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ABSTRACT

In this paper, we develop TCGD, a problem-independent, time-constrained,
approximate guided depth-first search (GDFS) algorithm. The algorithm is
designed to achieve the best ascertained approximation degree under a fixed time
constraint. We consider only searches with finite search space and admissible
heuristic functions. We study NP-hard combinatorial optimization problems
with polynomial-time computable feasible solutions. For the problems studied,
we observe that the execution time increases exponentially as approximation
degree decreases, although anomalies may happen. The algorithms we study are
evaluated by simulations using the symmetric traveling-salesperson problem.
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1 Introduction

The search for optimal solutions in a combinatorially large solution space is impor-
tant in artificial intelligence and operations research. A combinatorial optimization
problem is characterized by an objective to be optimized and a set of constraints
to be satisfied. Most of these problems are NP-hard and require exponential time
to find the optimal solutions.

General search strategies that solve these problems include best-first search
(BFS), depth-first search (DFS), guided depth-first search (GDF'S), breadth-first
search, and iterative deepening A* (IDA*) [3]. In this paper, we focus only on
guided depth-first searches. The difference between DFS and GDF'S is that in
GDFS all immediate descendents of a node selected for expansion are expanded
first before proceeding to descendents of expanded nodes, whereas in DFS only one
immediate descendent is selected for expansion before descendents. of this expanded
node are examined. In general, GDFS and DFS require much less memory space
than BFS, although they generally expand more nodes than BFS because they
may need to explore deep in a search tree before finding a solution. GDFS expands

less nodes than DFS when the guidance function is accurate, since all immediate

descendents can be examined simultaneously before proceeding deeper in the tree.

The search for a solution in a large solution space is generally limited by resource
constraints, such as the maximum time allowed and the maximum space available;
hence, approximations must be applied to terminate the search when resources are
expended. Approximation algorithms generally prune search nodes in a search tree.
We are interested in those that give an ascertained (and perhaps minimal) degree
of deviation from the optimal solution when the search terminates, assuming that
admissible heuristic functions are used.

There are three ways to establish an upper bound on the best ascertained ap-
proximation degree from the optimal solution that can be achieved in a time limit.
They all require the knowledge of the best approximation degree achievable before
a search begins. The best of such strategy-independent approximation algorithms
is OPT that “knows” the approximation degree that can be obtained in the time
allowed before the search begins, so that all nodes in the open list are either pruned
or expanded when time is expended. There are two other strategy-dependent per-
formance upper bounds that have the same or worse behavior as OPT. We define
OPTy. (resp. OPTsp) as an approximation search that achieves the minimum
approximation degree when BFS (resp. GDFS) is used. When the search strategy
is given, anomalies in performance may happen; that is, a search with a lower ap-
proximation degree may take a shorter time than one with a higher approximation
degree [4]. Note that these three upper bounds cannot be achieved in practice,
as the best approximation degree achievable before a search begins is unknown.
However, they are useful in providing benchmarks for comparison.

Lawler and Wood first proposed an approximate search algorithm in their sem-
inal paper [5]. Their algorithm is based on BFS that works as follows. To solve
a problem P under time constraint T, they start BF S without any approximation
for -g— units of time. If the optimal solution is not found within % units of time,
they relax the approximation degree to 5% and try to solve the problem for an-
other % units of time. If the 5% approximate solution is not found within :f— units

T T TR e e e




TCGD: A Time-Constrained Approzimate Guided ... 257

of time, then they relax the approximation degree by another 5% (i.e., a total of
10%) and try to solve the problem for another % units of time. This process is
repeated until the time constraint is exceeded or an approximate solution is found.
Their algorithm of reducing the approximation degree with respect to search time
is suboptimal, since it spends a major portion of its time resource in solving harder
problems first. Further, the step size they used (namely, 5%) should not be fixed
and should be tuned at run time based on domain knowledge of the target problem.

