
Computing Iceberg Cubes by
Top-Down and Bottom-Up Integration:

The StarCubing Approach
Dong Xin, Student Member, IEEE, Jiawei Han, Senior Member, IEEE, Xiaolei Li, Zheng Shao, and

Benjamin W. Wah, Fellow, IEEE

Abstract—Data cube computation is one of the most essential but expensive operations in data warehousing. Previous studies have

developed two major approaches, top-down versus bottom-up. The former, represented by the MultiWay Array Cube (called the

MultiWay) algorithm [30], aggregates simultaneously on multiple dimensions; however, it cannot take advantage of a priori pruning [2]

when computing iceberg cubes (cubes that contain only aggregate cells whose measure values satisfy a threshold, called the iceberg

condition). The latter, represented by BUC [6] , computes the iceberg cube bottom-up and facilitates a priori pruning. BUC explores fast

sorting and partitioning techniques; however, it does not fully explore multidimensional simultaneous aggregation. In this paper, we

present a new method, Star-Cubing, that integrates the strengths of the previous two algorithms and performs aggregations on

multiple dimensions simultaneously. It utilizes a star-tree structure, extends the simultaneous aggregation methods, and enables the

pruning of the group-bys that do not satisfy the iceberg condition. Our performance study shows that Star-Cubing is highly efficient

and outperforms the previous methods.

Index Terms—Data warehouse, data mining, online analytical processing (OLAP).

Ç

1 INTRODUCTION

EFFICIENT computation of data cubes has been one of the

focusing points in research since the introduction of

data warehousing, OLAP, and data cube [9]. Previous
studies can be classified into the following categories:

1. efficient computation of full or iceberg cubes with
simple or complex measures [1], [6], [13], [21], [30],

2. computation of compressed data cubes by approx-
imation, such as quasi-cubes, wavelet cubes, etc., [4],
[5], [23], [27],

3. computation of condensed, dwarf, or quotient
(closed) cubes [17], [18], [26], [28], [29],

4. selective materialization of views [3], [10], [11], [15],
[19], [24], and

5. computation of stream “cubes” for multidimensional
regression analysis [7].

Among these categories, we believe that the first one,

efficient computation of full or iceberg cubes, plays a key role

because it is a fundamental problem, and any new method

developed there may strongly influence new developments

in the other categories. The quotient iceberg cube can be

efficiently computed by adding a closedness measure on an
iceberg cubing algorithm [29]. The efficient cubing algo-
rithm can also improve the performance of the GROUPING
SET operator (partial cube) [8] in commercial database
systems. Due to the similarity of iceberg cubing and
frequent pattern mining [14], we believe the principles
developed here also benefit frequent pattern mining
algorithms.

The problem of cube computation can be defined
as follows: In an n-dimension data cube, a cell a ¼
ða1; a2; . . . ; an; cÞ (where c is a measure) is called an
m-dimensional cell (i.e., a cell in an m-dimensional
cuboid), if and only if there are exactly m (m � n) values
among fa1; a2; . . . ; ang which are not �. It is called a base
cell if m ¼ n; otherwise, it is an aggregate cell. Given a base
table R, our task is to compute an iceberg cube [6], i.e., the
set of cells which satisfies an iceberg condition, or the full
cube if there is no such condition. An iceberg condition is
the constraint to prune the uninteresting cells. We first
study the case that measure c is the count of cells, and
c � min sup (min sup is a user given threshold) is the
iceberg condition (i.e., only cells whose counts are no less
than min sup are of interest). We extend this to complex
measures in Section 6.

Previous studies have developed two principles for
efficient cube computation: 1) sharing computations as much
as possible and 2) pushing the iceberg constraint as deep as
possible. The former aims at reducing the amortized cost for
computing each cell, and the latter tries to prune
unnecessary computations. In general, the algorithms speed
up the computation by sharing partitions, sorts, or partial
sorts for group-bys with common dimensions. Methods in
this line can be traced from PipeSort, PipeHash, and Overlap

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007 111

. D. Xin, J. Han, and X. Li are with the Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, IL 61801.
E-mail: {dongxin, hanj, xli10}@uiuc.edu.

. Z. Shao is with Yahoo! Corporation, 2811 Mission College Blvd., Santa
Clara, CA 95054. E-mail: zshao@yahoo-inc.com.

