules to find the threshold in each stage.

e Extend the threshold so that the number of nodes expanded in the next stage
increases in a geometric fashion with constant ratio .

» If the threshold does not include at least one unexpanded node, then the threshold
is extended to a lower-bound value that includes at least one such node.

o If f(¥inc), the predicted number of nodes to be expanded when the threshold is
set at the current incumbent value vn., is less than twice the number of nodes
based on the predicted threshold in the next stage (2f(6i+1) = 2rf(6:)), then
6,41 for the next stage is set t0 Vine.

Note that RIDA* is different from IDA*_CR. (Table 1) when setting the threshold
for the next stage. RIDA* uses information on lower bounds of nodes expanded
rather than lower bounds of active nodes that are pruned due to thresholding.
We have found that a node pruned in the current stage does not imply that only
one node will be expanded in the next stage, as muitiple nodes may be expanded
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before hitting the next threshold. As a result, the information used by IDA*.CR
in setting the threshold for the next stage may under-estimate the actual overhead
experienced.

4. Experimental Results
4.1. Generation of test problems

The performance of various IDA*-style algorithms are studied by simulations using
vertex-cover (VC), Euclidean Traveling-salesman (TSP}, production-planning (PP),
and integer-programming (IP) problems [12]. We first describe these test problems
and their implementations before showing our experimental results.

VC entails finding a minimal set of vertices such that all edges have at least one
of their vertices covered by this set. In our experiments on VCs, we generated the
edges of graphs randomly with an edge-connectivity probability of 0.1. The lower
bound of a graph was computed by finding the minimum number of vertices so that
the total number of uncovered edges emanating from these vertices equaled the
number of uncovered edges. The upper bound was evaluated by a steepest-descent
hill-climbing algorithm.

TSP entails finding the shortest cyclic tour that traverses each city exactly once.
In our experiments, we studied Euclidean TSPs in which cities were points on a
Cartesian plane, and the distance between two cities was the Fuclidean distance.
We assume that cities are fully connected and the distance between each pair of
cities are symmetric. In generating sample problems, we randomly assigned cities in
a 100-by-100 Cartesian plane. We represented the search using a multi-way tree in
which the descendant nodes of a parent node represented the set of unvisited cities
from this node. (In a binary-tree representation, there are two descendant nodes
that represent whether an unvisited city is traversed or not in the next city to be
visited. This representation results in worse performance than that of a multi-way
state-space representation.) A nodein the search tree, therefore, represents a partial
tour from the root to this node. We used the minimum spanning-tree algorithm to
compute the lower bound of a node, and a nearest-neighbor hill-climbing algorithm
to compute the upper bound.

PP entails finding a minimal-cost production schedule. In PPs, all capacities,
requirements, production costs, inventory costs, and start-up costs were random
integers in the following ranges: demand: [0,3]; capacity: [1,4]; set-up cost: [50,100];
incremental cost: [10,20}; and inventory cost: [5,10]. The number of periods specifies
the problem size and is input by the user. We evaluated the lower bound of a
problem by finding the minimal-cost schedule while ignoring start-up costs, and the
upper bound by a hill-climbing heuristic.

IP entails finding an integral assignment of variables in order to maximize a linear
objective function while satisfying a set of linear constraints. In our test problems,
we assume that upsilon, the number of variables, is the same as the number of
constraints. The coefficients in the objective function were random integers in the
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range [-20, 0). The constraints were in the form Ay < 5, where A was an v-by-v
matrix whose elements were random integers in the range [0,20}, and b was a vector
whose elements were random integers in the range [40v, 120v]. We computed the
lower bound by solving a relaxed linear programming problem using the Simplex
method. No upper-bound function is available for solving IPs.

