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Automated learning of load-balancing strategies in
multiprogrammed distributed systems

PaNka) MEHRAT and BENjaMIN W, WAHT

Dynamic load-balancing sirategies for distributed systems seek (o improve average
completion time of independent tasks by migrating each incoming task to the site
where it is expected to finish the fastest: usually the site having the smallest load
index. SMALL is an offline learning system for developing configuration-specific
load-balancing strategies; it learns new load indices as well as tunes the parameters
of given migration policies. Using a dynamic workload generator, a number of typical
systemwide load patterns are first recorded; the completion times of several benchmark
jobs are then measured at each site, under each of the recorded load patierns. These
measurements are used to train comparator neural networks simultaneously, one per
site. The comparators collectively model a set of perfect load indices in that they seek to
rank, at arrival time, the possible destinations for an incoming task by their (not yet
known) respective completion times. The numerous parameters of the decentralized
dynamic load-balancing policy are then tuned using a genetic algorithm. We present
experimental resuits for a mix of scientific and interactive workloads on Sun work-
stations connected by Ethernet. The policies tuned by SMALL are shown to exploit idle

resources intelligently and effectively.

1. Imtroduction

Dynamic load-balancing strategies seek to improve the
performance of distributed systems by migrating work-
load from heavily-loaded to lightly-loaded sites. Our
distributed system comprises a network of multipro-
grammed workstations, cach having private CPU,
memory and possibly disks. Non-privale resources—
the network and disks having shared file systems—are
transparently shared among the processes at different
sites; private resources can be accessed by local pro-
cesses only. We consider independent tasks that can
arrive at any of the sites and can be scheduled for execu-
tion at any of the sites. The focus of this paper is an
automated tuning of a generic decentralized dynamic
scheduling policy representative of those used in cur-
rently available load-balancing systems (Baumgartner
and Wah 1989, Litzkow er al. 1988, Zhou 1987a).
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SENDER-SIDE RULES(s)
Destinations = {site: Load(site)-Reference(s) < &s)}
Destination = Random(Destinations)
1F Load(s) ~ Reference(s) > 8,(s) THEN Send(Destination)

RECEIVER-SIDE RULES(r)
IF Load(r) < 6-(r) THEN Receive

Figure 1. Parametrized load-balancing policy studied (3, 0,
and 0, are non-negative real numbers).

Figure 1 shows the policy we study in this paper. It is
applied in a distributed fashion as follows. An incoming
task at site s triggers its sender-side rules (SSRs). Using
the outputs of Load()§, the site-specific load-index
functions, the SSRs determine Destinations, the set of
sites whose load falls within a é(s)-neighbourhood of

§ We do not consider the case of muitiple workload indices per site,
which would be useful if there were many different classes of jobs, and
sites offer different processing capabilities for different classes. For the
only class of jobs studied in this paper, the trade-offs afforded by
multiple indices are avtomatically accommodated by cur empirically
determined multi-resource load indices.
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Reference(s). Reference(s) 15 cither O or MinLoad
{denoting the smallest Load valuc), If Desimations is
not the empty set, then one of its members {say, r) is
picked at random; such randomization avoids instability
in distributed scheduling. Depending upon the value of
Reference(s). the SSRs compare either the absolute or
the relative value of Load(s) against the threshold 8, ({s).
(0, prevents migration when the expected gains in com-
pletion time are not large enough to offset the costs of
migration, If Load(s) is large enough, then the rule for
sending succeeds, and the 8SRs invoke the receiver-side
rule (RSR) at site r; otherwise, the job is executed focally
at site s. The RSR at site r compares Load(r) against
threshold #3(r). (#; helps counter bad decisions by
senders who overestimate their own load.) The request
from the SSRs at site s is turned down if Load{r) is too
high; in this case, the job is executed locally at site s.
Otherwise, the request is accepted, and site s is given
permission {o migrate its job to site r,

The performance of a task under this policy is defined
as the speed-up in its completion time due to foad bal-
ancing. The performance of the policy is defined as its
expected performance on an incoming task under typical
systemwide loading conditions, provided the policy is
used to determine each task’s site of execuiion.

The performance of a task is a function of its site of
execution; differences in performance of sites may stem
from either (@) configurational factors, such as processor
speed, amount of memory, disk space, number of func-
tional units, size of cache and RAM, and speed of net-
work interface; or (b) load variations, i.e. differences in
the number and type of tasks executing at different sites.
While configurational differences are static, load-related
differences are known to be highly variable and gener-
ally unpredictable in the long run.

Because of the highly dynamic load-related variation
in the performance of different sites, long-running jobs
need to be rescheduled as the relative performance of
sites changes. We assume first that executing tasks will
pericdically come up for rescheduling and further that
there i1s minimal site-specific state at the time of resched-
uling so that the cost of migrating a rescheduled task is
no different than the cost of migrating a fresh incoming
task. Long-running jobs are therefore modelied by a
sequence of independently scheduled tasks in our experi-
ments (§4.2). As a simplifying assumption, the con-
straint on the site of arrival of rescheduled entities—
that each successive task in the sequence must arrive
at its predecessor’s site of execution—is not enforced.

To perform well, a policy must muigrate incoming
tasks to remote sites provided there is a speed-up greater
than 1—relative to local execution. In this light, the
policy can be seen as an exercise in cost benefit analysis.
Qur policy uses the site-specific Zoad () functions as indi-
cators of cach site’s completion time and assesses the

possibility of speed-up by comparing the loads of dil-
ferent sites. The calculation of Load() vatues adds to a
site’s CPU load; likewise, their propagation across sites
adds to network trathic. Thus, there is a short bul finite
interval between successive calculations of the load
index; this. and the propagation delays, introduce inac-
curacies in the values of Lead(). Moreover, the cost of
migrating tasks is not evidenced from simple compari-
son of load indices but adds to remote completion time
of tasks. Imperfect indices and migration costs thus
offset the benefits of remote execution; our policy
secks to model their impact on performance using
policy parameters &, 8,9, and Reference.

The performance of our policy depends critically on
the design of load—index functions as well as the sctting
of policy parameters. Given our performance objectives,
our policy will perform well on an incoming task: (i) if
the comparison of load indices across sites accurately
predicts the benefits of migrating that task to a remote
site; and (ii) if the policy parameters satisfactorily model
the costs of task migration.

Both load indices and cost factors have configuration-
dependent and load-dependent components. For
instance, the time to migrate a task has a configura-
tion-specific mintmum cost as well as a load-dependent
component. Since load patterns are installation-specific,
indices and parameters need to be tuned to the charac-
teristics of the configuration as well as the installation.
Manually designing load-balancing policies meeting the
above criteria is therefore a tedious data-intensive task
that must be repeated for every configuration and instal-
lation.

The SMALL (Systematic Method for Automated
Learning of Load-balancing strategies) system auto-
mates our design task. It includes an experimentation
environment called DWG  (Dynamic Workload
Generator) which allows reliable measurement of task
completion times under realistic and reproducible
loading conditions. (See our earlier work, Mehra 1992,
Mehra and Wah 1995a, b.) This paper focuses on the
learning component of SMALL, which uses the load
measuremenis and completion times provided by
DWG to design new load indices and to set policy para-
meters rationally.

The rest of this paper is organized as follows. Section
2 describes the architecture of SMALL. Section 3
surveys related work. Section 4 summarizes the capabil-
iies of DW(. Section 5 presents a neural-network-
based approach to design of load indices. Section 6
describes systematic setting of policy parameters using
a novel combination of gradient-based and genetic
lcarning techniques. Empirical results of our experi-
ments are the subject of §7, and §8 concludes this
paper.
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2. The SMALL system
Systematic improvement in load-balancing performance
requires systematic exploration of the large space of
alternative parameter settings. In the absence of much
prior knowledge of the load-balancing domain, our
approach relies on conducting experiments and using
the observed performance of such experiments as feed-
back for further exploration. This empirical approach to
policy learning (Mehra and Wah 1990) operates in a
cycle of decision making, performance measurement,
and modification. The inputs for each decision are a
job, its site of arrival, and a window of measurecments
constituting the systemwide load pattern prevailing at
the time of the job’s arrival; the ouiput of cach decision
is a destination for the incoming job. The speed-up (with
respect to local execution) attained by executing the job
at the selected destination is our measure of perform-
ance. Modifications are made to policy parameters so
that future decisions (using the modified parameters)
will yield a better performance in similar situations.
Similar empirical methods are employed for learning
toad indices. The experimental data are in the form of
before-after pairs, where the first item in each pair is a
window of periodic measurements constifuting a site’s
load pattern and the second item is the measured com-
pletion time of a task that began execution at the end of
the window. Using two different data pairs involving the
same task but different sites, our learning system simul-
taneously modifies the load-index functions at both sites
so that, in similar situations in the future, the outcome
of comparing load—index functions would likely be the
same as that of comparing measured completion times.
Learning of new policies and indices is essentially only
immediately following a significant change in configura-
tion or installation. At other times, there is no need to
slow down load balancing by incurring the extra over-
head of measurements and modifications needed by
learning processes. Our learning system, SMALL, is
therefore designed as a suite of pluggable components
which, when plugged in, tune a system’s policies and
indices; and. when unplugged, incur no overhead. We
call the time when SMALL is plugged in as its learning
phase, the time when SMALL needs exclusive use of the
system for gathering data as its data-collection phase,
and the time when SMALL is unplugged as its applica-
tion phase. lsolating these phases temporally and opti-
mizing cach one requires careful experimental design.

