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ABSTRACT

In this paper, we present a new method to handle in-
equality constraints and apply it in N OVEL (Nonlinear
Optimisation via External Lead), a system we have devel-
oped for solving constrained continnous nonlinear optimiza-
tion problems. In general, in applying Lagrange-multiplier
methods to solve these problems, inequality constrainis are
first converted into equivalent equality constraints. One
guch conversion method adds a slack variable to each in-
equality constraint in order to convert it into an equality
constraint. The disadvantage of this conversion is that
when the search is inside a feasible region, some satisfied
constraints may still pose a non-sero weight in the La-
grangian function, leading to possible oscillations and di-
vergence when a local optimum lies on the beundary of
a feasible region. We propose a new conversion method
called the Maz@ method such that all satisfied constraints
in a feasible region always carry sero weight in the Lagrange
function; hence, minimizing the Lagrange function in a fea-
sible region always leads to local minima of the objective
function. We demonstrate that oscillations do not happen
in onr method. We also propose methods to speed up con-
vergence when a local optimum lies on the boundary of a
feasible region, Finally, we show improved experimental re-
sults in applying our proposed method in NO VEL on some
existing benchmark problems and compare them to those
obtained by applying the method based on slack variables.

1. INTRODUCTION

In this paper, we study methods to handle inequality con-
straints in Lagrangian formulations to solve constrained
global optimization problems over continuous variables.
Here global minimisation looks for a solution that satis-
fies all the constraints and is no larger than any other local
minimum. This is a challenging problem as there may not
be enough time to find a feasible solution, or even if & fea-

sible solution is found, there is no way to show that it -

optimal..In practice, one only secks as many local optima
as possible that satisfy the constraints, and pick the best
local optimum.

The constrained nonlinear global optimization problems
that we study take the following form

Minimize  f(X)
Subject To g(X) <0
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X = (z;,...,zu)E R* (1)

L{X)=10
where f(X) is an objective function, g(X) = [a:1(X),
-+, gx(X))7 is a set of k incquality constraints, and AMX)=
[hi(X), -, hm(X))T is a set of m equality constraints. Al

" F{X), 9(X), and A(X) are assumed to be differentiable real-
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valued functions.

In this paper, we propose a new method to handle in-
equality constraints in constrained global optimization and
compare it with an existing method based on slack vari-
ables [9]. We first summarize previous work in the area
in the next section. In Section 3., we present our pro-
posed MazQ method and discuss strategies to control its
convergence. In Section 4., we apply the MaxQ method
in NOVEL, » system we have developed to solve con-
strained [14] as well as unconstrained [12] nonlinear opti-
mization problems. Finally, we present experimental re-
sults of the MazQ method in Section 5. and compare them
to those based on slack variables.

2. PREVIOUS WORK ON CONSTRAINED
NONLINEAR OPTIMIZATION
2.1. Lagrange Multiplier Method

Actiive rescarch in the past two decades has produced a va-
riety of methods to find solutions to constrained nonconvex
nonlinear continuous optimization problems [13, 6, 4, 5, 11,
10]. In general, they are divided into transformational and
non-transformational methods. '

Non-transformational approaches include discarding
methods, back-to-feasible-region methods, and enumerative
methods. Discarding methods [7, 10] drop solutions once
they were found te be infeasible, and back-to-feasible-region
methods [8] attempt to maintain feasibility by reflecting
moves from boundaries if suck moves went off the current
feasible region. Both of these methods have been combined
with global search and do not invelve transformation to
relax constraints. Last, enumerative methods [6] are gener- -
ally too expensive to apply except for problems with linear
objectives and constraints, and for bilinear programming
problems [1).

Transformational approaches, on the other hand, convert
a problem into another before solving it. Well known meth-
ods include penalty, barrier, and Lagrange-multiplier meth-
ods [9]. Penalty methods transform constraints into part
of the objective function and require tuning penalty coeffi-
cients either before or during the search. Barrier methods
are similar except that barriers aze set up to avoid solutions
from going out of feasible regions. Both methods have diffi-
culties when they start from an infeasible region and when
feasible solutions are hard to find. However, they can be -
combined with other methods to improve thar quality.



