1072

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 5, SEPTEMBER 1996

Automated Learning for Reducing the Configuration
of a Feedforward Neural Network

Chin-Chi Teng and Benjamin W. Wah, Fellow, IEEE

Abstract—In this paper, we present two learning mechanisms
for artificial neural networks (ANN’s) that can be applied to solve
classification problems with binary outputs. These mechanisms
are used to reduce the number of hidden units of an ANN when
trained by the cascade-correlation learning algorithm (CAS).
Since CAS adds hidden units incrementally as learning proceeds,
it is difficult to predict the number of hidden units required when
convergence is reached. Further, learning must be restarted when
the number of hidden units is larger than expected. Our key idea
in this paper is to provide alternatives in the learning process
and to select the best alternative dynamically based on run-
time information obtained. Mixed-mode learning (MM), our first
algorithm, provides alternative output matrices so that learning is
extended to find one of the many one-to-many mappings instead
of finding a unique one-to-one mapping. Since the objective of
learning is relaxed by this transformation, the number of learning
epochs can be reduced. This in turn leads to a smaller number of
hidden units required for convergence. Population-based learning
for ANN’s (PLAN), our second algorithm, maintains alternative
network configurations to select at run time promising networks
to train based on error information obtained and time remaining.
This dynamic scheduling avoids training possibly unpromising
ANN’s to completion before exploring new ones. We show the
performance of these two mechanisms by applying them to solve
the two-spiral problem, a two-region classification problem, and
the Pima Indian Diabetes Diagnosis problem.

I. INTRODUCTION)
MONG many artificial-neural-network (ANN) applica-

tions, pattern classifiers .are considered very important .

and have been used widely in applications such as image
analysis, image understanding, and speech understanding. Two
tasks are involved in the design of an ANN-based pattern
classifier. First, a proper ANN configuration, including the
number of hidden units and the connections among ANN
units, has to be determined. Second, the ANN-based pattern
classifier has to be trained by supervised learning. Here, an
application problem is specified by a set of input and desired
output patterns (called training patterns), and training involves
finding the weights. of connections that correctly map each
input pattern to the corresponding desired output pattern.

In general, it is desirable to have small ANN’s in imple-
menting a pattern classifier. This is true because increasing
the number of hidden units in an ANN may improve its

Manuscript received August 15, 1994; revised September 11, 1995 and
March 12, 1996. This work was supported by National Science Foundation
Grant MIP 92-18715 and Joint Services Electronics Program Contract JSEP
N00014-90-J-1270.

C.-C. Teng is with the Coordinated Science Laboratory, University of
Illinois at Urbana-Champaign, Urbana, IL 61801 USA.

B. W. Wah is with the Department of Electrical and Computer Engineering
and the Coordinated Science Laboratory, University of Illinois at Urbana-

Champaign, Urbana, IL 61801 USA.
Publisher Item Identifier S 1045-9227(96)06611-8.

approximation quality with respect to its training patterns,
but not always improves its generalization behavior to new
patterns. An improperly chosen configuration may result in
either overfitting of the training patterns or nonconvergence
in learning. One way to improve the generalization behavior
of an ANN is to reduce its number of hidden units when
cohvergence is reached. In addition, smaller ANN’s are faster
when deployed.

Due to difficulties of existing learning methods in learn-
ing the weights of small networks, learning methods have
been developed to incrementally change the network structure
once learning fails in a small network. These methods in-
clude destructive, constructive, genetic-algorithm, and pattern-
classification approaches [33].

Destructive or pruning methods start from a fairly large
network and dynamically remove unimportant connections or
units [3], [14], [21], whereas constructive or growth methods
start from a small network and dynamically grow the network.
Since the latter usually require less computations, extensive
research has been carried out in this area [1], [4], [7], [8],
[12], [13], [15]-[18], [22]. Another class of dynamic multi-
layer perceptrons is block-feedback neural networks [26], [27]
which can be learned incrementally.

A constructive method that we study in detail in this paper is
Fahlman and Lebiere’s cascade-correlation learning algorithm
(CAS) 9], [10]. This algorithm starts from a minimal ANN
with an input layer and an-output layer, adds new hidden units,
and trains the corresponding weights until the ANN can map
all the inputs to the corresponding outputs to within an error
threshold. The main advantage in using CAS is that it can
automatically find the size and the topology of the resulting
ANN without specifying them before training begins. Also,
the learning speed of CAS is comparable to other supervised
learning algorithms. ;

One problem with CAS is that it modifies an ANN config-
uration dynamically; hence, the number of hidden units when
CAS terminates is not bounded. Not bounding the number of
hidden units in training may lead to overfitting the weights to
the training patterns. ;

In this paper, we study two learning mechanisms for re-
ducing the number of hidden units of an ANN when trained
by CAS. The key idea of these mechanisms is to provide
alternatives during learning and to select dynamically the best
alternative that leads to convergence with a small number of
hidden units. '

* Mixed-mode learning (MM) is used to train a single
ANN with an objective of minimizing the number of
hidden units [29]. MM transforms CAS from finding

1045-9227/96$05.00 © 1996 IEEE

TENG AND WAH: FEEDFORWARD NEURAL NETWORK

a one-to-one mapping into one that finds one-to-many
mappings. Since the learning objective is relaxed, it needs
fewer training epochs than CAS. In general, the number
of hidden units required in CAS for convergence is a
monotonically nondecreasing function of learning epochs.
Hence, a reduction in the number of learning epochs can
lead to a reduction in the number of hidden units required
for convergence. :

* Population-based learning for ANN’s (PLAN) is used t

find a small network configuration under a user-specified
time constraint. PLAN is a generate-and-test method that
maintains a population of candidate ANN’s, and selec-
tively trains those that are predicted to require smaller
configurations. Its goal is to find an ANN configuration
with a small number of hidden units as compared to
the alternative of applying MM + CAS repeatedly to
train each ANN to completion before exploring new
ANN’s. To decide on a particular ANN to train, PLAN
divides the time allowed into quanta, and picks the best
ANN to be trained in each quantum based on dynamic
information on training already petformed on this and
other ANN’s in the population. As it is difficult to predict
the exact number of hidden units required by an ANN
when training is completed, PLAN compares two partially
trained ANN’s and predicts which one will converge with
a smaller number of hidden units relative to the other. Our
prediction mechanism is based on a comparator neural
network (CANN) [32] that takes as inputs the total sum
of squared errors (TSSE)-versus-time behavior of training
performed already on two ANN’s, and predicts which
one will require a smaller number of hidden units when
convergence is reached.

This paper is organized as follows. We first summarize
CAS in Section II. In Section III, we present MM, our mixed-
mode learning mechanism. Section IV describes PLAN, our
population-based learning system. All the experiments re-
ported in Sections III and IV were run on a Sun SparcStation
10/51 workstation. Conclusions are drawn in Section V.

TI. CASCADE-CORRELATION LEARNING ALGORIGHM (CAS)

CAS was first proposed by Fahlman and Lebiere in 1990
[91, [10]. Starting from a minimal ANN with only an input
layer and an output layer, it automatically adds new hidden
units one by one to create a multilayered ANN structure, and
trains the resulting network until convergence is reached. It has
two training phases: TRAIN_OQUTPUT and TRAIN_INPUT.