2.1. Offtine duta collection and learning

Data collection is said to occur oftline (with respect to
learning) when all experimentation and data gathering
necessary for measuring the performance of decisions is
carried out only once. ahead of time. It is said Lo occur
online if experimentation and jearning alternate. In a

similar vein, learning is said 1o occur online if load-
balancing decisions alternate with learming processes:
olfling, if the learning phase strictly precedes the appli-
cation phase.

Offline data gathering avoids repeating identical
experiments. It measures the completion time of each
task, under each systemwide load patiern, at each site
of the distributed system. In any distributed system, the
number of possible destinations for an incoming task 1s
fixed (equal to the number of sites in the system). The
number of possible policies one might need to evaluate
is, on the other hand, quite large (exponential in the
number of distinct parameters). Multiple policies that
schedule the incoming task of an experiment to the
same destination can be evaluated using the data
collected in just one offline experiment! Considering
that each experiment may take several minutes, the sav-
ings in time achieved by our experimental design are
substantial.

Offline data gathering makes even more sense when
we consider the load-index learning problem where
alternative destinations for the same task need to be
compared under identical foading conditions. Since
one occurrence of a load patiern in an online setting
permits experimentation with only one destination, off-
line data collection is an inevitable requirement of load—
index learning. In this, DWG plays a vital role by
allowing us to recreate a systemwide loading pattern
as often as needed,

The choice between offline and online learning is
simpler. Since the former Incurs no overhead during
the actual operation of the load-balancing system, it is
the preferred approach. The only problem is that the
population of tasks or the load patterns used in the off-
line learning phase may not resemble those encountered
during the application phase. In that case, using the
policies and indices developed by the learning phase
will cause unexpected behaviour in the application
phase. Therefore, offline learning is valid only when
the short-term probabilisitic characteristics of task and
load patterns are stationary with time.

Online learning systems adapt continuously so they
gracefully adapt to changing task characteristics and
changing load patterns. But online learning brings
with it several unsolved machine fearning problems,
the principal ones being the temporal credit-assignment
(TCA) problem {Sutton 1988) and the exploration—con-
vergence dilemma (ECD) (Barto ez al. 1990). The TCA
problem arises whenever multiple decisions contribute
10 a single performance measurement; this is exactly
what would happen if policy learning were to proceed
concurrently with the application phase. Several dif-
ferent scheduling decisions may be made between sched-
uling an incoming task to a remote site and measuring
its completion time. Other sites may have affected the
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measured completion time by deciding to schedule tasks
at or away from the remote site. The ECD problem
concerns the weight assigned to new information in rela-
tion to information accumulated from past experiments.
The offline learning method employed in SMALL makes
certain simplifying assumptions (see below) to avoid
TCA. Tt overcomes ECD by transferring that responsi-
bility to 1 human system administrator who can sched-
ule a new round of offline learning whenever he or she
either changes the system configuration or observes sig-
nificant change in an installation’s resource-utilization
patterns.

SMALL avoids TCA by evaluating each decision in
isolation. Tn reality, the load patterns encountered
during load balancing are a resuit of earlier scheduling
decisions. In such a sequential learning scenario, the
number of possible load patterns at the time of sched-
uling an incoming task is combinatorially explosive, We
make the simplifying assumption that the finite set of
load patterns collected offline and ahead of time is repre-
sentative of the exponentially large set. We need to
experiment with a wide variety of loading conditions
in any case; therefore, this assumption does not pose
any problems.

It follows that if offline learning is carried out when-
ever there is a change in configuration or utilization
pattern, and if load-balancing experiments are carried
out under a wide variety of realistic and reproducible
loading conditions, then the policies and indices devel-
oped in the learning phase can be used by the applica-
tion phase. In this case, both learning and data
collection can be taken offline.

In order to make such offline learning an effective and
scalable strategy, it is crucial that the bulk of the knowl-
edge learned earlier on a distributed system be retained
whenever the system grows. This means that load-
balancing strategies learned on a smaller system must
continue to be applicable when the system is expanded
or upgraded and new and possibly faster computers
added. Hence, growth should not involve bringing the
entire system down and relearning existing strategies.
This is indeed the case when workload characteristics
on existing sites are unaffected by upgrades or the addi-
tion of new sites, which in turn is true of the systems
available today because shared resources, such as net-
works and file servers, are designed for growth without
loss of performance.

Finally, in the extremely infrequent case when
upgrades of shared network resources (such as the
physical network medium and file servers) can affect
the workload characteristics of existing computers, it is
possible to have new workload conditions occur that
were not foreseen by earlier learning. In this case, it
will suffice to apply SMALL to retrain the load-balan-
cing policies of the entire system. This step can be pre-

vented 1l workloads of a wide variety, whether prevalent
or not, have been used in earlier learning of load-balanc-
ing strategies.

2.2 The five phases of learning in SMALL

Figure 2 outlines the operation of SMALL, and also
indicates the relevant sections of this paper. Figure 3
shows our learning system. The three key components
of SMALL include a workload generator (DWG), a
trainable load-index function (comparator network),
and a mechanism for tuning the parameters of given
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load-balancing policies (TEACHER). DWG  resides
partly inside the operating-system kernel and partly at
the process level, and forms a laver below the given
load-balancing system. The learning system sits on lop
of the load-balancing system, and can access and modify
various policy parameters.

The first two phases of SMALL are for offline
recording of realistic load patterns and for offline meas-
urement of completion times for a representative sct of
tasks under these load patterns. As discussed in §2.1,
this phase needs dedicated use of only the new compu-
ters to be upgraded or added to the distributed system;
existing computers, whose behaviour under various
workloads has been already recorded, do not have to
be taken offline.

In Phase 1, we recorded both naiuraily occurring load
patierns as well as patterns likely to occur at typical
decision points during the application phase; the latter
were generated by running a random selection of repre-
sentative tasks on top of typical workloads and then
recording the resulting load patterns. In Phase 2, we
ran each of our representative tasks, once at each site,
under each of the previously recorded workload patterns
(replayed using DWG). DWG allowed us to initiate
foreground test jobs at precise times and to measure
accurately their completion times. As explained else-
where (Mehra and Wah 1995b), DWG’s design ensures
highly accurate workload generation, even in the pre-
sence of foreground processes not present at the time
of recording the workload.

Phases 3 and 4 are for offline learning of workload
indices and tuning of policy parameters based on com-
pletion times of different tasks (measured in Phase 2) at
each site and under each load pattern. Workload indices
and policy parameters of existing sites in the sysiem may
need to be relearned. However, since learning in these
two phases takes place offline, there is no need to take
any of the sites offline. In fact, learning may take place
at a computer server (a supercomputer, for instance) not
even on the distributed system.

1n Phase 3, our learning system defines load-index
functions, one per site; these can be used for converting
the multivariate resource-utilization patterns collected
during the first phase into univariate load indices. In
Phase 4. these load indices, along with the completion
times measured during Phase 2, are used for tuning the
parameters of given load-balancing policies. After this
phase, the new purameter values found by the policy-
learning system can be plugged into the load-balancing
policy.

The results of learning are a sel of load-index func-
tions. one at cach site. for computing a scalar quantity
that ranks alternative sites for local incoming jobs. In
Phase 5. the given load-balancing policics use the load

indices, along with the tuned policy parameters, to de-
termine the most appropriate site for cach incoming job.

The load-balancing system (Fig. 3} implements the
policy shown in Fig. 1, and converts the primitive
resource-utilization measurements inte the more mean-
ingful load indices. It includes supports for communi-
cating load indices among the sites, as well as for
computing abstract performance metrics such as
MinLoad, which denotes the minimum predicted load
index. (See the paper by Baumgartner and Wah 1989
for an efficient implementation of such a load-balancing
system.)

We assume the existence of a job-execution facility at
each site, which can be invoked either locally or re-
motely. In the UNIX system, such functions are pro-
vided by remote shells and remote execution facilities.
We also assume that the underlying operating system
supports process tnitiation and detection of process ter-
mination.

3. Related work

Load balancing seeks to obtain significant speed-up over
local execution. Since each incoming task has a finite set
of possible destinations, one would like to use the work-
load information at each site to compare alternative
destinations in terms of their expected speed-ups over
tocal execution.

A common way to compare alternative destinations is
manually to specify a formula for computing Load, the
load index, as a function of the current and recent uti-
lization levels of various resources. The design of a good
load index and an effective load-balancing policy using
these indices is difficult, as it is sensitive to machine-
specific hardware characteristics and prevalent load pat-
terns. In this section, we describe current approaches to
these problems, discuss their deficiencies, and compare
them with SMALL’s approach.