4.2. Comparison with RBFS

Recursive Best-First Search (RBFS) [11] has shown significant improvement over
IDA* on certain problems. Korf reported that RBFS expanded about the same
number of nodes as IDA* for the fifteen-puzzle problem, which shares similar char-
acteristics as VCs. We, therefore, expect RBFS to perform similar to IDA* when
applied to solve VCs,

Korf also reported that RBFS performed much better than IDA* for solving
TSPs. With 10, 11 and 12 cities, RBFS generated an average of 16%, 16% and
18% of the nodes generated by IDA*, respectively. However, RBFS still generates
significantly more nodes than GDFS. In Table 4, we show our experimental results
of using A*, GDFS, RBFS and IDA* to solve 10-city, 11-city, and 12-city Euclidean
TSPs. Each entry in the table represents the average of overhead normalized with
respect to that of A* for 50 runs of randomly generated TSP instances. Qur results
show that for the 10-city TSPs, GDFS expands 9% more nodes than A¥ on the
average. Although RBFS expands 17% of the nodes expanded by IDA¥*, it still
expands 12.59 times more nodes than A* does. For the 1l-city and 12-city TSPs,
the improvement of GDFS over RBFS is even greater.

Table 4. Summary of normalized overheads of GDFS, RBFS and IDA* over A* for solving Eu-
clidean TSPs.

Problem GDFS RBF5 IDA*
Mean | Std. Dev. | Mean | Std. Dev. Mean Std. Dev.

10-city TSPs 1.09 0.22 - 12.59 17.57 72.96 104.46
11-city TSPs 1.08 0.12 15.20 16.90 99.01 120.04
12-city TSPs 117 0.25 25.34 28.56 168.86 204.44

We conclude that RBFS should be used when IDA* performs well. This is true
in the 15-puzzie problems and the vertex-cover problems studied in this paper.

4.3. Comparison of RIDA*, GDFS, DFS* IDA* and IDA*.CR

In this section, we compare the performance of GDFS, DFS%, IDA*, RIDA* and
IDA*_CR using 50 randomly generated instances of 30-vertex VCs, 20-city TSPs,
18-period PPs and 30-variable IPs. In our experiments on RIDA*, we used A* to
generate 100 initial nodes and applied regression to pick the first threshold. The
desired growth ratio r was set to 3 for both RIDA* and IDA*_CR.
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Table 5. Summary of normalized overheads of various IDA*-style algorithms over A* for 50
instances of 30-vertex VCs, 20-city FEuclidean TSPs, 18-period PPs and 30-variable IPs.

Problem GDFS (DFS*) IDA* RIDA* IDA* CR
Avg. | SD. Avg. | SD. | Avg | 8D | Avg | 8D

30-vertex VCs 13.68 | 30.46 1.41 0.49 | 1.43 0.49 2.37 § 3.92
20-city TSPs 1.44 0.60 large — 1.39 | 0.21 1.60 0.59
18-period PPs 1.28 0.24 large — 1.41 | 0.26 1.82 | 0.50
30-variable IPs 2.90 2.66 | large — 2.04 0.54 | 4.47 1.19

Table 5 shows the average normalized overheads of the various algorithms with
respect A*. In our experimental results, we have found that the performance of
GDFS and that of DFS* is indistinguishable; hence, we present their results in one
set. In the experimental resulis on IDA*, we indicate “large” for test problems in
which IDA* takes much longer than the other algorithms and did not finish within
a reasonable amount of time. Although RBFS will perform better than IDA* on
these problems, we expect it to be worse than GDFS.

Our results show that all the IDA*-style algorithms and GDFS expand more
nodes than A*. However, they all use a linear amount of memory whereas A* uses
an exponential amount of memory. For this reason, we can only test problems of
moderate sizes in our experiments, as we need to compare our results with respect
to that of A*. We have also found that the normalized overheads can vary a lot
across different problems instances. For example, GDFS has about the same average
performance as RIDA* in solving TSPs, but has larger variations than RIDAY.

We cannot use statistical hypothesis testing to determine which of the algorithms
has better average performance because such tests require populations with normal
distributions, and the performance values are not normally distributed. To show
the variance in performance, we present in Table 6 the average ranks of the various
algorithms. The rank of an algorithm can be 1, 2, 3, or 4 in solving a problem
instance, where 1 is the best rank.

