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This paper presents a procedural framework that unifies various mechanisms to look
for discrete-neighborhood saddle points in solving discrete constrained optimization
problems (DCOPs). Our approach is based on the necessary and sufficient condition
on local optimality in discrete space, which shows the one-to-one correspondence be-
tween the discrete-space constrained local minima of a problem and the saddle points
of the corresponding Lagrangian function. To look for such saddle points, we study
various mechanisms for performing ascents of the Lagrangian function in the original-
variable subspace and descents in the Lagrange-multiplier subspace. Our results show
that CSAEA, a combined constrained simulated annealing and evolutionary algorithm,
performs well when using mutations and crossovers to generate trial points and accept-
ing them based on the Metropolis probability. We apply iterative deepening to deter-
mine the optimal number of generations in CSAEA and show that its performance is
robust with respect to changes in population size. To test the performance of the proce-
dures developed, we apply them to solve some continuous and mixed-integer nonlinear
programming (NLP) benchmarks and show that they obtain better results than those
of existing algorithms.

Keywords: Evolutionary algorithms; saddle points; iterative deepening; nonlinear
discrete constrained optimization; simulated annealing.

1. Introduction

Many engineering applications can be formulated as discrete constrained optimiza-
tion problems (DCOPs). Examples include production planning, computer inte-
grated manufacturing, chemical control processing, and structure optimization.

In this paper we review the necessary and sufficient condition for local optimality
in discrete constrained optimization, present procedures for solving these problems,
and apply these procedures to solve some nonlinear programming problems (NLPs).
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Table 1. List of acronyms used in this paper.

CLM, continuous neighborhood constrained local minimum
CGM, continuous neighborhood constrained global minimum
CLMy discrete neighborhood constrained local minimum
CGMy discrete neighborhood constrained global minimum
Ny discrete neighborhood

SPy discrete-neighborhood saddle point

CEA constrained evolutionary algorithm

CEAp CEA with iterative deepening

CSA constrained simulated annealing

CSAp CSA with iterative deepening

CSAEA Combined constrained SA and EA algorithm
CSAEA;p CSAEA with iterative deepening

DLM discrete Lagrangian method

DCOP discrete constrained optimization problem

EA evolutionary algorithm

MINLP mixed-integer nonlinear programming problem
NLP nonlinear programming problem

SA simulated annealing

SSA stochastic search algorithm

The procedures presented are especially useful when an NLP is formulated by
non-differentiable functions with discrete or mixed-integer variables. Table 1 sum-

marizes the acronyms used.
A DCOP can be formulated as follows:

n;in f(z) (1)
subject to g(z) <0 and h(z) =0

where £ = (z1,...,2,)T € D" is a vector of bounded discrete variables. Here, f(x)
is a lower-bounded objective function, g(z) = (g1(z),..., gr(z))T is a vector of k
inequality constraint functions, and h(z) = (hi(z),... R (2))T is a vector of m

equality constraint functions. Functions f(z), g(z), and h(z) are not necessarily
differentiable and can be linear or nonlinear, continuous or discrete, and analytic
or procedural. Without loss of generality, we consider only minimization problems.

Solutions to (1) cannot be characterized in ways similar to those of problems
with differentiable functions and continuous variables. In the latter class of prob-
lems, solutions are defined with respect to neighborhoods of open spheres whose
radius approaches zero asymptotically. Such a concept does not exist in problems
with discrete variables. To characterize solutions sought in discrete space, we define
the following concepts on neighborhoods and constrained solutions in discrete space
X C D™,

Definition 1. Nj(z), the discrete neighborhood ! of x € X is a finite user-defined
set of points {z’ € X} such that 2’ € Ny(z) <= z € Ny(z'), and that it is possible
to reach every " € X from any z in one or more steps through neighboring points.

Definition 2. Point z € X is called a discrete-neighborhood constrained local min-
imum (CLMy) if it satisfies two conditions: (a) z is a feasible point and satisfies
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constraints g(z) < 0 and A(z) = 0; and (b) f(z) < f(z’) for all feasible ' € Ny(zx).
In particular, z is a CLMy when z is feasible and all its neighboring points in Ny(z)
are infeasible.

Definition 3. Point z € X is called a constrained global minimum in discrete
netghborhood (CGMy) iff (a) z is feasible; and (b) for every feasible point z’ € X,
f(@') > f(x). It is obvious that a CGMjy is also a CLM,. The set of all CGM, is
Xopt-

There are corresponding definitions of constrained local minima (CLM_.) and
constrained global minima (CGM,) in continuous space, although they are not
presented formally here.

We have shown earlier!” that the discrete-neighborhood extended saddle-point
condition (Sec. 2.1) is necessary and sufficient for a point to be a CLMg. We have
also extended simulated annealing (SA)!® and greedy search!” to look for such
saddle points SPy (Sec. 2.2). At the same time, new problem-dependent heuristics
have been developed in the evolutionary algorithm (EA) community to handle
nonlinear constraints'? (Sec. 2.3). Up to now, there is no clear understanding on
how the various search mechanisms in SA, EA, and others can be unified effectively
for solving a wide range of optimization problems.

Our primary goal in this paper is to show that discrete-neighborhood saddle
points can be found effectively by integrating the various search mechanisms in SA
and EA. We present a framework that employs these mechanisms to probe a search
space, where a probe is a neighboring point examined, independent of whether it
is accepted or not. We illustrate our approach on CSAEA, a combined constrained
simulated annealing and evolutionary algorithm, that uses mutations and crossovers
to generate trial points and that accepts the points generated according to the
Metropolis probability. Finally, we use iterative deepening to determine the optimal
number of generations in CSAEA and show that its performance is robust with
respect to changes in population size. Note that our approach is general and works
for other operators to probe a search space.

CSAEA is a stochastic search algorithm (SSA) that generates probes in a random
fashion in order to find solutions. Among the various convergence conditions of SSAs
to a solution of desired quality, the strongest one is asymptotic convergence with
probability one. In this case, the search stops at a desired solution in the last probe
with probability one when the number of probes approaches infinity. This concept is
of theoretical interest because any algorithm with asymptotic convergence does not
imply that it will find better solutions with higher probabilities when terminated
in finite time.