Lagrange-multiplier methods introduce Lagrange vari-
ables to gradually resolve constraints through iterative up-
dates. They are exact methods that optimize the objective
using Lagrange multipliers to meet the Kuhn-Tucker con-
ditions [9]. In view of their advantages, we use them for
constraint relaxation in this paper. Given an optimization
problem with equality constzaints,

f(X)
R(X) =0

(2)

Minimize

Subject To

the corresponding Lagrangion function and augmented La-
grangian function are defined as

L(X,2) = f(X)+ ATh{X)
L(X,2) = F(X) + ||MXI; + 2TR(X)

(3)
(4)

where A = [A;, -+, Am] is the set of Lagrange multipliers.
We use the augmented Lagrangian function in this paper
since it provides better numerical stability.

According to classical optimization theory [9], all the ex-
trema of (4), whether local or global, are roots of the fol-
lowing sets of equations.

2E(X,A)=0

(s)
(6)
These conditions are necessary to guarantee the (local) ep-
timality to the solution of (2).

The roots in (5) 2nd (6) can be solved by forming the

following dynamic system of equations ta seek equilibrium
points.

d
X (1) = —TxL(X (), A(1)

L2(t) = VAL(X (9, X(1)

(7)
(8)

These cquilibrium points are called saddle-points of (5)
and (6), which correspond to the constrained minima of {2).
Eq’s (7) and (8) perform descent in the original-variable
space of X and ascent in the Lagrangian space of A,

2.2. Converting Inequality Constraints By Slack

Variables

Lagrange-multiplier methods work well with equality con-
straints. However, they have difficulties in dealing with
inequality constraints (2} directly, except in some simple
cases in which one can directly solve the first-order con-

dition. When there are ineguality constraints, they must.

first be converted into equality constraints before Lagrange-
multiplier methods can be applied.

One possible transformation [9] for gi(X) < 0 (i =
1,-++,k) is to have gi(X) + z} = 0, where z; is a slack
variable, After simplification [9], the resulting augmented
Lagrangian function becomes

LX, M) = F(z)+2THX)+R(X)I;

+ Z [maz®(0, i + gi(X)) — #i) (9)

i=1

where A and y are Lagrange multipliers. In the same way
as (T) and (B), (9) can be implemented by the dynamic
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system that performs descent in the original-variable space
of X and ascent in the Lagrangian space of both A and u.

LX) = —xLa(X() A1) ()
M) = VLXOADMY)  (0)
ZH) = VLX), M), k(1)

‘We have used a differential equation solver LSODE to
solve the above dynamic system and have observed oscilla-
tions in some cases before local minima are found. There
are two types of oscillations.

s The trajectory’s oscillations decay, and the search con-
verges to a local minimum.

o The oscillations never decay, and the search does not
converge.

The second type of oscillations may happen when a local
minimum is en the boundary of a feasible region. To under-
stand this, suppose that, at time t, an inequality constraint
g.'(th } < 0 is satisfied but p(t) > O is large, and thus
gi(X{t)) 4 u(t) > 0. This means that when the search tra-
jectory is inside the feasible region (the corresponding con-
straint is satisfied), g:(X (2)) also appears in the Lagrangian
function (9). Since the local minimum is on the boundary,
the force from inside the feasible region pushes the trajec-
tory to outside the feasible region. Likewise, when the tra-
jectory is outside the feasible region, the force due to ithe
Lagtange multipliers pushes the trajectory inside the feasi-
ble region, causing an oscillation. Depending on the relative
magnitude of the objective-function value and the weighted
sum of the Lagrange multipliers and the constraints in (9).
The oscillations may amplify and cause divergence.