For VCs, the lower bounds are discrete and can be modeled by a geometric dis-
tribution (Section 2). For these problems, IDA* has the smallest average overhead

Table 6. Average rank and the number of times of being the first rank of various TDA¥-style
algorithms for 50 instances of 30-vertex VCs, 20-city Buclidean TSPs, 18-period PPs, and 30-
variable IPs.

Problem GDFS (DFS¥) IDA* RIDA* IDA* CR
Avg. | # of 1st | Ave. | # of 1st | Avg. l # of 1st | Avg. I # of 1st
VCs 3.52 7 1.60 25 2.68 2 2,20 16
TEPs 1.64 27 4.0 ¢ 2.06 16 .30 7
PPs 1.34 35 4.0 0 1,92 13 2.74
IPs 1.68 25 4.0 0 1.54 24 2.78 1
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(as the heuristic branching degree of the problem is large}). RIDA* has slightly
more overhead than IDA*, which is attributed mainly to the initial overhead of
expanding 100 nodes in order to do regression. IDA* CR performs worse than
IDA* and RIDA* on the average, and also has large variance in its performance.
As shown in Table 6, IDA* has the best average rank, and IDA*_CR has better
average rank than RIDA*, In 29 out of 50 problem instances, IDA*_CR has better
performance than RIDA*. However, there are some instances in which IDA*_CR
has poor performance. On the average, GDFS expands many more nodes than
the other algorithms. The large standard derivation also indicates that in some
instances, GDFS has very poor performance. Overall, IDA* expands the least
number of nodes and has the highest chance to be the best.

For TSPs, PPs and IPs, their lower bounds are continuous and can be modeled
by exponential distributions. Consequently, IDA* does not perform well for these
problems. In these problems, the thresholds computed by IDA* are incremented
too slowly, which cause many repeated expansion of the same node.

For TSPs, the number of nodes expanded by A* ranges from 178 to 132,107,
For these problems, RIDA™* gives the best average normalized overhead, and hoth
GDFS and IDA* CR have larger variances. GDFS has the best average ranks: in 27
out of 50 instances, GDFS has the best performance, and in most of these instances,
the number of nodes expanded by GDFS is just slightly larger than that by A*.
However, in a few instances, GDFS performs poorly that causes GDFS to have a
larger average overhead and a larger variance.

For PPs and IPs, we have observed similar results. For PPs, GDFS is the best,
RIDA* is second, and IDA*_CR is third. For IPs, RIDA* is the best, GDFS is
second, and IDA*_CR is third. To visualize the performance difference, we depict
in Figure 5 the performance distribution of GDFS, RIDA* and IDA*_CR for 50
random instances of TSPs. The graphs shows that GDFS and IDA*_CR performs
poorly on some instances which results in large performance distributions.

In summary, our experiments shows that RIDA* has the smallest standard de-
viation in performance, and its average performance is very close to that of BFS.
GDFS usually has large standard deviation in performance as compared to RIDA*
and IDA*_CR. The performance of GDFS depends largely on the guality of the
gnidance and pruning functions. Hence, it performs well when the guidance func-
tion is accurate, and the application problem has many feasible solutions that can
be used to prune unpromising nodes. Such is the case in PP; in this case, GDFS
has performance very close to that of BFS.

We do not show separately the performance of DF5* in these tables. For all
the problems studied, DFS*'s strategy of doubling the threshold each time makes
it quickly become GDFS after a few stages. The performance of DFS* is slightly
worse than that of GDFS for the problems studied.

We have also compared the empirical performance of RIDA* with respect to
the theoretical bounds presented in Appendix A. Figures 6 shows the experimental
results of RIDA* for 50 random instances of 20-city Euclidean TSPs and the lower
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the corresponding performance bounds presented in Appendix A. )

and upper bounds of performance. Note that the bounds track the performance of
RIDA* quite well, and that RIDA* has performance very close to the best perfor-
mance. The bounds and the performance of RIDA* for other problems (VC, PP,
and IP) are similar and are not repeated here.