The TRAIN_OUTPUT phase trains the weights in the output
layer by the quick-prop learning algoritbm [6] in order to
minimize TSSE. It stops when there is no significant reduction
in TSSE after T, (user-specified) training epochs. At this
time, the next phase starts.

In the TRAIN_INPUT phase, N¢unq (user-specified) candi-
date hidden units are first inserted into the ANN. The input
of each candidate hidden unit is connected to the output of
every input unit and every previously inserted hidden unit,
and its output is left open. The weights on the input side of
each candidate unit are then trained using a gradient-descent

1073

algorithm-in order to maximize Y, the sum over all output
units of the covariance between the candidate unit’s value and
the output errors, and

n k

=3 D Vi-NE.-E) O

o=1 [|5=1

where V; is the output value of a candidate unit after applying
the jth training pattern; E; , is the output error at the oth
output unit after applying the jth training pattern; V =
1/k Y5y Vis Bj = 1/n Yoy Ejo; k is the number of
training patterns; and n is the number of output units.

The TRAIN_INPUT phase stops when there is no significant
improvement in Y after T, (user-specified) training epochs.
Among the candidate units, the one with the maximum Y
becomes a new hidden unit in the ANN, and the others are
deleted. Once the new hidden unit has been added, the weights
on its input side are frozen permanently, and links are created
between its output side and all output units. At this time, the
next TRAIN_OUTPUT phase is started. These two phases are
then executed alternately until TSSE is below a user-specified
threshold value.

Note that CAS works in a batch learning mode; that is,
weight updates are made only after all the training patterns
have been presented.

There are two advantages in using CAS. First, it can
automatically find the size and the topology of the resulting
ANN without specifying them before training begins. This
avoids the problem of overspecifying the number of hidden
units initially. Second, learning in CAS is fast as it updates
only the weights for the new candidate hidden units added,
and the weights of previously added hidden units are fixed
after they were added. This allows efforts in previous training
to be retained. '

On the other hand, it is hard to predict the number of hidden
units needed before training is completed. When training is
finished and the number of hidden units is larger than what
is expected, the entire training process has to be restarted. To
prevent unnecessary training before obtaining a desired ANN,
or to obtain a network with the smallest number of hidden units
given a fixed amount of training time, it is necessary to identify
unpromising configurations before theit training is completed.
In the next two sections, we present two methods to reduce
the number of hidden units required for convergence in CAS.

III. MIXED-MODE LEARNING (MM)

In this section, we present our MM learning mechanism for
improving CAS when applied to solve classification problems
with binary outputs. We first present a noniterative learning
algorithm based on linear programming for training single-
layer neural networks. Using this algorithm, we then present
our MM learning mechanism and its application in CAS.

A. Transforming Supervised Learning of a Single-Layer
Network into Solving a Linear Programming Problem

An application suitable for supervised learning can be
modeled as a mapping of an input pattern marrix P (with

1074

k patterns, each with m values) into an output pattern matrix
D (with k patterns, each with n values). P is, therefore, a
k x m matrix, and D, a k x n matrix. Let PT and DT be the
transposes of P and D, respectively. Further, let p; be the ith
input pattern, and d; be the corresponding sth output pattern.
We have

PT =[po p1 - pr-1]

where ‘
pi=[pio Pij1 - Piym—1])
DT =[dy di - dyi]
where .
di =[dijo di1 - din-1]. 3

The single-layer neural network to be learned performs a
mapping from P to D.

Assume initially that the number of output units is one
(n = 1). Since the classification problems that we study in this
paper have binary outputs, we assume the 40-20-40 criterion;
that is, an output is considered a logic ONE if it is larger than
0.6, and ZERO if smaller than 0.4.

When the sigmoid function S [= 1/(1+ e~%*)] with gain a
is used as the activation function, the problem of learning the
weights of a single-layer single-output neural network is the
same as that of getting a weight matrix W,,»1 where

WT =lwy w1+ W] @
such that

pi W >87406) if di=1
pi-WSS_l(UA) if d;=20
for all

where S~!(z) is the inverse sigmoid function. Since
S$-1(0.6) = —S7%(0.4), (5) can be represented in matrix
form as follows: '

P -W)T >[57H0.6) S7H0.6) -+ S70.6)]1xx (6)

where
PT =[py Ry
and
A pi ifd; =1
Pi= { % if di =0. (7)

The process of obtaining W that satisfies (6) is very similar to
that of finding a feasible solution of a linear program. The only
difference is that the elements of W can be negative, whereas
variables in linear programming problems have to be positive.
To handle unrestricted variables, we transform the elements of

W into positive variables z; as follows:
szov 772 "'am_l' (8)

xj:wj‘|'7l, .7:03

Assuming the following definitions:

A=[P Yiix(msr)

i=0,1,2 ., k=1 (5

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. .5, SEPTEMBER 1996

- 2
X = x.l
LTm—1d px1
[x
V =
LT] (ms1)x1
" b
by
B=1 . ®)
Lbk—1 Ex1
where ‘
YT = [yo, Tty yk—l]
m—1 .
yi=— Y i;
j=0
and '
b; =S71(0.6).
Equation (6) becomes
A-V > B. (10)

Since variables z; and 7 in (8) are positive, values of
variables that satisfy (10) can be obtained by the Simplex
method [24]. The following example illustrates the procedure
for transforming a simple supervised learning problem into a
linear programming problem.

Example 1: Consider a single-layer neural network for
solving a problem with P and D as follows:

f-15 -5
P=1-1 1
| -1 -3
~and
1
D=1 an
1

The ANN needed has two input units and one output unit, and
is to be trained by the three patterns. The sigmoid function is
assumed to have gain of one. From (7) and (10), we have

X -15 -5
P=1-1 1 (12)

' -1 -3

and a set of inequalities

~15 =5 20 Zg 0.41

-1 1 0|21} >|041

-1 -3 4 n 0.41
where g, 1, 7> 0. (13)

Solving them by the Simplex method leads to the following
feasible solution:

[zo #1 n]7 =[0.0 041 0.41]7. (14)

TENG AND WAH: FEEDFORWARD NEURAL NETWORK

From (8), weight matrix W is, therefore

Ty — N

[oa]
We can verify the result by computing
Dy =S(P-W)
=[1.0 06 0.6]7 (16)
where S is the sigmoid funcﬁon with gain one. |

In the above example, we assume the number of output
units to be one; i.e., D is a column vector. If the number of
output units is n (that is, the desired output matrix D is a
k x n matrix), we can decompose the learning problem into n
subproblems. In each subproblem, one of the column vectors
of D is used to get a matrix P by applying (7). P is then used
to get the corresponding column vector of weight matrix W.