We have previously studied TC A* [6], a family of approximation strategies based
on BFS. TCA* allows approximate solutions very close to those obtained by
OPT,. to be found in a given time constraint with a minimal increase in cost
as incurred by OPT,4.. Costs in our study were measured in terms of either the cu-
mulative space-time product (CST) or the maximum space required. The algorithm
is based on the empirically observed fact that the time spent in a search and the
CST cost when the search terminates grow exponentially when the approximation
degree decreases, if anomalies are ignored. By applying a principle similar to Korf’s
iterative deepening [3], time resource is initially allocated to solve simpler problems
(with less accurate solutions but lower costs). The approximation degree is pro-
gressively reduced in a linear fashion when time is running out. The exponential
relationship between cost (in terms of CST product or maximum space incurred)
and the approximation degree dictates that the cost of the final search overwhelms
the costs of earlier searches. Hence, the solution is only marginally better if the
earlier searches were not performed. '

In this paper we study TCGD, a family of approximation strategies similar
to TC A* [6] but is based on GDFS instead of BFS. In TCA~, the objective is
to minimize the approximation degree when time is expended while minimizing
either the CST product or the maximum space incurred during a search. Since the
maximum space used in GDF'S is bounded and small, and the time constraint is
specified, the CST cost and the maximum space incurred are bounded. The sole
objective in TCGD is, therefore, to minimize the approximation degree of the search
when time is expended. Another major difference between TCGD and TCA* lies
in the lower-bound value obtained when the search terminates. In GDFS, the
minimum lower bound of all active nodes is not advanced as fast as that of BF'S
because nodes close to the root may remain unevaluated until late in the search.
For this reason, the approximation degree obtained by TCGD when the search
terminates is generally worse than that of TCA*.

Three versions of TCGD are studied in this paper: naive TCGD (nTCGD),
static TCGD (sTCGD), and predictive TCGD (pTCGD).

nTCGD simply solves a search problem without any approximation until either
time is exceeded or the exact optimal solution is found. If an optimal solution
cannot be found when time is exceeded, the incumbent, the corresponding best
feasible solution found, and the final run-time approximation degree are reported.

sTCGD uses a static strategy to progressively reduce the approximation degree
in a linear fashion. Since the approximation degree is a negative exponential of the
execution time, the time for solving the last GDFS overwhelms those for solving
earlier ones.

sTCGD can be improved by deriving dynamically the profile function relating
approximation degrees and costs. Instead of using a static strategy, pTC'G D applies
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sTCGD for a relatively small amount of time and, based on a parametric relation-
ship between time spent and approximation degree, estimates the approximation
degree that can be achieved in the remaining time and solves the search problem
with the estimated approximation degree.

The branch-and-bound algorithm used in this paper is implemented as GDFS.
The target search problems studied are combinatorial optimization problems that
have a finite search space and many feasible solutions, such that both upper and
lower bounds of search nodes can be computed in polynomial time. This class
of problems cover a wide spectrum of important problems in artificial intelligence
and operations research. Performance of TCGD is demonstrated by simulations of
the symmetric traveling salesperson problem (TS); results obtained for the knapsack
(KS) and production planning (PP) problems are not shown due to space limitation.
The heuristic functions we used may not be the best available. However, they do
not affect the validity of our results, since the goal of this paper is to demonstrate
the power of TCGD.

The symmetric TS problem we use to evaluate our algorithms assume that all
cities are fully connected, and that distances between them are symmetric and are
generated by a random number generator using the well-known linear congruence
algorithm. The property of the triangular inequality is satisfied during the genera-
tion of sample problems as all cities are first mapped onto a Cartesian plane before
their distances are calculated. The lower-bound value is evaluated by finding the
cost of the spanning tree that covers the cities not visited, while the upper-bound
value is computed by a hill-climbing heuristic. For simplicity, dominance due to
symmetry is not tested in our implementation.

This paper is organized as follows. Section 2 defines terminologies in approx-
imate branch-and-bound algorithms. Section 3 describes the parameterization of
the profiles and demonstrates empirically their aptness and usefulness. Section 4
describes nTCGD and sTCGD and proves some of their properties. Section 5 de-
scribes pTCGD and shows examples. Section 6 compares TCGD, TCA*, and the
algorithm proposed by Lawler and Wood [5] and draws conclusion. To avoid com-
paring the original Lawler and Wood’s algorithm, which uses exponential amount of
space, against TCG D, which uses polynomial amount of space, we modify Lawler
and Wood’s algorithm so that GDF'S is carried out instead of BF'S.