It is possible to eliminate some of these oscillations by
careful scaling of the objective function and some con-
straints. For instance, consider Problem 2.3.1 in Table 1.
If we do not scale the objective and constraints and do de-
scents starting from the midpoint of the search space, the
search diverges into infinity. Next, when we scale the objec-
tive by a factor 7.5, the search oscillates within some range
but never converges. (See Figure 1.) Last, when we scaie
the objective by a factor 15, convergence can be obtained
shown. (See Figure 2.) Cleasly, such scaling is problem-
instance dependent and is generally undesirable.

3. PROPOSED MAXQ METHOD

To avoid escillations in the method based on slack variables,
we would like a search to converge to a local minimum di-
rectly when it is on the boundary of a feasible region and
when the trajectory is outside the feasible region. This is
done by our proposed MazQ method.

3.1. Converting Inequality Constraints by MaxQ
Without loss of generality, we ignore equality constraints in
the following discussion, knowing that equality constraints
are handled in the way described in Section 2.1.. The MazQ
method converts an inequality constraint as follows.
gi(X)<0 = Qi(X)=maz®(0,9:(X)}=0 (11)
where gi > 1 (i = 1,--+,k) are control parameters. This

means that Q;(X) carries sero weight when the consiraint
g:(X) < 0 is satisfied.
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Figure 1. Objective function and Lagrangian part
oscillate, when the Lagrangian part is the last three
terms in (9). -

The augmented Lagrangian function is

k .
LX) = F(X)+ 3 [wimaz®(0,5:(X))

+maz*%(0,:(X)))] (12)

Assuming that g is constant, the corresponding dyrmamic
system is

‘-':;xu) = =yl X (D)
= -9x f(X) - Z [mq.‘mnz"-l(o, yl(x))
+ 2q;mz"-"“(o,g;(1f))] 7x g(X) _
4 = VLX) = mastOs(XD) G

Note that (12) is similar to (9) in the sense that both
use the maz function. However, (12) avoids the case in (9)
in which an inequality constraint gi(X(t)) £ 0is satisfied
at time t, and g;(X(t)) also appears in the Lagrange func-

tion (12). When gi(X (t)) is satisfied, it is meaningful to

minimise f(X) independent of the value of gi{X(1))-

3.2. Control Parameters

it is important to choose guitable control parameters
% (=1 .-+, k) because they arc related to the conver-
gence speed and precision of our algorithm. One can easily
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Figure 2. Objective function and Lagrangian pari
converge.

show that, when g; 2> 1, the inequality constraint gi(X) <0
is equivalent to the equality constraint maz¥(0,g:(X)) =0.
When applying (10) to handle the transformed inequality
constraints, we need to use Tx@i(X) te,

gimaz% (0, 9(X)) vx 9(X)
QiUX)v7x g(X) (14)

I ¢ € 1, @{X) is not continuous, as the derivative of
L{X, ) is not continuous when g:(X) = 0. However, conti-
nuity of derivatives is required by most differential-equation
solvers, such as LSODE. This is the reason why we require
gi>1lin (11).

Due to the way we handle inequality constraints (11), it
can be shown that (13) will converge exactly to a saddle
point if it is within a feasible region. According to {13), its
equilibrium point is given by

7xQi(X)

i

i

d d :
Ixw=0 ad FuH)=0 i=1,--,k  (15)

which means there is no change of the original vari-
ables X and Lagrange multipliers pi. At this time,
maz%(0, g:(X)) = 0, and vxf(X) = 0 is solved. Hence,
the saddle point is within the feasible region.

The transformation (11), however, has some difficulty
when the saddle point is on the boundary of a feasible re-
gion, i.e., 3i,gi{X) = 0. Suppose xf(X) # 0 for every
point X in the feasible region. In this case, no equilibrium
point in theory will exist; that is, there is at lcast one in-
equality constraint that is violated, gi(X) > 0, for example.
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Otherwise, based on (13), we will get 7x f(X) =0. To ex-
actly satisfy such a consiraint, ¢ in (11) must be set to
one in theory. But this will cause the derivative ¥ xLq(X)
%o be discontinuous at the point where gi( X') = 0, making
it impossible for the differential-equation solver LSODE to
converge to a saddle point at gi(X) = 0.