We define, for a specific desired output matrix Dy =

[do di -~ dr-1]7, R} 1o be the set of all column vectors
[do -+ di—1]¥, where
d; > 8710.6) ifd; =1 .
t = for all =0,1,2,---, k- 1.
d; < §71(04) ifd;=0 o TTO LA

' an

Assume span {P} to be the column-vector space consisting

of all linear combinations of column vectors in P-[11]. Since

P .- W € span{P}, a weight matrix W ex1sts such that
S(P-W) = D iff

R% N span {P} # 0. (18)

Note that the linear programming approach described above
attempts to find a weight matrix W that results in all correct
output patterns. This is not possible when there is no W
that satisfies (18) (i.e., when (10) does not have any feasible
solution). In this case, (18) does not have a feasible solution,
and the method breaks down. To overcome this problem, we
relax the condition in (18) and attempt to find a set of weights
such that the number of correct output patterns is maximized.
That is, we find a set of values for all variables in order to
maximize the number of inequalities that are satisfied. This
relaxed objective, therefore, coincides with the objective of
other supervised learning algorithms.

To obtain weights such that the number of correct output
patterns is maximized, we can formulate the corresponding
optimization problem as follows:

Maximize Z Uug E a; v — b;

i=0

19

where a;, ;, v;. and b; are defined in (9), and uo(z) is a step
function with transition at zero.

The overhead for solving the above nonlinear optimization
problem is very high and is, therefore, not practical. To reduce
the overhead, we use a heuristic to obtain a proper set of
weights when there is no feasible solution. The heuristic is
similar to Phase I of the Simplex method [24]. First, we add a

1075

slack variable s; to every inequality constraint, changing every
inequality into an equality as follows: '

k=1, (20)
Next, we attach an artificial variable z; to each constraint
equation, where

zi =b; + 8; —

m
> i, v
=0

220, i=0,---k~1 21

in such a way that the set of equalities in (21) always has a
feasible solution. Note that a trivial feasible ‘solution is to set
all v;’s and s;’s to zero. We then solve the following linear
optimization problem using the Simplex method:

k—1
Minimize Z 2
=0
such that z; = b; + s; — Zamvj . i=0, -, k-1
and v;, s;, 2z > 0. (22)

Since we minimize Y z;, the optimal solution of (22)
should have a small value for each z;. Therefore, it is very
likely that the inequality z; < s; is satisfied, leading to a
larger objective value defined in (19). This is true because if
zi < 85, then ‘

m
E @i, jV; =8; +b; = z; > b;.

j=0

23)

Note that the larger the objective value (19), the more correct
output patterns are obtained in the output layer.

B. The Algorithm

The objective of MM to reduce the number of training
epochs can be achieved if the output matrix is flexible; that
is, learning is faster if there is a large pool of desired output
matrices, and learning can stop whenever any one of them is
found. By exploiting this property, MM first transforms the
original problem of finding a one-to-one mapping from P to
D into one that finds a one-to-many mapping from P to one of
a large set of possible output matrices Ireq:. It then transforms
I..q; to D by using the noniterative learning algorithms for
single-layer ANN’s described in Section III-A.

We use Fig. 1 to illustrate how MM works. Given an
application problem with input matrix P and desired output
matrix D, an existing supervised learning algorithm is used to
train the original network. During training, a monitor is used
to extract intermediate output matrix I .cq: periodically, and
apply the linear programming method described in Section III-
A to map I,.q to D, where I, is the set of output values
of input and/or hidden units that are connected to the output
units. An element (Ireqt);,; in matrix I,.q is the output of

1076

—

‘'HIDDEN LAYERS

INPUT LAYER

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 5, SEPTEMBER 1996

OUTPUT LAYER

MONITOR:
Check 1 _anduse
. “real

linear mapping to get w *

Fig. 1. Mixed-mode learning mechéanism.

the jth unit that is connected to the output layer when the ¢th
training pattern is applied. Note that the supervised leaming
algorithm used in Fig. 1 has.to be in a batch learning mode,
as I, used by the monitor must correspond to a fixed set
of weights. Patternwise learning cannot be used because the
elements of I,.q; will change as training patterns are input.

- MM requires a smaller number of training epochs since it
has a relaxed objective. Learning in MM only tries to get an
intermediate output matrix 7,..,; that satisfies

RE nspan{leqi} #0 forall i=0,1,---,n—1 (24)
where d; is the ith column vector of D). Since there are
potentially many I..n;’s that satisfy this criterion, learning
1nvolves finding one of the one-to-many mappings and is much

easier. The additional overhead incurred involves finding a
feasible solution of a set of linear inequalities.

C. Reduction in the Number of Hidden
Units in Cascade Correlation

In CAS. the number of hidden units changes in a monoton-
ically nondecreasing fashion as learning progresses. Hence,
reducing the number of epochs by MM will lead to an equal
or smaller number of hidden units in the resulting network.

As mentioned before, there are two training phases in
CAS: TRAIN_INPUT for adding new hidden units, and
TRAIN_OUTPUT for training the weights in the output layer.
These two phases are executed alternately. If a monitor is
added to CAS, we note that 1) [,..,; cannot be-acquired in the
TRAIN_INPUT phase, as the new hidden unit has not been
decided upon, and 2) I,.q is frozen in the TRAIN_OUTPUT
phase. Consequently, we only have to use the monitor in the
first ‘epoch of each TRAIN_OUTPUT phase, resulting in a

smaller overhead when MM is applied in CAS. The detailed
procedure for applying MM in CAS is summarized as follows.
Procedure 1—Applying MM in CAS: -
1) Train the initial network that has only the input units
and the output units by quick-prop. If || Dyeas — D]| (see
Fig. 1) is smaller than a prescribed threshold, then stop.
2) Execute the T. RAIN INPUT phase of CAS to add a new
hidden unit.
3) Extract L., from the network obtained in Step 2)
where I,.q; is the mput matrix to the output layer.
4) Using the method described in Section III-A, obtain the
weights of connections to the output layer. If || D, —
D]} is smaller than a prescribed threshold, then stop.
5) Execute the TRAIN OUTPUTphase of CAS. If | Dy ear—
D|| is smaller than a prescribed threshold, then stop;
otherwise go to Step 2).

We compare the performance of the original CAS with that
of CAS with MM (MM + CAS) using the two-spiral problem
[10] and the Pima Indian Diabetes Diagnosis problem [25] as
benchmarks. The task of the two-spiral problem is to classify
two sets of training points that lie on two distinct spirals in
a two-dimensional plane, in which the dimension of input
vectors is two and. the number of training patterns is 194.
The task of the Pima Indian Diabetes Diagnosis problem is
to decide whether a Pima Indian individual is diabetic or not,
based on personal data (such as age and mumber of times
pregnant) and the results of medical examination (such as
blood pressure and glucose tolerance test). The otiginal Pima
Indian diabetes database came from the National Institute of
Diabetes and Digestive and Kidney Diseases. Although this
benchmark does not require the largest number of training
epochs in the PROBEN1 benchmark suite [25], it is.one of the
problems that has the largest classification error after training

TENG AND WAH: FEEDFORWARD NEURAL NETWORK

1077

1’1 L} 1 L)))
] Monitor always activated ¢
g 1.05 Monitor activated when error < 20% +
=)
o
K 1 + HHHHEHOO B0 0000 K0 O o
o
-
T 0.95 | %% 3 .
“ +
° *H*%i* 88w Co
M 0.9 | -
8 °
g e %
3 o.ss | + R ° ° i
o
0
N 0.8 F + -
-l
— + °

+ ¢
E 0.75 } -
°

2 v

0‘7 L L | - 1 |

0.6 0.8 1 1.2 1.4 i.6 1.8
Normalized Learning Time

1.05 ' - — ' -
5 Monitor always activated ¢
a Monitor activated when error < 20% +
5
g 1F HHH--HOHH- G800 8000 & 00 + o
K .
°
ol
]

0.95 -
W . O
o + g © + ° :
o v ok °f &%, + °
o
-g 0.9 -
z i + o o
° + ° + ot °
8 +# 00 + °
. +
o o.85 | M -
;
) + ©
Z
: 0.8 1 1 1 1 - 1

0.6 0.8 1 1.2 1.4 1.6 1.8

Normalized Learning Time

Fig. 2. Performance of MM + CAS normalized with respect to the performance of the “original” CAS. (a) The two-spiral problem and (b) the lea

Indian Diabetes Diagnosis problem.

is completed. The dimension of its input vectors is eight and
the number of training patterns is 384.