A weaker convergence condition is the following reachability condition:

Definition 4. The reachability probability, Pr(N), of an SSA after making N
probes is the probability that the SSA will find an incumbent solution of desired
quality in any of its N probes.
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Let p; to be the probability that an SSA finds a solution of desired quality
in its jth probe and all probes be independent (a simplifying assumption). The
reachability probability after making N probes is:

N

Pp(N)=1-]J(1-p;), where N >0. (2)

j=1

As an example, Fig. 1(a) plots Pr(NgP) when CSAEA (see Sec. 3.2) was run
under various number of generations N, and fixed population size P = 3 (where

N = NyP). The graph shows that Pgr(N,P) approaches one as Ny P is increased.
Although it is hard to estimate Pr(/N) when a test problem is solved by an SSA,
we can always improve its chance of finding a solution by running the same SSA
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(a) Pr(N) approaches one as N = Ny P is increased.
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(b) Existence of absolute minimum N = Ngpt P in PRy

Fig. 1. An example showing the application of CSAEA with P = 3 to solve a discretized version
of G1'2 (N = Nopt P = 2000).
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multiple times from random starting points. Given Pr(N) for one run of the SSA
and that all runs are independent, the expected total number of probes to find a
solution of desired quality is:

> PeN)(1L - PRlN) N % = BT (3)

Figure 1(b) plots (3) based on Pr(NgP) in Fig. 1(a). In general, there exists
Ngopt that minimizes (3) because Pr(0) = 0, limn, o0 PrR(Na) = 1, %5 is
bounded below by zero, and Ef{m — oc as N — oo. The curve in Fig. 1(b)
illustrates this behavior. .

Based on the existence of Nggpt, we present in Sec. 3.3 some search strategies
that minimize (3) in finding a solution of desired quality. Finally, Sec. 4 compares
the performance of our proposed algorithms.

2. Previous Work

In this section, we summarize the theory and algorithms of Lagrange multipliers in
discrete space and some related work in EA.

2.1. Ezxtended saddle-point condition for discrete
constrained optimization

Define an equality-constrained DCOP as follows!7>18:

min  f(z) (4
subject to A(z) =0

where z is a vector of bounded discrete variables.
A transformed augmented Lagrangian function of (4) is defined as!'”:

La(@, X) = f(z) + XT|h(z)| + l|A(z)]? (5)

where A = (A1,...,An)T is a vector of Lagrange multipliers, |h(z)| =
(A1 (@), ., hm(@))T, and || h(z) (2= S, h2(a). |

Here, we have used {h(z)| to transform h(z) into a non-negative function.

Note that, although the transformed constraints are not differentiable at A(z) =
0, they are not an issue in our theory because we do not require their differentiability.

By applying a similar transformation, inequality constraint g;(z) < 0 can be
transformed into equivalent equality constraint max(g;(z),0) = 0. Hence, we only
consider equality constraints from now on.

We define a discrete-neighborhood saddle point SPy(z*,A*) with the following
property:

La(z*, A) < Lg(z*, X*) < Lg(z, ) (6)
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for all z € Ny(z*) and all A € R™. Note that saddle points defined in (6) are with
respect to discrete neighborhoods and are different from those in continuous space,
although they both satisfy the same inequalities in (6).

The concept of SP; is very important in discrete searches because, starting from

them, we can derive the necessary and sufficient condition for CLMy that governs
the correctness of all such search procedures. This is stated formally in the following
theorem17:
Theorem 1. Necessary and sufficient extended saddle-point condition (ESPC) on
CLM4.'" A point in the discrete search space of (4) is a CLMy iff there exists q
finite X* such that (6) is satisfied for for any extended Lagrange multiplier \** >
A* .2

2.2. Iterative procedures for finding SP,;

Theorem 1 proves that finding (z*, A*) that satisfies (6) entails the search of some
A*™ > X* and a local minimum of La(z, A**) with respect to z for this A\**. This
requirement is different from that of conventional theory of Lagrange multipliers
in continuous space, which requires the search of unique Lagrange multipliers that
satisfy a system of nonlinear equations. Since there is no closed-form solutions to a
system of nonlinear equations, solving them requires an iterative search in the joint
(z, ) space. In contrast, finding the local minimum of L4(z, A**) with respect to
z for A** > A\* can be carried out in a decoupled fashion, with the search of \**
separate from the search of z*. A possible implementation is to have an iterative
process with an inner loop that performs descents in La(z, M), while keeping A fixed,
until either a local minimum of Lg has been found or a predetermined number of
probes have been made. The outer loop then increases the \’s on those violated
constraints. The following are two example algorithms designed using this approach.

The first algorithm, the discrete Lagrangian method (DLM),!® is an iterative
local search that uses (6) as the stopping condition. It updates the z variables in an
inner loop in order to perform descents of Ly in the z subspace, while occasionally
updating the A variables of unsatisfied constraints in an outer loop in order to
perform ascents in the \ subspace. Note that the simple algorithm may get stuck
in an infeasible region when the ob jective value is too small or when the Lagrange
multipliers and/or constraint violations are too large. In this case, increasing the
Lagrange multipliers will further deepen the infeasible region, making it impossible
for a local-descent algorithm in the inner loop to escape from this region. One way
to address this issue is to scale back \ periodically and to “lower” the barrier in

2For two vectors v and w of the same number of elements, v < w means that each element of v is
not greater than the corresponding element of w; and v < w means that each element of v is less
than the corresponding element of w. 0, when compared to a vector, stands for a null vector.
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the Lagrangian function in order for local descents in the inner loop to escape from
an infeasible region.