One way to tackle this problem is to choose g; to be
very close to 1, But this may cause slow convergence and
implementation difficulties. When ¢i — 1, QX)) =11
g.-gX) > 0, but Q(X) = O when gi(X) < 0. Hence,
Q:(X) changes quickly from 1 to 0 near the saddle point
as gi(X) — 0, making it difficult for L30ODE to find a suit-
able step size in order to reach the saddle point. In addi-
tion, the system approaches the feasible region slowly since
QLX) = 1if gi(X) > 0, which is independent of how far
the current point X is away from the feasible region. Thus,
larger control parameters g; are needed for fast convergence
if the current iteration point X is far from the feasible re-
gion. In contrast, if we choose gi > 1, then QL(X)=0
as gi(X )} — 0, meaning that LS ODE converges very slowly
towards the boundary saddle point and may not reach it
within the precision specified in the differential-equation
solver.

Taking these facts into account, in order to have fast con-
vergence and to reach the precision specified in LSODE, we
should change ¢; dynamically as the search goes to a sad-
dle point on the boundary. Since different inequality con-
straints may have different convergence rates to the bound-
ary of a feasible region, we associate each inequality con-
straint gi(X) < 0 with its own control parameter ¢ that
will be updated dynamically based on the value of gi(X):
gi is large if gi(X) > 1, and ¢; is gradually reduced to &
value close to 1 when the scarch approaches a saddle point
on the boundary where gi(X) = 0. In our implementation,
g; is defined as a continuous function of g:(X).

ai(g:(X)) = 17 ezp(fhg-'(x )) (1)

where 30 is the parameter that determines what convergence
precision is needed, since ¢i = s0/2 if gi(X) = 0. Parameter
#1 is chosen to satisfy so that gi(gi(X)) = 2 when gi(X) =1
Thus, 51 = —Ln[s0/2 — 1}. In our experiments, we use
80 = 2.5 or sp = 3.0, respectively.

Since every control parameter gi(gi(X))is nowa function
of X instead of a constant, we need to modify the dynamic
system (13) into

2X@) = -VxLX(.6(1)
: [
= —ox f(X)- Y [simez®T1(0,6:(X))(T)
+ 2maz*% (0, g.’(x))] [9-‘ +gi(X)
xmaz(0, g(X))Ln maz(0,¢(X))) v x g:i(X)
gin.-(t) VLo X (), 6(t)) = maz®(0,0:(X))  (18)

We like to point out that the strategy to dynamically -

change g; is also suitable when the saddle point is in a fea-
sible region. In this case, the only effect is to speed up the
convergence rate without compromising the precision of the
solution when convergence is reached, since its saddle point
can be reached exactly according to the argument above.

e ——————

3.3. Periodic Reduction of Lagrangian Variables
In the MazQ method, the Lagrange multipliers @i are non-
decreasing according to (13). This may cause p; to be un-
bounded in theory. In practice, this is undesirable as some
of the Lagrange multipliers may be large and some may be
small, and large Lagrange multipliers may lead to stiffness
of the Lagrangian function L¢(X,p) in the search.

We tackle this problem by adding decay terms r X u; X
sign[—gi(2)) to the second dynamic system (18) to result
in the following equation.

Lt { o o O B e
ity = —r % p; % sign|—gi
dtu maz® (O‘:g‘(x)g) g Otherwise ( )

whete i = 1,+--, k. Here, sign(z) = 1if z > 0, and 0 other-
wise. The decay term # x u; % sign[—gi{z)] takes effect only
when the corresponding constraint gi(X) < 0 is satisfied.
Parameter r is positive and controls how fast u; is reduced.
(In our experiments, r = 1.}

Our approach of introducing decay terms is reasonable.
When an inequality constraint g;(X) < 0 is violated, there
will be no decay teem * x u; X sign{—gi(X)], and Lagrange
multiplier p; will increase, This places more weight on the
constraint, and forces it into a feasible region. When the
constraint is satisfied, the decay term reduces the value of
gi. Other unsatisfied constraints will gain more weights at
the same time, making them casier to be satisfied.