2 Approximate Branch-and-Bound Algorithms

A branch-and-bound (B&B) search [5, 7] is a general formulation of a wide range of
heuristic searches [8], such as A* (9], AO*, B*, game-tree, and dynamic program-
ming algorithms. A B&B search decomposes a problem into smaller subproblems
and repeatedly decomposes them until either a solution is found or infeasibility is
proved. Each subproblem is represented by a node in the search tree. The method
is characterized by four components: branching rule, selection rule, pruning rule,
and termination criterion. Without loss of generality, only minimization problems
are considered in describing the B&B algorithm. Maximization problems are duals
of minimization problems and can be solved by minimizing a negated objective.

A search node i in a B&B search is associated with a lower-bound value f;. Let
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Ji be the minimal solution value in the subtree rooted at node i. fi satisfies the
following properties: (a) f; < f7; (b) f; = f* when node i is a goal node, i.e., node
¢ is a feasible solution; and (c) f; < f; when node ¢ is an ancestor of node j.

The incumbent value z is the minimal feasible-solution value found so far in a
search. Note that the incumbent value is initially set to infinity in a minimization
problem. Any search node i with f; 2> z is obviously inferior and can be pruned. Let
z* and o be the optimal-solution value of a search and the approrimation degree,
respectively. We have the following pruning rule. '

4
a+1’

fi2 (2.1)
The final feasible solution obtained by applying the above pruning rule is called an
a-approzimate solution

- When a search is run with approximation degree a and time constraint 7', we
denote it as S(, T). If the time constraint is not specified, then we denote it as
S(a, —) which is equivalent to S(a, ). Let t(a) be the time needed to complete
S(a;,—). Consider a search instance S(a,T). If t(a) > T, then the search is
terminated at 7', and the following run-time approzimation degree is computed.

Z(O’, T) - fglobal (a, T)
fglobal (a’ T) ,

where z(a, T) is the incumbent value when S (e, T) is stopped at T, and Fgtobar (a, T)
is the minimum lower-bound value of all active nodes at time T.

(2.2)

arun—-time(a, T) =

3 Parametric Profiles

The profile we use in this paper is a trace of resource usage (i.e., execution time
incurred) versus solution quality (i.e., approximation degree). Execution time mea-
sured in an experiment can be real or virtual. Real time is measured by the built-in
timer of the computer on which the search is run and reflects the characteristics
of the particular computer involved. In contrast, virtual time is measured by the
number of search nodes expanded. It may not be a true indicator of the overhead
involved since different computers may spend different amounts of time in expand-
ing a node and for memory management. However, it is useful for reporting results
that can be reproduced in the future. For this reason, we present experimental
results in this paper based on virtual time.

The profiles studied in this paper are classified into four types: run-time profiles,
actual profiles, performance profiles, and parametric profiles. A run-time profile
is the profile collected by using GDFS without any approximation. An actual
profile shows the experimentally obtained performance of O PT,. or OPT¢p, which
gives the best approximate solutions with the minimum costs under a given time
constraint and search strategy. A performance profile is similar to an actual profile
except that it is based on a given search strategy, such as sTCGD or pTCGD.
Finally, a parametric profile is an estimation of the actual profile and is obtained by
regressing on the partial actual profile. The aptness and usefulness of parametric
profiles are demonstrated later.
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In studying TCA*, we have proposed two general algebraic profiles [6], one of
them is used in this paper.

a=Y" Bilog"t (3.3)
k=0

where o is the approximation degree, t is the time used, and Bxs are constants.