The experiments were repeated 50 times, each with different
initial - weights. Learning stopped when the network could
correctly predict at least 98% of the training patterns. Fig. 2
shows the plots of normalized number of hidden units versus
normalized learning time. Each point (z, y) in this figure is
normalized with respect to the performance of the “original”
CAS using identical initial configuration and random weights
where

_ #tof hidden units for ANN trained by MM + CAS

of hidden units for ANN trained by CAS

learmng time (CPU s) for ANN trained by MM + CAS

learning time (CPU s) for ANN trained by CAS -
25)-

Using this normalization method, point (1, 1) in Fig: 2 repre—
sents the performance of the “original” CAS. .
In our experiments, we have found that it is not necessary

“to activate the monitot early in the learning process, sinice it

is difficult for the monitor to find an I;..4; to map to D at that
time. In Fig. 2, points indicated by diamonds were obtaified
when the monitor was always activated. In contrast, points
indicated by crosses were obtained for cases in which the

1078

TABLE 1
AVERAGE PERFORMANCE OF MM + ‘CAS FOR SOLVING THE TWO-SPIRAL AND
DIABETES PROBLEMS. THE EXPERIMENTS WERE RUN ON A SUN SS 10/51

Monitor Activated When Error <20%
Avg. .
Avg, # of [Norm. # of Avg,
Benchmark (| Number | Hidden Hidden | Avg. CPU| Norm.
Problem | of Cases Units Units Time (s) | CPU Time
Two-Spiral 21 13.58 1 28.04 1.159
Benchmark 29 12.40 0.898 23.92 0.988
Diabetes 24 15.31 1 94.16 1.119
Benchmark 26 13.88 0.909 83.56 0.993
Monitor Always Activated
Avg.
Avg, # of |Norm. # of Avg.
Benchmark | Number (. Hidden Hidden | Avg. CPU| Norm.
Problem | of Cases Units Units Time (s) | CPU Time
Two-Spiral 18 13.50 1 33.74 1.395
Benchmark 32 - 12.09 0.896 21.67 1.215
'Diabetes 23 15.01 1 11351 1.348
Benchmark 27 13.70 0.910 100.85 1.199

monitor was activated when the error in the original network
was smaller than 20%. We see that the latter results in savings
in learning time. Note that the number of hidden units of
networks trained by MM + CAS is never larger than that
-trained. by the “original” CAS, since learning completes when
the “original” CAS completes or when the monitor in MM +
CAS finds a suitable mapping.

Finally, Table I summarizes the average performance of
MM 4+ CAS. For the two-spiral problem, when the monitor
is activated whenever the error in training is less than 20%,
29 out of 50 cases lead to 10.2% reduction in the number
of hidden units (as compared to the “original” CAS), taking

~only 98.8% of the training time. There are 21 cases in which

we found no improvement in the number of hidden units; the
penalty in these cases'is an additional 15.9% training time.
On the other hand, when the monitor is always activated, 32
cases lead to 10.4% reduction in the number of hidden units
(as compared to the “original” CAS), but taking 121.5% of
the training time. Similar results were also obtained for the
diabetes benchmark (see Table I).

Our emplrlcal results show that in most trials, MM + CAS
converges .with a lower number of hidden units, although
learning time is slightly longer. This reduction in the number
of hidden units is important, since a trained ANN may have
to be apphed many times when deployed.

. IV. POPULATION-BASED LEARNING
FOR DESIGNING ANN’S (PLAN)

PLAN is our second approach to provide to the ANN design
system alternative configurations in the training process as well
as progress information in training. The objective of PLAN is
to find an ANN with a small number of hidden units within
a time limit that is long enough to train tens to hundreds
of networks. Instead of training each ANN to convergence,
like in CAS and MM + CAS, PLAN maintains a pool of
promising but partially trained ANN’s and selectively trains
those that are likely to have small configurations. PLAN is
a population-based design system that‘sch'edules the training

{EEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 5, SEPTEMBER 1996

of ANN’s dynamically, allocating: time to promising ANN’s
that have not been given adequate training [30]. (It is not
necessary to continue training"ANN’s with a large number of
hidden units and those that have a small number of hidden
units and have received adequate training.) PLAN involves
the dynamic scheduling of computational resources and the
identification of promising ANN’s based on partial TSSE-
versus-time information.

PLAN has a key difference on how reinforcement in learn-
ing i done with respect to Janson and Frenzel’s genetics-based
machine learning system for designing ANN’s [19]. Janson
and Frenzel computed the fitness of a partially trained ANN,
as a function of its sum of squared errors (SSE), and used the
fitness to rank all the ANN’s. Since the instantancous SSE
is not monotonic with respect to training time, and many
other factors (such as the rate of change of SSE and ‘the
number of epochs trained) may affect the network size, we
develop a comparator artificial neural network (CANN) that
takes into consideration these factors. Using as inputs partial
training behavior of two ANN’s, our CANN predicts which
ANN will lead to a smaller configuration when training by
MM + CAS is completed. In training our CANN, we collect
complete training-error behavior of a number of ANN’s for a
few applications, and use this behavior to adjust the weights
of our CANN. '

In this section, we first present PLAN and our method
of training a CANN. Experimental results are shown in
Section IV-C.

A. The PLAN System

Learning heuristics for solving an apphcatlon problem can
be classified as point-based and population-based. In point-
based methods, only one heuristic method (HM) is considered
at a time, and the learning system switches to a new HM after
discarding the previous HM. In this context, an ANN is an
HM for solving an application problem, and the MM + CAS
training algorithm discussed in Section III is a point-based
learning mechanism. '

Population-based learning methods [31], on the other hand,
maintain a population of competing HM’s and choose to
modify a specific HM depending on partial performance results
of all HM’s tested. In designing ANN’s, a population-based
method maintains a pool of ANN’s at any time. Within the
time allowed, it divides the time into quanta, selects and trains
one promising ANN for a quantum using a point-based method
(MM + CAS), updates the performance obtained at the end of
the quantum, discards an existing ANN when it is found to be
inferior, and generates new ANN’s to replace discarded ones.
Fig. 3 shows the structure of our integrated population-based
and point-based learning system for designing ANN’s.

Recall that CAS has two training phases: TRAIN_INPUT
and TRAIN_OUTPUT. Here, we define one learning episode as
one TRAIN_INPUT phase followed by one TRAIN_OUTPUT
phase.’