. B.W. Wah is with the Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Urbana, IL 61801.
E-mail: wah@uiuc.edu.

Manuscript received 16 Apr. 2006; revised 17 July 2006; accepted 24 Aug.
2006; published online 20 Nov. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0174-0406.

1041-4347/07/$20.00 � 2007 IEEE Published by the IEEE Computer Society

[1], MultiWay Array Cube [30], PartitionCube, and Memor-
yCube [21] to recent work on optimization with Grouping Set
query [8]. All these works share a common computation rule
that low dimension group-bys are aggregated from high
dimension group-bys (we refer this as a top-down ap-
proach). On the other hand, the iceberg constraint [6], [13]
proposes a new optimization opportunity for cube compu-
tation. Like many frequent pattern mining algorithms [14],
the iceberg constraint can take advantage of a priori
pruning which requires the computation order to be from
low dimension to high dimension (we refer to this as
bottom-up). Unfortunately, the two approaches follow
conflicting orders during the computation and cannot
exploit both principles simultaneously.

Can we integrate the strength of the previous algorithms and
develop a more efficient cubing method? In this paper, we
propose a new iceberg cubing algorithm, Star-Cubing,
which integrates the top-down and bottom-up cube
computation and explores both multidimensional aggrega-
tion and the a priori pruning. A new data structure, star-
tree, is introduced that explores lossless data compression
and prunes unpromising cells using an a priori-like
dynamic subset selection strategy. Our performance study
shows that Star-Cubing outperforms the previous cubing
algorithms in almost all data distributions.

The remainder of the paper is organized as follows:
Section 2 reviews the related work and reexamines two
representative algorithms in cube computation. In Section 3,
we present the principle of integration of the top-down and
bottom-up computation. Section 4 introduces the star-tree
structure and develops the Star-Cubing algorithm. Our
performance study is presented in Section 5. Section 6
discusses the potential extensions, and Section 7 is the
conclusion.

2 RELATED WORK

In iceberg cube computation, the top-down and bottom-up
approaches were considered as mutually exclusive. In this
paper, we present a new integrated method which exploits
both computation principles. Before proposing our new
algorithm, we first review the typical cubing algorithms in
both top-down and bottom-up categories.

2.1 Top-Down Approach

There are many algorithms in these categories; we select
MultiWay [30] as an example. MultiWay [30] is an array-
based top-down cubing algorithm. It uses a compressed
sparse array structure to load the base table and compute

the cube. In order to save memory usage, the array structure
is partitioned into chunks. It is unnecessary to keep all the
chunks in memory since only parts of the group-by arrays
are needed at any time. By carefully arranging the chunk
computation order, multiple cuboids can be computed
simultaneously in one pass.

Taking ABCD as the base cuboid, Fig. 1 shows that the
results of computing cuboid ACD can be used to compute
AD, which in turn can be used to compute A. This shared
computation allows MultiWay to perform aggregations
simultaneously on multiple dimensions. This leads to the
computation order shown in Fig. 1, where intermediate
aggregate values can be reused for the computation of
successive descendant cuboids. In Fig. 1, every node in the
tree is a cuboid, and the root node is the base cuboid. We call
the tree shown in Fig. 1 a top-down cuboids spanning tree.

The MultiWay algorithm is effective when the product
of the cardinalities of the dimensions are moderate. If the
dimensionality is high and the data is too sparse, the
method becomes infeasible because the arrays and inter-
mediate results become too large to fit in memory. More-
over, the top-down algorithm cannot take advantage of a
priori pruning during iceberg cubing, i.e., the iceberg
condition can only be used after the whole cube is
computed. This is because the successive computation
shown in Fig. 1 does not have the antimonotonic property
[2], [20]: If a cell in ABD does not satisfy min sup, one cannot
assert that its “children cell” in the cuboid AB does not
satisfy min sup either since a cell in AB contains more base
cells than that in ABD.

2.2 Bottom-Up Approach

We select BUC [6] as a representative algorithm for this
category. BUC employs a bottom-up computation by
starting at the apex cuboid (all) and moving upward to
the base cuboid, as shown in Fig. 2. Cuboids with fewer
dimensions now become parents of cuboids with more
dimensions. We call the tree shown in Fig. 2 a bottom-up

cuboids spanning tree. BUC starts by reading the full fact table
and partitioning it based on the distinct values in the first
dimension. Then, for each partition, it recursively computes
the remaining dimensions.