One difficulty with higher-order regressions in (3.3) is their intractability in
prediction. In pTCG D described in Section 5, we collect only partial actual profiles,
regress them, and predict the entire profile. Due to the high-order coefficients in
the parametric function, the function may sometimes become a convex curve, which
changes curvilinearly to a larger approximation degree as time progresses. To avoid
this problem, we restrict to using the simple exponential profile in this paper,

a=fo+plogt, - (84)
with the following two boundary conditions,

t=1¢p>1, a=0; (3.5)
and t =1, a=a9>0, (3.6)

where 7gp is the time required to find the optimal solution using GDFS, and ag
is the run-time approximation degree obtained after the root has been expanded.
Substituting the boundary conditions into (3.4), we have

a(t) = ao (1-1logrspt). (3.7)

Rewriting (3.7) in terms of a, we have

1
tep(a) =15p"°. (3.8)

The above condition applies when GDFS is used. A similar condition when A* is
used is '

o

-
tae (a) = T4 eo (3'9)

where 74+ is the time required to find the optimal solution using A*.

By observing the actual profiles of more than 30 problem instances of KS, TS,
and PP problems, these profiles can be well fitted by regression. Table 1 shows the
standard deviation (normalized with respect to ag) between the actual profile and
the regressed curve for different values of n in (3.3) and for 10 problem instances of
TS of various sizes. It shows that there is a close fit between the predicted and the
actual curves. Moreover, it shows that it is sufficient to use n = 1 in the regression;
that is, (3.4) is a sufficient approximation to the actual profile.

It may be inappropriate for us to conclude from our limited experimental results
that the profiles of other combinatorial optimization problems can be parameterized
by the simple exponential function. In general, the distribution of lower bounds with
respect to the number of subproblems in a finite search space is bell-shaped.! The

1 The statement is not true in a search problem with an infinite search space, such as the 15
puzzle problem.

.
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Table 1. Summary of standard deviations between the actual profile and the regressed
curve of 10 TS problem instances of size ranging from 11 to 20. The standard deviation is
the root-mean-square of the difference between the actual and the parametric profiles.

Std. Dev. n=1 n=2 n=3 n=4 n=5
Minimum 0.028 0.028 0.018 0.018 0.018

Average  0.040 0.038 0.030 0.030 0.030
Maximum 0.056 0.054 0.054 0.054 0.054

exponential function used in modeling the approximation behavior fits well when
the optimal solution lies on the rising edge of the bell-shaped curve, which is the
case for the KS, TS, and PP problems. The exponential model fails when (a) the
optimal solution is near the peak or on the falling edge of a bell-shaped profile, or
(b) the profile function is growing more than exponentially. Situation (a) happens
frequently in hard-constrained optimization problems, such as discrete optimization
problems with very few or no feasible solutions. Such problems are not addressed
in this paper. Situation (a) can also happen when the lower-bound function is
loose in predicting the optimal solution. Situation (b) happens in very hard search
problems. In the last two cases, an algorithm which dynamically predicts the profile
during a search is needed. This is applied in a dynamic version of TCGD that is
described elsewhere [2, 10]

4 Naive TCGD and Static TCGD

In this section, we describe two simple versions of TCGD, nTCGD and sTCGD.
We identify the parameters that significantly affect the performance profile and
present experimental results based on the TS problem.

4.1. Naive TCGD

For time constraint T, the naive TCGD (or nTCGD) algorithm is defined as
nTCGD = {5(0,T)}. (4.10)
Consider problem P solved under time constraint T, nTCGD works as follows.

1. Solve P using S(0,T) until either T is expended or the exact optimal solution
is found.

2. If the exact optimal solution is found, then report it; otherwise, report the
incumbent and the run-time approximation degree computed using (2.2).

If nTCGD can find the exact optimal solution under the time constraint for a
problem instance, then RT'CGD is the best algorithm for solving the instance in
terms of execution time. However, if time is expended before the exact optimal
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Figure 1. Comparison of performance profiles for a 20-city TS problem instance under
various strategies.

solution is found, then the run-time approximation degree obtained is much worse
than the best approximation degree achievable when BFS (which approximates
OPT4.) is used instead. This happens because the minimum lower bound of all
active nodes in GDFS is usually governed by nodes close to the root, which are not
expanded until much later in the search. As a result, the run-time approximation
degree achieved by GDFS and DF S are usually worse than that of BFS.

