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A temporal flexible planning problem that involves contingent and requirement events
can be formulated as a simple temporal network with uncertainty (STNU). An STNU
is controllable when there is a strategy for executing the requirement events (or actions)
in such a way that all the conditions involving ‘contingent events can be satisfied in
all situations. The most interesting and useful controllability property is dynamic con-
trollability in which the remaining actions in an STNU can always be scheduled under
all possible feasible durations of future contingent events when all the past contingent
events are known. In this paper, we propose and study a novel problem of assighing
bounds on the duration of each requirement link in order for the resulting STNU to
be dynamically controllable and to minimize the total cost over the allowed durations
of all requirement links. We first prove the NP hardness of the problem with a linear
cost function. We then formulate the dynamic controllability of an STNU as the con-
straints in a nonlinear optimization problem. Finally, we present methods for reducing
the number of constraints in order to make the problem tractable and to demonstrate
the computational performance of our methods.
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1. Introduction

A temporal flexible planning problem can be formulated in a simple temporal net-
work with uncertainty'? (STNU) whose links can be classified into contingent and -
requirement links, and the duration of each link is modeled by a lower bound and -
an upper bound. A contingent link represents a causal process /action of uncertain
duration whose completion time is controlled by nature, whereas a requirement
link represents a process/action whose completion time is controlled by a planner.
For example, the arrival time of Bob riding a bus is a contingent event because it
depends on the traffic condition. If Bob chooses to walk to the destination, then his
arrival time is a requirement event because it is under his control.

Formally, an STNU defines the partial order of events in an application and
is described by a 5-tuple I' = (V,E,L,U, C). Here, V is the set of nodes that
represent labels in the horizon; E is the set of links that represent events of some
finite duration; L: E — RU {~oc} and U: E — RU {40co} are functions that
map a link into two real numbers that represent, respectively, the lower and upper
bounds on the duration that the corresponding action will take; C is the subset of
links that are contingent links; and E\C is the subset of links that are requirement
links.

The problem of constraint satisfaction for an STNU has been characterized by
controllability. 1110 A network is controllable if there is a strategy for executing each
requirement event (or action) in such a way that all the conditions involving con-
tingent events are satisfied in all situations. In strong controllability, the actions can
always be scheduled under all possible times at which contingent events can happen.
In weak controllability, the actions can always be scheduled under all possible times
of contingent events if those times were specified ahead of time. Last, in dynamic
controllability, the remaining actions in a network can always be scheduled under all
possible feasible durations of future contingent events when all the past contingent
events are known. It is easy to see from these definitions that strong controllability
implies dynamic controllability, and that dynamic controllability implies weak con-
trollability. That is, if an STNU is strongly (resp. dynamically) controllable, then
it must be dynamically (resp., weakly) controllable. Since strong controllability is
too rigid for planning under contingent events and weak controllability does not
guarantee a strategy that can handle all contingencies, the most interesting and
useful controllability property is dynamic controllability.

In this paper, we propose and study a new optimization problem of assigning
bounds on requirement links in order for the resulting STNU to be dynamically
controllable and the total cost over the allowed durations of all requirement links
to be minimized. Define a dynamically controllable STNUT = (V,E,L, U,C),
where [L(e),U(e)] are the loose bounds of e € E; and [£(e), u(e)] are the desired
bounds of e. Assuming a cost function f: £(e1),u(e1), - . L(en), u(en) — R, where
n = |E|, the goal is to find I"=(V,E, £,u,C), the optimal STNU with respect to
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(b) Dynamically controllable STNU with optimized bounds

Fig. 1. An example of a dynamically controllable STNU with optimized bounds that minimizes a
linear cost function on the interval in each requirement link. A solid arrow represents a requirement
link, whereas a dashed arrow represents a contingent link.

f over £(e;)}, u(e;), e; € E, that solves the following:

(Pstny) : min f(4(e1),uler),...,4en), ulen))
subject to L{e) < ¢(e) < u(e) < Ule) ec E\C
‘ te) =Lie), . ule)=Ul(e) ecC
and I" is dynamically controllable. (1)

Py, is interesting in practice. A larger in_terval on a requirement link always
makes the resulting STNU more likely to be dynamically controllable. However,
such flexibility may incur additional costs on the application because some resources
may have to be made available earlier. For instance, the cost of allowing a camera
onboard a satellite to be turned on at any time in the interval [10,20] may be
higher than that if the camera were allowed to be turned on in [18,20]. Hence, it is
imperative to reduce the interval as much as possible as long as the resulting STNU
is dynamically controllable.

Figure la illustrates an instance of Pyy,,. A dashed arrow between nodes i and j
represents a contingent event with labels ¢ and 7 in the horizon and whose duration
is between a lower bound L and an upper bound U. The duration of a contingent
event is controlled by nature, and the plan executer does not know its value until
the contingent event finishes. On the other hand, a solid arrow between nodes &
and j represents a requirement event whose duration can be controlled by the plan
executer, given that it is within the lower and upper bounds.

For example, the completion of requirement event AC in Figure la triggers re-
quirement events CB and CE. On the other hand, requirement event BD is triggered
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by the simultaneous completion of contingent event AB and requirement event CB.
Suppose AB has a duration of 3 time units, which is within the interval [2,4]. This
means that AC must have a duration of 1 or 2 time units and that CB must have a_
corresponding duration of 2 or 1 time units in order for CB to complete at time 3,
It should be clear that it is not possible to have two contingent events incident on
a node because it is not possible to synchronize their occurrences. Moreover, given
the maximum duration of contingent event AB, it is clear that the upper bounds
on the duration of requirement events AC and CB are excessive.

By following the definition on dynamic controllability, it is easy to verify that the
network in Figure la is dynamically controllable. Assuming a linear cost function
of > . E\C(u(e) — £(e)), the STNU has an objective value of 1,089. By reducing
the bounds on each requirement link, Figure 1b shows a modified STNU that is
dynamically controllable yet has an objective value of 18.

Previous studies on STNUs have focused on  algorithms for checking
controllability”>1° and for successfully scheduling the tasks of an STNU .69 Sec-
tion 2 reviews existing algorithms for checking dynamic controllability. Although
such algorithms have polynomial complexity,” we prove in Section 3 that Psnu is
NP hard, even when a linear cost function is involved. In this paper, we formulate
Py as a constrained optimization problem and solve it by existing nonlinear pro-
gramming methods. This approach is flexible because it can incorporate additional
constraints, such as resource constraints® and general cost functions, in the formu-
lation. Since existing methods for checking dynamic controllability are procedural,”
we first define in Section 4 the constraints that specify the conditions for dynamic
controllability in our constrained formulation. We show a naive formulation that
Jeads to a problem with O(N?) variables and O(N?®) constraints for an N-node
STNU, which is intractable when N is large. To reduce the complexity, we pro-
pose in Section 5 new methods for eliminating unnecessary variables and implied
constraints. Finally, Section 6 presents our experimental results.