The bottom-up computation order facilitates a priori-
based pruning. For example, if the count of a cell c in a
cuboid A is smaller than min sup, then the count of any
descendant cells of c (with more dimensions, e.g., AC and
ACD) can never be higher than min sup. Thus, the
descendant cells of c can be pruned. This is implemented
as follows: During partitioning, each partition’s size is

112 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007

Fig. 1. Top-down computation. Fig. 2. Bottom-up computation.

compared with min sup, and the recursion stops if the size

does not satisfy min sup.
The partition process is facilitated by a linear sorting

method, CountingSort. When the cardinality is not too

large, CountingSort is fast since it does not perform any

key comparisons to find boundaries. Otherwise, BUC uses

quick sort. In addition, the counts computed during the sort

can be reused to compute the group-bys. Partitioning and

sorting are the major costs in BUC’s cube computation. Since

recursive partitioning in BUC does not reduce the input size,

both partitioning and aggregation are costly. Moreover, BUC

is sensitive to skew in the data: Performance degrades as

skew increases.
BUC is a divide-and-conquer algorithm: After a particu-

lar partition has been computed, all descendant cuboids are

calculated before the algorithm switches to another parti-

tion. In the calculation of the descendants, a priori pruning

is used to reduce unnecessary computation based on the

antimonotonic property, which was not possible in the top-

down computation. However, unlike MultiWay, the results

of a parent cuboid does not help compute that of its

children in BUC. For example, the computation of cuboid AB

does not help that of ABC. The latter needs to be computed

essentially from scratch.
Besides the iceberg constraint, there is much work

exploiting the closure semantic in multidimensional cube

space [17], [18], [25], [26], [28], [29]. The closure semantic

proposes a different constraint on data cube output and can

also be pushed deep to enable early pruning. This problem

is orthogonal to our work in this paper. In fact, closure

pruning can be efficiently integrated into many existing

cubing algorithms by computing an additional closedness

measure, as demonstrated by [29].

3 INTEGRATION OF TOP-DOWN AND BOTTOM-UP

COMPUTATION: THE PRINCIPLE

In this section, we introduce the principle of integrating top-
down and bottom-up computation. The implementation of
this principle, Star-Cubing, will be discussed in the next
section. Before presenting the details of the new method, we
first summarize the major computational properties of the
three algorithms in Table 1. The properties of Star-

Cubing will become clear in this section.

3.1 Shared Dimensions

The Star-Cubing algorithm explores both the top-down
and bottom-up models: On the global computation order, it
uses the top-down model similar to Fig. 1. However, it has a
sublayer underneath based on the bottom-up model by
exploring the notion of shared dimensions.

An observation of Fig. 1 may disclose an interesting fact:
All the cuboids in the left-most subtree of the root include
dimensions ABC, all those in the second subtree include
dimensions AB, and all those in the third include dimension
A. We call these common dimensions the shared dimensions
of those particular subtrees. Recall, we termed Fig. 1 as the
top-down cuboids spanning tree and Fig. 2 as the bottom-up
cuboids spanning tree. The definition of the shared dimen-
sions is as follows:

Definition 1 (Shared Dimensions). A set of shared dimen-
sions is a set of the prefix dimensions of the parent node and
the set of maximum prefix dimensions of all nodes in the
subtree in a top-down cuboids spanning tree.

Based on this concept, Fig. 3a is extended to Fig. 3b,
which shows the spanning tree marked with the shared
dimensions. For example, ABD/AB means cuboid ABD has
shared dimension AB, ACD/A means cuboids ACD has
shared dimension A, and so on.

Notice that a set of shared dimensions is also a cuboid. In
fact, node ACD/A represents two cuboids: one is ACD and
the other is A. The ACD cuboid is the upper bound of all the
cuboids in the subtree such that all those cuboids will be
computed directly or indirectly from it. The A cuboid is the
lower bound of all the cuboids in the subtree since all those
cuboids include it. We promote cuboid A up to a higher
level to facilitate the iceberg pruning. In fact, the integration
of top-down and bottom-up computation is achieved by the
integrated node ACD/A, where ACD is used for simulta-
neous aggregation and A is used for partition and prune.