3.1, Existing methods for computing workload indices

Many existing methods for computing workload
measures are based on simplified queueing models of
computer systems (Ferrari es al. 1983, Ferrari 1986,
Zhou 1987b). They model resources as servers and use
the lengths of associated queues as determinants of
average delay/throughput. A further approximation
leads to an architecture-independent and universal func-
tion known as UNIX-style load average (hereafter, load
average), which is an exponentially smoothed average of
the total number of processes (including the process in
execution) waiting for the CPU response. Although this
measure may be a reasonable performance indicator for
purcly computer-bound tasks, its design does not con-
sider the other resources of a site, such as cache size,
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Table 1. Typical performance-indicating variables available in UNIX-like operating systems

Performance metric

Type of information available

Number of context swiiches
Number of system calls

Number of device interrupts
Number of pages swapped in/out

Number of processes swapped infout

Number of processes ready to use the CPU
Number of processes watting for disk

Number of processes waiting for free memory
Number of swapped-out active processes
Memory pages used by all the processes in core
Memory pages used by active processes only

Number of free memory pages
Number of cache flushes

Times spent in the different CPU states:
Idle; in OS functions; in user programs; and, in low-priority
user programs

Amount of data transferred on each disk
Rate of data transfer

Number of characters input/output from/to terminal devices

Number of packets input/output on each network interface
Number of collisions (for CSDMA interfaces)

Per-process statistics: time spent in user mode,
time spent in system mode, resident-set size,
numbers of messages received and sent,
number of signals received,
number of context switches,
numbers of process swaps and page faults.

Total over 1s period,
Average over 5s period,
Total since boot

Total over 5s period, total since boot

Instantancous value, computed every 55

Instantancous value and 60s average

Total over 1s, average over 5s, and total since boot
Updated using instantaneous values sampled once every 20 ms

Total, asynchronously updated at each transfer

Calculated once every second or slower

Total, asynchronously updated during terminal input/output
operations

Total, asynchroncusly updated at the time of packet transfer

Total, updated when collisions are detected)

Timing statistics sampled once every 10-20 ms; the whole interval
charged to the process in control of CPU. Other statistics
updated asynchronously at the time an event happens.

memory space, speed of peripheral devices, and network
traffic. Further, it does not provide a meaningful com-
parison of loading situations across sites, especially
when the distributed system is configurationally hetero-
geneous. The disparity between the actual ioad and that
predicted by the load average can be best illustrated
when a fast and a slow workstation coexist in the
same network. In this case, it may almost always be
better to execute an incoming job at the fast workstation
even though its load average may be higher.

A better workload measure is needed to account for
multiple resources in a computer—such as memory,
disk, and network—and for meaningful comparison of
different sites of a configurationally heterogeneous
system.

Table 1 lists a variety of performance metrics in a
typical workstation-based operating system. These are
obtained by software instrumentation in the operating
systeml. However, several of these metrics are unsuitable

for inclusion in a lead index because the overhead
associated with their measurement preclude frequent
sampling; this category includes a variety of process-
level metrics, which are usually sampled only once
every 5s. Even if we climinate these, we are still left
with a fairly large set of mutually dependent variables;
for example, disk traffic is affected by the number of
page swaps and process swaps. Others, such as rate of
data transfer, are fixed for a given site, and can be
implicitly modelled by the coefficients of a load index.
Ideally, workloads for load balancing should be
characterized by a small set of performance metrics
satisfying the following criteria: (i) low overhead of
measurement to allow frequent measurements; (ii) repre-
sentative of load on all the resources of contention; and
(iii) can be measured and controlled independently of
each other. In the past, Zhou (1987a, b} has considered
resource-queue lengths (the number of processes waiting
for CPU, disk, and memory) in designing heuristic form-
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ulac to represent loud indices. There are threc reasons
why using queue lengths alone 15 not adeguates
(i} keeping track of all changes in queue lengths incurs
toe much overhead: (ii) using instantancous queue
lengths at sampled instants does not adequately repre-
sent cumulative workleads in between instants; and
{iii} the utilization of soeme resources. such as memory
sccupancy, is not measured by queuc lengths.

In our study, we use a combination of cumulative and
instantaneous utilization on the four basic resources—-
CPU, memory, disc, and network--that form a useful
set of performance metrics satisfying all three criteria.
CPU and memory utilization are measured easily by
instantaneous occupancy; we do not keep track of all
changes in the states of CPU and memory due to the
high overhead involved and the lack of a high-resolution
real-time clock. Disk and network information is meas-
ured by cumulative traffic. The chosen metrics are
shown in bold font in Tabie 1. We show in §5 that a
comparator neural network can be used to assimilate
these four different inputs into a meaningful load index.

3.2. Auwtomated learning of load indices

Ideally, given the loading conditions prevailing at the
different sites, one would like to rank the sites by their
respective completion times for an incoming job. A job’s
completion time depends on its requirements as well as
on the characteristics of other jobs running simul-
taneously on the system. Two factors make it hard to
predict completion times of jobs in a distributed multi-
processing system. (i} [t is difficult to analyse a program
when many of its execution paths are data-dependent
and known only at run time; {even when all these
paths are known, it is unclear how to transiate such
information into primitive resource reguirements), (ii)
Events in a distributed system are asynchronous (such
as 4 user typing on a keyboard). and it is not possible to
determine the best load-balancing decision without
knowing future workload.

Although exact prediction of completion times is dif-
ficult, it is possible to characterize background workload
by different workload indices for jobs of a few different
classes, and to identify the class of ¢ach incoming job.
For example, while the index for memory-intensive jobs
may pay more attention to memory availabilty, the one
for compute-bound may stress CPU  availability.
However, using these different load indices presupposes
knowledge of the class to which each incoming job
belongs: such knowledge might be avaiiable 1n domains
where the same programs are used over and over again
(Devarakonda and Lyer 19%9). In our study. we assume
no prior information about jobs (or all jobs belong to
one class): we. thercfore, restrict our atltention to the
case of one load-index function per site. Our learning

method can be easily extended to the case with multiple
job classes.

Notice that our goal in designing a load-index fune-
tion is merely Lo compare alternative destinations for the
same job. Therefore, we wilt attempt to determine only a
relative (site-specific and configuration-specific but not
job-specific) measure of completion time. It would,
therefore, suffice to predict the relative completion
times of a job at d:ifferent sites. Since we need a point
of reference, we choose an idle file server as such, and
predict the speedup of an incoming job on a given
machine relative to the reference idle file server, given
only the loading conditions at the time of the job’s
arrival. Of course, this prediction will succeed only if
current workload is a good indicator of future work-
loads. Therefore, we need to assume that resource-utili-
zation patterns exhibit significant autocorrelations; such
correlations may become insignificant as one predicts
further into the future. In § 5, we list additional assump-
tions under which relative completion times can be pre-
dicted independently of tasks.

The prediction of a job’s speed-up at a site, as
described above, is still very difficult without complete
knowledge of jobs and worklead behaviour. Instead, we
can predict, for each pair of sites, the difference between
their speed-ups. That is, we are interested in finding a
site that will maximize speed-up for the incoming job,
without necessarily knowing the actual speed-up value
for that site. Moreover, we judge the quality of load
indices by the percentage of correct comparisons.
Hence, we can stop refining the individual index func-
tions when the percentage of correct comparisons
exceeds an acceptance threshold. We need to ensure
that the anti-symmetry of comparison—whenever A is
better than B, B is worse than A—is preserved during
learning. This issue of learning to predict differences of
relative completion times is further motivated and
resolved 1n § 3.

Learning programs, such as the one used to tackle the
problem studied in this paper, may derive their power
from two very different sources: domain knowledge and
data. The index-learning task in load balancing is
knowledge-lean because the exact time-variation of
background workload, nor the exact relationship
between load and completion time, is known ahead of
time. Thus, empirical methods of strategy learning
(Mehra and Wah 1990). which infer the missing rela-
tionships from experimental data, are the only means
available to us for learning load indices in a knowl-
edge-lean environment.

3.3, Awomated learning of load-haluncing policies

A substantial amount of work has been done in the
past on foad balancing. Table 2 surveys approaches to
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Table 2. Previous research on intelligent load balancing

Approach

Example

Comments

Classifier systems
Bayesian decision thcory
Learning automata
Reinforcement learning

BDT (Stankovic [985)

Stankovic 1986}
Team theory
Planning
Empirical learning

Midgard (Sannicr and Goodman 1988)

Probabilistic (Gloriose and Colon-Osorio 1980)
Stochastic Learning Automata (SLA) (Mirchandaney and

Utility-driven control (Pasquale 1988)
Expert system (Kumar ez af. 1987)
Gradient-based approach (Pulidas et a/. 1988)

No learning

Hand-coded utility

Static policy

Analytical performance; No
multi-programming

No learning

No learning

Analytical performance

intelligent load balancing. Only two of these approaches
{SLA and the gradient-based approach) use learning.

Our approach differs from these approaches in two
important ways. First, previous studies on [earning
load-balancing policies do not use measured perform-
ance as feedback. Instead, they use simulation models
whose states can be evahuted independently and imme-
diately. These simulation models are crude approxima-
tions of real distributed multiprocessing systems where
events are asynchronous and could be caused by inter-
acting sources in the system. Second, previously studied
learning methods have only been demonstrated in simu-
lated environments where arrival processes are Poisson
and computer systems can be modelled by product-form
queueing networks. The effectiveness of their approach
is hard to verify for heterogeneous systems with auto-
correlated workloads.

We choose to learn load-balancing policies based on
actual completion times of jobs running concurrently
with background workload on a real multiprocessing
system. Moreover, we choose to evaluate the policies
learned by our approach by comparing, for each job,
its measured completion times on each of the machines
in the system.