2. Dynamic Controllability

Given an STNU with iﬁdependent contingent events, an algorithm for checking
dynamic controllability must consider every combination of possible contingent
events.” We assume that the lower bounds on the duration of all contingent links are
positive because the influence of a contingent event should only propagate forward
in time.> We first review some key concepts’ before formulating the requirements
as constraints. The dynamic controllability of an STNU is classified into local and
global dynamic controllability.

2.1. Local dynamic controllability

By treating an N-node STNU as CY triangles, the local dynamic controllability of
the STNU can be established by examining each triangle in two steps.”



Optimization of Bounds in Temporal Flexible Planning 21

[L80|Uc]

(L35, ULB

B
(a) Triangle ABC (b) The corresponding distance graph

Fig. 2. A triangle in an STNU and its corresponding distance graph

The first step treats each contingent link as a requirement link and examines
one at a time each triangle in the network and its associated distance graph (Figure
2).4 A directed link in the triangle corresponds to two directed edges in the distance
graph, whose weights are derived from the upper and negative lower bounds of the
corresponding links. To allow an action of a requirement link in the triangle to
be schedulable, the bounds of the corresponding link in the distance graph must
be the shortest paths. For instance, in Figure 2, it follows that [L&.,UE;] C
(LG — Uk, USe — LEg], where [LE, U] (resp., [LS,UZ]) denote the lower and
upper bounds of requirement link r (resp., contingent link c).

Second, a triangle with at least one contingent link is classified into one of the
following three categories. (If a triangle has two contingent links, then it will be
considered twice, with each contingent link in turn playing the role of a requirement
link.) Refer to Figure 2a in the following discussion.

a) If UR, < 0, then B must follow C in its occurrence, and ABC is in the

“follow case. In this case, contingent link AC acts like a requirement link because C
has already occurred at the time when B is scheduled to occur. The condition for
dynamic controllability is always satisfied for this triangle.

b) If LE, > 0 and UZ; > 0, then B must occur before or simultaneously with
C, and ABC is in the precede case. Since the information about the occurrence of
C is not available to B when B is scheduled, the bounds of AB must be tightened
to [USy — UE., LG — LE,] in order for B to be controllable.

) If LE, < 0and UE, > 0, then B can occur before or after C, and ABC is
in the unordered case. If C has not occurred when B is considered for scheduling,
then B cannot be scheduled at any time before US, — UJ, after A has occurred.
Further, if U, — UE, < LG, then LEp can be tightened to U$, — U, On
the other hand, if U, — U, > LG, then LE L can be tightened to LG, and a
wait annotation (C, w, ) is placed on AB for contingent link AC. We call w ,
a triangulor wait in this paper, where: \

W, pe =USs —UE, (triangular wait on AB for contingent link AC).  (2)
Moreover, w, 5, L%, and Lﬁc are related by the following property:

LﬁB > min(LZCawABc)' (3)
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Intuitively, w , ., defines a threshold: at any time before the threshold, B cannot
occur until C has occurred; whereas at any time after the threshold, B can occur
independent of C. It is obvious that the wait on a link must be within the lower
and upper bounds defined on the link. The only exception is when the link is a
contingent link. In this case, the wait on the contingent link must be the same as
its defined lower bound. For simplicity, we refer to the lower and upper bounds
on the wait defined in (2) as the lower-bound and upper-bound wait constraints, or
collectively, the wait-bound constraints.

2.2. Global dynamic controllability

In global dynamic controllability, wait information is propagated throughout an
STNU by regression.” In wait regression, a wait that regresses to other links is
called a source wait, whereas a wait regressed from a source wait is called a target
wait. Note that a regression wait can be regressed from multiple source waits.

Consider regressing (C,w , ), a wait on AB, to AD, where AC is the contingent
link causing the wait.

a) If DB is a requirement link with- upper bound UEB, or DB is a contingent
link and w, ., <0, then the wait regressed to AD is (C,w,z — Upp)- That is,

Wape = Wape — UgB (4)
for requirement link DB, or contingent link DB with w 5, < 0.

b) If DB is a contingent link with lower bound LS5 and w,,, > 0, then the
wait regressed to AD is (C,w, e — LG g). This is,

- L3p (5)

Wype = Wage
for contingent link DB with w, . > 0.

To distinguish the wait regressed to AD from a triangular wait, we call it a
regression wait in this paper. The actual wait on AD will be the maximum of its
regression and triangular waits.

After tightening the bounds of each link, an STNU is dynamically controllable
if and only if UE > LR for every requirement link r and [LS, US| has not been
tightened for every contingent link ¢.” '

3. NP-Hardness of Psgne

In this section, we show that P, with a linear cost function is NP-hard. The
proof is done by constructing a mapping from the 3-coloring® of graph G to an
instance of Py, represented by S.. We map the nodes of G to those of S, in such
a way that the color of a node in G or the difference in colors between two nodes
in G is represented as the bounds on a corresponding link in S.

To map from a discrete color value in G to two continuous values that represent
the lower and upper bounds of a link in S, we introduce a basic STNU with a linear
cost function. The goal is to construct S, using this basic STNU as a building block
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Fig. 3. Basic STNU with bounds of [0,0] or [K, K] on AB when it is dynamically controllable.

in such a way that the possible bounds of a link in S, are either [0,0] or [K, K]
when S, is dynamically controllable and its cost is minimized.

Figure 3a shows the basic STNU, where AC is a contingent link with upper
bound K, and AB, DB, DC, and AD are requirement links. We further denote
[0,K] to be the original loose bounds, and [¢%,u] to be the desired tightened
bounds when the goal is to minimize the following linear cost function:

f=2-(ufp—tip)+ (ufic — €80) + (ubp — (Ep) + 5 — K. (6)

Consider ADC. Since the lower bound of DC is nonnegative, ADC is in the
precede case, according to the classification in local dynamic controllability. Hence,
the desired bounds of DC must be either [0, K] if C and D are different nodes, or
[0,0] if C and Dare the same nodes. If the desired bounds on DC is [0, K], then
the desired bounds on AD, AB, and DB must be [0,0] in order to minimize f in
(6). On the other hand, if the desired bounds on DC is [0, 0], then the sum of the

* durations of DB and AB has to be no less than K in order to make the network
dynamically controllable. To minimize (6), we have to choose the bounds of DB to
be [0, K] and, consequently, the bounds on AB to be [K, K|. In short, in order to
achieve the minimum cost in (6) to be 0 and to have the basic STNU dynamically
controllable, the bounds on AB must be either.[0,0] or [K, K]. Figure 3b shows a
shorthand notation of this basic STNU.

The basic STNUs can be compounded into more complex structures, with a cost
equal to the sum of the costs of the basic STNUs. Figure 4a shows a compound
STNU whose bounds are [1,1], [2,2], or [3,3]. It is made up of three basic STNUs
whose bounds are either [0,0] or [1,1]. Figure 4b shows another compound STNU
whose bounds are [—2, —2], [-1, 1], {1, 1], or [2,2]. ‘

Based on the compound STNUs in Figure 4, we can transform in polynomial
time the 3-coloring of a graph G to the determination of the bounds on the links
of S, in such a way that solve Py, and that achieves a minimum cost of zero.