XIN ET AL.: COMPUTING ICEBERG CUBES BY TOP-DOWN AND BOTTOM-UP INTEGRATION: THE STARCUBING APPROACH 113

TABLE 1
Summary of Three Algorithms

Fig. 3. Star-Cubing: Top-down computation with bottom-up growing shared dimensions. (a) Top-down and (b) integration of top-down and
bottom-up.

We refer to a cuboid with shared dimensions as integrated
cuboid from here on.

Since the cuboid corresponding to the shared dimensions
is identified early in the tree expansion, there is no need to
compute them later. For example, node AB extending from
ABD in Fig. 3a is pruned in Fig. 3b because AB was already
computed in ABD/AB. Also, cuboid A extending from AD is
pruned because it was already computed in ACD/A.

3.2 Cuboid Tree

The shared dimensions build relationships between cuboids
by linking cells in between them. For example, if cell a1 does
not satisfy iceberg condition (thus, does not exist in cuboid
A), a1 will not appear in any cuboids in the subtree under
node ACD/A. To be used for pruning, cells in the shared
dimensions should be computed before the whole subtree.
This gives us the motivation that we can use a tree structure
to represent a cuboid. For example, given the dimension
order as A, B, C, D, we can get the supports of ABCD cells on
the leaves. At the same time, the supports of A, AB, and ABC

cells are available on the internal nodes. From this point of
view, the shared dimensions should also be a prefix of
parent node in cuboids spanning tree.

Fig. 4 shows fragments of the cuboid trees of the base
cuboid ABCD and an integrated cuboid ACD/A (i.e., the
cuboid ACD with the shared dimension A). Each level in the
tree represents a dimension, and each node represents an
attribute. For simplicity, we refer to the node with an
attribute value p as node p thereafter. Each node has four
fields: the attribute value, the aggregate value, the pointer to
the left most child, and the pointer to possible sibling. A path
from the root to a node represents a cell. For example, node
c1 in the tree has aggregate (count) value of 2, which
indicates that the cell a1b1c1* has value 2. This representa-
tion collapses the common prefixes to save memory usage
and allows us to aggregate the values at internal nodes.

While there is only one tree instance for the base cuboid,
there are multiple tree instances for other cuboids. The
instances are partitioned by the attributes in shared
dimensions. For example, the ACD/A cuboid tree has
multiple instances, e.g., a1CD/a1 and a2CD/a2. This can
be viewed as having multiple partitions of cuboids.
Similarly, ABD/AB has multiple instances, e.g., a1b1D/

a1b1 and a1b2D/a1b2. Furthermore, multiple instances of
a cuboid tree are not kept in memory at the same time. They
are created and computed one by one according to the
partitions. We will discuss the detail of computation order
later.

3.3 Iceberg Pruning

The presence of the shared dimensions in the partial
ordering of top-down computation makes it possible to
take advantage of the bottom-up evaluation. Similar to BUC,
Lemma 1 will allow us to partition and prune based on
shared dimensions.

Lemma 1. If the measure of an iceberg cube is antimonotonic, and
if the aggregate value on the shared dimensions does not satisfy
the iceberg condition, all the cells extending from this set of the
shared dimensions cannot satisfy the iceberg condition either.

Rationale. Cells belonging to the cuboids under a set of
shared dimensions contain more attributes (i.e., dimen-
sions) than those in the shared dimensions. These new
attributes create new partitions for the set of cells, where
each partition is guaranteed to be no larger than the base
set. Thus, the aggregate value in the shared dimensions
does not satisfy the iceberg condition, the newly
partitioned set cannot either, based on the property of
antimonotonicity [20].

As an example, if the value in the shared dimension A is
a1 and it fails to satisfy the iceberg condition, the whole
subtree rooted at a1CD/a1 (including a1C/a1C, a1D/a1
and a1/a1) can be pruned.

We point out that the selection of the shared dimensions

is not unique. As an example, Fig. 5 shows a different

spanning tree with less pruning power. We are interested in

what is the best cuboids spanning tree and how to find the

best pruning strategy.