3.4. Dynamic Conversion to Equality Constraints

As we have discussed above, if solution X * is on the bound-
ary, i.e., when some g;(X") equals zero, the dynamic sys-
tem (13) cannot reach this point exactly, but the point can
be approached as close as possible if control parameter g;
is also very close to 1.

Suppose we know that some g;{X*) = 0 for a give so-
lution. In this case, faster convergence and higher preci-
sion can be obtained if we consider g;j(X) as an equality
constraint, g;(X) = 0, instead of an inequality conatraint,
9;(X) € 0. The difficulty, however, is that it is impossible
10 know in advance which inequality constraints g;(X} <0
will satisfy the boundary condition (i.e., gij(X) = 0) if a
solution is on the boundary.

In order to improve convergence rate and precision, we
dynamically convert inequality constraints that are very
close to the boundary into equality constrainis. Since we
solve the dynamic system (13) using LSODE, let X and
Xo be the points of two successive iterations. The conver-
sion for inequality constraint g;{X) < 0 occurs when the
following conditions are satisfied.

» The dynamic system converges to some point X when
it changes very little for a large number of itera-
tions. We define the current point to be stable when
#{maz;|z; ~ zo;|/maz;lz;] < 6} 2 5000 (§ = 107* in
our experiments).

o The dynamic system converges to the boundary when
gi(X) < 0 is very close to zero; that 5, 0 < gi(X) < e
(e = 107* in our experiments).

Note that dynamic conversion can happen to many inequal-
ity constraints at the same time as long as they zatisfy those
two conditions.

If dynamic convetsion is performed on (13), then the ter-
rain of the Lagrangian function L¢(X,u) will be totally dif-
ferent. To maintain the search direction in the original-
variable space X, we have to adjust the Lagrange multi-
plier ;. Let the current point be (X, u;) just before the
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conversion. The Lagrangian term associated with inequal-
ity constraint g;{X)<0is
Li(X,p) = wmimaz®(0,0;(X))+maz’¥(0,g;(X))

= wig (X)+g;%(X)

according to the conversion conditions. The derivative of
L;i{X, s} with respect to X and p; are

(s 7 (0 + 283970 < s
+g}(X)gi(X)Ln g;(X)] vx g:(X)
Ty LilX ) = 67 (X)

Let {X, ;) be the point after the conversion. This means
that we consider the inequality constraint g;(X) < 0 in
the boundary where the corresponding equality constraint
gi(X) = 0 can be applicd. Then the Lagrangian term re-
lated to gj(X)=01s

Li(X, ;) = bigi(X) + g5 (X)

and the derivative of Li(X, ;) with respect to X and jj
are

Oxli{X,pi) =

T Li(X, i) (@i +29; (X)) vx g;(X)
s Li( X, 85) gi(X)

Since the control parameter g; is close to 1, the search
direction in the Lagrange-multiplier space changes very lit-
tle, meaning that ., Di (X, pi) = Va;Li(X, ;) indepen-
dent of the value g;. To retain the search direction in the
otiginal-variable space X, we have to set vxLi(X,p5) =

vxLi(X,&;) and get
B = [usy}"'"l(x) + 293"'“‘(-15)] .
g5 + g} (X)g3( X)L g5(X)] - 205(X) (20)

4. NOVEL: A SYSTEM FOR GLOBAL
OPTIMIZATION

After converting inequality constraints into equality con-
straints and by formulating the optimization problem (2)
using the Lagrange-multiplier method (3) or (4), the La-
grangian dynamic system (19) can be considered as an un-
constrained nonlinear optimization problem.