“Theorem 3.1. The problem of Py, with a linear cost function is NP-hard.
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Fig. 4 Compound STNUs that are dynamically controllable.

Proof. We first present a polynomial procedure to transform an arbitrary graph
G = (Vg,Eg) to an STNU S.. Given G, we create S. as follows. We first add a
source node s to S,. For each v; € Vi, we add v; to S, and use a compound STNU
in Figure 4a to connect s and v; in S.. Similarly, for each (v;,v;) € Eg, we use the
compound STNU in Figure 4b to connect v; and v in S.. The transformation takes
O(|Vg| + |Eg|) time. The cost function of Psn, over S, is the sum of the costs of
the corresponding compound STNUs.

To complete the proof, we show that the 3-coloring of G can be reduced to
solving Psiny with a linear cost function over S.. The proof is done in two parts.

First, we prove that, if G is 3-colorable, then S, with a linear cost function is
dynamically controllable and achieves a minimum cost of zero. This happens when
each of the compound STNUs in S, is dynamically controllable and achieves a
minimum cost of zero. In that case, the color of v; in G corresponds to the bounds
[1,1], [2,2], or [3,3] of (s,v;) in S, and the difference in colors assigned to v; and v;
in G corresponds to the bounds [—2, —2], [-1, —1], [1,1], or [2,2] of (v, v;) in S.

Next, we prove that, if S, with a linear cost function is dynamically controllable
and achieves a minimum cost of zero, then G is 3-colorable. The assumption implies
that all the compound STNUs in S, are dynamically controllable and has a zero
cost. Each node v; in S, corresponds to a bound [1,1], [2,2], or [3,3], and each
edge in S, between v; and v; corresponds to the bounds [-2, —2], [-1, -1}, [1,1], or
[2,2]. Since S. is dynamically controllable, these bounds constitute a consistent as-
signment of S.. Consequently, G is 3-colorable and the color on v; of G corresponds
to the bounds [1,1], [2,2], or [3,3].

The two parts of the proof reduce the 3-coloring of G to solving Psine, with a
linear cost function over S,. Since the 3-coloring of G is NP-hard, it implies that
solving Pjspy, is also NP-hard. O

Theorem 3.1 shows that, although checking dynamic controllability has polyno-
mial complexity, Pyt is NP-Hard even when a linear cost function is used. To solve
P,inu, we formulate in the next section the dynamic controllability of an STNU as
constraints and solve Ps,,, 88 a nonlinear constrained optimization problem.
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4. Naive Formulation

To formulate the conditions for dynamic controllability of an STNU, we can sim-
ply develop a constraint for each property in Section 2. Appendix A presents the
complete list of constraints that must be satisfied. We group these constraints into
the shortest-path, precede, and wait constraints. The latter includes constraints on
triangular-wait, regression-wait, and wait-bound. In our formulation, we represent
the desired bounds on a link as [£, u], and the wait value on AB for contingent link
AC as variable w, . or simply w.

The first two sets of constraints are needed for any simple temporal network
without contingent links. The bound constraints in (9) specify that the desired
bounds of a requirement link must be within its loose bounds, and those of a
contingent link are fixed. The shortest-path constraints in (10) are applied on every
triangle in the STNU.4

Next, we follow the discussions in Section 2 in order to develop the constraints
for handling dynamic controllability. Since the condition for dynamic controllability
in the follow case is always satisfied, no constraints are needed. The constraints for
the precede (resp., triangular-wait) case are given in (11) (resp., (12)). We do not
include the constraints for the unordered case because these constraints are implied.
We formally state this property as follows and leave the proof to Appendix B.

Lemma 4.1. If the shortest-path and the precede constraints are satisfied, then
removing the conditions for the unordered case will not change the space of feasible
solutions of Pygpy-

The constraints for wait regression (or global dynamic controllability) are for-
mulated in (13). Finally, (14)-(16) show the constraints for the various cases of the
wait-bounds constraints where the duration of a wait cannot exceed the lower and
upper bounds on the corresponding link.

In contrast to the algorithm for checking dynamic controllability in which the
bounds and the type of each triangle in S, are known a priori, the bounds in
P are variables. Hence, the conditions for the different cases of a constraint
that involve variables must be expanded into new constraints in the formulation.
Because the steps involved for each class of constraints are similar, we only illustrate
the construction of the constraints in (13) for regressing a wait through a contingent
link with bounds [¢€, u©].

Assume wait wo obtained by regressing wait w; through a contingent link. Then:

c (7)

wy — fc if w1 Z 0
wo = )
w1 — uY otherwise.

To represent (7) as constraints without requiring a condition that depends on ws
(a variable in the constraint), we generate a linear constraint that is true for both
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Table 1. Complexity of the naive formulation for an N-node STNU
with C contingent links.

Type of Const. # of Const. || Type of Var. # of Var.

Bound O(N?) Bound O(N?)
Shortest-Path O(N3) Wait O(CN)
Precede O(CN) Auxiliary O(C? 4+ CN)

Triangular-Wait O(CN)
Regression-Wait O(CN?)
Wait-Bound O(CN)

cases and introduce three new constraints using an auxiliary variable a:

we > wy — u’;

a>0; a>w; (8)
a-(wg—w1+éc)20.

In addition, we add a(a —w; ) to the objective in order to ensure that the a chosen
is either wy when w; > 0 or 0 when w; < 0. A similar approach can be applied to
convert (16} in Appendix A. ,

The two constraints defined in (7) with respect to the sign of w; are not always
needed when we can infer the sign of w;. For example, since the wait on a link
must be within its initial bounds [L;,U;], we know that w; > 0 if L; > 0, and that
w < 0if Uy <O.

After specifying the constraints, we can now develop a naive constrained for-
mulation for solving Psine of STNU S, in two steps. First, we generate the precede
and wait constraints for each contingent link in S, and add the new links involved
in the constrained formulation to S.. Next, we consider every link in the updated
S, as a requirement link and formulate new constraints to ensure every bound to
be the shortest path in the corresponding distance graph.

Table 1 shows that the naive formulation leads to O(N?) variables and O(N?)
constraints for an N-node STNU. As demonstrated in Section 6, such a formulation
is usually too large to be solved when N is large. In the next section, we present
methods for reducing the number of redundant variables and implied constraints.

5. Reduced Formulation

Because our naive formulation treats an STNU as fully connected and enumerates
all its possible triangles, it leads to many redundant variables and implied con-
straints. However, these redundancies are usually too complex to be reduced by
existing pre-solving and linear-reduction techniques.!