5. Conclusions

In this paper, we have studied various methods for selecting thresholds in an TDA*-
style algorithm. Our goal is to select thresholds so that the number of nodes
searched in successive stages grows in a geometric fashion. We have modeled the
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distribution of lower-bound values by exponential, geometric, and linear distribu-
tions, and have derived the optimal thresholds in each case. We have also shown con-
ditions under which Korf’s original IDA* algorithm, Vempaty, Kumar, and Korf’s
DFS* algorithm, and Sarkar, et al’s IDA*_CR will perform the best. Finally, we
have presented RIDA¥*, a method that uses run-time distribution on lower bounds
and applies regression to determine the best threshold to use in each stage.

We have evaluated these IDA*-style algorithms using random instances of the
vertex-cover, traveling-salesman, production-planning, and integer-programming
problems. We have found IDA* to be optimal when lower bounds are discrete
and the heuristic branching factor is large (as in vertex-cover and 15-puzzle prob-
lems). DFS* performs well when the distribution of lower bounds is linear (as in
maze problems). Further, DFS* is similar to GDFS and, therefore, performs well
when GDFS performs well (as in production planning problems). We have found
that RIDA* performs well when the distribution of lower-bound values can be mod-
eled a priori (as in traveling-salesman problems using a multi-way state-space-tree
representation and in integer programming problems). Our experiments alsc show
that RIDA* has the most consistent performance {smallest standard deviation) in
terms of deviations from a best-first search. On the other hand, IDA*_CR uses a
discrete approximation of the distribution of lower bounds; its prediction is usually
imprecise and may lead to unpredictable performance.

In summary, for a given problem instance, the best choice of the IDA*-style
algorithm to use is as follows.

s Use Korf’s original IDA* if the distribution of lower bounds is discrete and
geometric with a large heuristic branching factor.

o Use DFS* if the distribution of lower bounds is linear or when GDFS performs
well.

o Use RIDA* if the distribution of lower bounds is exponential.

¢ Otherwise, use IDA*_CR.

Appendix A. Theoretical Bounds on Performance of the Ideal IDA¥

In this section, we derive the upper and lower bounds on performance of the ideal
IDA* algorithm. The performance bounds are derived with respect to the exponen-
tial, linear and geometric models we have presented in Section 2,

A.l. Performance bounds with respect to the exponential and linear
models

In these two models, the growth ratio » defined in Eq. (2.1) can be any real number.
In this subsection, we present the upper and lower bounds of nypa./na. defined in
Eq. (1.1} for the ideal IDA* algorithm presented in Section 2. Qur work is motivated
by the observation that the number of nodes expanded by an IDA*-style algorithm
may vary significantly when a different ratio of growth r is used.
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The following assumptions are made in deriving the bounds.

e There is a constant ratio of growth (r) in number of nodes expanded from one
stage of the ideal IDA* algorithm to anther.

e The value r can be any real number between 7min and 7max-

e Fach stage starts with only the root node (m =1 in Figure 1).

The next theorem shows the lower-bound normalized overhead of the ideal IDA*
algorithm with respect to A*. This lower bound is derived for any choice of 7
hetween Tmin aNd Tmez-

Theorem A.l. For any real number 7, ¥min £ 7 < Tmae: the lower-bound
normalized overhead of the ideal IDA¥ over A* is

1 NAx S Tmaz
k41 _q
(Eﬂf_) = G‘;:":'fn_n;;‘ +1 7E o <nas <ThEL and E>1 (A1)
NAs /LB
#_-—1 (ropt - ﬁ) otherwise
where rop¢ and k are
log, ntax

= ——e P A2
rope = ep | A (A.2)
k= [log, . nas|—1 (A.3)

Proof. The proof is shown with respect to the three cases in the theorem. We
will find the particular r between rmin and Tmas that achieves the lower bound.

Case (1). nax < Tmaz- This is straightforward because r = na. achieves the
best performance, and nypas/nas = 1.