Definition 2 (Regular Spanning Tree). A top-down cuboids

spanning tree is a regular spanning tree if:

1. The root of the spanning tree is the base cuboid
containing all dimensions.

114 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007

Fig. 4. Fragments of the base cuboid tree and a1CD/a1 tree.

Fig. 5. An alternative cuboids spanning tree.

2. The children of a node are cuboids with one less
dimension.

3. The order of dimensions is fixed among all cuboids.

Among all possible regular spanning trees, we use
Algorithm 1 to construct our target spanning tree.

Algorithm 1 The algorithm to construct a regular spanning

tree

Input: (1) A set of cuboids S, and (2) Dimension order O

Output: A regular spanning tree

Sort dimensions on all cuboids in S according to O;

Find the cuboid R with the largest number of dimensions;

callPartitionðR;S � fRgÞ;

procedure PartitionðR;SÞ// R, the root cuboid, S the set

of cuboids to be partitioned

1: for each nonempty prefix p of R (ordered from long to
short)

2: set NewS as empty

3: for each cuboid c in S

4: if p is c’s prefix

5: remove c from S and insert c into NewS

6: find the cuboid U with the largest number of

dimensions in NewS

7: find the cuboid L with the least number of
dimensions in NewS

8: set U=L (an integrated node) as a child of R

9: call PartitionðU;NewS � fU;LgÞ
The correctness of the algorithm is straightforward. One

can show that the above algorithm generates a spanning
tree as shown in Fig. 3b.

3.4 Simultaneous Aggregation

Given the cuboid spanning tree, we now discuss how to
achieve simultaneous aggregation. We use a depth-first
search to traverse a parent cuboid tree, and at the same
time, multiple children cuboid trees are updated simulta-
neously. The parent tree will be traversed only once. At
each node of the parent tree, the algorithm makes the
following two decisions: 1) Whether it should create a new
child tree? For example, when the algorithm visits node a1
of the base cuboid tree in Fig. 4, the support of a1 in shared
dimension A is available. According to the cuboids
spanning tree, the node ACD/A is under consideration. If

a1 satisfies the iceberg condition, then the cuboid tree
a1CD/a1 will be created. Note that a1 will be in the root,
and the dimensions involved in the aggregation of this tree
are only C and D. This cuboid tree will aggregate all cells of
the partial cuboid a1CD by rolling up on the dimension B.
2) How to aggregate the information on the node to the
multiple children trees? For example, when the algorithm
visits node c1, the information on c1 will be aggregated to
child cuboid tree a1CD/a1. It will not be pushed to child
cuboid tree a1b1D/a1b1 since C does not belong to that
cuboid.

When the traversal algorithm finishes a subbranch in the
parent cuboid tree, the underlying child cuboid tree has
been constructed completely. For example, when the
traversal algorithm returns to node a1, the child tree
a1CD/a1 has been computed fully. We then consider
a1CD/a1 as a new parent cuboid tree and use a recursive
procedure to compute a1C/a1C and a1D/a1. A detailed
description of the multiway tree aggregation is presented in
next section.

4 STAR-CUBING: AN EFFICIENT IMPLEMENTATION

USING STAR TREE

In this section, we discuss the implementation details of the
Star-Cubing algorithm.

4.1 Star Nodes and Star Trees

If the single-dimensional aggregate on an attribute value p
does not satisfy the iceberg condition, it is useless to
distinguish such nodes in the iceberg cube computation.
Thus, the node p can be replaced by star (“�”) so that the
cuboid tree can be further compressed. This motivates us to
introduce the concepts of star node and star tree.

A node p in an attribute A is a star node if the single-
dimensional aggregate on p does not satisfy the iceberg
condition; otherwise, p is a nonstar node. A cuboid tree that
consists of only nonstar nodes and star (-replaced) nodes is
called a star-tree. Let us look at an example of star-tree
construction.