In this section, we examine those redundancies on the wait, precede, and
shortest-path constraints in our naive formulation and introduce methods to elimi-
nate them. Instead of looking for redundancies directly, we avoid generating implied
constraints by analyzing the relations among the constraints. In contrast to our
naive formulation that adds new links in STNU S, in an unrestricted fashion, our
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reduced formulation only adds essential links when formulating the conditions for
dynamical controllability. These links are used to propagate existing bound con-
straints throughout S.. They are divided into two classes: those involved in the
wait and precede constraints and those involved in the shortest-path constraints.
Because the shortest-path constraints are weaker than the wait and precede con-
straints, they are formulated on the updated network after the links on the wait and
precede constraints have been added. Note that the amount of reductions is prob-
lem dependent. In the worst case, if S, is fully connected, then all the shortest-path
constraints are necessary and cannot be reduced.

5.1. Reductions on wait constraints

These reductions are based on eliminating redundant wait constraints and those
implied by the shortest-path and triangular-wait constraints. Before we show the
reductions, we describe four observations.

First, recall that a wait on a link is the maximum of its triangular and regression
waits, and that the bounds on the wait are defined by its wait-bound constraints.
A wait constraint is redundant and does not have to be explicitly included when
one of the following conditions is true. ‘

o A triangular (resp. regression) wait is redundant when it is guaranteed to be less
than the regression (resp. triangular) wait on the same link.

o A wait on a link is redundant when it satisfies the wait-bound constraint on
the link, and its regressed wait on other target links does not introduce tighter
bounds on those target links.

Hence, the wait-bound constraints on a link are redundant when both the associated
triangular and regression waits on the link are redundant.

Second, the wait-bound constraints of wait w on a requirement link r may be
simplified by examining their relation to [LE,UF], the loose bounds on r. As is
indicated in (3), £& > min(£C, w), where £% is the desired lower bound of r and £¢
is the lower bound of contingent link ¢ causing wait w on r. There are two special
cases in which the wait-bound constraints on r can be simplified.

e The lower-bound wait constraint is redundant when LE > ¢€. The constraint is
implied because £F > LT > £€ > min(£¢, w).

o If /€ > UR, then we conclude from (15) that £¢ > w. Hence, from (3), we
conclude that £8 > w. Since £% < w according to (10) and (12), we can simplify
the wait-bound constraint in this case to w = £

Third, when the wait on a requirement link satisfies (15) and when the shortest-
path constraints in (10) are enforced, the regression of this wait through a require-
ment link or the regression of a negative wait through a contingent link (both
defined in (4)) also satisfies (15). For instance, if wait w,,, satisfies (15), namely,

Wopp < ullg, and if uffp < ufl, + ufy is satisfied due to (10) on ABC, then
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Fig. 5. Reductions on wait constraints.

the regression of w,,, on AB to w,.,, on requirement link AC also satisfies (15),
namely, w,., = Wagp — UEg < ulip — ufp < uf;. With the redundant con-
straints identified above, since a triangular wait is always no larger than the upper
bound of the link where the wait applies, (15) is only needed on waits that are
positive and that can be regressed by a contingent link.

Fourth, assume that A’B’ in S, corresponds to AB in the original distance
graph. If A’B’ is eliminated, then the shortest-path constraints ensure that the
upper bound of A’B’ must equal to the minimum of the upper bounds of all possible
paths from A’ to B’, where the upper bound of a path is the sum of the upper bounds
of all the links along the path. Similarly, the lower bound of A'B’ must equal to
the maximum of the lower bounds of all possible paths from A’ to B’. Note that
the path corresponding to the upper bound of A’ B’ and that corresponding to the
lower bound of A’B’ may not be identical. This observation allows us to formulate
the wait-bound constraints with only nearby nodes and to propagate their effect
throughout S, by triangles with shared links.

Based on these four observations, we now present our reductions on redundant
wait constraints. We first check S, for dynamic controllability and derive better
bounds on all possible links, including those that do not exist in S¢, in our naive
formulation. Next, we derive the wait (triahgular—wait, regression-wait, and wait-
bound) constraints on every link in S.. To find the redundant constraints, we first
classify each node B for contingent link AC and link AB into three subsets, where
AB can be a requirement or a contingent link:

B such that Uag < LG 1 pre-wait set

AC
{B such that Lap > LG} (post-wait set)
otherwise (unordered-wait set).

As an illustration, for contingent link AC in Figure 5, its pre-wait, post-wait, and
unordered-wait sets are, respectively, {E,F}, {D}, and {B}.

Our classification allows us to ignore the wait constraints on nodes in the pre-
wait (resp. post-wait) set because the wait on a link between A and any node B
in the pre-wait (resp. post-wait) set is no larger (resp. no less) than LS. That
is, these nodes are guaranteed to occur before (resp. after) some time point. This
is true because LG, = £, for contingent link AC, and the nodes defined in the
pre-wait and post-wait sets match exactly those defined in the second observation
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above. Hence, the lower-bound wait constraint between A outside the post-wait
set and any node B in the post-wait set is redundant. Similarly, the wait-bound
constraints between A outside the pre-wait set and any node B in the pre-wait set
can be simplified to £5; = w, ., where £% 5 is the lower bound of requirement link )
AB and w, ., is its wait. ‘

Although our initial classification leads to a small unordered-wait set, it is in-
complete in the sense that some nodes in the pre-wait (resp. post-wait) set may
not form triangles with contingent link ¢ in the precede (resp. follow) cases and
whose triangular-wait constraints are necessary (see Section 2.1). According to the
proof of Lemma 4.1, we know that the triangular-wait constraints in both the pre-
cede and follow cases are redundant. Hence, our approach is to first find nodes
that form triangles with contingent link ¢ in the precede (resp. follow) case in the
pre-wait (resp. post-wait) set and whose triangular-wait constraints are redundant.
We then identify those remaining nodes in the pre-wait (resp. post-wait) set whose
triangular-wait constraints are necessary and migrate them to the unordered-wait
set. The migration procedure is presented in that related to guard migrations (resp.
pre-migrations) later in this subsection.

On the other hand, regression-wait constraints in the pre-wait set and post-wait
set are more complex for two reasons. First, if waits in the pre-wait and post-wait
sets are found by regression, then the bounds on which these waits apply may be
tightened. Second, if waits in the pre-wait and post-wait sets are regressed to other
links, then the bounds on the target links may also be tightened. In both cases,
the corresponding regression-wait constraints may be redundant. Assuming that
triangular waits have been simplified according to the second and third observations
stated above, the effect of regression waits on bounds only depends on waits that
are positive and that can be regressed through a contingent link (that is, the end
point of a link where the wait applies is the end point of a contingent link). Figure 6
summarizes the post-migration and pre-migration procedures presented below.

a) Post-migrations are used to find nodes in the post-wait set whose waits may
affect the bounds of links. For each F in the post-wait set, let F' be the end point
of contingent link EF. We first consider link CF, where AC is a contingent link. If
LB <0 (i.e., AFC is not in the follow case), then the triangular wait on AF and
its further regression through EF might affect the bounds on AE. In this case, we
will migrate both F and E to the unordered-wait set (Line 3 in Figure 6). Next, let
P be a node in the unordered-wait set that is the starting point of a contingent link.
If LE, > 0, then the regression of w ,p, t0 W, and further to w, . is equivalent
to the regression of w , .. to w, . through requirement link PE (this statement is
implied by the precede constraints because triangle FPE, with FE a contingent link,
is in the precede case). Hence, we only migrate E and F to the unordered-wait set if
L&, <0 (Line 5), and the regression of w, ., to AF and that of w , . through EF
will be included in the formulation. This step is repeated until the unordered-wait
set does not change. As an illustration, node D in Figure 5 will be migrated to the
unordered-wait set, since D is the end point of contingent link BD and L&, < 0.
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.. procedure wait-reduction(AC) // AC is a contingent link //