The second algorithm is the constrained simulated annealing (CSA)'® algorithm
shown in Fig. 2(a). It looks for S Py by probabilistic descents of the Lagrangian func-
tion in the z subspace in the inner loop and by probabilistic ascents in the A sub-
space in the outer loop, with an acceptance probability governed by the Metropolis
probability. The following theorem shows that the algorithm converges to a saddle
point asymptotically with probability one.l®

Theorem 2. Asymptotic convergence of CSA. Suppose x’ € Ny(x) is gen-
erated from x using generation probability G(x,x’), where G(x,x') > 0 and
2oxreDy(x) G(X,X') = 1. Further, assume a logarithmic cooling schedule on T and
that x’ is accepted with Metropolis probability Ar(x,x’):

exp (_ (La(x') — Ld(x))+) if X' = (2, \)

Ar(x,x') = T (7N

x) — Lqg(x' )t
exp (_(Ld( ) TLd( )) ) ’l.f x’=(m,/\’)

1. procedure CSA (a,N,)
set initial x «— (z1, -+ ,Zn, A1, - ,Ak)T
with random x, A «+— 0;
while stopping condition (6) is not satisfied do
generate x' € Ng(x) using G(x,x’);
accept x’ with probability Ar(x,x")
reduce temperature by 7" «— aT;
end_while
end_procedure

N

X NSO AW

(a) CSA called with schedule N4 and cooling rate a.

procedure CSArp
set initial cooling rate a «— ag and Ng «— Ngy;
set K «— number of CSA runs at fixed «;
repeat
for i — 1 to K do call CSA(a, N,); end_for;
increase cooling schedule N, «— pN,; a «— al/P;
until feasible solution has been found and no
better solution in two successive increases of Ng;
end_procedure

NSk wWE

%

(b) CSA|p : CSA with iterative deepening.

Fig. 2. Constrained simulated annealing algorithm (CSA) and its iterative-deepening extension.
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where (a)t = a if a > 0, and (a)™ = 0 otherwise for all a € R. Then the Markov
chain modeling CSA converges asymptotically to a CGMy with probability one.

Theorem 2 extends a similar theorem in SA that proves the asymptotic con-
vergence of SA to a global minimum when solving an unconstrained optimization
problem. By looking for SPy in Lagrangian space, Theorem 2 proves the asymptotic
convergence of CSA to a CGM, when solving a constrained optimization problem.

Theorem 2 is of theoretical interest because its convergence is only achieved as
time approaches infinity. In practice, when CSA is run using a finite cooling schedule
Na, it finds a CGMy with reachability probability Pr(N,) < 1. To increase its
success probability, CSA with N, can be run multiple times from random starting
points. Assuming independent runs, a CGMy can be found in finite average time
defined by (3). The minimum of these average times is achieved when CSA is run
using a cooling schedule of Nop¢. (Figure 1(b) illustrates the existence of Nop for
CSAEA.) However, Nop, is problem-dependent and cannot be determined easily
a priori.

To find Nopy at run time without using problem-dependent information, we
have proposed to use iterative deepening’ in order to determine Nopt iteratively.
Figure 2(b) shows the pseudo code of CSAp (CSA with iterative deepening). The
algorithm first runs CSA using a short duration. If the current run fails to find a
CGMy, it doubles the duration CSA is allowed and repeat the run.1* This step is
repeated until a CGMjy is found. Since the total overhead in iterative deepening
is dominated by that of the last run, CSA;p has a completion time of the same
order of magnitude as that of the last run that succeeds to find a CGMj. Figure 3
illustrates a case in which the total time incurred by CSAjp is of the same order as
the expected overhead at Nype.

Since Pr(Nopt) < 1 for one run of CSA at Nypt, it is possible that CSA fails to
find a solution when run with a duration close to Nops. After doubling the cooling

Do
PR(NG;Q)

Total time for iterative
deepening = 31¢

. Optimal time = 12¢
t 2t 4t 8t 16t logz(N,)

Fig. 3. An application of iterative deepening in CSA[p.
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schedule, its duration in the next run will overshoot beyond Nyp¢. To reduce the
chance of overshooting and to increase the success probability before its duration
reaches Nop¢, we have proposed to run CSA multiple times from random starting
points at each duration in CSAip. For instance, CSA can be run K = 3 times
at each duration before its duration is doubled [Fig. 2(b)]. Our results show that
this strategy generally requires twice the average completion time with respect to
multiple runs of CSA that use a duration of Ny before it finds a CGMgy.1*

2.3. EA for constrained optimization

Evolutionary algorithm (EA) is a general optimization algorithm that incorporates
aspects of natural selection or survival of the fittest. It maintains a population
of alternative candidates (usually generated randomly initially) and probes the
search space using genetic operators, such as crossovers and mutations, in order to
find better candidates. The original EA was developed for solving unconstrained
problems, using a single fitness function to rank candidates. Recently, many variants
of EA have been developed for solving constrained NLPs. Most of these methods
were based on penalty formulations that use EA to minimize an unconstrained
penalty function. Similar to CSA, these methods do not require the differentiability
or continuity of functions.
One approach is the static-penalty formulation with fixed penalties®:

Fu(z.y) = f(@) + 3 wlhi(@)le, where p>0. (8)
i=1

Penalty vector v = (71,...,7¥m)T is fized and chosen to be so large that:
Fy(z*,v) < Fs(z,v) forallze X — Xopte and z* € Xops . 9)

Based on (9), an unconstrained global minimum of (8) over z is a CGMy to (4);
hence, it suffices to minimize (8) in solving (4). Since both f(z) and |h;(x)| are
lower bounded and z takes finite discrete values, v always exists and is finite,
thereby ensuring the correctness of the approach. Note that other forms of penalty
formulations have also been studied in the literature.

A major issue of static-penalty methods is the difficulty of selecting a suitable
7. If v is much larger than necessary, then the terrain will be too rugged to be
searched effectively. If it is too small, then (9) does not hold and feasible solutions
may not be found by minimizing F,(z,~).

Dynamic-penalty methods,® on the other hand, address the difficulties of static-
penalty methods by increasing penalties gradually in the following fitness function:

m
Fy(z) = f(2) +(C 1)* ) |hi())? (10)
J=1
where t is the generation number, and C, «, and 3 are constants. In contrast to
static-penalty methods, (C t)®, the penalty on infeasible points, is always increased
during evolution.
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Dynamic-penalty methods do not always guarantee convergence to CLMy
or CGM,. For example, consider a problem with two constraints h;(z) = 0
and hy(z) = 0. Assuming that a search is stuck at an infeasible point z’ and
that for all z € N(z'), 0 < lh(z")] < |hi(z)], lh2(z')] > |ho(z)| > 0, and
Ihi(')]P + lha(z')|P < by ()| + |h2(z)[#, then the search can never escape from
z’ no matter how large (C' x t)® grows.