4.1. NOVEL: A Trace-Based Search Method

We have developed NOVEL (14, 12], a hybrid global-
and local-search method for constrained and unconstrained
global optimisation. It is a trajectory-based method that
zrelies on an external force te pull the search out of local
minima, and employs local searches to locate local minima.
NOVEL has three components: exploring the search space,
locating promising regions, and finding local minima. In
exploring the search space, the search is guided by a contin-
wous terrain-independent trace that does not get trapped in

i

local gradients to attract the search to a local minimum but
also relics on the trace to pull it out once little improvement
can be found. Finally, NOVEL selects one initial point for
each region containing promising local minima, and uses it
as an initial point for a local gearch algorithm to find local

minima.

local minima. In locating promising regions, NOVEL uses

]
.
'
'
1

_Trace direction '
. '

b =3 Moving,
: Trajectory - directig'd'

Gradient direction |

Figure 3. NOVEL has two phases: global search
and local refinement. In the global search phase,
the trajectory shows a combined effect of gradient
descents and pull exerted by the moving trace. In
the local search phase, the trajectory is sampled to
collect starting points for pure local descents.

In exploring the search space, the trace plays an impor-
tant role in uncovering regions with new local minima. A
trace is a continuous aperiodic function of {(logical) time
that generates a trajectory. At time 0, both the trace and
the trajectory start at the same point. As the trace moves
from point z; to point z3, the trajectory moves from peint
¥1 t0 ¥2, where yz is a function of the local gradient at 1
and the distance between z, and y (see Figure 3). These
two counteracting forces (descents into local minima and
attraction exerted by the trace) form a composite vector
that represents the route taken by the trajectory.

When dealing with constrained problems formulated us-
ing Lagrangian functions, there aze two different sets of vazi-
ables, the original variables and the Lagrange multipliers.
Intuitively, there is no need of the trace function in the
Lagrangian space as the Lagrange multipliers actually indi-
cate the degree to which inequalities or equalities are satis-
fied. As the trace pulls the search out of local saddle points
and enters an infeasible region, the corresponding Lagrange
multipliers will automatically increase and then attract the
trajectory back into the feasible region. In this sense, the
Lagrange multipliers are passive because they change with
the constraints. If one also uses a trace function in the La-
grangian space, then the force imposed by the trace and
that by the Lagrange multipliers may contradict. (In the
originel NOVEL implementation [14], = tzace was also used
in the Lagrangian space.)

The overall dynamic system for constrained optimization
is described as follows.

LX) = —mOxEdX (A0, 4() — 7 + (X2
=Tx(t))
2x0) = TalaX(0.X2)0(5) (21)
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i { T, Lo(X(). A1), u(8)  9(X) S0
—u(t) = —r % p x siga[—g(X
dt V.,L.(X(t),)&(t), w(t)) Otherwise

where n; and 7, are constant controlling the relative weights
between local search and global exploration.

The dynamic system is used in both the global-search
and the local- search phases. There are three stages in
the global-search phase, each of which outputs a trajec-
tory based on (21). In the first stage of the global search,
the user-defined trace function Tx(t) leads the trajectory
to form Trajectory 1 in Figure 3. In the second and third
stages of the global search, the trace function Tx(t) is de-
fined as the trajectory resulted from the previous stage.
According to the trajectory output from the three stages,
we identify a set of promising starting points and perform
local searches from them. The final result is the best solu-
tion among all these local searches.

NOVEL uses & continuous trace to travel through a prob-
lem space in order to produce a terrain-specific trajectory of
(X (1), AM(t), u#(t)). Thus, designing & good initial trace func-
tion Txét; is a very important problem. Four criteria have
been considered up to now. First, the trace should be ape-
riodic so that it does not return to the same starting points
and regenerates possibly the same trajectory. Second, the
trace needs to be continuous in order to be differentiable.
This allows the generated trajectory to follow the terrain
in & continuous manner without restarting to new starting
points. Third, the trace should be bounded s0 that it will
not explore unwanted regions. Last, the trace should be de-
signed to travel from coarse to fine so that it examines the
search space in greater details when more time is allowed.

Since the design of a good trace function is an intractable
functiona! programming problem, we have studied a num-
ber of heuristic functions and fine-tuned them. Based on
substantial experiments, we have designed a non-periodic,
snalytic trace function as follows.