2. repeat

3. for each F in the post-wait set where F' is the end point of a cont. link EF do
4 if (L&p < 0) then migrate both E and F to the unordered-wait set; endif
5. end_for '
6. for each P in the unordered-wait set where P is starting point of cont. link do
7. if (LEp < 0) then migrate both E and F to the unordered-wait set; end_if
8. end_for

0. for each F in the pre-wait set where F is the end point of a cont. link EF' do
10. if (0< Uls < LS ) then migrate E and F to unordered-wait set; end if
11. end_for

12. mark A as visited, and all the other nodes as not visited;

13, call GuardDFS(C);

1. until (the unordered-wait set does not change)

15. end_procedure

16. procedure GuardDFS(P) // P is the current node in the DFS traversal //

17. if P has been visited then return; end if
18. mark P as visited;
19. if P is in pre-wait set then migrate P to unordered-wait set; return; end_if

0. for each S where S is a direct descendant of P do call GuardDFS(S); end for
21. end_procedure

Fig. 6. The wait reduction algorithm

b) Pre-migrations are used to find nodes in the pre-wait set whose waits may
affect other nodes in the pre-wait set. For each F in the pre-wait set, if 0 < Ukp <
LG (which means that w, . can be positive) and F is the end point of contingent
link EF, we migrate both E and F to the unordered-wait set (Line 7).

¢) Guard-migrations are used to find nodes in the pre-wait set whose waits will
eliminate triangular-wait constraints for the remaining nodes in the pre-wait set.
This step is achieved by finding guard nodes that are in the pre-wait set and that
appear first in each path starting from a node, say C. Hence, for each P that is not
directly connected to C, there are guard nodes on every possible path between P
and C. Based on the last observation in this subsection, the upper bound of the
non-existent link PC must equal to the upper bound of one of the paths from P
to C, where the upper bound of a path is the sum of the upper bounds of all the
Jinks along the path. Assuming guard node D on a path from P to C, one can easily
verify that the triangular wait w,pc on AP is equal to the regression wait of w, e
through requirement link PD. Note that PD cannot be a contingent link because
it has been ruled out by pre-migrations. This regression will not introduce new
constraints if all the constraints formulated on w ,c are satisfied. In this way, the
constraints formulated on the guard nodes will ensure that the rest of the nodes in
the pre-wait set can be safely ignored.
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To find the guard nodes, we treat S. as an undirected graph and apply the
following modified depth-first search (DFS). Let C be the root and A be already
visited. Consider any node B visited during the traversal.

(1) If B is in the post-wait set or the unordered-wait set, then mark B as visited
and continue (Line 12).

(2) Otherwise, B is a guard node. In this case, the DFS migrates B to the unordered-
wait set (Line 14), and mark B as visited. At this point, the DFS does not
continue from the current node but returns to the parent of the current node
before continuing (Line 17).

In the last step, when a guard node is migrated, the formulation of wait con-
straints on the node may add new links to S (if they do not already exist), and
the updated network will lead to different guard nodes found by the search. Hence,
we repeat the search until no new links are added. As an illustration, the DFS will
classify E in Figure 5 as a guard node and put it into the unordered-wait set, while
leaving F in the pre-wait set.

After migrating nodes from the pre-wait and post-wait sets to the unordered-
wait set, the following lemma states that only nodes in the unordered-wait set are
needed in formulating the wait constraints. (See proof in Appendix C.)

Lemma 5.1. If the shortest-path, precede, and wait constraints on the unordered-
wait set are satisfied, then excluding the updated pre-wait and post-wait sets in
the formulation involving wait (triangular-wait, regression-wait, and wait-bound)
constraints will not change the space of feasible solutions of Pgina,.

5.2. Redué'tions on precede constraints

Similar to the reductions on wait constraints, we classify each node B of S, into
three subsets with respect to contingent link AC and another link CB that can be
8 requirement or a contingent link:

{B such that Lcp > 0} (post-wait set)
{B such that Ucp < 0} (pre-wait set)
otherwise ' * . (unordered-wait set).

For any B in the post-wait set, ABC must be in the follow case, and no precede
constraints will be generated. For any B in the unordered-wait set, since the type
of ABC is undetermined, nonlinear precede constraints will need to be generated.

Similar to the reductions on wait constraints in Section 5.1, reductions are ap-
plied on each node in the pre-wait set by finding guard nodes using the following
modified DFS algorithm and by migrating them to the unordered-wait set. The al-
gorithm treats S, as an undirected graph, and takes C as the root and A as visited.
Consider any node B in the process of traversal:

(1) If B is in the post-wait set or the unordered-wait set, mark B as visited and
continue;
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(2) Otherwise, B is a guard node. In this case, mark B as visited; migrate B to
the unordered-wait set; and return to the parent of the current node before
continuing.

As is stated in the last subsection, when a guard node is migrated to the unordered-
wait set, the formulation of wait and precede constraints on the node may add new
links to S, and the updated network will lead to different guard nodes found by
the search. Hence, we repeat the search for wait and precede reductions until no
new guard nodes are found.

Likewise, we have the following lemma. We omit its proof because it is similar
to the second part of the proof for Lemma. 5.1.

Lemma 5.2. If the shortest-path constraints are satisfied, then excluding nodes
in the post-wait and pre-wait sets in formulating the precede constraints will not
change the space of feasible solutions of Psina,.

5.8. Reductions on shortest-path constraints

In our naive formulation, there are a large number of shortest-path constraints
because all possible triangles in S, are considered. To reduce such constraints, we
only formulate them between neighboring nodes in the reduced formulation, and
propagate the constraints on bounds throughout the network.

Our algorithm for reducing the shortest-path constraints works by recursively
finding new candidate nodes in S,, formulate the corresponding shortest-path con-
straints, and eliminate the nodes from S, until no nodes are left. The process of
elimination works as follows. For any A in the distance graph, we identify nodes that
are connected to A by existing links in its adjacent set and generate the shortest-
path constraints on those triangles made up by A and any two nodes in its adjacent
set. We assume that nodes in the adjacent set will be connected by existing links,
or new links will be created otherwise. After generating the constraints, A will be
eliminated from the network, and the procedure is repeated on the remaining graph.

The following lemma states that the shortest-path constraints will only need to
be formulated on nodes in the adjacent set in each step. (See proof in Appendix D.)

Lemma 5.3. If nodes are eliminated one by one from S, using the above steps,
then the shortest-path constraints between any two nodes in S, are always satisfied.