One way to ensure the convergence of dynamic-penalty methods is to use a dif-
ferent penalty for each constraint, as in Lagrangian formulation (5). In the previous
example, the search can escape from z’ after assigning a much larger penalty to
ha(z') than that to h;(z’ ). :

There are other variants of penalty methods, such as annealing penalties, adap-
tive penalties!? and self-adapting weights.4 In addition, problem-dependent ge-
netic operators for handling constraints have been studied. These include meth-
ods based on preserving feasibility with specialized operators, methods searching
along boundaries of feasible regions, methods based on decoders, repair of infeasible
solutions, co-evolutionary methods, and strategic oscillation. However, most meth-
ods require domain-specific knowledge or problem-dependent genetic operators, and
have difficulties in finding feasible regions or in maintaining feasibility for nonlinear
constraints.

In short, the success of penalty methods rely on choosing suitable penalties.
Such penalties are difficult to pick a priori in static penalty methods and do not
always work in dynamic penalty methods when a single penalty is used. Multiple
penalties, one for each constraint as in Lagrangian methods, will be more flexible
in guiding a search out of infeasible local minima.

3. A General Framework for Finding SP,

In this section, we propose a general procedural framework that unifies simulated
annealing (SA), evolutionary algorithms (EA), and greedy searches in looking for
discrete-neighborhood saddle points. Such a framework is important because it
combines the best features from various mechanisms in order to arrive at better
search algorithms.

Figure 4 depicts a unified problem-independent procedural framework to look
for SP; among a list of candidates maintained. It consists of two loops: the z loop
that performs descents of L4z, A) in the z subspace, and the \ loop that performs
ascents of Lq(z, A) in the A subspace when there are unsatisfied constraints for any
candidate in the list. The procedure stops when no new probes can be generated in
both subspaces to improve Lg(z, )). By choosing different options or by tuning the
parameters in the four components of the framework, we can design new constrained
optimization algorithms or improve existing algorithms to look for CLM d-

The general procedure is guaranteed to terminate only at feasible points; oth-
erwise, new probes will be generated in the A subspace to suppress any violated
constraints. Further, if the procedure is able to enumerate all the points in Nan(z')
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Generate random candidate with initial A

'

Insert candidate(s) into
list based on sorting
criterion (annealing

or deterministic)

Generate new candi-
date(s) in the A
subspace (probabi-
listic or greedy)

Y
Update Lagrangian

values of all candi-
dates (annealing
or determinisic)

Generate new candidates
in the = subspace
(genetic, probabilistic,
or greedy)

conditions
met?

stop

Fig. 4. An iterative stochastic procedural framework to look for SP,.

when trying to determine the direction to move from z’ in the = subspace, then the
point where the procedure stops must be a discrete-space saddle point, or equiva-
lently, a CLMy. This is true because the point where the procedure stops is a local
minimum in the z subspace of Ls(z,\) and a local maximum in the A subspace.

Both DLM and CSA in Sec. 2.2 fit into this procedural framework, each main-
taining one candidate at a time. DLM entails greedy searches in the z and A sub-
spaces, deterministic insertions into the list of candidates, and deterministic accep-
tance of candidates until all the constraints are satisfied. On the other hand, CSA
generates new probes randomly in one of the £ and A variables, accepts them based
on the Metropolis probability (7) if L4 increases along the z dimension and decreases
along the A dimension, and stops updating A when all the constraints are satisfied.

In this section, we present algorithms that use genetic operators to generate
new probes and their iterative-deepening versions:

3.1. Constrained Evolutionary Algorithm (CEA)

CEA was developed based on the general framework in Fig. 4 that looks for discrete-
neighborhood saddle points. Similar to traditional EA, it organizes a search into -
a number of generations, each involving a population of candidates in the search
space. It searches in the Lagrangian space, using genetic operators to generate new
probes in the original-variable subspace, either greedy or probabilistic generations
in the A subspace, and deterministic organization of candidates according to their
Lagrangian values. Figure 5 outlines the pseudo code of the algorithm, and Table 2
shows how CEA fits into the general framework to look for discrete-space saddle
points. We explain in the following the details of the algorithm.
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1. procedure CEA(P, Ng)

2. set generation number t «— 0 and A(t) « 0;

3. initialize population P(t);

4 repeat /* over multiple generations */

5. eval. Lg(z, A(t)) for all candidates in P(t);
6 repeat /* over probes in x subspace */

7 y — EA(select(P(t)));

8 evaluate Lq4(y,\) and insert into P(t)
9. until sufficient probes in x subspace;

10. A(t) — A(t) ® c V(h(z), P(t)); /* update X */
11. t—t+1;

12. until (¢t > Ng)

13. end_procedure

(a) CEA called with population size P and Ny generations.

procedure CEAp
set initial number of generations Ny = Np;
set K = number of CEA runs at fixed Ngy;
repeat /* iterative deepening to find CGMy4 */
for i — 1 to K do call CEA(P,Ny) end_for
set Ny «— pN, (typically p = 2);
until NV, exceeds maximum allowed or
(no better solution has been found in two
successive increases of Ny and Ny > p° Ny
and a feasible solution has been found);
7. end_procedure

SO wwRhE

(b) CEAjp with iterative deepening.

Fig. 5. Constrained EA and its iterative deepening version.

Table 2. Both CEA and CSAEA fit into the procedu-
ral framework for finding discrete-space saddle points.