Figure 1 plots the performance profiles of nTCGD for a 20-city TS problem
instance. The quality of a solution is determined by its approximation degree
achieved within the time constraint. A better algorithm should find more accu-
rate a-approximate solutions in a shorter amount of time. An algorithm whose
performance is very close to the actual profile is desirable. As expected, Figure 1
shows that nTCGD has the worst performance.

4.2. Static TCGD

For time constraint T, the static TCGD (or sSTCG D) algorithm can be defined as

sTCGD ={S(ao,—),S(al,-—),...,S(ak,—),S(ak+1,trem)}, (4.11)

et ot oAt o

o S
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k
‘where t,em =T — Zt(aj) >0 (4.12)
Jj=0
and ao>a1>...> e > 0kq. (4.13)

The approximation degree achieved by sTCGD is

XsTCGD =~ min{ak, arun—time(ak+17 trem)}- (414)

The approach used in sTCGD is to select a sequence of ag, ay,...,Qk, Qk41, such
that asrcep is minimized. ,
The approximation degree used in the k-th GDFS, a4, is defined as follows.

ar=(1-kxg)ag, 0<g<1, (4.15)

where g is a constant stepping factor (or gradient factor).
Consider a combinatorial optimization problem instance P to be solved under
time constraint T', sTCGD works as follows.

1. In the zeroth search, evaluate the root node and compute its approximation
degree ag. Set ¢ as 0.

2. If the problem is not solved and the time constraint is not violated, then
compute a; ) using (4.15). Execute S(a;41, —).

3. Repeat Step (2) until time constraint T is violated or the exact optimal solu-
tion is found. Compute a;7¢cep using (4.14).

From the boundary conditions in (3.5), we have
g xns =1, (4.16)

where n, is the number of GDF'Ss that must be evaluated before the optimal solu-
tion is found. To achieve the best approximation degree under the time constraint,
parameter g must be chosen properly based on the profile such that a,7cgp defined
in (4.14) is minimized.

Several important symbols used for the lemmas and theorems in this section are
listed in Table 2. In the following discussion, we assume that the profile equation
defined in (3.8) is satisfied.

The following lemma shows the relationship among the time for solving the k-th
GDFS, iteration index k, and stepping factor g.

Lemma 1. The erecution time t(ay) for solving the k-th GDF S with approzima-
tion degree ay, is

t(ok) = 155 (4.17)
Proof. This lemma is proved by substituting (4.15) to (3.8). |

The following lemma shows the lower and upper bounds for the number of
completed GDFSs in sTCG D under time constraint 7.
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Table 2. Summary of Immportant symbols used in the lemmas and theorems.

Symbol Meaning
T Time constraint allowed for the search
TAe Time required to find the optimal solution using A*

TGD Time required to find the optimal solution using GDFS
@opr,. Approximation degree of OPT4. under time constraint T
%sTcGp Approximation degree of sSTCGD under time constraint T

Qg Approximation degree of the root node

Qy k-th approximation degree in sTCGD

g Stepping factor used in sTCGD

Lemma 2. Assuming the profile equation defined in (3.8) is satisfied, the lower
and upper bounds of k, the number of completed GDF Ss, is

1
g
< ¢logren (T(rdp —1) +1) =1 = Emaz, (4.18)

if 9 is not equal to 0.

Proof. Assume that k+ 1 GDFSs, S(ay, ~)seeey Slag, —), are done to completion,
and that S(ay,, —) is terminated prematurely because time is expended. (See
(4.12).) The following inequalities must be satisfied.

k+1

k
D tej) < T < t{ay). (4.19)
J=0

J=0

Applying (4.17) and simplifying the geometric series, we can rewrite (4.19) as:

g(k+1) —1 9(k+2) -1
‘6D <T< X . (4.20)
Tep — 1 Tep — 1

The lemma is proved by rewriting (4.20) into an inequality with respect tok. W

The lower bound of k defined in (4.18) may be negative if stepping factor g
is improperly large or time constraint T' is too small, which are not interesting
conditions. When the time constraint is fairly large, the lower bound will be positive.
For T > 1, the upper bound of k defined in (4.18) monotonically increases as time
constraint T increases. Hereafter, T is assumed to be larger than or equal to 1.
When T is equal to the minimal value, i.e., 1, this upper bound is equal to zero.
Therefore, the upper bound of & defined in (4.18) is non-negative.