4. DWG: a tool for synthetic workload generation

This section reviews the goals and capabilities of DWG,
a physical-level synthetic workload generator, that effi-
ciently, accurately and repeatedly replays a wide variety
of realistic and synthetic workload patterns. DWG was
designed to measure and control the utilization of CPU,
memory, disk, and network. It supports the following
operations: (i) precise measurement of resource-utiliza-
tion patterns; (it) precise generation of recorded pat-
terns; (iil) initiation of foreground test jobs at precise
times; and (iv) measurement of job-completion times.
To accurately reproduce the bechaviour generating the
measured Joad, we have implemented most of DWG in
the kernel (Mchra 1992, Mehra and Wah 1995a, b).

4.1. Design considerations

DWG was designed to efficiently capture the low-level
resource-utilization information in a distributed multi-
processing system, and to replay the collected informa-
tion as a synthetic workload accurately and with little
overhead, so that load-balancing experiments can be
carried out. We had two key considerations in designing
DWG.

The first purpose of DWG is to measure, for each
given foreground job, its completion time at each of
the § sites in the system, under each of the background
load patterns, For a given background load pattern, it is
not possibie to run the given job simultancously at all
sites because its execution at one site may affect the
amount of shared resources (such as shared network
and file system) available at another site. As a result, it
is essential that we reproduce the same background load
pattern S times so that the given foreground job can be
executed at each of the sites.

Second, when a test job is executed at a site in the
presence of background jobs, the proportion of compu-
tational resources allocated to the background jobs will
be reduced. Test jobs and background jobs affect sach
other by competing for resources. For real workloads,
such competition is resolved by a resource scheduler.
While a backeround load pattern is being recorded,
the process population generating that load has compete
control over a site’s resources. If a test job were intro-
duced on top of such a worklead, it would take away
some resources from the background-process popula-
tion, thus altering its resource-utilization pattern.
Therefore, when test jobs are introduced on top of
generated workloads, their impact on the workload
generator needs to be carefully considered. Such an
interaction creates a feedback from the experiment to
the experimentation environment; it is an important
characteristic of the workload-generation problem
addressed by DW(.

The esssential component of DWG is, therefore, the
one that handles the interaction between foreground
jobs and replayed background load patterns. There are

e g - ol e
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two alternative approaches for modelling this inter-
action.

(a) Process-fevel view. This amounts (o representing
asynchronous ecvents, such as keyboard interrupts
and context switches, at the process level. It entails
(i) recording complete resource-utilization information
for a large number of processes; (ii) modetling ail the
complex interactions between processes and interrupt-
handling routines of the operating system; and (iii) pre-
cisely recording the timing of interrupts and context
switches, and replaying them at the same fine grain.
Obtaining and regenerating such workloads is im-
practical because it requires costly hardware instrumen-
tation and high-resolution timers for driving the
generator.

(b) Physical-level view (Ferrari 1984). This entails the
design of a synthetic background-workload generator
that models the effects of running a test job on a back-
ground workload. There are many synthetic workload
generators at the physical level; however, they are un-
suitable for our purposes because they ignore the feed-
back from foreground jobs to the workload generator.
To generate the necessary feedback, we need to arti-
ficially model process-level interactions between a
recorded background load and a foreground job, and
use our model to adjust (dynamicalty) the amount of
replayed load while some foreground job is active.
One approach is to modify the process scheduler of
the operating system that controls the amount of
resources allocated to the foreground job in the presence
of the background load. Another approach is to design a
set of doctoring rules that modify the amount of
resources allocated to the background local generator
when a foreground job is active,

We have chosen the latter approach because it avoids
modification of the process scheduler. DWG gives up a
fraction of its resources allocated to the background
foad in response to the arrival of a foreground job,
and reclaims these resources when the job terminates.
The precise amount to give up is controlled by doctoring
rules, which calculate, al each clock interrupt, the
amount of background workload to be generated for
each resource. For the CPU. the amount of work is
expressed as a fraction of the interval between successive
interrupts. Memory load is expressed as the number of
pages to be occupied until the next interrupt. Disk and
network load arc expressed as the number of disk
transfers  and the number of network packets.
Parametrization and tuning of our doctoring rules,
and  statistical comparison of doctoring rules, are
described  eisewhere (Mehra 1992, Mehra and Wah
199350, b).

4.3, Collection of workload puatterns

We collected load patterns on a configurationatly
heterogeneous system consisting of (i} a diskless Sun
3/50 with 4 Mbytes of RAM; (i) a diskful Sun 3/50
with 4 Mbytes; (iii) a diskful Sun 3/260 with 8 Mhbytes;
and (iv) a diskless Sun 3/60 with 24 Mbytes. The four
workstations were connected by a single 10MB s
Ethernet.

Although the testbed we used in collecting load pat-
terns is small, we can apply a technique called cloning to
study larger systems. In cloning, the load patterns for
the same site at different times can be used to simulate a
load pattern on multiple copies of that site. This method
creates load patterns distributed in space from load pat-
terns distributed in time. Since test jobs behave identi-
cally across different clones under the same loading
pattern, and since workload characteristics of existing
computers are assumed to be unchanged by the addition
of new sites, completion-time measurements need not be
repeated. By increasing the scale of systems, cloning
creates greater opportunities for load imbalance and
therefore, higher optimal speed-ups. Of course, cloning
is limited to cases in which each clone must have hard-
ware identical to some site already in the testbed.

We used ten test jobs: three to sort records of various
sizes with various amounts of memory, two to uncom-
press files of varous sizes, and five Perfect Club bench-
marks (Berry et al. 1989) (FLO52Q, TRFD, QCD,
TRACK and DYFESM).

To study pre-emptive scheduling of jobs, we inserted
checkpoints into each test job. Each checkpoint re-
sembles a pre-emption point; consequently, we can
treat a segment from the beginning of an instrumented
job to each of its checkpoints as an independent job.
Although this technique creates a large database of
training patterns, it could be rendered ineffective by
different segments on the same test job having similar
resource requirements. This, however, does not affect
the accuracy of our final result, as we are only interested
in average speed-up as a function of job length. {Speed-
ups for different checkpoints of the same job are, there-
fore, never compared in the final result.)

Each job was instrumented 1o produce approximately
200 checkpoints during its execution. The Perfect Club
benchmarks were modified so that they could complete
within five minutes on an idle Sun 3/50 workstation. Our
final database included the first checkpoint of each fore-
ground job and, thereafter. the next checkpoint that
took at least 50% longer than the one included before
it. The final checkpoint of each job was always included.
We ended up with a total of only 58 jobs, with about five
checkpoints per test job: cach of these jobs was run al
cach of the four siles and under 24 different background
load patterns, for a total of 3324 decision points.
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Of the 24 background load patterns used in our
experiments, 20 were created by running job-files created
randomly from the pool of ten test jobs described above.
The remaining four were designed to creale surprises for
the load-balancing system. We started with a real.
heavy, system-wide load and patched together pieces
of it and the idle load pattern such thar the resulting
patterns would frequently contain loading conditions
just the oppositc of those prior to the job’s arrival.
Since the load-balancing system can only access the
loading conditions before a job’s arrival, its decisions
would falter under these ‘surprising’ loads. Moreover,
since real workloads often have unpredictable changes
in workload, whose likelihood increases with the length
of the load pattern, we packed more surprises near the
end of the load pattern. (Note that surprises packed in
the beginning are less likely to happen and are not
studied.) We expect that, because of these load patterns,
speed-ups over local execution attained by scheduling a
job at the site with the least load index will tend to drop
with the length of the job, approaching the performance
of random choice for iong jobs. These surprises are
meant to illustrate the loss of performance if long jobs
are migrated to less loaded sites and never pre-empted
from there even when the horizon of prediction of the
toad index elapses.

Figure 4 compares the load patterns from the con-
trolled experiment (in which real foreground and back-
ground jobs were run) against the corresponding
patterns from the generation experiment (in which a
real foreground job was run on top of the corresponding
background load generated by DWG) for one of our
experiments. Visually, we can confirm that the generator
reproduces the utilization patterns rather well using its
tuned doctoring rules. Results of other experiments are
similar to the one depicted here (Mehra 1992, Mehra
and Wah, 1995, 1995b),

5. Automated learning of workload indices

3.1 Design goals

Our goal in load-index learning is to estimate funec-
tions F,, one per site, such that (i) the functions do not
assume any prior information about the job being
scheduled; (ii) they depend only on (smoothed, or other-
wise processed) local resource-utilization values; and
(it} the ranking induced on the alternative destinations
of an incoming job by these functions is consistent with
the ranking induced on those same destinations by the
measurcd completion times of that job. The following
symbols are first defined.

8: Set of § sites in the network.,
F: Set of F foreground test jobs. 1 is the case with no
forcground job,

T Window size in time units during which workload is
to be gencrated for the distributed computer system.
(Note that the window of time covers all sites in the
system, and that our unit of time equals 20 ms, which
is the period between successive interrupts of the real-
time clock on a Sun 3 workstation.} |

B: Set of B background load patterns, where a back-
ground load pattern is defined as a collection of back-
ground jobs, each characterized by a prescribed site
and time of arrival. ¢ is the case with no background
load.

Ly rin.s0 A vector containing the utilization levels at site
s for CPU, memory, disk, and network, at each time
instant in the window, for the background load pat-
tern £ and foreground job £ started at time /. Ly rin.s
is & matrix of 4 rows (representing the four resources)
and 7 columns. Note that L s ¢ represents the meas-
ured utilization when no foreground job is run, and
that, whenever it is obvious, we will use f instead of

).