Example 1. A base cuboid table is shown in Table 2. There
are six tuples and four dimensions. The cardinalities
(number of distinct values) for dimensions A, B, C, and D

are 2, 4, 4, and 4, respectively.
The one-dimensional aggregates for all attributes are

shown in Table 3. Suppose min sup ¼ 2 (i.e., iceberg
condition). Clearly, only attribute values a1, a2, b1, b2,
c1, c3, d2, and d4 satisfy the condition. All the other

XIN ET AL.: COMPUTING ICEBERG CUBES BY TOP-DOWN AND BOTTOM-UP INTEGRATION: THE STARCUBING APPROACH 115

TABLE 2
Base (Cuboid) Table: Before Star Reduction

TABLE 3
One-Dimensional Aggregates

values are below the threshold and thus become star
nodes. By collapsing star nodes, the reduced base table is
Table 4. Notice the table contains three fewer rows and
also fewer distinct values than Table 2.

Since the reduced base table is smaller than the
original one, it is natural to construct the cuboid tree
based on it. The resultant tree is the star-tree, which will
also be smaller.

To help identify which nodes are star-nodes, a star-table

is constructed for each star-tree. Fig. 6 shows the structure

of the star-tree and its corresponding star-table constructed

from Table 4 (where only the star nodes are shown in the

star-table). In implementation, one could use a bit-vector or

a hash table to represent the star-table for fast lookup.
To ensure that the table reduction performed in Example 1

is correct, we need to show that the star-tree compression is

lossless (with regard to the iceberg cube computation).

Lemma 2. Given a specific iceberg condition, the compression

performed for derivation of star-tree by collapsing star nodes is

lossless (with regard to the iceberg cube computation).

Rationale. If the single-dimensional aggregate for node p in
a particular dimension cannot satisfy the iceberg condi-
tion, augmenting p with more dimensions cannot derive
any new aggregate that can satisfy the iceberg condition,
based on the a priori property. Therefore, it is safe to
replace that attribute with the star node, denoted by �. By
doing so, the cardinality of the dimension will be smaller
and the corresponding cuboid tree will be more
compressed, but it will not lose any aggregate cells
which satisfy the iceberg condition.

Note star is different from all, all attributes whose single
dimension aggregates are less than iceberg condition are
collapsed to star, while all includes all attributes no matter
whether their aggregates exceeds the iceberg conditions or
not. In the case where the star node does not have any
sibling, star is equivalent to all. Since star attribute values
will not appear in output, we further restrict that star
attribute values not be included in shared dimensions.

4.2 Multiway Star-Tree Aggregation

With the generated star-tree, one can start the process of
aggregation by traversing in a top-down fashion. Traversal
will be depth-first. The first stage (i.e., the processing of the
first branch of the tree) is shown in Fig. 7. The leftmost tree
in the figure is the base star-tree. The subscripts by the
nodes in the tree show the order of traversal. The remaining
four trees are BCD, ACD/A, ABD/AB, and ABC/ABC from left
to right. They are the child trees of the base star-tree, and
correspond to the second level in Fig. 3. Correspondingly,
we call the base tree the parent tree. The subscripts in them
correspond to the same subscripts in the base tree, and they
denote the steps when they are created during the tree
traversal. For example, when the algorithm is at Step 1, the
BCD child tree root is created. At Step 2, the ACD/A child
tree root is created. At Step 3, the ABD/AB tree root and the
b1 node in BCD are created.

When the algorithm has reached Step 5, the trees in
memory are exactly as shown in Fig. 7. Since the depth-first
traversal has reached a leaf, it will start backtracking. Before
traversing back, the algorithm notices that all possible
nodes in the shared dimension (a1b1c1) have been visited.
This means the ABC/ABC tree is complete so the count is
output and the tree is destroyed. (In our implementation,
child tree ABC/ABC is not created since there will be no

116 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007

TABLE 4
Compressed Base Table: After Star Reduction

Fig. 6. Star tree and star table.

Fig. 7. Aggregation Stage One: Processing of the left-most branch of base-tree.

further aggregation on it. The count will be output directly

from Base-Tree. It was still generated in the figure just for

the illustration of the child tree generation process).

Similarly, upon moving back from d* to c1 and seeing

that c1 has no siblings, the count in ABD/AB is also output

and the tree is destroyed.
When the algorithm is at b1 during the back-traversal, it

notices that there exists a sibling in b2. Therefore, it will keep

ACD/A in memory and perform depth-first search on b2 just

as it did on b1. This traversal and the resultant trees are

shown in Fig. 8. The two rightmost child trees are created

again but now with the new values from the b2 subtree. The

trees that remained intact during the last traversal are reused

and the new aggregate values are added on. For instance,

another branch is added to the BCD tree.
Just like before, the algorithm will reach a leaf node at d2

and traverse back. This time, it will reach a1 and notice that

there exists a sibling in a2. In this case, all child trees except

BCD in Fig. 8 are destroyed. Afterward, the algorithm will

perform the same traversal on a2. This is shown in Fig. 9.