If the stepping factor 9 is in its operational range, i.e.,

9 €(0,log,., (T - 1)], (4.21)

then the lower bound of % defined in (4.18) is non-negative. The operational range
of the stepping factor can be derived by simply solving the inequality that the lower
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bound of k defined in (4.18) is greater than or equal to 0. Note that the operational
range of the stepping factor is dependent on the time constraint. The worst-case
value of oy is given as follows.

ap < ap(l —g x kmin)- (4.22)

The following theorem shows that the difference between asrcep and aopr,.
is bounded from above by a function strongly dependent on the stepping factor but
weakly dependent on the time constraint.

Theorem 1. The least upper bound of the difference in approzimation degrees
between a;rcgp and QOPT,. s

as7cGp — aopr,. < F(9,T) + G(T) (4.23)
where F(g9,T) = 2009 — aplog+sp ('réD -1+ %_,—) , (4.24)
G(T) = ao (logr,. T — logrspT) - (4.25)

Proof. Assume that k+1 GDFSs, S(ag, =), .., S(ax,—), are done to completion,
and that S(ax41,—) is terminated prematurely because time is expended. (See
(4.12).) We compute ax as a pessimistic measure of a;rcgp (instead of using the
exact formula given by (4.14)). The worst-case ay is

ofpicp = ao(l—g X kmin) | (4.26)
= o[l —logrg, (T(ép — 1) + 1) + 24]

1
= o9 [1 + 29 — logrsp (T(g;D -1+ -,1—,) - logTGDT:‘ .

Applying (3.9), @opr,. is
QOPT, e — Q0 (1 - logTA. T) . (4.27)

The difference in approximation degrees can be obtained by simplifying the differ-
ence between (4.26) and (4.27). The bound in (4.23) is tight, since in some cases
the (k + 1)-th search cannot find more accurate solution than the k-th search due
to the time constraint (4.12). n

Theorem 1 shows that the maximum difference between the approximation de-
grees obtained by sTCGD and that by OPTy- is dependent on g as well as on T.
Note that both F(g,T) and G(T) are positive. The maximum difference is roughly
logarithmic with respect to time constraint T, since the effect of T in F(g,T) is
very small and negligible, and G(T') can be rewritten into

G(T) = logrs, T [(log-,. Tep) — 1]. (4.28)

As a result, as time constraint T becomes larger, the upper bound will become
looser. The difference in approximation degrees is roughly linear with respect to
stepping factor ¢ when g is large, since limy_,; F(g,T) = cog. When g is close to
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zero, the difference approaches aolog, 4+ Iy which is very large in terms of approx-
imation. Note that g cannot be zero; otherwise, the lower bound of & is not well
defined. When g is in between 0 and 1, the difference in approximation degrees
is curvilinear with g. There exists a best choice of stepping factor such that the
upper-bound difference is minimal.

Using the upper-bound difference derived in Theorem 1, we can derive g*, the
optimal value of g that minimizes the difference. Such an optimal g represents a
pessimistic estimate of the minimum difference in approximation degrees because
it is derived based on the upper-bound difference rather than the exact difference.
The following lemma shows that ¢* should be kept small.

Lemma 3. In terms of the upper bound of the difference in approzimation degrees,
the best stepping factor g* is

9" =logssp, [2 (1 - 5,1-)] (4.29)

Proof. Let Q(g,T) be the difference in approximation degrees defined in (4.23).
Taking partial directives of Q(g, T') with respect to g, we have

F A
aQ(ga T) — 0 (gv T) = %0 — Q0Tap - (430)
99 9g ép—l+ 7
The lemma is proved by setting (4.30) to zero and solving for g*. [ |

One problem with the above lemma is that 7ep is unknown until the search
is completed. However, it shows that the effect of time constraint on g* is small,
and that g* is independent of ag. These imply that ¢* is robust, and a suboptimal
choice of ¢ may not have a significant effect on the upper bound in (4.23). By using
the best stepping factor, the following theorem shows that the minimum difference
in approximation degrees is very small.