Ti(t) = p sin [2« (%)”Hw? + 2«“_;1_)] (22)

where & represents the ¢'th dimension, p is a coefficient spec-
ifying the range, and n is the dimension of the original vari-
ables X

4.2. Discontinuities in the Function Space

In some problems, there may exist points with infinite gra-
dients or function values. A continuous differential-equation
solver will fail to work when such points are approached be-
cause the corresponding gradients become extremely large,

and no suitable step sise can be used to lead to convergence..

One way to solve this problem is to scale the Lagrangian
function (12), i.e., Ly(X,A, ) = Ly{X,A,4)/S by a com-
mon constant S that is dynamically changed. This strategy
does not work well in most cases because not all variables
will cause very large derivatives of the Lagrangian function,
and scaling some with small derivatives may lose accuracy
in convergence. Our strategy is to scale each varinble in-
dependently to result in the following scaled Lagrangian
function:

L. (X, )= L(X/A,A/B,u/C)

where 4 = [a1, ", a,.]'r are the scaling variables for X, and
X/A is carried out for each variable individually, namely,
X/A = [z;/m,---,z./a..]‘r. Similarly, B and C arc the

(23)
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scaling variables associated with Lagrange multipliers A and
#, respectively.

We require all scaling variables 4, B,C > 1. The goal of
scaling is to expand only those varinble axes whose deriva-
tives become very large while preserving other variables.
Initially, all scaling variables are set to one (A =B =C =
1), and the scaled Lagrangian function is the same as the
original one.

Suppose the current point is (X, A, ). H the deriva-
tive dz; = Ve;Lu(X, A 4) > v where v is a prespecified
constant (y = 100 in our experiments), we increase the
value of a; to 4; = a; s dz; and also the value of vari-
able £; = z; »dz;. It is easy to show that the derivative
Va; DX, A p) = 1, and other derivatives remain the same

as before. When the value of a; > 8 (8 = 10'® in our ex-
periments), we consider the current point to be where its
derivative approaches infinity and fix this variable to this
value for the duration of the search. This means that this
variable is excluded from the dynamic system. At this time,
the local search will be in the subspace of the original space
with variable z; fixed. On the other hand, when the deriva-
tive dz; of z; decreases after scaling (@; > 1) to be less than
s threshold (10~7 in our experiments), we scale variable z;
back to its original scale.

5. EXPERIMENTAL RESULTS

In this section we describe our experimental results on some
existing benchmarks [3). These benchmarks are challenging
because they model practical applications that have been
studied extensively in the past. As a result, improvements
are generally difficult.

We use the same set of parameters, such as step sise and
trace function, to solve all the problems. The reason for
not tuning the parameters is to avoid any bias, as good
solutions can always be obtained by sufficient tuning. We
further set the starting points of NOVEL as thosc suggested
in the benchmark set. The only exception is the problem-
specific search range, which we set manually based on the
solutions reported in the benchmarks. In practice, this is
reasonable as search ranges are generally known. In cases
that the search range is not available, we use trial and error,
starting from a small range and gradually increasing it uatil
no improvement in solutions can be found.

Table 1 summarizes the results found by NOVEL. Col-
uwmn 1 lists the problem identifications that appesar in the
benchmark collection [3]. Column 2 shows the problem-
dependent search range that the trace function covers. Col-
umn 3 givés the CPU time limit spent by NOVEL on each
problem. The time limit is set in an ad hoc fashion because
the relationship between solution quality and computation
time is unknown for a given problem. Column 4 shows the
best known solutions reported in (3], and Column §, the
solutions reported by Epperly [2]. Here, symbol ‘-’ means
that the method was not able te find a solution for the cor-
responding problem. Column 6 shows the results obtained
by NOVEL using the slack-variable method without any
scaling. Due to oscillations described in Section 2.2., many
of these problems could not be solved.

We overcome these oscillations by trial and error scal-
ing of the objective functions, and Column 7 gives the re-
sults. Column 8 shows the results cbtained by NOVEL with
the MazQ method. Results in bold font are improved by
NOVEL over the best known results, with improvements of
up to 10%. Our results indicate that NOVEL is tobust in
discovering new regions and in escaping from local traps.