Notice that BCD keeps growing while the others have

started fresh.
There are several issues that we did not discuss or

encounter here due to the simplicity of our base table. Also,

we did not recursively build child trees. It could also be the

case that a nonstar node in the base tree could become a

star-node in a child tree. We shall discuss these and more

issues as follows.

4.2.1 Node Ordering

The star-tree data structure is a compressed version of the
original data. However, searching in a tree still takes time.
For example, to search for a specific node in a particular
level in Fig. 6 requires OðnÞ time where n is the number of
nodes in the level or the cardinality of that dimension. To
search for an entire tuple would require OðdnÞ time where d
is the number of dimensions.

In order to reduce this cost, the nodes in the star-tree are
sorted in alphabetical order in each dimension. For
example, in Fig. 7, the nodes in the first level are sorted in
the order of a1, a2. In general, all the levels will have the
order of �; p1; p2; . . . ; pn. The position of the star-node can
be anywhere but it is the first in our implementation since
we believe that it may occur more frequently than any other
single node. This ordering allows a node to be easily located
during tree traversal. All the local star-trees will be
generated from the base cuboid and, thus, will inherit the
ordering.

4.2.2 Child Tree Pruning

A child tree is one level lower than the current tree, e.g.,
a1CD/a1 is a child of the base-tree as shown in Fig. 7. To
improve cubing performance, one should prune useless
child trees. There are three conditions that the current node
must satisfy in order to generate child trees: 1) The measure
of the current node must satisfy the iceberg condition.
2) The tree to be generated must include at least one nonstar
(i.e., nontrivial) node. This is because if all the nodes were
star nodes, it means that none of them satisfies min sup and

XIN ET AL.: COMPUTING ICEBERG CUBES BY TOP-DOWN AND BOTTOM-UP INTEGRATION: THE STARCUBING APPROACH 117

Fig. 8. Aggregation Stage Two: Processing of the second branch of Base-Tree.

Fig. 9. Aggregation Stage Three: Processing of the last branch of Base-Tree.

is of no use to the iceberg cube. Therefore, it would be a
complete waste to compute them. 3) There is no star node in
the shared dimensions. This is because all values in shared
dimensions are part of the output, and the star node can
never be part of the output.

The first condition is trivial. The tree pruning based on
the last two conditions can also be observed in Fig. 7, Fig. 8,
and Fig. 9. For example, the child tree extending from a1b1

in the base-tree in Fig. 7 does not include any nonstar nodes.
According to the second condition, the a1b1D/a1b1 child
tree should not have been generated. In Fig. 8, the star node
c* appears in the shared dimensions of a1b2c*/a1b2c*
child tree, and b* appears in the shared dimensions of
a2b*D/a2b* child tree. They were still generated in the
figures just for the illustration of the child tree generation
process.

4.2.3 Star Nodes

It is possible that a nonstar node in the base tree could
become a star-node in a child tree. For example, an attribute
value of a node could just barely satisfy the iceberg condition
in the base tree, but when it is partitioned in the child trees, it
no longer satisfies the condition. For this reason, it is required
that all the nodes be checked again in the construction of
child trees. That is, all the trees shown in Fig. 7, Fig. 8, and
Fig. 9 have their own star table which will count the nodes
and make them star-nodes where appropriate.

4.3 Memory Management

Due to the numerous construction and destruction of
cuboid trees in the algorithm, memory management
becomes an important issue. Instead of using the standard
memory allocation command (e.g., new and delete in
C++), we instead maintain a free node list. During the
construction of a tree, whenever a new node is needed, the
algorithm will just request a node from the free node list.
When deallocating a node, the algorithm will just add the
node back to the list of free nodes.