Case (2). v, < na, <7552 for some integer k, k > 1. Under this condition,
IDA* always takes k + 1 stages for any 7., Tomin < 7 < Tmaee- In the best case, the
ideal TDA* expands 1.4, nodes in the final stage no matter what value of » is used.
Using 7omin it the intermediate stages will lead to the fewest total number of nodes

expanded; hence, 1 = Tmin is the best.

k j NIDAx T 1
n e =S g = = e +1 A4
IDA*"I" min ; meve + Ax N Ax (Tm'é'n - 1)nA* ( )
where
k= [10gT1)ciﬂ nA*:l -1 (A.S)

For example, if Tmin = 3, Tmaz = 3.5, Nas = 624, then k = 5, and the second
condition in Eq. {A.1) is satisfied. nypa« /na« is evaluated to be 1.583.
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Case (3). In all other cases, there is a set of values {rg, r1....,7n}, Tmaz = To >
FL > v« > Ty 2 Tmin, such that

7 =na., 0<i<n, i and k are integers, and (A.6)
k=[log, . na«l. (A7)

In the best case, IDA* using r; terminates in k + ¢ stages, and the optimal solution
just lies on the threshold of the last stage.

As an example, when 7, = 3, Tmae = 10 and na,. = 624, we get 79 = 8.545,
ry = 4.998, and ro = 7, = 3.623 for n = 2 and ¥ = 3. Using r; will result in
(k + 1) = 4 stages.

Let 7(r) be the overhead of IDA* using r. The proof for this case is shown in
three parts.

1. T(ro) < T(r;) for 1 €< i < n. The difference between using r; over another r is
in the number of nodes expanded in the intermediate stages, which is

ki1
Y rl,0<i<n (A.8)
5=0

Since & = 7% and rf 77 < #7777, where j = 1,2,..., k and 1 <4 < n, we get

T(‘T‘o) < T(T{).

Continuing with the same example, using ro = 8.545 results in the sum in

Eq. (A.8) to be 82.57. Using r; = 4.998 results in the sum to be 154.93.

2. T(F;) > T(r;) for r; > 7; > riy1 and 0 < ¢ < n. TDA* using 7; has k+:i+1 stages
while IDA* using 7; has k + ¢ stages. In the best case, IDA* using 7; expands
n4, nodes in the last stage. Thus the difference between using r; and #; is in
the number of nodes evaluated in the intermediate stages. We know that

ki-t
T(ri)= > rl+mna., (A.9)
7=0
kti
T(#) = ZT}J +nan - (A.10)
=0
If we can show that
FAt > it >l 0<i<k+i-1 (A11)

then T(¥;) > T(r;). The first inequality in Eq. (A.11) is true because of our
assumption that 7; > 7r;y;. The second inequality can be proved as follows.
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We know from Eq. (A.6) that
Tfj’f"‘l =7t = n4. (A.12)

Dividing all terms by 'rfff ~7, we get

k4it1 ki ki
ALY WA L BLE I SR (A.13)
Ehicg i+l T ktied Eieg  t :
Titl Tit1 T

Hence, Eq. (A.11) is proved.
Continuing with the previous example, if we choose ¥g = 6, then T(rg) =
T(8.545) = 706.57 and T'(fo) = 883, assuming that na. = 624 nodes are evalu-
ated in the last stage when r = 7.

3. T(#) > T(ro) for ro <7 < Tmas and both cases of using 7 and rg incur k stages.
In the best case, both cases expand n 4, nodes in the final stage. However, using
¥y has larger overhead in the intermediate stages. Since ¥ > 7o and

k—1
T(ro) = ng + nas, {A.14)

=0

k—1
T(F) =Y 7 +nas, (A.15)

3=0

we get T(F) = T(ro)-

The above three parts show that using ropr = 7o results in the lower-bound
overhead. Top: in Eq. (A.2) is found by substituting the value of k in Eq. (A7)
into Eq. (A.6). The number of nodes expanded using rop: is

k k+1
j Topt — 1 Toptt Ax — 1
. - ba _ topt *
RrDAslrmrogimre = D Topt = = (A.16)
=0 Topt — Topt —

This proves Case (3) of Eq. (A.1). U

To illustrate Theorem A.l, the lower-bound normalized overheads for two
combinations of rpin and rpaec are gshown in Figure 7. We have the following
observations from these results: (a) the lower-bound 7rpa«/nax approaches one
a8 Tupge increases; (b) Tmin has little effect on the lower-bound nip A« As; and
(c) the frequency of variations is higher for smaller rmae. Note that the curves are
not smooth because r,p: is different for different n 4.