Since shortest-path constraints are formulated on triangles in S., the number
of such constraints is proportional to the number of triangles. We have seen that
when a node is removed from S, additional links may be added to 5., leading to
an increase in the number of triangles. To get a reduced formulation, we like to
add as few links as possible and remove nodes in a proper order from the distance
graph. For example, in Figure 7, if B is removed first, then A and D are in the
adjacent set of B, and BAC, BAD, and BCD will be considered in formulating
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Fig. 7. The order of node removals affects the number of shortest-path constraints. (AD is a link
added to the network.)

the shortest-path constraints after adding AD. Moreover, shortest-path constraints
will be formulated on ACD, leading to four triangles to be considered. On the
other hand, if A is removed first, then only the shortest-path constraints for two
triangles (ABC followed by BCD) will be considered, and those of ABD and ACD
are redundant.

We have developed a heuristic algorithm to identify a proper order for removing
nodes. We define a heuristic value va = L4/ CQS 4 for node A, where S, is the size
of the adjacent set of A and L4 is the number of existing links in the adjacent set.
[fvs = 1, then A is an ideal node to be removed; that is, removing A does not add
any new links. In each step, the algorithm removes the node with the maximum v.

As an illustration, using the reduction methods proposed, the naive formulation
of the STNU in Figure 1 with 116 variables and 1,173 constraints can be reduced to
53 variables and 263 constraints. In particular, in the naive formulation, the number
of bound variables, wait variables, auxiliary variables, bound constraints, shortest-
path constraints, precede constraints, triangular-wait constraints, regression-wait
constraints, and wait-bound constraints are, respectively, 82, 32, 2, 123, 720, 38,
32, 224, and 36. In contrast, in the reduced formulatioﬁ, the corresponding numbers
are, respectively, 42, 9, 2, 63, 156, 18, 9, 4, and 13.

6. Experimental Results

In our experiments, we generate our STNUs randomly using the code developed by
Cherkassky et al.2 We choose the GRID family that closely approximates STNU
g found in natural planning problems, each with L horizontal layers, H vertical
layers, one source node, and L - H + 1 nodes. The links are either horizontal or
vertical, with a contingent link chosen randomly among the horizontal links and at
most one contingent link in each layer. We restrict the lower bounds to be negative
and the upper bounds to be positive in each vertical link, and choose the bounds
on requirement links to be so loose that the generated STNUs are guaranteed to
~ be dynamically controllable.
To test the scalability of our proposed methods, we generate five groups of
configurations by varying the number of nodes from 40 to 200, where 200 is a
reasonably large number of nodes that we can currently solve within several minutes
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Table 2. Topology of the STNUs tested in terms of
the number of nodes in the GRID network (Nodes),
number of horizontal and vertical layers (Layers and
Height), total number of links (Links), and number
of contingent links (Ctg.).

ID | Nodes Layers Height Links Ctg.
1-a 41 20 2 60 12
1-b 41 10 4 70 8
1-c 41 8 5 72 6
2-a 81 40 2 120 25
2-b 81 20 4 140 17
2-c 81 16 5 144 14
3-a 121 60 2 180 36
3-b 121 30 4 210 26
3-c 121 24 5 216 22
4-a 161 80 2 240 52
4-b 161 40 4 280 33
4-c 161 32 5 288 28
5-a 201 100 2 300 63
5-b 201 50 4 350 42
5-c 201 40 5 360 37

of CPU time. In each group, we vary its configuration by changing its height to 2,
4, and 5, respectively. Table 2 summarizes the configuration of the STNUs tested.
We also vary the random seed in generating contingent links and generate ten
random networks in each configuration. We observe that a network with more levels
will involve more interactions among its nodes. Hence, a network of height five is
expected to be more difficult to solve than one of height two.

Using an objective of minimizing a linear cost function },. molule) — £(e))
on the total duration of all requirement links, we formulate the optimization of
bounds for both the naive and the reduced formulations as nonlinear programming
problems and solve them by SNOPT.?

Table 3 presents the complexities of our two formulations and the average CPU
times taken by SNOPT over 10 random networks for each configuration.

In the naive formulation, the majority of the constraints are shortest-path con-
straints, where the number of such constraints (C2') only depends on N and not
on the topology of the STNU. On the other hand, the number of other constraints
vary with topology. For example, it increases with the number of levels in the net-
work. Since our reduction techniques are only applicable on linear constraints, the
number of nonlinear constraints remains unchanged in the reduced formulation.

We also observe that reductions perform better when the height of the graph is
small. This is true because most nodes in the same layer with the same starting and
end points will be in the unordered-wait set when we restrict every vertical link to

agNOPT is a state-of-the-art nonlinear programming solver that is available at the NEOS server
hitp://www-neos.mcs.anl.gov.
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have a negative lower bound and a positive upper bound. When the height of the
network increases, reductions become less effective due to increases in the size of
the unordered-wait set in wait reductions as well as in precede reductions.

Using the naive formulations, SNOPT was not able to find any solution within
6,000 seconds, while all the reduced formulations can be solved within 1,000 seconds.
The results show that our reduction techniques allow large problems to be solved
within a reasonable amount of time.

7. Conclusions

In this paper, we have proposed and studied a novel problem of minimizing a cost
function on the bounds of durations in a simple temporal network with uncertainty
(STNU) in order for the STNU to be dynamically controllable. We show that the
optimization problem is NP-hard, even for a linear cost function on the difference
between the lower and upper bounds of the duration of each event. We also show
that it is intractable to solve a naive nonlinear constrained formulation that directly
formulates its constraints from existing algorithms for checking dynamic controlla-
bility. By examining the redundancies in the constraints of the naive formulation,
we propose new methods for eliminating implied constraints. Our experimental re-
sults on some benchmarks demonstrate that our reduced formulations are effective
and can be solved by existing nonlinear programming solvers.

Appendix A. A Complete List of Constraints

The constraints are described with respect to Figure 8, which is the same as Figure 2
except that the fixed bounds in Figure 2 are replaced by variable bounds. The
constraints are derived based on the procedure in Section 2 for checking the dynamic
controllability of each of the CY trianglés in the STNU. For simplicity, we have
represented the constraints in (11), (13), and (16) without the use of auxiliary
variables. However, as is discussed in Section 4, auxiliary variables will need to be
introduced in order to transform these constraints and to remove their dependence
on unknown variables in their conditions.