Framework Component CEA CSAEA
Generation of z probes EA SA & EA
Generation of A probes  probabilistic  probabilistic
Insertion of x probes annealing annealing
Insertion of A probes annealing annealing

Lines 2-3 initialize to zero the generation number ¢ and the vector of Lagrange
multipliers A\. A starting population of candidates in z can be either randomly
generated or user provided.
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Line 4 terminates CEA when either the maximum number of allowed generations
is exceeded or when no better feasible solution with a given precision has been found
in a number of generations. (The stopping condition is specified later in CEA with
iterative deepening.)

Line 5 evaluates in generation t all the candidates in population P(t) using
Lg(z, A(t)) defined in (5) as the fitness function.

Lines 6-9 explore the original-variable subspace by evolutionary search. They
select from P(t) candidates to reproduce using genetic operators and insert the new
candidates generated into P(t) according to their fitness.

Line 10 updates A according to V(h,P(t)), the vector of maximum constraint
violations over population P(t), where:

T
V(@) PO) = (mpx a(ol.., max (@) (11)
Here, h;(z) is the ith constraint function, and c is a positive step-wise parameter
controlling how fast the Lagrange multipliers change.

There are two considerations in implementing operator & in Line 10: the gener-
ation of A and its acceptance. We generate a new )\’ either probabilistically from a
uniform distribution in (—c x V/2,¢ x V/2], or in a greedy fashion from a uniform
distribution in (0, ¢ x V|. The latter allows only ascents of the fitness function in the
A subspace. The new X can be accepted either deterministically when it leads to
an improved fitness value, or stochastically according to the Metropolis probability
(7). In any case, a Lagrange multiplier will not be changed if its corresponding
constraint is satisfied.

Finally, Line 11 updates the generation number before advancing to the next
generation.

It should be obvious that the necessary condition for CEA to converge is when
h(z) = 0 for every candidate z in the population, implying that all the candidates
are feasible solutions to the original problem. If any constraint in A(z) is not satisfied
by any of the candidates, then A will continue to evolve in order to suppress the
unsatisfied constraint. Note that although we only need the constraints for one
(rather than all) candidate to be satisfied, it is difficult to design a penalty-update
procedure that identifies a specific candidate to enforce constraint satisfaction. As
a result, our penalty-update procedure tries to enforce constraint satisfaction for
all the candidates.

One design consideration in applying CEA is in choosing a suitable population
size. For the benchmark problems tested, the optimal population size ranges be-
tween 20 and 50. Although we have developed a dynamic procedure to select a
suitable population size at run time, we do not present the procedure here because
CEA performs worse than CSAEA described in the next subsection, which uses a
small and fixed population size.

Another design consideration is in determining the proper number of generations
to use in each run. It is not necessary to run CEA once for an exceedingly long
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duration in order for it to find a CGMy. Similar to CSA, CEA is an SSA that
can be run multiple times, each with a short duration, in order to minimize the
expected overhead of finding a solution of desired quality. In Sec. 3.3, we use iterative
deepening to determine the optimal number of generations.

3.2. Combined Constrained SA and FA (CSAEA)

Based on the general framework in Fig. 4, Fig. 6 shows a new algorithm CSAEA
that integrates CSA in Fig. 2(a) and CEA in Fig. 5(a).

The algorithm uses both random probing in SA and genetic operators in EA
to generate new probes in the r subspace. In each generation, CSA is performed
on every candidate in the population for ¢ probes, where g is set to %"- after ex-
perimentation. Our evaluations have also shown that, instead of running CSA on a
candidate anew from a random starting point each time the candidate is examined,
the best solution point found in the previous run should be used as the starting
point of the current run. Next, CSAEA performs an evolutionary search on the
candidates by selecting candidates from the population, applying genetic opera-
tors on the candidates, and inserting the candidates back into the population. The
following explains the actions performed in each step of the procedure.

Line 2 initializes P(0). Unlike CEA, x = (Z1,...,Tn, A1,--. ,A6)T in P(2) is
defined in the joint z and A subspaces. Initially, z can be user-provided or randomly
generated, and A is set to zero.

1. procedure CSAEA(P, Ny)

2 set t «— 0, To, 0 < @ < 1, and P(t);

3 repeat /* over multiple generations */

4. for i — 1 to ¢ do /* SA in Lines 5-10 */

5. for j — 1 to P do

6 generate x; from Ny(x;) using G(xj,Xj);
7 accept xj with probability Ar(x;, x5);

8

9

end_for

. set T «— oT; /* set T for the SA part */
10. end_for
11. repeat /* by EA over probes in z subspace */
12. y — EA(select(P(t)));
13. evaluate Lq4(y, A) and insert y into P(1);
14. until sufficient number of probes in z subspace;
15. t — t+ q; /* update generation number */

16. until (¢t > Nyg)
17. end_procedure

Fig. 6. CSAEA: Combined CSA and CEA called with population size P and N,y generations.
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Lines 4-10 perform CSA using g probes on every candidate in the population.
In each probe, we generate x_; randomly and accept it based on (7). Experimentally,

we have determined ¢ to be Es‘i' As is discussed earlier, we use the best point of
one run as the starting point of the next run.

Lines 11-15 perform an EA search by using genetic operators to generate probes
in the z subspace and by sorting all the candidates according to their fitness value
L, after generating a probe. Since each candidate has its own vector of Lagrange
multipliers, its Lagrangian value may be biased and cannot be compared directly
with the Lagrangian value of another candidate. As a result, the algorithm first
computes the average value of Lagrange multipliers for each constraint over all the
candidates in P(t) and then calculates Ly for each candidate using the average
Lagrange multipliers.

Similar to CEA, we must choose a suitable number of candidates in the popula-
tion of CSAEA and the duration of each run in order for the algorithm to perform
well. We address these two issues in CSAEA[p next.

3.3. CEA and CSAFA with an optimal schedule

In this section we present a method to determine the optimal number of generations
in one run of CEA and CSAEA in order to find a CGMy4. The method is based on
the use of iterative deepening’ that determines an upper bound on N, the number
of generations in one run of CEA or CSAEA, in order to minimize the expected
total overhead in (3).