Ly r1y.5+ Vector derived from recent behaviour of loads
on different locally accessible resources at 5 for back-
ground load b before foreground job f is started at .

F;W{Lﬂ,b.f_j,f): Value at site 5’s load-index function. W
denotes the weights of F, and will be omitted when-
ever obvious.

C_‘.W(I:;,Af‘s,f): Completion time of £ at s under LA,,J,S,
where the role of superscript ¥ is as explained above.

W_;W(ﬁb‘f_s,f): Time spent by f waiting for resources at
§ under ﬁbnf‘j, where the role of superscript ¥ is as
above.

The objective of load-index learning, then, is

. N Cl(Ly o, S)=C(Ly /.,
FlLly s, f)=FLpso, )= Lopusnr )= Clln s s /)

ClLs f s S)
(1)

for all foreground jobs £, for all background load pat-
terns f:;;,_,f'.‘i-, and for all pairs (5, s,) of sites. Note that in
(1), we assume that foad indices are computed at time ¢
for both sites s; and s5,. In practice, the above assump-
tion is not correct, as it is difficult to synchronize the
computation of indices at different sites. Moreover,
there are delays in obtaining load indices from remote
sttes. These errors are not considered in the design of the
load-index function but rather in other parameters of
the load-balancing policy to be discussed in j6.

Let us examine whether the right-hand side of (1
depends on the job f being scheduled. Consider the
expression C(Ly ;. /V/C(L, , ,, /). which is commonly
known as the stretch factor (Ferrari et al. 1983); its
denominator is known as the service time of job £ at
site 5. The service time depends only upon / and v, but
not on the 4. Further, the completion time (.‘{1;,,__,-_ o 1)
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Figure 4. Comparison of true and penerated resource-utilization patterns (Experiment 17). This figure shows the true utilization

patterns of various resources to the left; and the generated ones, to the right. For CPU, th
whether CPU was busy; the X-axis represents time (1 unit = 20ms). For the remaining resources,

e Y-value is either 0 or 1, indicating
sampled lots are shown, with

100 samples per minute. The X-axes in these cases show time (1 unit = 1/100 min). The Y-axes show: for disk, transfers per tick;
for network, packets per tick; and, for memory, the number of free pages. The background job is the Perfect Club Benchmark

TRFD, and the foreground job is the Unix sort command applied to a small file by

allocated.

can be expressed as a sum of service time and waiting

(2)

Under round-robin scheduling policies at the process
level, the waiting time of a process grows monotonically

time: A X X
C(thsaf) - C(Lofsf) + W(Lh._,".n.f)-

a single field with limited memory space

with its service time and the current load on the site’s
resources. Introducing an unknown sile-specific and
workload-specific function G(L, ;). we can rewrite (2)

&S:
C([‘b‘}..\‘:.f‘) = C([‘g’}.]'”w,f.)“ + G(Lbj'.x)]a

(3)
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where G(ﬁ;,t,‘\.) increases monotonically with load for
given f. Note that G([:f,_f__‘,) can be considered as an
average parameter that depends on the class of f but
not on any attributes of a particular job. Tt will be
learned implicitly in the weights of the ncural network
modelling the workload function.

Under the model of compiletion times described
above, the stretch factor C{L, /. [)/C(L, 5, [} de-
pends only upon load Lﬂb‘f’s and site s and on the class
of jobs f, but remains constant for jobs in the same
class. If we further assume that the different sites of
our distributed system come from the same architecture
family and differ only in their raw speeds, then

Cllyy f) =K(s, )C(Lo s s ), (4)

where K (s, /) is the speed-up of site s for the class of jobs
under consideration with respect to reference site s..
Similar to G(I:b’ r.5)» K(s, ) should be considered as
an average parameter that may depend on the class of
/ but not on any attributes of a particular job. Again, we
do not need to determine K(s, ) explicitly as it will be
learned implicitly in the weights of the neural network
modelling the workload function. We can rewrite (1) as

Fs(i‘b,f:jluf) - Fs(ﬁb\f‘s::.f)

= K(Slaf)[l + G([‘b‘f,sl)] - K(Szf)[l + G(ib,f,sg]'

(3)

The right-hand side may depend on the class of job £ but
is independent of any attributes of the specific job f
being scheduled. Therefore, the objective of learning a
task-independent load-index function satisfying (1) is
achievable, provided (i) waiting time grows linearly
with service time; and (ii} different sites belong to the
same architecture family. The first of these assumptions
is a reasonable requirement of any fair scheduling
policy, and is approximately true of UNIX-related
operating systems that employ variants of round-robin
scheduling. The second assumption is generally true of
workstation-based computing environments, because
even workstations from different vendors often employ
the same microprocessor architecture,

To achieve our goal of obtaining accurate comparison
in most situations, we would like to develop load-index
functions £, which will cause the left and right-hand side
of (1} to have the same sign. That is, F, will correctly
predict (for most training patterns) the site with the
lower relative completion time.

We partitioned our database of raw training patterns
into a raw training set and a raw lest set. We used Lhe
raw training set to tune the weights of the load-index
functions, and the raw test set to evaluate the tuned
functions. Suppose that the set of raw training patterns

s R=1{rh [ sy )P eEBfeF5,5 e85 #5}
Each raw training pattern (b, f. 5,5} is a4 5-tuple

{‘[ﬂ'h,f“ ¥t C(ﬁhf, A j) Lb. [ C(Lbf 511 f) C(\I:CI)-. f s Seef /J}

The objective function for load-index learning can be
formally defined as follows:

Minimize ZE(T}, where

&R

E(T(b: f Sl>52))
0 it F(Ly s /)= FlLys o )] (6)
= X [C(ih.‘/.;ﬁf) - C(I:b‘jlsz!f)] >0

I otherwise

5.2. Comparator network: architecture and learning
algorithms

Little is known about the problem of learning to com-
pare functions. One exception is the work of Tesauro
(Tesauro and Sejnowski 1989), who invented the com-
parator-neural-network architecture for learming to
compare alternative moves for the game of back-
gammon. His approach does not directly carry over to
the problem of comparing functions of time series. Our
approach was motivated by Tesauro’s work; however, in
adopting his work to the index-learning problem, we
have made significant departures from both his network
configurations and training algorithms.

Figure 5 shows a schematic of our comparator neural
network. It shows the details of the training algorithm,
and the flow of information during a typical learning
trial. Each learning trial involves one training pattern
from the training set: first, resource-utilization informa-
tion from a pair of randomly selected training patterns is
presented at the inputs (to the left); then, the actual out-
puts of the two index functions are computed; based on
these outputs, the desired outputs for each of the index
functions is computed as follows:

OF = O — 29(0y. — Og — O"); -
OR = Og +23(0L — Og — O°).

Finally, the two index functions are modified so that
future presentations of similar inputs will generate out-
puts closer to their respective desired outputs.

Raw utilization patterns enter from the left of Fig. 5;
the delay elements create a window of recent values; the
traces from each window are smoothed using low-pass
filtering and an estimate of future resource utilization
determined by extrapolating the smoothed trace. The
filters are used to remove transients that prevent us
from predicting the trend of workload in the near
future. Since workload can be nonstationary, and it s
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hard to decide the exact cut-off frequency for the filter,
we use five different filters, with cut-off frequencies at,
respectively, 1%, 5%, 10%, 25% and 50% of maximum
frequency. This yields five filtered traces per resource.
Each of the filtered traces is projected a fixed interval
into the future; the interval of projection equals the
average completion time of test jobs at the reference
site. (This is another of those class-dependent para-
meters that are safe to use because they do not depend
on any attribute of the job being scheduled.) Again, as it
is hard to know a priori the best extrapolation tech-
nique, we usc Iwo different techniques: one Using
linear fitting and the other using exponential fitting.
The area under cach extrapolated curve (see Fig. 6) is
used as an input to the load-index function. Since there
are four different resources, five filters, and two extra-
polation methods, our indices are functions of 40 vari-
ables. Vectors of these variables constitute the inputs Iy
and Iy of the load-index functions (Fig. 5}

Note that the difficult problem of using a neural net-
work to predict relative speed-up is reduced to that of
picking the appropriate combination of cut-off fre-
quency for the filter and the extrapolation method.

We implemented load-index functions using feed-
forward neural networks. Each network comprises
three layers of units: an input layer, a hidden layer
and an output layer. The output layer has only one
output unit. Links between units are uni-directional,
and can connect either a unit in the input layer to a

hidden unit or the output unit, or a unit in the hidden
layer to the output unit. Associated with each link is &
weight of that link. The weight of a link going from the
ith to the jth unit of the neural network is denoted wy;.
Every unit in the input layer is connected to every unit of
the hidden and output layers, and every unit in the
hidden layer is connected to every unit in the output
layer. The set of parameters W for the load—index func-
tion at a site consists of all the w;; values, where § and j
are units in the feed-forward network for that site.

Given the actual and desired outputs for a feed-
forward neural network, the ‘back-propagation algo-
rithm’ can determine the appropriate modifications to
the weights of that network. We use the ‘vanilla’ back-
propagation algorithm available in a public-domain
simulation package (Goddard et al. 1989).