Constraints on bounds:
R R R R
Lip <tip<uwap <Uxp
R R R R
LEc <tpc <uge <Uge 9)

c C c c
Lic =tac < vac = Udc-
Shortest-path constraints:

R R c ullp +LEc c R R
Lip+lee < lac < R R < uze < Ugp tUBC (10)
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Precede constraints:

R (0B, +uB, —uG) >0 .
{ e EJI}’Z v ég)) 20 1B <omdUB 20 ()
By =Gy —ub R
U4B AC T tBcC

Triangular-wait constraints:

W,pe > uGo —ullo  where w, ,, is the wait on AB for contingent link AC. (12)

Regression-wait constraints (regressing wait w; to wa):

R through requirement link with upper bound uf

wr — U
wo > {wl——ﬁc fw >0

wl—ucif’w1<0

through contingent link with bounds [¢¢, u®]. (13)

Wait-bound constraints:

(1) Wait-bound of wait w on contingent link ¢ with lower bound £€ where the wait
applies:
w = £°. (14)
(2) Upper bound of wait w on requirement link r with upper bound u* where the
wait applies:
w < uf, (15)
(8} Lower bound of wait w on requirement link  with initial bounds [L®,U%]

where the wait applies. For the contingent link ¢ causing the wait, L€ is its
lower bound, and ¢¢ = L€ and u€ = U°.

w =’ if UR<L®
R _ pC > : _ ypC
{ (€’ =) =20 fw-£0"20 otherwise. (16)

(° —w)(LF —w) > 0if w—£9 <0

Appendix B. Proof of Lemma 4.1

A triangle must be in the follow or the precede case when it is not in the unordered
case. Assuming that the shortest-path and precede constraints are satisfied, we show
-that including the conditions for the unordered case will only lead to redundant
triangular-wait constraints in the follow and precede cases. The proof is based on
-showing the following two propositions.

(a) The triangular waits in the follow and precede cases are redundant with
“respect to local dynamic controllability. Referring to Figure 8, consider triangular
‘wait w,,, defined in (2). It suffices to show that this triangular wait does not
:change the space of feasible solutions defined by the wait-bound constraints in
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Fig. 8. A triangle network with variable bounds in an § TNU and its distance graph.

(14)-(16). We first prove the statement in the follow case, and the proof for the
precede case is much simpler. In each case, we consider the cases when AB is a
requirement link and when AB is a contingent link.

(i) Triangle ABC is in the follow case (i.e., ufg < 0).

First, assume AB to be a requirement link. From (2) and the shortest-path
constraints in (10), we have:

C R R
Wype = Yac — UBc < UAB- (17)

This proves that the upper bound of the wait-bound constraint in (15) is not affected
by the additional triangular-wait constraint. For the lower bound of the wait-bound
constraint in (16), since ABC is in the follow case, we have UEgp > LG (otherwise,
ABC will be in the precede case). We need to consider (16) for the case when
UR, > LG Because ugi < 0, we have:

c R C > C
Wapo = Uac — UBC 2 Uac 2 Lic (18)

By combining (18) with the shortest-path constraints in (10) and noting that
uf <0, we obtain:

: c R R c R R R
W,pe =UGc —Upe 2 lap, {ic < tip+upe < {lip- (19)

Under the condition that U%g > LG, the inequalities in (19) prove that w, ¢ 2
¢B o > 1. Hence, the lower bound of the wait-bound constraint in (16) is implied
and is not affected by the additional triangular-wait constraint.

Second, assume AB to be a contingent link. Since ABC is in the follow case (with
AC a contingent link), ACB must be in the precede case (with AB a contingent
link). Using the precede constraint in (11) that £55 = uGe — uf -, the triangular-
wait constraint on AB is: '

o C R _ yRrR-
W,ipe = Uac — UBc = LAB- (20)

Hence, the wait-bound constraint in (14) for contingent link AB is not affected by
the additional triangular-wait constraint.

(ii) Triangle ABC is in the precede case (i.e., (& > 0), and the condition follows
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Fig. 9. Regressing wait wpca through a requirement link.

as in (20). Regardless of whether AB is a contingent or a requirement link, the
wait-bound constraints are always satisfied.

(b) The triangular wait is redundant in the follow and precede cases with re-
spect to global dynamic controllability. Since the wait on a link is the maximum
of its triangular and regression waits, it suffices to show that the regression of a
source triangular wait is no larger than any target triangular wait. Here, the source
triangular wait is the triangular wait to be regressed from, and the target triangular
" wait is the triangular wait on the regressed target link.

Consider the waits in Figure 9. Here, w,,, and w,,, are the triangular waits
in BCA and BDA, respectively, and BA is the contingent link causing the wait.
From (2), we have:

_.C R . _.C R
Wpoa = UBa — UCAs Wgpa = UBA — UDA- (21)

Let w,., be the source triangular wait in the follow or the precede case to be
regressed, and w,, ,,, be an arbitrary target triangular wait. Assuming the regression
-~ wait of w,, , to be w'BDA, we show that w,,, = w'BDA. We consider two cases where
DC is a requirement link and where it is a contingent link.

(i) Assuming DC to be a requirement link, the value of the regression wait of
Wyea 18

R _.C R R

Whpa = Waoa ~ UDC =Upa —Uca ~ Upc- (22)
' Using the shortest-path constraints in (10) on ADC where uf, +uf, > uf ,, we
- have:

’

_c R R c R _
Wy, =UBA —UCA — Upe S UBA —UDA = Wppa- (23)

(i) Assume DC to be a contingent link with C as the end point, and w,., > 0.
(We do not need to consider the regression of a negative wait through a contingent
link because, as is discussed in (4), it is the same as that through a requirement
link). From the regression-wait constraints in (13), we have:

’ _ R _ . C R R
Wopa = Wpoa — eDC =Ups — Uca— EDC' (24)
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First, consider BCA to be in the follow case (uB 4 < 0), which implies that DAC
(with DC a contingent link) is in the precede case. Using the precede constraints
in (11), we have £§, = uft , —uf, and
w:BDA = ugA - ugA - Egc = U’%A - ugA = Wgpa- (25)

Second, consider BCA to be in the precede case (¢E , > 0). From the shortest-
path constraint in (10) on ADC, we have (B, > 08, + 08, > 0. (Here we use
the assumption that ¢E. is positive. Note that DC is a contingent link in this
derivation, although it is marked as a requirement link in Figure 9.) Hence, both
BCA and BDA are in the precede cases. Combining (2) with the precede constraints
in (11) on these two triangles:

c R R c R R

Whea = UGa — UGs = LBy Wopa = UBa —UDa = £BD- (26)
By the shortest-path constraints in (10) on BDC, we have (B, < (B, + 05, and
the regression of wy, is:

R R R _ R _ .
Wypa =25 > LE0 —£be = Weoa —€DC = Wppa- (27)

In conclusion, we have shown that triangular waits in both the precede and
follow cases are redundant because they satisfy all the wait-bound constraints. The
regressions of these triangular waits are also redundant, since the corresponding
regression waits are no larger than the triangular wait on the target link.

Appendix C. Proof of Lemma 5.1

The proof consists of showing that the space of feasible solutions will not change
by excluding the post-wait and pre-wait sets in the wait-constraint formulation.

(a) There are four parts in proving that the post-wait set can be excluded from
the formulation.

First, we prove that all the triangular waits in the post-wait set satisfy the wait-
bound constraints. For any node F in the post-wait set, consider triangular wait
on link AF.

wAFC

(1) Let AF be a contingent link. Then the wait-bound constraint for the wait on
AF is w,,, = £Sp, according to (14). From post migrations, we know that
¢Ep > 0. Given that AC is a contingent link, AFC is in the follow case, and
AT can be taken as a requirement link. In this case, we have already proved in
(20) that the triangular wait w,pc = 5. Note that there are two contingent
links AC and AF in this triangle. Hence, the triangle will be considered twice,
with each contingent link playing the role of a requirement link.