The number of probes expended in one run of CEA or CSAEA is N = NP,
where P is the population size. For a fixed P, let Pr(N,;) = Pr(PN,) be the
reachability probability of finding CGMy. From (3), the expected total number of
probes using multiple runs and fixed P is:

N _ NP N,
Pr(N)  Pr(NgP) = Pa(N,)

We are interested to find N, ., the optimal number of generations that
minimizes (12). For the same reason as is indicated in Sec. 1, Ny . exists and is
bounded. Figure 1(b) illustrates the existence of such an absolute minimum when
CSAEA with P = 3 was applied to solve G1.12

To estimate Ny, we apply iterative deepening similar to that in CSAip

(Sec. 2.2). Assume that CEApp in Fig. 5(b) uses a set of geometrically increas-
ing Ny to find a CGMy:

(12)

N, =p'No, i=0,1,... (13)

where Ny is the (small) initial number of generations. Under each Ny, CEA is run
a maximum of K times but stops immediately when the following three conditions
hold: (a) a feasible solution has been found, (b) when no better solution has been
found in two successive generations, and (c) the number of iterations has been
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increased geometrically at least five times. These conditions are established in or-
der to ensure that iterative deepening has been applied adequately. For iterative
deepening to work, p > 1.

Let Pgr(N, ¢:) be the reachability probability of one run of CEA under Ny, gener-
ations, Bopi(f’) be the expected total number of probes taken by CEA with N,
to find a solution of quality f’, and Bip{(f’) be the expected total number of probes
taken by CEAp in Fig. 5(b) to find a solution of quality f’ starting from Ng
generations. According to (12),

Bopt(f’) =P N

L (14)
PR(Ngog::t)

The following theorem shows the sufficient conditions in order for Bip(f’) =

O(Bopt (f'))-

Theorem 3. CEA;p and CSAEA;p are optimal and can achieve Bip(f')
O(Bopt(f')) when

(a) Pr(0) = 0, Pgr(N,) is monotonically non-decreasing for Ny € (0,00), and
limy, o0 Pr(Ng) < 15
(b) (1 — Pr(Ng,,.))¥p < 1.

Proof. Based on the schedule in (13) used by CEAjp, define ¢ in such a way that:

Ngo1n < Ng,.. <Ny, , where Ny, = pN,, _, . (15)
If Pg(z) is monotonically non-decreasing in (0, +00), we have:
ﬁR(Ngq—x) S ij(Ngopt) S PR(Ngq) - (16)

Let Pyr(INy) be the probability that CEA does not succeed in K runs with N,
generations in each run. Since all runs are independent, we have:

Pnr(Ng) = (1 — Pr(N,))X . (17)
From (16) and (17), we have:
PNR(Ngy.) = Pur(Ng,) 2 Pnr(Ngpp) > -+ (18)

Let Ep, be the expected total number of probes expended in Lines 3-6 in
Fig. 5(b) when CEA is run a maximum of K times at Ny, probes each but stops
immediately if it succeeds in any one of these runs. Then:

K-1
Ep, = > [1—Pr(Ng )P -Ng <K-P-Ng =O0(Ng,), i=0,1,2,.... (19)
j=0

When CEA in Line 4 of Fig. 5(b) is called with Ng,,..., Ny  generations, its
success probability is larger than the success probability of CEA called with Ny,
generations alone. Hence,

o0 i—1 R
Bio(f) < [1 — Pxr(Ng,)Es, + Pnr(Ng,) D Ep, [ Pnr(Ng).  (20)

i=g+1 j=q+1
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From (18), (20) can be reduced to:

o0 i—1
BID(fI) S [1 - PNR(Ngopt)]EBq + ﬁNR(Ngopt) Z EB: H pNR(Ng,)
i=q+1 j=q+1
R o7} 1—1 R
< Ep, + Pnr(Ng,.) > Es. [[ Byr(Ng,). (21)
i=q+1 J=q+1

From (18), (19) and (21), we have:

Bio(f) £ ) (PNR(Ngop))'EByyi = I (PNR(Ngyp ) O(Ng, )
i=0 i=0

= O(pNgo) Y _(Pnr(Ng,p)p)* - (22)
=0

For the search to converge in finite average time,
Pnr(Ng,,)p = (1 — Pr(Ng,,.))¥p <1 (23)

which is condition (b) of the theorem. This proves the theorem:

Bip(f') = O(p?Ng,) = O(pNg,,.) = O(Bopt(f')) - (24)
a

Typically, p = 2, and I:’R(Ngopt) > 0.25 in all the benchmarks tested. Substitut-
ing these values into condition (b) in Theorem 3 yields K > 2.4. Hence, we have
used K = 3 in our experiments. Since CEA is run a maximum of three times under
each Ny, Bopi(f') is of the same order of magnitude as one run of CEA with Ng_,.

The only remaining issue is to choose a suitable population size P in each
generation. In CEAjp, we have found that the optimal P ranges from 4 to 40
and is difficult to determine a priori. Although it is possible to choose a suitable
P dynamically, we do not present the algorithm here because the new CEAip
performs worse than CSAEAp. In CSAEAp, P = 3 was found to perform well
experimentally. Although the optimal P may be slightly different, the corresponding
expected overhead to find a CG My differs very little from that when a constant P

is used.

4. Experimental Results

We present in this section our experimental results on applying CSAp, CEAp
and CSAEA;p to evaluate some nonlinear benchmarks. We first determine the best
combination of parameters to use in generating probes and in organizing candidates.
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4.1. Implementation details

An important element of our Lagrangian method is the frequency of updating A.
As in CSA,'® we set the ratio of generating trial points in z and A subspaces to be
20n to m, where n is the number of variables and m is the number of constraints.
This means that z is updated more often than A.

In generating trial points in the z subspace, we use a dynamically controlled
neighborhood size in the SA part!® based on the 1:1 ratio rule,® whereas in the EA
part, we use the seven operators in Genocop III*! and L4 as our fitness function. We
also use the default parameters of CSA6 in the SA part and those of Genocop III!!
in the EA part. '

The following rule generates trial point A’ in the A subspace:

N;=Xdj+r1¢;, wherej=1,...,m. (25)

Here, r; is a random number in [-1/2, +1/2] when X is generated probabilistically,
and is randomly generated in [0,1] when probes in A are generated in a greedy
fashion.