The minimum number of hidden units required and the
corresponding ANN configuration for solving an application
problem are kept in incumbent Nipcum in the internal critic.

TENG AND WAH: FEEDFORWARD NEURAL NETWORK 1079
Heuristics Manager Internal Critic
new predicted relative Update the performance of
A pool of partially-trained training time each tested network;
neural networks. Prune network if its number
of hidden units is too large.
i
candidate ANN i
1
Resource Scheduler |
- Decide whether to get the Leamiggt::rf:ermance
s(;:he:d}llmg network from the pool or a
ecisions :
to generate a new one Maintain the TSSE trace and
- = no. of hidden units for nets
! in the Heuristics Manager
X candidate ANN
—
Point-Based Learning Test-Case Manager
Module .
test .
MM+CAS Batch oase Input patterns and desired
Learning Algorithm output patterns.
measured performance

Fig. 3. PLAN system for designing ANN’s. (Dashed arrows indicate completion signals sent to the resource scheduler.)

Initially, the system trains a feasible ANN using MM + CAS,
and stores the number of hidden units needed in N;,cum.-

The heuristics manager in Fig. 3 is responsible for maintain-

" ing a fixed number of candidate ANN’s, each partially trained,
and for generating new candidate ANN’s at the request of the
resource scheduler. Initially, it generates a pool of candidate
ANN's starting from a primary ANN (which has only the input
and output layers) with random initial weights; this is followed
by Nincum/k training episodes, where k is heuristically set as
four. In our experiments, we have fixed the population size to
be 25 at all times.

In the design process, the time allowed is divided into
quanta. In our experiments, this is the time for training
a selected ANN for one epoch. At the beginning of each
quantum, the resource scheduler decides whether to generate a
new candidate or to train an existing candidate for one episode.
If an existing candidate is to be trained, then the resource
scheduler chooses a candidate from the pool that requires the
minimum predicted (relative) training time for convergence.
We use a criterion based on the relative training time instead
of the number of hidden units when convergence is reached
because 1) the number of hidden units is monotonically
nondecreasing with respect to training time, and 2) training
time gives better granularity to differentiate between those
ANN’s that are promising and those that are not.

The candidate ANN chosen by the resource scheduler is
trained by the point-based learning module for one training
epoch. The training performance is then saved in the learn-
ing performance database which maintains the performance
history of each candidate. Note that the learning performance

of a candidate includes the number of hidden units and its
temporal trace of TSSE.

' The learning performance of the candidate trained in the
last quantum is then evaluated by the internal critic, which
is responsible for credit assignment that assigns credit/blame

to the training result obtained. The internal critic predicts the

relative convergence time of one candidate ANN with respect
to another using the CANN discussed in Section IV-B. The
prediction leads to the following alternative actions.

1) If the ANN selected has been trained to convergence
and its number of hidden units is less than Nipcum, then
Nincum is updated. The resource scheduler then instructs
the heuristics manager to generate a new candidate
ANN, and schedules time to train the new ANN for
Nincum /4 training episodes.

2) If the ANN has not been trained to convergence and
the number of hidden units is smaller than N;,cum — 1,
then the internal critic will compute its new predicted
relative convergence time using its CANN and updates
the performance database. Note that if a nonconverged .
candidate ANN has N;,cum — 1 hidden units, then this
candidate will require at least N;;, ¢, hidden units when
training converges, and hence can be discarded.

3) Otherwise, the candidate ANN is pruned, and the heuris-
tics manager generates a new ANN.

The cycle of selection/training/generation is repeated until

the time allowed is expended. '

Our discussion in this section clearly identifies that the

critical issue is to design a way to predict the convergence -

1080

time of one partially trained ANN relative to another. This
prediction is done by a CANN described in the next section.

‘B. Learning to Predict Relative Convergence Times
Using a Comparator Neural Network

The time needed for convergence of a partially trained ANN
is difficult to predict because it is an ill-defined function of
many parameters, such as TSSE, slope of TSSE-versus-time
trace, and epochs expended. Instead of predicting the actual
convergence time, a more viable method is to 1) use relative
convergence times rather than actual convergence times, and
2) develop a method to automatically learn this function
based on actual behavior in training ANN’s for a number
of applications. In this section, we present the design of a
CANN for implementing this function [32]. We assume that
this function is primarily dependent -on the behavior of TSSE
versus time.

A simple method to predict the convergence time is to
smooth' (using a low-pass filter) the TSSE-versus-time trace
(to remove high-frequency transients) and to extrapolate from
the smoothed trace to see when it will reach the threshold
TSSE. The difficulty with this approach is that there are many
possible cutoff frequencies that can be used in the low-pass
filter as well as many extrapolation methods. To overcome
this difficulty, we develop a CANN whose inputs consist of
TSSE traces from two partially trained ANN’s (filtered by low-
pass filters with different cutoff frequencies and extrapolated
by different methods), and whose output predicts which of the
two ANN’s will converge faster. We have, therefore, simplified
the original prediction problem to a problem of selecting good
cutoff frequencies and extrapolation methods.

Specifically, we choose an application problem, train a
number of ANN’s using MM -+ CAS until convergence is
reached, and record their TSSE traces. By taking segments
of these traces (before convergence is reached), we then filter
these segments using a set of low-pass filters with different
cutoff frequencies, and extrapolate these filtered traces by
different methods to obtain different predicted convergence
times. These predicted convergence times, together with their
actual convergence times, are then used to train the CANN,
which predicts for any two partially trained ANN’s which one
will converge faster. Since we know the exact convergence
times of these traces, errors in prediction can be used to update
the weights of the CANN. In our current implementation, we
use backpropagation (BP) to train the CANN. '

Note that the training data of our CANN were derived from
one application problem. To ensure that the CANN works for
other applications, we need to normalize all the predicted
convergence times before they are fed to the CANN. Our
normalization procedure and its evaluation are presented in
Section IV-C;

Our CANN architecture shown in Fig. 4 consists of two
identical subnets: right subnet and left subnet. It is an extension
of a CANN for predicting relative workload in a distributed
computer system [20]. Given two input patterns, Ir and I,
and the corresponding desired output patterns Dg and Dy,
the objective of the CANN is to minimize the following error

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 5, SEPTEMBER 1996

function:
E =[0 - O0p)?
=[(Or - Or) - Op)?
where Op and Oy, are the actual outputs produced by Ip and
Iy, respectively, and Op(= Dy — Dg) is the desired output

difference. We minimize the error function using the following
gradient-descent algorithm:

(26)

9E _9E 90
90 80 80y,
=2(0 - Op). @7
The- step size in our gradient-descent algorithm is set to 5
| OF
AOp=—1n 50,
= —2n(0 - Op) 28
OFeh =0p + AOL,
ZOL—ZTI(OL~OR—~OD).’ (29)

Oteach g then used to compute the error needed by BP to
train the CANN. Note that a normal ANN training algorithm
uses Dy, rather than 02" to compute the error. In deriving
O%2°h we need to perform gradient ascent. This is

Ot = Op + AOp

ZOR—277(0L+OR—-OD). ‘(30)

O is then used to compute the error in the right subnet.
To avoid any bias in the order of training patterns, we use Iz,
in the left subnet and Iy in the right subnet, and use I, in.
the right subnet and Iz in the left subnet immediately in the
next training instance.