Next, we derive the upper bound on the normalized overhead of the ideal IDA¥
algorithm.
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Theorem A.2. For any real number 7, 1 < Tyin < 7 < Tmee, the upper-bound

normalized overhead of IDA* with respect to A¥* is
Tn_,q* T Ax S Tmin

k k+1

RIDAx T L
(———— = z"'mu-;;_l)nAu Tmﬂ"’” < A« S T'm'i"" k Z 1
UB

NAx

max { 7;1(:2) ) T{:’::’:) ) rz(,(:f;;:l_l } otherwise
(A17)
where
k=log, . na] —1; ko=[log, (na.—1% ro=(nax—1)%; (A18)
2 —1) -
o = llog,,,, (nas—1); 7o = (nae—D)F; and T(r) = A=D1 (4 19)

Proof. The proof is shown for these three cases, respectively.

Case (1). When na, < Toin, the worst case happens when using rme., and
the optimal solution is not found until all other nodes within the threshold are
expanded. Thus, nrpas = Tmas-

Case (2). 5 < na. <751 for some integer k, k > 1. For any real number r,
Tmin < T < Tmaz, IDA* has k + 1 stages. In the worst situation, IDA* using rmaz
expands more nodes in all the k intermediate and the final stages, and the number

of nodes expanded is

k+1 rE+2
mox
NIDAK = D Thhae = e (A.20)

where k = [log, . 7a.«] — 1.
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Case (8). In all other cases, there is a set of values {rg, 71,. .. ,Tn}s Tmaz 2 70 >
L3> D T = Tmin = Tntls such that
na.—l=rFt 0<i<n (A.21)

where kg and ¢ are integers, kivg =k +1 and
ko = [log,... (Rax = VY knst = M0Br,,., (Rax = 1] (A.22)

This means that IDA* using r; terminates in kg + ¢ + 1 stages.

For example, when Fmin = 3, Tmaz = 10, nas = 624, we have ko = [og,, 6231 =
3, and kny1 = {log; 623] = 6.

Let T(r) be the worst possible overhead of the ideal IDA* using 7. The proof is
shown in three parts.

1. T{r;) < maz(T(re), T(rn)} for 0 <1 < 7. For each 7;, the worst case happens
when the optimal solution is found in the (ko +%+1)'st stage and is the last node
visited after all nodes within this threshold have been expanded. The number of
nodes expanded is, therefore,

kotit+l ko+i+2 2
. Ty -1 Ti\nA -1}-1
Tr)= p, H="—F—7 = a1 -2 - _1) (A.23)
J=0 1 k]

The minimum value of 7'(r;) when 7; is in (1,00) is reached when

1\? A
Ti—1+(1—nA*_1) ( 24)

Therefore, for 7 in the interval [1 + /1 -1/ (nae— 1),00), T(r;) is monoton-
ically increasing with respect to 7. On the other hand, for r; in the interval
(1, 141 —1/(nae—1 ], T(r;) is monotonically decreasing with respect 1o 7.
Either T'(ro) or T(ry) could be the largest.
Continuing with the example in Case (3) of this proof, we have T{rg) = 6,026,
T(r3) = 3,117, and the minimum value of T(r;) is 2,491 when 7; = 1.9992.

2. T(F) < T(ry) for rigr < Ff<riand 0 <i<n In both cases of using 7; and 7;,
IDA* has a maximum of kp + 1 + 1 stages.

kitl kritl
T(r)= Y vl and T(f)= SR (A.25)
j=0 3=0
Since r¥ > 7%, 1 < k < (ko +i+ 1) IDA* using #; has less overhead in all
intermediate and the last stages.
3. T(#) € T(Tmae) for 7o < # < Tyaz, and IDA* using # has ko stages. In this case,
Feotl ]

T(f) = z::r =1 (A.26)

When # increases, T'(7) increases. T(#) reaches the maximum when 7 = Tmae:
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Continuing with the example in this proof, T(rmaz) = 1,111, T(F) = T(9) =