We adjust ¢ in (25) adaptively according to the degree of constraint violations:

¢ =w @ V(h(z), P(t)) (26)

where ® is the vector-product operator, and V is the vector of maximum viola-
tions defined in (11). When V;(h(z), P(z)) = 0, A; does not need to be updated;
hence, ¢; = 0. In contrast, when V;(h(z), P(x)) > 0, we adjust ¢; by modifying w;
according to how fast V;(h{z), P(z)) is changing;:

W — o Wy if V,- (h(.‘l?),P(Z)) > T(]T
Y lmws i Vih(z), P(z)) < 1T

where T is the temperature, and 7o = 1.25, 17;=0.8, 7, = 1.0, and 7 = 0.01
were chosen experimentally. When V;(h(z), P(z)) is reduced too quickly [second
case in (27)], Vi(h(z),P(x)) is over-weighted, leading to possibly poor objectives
or difficulty in satisfying other under-weighted constraints. Hence, we reduce \;’s
neighborhood. In contrast, if V;(h(z), P(x)) is reduced too slowly [first case in (27)],
we enlarge A;’s neighborhood in order to improve its chance of satisfaction. Note
that w; is adjusted using 7" as a reference because constraint violations are expected
to decrease with 7.

In addition, for iterative deepening to work, we have set the following
parameters: p = 2, K = 3, Ny = 10-n,, and Npax = 1.0 x 108n,, where n, is
the number of variables, and Ny and Npga.x are, respectively, the initial and the
maximum number of probes.

(27)

4.2. Fvaluation results

Due to a lack of large-scale discrete benchmarks, we derive our benchmarks from
two sets of continuous benchmarks: Problem G1-G10812 and Floudas and Pardalos’
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Problems.®> We have also tested our algorithms on MacMINLP,® a collection of
mixed-integer benchmarks.

In generating a discrete constrained NLP, we discretize continuous variables in
the original continuous constrained NLP into discrete variables as follows. Contin-
uous variable z; in the range [l;,u;] is forced to take values from the following set,
where [; and u; are the lower and upper bounds of z;, respectively, and s = 1.0x 10":

( bi—ai.

a,;+ J
S
1.}, :

(ai+;J j=0,1,...,l_(bi—ai)3'_t) ]fb"'—a"'zl

Table 3 shows the evaluation results on various strategies in CSA;p, CEAp,
and CSAEA[p on a discretized version of G2.8:12 We show the average time of ten
runs for each combination in order to reach two solution quality levels (1% or 10%
worse than CG My, assuming the value of CGMy is known). Evaluation results on
other benchmark problems are similar.

Our results show that CEAp usually takes longer than CSAp or CSAEAp to
find a solution of similar quality. Further, CSAip and CSAEAp have better perfor-
mance when probes generated in the = subspace are accepted by annealing rather
than by deterministic rules. (The former prevents a search from getting stuck in
local minima or infeasible points.) On the other hand, there is little difference in
performance when new probes generated in the A subspace are accepted by prob-
abilistic or by greedy rules and when new candidates are inserted according to
annealing or deterministic rules. In short, generating probes in the z and A sub-
spaces probabilistically and inserting candidates into their population by annealing
rules lead to good and stable performance. For this reason, we use this combination
of strategies in our experiments.

j—_—O,l,...,S) ifb.,;-a,'<1
(28)

Table 3. Timing results on evaluating various combinations of strategies in CSAjp, CEAp and
CSAEA;p with P = 3 to find solutions that deviate by 1% and 10% from the best-known solution
of a discretized version of G2. All CPU times in seconds were averaged over ten runs and were
collected on a Pentinum III 500-MHz computer with Solaris 7. “—” means that no solution with
the desired quality can be found. The best result in each column is boxed.

Probe Generation Strategyllnsertion|[ Solution 1% off CG My Solution 10% off CGMy
A subspacel I subspace lStrategy CSAip CEAjp CSAEAp [CSA;p CEAp CSAEAp

prob prob anneal. |[ [6.91] 23.99 [4.89] 1.35 - 1.03
prob prob determ. || 9.02 — 6.93 1.35 2.78 1.03
prob determ. | anneal. — 18.76 - 89.21 2.40 —

prob determ. |determ. - - - 2.18 -
greedy prob anneal. 7.02 — 7.75 1.36 - 0.90
greedy prob determ. || 7.02 — 7.75 1.36 — 0.90
greedy | determ. | anneal. — 25.50 - 82.24 Eﬁ% -
greedy determ. |determ. - 25.50 — 82.24 1.90




350 B. W. Wah & Y.-X. Chen

We next test our algorithms on ten constrained NLPs, G1-G10,%12 discretized
according to (28). These problems have objective functions of various types (linear,
quadratic, cubic, polynomial, and nonlinear) and constraints of linear inequalities,
nonlinear equalities, and nonlinear inequalities. The number of variables is up to
20, and that of constraints, including simple bounds, is up to 42. The ratio of
feasible space with respect to the whole search space varies from 0% to almost
100%, and the topologies of feasible regions are quite different. These problems
were originally designed to be solved by evolutionary algorithms (EAs) in which
constraint handling techniques were tuned for each problem in order to get good
results. Examples of such techniques include keeping a search within feasible regions
with specific genetic operators and dynamic and adaptive penalty methods.!®

Table 4 compares the performance of CSAp, CEAjp, and CSAEA|p with re-
spect to Bip{(f*), the expected total CPU time of multiple runs until a solution
of value f* is found. (The value of f* was not provided to the algorithms before
they were run.) The first four columns show the problem IDs, the corresponding
known f*, the best solutions obtained by EAs, and the specific constraint handling
techniques used to generate the solutions. Since all CSA;p, CEAp and CSAEAp
can find a CGMy in all 10 runs, we compare their performance with respect to 7,
the average total time of multiple runs until a CG M is found. The fifth and sixth
columns show, respectively, the average time and the number of L4(z, A) function
evaluations CSAjp took to find f*. The next two columns show the performance
of CEA[p with respect to Pope, the optimal population size found by enumeration,
and the average time for finding f*. These results show that CEAjp is not com-
petitive as compared to CSAp, even when P,y is used. The results on including
additional steps in CEA[p to select a suitable P at run time are worse and are not
shown. Finally, the last five columns show the performance of CSAEA[p. The first
three present the average time and number of Ly(z, A} evaluations under constant
P, whereas the last two show the average time using P,y found by enumeration.
These results show little improvements in using Pop. Further, CSAEAp has be-
tween 9% and 38% in improvement in Bip(f*), when compared to those of CSAjp,
for the 10 problems except for G4 and G10.