The outputs of input-layer units are set at the begin-
ning of each learning trial using filtered and extrapo-
lated resource-utilization values, which are, in turn,
derived from information contained in the training pat-
tern chosen for that trial. The outputs of hidden-layer
and output-layer units depend upon their net inputs.
The net input of unit 7 (in the hidden or output layer)
is given by >, w0/, where o, denotes the output of unit
j. The output of each unit of a feed-forward network is
given by the sigmoidal function of its net input
glx) =1/(t +e77).

Let us denote by Oy the output of the left subnet; and,
correspondingly, Og, of the right subnet. In order to use



1090 PoMehra and B, W, Wah

the back-proagation learning procedure for training the
subnets. we need to determine their desired outputs for
every input. Let O denote the desired output of the left
subnet; and, correspondingly, OE, of the right subnet.
Further, let us denote by O* the actual output of the
comparator network; that is, O = Oy — Op. Given our
objectives stated in (1), O corresponds to the left-hand
side of that equation. Therefore, the desired outpur of
the comparator network (denoted OF) is given by the
righi-hand side of (1). That is,

oP — 0P _ b - ClLy g, :.{) —Cllp s, f) (8)
Clly s gur [

The value of the objective function shown in (6) will be
reduced if both 0 and OF have the same sign. That can
be achieved by driving their values closer together. Let
us denote by Epys the sum (over all raw training pat-
terns in the training set) of squared errors between the
actual and the desired outputs of the comparator. That
is,

Eims = Z(OA - 0", (9)

We can minimize Epys by performing gradient descent:
that is, by adjusting the outputs of the left and right
subnets along their respective partial derivatives of
error:

OF OE,
A0L= 17565 50x

where 7 is known as the learning rate. Hence, our
training algorithm sets the desired outputs for the left
and right subnets as shown in (7).

One final detail needs to be worked out: ensuring the
anti-symmetry of comparison. We resolve this problem
by biasing the order of presentation of training patterns
to the comparator. Raw training patterns are presented
in pairs, one after another. If the first training pattern in
the pair is 7y(b, f, 51, 5;), then the second training pat-
tern must be 75(b, £, 53,5, ). Thus, whenever index-funec-
tions are forced to predict that one completion time will
be larger than another, they must (in the very next
fearning trial) predict that the latter will be smaller
than the former.

AOg = - (10)

5.3, Empirical resulis

This section presents our results on learning load
indices for a sysiem containing four sites. Each training
pattern presented te the computer network contains 40
extrapolated values of areas under extrapolated
resource-utilization patterns and two additional fields,
(.‘(L‘,,A,-_A,.,f) and C(Ls ... /)

The training algorithm described in the last subsection
was applied to 40 x 40 x { networks (i.¢. networks con-

taining 40 hidden units each). In determining the
number of hidden units, we used the popular rule of
thumb that a network must contain approximately
nalf as many weights as there are training patterns,
The fearning parameter n of the back-propagation
algorithm was set to 0-001, and the momentum para-
meter set to 0-99.

We began by randomly assigning 10% of the training
patterns to the tests and the remaining 90% to the
training set. The networks were trained using the
training set, and their accuracy measured on the test
set. (Partitioning data between training set and test set
is the usual way to prevent biasing of the index-func-
tions to the training set.) Training and testing were
applied alternately; during each epoch of training, the
networks were trained on 1000 randomly chosen com-
parisons from the training set, and tested on 100 ran-
domly chosen comparisons from the test set. Each
comparison involved two loading situations for the
same job. Training was done in two stages. Stage |
started with two identical networks (with random initial
weights) for each site; these were trained to compare
different loading conditions for the same job at the
same site. In Stage 2, just the left networks from each
site were further trained to compare different sites for
the same job under the same system-wide load pattern.
Unlike in Stage 1, the roles of the left and the right load-
index functions (Fig. 5) could not be reversed during
Stage 2.

If we were solely interested in the four-processor
system that we measured, Stage 1 would have been
unnecessary. However, we can simulate larger systems
by ‘cloning’ sites as described in §4.2. Note that com-
parisons between clones are tantamount to comparisons
between different loading situations for the same job at
the same site.

While pairwise comparisons of loading conditions
may form the basis of a comparator-network’s opera-
tion, its eventual application involves comparison of
muitiple sites. In this context, the load indices output
by comparator networks at different sites are compared
in order to determine the least-loaded site. Since the
objective of load balancing is to maximize speed-up
over local execution, we can assess the quality of the
new load-index functions by the speed-up attained if
each incoming job were scheduled at the least-loaded
site,

In Fig. 7, we show in the top four boxes the load
indices (due to the background loading pattern only)
of the various sites of our four-processor testbed, Test
jobs were introduced on top of these background work-
loads 2252 time units into the experiment, exch time at a
different site. The completion times of all the jobs and
their check-points were recorded. Two policies were
compared: (i) opt, which always places the incoming
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Figure 7. Average speed-up of all test-jobs under the worst-behaved load (#23) (policies: opt, min).

job at the site with the optimum (least) completion time;
and (ii) min, which always schedules an incoming task at
the site with the smallest load index. Assuming no over-
head of remote execufiion, we calculated, for cach test-
case, the speed-up over local execution achieved using

these policies. In the bottom part of Fig. 7, these speed-
up values are plotted against the time at which a job
completes. This plot shows that while the site having
the least load index behaves as well as the optima!l site
for short jobs, its performance drops below optimal for
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long jobs. The 1op curve in this plot 1ndicates the
optimal site {'e” for elaing, and v for ‘vyasa') and the
corresponding optimum speed-up for each lest-job. The
policy s runs all the jobs at claine, the site with the
least load index at the time of arrival: thercfore, its
performance is sub-optimal only when a site other
than elaine is the optimal destination. Since the load
pattern used in this experiment is one of the four we
designed (artificially) 10 have poor locality, we can con-
clude that the effects of poor locality in background
workloads (which become worse for longer jobs)
cannol be counteracted by a smart load index, Instead,
pre-emptive process migration should be used for long
jobs, so that the near-optimal short-term performance of
the load index can be exploited during rescheduling.

We postpone to §8 the evaluation of the min policy.
Also, min does not consider the effects of job-migration
overhead, delay between load-index calculation, and the
time the load index is used. These effects are considered
in§7.

6. Automated tuning of load-balancing policies

6.1. The policy-learning problem

Figure 1 shows the sender-side and receiver-side rules
for the load-balancing policies considered in this paper.,
There is one set of rules per site. The rules are para-
mitrized; the number of parameters depends upon the
sumber of sites in the distributed system. Let N be the
number of sites. At each site, its SSRs have three
parameters: &, & and Reference, and its RSR has one
parameter: &,. Altogether, there are 4N parameters for
the whole system. In this paper, we use the term heuristic
method (HM) (leumwananonthachai and Wah 1996,
Wah 1992, Wah [995) to denote a set of system-wide
parameters.

Tuning of load-balancing policies is done offline,
which means that the decisions made by a policy are
evaluated not by actually sending test jobs to an opera-
tional load-balancing system, but by simulating the
application of that policy on loading conditions and
test jobs. Each loading situation is represented by the
load indices of different sites at the time of the test job’s
arrival. Since the measurements were conducted by
DWG during the data-collection phase, the completion
time of each incoming test job is known ahead of time
for all possible destinations. Further, by applying the
load-index functions described in the las! section, we
can obtain, for cach load pattern, a complete system-
wide trace of load indices up to the job's time of arrival.
Given the foad indices, we can determine the destination
of each incoming job by stmulating the application of
the load-balancing policy using the SSRs and RSRs,
Since measured completion times are already known

for both local execution and remote execution. the
improvement in completion time due (o migration can
be determined immediately,

We organize the data collected ahead of time into test-
cases. cach carrying information about one incoming
Job, its time of arrival. the load indices of different
sites at the time of arrival, and information about the
mcasured completion time of that job at each of the
sites. Wc use ress in this paper to denote the evaluation
of a selected HM on one test-case. Since our experiments
are performed offline, we assume that each test takes
unit time.

The test-cases of an application constitute the test
database, which represents a sample from the space of
problem instances. (For the load-balancing domain,
each instance describes the incoming job and the back-
ground loading pattern.) Associated with each HM is a
population of performance values, one value per test-
case. The space of HMs can be viewed as a population
of populations. Our goal of optimizing average speed-up
over local execution can be reformulated as one of
choosing the HM whose population has the highest
mean.