Theorem 2. The minimum difference in approzimation degrees between appr 0
and a,rcep(g*) is bounded by a constant, i.e.,

@1¢6D(9") ~ @oPT,. < 2000097552+ G(T) (4.31)

where asrcep(9*) is the approzimation degree obtained by sTCGD using ¢g* and
G(T) is defined in Theorem 1.
Proof. The theorem is proved by substituting g* in (4.29) into (4.23), leading to

1
asreap(9®) - aopr,. < aolog;,, (1 - T) + 2aplog;,2 + G(T) (4.32)

Fhe first term on the right-hand side is negative since 1 — % is smaller than 1 and
GD is no less than 1. Hence, this term can be neglected and the inequality (without
he equality sign) still holds. n
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Figure 2. Performance profiles of sTCGD for a 20-city TS problem instance under various
strategies.

Theorem 2 shows that sTCGD is very powerful, and the difference in approxi-
mation degrees is small if the best stepping factor is used. It is interesting to note
that the best bound is looser than that derived for TCA* in the sense that G(T')
appears in the bound for sTCGD and not in that for TCA”. Also note that this
best bound is logarithmic with respect to time constraint T' ((4.28) and (4.31)).
The larger is time constraint T, the looser will be the best bound.

sTCGD (and sTCA*) has the warm start problem at the beginning of a new
G DFS because it must spend time initially to estimate the approximation degree of
the last GDFS. This problem is more serious when g is small. However, choosing
large gs may not allow the last search to be completed or may result in a large part
of the remaining time unused. A succinct choice of g is, therefore, essential.

Figure 2 shows the performance profiles of sTCGD for a TS problem instance
of size 20, where oo = 0.42 and 7gp = 69, 154. According to Lemma 3, the best
stepping factor g* = 0.062 for T=69,154. The performance profile corresponding
to g* is generally better than others, since it achieves better approximation degrees
in a wider range of time constraints. Note that the axis of time constraints is
logarithmically scaled such that the rightmost region in Figure 2 covers almost all
the time span. One possible reason why the performance profile for g* is not the
best for small time constraints is that the effect of warm start is more prominent
under small time constraints.

One interesting point in Figure 2 is the trend of performance profiles with re-
spect to stepping factors. A performance profile improves as the stepping factor
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our analysis. Figure 1 shows that the difference in approximation degrees between
the actual and performance profiles for 9" is generally independent of the time
constraint, and that most of them are well bounded by the upper bound 0.052.

5 Predictive TCGD

With time constraint T, the predictive TCGD (or pTCGD) élgorithm is defined as
pTCGD = {sTCGD(0, Tp), S(aprea, T — T,)} (5.33)

where T, < T..
Consider a combinatorial optimization problem instance P to be solved under
time constraint 7. PTCGD works as follows.

1. Profiling phase. Execute sTCGD using a relatively small amount of time
T, =sx T, s < 1. Collect the partial actual profile.

2. Regression phase. Using (3.8), estimate the entire parametric profile by re-
gressing from the partial actua] profile collected in the profiling phase.

3. Prediction phase. Predict Qpred, the best approximation degree achievable
in the remaining time. If Qpred is negative, set Qpred to zero, which implies
that the problem can be solved opti
& = ¢ x Qpred, Where ¢ is a positive real number around 1. If ¢ > asTeep,
then stop the search, and the final approximation degree is asTCGD.

4. Solution phase. Execute S(a, T -~ T,) in the remaining time until either time
has expended or the a-approximate solution with the predicted approximation
degree o is found. If P is not completely solved when time is expended, com-
pute the run-time approximation degree using (2.2). The final approximation
degree achieved is the minimum of asTcep and Qrun—time(&, T — 1p).

Note that during the Profiling Phase of pTCA* [6], nTCA* is used for collecting
the partial run-time profile. In contrast, sTCGD is used for collecting the partial
actual profile here.