Comparing CEA|p and CSAEA|p with EA, we see that EA was only able to find
f* in three of the ten problems, despite extensive tuning and using problem-specific
heuristics. In contrast, both CEAp and CSAEAp can find f* for all these problems
without problem-dependent strategies. We are not able to report the timing results
of EA because the results in the literature are the best among many runs with
extensive tuning.

Table 5 shows the results on selected discretized Floudas and Pardalos” NLP
benchmarks® with more than ten variables. The first three columns show the prob-
lem IDs, the known f*, and the number of variables (n,) of each problem. The last
two columns compare Bip(f*) of CSA;p and CSAEA|p with fixed P = 3. They
show that CSAEA|p is consistently faster than CSA|p (between 1.3 and 26.3 times),
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Table 5. Results on CSAjp and CSAEA|p with P = 3 in solv-
ing selected Floudas and Pardalos’ discretized constrained NLP
benchmarks (with more than n, = 10 variables). Since Prob-
lem 5.% and 7.x are especially large and difficult and a search can
rarely reach their true CGMy, we consider a CGM,; found when
the solution quality is within 10% of the true CGMy. All CPU
times in seconds were averaged over 10 runs and were collected
on a Pentium-III 500-MHz computer with Solaris 7.

Problem CSAmD CSAEADD
1D Best f* n, Bip (f* ) Bmp (f* )

2.7.1 (min) -394.75 20 || 35.11 sec.
2.7.2 (min) -884.75 20 || 53.92 sec.
2.7.3 (min) -8695.0 20 || 34.22 sec.
2.7.4 (min) -754.75 20 || 36.70 sec.
2.7.5 (min) —4150.4 20 || 89.15 sec.
5.2 (min) 1.567 46 || 3168.29 sec.

100.66 sec.
368.72 sec.
1785.14 sec.

487.13 sec.

5.4 (min) 1.86 32 || 2629.52 sec.
7.2 (min) 1.0 16 || 824.45 sec.
7.3 (min) 1.0 27 || 2323.44 sec.
7.4 (min) 1.0 38 || 951.33 sec.

especially for large problems. This is attributed to the fact that EA maintains
more diversity in candidates by keeping a population, thereby allowing competition
among the candidates and leading SA to explore more promising regions.

Finally, we compare our methods with MINLP BB,? an MINLP solver using
the branch and bound method, in solving selected MINLP benchmark problems
in MacMINLP with no more than 100 variables.!?® Since the benchmarks in these
experiments were not discretized, CSAp and CSAEA|p were used as heuristics in
sampling the continuous subspace.

Table 6 summarizes the experimental results. The first six columns show, re-
spectively, the problem ID, the type of objective function (linear, quadratic, or
nonlinear), the number of variables (n,), the number of integer variables (n;), the
type of constraint functions (linear, quadratic, or nonlinear), and the number of con-
straints (n.). The next six columns show the solution obtained and the CPU time
expended, respectively, by MINLP BB, CSA;p and CSAEA[p, where MINLP BB -
was evaluated at the NEOS server [(http://www-neos.mcs.anl.gov/neos).|

CSAip and CSAEA|p perform much better in terms of solution quality than
MINLP_BB for the problems they can solve. For example, CSAjp found a solution
of objective value 1.856 and CSAEA|p found a solution of objective value 1.877 for
problem SPRING, but MINLP_BB failed to find a feasible solution. For problem
TRIMLON4, MINLP_BB found a feasible solution of objective value 11.1, whereas
CSAp and CSAEAp found solutions of objective value 8.8 and 8.5, respectively.
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However, the running times of CSAp and CSAEA[p are not competitive with
those of MINLP_BB in solving large problems. This happens because CSAip and
CSAEA|p are sampling algorithms, whereas MINLP _BB utilizes derivative infor-
mation of functions during its search. An advantage of sampling algorithms is that
they do not rely on derivatives and can be applied to solve constrained NLPs whose
functions are not differentiable or not in closed form.

5. Conclusions

In this paper we have presented new algorithms to look for discrete-neighborhood
saddle points in the Lagrangian space of constrained optimization problems. Be-
cause the discrete-neighborhood extended saddle-point condition only requires some
Lagrange multipliers larger than a critical threshold to be found, the search of
such saddle points can be implemented efficiently by an iterative search. Our main
contribution in this paper is in developing an effective search that combines (a)
probes generated randomly and using genetic operators in the original variable
space for performing descents of the Lagrangian function, (b) random probing in
the Lagrange-multiplier space for performing ascents, (c) acceptance of probes gen-
erated using the Metropolis probability, and (d) a schedule that minimizes the
number of iterations (with the same order of magnitude as the optimal schedule).
Our results also show that existing evolutionary approaches for solving constrained
optimization problems, which only look for constrained solutions in the original
variable space, can be improved significantly by looking for extended saddle points
in the Lagrangian space.

One of the limitations of our approach is that the saddle-point condition only
works in discrete neighborhoods. As a result, continuous variables in continuous or
mixed-integer problems must be discretized before the condition can be applied.
Furthermore, probes generated randomly or using genetic operators do not likely
follow descent directions, and differentiation is more effective for finding gradient
directions in differentiable functions. These limitations can be overcome by the
extended saddle-point condition in mixed space we have developed recently.!® Based
on the new condition, descent directions in the continuous subspace can be found
by differentiation, whereas descent directions in the discrete subspace can be found
by enumeration. Results on solving mixed-integer optimization problems will be
reported in a future paper.
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