Given the large number of parameters, many of them
real-valued, the space of possible HMs is very large.
We must search this space inteiligently and by
performing only a limited number of tests. If we had
untimited time, we could test every HM on every
test-case, and then choose the one with the highest
mean, In limited time, however, only a limited number
of HMs may be tested, and only a few tests can be
performed per HM. Therefore, the policy-learning
system must possess bounded rationality (Simon 1982):
it must schedule tests intelligently. This scheduling
problem is the crux of policy learning; the theory
for this problem was developed by Wah er o/,
{1995), whose TEACHER {TEchniques for Automated
Creation of HEuRistics) system (leumwananonthachai
et al. 1992, leumwananonthachai and Wah 1993, 1996,
leumwananonthachai 1996, Wah 1992, Wah ez afl. 1995)
provides a domain-independent approach to rational
scheduling of limited learning time between generation
and testing,

6.2. Architecture and operation of TEACHER

Figure 8 shows the architecture of TEACHER
(feumwananonthachai and Wah 1995, 1996, Wah
1992) as applied to learning load-balancing policies. Its
key component is the scheduler, which decides whether
to generate a new HM or continue testing the ones
already in the pool. The advantage of generation is
that if a large number of HMs are tested before selecting
the HM with the largest sample mean, then Lhe likeli-
hoed of missing the population with the largest mean is




Automaied learning of load-balancing strategies 1093

Mew parameler set(s)

GENERATOR
: Modified b
POOL OF
Time left PARAMETER
ime lel SETS Performance off cument test-case

ﬁ.—J EVALUATOROE-
" SCHEPULER Overall performance KPOLICY

o Compjetion
parafneter i . }

sie of execution, 7 times. rrggrati

overhyads

<jobj . load k.
areival-site £

LOAD-BAL ANCING POLICIES

1‘ Load indices

TABLE LOOKXUP OF PERFORMANCE DATA ||
OBTAINED IN LOAD BALANCING EXPERIMENTS

Figure 8. Automated learning of load-balancing policies by
TEACHER.

reduced. On the other hand, when tests are spread
across several different HMs, each one can be tested
on only a few problem instances; even though the esti-
mated guality (sample mean) of an HM may be high,
our confidence in that estimate will be low. The advan-
tage of continuing to test existing HMs is that our con-
fidence in the estimate improves with the number of
tests. TEACHER divides up its total learning time
into generations similar to those used in genetics-based
heuristic-learning systems. At the beginning of each gen-
eration, it calls the generator to generate new HMs
based on the past performance (if any) of the existing
HMs. Then, until the end of the generation, it continues
to test the new HMs (as well as some old HMs that have
been retained from previous generations). At the end of
the final generation, the HM with the highest sample
mean is chosen.

The inputs of a load-batancing policy are described by
a test-case (Fig. 8), which includes information about
the job (j) that needs to be scheduled, the back-
ground-load pattern (k) being simulated, and the site
{s) at which the job arrives. The different test-cases to
be used are managed by a Test-case Manager.

Before commencing the experiment, the learning
system sets all the policy parameters using the corre-
sponding values from a selected parameter set, b. 1t
then uses the information contained in the test-case to
compute the load index of each site at the time of job j’s
arrival. Thus, given the values of policy parameters, as
well as the values of primitive and abstract decision
metrics, one can determine the policy’s decision for the
chosen test job. This decision involves the choice of a
remote destination (¢} where the incoming job j should
be executed.

Given the information contained in the test-case, and
knowing the decision (r) of the policy, the performance
of the policy parametrized by £ can be computed as

follows. First. the system consults the :ompletion time
of job j at site r under load-pattern k. Nexi, i the chosen
destination r is not the same as the site of arrival 5, then
an overhead of migration (to be discussed in the next
section) is added to the completion time. The total repre-
sents the completion time of a job under remote execu-
tion, including overhead. From the data collected in the
first phase, we also know the completion time under
local execution. Using these numbers, the speed-up
achieved by parameter set b for the given test case can
be calculated.

The Evaluator of Policy Performance (Fig. 8) com-
putes the overall performance of each parameter set
on a population of test cases. Using information about
the recent performance of different parameter sets, and
knowing how much time is available for learning, the
Scheduler determines whether to generate new para-
meter sets or to continue testing from the current pool.

The initial HMs used in TEACHER can either be
generated randomly or provided by the designer.
TEACHER uses three genetic operators to generate
new HMs from existing ones: (i) Muzation: the
Reference value of a randomly chosen site is changed
from O to MinLoad, or vice versa; (il) Crossover-I: two
new HMs generated by interchanging the substrings
containing the parameters of two HMs at a randomly
chosen site; (iii) Crossover-half: similar to Crossover-1,
except that the exchange involves N/2 sites.

Following the customary practice in genetic search,
we make the more destructive operators less likely,
and, the less destructive ones, more likely. In our experi-
ments, we used the probabilities of 0-1, 0-85 and 0-05,
respectively, for the three operators described above.

Qur learning system not only develops new parameter
sets by the population-based learning process described
above, but also refines existing parameter sets after each
learning trial. It does so using point-based learning. a
parameter-modification procedure that reduces the like-
lihood of decisions causing low speed-ups, by suitably
altering policy thresholds. Since we have only limited
prior domain knowledge, refinement by point-based
learning can only be applied to some of the parameters.

In applying point-based learning to learn load-balanc-
ing policies, our learning system uses the information on
completion times and overheads for all possible destina-
tions, Since this information is known ahead of time,
our system knows whether remote execution was
optimal and. if so, then at which site. It can thereby
infer what destination should have been included in
the set of possible destinations. If the optimal destina-
tion was not inctuded in that set, the point-based
lcarning algorithm raises the threshold é by a smalil
amount. Likcwise. i a destination causing sub-optimal
speed-up is sclected. then the threshold 6 is decremented
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Adjustment of §:

+ If the optimal destination was not in the set of possible destinations, then let £, be the amount by which
& should be raised at the site of arrival (s) in order to include the optimal site.

+ If some sub-optimal destination having load index higher than that of the optimal site was included in
the set of destinations, then let £, be the amount by which & should be lowered at the site of arrival (s)
in order to exclude the sub-optimal site.

» If the optimal destination is not in the set of possible destinations, then set 8(s) « () + - £, else
set 8(5) ¢« 6(s)— 1 - £;.

Adjustment of 8,(s).

*  WHEN (AND send-optimal (NOT send-occurred)) 8,(s) <— 8,(s)+ n(Load(s) — Reference(s) — 81(s)).

+  WHEN (AND send-occurred (NOT send-optimal)) &,(s) < 8;(s) — n(8;(s) — Load(s) + Reference(s)).

Adjustment of 8,(r) [r was the destination chosen by SSRs(s)]:

+  WHEN {AND receive-occurred (NOT receive-optimal)) 8,(r) < 8;(r)+n(Load(r) — 82(r)).

»  WHEN (AND receive-optimal (NOT receive-occurred))} 8;(r} «— 6,(r) —7(8>(r) — Load(r)).

Figure 9. Rules for point-based learning.
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Vigure 10. Overbeads and delays in load balancing. (A: time that site S received the load index of site R; C: time that site R received
the load index of site S; B: time that load index at site R was computed.)

by a small amount provided such a decrement will not
¢xclude the optimal destination as well.

When the destination chosen randomly by the first
two 8SRs is rejected, either by the RSRs or by the
third SSR, then the behaviour of the point-based
lcarning algorithm depends upon the performance of
that destination. If the chosen destination would have
given better speed-up than 1, then the threshold of the
oifending rule is adjusted. If the third SSR caused the
rejection, then its ¢ is lowered; and if the RSR caused
the rejection, then 4, is raised.

When the destination selected by the SSRs and
accepted by the RSRs yields sub-optimal speed-up,
then the 8, threshold for the offending SSRs is raised,
and the 6, for the offending RSRs is lowered.

Thus, ali the thresholds governing the behaviour of
the joad-balancing policy can be adjusted using the
performance information for just the current test-case.
'Ilhc rules of point-based learning are summarized in
g 9,

_

6.2. Data preparation

The sole purpose of the data-preparation phase of
policy learning is to replace an actual problem solver
by a table-look-up routine, as shown in Fig. 8. Given
a job and a background load pattern, as well as the job’s
site and time of arrival, the look-up routine must supply
the values of load indices at each of the sites, the com-
pletion time of that job at all possible destinations, as
well as the respective migration overheads of each desti-
nation.

Figure 10 shows, left, a trace of the load—index func-
tion at the arrival site of an incoming job and, right, the
corresponding trace at a remote site where the job is to
be executed.The letters ‘A’ and ‘C’ indicate the most
recent local load—index values; the letter ‘B’ indicates
the most recent load—index value of the remote site
available at the site of arrival. The delays A and Aj
depend upon the interval of computation of load—-index
function. Such delays affect the currency of both the
local and the remote load indices. The delay A; includes
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both the delay in computing the load index at the remote
site and the delay in propagating that value to the site of
arrival. Finally, the delay A, represents the overhead of
migration.

It is not enough to add A, to the completion time of
every test job, for in our (offline) data-collection phase,
we did not run the test job at the remote site starting at
T + Ay; rather, we always started the test job at time T
into the experiment. Thus, the job would have run under
a slightly different load with an online experiment; the
difference between online (actual) and offline (simulated)
cases Is proportional to A,. If A, is large, the load could
have been very different; if small, then less so. The effect
of migration overhead is simulated by adding A, to the
age of the remote load index.

Consider a typical load-index function. If the feed-
forward comparator network computing it had 40
hidden units, then the computation of this function
requires 1680 (40 x 40 + 40 + 40) floating-point multi-
plication operations. Computing this function at every
clock interrupt would incur too much overhead.
Therefore, such a function can be computed only
periodically. Let 7 be the period between successive
computations; then, the delays A, and Aj are random
variables distributed uniformly over the interval [0, 7].

One final factor that needs to be considered is As, the
delay including the propagation time of load values to
remote sites. Assuming that load values are sent over the
network each time they are computed, the propagation
delay can be modelled by half the round-trip time of a
short packet. Round-trip times can be measured offline
for a network. Propagation delays of load indices affect
the values of only the remote load indices at any deci-
sion point.