C. Expérimental Results

To implement our system for designing ANN’s, we trained
a CANN that can accurately predict, for any two partially
trained candidate ANN’s, which one would converge faster
if both were trained to completion. We generated the training
patters for this: CANN as follows. First, we trained 15 ANN’g
using MM + CAS' for the two-spiral problem [10]. Let Th,ax
and T, be the maximum and minimum learning times,
respectively, for these 15 ANN’s. Second, we obtained 20
different segments from each TSSE-versus-time trace, the end
of each segment being in the time interval [0, ¢;], where
t; was a random point in the trace. (Thése resulted in 300
different combinations.) We then filtered each segment by four
different low-pass filters (the filters we used were seventh-
order Butterworth filters [23] with cutoff frequencies Q.
equal to 0.037, 0.057, 0.107, and 0.157, respectively) and
extrapolated the smoothed trace using linear and exponential
fitting methods in order to obtain eight predicted convergence
times. These eight predicted times and the TSSE at the time
when the -segment was cut formed an input vector for our
CANN. This input vector, when combined with the actual time
needed for convergence, formed a training pattern.

1Any supervised learning algorithm besides MM + CAS can be used.
However, the same learning algorithm should be used throughout PLAN,

TENG AND WAH: FEEDFORWARD NEURAL NETWORK

current TSSE

1081

N) =

Trace A Filtering and

Prediction

current TSSE

o S E

Trace B
Filtering and

Prediction

Fig. 4. Comparator neural-network (CANN) architecture.

The training times in these 300 training patterns were unnor-
malized. Since our CANN should be problem-independent in
predicting relative training times, we normalize training times
using the following equations:

1 T if T > Trax
Normalized time = —;'}L if Tmax > T > Tin
max min if Tmin > T
| 31)
TSSE
N lized E= ——
ormalized TSS TSSE.... (32)

where T is the unnormalized training time and TSSE . is the
maximum TSSE in the 15 ANN’s trained. Note that Ti,;, and
Tmax are not the real minimum and maximum learning times.
Rather, they represent the extreme learning times of ANN’s in

the pool observed so far in the learning process. For instance,

when a network is trained to convergence and its learning time
is larger than Ty,.x, then we update T}, to this new value.
On the other hand, when a completely trained network has
learning time smaller than Ty, then we update Tpin. Using
this normalization method, all learning times are normalized
between zero and one. This method avoids choosing ahead
of time constants to normalize the learning times. Note that
without this normalization, the CANN we learn will be too
dependent on the application we use in training it.

Using normalized training times, we then trained our CANN
to differentiate between any two partially trained ANN which
one would have a smaller (normalized) convergence time. In
our experiments, our CANN has a configuration of 9-15-1
neurons in each subnet. We stopped training when we reached
80% accuracy. In general, training a CANN is very time-
consuming and took about four days on a Sun SparcStation

. Left Subnet
I
oL
AY
\\
AY
s+l
\
\\
Normalization “ 0
\
} -
,l
Right Subnet /
/7
I 7/
R)/ -1
¢
/
Or
Normalization
Y AXIS Class B Class A
X AXIS

Fig. 5. A two-region classification problem.

10/51 workstation. Currently, we use plain BP to train CANN,
although we can improve its learning speed by using other
variants of BP [2], [5], [28], [34].

As -described before, the training. patterns of our CANN
were obtained from the two-spiral problem. To verify that
our CANN can generalize to new applications, we tested it
using the two-spiral problem as well as a simple two-region
classification problem: In the classification problem, the goal
is to identify which one of two regions (Fig. 5) to which a
point belongs. The procedure of generating test patterns is the
same as that of generating training patterns. Table II compares
the accuracies of our CANN with those of simple prediction

1082

15.5 25
37.5 . 50

(2)

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 5, SEPTEMBER 1996

62.5

37.5 50 87.5

®

Fig. 6. Average accuracies of our CANN in identifying one of the two ANN’s to have shorter convergence time. The five grey levels in these graphs
represent the following accuracy intervals: [0, 0.5), [0.5, 0.6), [0.6, 0.7), [0.7, 0.8), and [0.8, 1.0]. Further, darker colors mean lower accuracies: (a)

two-spiral problem and (b) two-region classification problem.

TABLE II
COMPARING THE ACCURACIES OF CANN WITH
THOSE OF SIMPLE PREDICTION METHODS

2-Region | 2-Spiral
Application Class. Problem
Prediction Accuracies Using CANN 67.72% 72.88%
Seventh-order Butterworth Filter 57.32% 55.83%
Qe = 0.037)
Seventh-order Butterworth Filter 56.43% 56.12%
Linear (e = 0.05%)
Fitting Seventh-order Butterworth Filter 61.38% 60.19%
(e = 0.10%)
Seventh-order Butterworth Filter 58.33% 57.21%
Qe = 0.157)
Seventh-order Buiterworth Filter 59.21% 61.22%
Qe = 0.037)
Seventh-order Butterworth Filter 57.15% 54.31%
Exponential e = 0.057)
Fitting Seventh-order Butterworth Filter 59.54% 61.92%
(e = 0.10m)
Seventh-order Butterworth Filter 57.98% 52.65%
Qs =0.157)

methods based on filtering and extrapolation alone. We see that
the accuracy of prediction is improved by using our CANN.

Fig. 6 shows two contour graphs that depict the accuracy
of our CANN. A point (z, v) represents the ¢ase when =%
of the TSSE trace of one ANN and y% of the TSSE trace of
another ANN are fed into our CANN, and the corresponding #
value is the average prediction accuracy of our CANN. These
contour graphs indicate that our CANN is accurate when both
ANN’s have ‘been trained to a reasonable amount, and is the
least accurate when one or both of them have received very
little: training.

It is important to point out that our design system tries to
avoid the dark regions in the contour graphs because it trains
each candidate ANN by Nincum/4 learning episodes when
the ANN is generated. Hence, all the input TSSE traces to
our CANN in PLAN are from ANN’s that have been trained

for some time. The average accuracies of our CANN are,
therefore, higher than those reported in Table II. For instance,
the average accuracy in Fig. 6(b) is 71.59% when we consider
only the part of the graph where z > 20% and y > 20%.

Finally, we compare in Fig. 7 the average performance of
15 runs of our design system with that of the following naive
design methods.

* Naive Method. This proposes one ANN at a time and
trains it by MM + CAS until convergence is reached
before switching to a new ANN.

* Improved Naive Method. This trains an ANN by MM
+ CAS either when convergence is reached or when the
number of hidden units is larger than N,y — 1. In the
latter case, training should stop as there is already a better
configuration with N;pcym hidden units.