820.
Since any one of the three values, T'(rmags), T(ra) or T(r,) could be the largest,

the upper bound on the overhead of IDA* in the worst case is

NIDAx = maX(T(Tmﬂw)aT(TD)aT(Tn)) O

To illustrate Theorem A.2, the upper-bound normalized overhead of IDA* for
two combinations of Trmin and Tnee are shown in Figure 8. We have the following

observations from these results: (a) the upper bound increases either as 7,qe iD-
CTEeAsSSs OT a8 Trmin goes to 1; (b) the frequency of variations is higher for smaller

Tmax ald when 7., is not close to 1.
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Fig. 8. Upper bounds of nipas/nas. for (a8) rmin = 2 and Tmar = 3 {bottom line), and

(b) Tmin = 2 and Tmez = 5 (top line).

From Theorems A.1 and A.2, we have found the following results to be consistent
with our observations. For a fixed #min, & large rmq, results in a large disparity
between the lower and upper bounds of nrpas/na.. When r,;, goes to 1, the
upper bound of nypa«/na. goes to infinity whereas the lower bound is not much

affected. Hence, small r,.;»'s close to 1 should be avoided.

A.2. Performance bounds with respect to the geometric model

In this model, the growth ratio r specified in Eq. (2.9) is restricted to a set of values
{1,u,4%,...,4% ... }. In this subsection, we present the upper and lower bounds of

overheads of the ideal IDA¥ algorithm.

When lower-bound values of search nodes are discrete, A* does not always
expands the same number of nodes before finding the optimal solution. This
happens because the overhead depends on the order in which nodes in the last
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level are expanded. Therefore, the bounds we derive here are not normalized with
respect to n 4, as we did in ihe last subsection. Instead, the performance of IDA* is
compared with that of BFS. BFS in this context is a search that expands no other
nodes in the same level as the optimal solution, and expands all nodes with lower
bounds less than the optimal solution. We denote npps as the number of nodes
expanded by BFS.

For simplicity, we call the nodes with the same lower-bound values as nodes
in the same level. We are interested in finding the number of nodes expanded
rather than those generated because nodes in a level of the search tree are either all
expanded or none expanded in any stage, whereas they may be partially generated
in any given stage.

In the geometric model, two distinct situations can happen. (1) When a solution
is found in one level below the threshold used in the second-to-last stage (Figure 9a),
IDA* terminates immediately, and the solution found must be optimal because all
nodes with lower-bounds less than it have been expanded in the second-to-last stage.
In this case, very few nodes may need to be expanded in the last stage. (2) When
a solution is found in a level other than the level immediately below the threshold
used in the second-to-last stage, IDA* cannot terminate immediately because there
may be a better solution in any intermediate levels in between. This phenomenon
is illustrated in Figure 9b.

nodes expanded in the second-fo-last stage

@ optimal solution
(O expanded node

A better solution
may exist in
this level

m nodes evaluated
nitially

discrete levels
for lower bounds
and solutions 1

() (b)

Fig. 9. Two different situations in discrete IDA* search: (a) I. mod s = 1 or s = 1, and
(b) L mod 5 # 1.



520 B. W. Wah & Y, Shang

The following assumptions are made in deriving the lower and upper bounds of
performance of the ideal IDA*

1. u > 1 is the constant ratio of the number of nodes with lower bounds at one
discrete value to the number of nodes at the next discrete lower-bound value.

2. The threshold of one stage always increases by s levels from the previous stage.

(Note that s is in levels and not in lower-bound values. )

The value s can be any integer between Smin and Smax inclusively.

L is the level where the optimal solution lies. The root is in level 0.

5. Bach stage starts with only the root node (m = 1).

W

Cliven that s is between 3min 80d 8maz, the next theorem shows the lower-hound
overhead.