Two parameters in pTCGD, the stopping factor and the corrective factor, are
needed to fine tune the performance profile and alleviate the effects of inaccurate
profiling. The stopping factor s (0 < s < 1) defines how much time should be spent
in the profiling phase, whereas the corrective factor ¢ (>1,=1,0or < 1) adjusts the
predicted best approximation degree to avoid overshooting or undershooting.

B
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The selection of the stopping factor will significantly affect the prediction as well
as the accuracy of the solution. The larger the stopping factor is, the more accurate
will be the prediction. However, when more time is spent in profiling, less time will
be spent in the solution phase. A tradeoff on the value of s must be made.

The stopping factor can be set relatively or absolutely. A stopping factor (s;)
is relative if it defines a fraction of the total time 7' allowed. The stopping factor
is absolute if it defines an absolute maximum amount of time that is applied in
profiling (s, = %—, where T, is the maximum allowable time for profiling). A hybrid
between relative and absolute can be chosen as follows.

s = min{s,, s5} (5.34)

For large T and large problems, choosing an absolute stopping factor is preferable
because it avoids spending a significant amount of time in the profiling phase. In
contrast, for small T, choosing an amount of time relative to T for profiling is better.
A hybrid between relative and absolute is, therefore, a good compromise.

pTCGD suffers from the cold start problem that happens because the actual or
run-time profiles cannot be linearly regressed well for small time constraints. This
inaccurate prediction can cause either an overshoot or an undershoot when time is
expended. When there is an overshoot, the search does not complete and reports a
poor run-time approximation degree. An undershoot causes the search to be done
with a loose approximation degree and results in a poor a-approximate solution.

There are two solutions to alleviate the cold start problem. First, the stopping
factor must be chosen large enough so that sufficient profiling is performed. Second,
the corrective factor should be chosen properly to avoid overshoot or undershoot. A
small corrective factor will likely cause an overshoot in prediction, whereas a large
corrective factor will likely cause an undershoot.

To see the effects of the stopping and corrective factors on approximation de-
grees, performance profiles for various factors are plotted. Figure 3 shows the
performance profiles for various stopping factors using ¢ = 0.6. Figure 4 shows the
performance profiles for various corrective factors using s = 0.25. Smaller corrective
factors result in better approximation (Figure 3), although there is no significant
difference in approximation degrees among the different stopping factors (Figure 4)
when the time constraint is large. These results indicate that a good compromise
between cost and approximation degree is to have s = 0.25 and ¢ = 0.6.

With the corrective and stopping factors selected as above, the performance of
pTCGD is plotted in Figure 1. Due to the cold-start problem and poor run-time
approximation, pTCGD generally does not perform as well as sTCGD and the
modified Lawler and Wood’s algorithm based on GDF'S.

6 Concluding Remarks

In this paper, we have presented TCGD, a family of problem-independent, time-
constrained, approximate GDFS algorithms. Three versions are studied: naive
TCGD (nTCGD), static TCGD (sTCGD), and predictive TCGD (pTCGD).
They are designed to solve combinatorial optimization problems using bounded
memory space, with an objective of maximizing the degree of accuracy achievable
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Figure 3. Performance profiles of pTCGD with s = 0.25 for a 20-city TS problem instance
under various strategies.
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Figure 4. Performance profiles of pTCGD with ¢ = 0.6 for a 20-city TS problem instance
under various strategies.
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within the given time constraint. Among these three versions, only sTCG D achieves
this goal by progressively increasing the accuracy of solutions found.

Comparing our methods against the modified Lawler and Wood’s time con-
strained search based on GDFS, we found that sTCGD consistently performs
better and has performance very close to that of OPTgp. In contrast, pT'CGD’s
performance is fair and is comparable to that of the modified Lawler and Wood’s
algorithm. Finally, nTCGD has the worst performance.

‘The worse performance of the modified Lawler and Wood’s algorithm is at-
tributed to the large, inflexible step size used and to the search of more accurate
solutions in the beginning of the process (which uses time without finding good so-
lutions). Instead of searching for more accurate solutions first, sTCGD searches for
less accurate solutions in the beginning; hence, time is consumed slowly in gradually
approaching the maximum achievable degree of accuracy.
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