Since the comparator network at each site gives us a
complete trace of the load index at that site up to the
decision point, the effects of delays due to computation
and communication of load indices can be simulated by
using older values of load indices, rather than their
values at time T.

7.  Empirical results

We collected workload and completion-time data on our
testbed of four computers and performed offline
learning on a4 Sun SparcStation 10, Model 20 The
total down time was around 10 days; most of it was
spent on manually recording the 24 background loads
and measuring completion times of 10 test jobs under
these loads at each of the four sites. We expect down
times to be reduced to around 3 days if the process is
fully automated. Moreover, down times apply only to
new computers of different configurations added in the
future; computers of the same configuration can be con-
sidered as clones, and their workload index and load
balancing strategies do not have to be relearned. On
the other hand, the training of comparator neural net-
works is fully automated; it requires no down time
because it is performed offline (arcund 15 hours of
CPU time).

Using the data for our four-processopr testbed, we
created a total of nine clones (three each for the two
diskless clients, two for the diskful client, and one for
the file server). This gave us a total of 13 sites. Policies
for this scaled-up system were learned using TEACHER
under a variety of assumptions about overheads and
delays.

As indicated in the previous section, three types of
delays contribute to the age of a load index. After
measuring packet turn-around times, we found it ade-
quate to assume that load information from remote sites
can be received within 20 ms (P = 20} of being broad-
cast. We studied four different migration overheads (M):
(1) small, 100ms; (ii) medium, 500 ms; (iil) moderately
large, 2000 ms; and (iv) large, 5000 ms. In addition, we
considered three different intervals (I} of load-index
computation: (i) small, 100ms; (i) medium, 500 ms;
and (iii) large, 1000ms. Table 3 shows the average
speed-up for each combination of M and 7. In gener-
ating data in Table 3, we have added a random delay
uniformly distributed between 0 and [ to the age of each
load index. Only for the remote load indices do we add
the factor Af and P.

Table 3. Performance of policies learned under different assumptions for our four-processor testbed and nine clones.
M: process migration overhead; I: time interval between load-index computation)

Average Std. dev. Average Std. dev.
M (ms) { (ms) speed-up speed-up M (ms) I (ms}) speed-up speed-up
100 1-73743 0-226 114 L0G 1-501 56 0179138
100 { 500 1-499 16 0219608 500 { 300 1-53047 0-152211
1000 1-50508 0203219 1000 1-6004 017311
100 1-2397 (069449 8 106 1-251 81 0-128 558
2000 { 300 1-15947 0-112 387 } 5000 { 500 1-191 49 0-14072
1000 117821 0-124 843 1000 1-31023 0-134078
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Figure 11. Four contour plots of cumulative probability of speed-up for our four-processor testbed and nine clones. (M: process
migration overhead; f: time interval between load—index computation; P: delay in propagating load index from one site to another.)

TEACHER was allowed 30 minutes learning time for
each experiment on a SparcStation 10, Model 20.
Twelve experiments were performed, one for each para-
meter set described in Table 3. The best policy found by
TEACHER after 30 minutes was fully evaluated on all
the test-cases. The average speed-up of that policy and
the corresponding standard deviation are shown in
Table 3.

The best policy is found when both M and [ are small.
When M 1s large, the workload at the destination site
may be very different from the time when the load bal-
ancing decision was made at the source site. As a result,
the load bailancing decision made earlier may not be the

best. For a similar reason, when 7 is large, the load
balancing decision may be made based on possibly
out-of-date workload information, and the site chosen
for migration may not be the best. Qur results in Table 3
show that performance appears to decrease with
increasing M, but no such effect is visible for I.

In order to study the relationship between the length
of a job and the speed-up achieved for that job, we
evaluated each policy on all 10 test-jobs under all 24
load patterns. We then created data-pairs {/;, e;}, where
the first item of each pair is the length of the job, and the
second, the corresponding speed-up over local execu-
tion. Figure 11 shows four contour plots, depicting the

.,




—————

Auronnited fearning of lodad-halancimg stratedies 1097

pcrll)rm;lncc ol the min pohey discussed i §5.4 and
other policies with various overheds

Recall the min policy alwiays picks the site having the
minimum of load indices predicted by comparator net-
works at different sites. Tn this policy. we assume that
A AL A and Ay are alb zeros, Fieure [ shows a
contour plot of the probabiiity of achicving certain
gpecd-ups over Tocel execution {Y-axis. ranging from
093 to 492) for a checkpomt #l i specific time nsee-
onds from the start of a job Y-axis. ranging from 0-66
to 439-045). Since there are many more short jebs than
there are long ones, we use logarithmic scaling tor the Y-
axis. Nincteen contours, cach connecting A= ¥ points
having egual  cumulative probability  of speed-up,
divide up the space into 20 regions of 5% probability.
While speed-ups higher than 1-5 oceur frequently for
short johs. they almost never occur for jobs that lake
more than 3 min te complete.

Figure 11(b) shews a contour plot of the best policy
learned when A = 100, 7 = 100 and 7 - 290. This
figure shows that the best speed-up values are achieved
for jobs that are ncither too long nor too short. The
quality of our indices drops with the length ol the job:
therefore, long jobs cannot be speeded up by one-ume
placement: they need pre-emplive process migraton.
The speed-up of short jobs 18 adversely aflected by the
magnitude of migration overheads relative to the gains
in completion time achievable using remote execution.

Figure 11(c) shows the hehaviour of policies learncd
under high migration overheads but a staall interval of
load index computation. Relative o Figure 11(b). high
speed-up values are less probable when migration over-
head is significant. Figure 11{d) shows the case when
migration overheads are smali but the interval of
load index computation is long. High speed-up values,
close to 30, Tor medium-length jobs are not as likely as
in Figure 11(b). but they are much more likely than in
the case of high migration overheads.

We note that the best policy found by pure pont-
based learning (starting with one randomby generated
parameter set) had speed-up ol only 1:37 for the
case M = 100,/ = 100, Considering that our system
finds 1 policy with a speed-up of 173 weean appreciale
the utility of integrating learnmng. It is important tu note
that these speed-ups were obtained nol by parallel pro-
cessing but by job mugration. Mareover, the speed-ups
are for cach mdependent job rather than the overall
speed-up Tor a batch of {possihhy mutually dependent)
Jubs,

8. Conclusions

Wo have demonstruted mthis paper automuated learning
of meaningtul load index functions and Toad-halancing
policies Trom reul workload datr Using data collected

on o real distributed svstem. we truned neural networks
Lo elfectively compare alternative loading conditions for
an imcoming joh. We have apphed TEACHER o heur-
istics learning system. to tune the parameters ol our
load-buluncing policies at each site. TEACHER gener-
ates parameler sels of load-balancing policies using
genetic operators, and  modifies them systematically
using point-based learning. The key functions supported
in TEACHER wre sclective breeding ol well-performing
parameter sels at the end of each generation, and
rational allocation of tests among  parametler  scis
during each generation.

We collected workload and completion-time data on a
network of four configurationally-distinet Sun 3 work-
stations. and performed offfine learning on a Sun
SparcStation 10. Model 20. The total down-time was
around 10 days: most of il was spent on manually
recording the 24 background loads and measuring com-
pletion times of 10 test jobs under these loads at each of
the four sites. We expect down-times to be reduced to
around 3 days il the process is fully automated.
Morcover. down-times apply only to new computers
of different configurations added in the future: compu-
ters of the same configuration can be considered as
clones. and their workload index and load balancing
strategies do not have 1o be relearned. On the other
hand. the training of comparator neural networks is
fully automated: it requires no down-time because 1t is
performed offline (around 15 hours of CPU time).

Although the number of sites in our testbed 1s small
(duc to the fact that the system had to be offline fre-
guently throughout the four years of this research), the
method we have developed is not limited to such a small
scale. In this paper, we have demonstrated that by
cloning the sites  using workload data from one site
at different times to create more sites- we can learn
effective load-balancing policies for a larger (13-site)
system, OF course. cloning is limited to the case where
new sites added to a system have hardware identical to
the already-existing sites.

Our comparator network architecture discovers new
load indices that can be meaningfully compared across
sites: these functions induce a ranking on loaded sites
that is consistent with their true ranking in a statisticatly
stgnificant fashion, We further conclude that (1) our
system  discovers  policies with significant speed-ups
over local esceution under a variely of assumptions
about overheads and delays: (i) the quality of policies
learned is adversely affected by both Jarge migration
overheads and long intervals of loud index computa-
tion: and G migration overhead 15 the domimant
factor atfecting the quality of policies learned.

Ax important as the machine learning problems we
wolved i this paper are those we chose not Lo solve by
making certun snnplifying assumptions und modilying
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our experimental design to satisfy those assumptions.
The problems we addressed include the development
of a neural network configuration capable of learning
to compare functions of time series (see Wah e/ a/. 1994
for related work) and an integraton of population-based
and point-based learning techniques. The problems we
did not solve—temporal credit assignment and explora-
tion—convergence dilemma-—continue to defy generai
solutions although good soiutions are now known for
Markovian decision problems {not applicable to load
balancing).

By carrying cut an in-depth investigation into the use
of machine learning techniques for the development of
self-tuning load-balancing software, we have conclu-
stvely demonstrated that not only can we develop
good load-balancing policies but also that we can do
so systematically, automatically and efficiently.
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