Theorem A.3. For any integer s, Spmin < 8§ < Smaz, The lower-bound overhead
of IDA¥ is
NIDAx = min  T(s) {A.27)

3E[5-m.in sdman

where T'(s), the minimum number of nodes expanded by IDA* using s, is

1 wl®l -1 L
T(s) = - = :
{s) u—l(u =g [31 +a (A.28)
where a is
1 fmods=1or s=1
a=4 . {A.29)
vl otherwise

Proof. In the best case, no nodes are expanded beyond level L in the final
stage, and the optimal solution is the first node expanded in level L. Thus, all
other nodes in level L are pruned.

Let T(s) be the overhead of the IDA* search. There are two cases.

1. Lmod s =1 or s = 1. In the best case, IDA* expands only the root in the last
stage.

2. In other cases, IDA* expands no nodes in level L in the last stage but all nodes
above level L. The total number of nodes expanded is 21 g w = “: vl
These two cases only differ in the final stage. The number of nodes that IDA*

expands in all intermediate stages is

B VWG

i=0 7=0

where o = [£] — 1. This proves Eq. (A.28). O
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To illustrate Theorem A.3, we show in Figures 10 the lower-bound normalized
overhead of IDA¥* over BFS for various combinations of @, Smin, ald Smae- From
these results, we have the following observations. (a) The lower-bound normalized
overhead goes t0 1 as Smqy iNCreases. (b) A larger u gives a smaller normalized
overhead. {c¢) The frequency of variations is higher for smaller smaz's. Note that
the curves are not smooth because Sopt is different for different ngrs’s. These
observations are consistent with those of the exponential and linear models.

Next, we derive the worst-case normalized overhead of IDA¥,

22 14 T x T T T
1y | A 1 135 | s
I 2 I 13
% 1:: l%1.25 | : !
e | S S T T i
AL A T T T 12
s ; R it hooE, i 8
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R & i1 IR R RIRRIR R ros B By T i LRI
LALLM ARRAAIAL AR RIARARARRA
0 20 3¢ 40 S0 € 70 B % 10O 10 20 36 40 So 60 70 80 S0 100
Logyp (Nar) Logyo (mas)

Fig. 10. Lower-bound normalized overhead of IDA*. Left: u = 1.5, $min = 1, Smaz = 2 {tOp line),
and © = 1.5, $min = 1, Smaz = 4 {bottom line). Right: w = 3, Smin = 1. Smaz = 2 {top line),
and u =3, $min = 1, 8maz =4 {bottom line).

Theorem A.4.. For $min < 8 < Spmaz, the upper-bound overhead of IDA* is
NIpAs = max _T(s) {A.31)

5E{Snin Smazx

where T(s) is the maximum number of nodes expanded by IDA* using s:

T(s) = ui : (uusr%hs ~1 [51 _ 1) (A.32)

us —1 $

Proof. In the worst case, IDA* expands all nodes with lower bounds up to and
including the threshold in the final stage. The total number of nodes expanded is

[%1 iXs 3‘—%-'+3 _
nIDA*ZZZuj:uil(uu e — 1 1—\'%1—1) O. (A33)

i=0 =0

To illustrate Theorem A.4, we plot in Figures 11 the upper-bound normalized
overheads of IDA* over BFS for various combinations of 1, Tmin, a0d Tmaz. From
these results, we have the following observations. {(a) The upper-bound normalized
overhead increases as Smae increases. (b) The upper bounds vary in a large range
for large u’s.
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Fig. 11. Upper-bound normalized overhead of IDA*. Left: u = 1.5, $min = 1, Smaz = 2 (bottom
line), and u = 1.5, Symin = 1, Smas = 4 (top line). Right: u = 3, $min = 1, Smaz = 2 (bottom
line), and u = 3, $min = 1, Smaz = 4 (top line).

From Theorems A.3 and A.4, we have the following conclusions. (a) For a fixed
Smin, & laTge 8,4, results in a better lower-bound n;pa«/nprs and a worse upper-
bound n;pa./nprs. (b) For a fixed 8m:, and $pmqq, a large u results in a better
lower-bound n;pa./nprs and a much worse upper-bound n;p4./nprs than those
of a small . Therefore, when u is not close to one, we should avoid using large
Smaz's. Our conclusions drawn here for the geometric models are consistent with
those drawn for the exponential and linear models studied in the last subsection.
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