The interpretation of the graphs in Fig. 7 is as follows.
When the total time allowed is small, the two naive methods
are slightly better in finding ANN’s with a lower number of
hidden units. In this case, our design system takes more time to
generate new candidate ANN’s and does not have enough time
to train any one to completion. In contrast, when the total time
allowed is large, our design system is superior in identifying
ANN’s with a small number of hidden units. For instance, in
the first graph in Fig. 7, our design system finds an ANN with
an average of 10 hidden units using only 55% (respectively,
97%) of the time needed by the naive (respectively, improved
naive) method to find a similar ANN. (The exact learning
times$ are listed in Table IIL.) Similarly, in the second graph in
Fig. 7, our design system takes 37 and 66%, respectively, of
the average times needed by the two naive methods to obtain
designs with an average of 5.5 hidden units. It is important
to point out that even though the curves shown are close to
each other, the parts we are interested in are the horizontal
distances between two curves (indicating the difference in

TENG AND WAH: FEEDFORWARD NEURAL NETWORK

1083

18 11 T —
2 Improved Naive Methdd —— % Inproved Naive Method +—
o 17 Naive-Methad Naive Method +---'
2 PLAN System - § 10 PLAN -8y
i i
7] 7]
9
g 15 &
Wl “ M
% 14 o e ki
: : °f
e 13 ik : :
i 7
% 12 Hi :g N
H v
ot “ o W
11 N o "
w w"‘* w ¢ N
Nty 3 S i
0 e s S H— ° e Mt S S
« 10 e i S - s e L
BN SRR Wik sy rrrrers, R NN SOV S ikl LA TS S
[} 500 1000 1500 2000 2500 0 200 400 600 80C 1000120014001600
Time (Sec.) Time (Sec.)
(@) ®)
17
Impréved Naive Method +———
Naive Méthod -+
16 [r LAN--System- &~
15 f-—

of Hidden Units of Incumbent ANN

0 1000 2000

5000

3000 4000

Time (Sec.)

©

Fig. 7. Performance of the PLAN system: (a) two-spiral problem, (b) two-region classification problem, and (c) Pima Indian Diabetes Diagnosis problem.

training times). Since the curves flatten out when the time
allowed is large, improvements due to our design system are
more prominent in these cases.

We have also applied our design system to the Pima Indian
Diabetes Diagnosis problém discussed in Section IIL Since the
behavior of this problem was not used in designing the CANN,
it serves as a verification of our design system. Fig. 7(c) and
Table III show that our system takes an average of 4680 CPU
s to find designs with an average of 11.5 hidden units, whereas
the two naive methods found designs that have an average of
around 12 hidden units after 5700 CPU s. The experiments
were not continued at this point due to limited computational
resources because each point in the curve was averaged over
15 runs. However, we expect that the two naive methods will
take a substantial amount of CPU time to find designs with
an average of 11 hidden units.

TABLE III
AVERAGE PERFORMANCE OF PLAN AND THE NAIVE METHODS OVER 15 RUNS

Problem | Average # of | Learning Time (CPU s on Sun SS 10/51)
Hidden Units . Improved
Achieved Naive Naive PLAN
Two-spiral 10 1965.64 1107.73 1073.45
Two-region 5.5 803.57 454.30 298.32
Diabetes 11.5 >5700 >5700 4679.96

V. CONCLUSIONS

In this paper, we have presented two mechanisms for
reducing the number of hidden units required for convergence
in the cascade-correlation learning algorithm. The key idea of
these mechanisms is to provide alternatives in the learning
process and to select the best alternative dynamically based
on information obtained. In general, our approach may lead

1084

to longer learning time, but the smaller networks found are
faster when deployed in target applications and may generalize
better.

The first mechanism, mixed-mode learning, is based on
finding an intermediate output matrix that can be mapped to the
desired output matrix. The validity of this mapping is verified
by linear programming, which finds a feasible solution for a
set of linear inequalities. Our experimental results show that
MM + CAS leads to reduced number of hidden units, but
increased computation time.

The second mechanism is PLAN, a learning system that
aims to find a neural network with a small number of hidden
units under a given time constraint. Here, we assume that
the time allowed is long enough to completely train tens
to hundreds of neural networks. PLAN uses a comparator-
neural-network predictor that predicts, for two partially trained
ANN’s, which one will have a smaller convergence time.
Based on the prediction, PLAN dynamically schedules par-
tially trained ANN’s for further training. Our experimental
results demonstrate that PLAN can find smaller ANN’s un-
der similar time constraints as compared to those found by
repeated applications of MM + CAS.

Although we have demonstrated our learning mechanisms
with respect to the cascade correlation learning algorithm, the
mechanisms can be used in conjunction with other learning
algorithms that operate in batch-learning mode. These varia-
tions as well as the use of various activation functions will be
investigated in the future.

Note Added in Proof: Since the writing of this paper, we
have developed a new optimization method [35] for learning
the weights of artificial neural networks. Our new approach
formulates the learning problem as a continuous unconstrained
nonlinear optimization problem that searches for the optimal
assignment of weights to minimize the nonlinear TSSE func-
tion. By relying on an external force to lead the research
trajectory out of local minima, we were able to find con-
verged networks with four hidden units to solve the two-spiral
problem. The methods presented in this paper, although worse
than the results in our new approach, are still significant as
they represent the best of what genetic algorithm-based design
methods can offer.

REFERENCES

[1] T. Ash, “Dynamic node creation in backpropagation networks,” Con-
nection Sci., vol. 1, no. 4, pp. 365-375, 1989.

[2] H. S. M. Beigi and C. J. Li, “Learning algorithms for neural networks
based .on quasi-Newton methods with self-scaling,” J. Dynamic Syst.,
Meas., Contr., Trans. ASME, vol. 115, pp. 38-43, Mar. 1993,

[3] Y. Q. Chen, D. W. Thomas, and M. S. Nixon, “Generating-shrinking

algorithm for learning arbitrary classification,” Neural Networks, vol. 7,

no. 9, pp. 1477-1489, 1994.

J. Diederich, “Connectionist recruitment learning,” in Proc. 8th Eur.

Conf. Artificial Intelligence. London: Pitman, 1988, pp. 351-356.

S. Ergezinger and E. Thomsen, “An accelerated learning algorithm

for multilayer perceptrons: Optimization layer by layer,” IEEE Trans.

Neural Networks, vol. 6, pp. 31-42, Jan. 1995.

[6] S. E. Fahlman, “Faster learning variations on back-propagation: An
empirical study,” in Proc. Connectionist Models Summer School. San
Mateo, CA: Morgan Kaufmann, 1988, pp. 38-51.

, “The recurrent cascade-correlation architecture,” in Advances in

Neural Information Processing Systems 3, R. Lippmann, J. Moody, and

D. S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1991, pp.

190-196.

4

=

5

wl

[71

(8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

(18]

[19]
[20]

[21]

{22}

[23]

[24]
[25]
[26]

[27]

[28]

[29]

[301
[31]
(32]

[33]

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 5, SEPTEMBER 1996

S. E. Fahlman and C. Lebiere, “The cascade-correlation learning ar-

chitecture,” in Advances in Neural Information Processing Systems 2,

D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp.

524-532.

, “The cascade-correlation learning architecture,” Carnegie Mel-

lon Univ., Pittsburgh, PA, Tech. Rep. CMU-CS-90-10, Feb. 1990.

, “The cascade-correlation learning architecture,” in Advances in

Neural Information Processing Systems 2. San Mateo, CA: Morgan

Kaufmann, 1990, pp. 524-532.

S. H. Friedberg, A. J. InSel, and L. E. Spence, Linear Algebra

Englewood Cliffs, NJ: Prentice-Hall, 1979.