Table 1. Results on a collection of constrained global optimization benchmarks [3] comparing NOVEL using
Maz(Q, NOVEL using the slack-variable method, and Epperly’s method [2). Search times are in seconds on a
Sun SS 10/51 computer. Improved solutions found by Maz@Q are indicated in bold font. Symbol ‘- means
that the method was not able to find a solution for the corresponding problem.

—Pioblem  Search  NOVEL Search  Best Known Epperly’s  Slack w/o Scaling Slack w/ Scaling MaxQ

1D Range Time Limit Solutions Solutions Solutions Solutions Solutions
2.11 1.0 3279 -17.00 -17.00 - -17.00 -17.00
2.2.1 10.0 5856 -213.00 -213.00 - -213.00 -213.00
2.3.1 16.0 57404 -15.00 -15.00 . .15.00 -15.00
24.1 10.0 29829 -11.00 -11.00 -11.00 -11.00 -11.00
2.,5.1 1.0 2937 -268.00 -268.00 - -268.00 -268.00
2.6.1 1.0 3608 -39.00 -39.00 - -39.00 -39.00
2.7.1(1 40.0 68563 -394.75 -394.75 - -394.75 -394.75
2.7.1(2 40.0 51175 -884.75 -884.75 - -884.75 -884.75
2.7.1(3 40.0 170751 -8695.00 -8695.00 - -8695.00 -8695.00
2.7.1(4 40.0 203 -754.7% -754.76 - -754.75 -754.75
2.7.1(5) 40.0 97470 -4150.40 -4150.40 - -4150.40 -4150.40
2.8.1 25.0 158310 15990.00 15990.00 - 15639.00 13639.00
3.1.1 5000.0 352305 7049.25 - - T7049.25 7049.25
3.2.1 50.0 47346 -30665.50 -30665.50 - -30665.50  -30665.50
3.3.1 10.0 803 -310.00 -310.00 - -310.00 -310.00
3.4.1 5.0 199 -4.00 -4.00 - -4.00 -4.00
4,.3.1 5.0 20880 -4.51 -4.51 -4.51 -4.51 -4.51
4.4.1 5.0 73 -2.217 -2.217 -2.217 -2.217 -2.217
4.5.1 5.0 16372 -11.96 ~13.40 - -13.40 -13.40
4.6.1 5.0 4435 -5.51 -5.51 -5.51 -5.51 -5.51
4.7.1 5.0 423 -16.74 -16.74 -16.75 -16.75 -16.76
5.2.1 50.0 240829 1.567 - 1.567 1.567 1.567
5.4.1 50.0 374850 1.86 - 1.86 1.86 1.86
6.2.1 100.0 3017 400.00 400.00 400.00 400.00 400.00
6.3.1 100.0 2756 600.00 600.00 600.00 600.00 600.00
6.4.1 100.0 3340 750.00 750.00 750.00 750.00 750.00
7.2.1 100.0 162643 56825.00 - 56825.00 56825.00 56825.00
7.3.1 150.0 228320 46266.00 - - 46266.00 44903.00
7.4.1 150.0 631029 35920.00 - - 315920.00 35920.00

6. CONCLUSIONS

In this paper we have proposed and studied MazQ,
2 method to handle inequality constraints in nonlinear
constrained optimization. We have applied MazQ in
NOVEL [14, 12], & global optimization system we have de-
veloped to solve constrained as well as unconstrained opti-
mization problems. NOVEL generates information-bearing
trajectories in its global search phase based on a user-
defined trace function, and samples these trajectories for
good starting points in its local search phase. We have
tested a number of benchmark problems derived from man-
ufacturing, computed aided design, and other engineering
applications and have compared MazQ to 2 method based
on slack variables [9]. Our results show that MazQ is more
robust in convergence and has found solutions that are ei-
ther better than or the same as existing solutions. Our
future work in this area will be on finding better trace
fanctions, parallelizing the execution on massively paral-
lel computers, and studying many challenging applications
in neural network learning and signal processing.
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