(2) Let AF be a requirement link. By the definition of the post-wait set, (5 >
¢§, and the lower-bound wait constraint is satisfied according to the second
observation in Section 5.1. By combining the shortest-path constraints in (10)
on AFC, it is easy to verify that the upper-bound wait constraint is satisfied.
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Fig. 10. Regressing waits from the unordered-wait set to the post-wait set.

Second, we prove that the regression of triangular waits in the post-wait set will
not increase any other waits. For any node E, consider node F in the post-wait set.

(1) Let EF be a requirement link. Using the shortest-path constraints in (10) on
AFE, one can show that the regression of triangular wait w, ., is no larger than
the triangular wait w, .. Since the wait on AE is chosen to be the maximum
of all waits, we conclude that the regression of wait w,,., would not increase
the wait on AE.

(2) Let EF be a contingent link (with F as the end point). We know from post
migrations that £Z; > 0 and AFC (with AC a contingent link) is in the follow
case. We have shown in (25) that the regression of triangular waits through a
contingent link in the follow case does not increase other waits.

Third, we prove that, if waits on nodes in the unordered-wait set satisfy the
wait-bound constraints, then their regression to the post-wait set will not violate
the wait-bound constraints. Since we have already shown in the second observation
in Section 5.1 that a wait on nodes in the post-wait set satisfies the lower-bound
wait constraints, we only need to examine the upper-bound wait constraints.

Referring to Figure 10, assume D to be in the unordered-wait set, and E in the
post-wait set. Based on the third observation in Section 5.1, we conclude that only
the upper-bound wait constraints on AE, where E in the post-wait set is a starting
point of contingent link EF, have to be examined. From post migrations, we know
"that, for any contingent link, if its end point is in the unordered-wait set, then the
corresponding starting point is also in the unordered-wait set. Thus all regressions
from the unordered-wait set to the post-wait set are through requirement links. To
"See the regression effect on AE, the only case to be considered is first regressing the
wait on AD (where D is in the unordered-wait set) to AF through requirement link
'FD, then regressing the wait on AF to AE through contingent link EF. Assume
_the wait on AD to be w,,, whose regression wait to AF is w, ... Let w,p0 be
the wait regressed from w , .., and v/, be the wait directly regressed from w , ¢
“through requirement link ED.



42 B. W. Wah & D. Xin

Fig. 11. Proof on excluding nodes in the pre-wait set from the formulation. Here, E is in the
pre-wait set, and D is the guard node along the path from E to C and from E to B.

From post migrations, we have Eﬁ r = 0. Hence, EDF is in the precede case,
and we have:

ugp = 5p +ufp. (28)
Regressing the wait through FD and EF, we have:

Wape = Ware — egF = Wurpe — U'II;D - EgF' (29)
Similarly, regressing the wait through ED, we have:
w;Ec =Wppe — ng =Wipe — UIED - egF = Wyge- (30)
That is, the. effect of regressing w,,, to any node in the post-wait set can be
considered as the regression through a requirement link. Based on the first and
third observations in Section 5.1, all these regressions are redundant if the upper-
bound wait constraints are formulated ini the unordered-wait set.

Last, we need to prove that the regression of waits in the pre-wait set will not
increase the waits of nodes in the post-wait set. This conclusion is proved in the
second part in (b) below.

b) There are three parts in proving that the pre-wait set can be excluded from
the formulation. " ;

First, referring to Figure 11, for any node E in the pre-wait set, we prove that
triangular wait w , ., = £%; that is, all triangular waits on the link between A and
a node in the pre-wait set already satisfy the wait-bound constraints. According to
guard migrations, there is a guard node D on the shortest path from E to C. Hence,
we have u,, = ul, + ul,. Given the definition of pre-wait set that uf%; < £5,
(i.e., E is guaranteed to occur before C), AEC is in precede case. As a result,

R c C R R
lAp = VAc — Uge = Ujc — YED — UDC- (31)
The triangular wait on AE satisfies the following equation:

— .,C _.C R R _ 4R
Wype = Uac — Upe = Uac — UED — Uhe = Lap: (32)
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Fig. 12. Reductions on shortest-path constraints. AE is a non-existent link in the network.

Second, we prove that the regression of a triangular wait between A and a node
E in the pre-wait set will not increase other waits. We examine the regression effect
ofw,,.. If E in the pre-wait set is the end point of a contingent link from A, then
from pre-migration, we know that u§ < 0. Hence, w,,. = (G5 < u§p <0, and
all regressions are equivalent to regressions through requirement links. Combining
with the shortest-path constraints, we know that the regression of a triangular wait
through a requirement link will not raise the target triangular wait.

Last, we prove that, if waits on nodes outside the pre-wait set already satisfy
the wait-bound constraints, then their regressions to nodes in the pre-wait set will
also satisfy the constraints. That is, if the wait on AE in Figure 11 is raised to a
value larger than the lower bound of AE due to the regression of wait w ,,. on AB
outside the pre-wait set, then the wait on guard node D along the path from E to
B must be larger than the lower bound of AD already. In Figure 11, assume that
the regression of a wait on AB, w , ., causes the wait on AE to be raised to a value
larger than the lower bound of AE. Combining with the shortest-path constraints:

Wage = Wape — UIBB - ugD > eﬁE
= Wape — Upp > uEp + hE
= Wyge — ugB > Z,@D
= w,pe > 2.
Since all guard nodes are previously'in the pre-wait set, the existing constraints
- would imply w,,,, = £%p, which ensures that all waits on nodes in the pre-wait

set will not violate the wait-bound constraints even if they are found by regressions
- from waits outside the pre-wait set.

Appendix D. Proof of Lemma 5.3

- Suppose A in Figure 12 is the candidate node to be eliminated, and P, Q, and R
form the adjacent set A. Assume that the shortest-path constraints on APQ, APR,
AQR, and the rest of the network that excludes A have been formulated.

We first prove that any node in the rest of the network will not lead to violations
of the shortest-path constraints related to AP, AQ and AR. Consider AR as an
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example. Given an arbitrary node E in the rest of the network, we know from the
fourth observation in Section 5.1 that the upper bound of AE, which is a link that
does not exist in the network, is the minimum of the upper bounds of all possible
paths from A to E. Assuming u,, = uffp + ulls, we have:

R R R R R
uUsp S Uap +UpR = U,y — Upp T UpPp- (33)
Since the rest of the network satisfies the shortest-path constraints, we have:
R R R R R
Upr S Upp + UgRr = UAR < U,sp +UER (34)

Similarly, we can prove that the shortest-path constraints with respect to the lower
bound of AR are satisfied.

Last, we need to prove that A will not cause the violation of the shortest-path
constraint of any link in the rest of the network. The proof is very similar to that
above and will not be shown.
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