B. Fritzke, “Growing cell structures—A self-organizing network for

unsupervised and supervised learning,” Neural Networks, vol. 7, no.

9, pp. 1441-1460, 1994.

C. L. Giles, D, Chen, G. Sun, H. Chen, Y. Lee, and M. W, Goudreau,

“Constructive learning of recurrent neural networks: Limitations of

recurrent casade correlation and a simple solution,” IEEE Trans. Neural

Networks, vol. 6, pp. 829-836, July 1995.

B. Hassibi and D. G. Stork, “Second order derivatives for network

pruning: Optimal brain surgeon,” in Advances in Neural Information

Processing Systems 5, S. Hanson, J. Cowan, and C. Giles, Eds. San

Mateo, CA: Morgan Kaufmann, 1993.

M. Heywood and P. Noakes, “A framework for improved training of

Sigma-Pi networks,” IEEE Trans. Neural Networks, vol. 6, pp. 893-903,

July 1995.

, “Directed product term selection in Sigma-Pi networks,”

IEEE Int Conf. Neural Networks, Orlando, FL, 1994.

J. Hwang, S. Lay, M. Maechler, R. D.. Martin, and J. Schlmert

“Regression modeling in back-propagation and projection pursuit

learning,” IEEE Trans. Neural Networks, vol. 5, pp. 1-24, May

1994.

J. Hwang, S. You, S. Lay, and I. Jou, “From a cascaded correlation

learning network to a projection pursuit learning network,” in Int. Symp.

Artificial Neural Networks, National Chiao Tung Univ., Taiwan, 1993,

pp. E11-E20.

D. J. Janson and J. F. Frenzel, “Training product unit neural networks

with genetic algorithms,” Expers: Special Issue Intell Syst. Applicat.,

vol. 8, pp. 26-33, Oct. 1993.

P. Mehra and B. W. Wah, “Adaptive load-balancing strategies for

distributed systems,” in Proc. 2nd Int. Conf. Syst. Integration, IEEE

Computer Society, June 1992, pp. 666-675.

M. C. Moze and P. Smolensky, “Using relevance to reduce network size

automatically,” Connect. Sci., vol. 1, no. 1, pp. 3-16, 1989.

T. M. Nabhan and A. Y. Zomaya, “Toward generating neural network

structures for function approximation,” Neural Networks, vol. 7, no. 1,

pp. 89-99, 1994.

A. V. Oppenheim and R. W. Schafer, Digital Signal Proccessing.

Englewood Cliffs, NJ: Prentice-Hall, 1975, pp. 211-218.

C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Al-

gomhms and Complexity. Englewood Cliffs, NJ: Prentice-Hall, 1982
. 55-58.

L Prechelt “PROBENI1—A set of neural network benchmark problems

and benchmarking rules,” Univ. of Karlsruhe, Karlsruhe, Germany,

Tech. Rep. 21/94, 1994.

S. Santini and A. D. Bimbo, “Recurrent neural networks can be trained

to be maximum a posteriori probability classifiers,” Neural Networks,

vol. 8, no. 1, pp. 25-29, 1995.

S. Santini, A. D. Bimbo, and R. Jain, “Block-structured recurrent neural

networks,” Neural Networks, vol. 8, no. 1, pp. 135-147, 1995.

R. S. Scalero and N. Tepedelenlioglu, “A fast new algorithm for training

feedforward neural networks,” IEEE Trans. Signal Processing, vol. 40,

pp. 202-210, Jan. 1992.

C.-C. Teng and B. W. Wah, “Mixed-mode learning:" A method for

reducing the number of hidden units in cascade correlation,” in Proc. Int.

Symp. Artificial Neural Networks, National Tsing Hua Univ., Hsinchu,

Taiwan, Dec. 1993, pp. 1.01-1.07.

, “An automated design system for finding the minimal config-

uration of a feed-forward neural network,” in Proc. Int. Conf. Neural

Networks, IEEE, vol. 3, pp. 1295-1300, June -1994.

B. W. Wah, “Population-based learning: A new method for learning

from examples under resource constraints,” IEEE Trans. Knowledge

Data Eng., vol. 7, pp. 454-474, Oct. 1992,

B. W. Wah, P. Mehra, and C.-C. Teng, “Comparator neural network

for dynamic prediction,” in Proc. Int. Symp. Neural Networks, National

Cheng Kung Univ., Tainan, Taiwan, Dec. 1994, pp. 571-580.

N. Weymaere and 1. Martens, “On the initialization and optimization

of multilayer perceptrons,” IEEE Trans. Neural Networks, vol. 5, pp.

738751, Sept. 1994.

in Proc.

TENG AND WAH: FEEDFORWARD NEURAL NETWORK

[34] X.-H. Yu, G.-A. Chen, and S.-X. Cheng, “Dynamic learning rate
optimization of the backpropagation algorithm,” IEEE Trans. Neural
Networks, vol. 6, pp. 669-677, May 1995.

[35] Y. Shang and B. W. Wah, “Global optimization for neural-network
training,” IEEE Comput., vol. 29, pp. 45-54, March 1996.

Chin-Chi Teng received the B.S. degree (1987) in
electrical engineering from National Taiwan Univer-
sity, Taipei, Tiawan, and the M.S. degree (1993) in
electrical and computer engineering from the Uni-
versity of Illinois at Urbana-Champaign. Currently,
he is working toward the Ph.D. degree.

Since 1990, he has been a Research Assistant at
the Coordinated Science Laboratory at the Univer-
sity of Illinois at Urbana-Champaign. He has had
summer internships at Advanced Micro Devices,
Inc., Sunnyvale, CA, and LSI Logic, Inc., Santa
Clara, CA. His current research interests are in the area of computer-aided
design of VLSI circuits and systems, the design for IC reliability, and neural
networks.

1085

Benjamin W. Wah (§’74-M’77-SM’85-F’91) re-
ceived the Ph.D. degree in computer science from
the University of California, Berkeley, in 1979.

He has served on the faculty of Purdue Uni-
versity, West Lafayette, IN (1979 to 1985), as a
Program Director at the National Science Foun-
dation (1988 to 1989), as Fujitsu Visiting Chair
Professor of Intelligence Engineering, University of
Tokyo, Japan (1992), and as the McKay Visiting
Professor of Electrical Engineering and Computer

* Science, University of California, Berkeley (1994).
He is currently a Professor in the Department of Electrical and Computer
Engineering and the Coordinated Science Laboratory of the University of
Illinois at Urbana-Champaign. His current research interests are in the areas of
parallel and distributed processing, knowledge engineering, and optimization.

Dr. Wah is Editor-in-Chief of the IEEE TRANSACTIONS ON KNOWLEDGE AND
DarA ENGINEERING, and serves on the editorial boards of Information Sciences,
the International Journal on Artificial Intelligence Tools, and the Journal of
VLSI Signal Processing. He has chaired a number of conferences and is the
General Chair of the 1996 International Conference on Neural Networks. He is
currently serving in the IEEE Computer Society as a member of its Governing
Board, Publications Board, and Press Activities Board, and as a Vice-Chair
of its Fellows Committee. In 1989, he received a University Scholar Award
from the University of Illinois.