To initialize the free node list, the algorithm will allocate
kdn nodes into a node buffer, where d is the number of
dimensions, n is the number of tuples, and k is a scaling
factor dependent on the iceberg condition. The larger the
minimum support is, the smaller k is. In practice, a value of
0.2 is usually sufficient for k. To begin with, the free node
list is empty. New nodes from the node buffer are added to
the list whenever nodes are no longer needed. When the
free node list and node buffer are both used up, more nodes
are acquired from the system memory.

This memory management strategy proves to be an
effective optimization to the algorithm for two reasons:
1) With the free node list, memory allocation commands are
replaced by pointer operations, which are much faster and
2) by avoiding constantly allocating and deallocating small
memory chunks in the system memory heap, fragmentation
is avoided. In practice, the total memory requirement is
usually less than kdn. This is because the star-tree
compresses the data. Similar to the free node list, the
algorithm maintains a free cuboid tree list as well.

4.4 Dimension Ordering

Similar to other iceberg cube algorithms, Star-Cubing is
sensitive to the order of the dimensions. The goal of
ordering dimensions is to prune the trees as early as

possible. A common strategy is to order the dimensions in
cardinality-descending order. The cardinality-descending
ordering of the dimensions on the star-tree may lead to the
generation of bigger initial (base) tree, but it leads to a better
chance of early pruning. This is because the higher the
cardinality is, the smaller the partitions are and, therefore,
the higher the possibility that the partition will be pruned.

However, sometimes the cardinality-descending order-
ing may be too coarse to catch the different distribution of
each dimension. For example, given two dimensions in a
data set with 100k tuples, one has a cardinality of 10,000
with very big skew (almost all tuples lie on small number
values), and the other has a cardinality of 9,000 with
uniform distribution. For a reasonably given min sup (i.e.,
100), it is desirable to order the second dimension before the
first dimension. Motivated by this, we propose another
ordering strategy based on data distribution. Suppose we
have a data set whose dimensions have the same cardinality
but have different skews. In this case, obviously the
ordering should be determined by the skews. We use
entropy, instead of cardinality, to order the dimension. The
entropy for a dimension A is defined as:

EntropyðAÞ ¼ �
XCardðAÞ
i¼1

jaij
jtuplesj

� �
� log

jaij
jtuplesj

� �
;

where ai is the number of tuples whose value on
dimension A is ai, and CardðAÞ is the cardinality of
dimension A. Ignoring the constant items, we will compare
a measure E:

EðAÞ ¼ �
XCardðAÞ
i¼1

jaij � logðjaijÞ

for all the dimensions.
The more uniform the value distribution on the dimen-

sion is, the larger the entropy value is; thus, we order the
dimension in measure E descending order.

4.5 Star Table Construction

The star-tree is a major component of the algorithm. It
collapses the attributes and makes the tree size shrink
quickly. To build the star-tree, the star-table is needed. The
stat table is constructed by traversing the associated subtree
and counting the frequencies of each attribute. Although the
cost to build the star-table is nontrivial, without it the total
computation of the star-tree will be much more expensive.

There are, however, two situations where the star-table
does not need to be computed. First, no star-table is needed
in the computation of a full cube because there is no star
node. Second, when a node is at a high level of the ancestor
tree, i.e., the corresponding partition is fairly big, the chance
for star node to appear at this level is slim. It is not
beneficial to compute the star-table. One can use the
aggregate value on the node to estimate whether a star-
table should be computed (in our implementation, we do
not compute that star table as the aggregate value is larger
than min sup� c, where c is the maximum cardinality
among dimensions under this node).

4.6 Star-Cubing Algorithm

Based on previous discussions, the Star-Cubing algo-
rithm is summarized in Algorithm 2. With the step-by-step

118 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007

discussions in this section, the program is self-explanatory.
Based on Lemmas 1 and 2, the algorithm derives the
complete and correct iceberg cube with the input table R,
and the iceberg condition, min sup.

Algorithm 2 The Star-Cubing algorithm

Input: (1) A relational table R

(2) An iceberg condition, min sup (taking count as

the measure)

Output: The computed iceberg cube

scan R twice, create star-table S and star-tree T ;
output count of T:root;

call starcubingðT; T :rootÞ;

procedure starcubingðT; cnodeÞ// cnode: current node

1: for each nonnull child C of T in cuboids spanning tree {

2: insert or aggregate cnode to the corresponding

3: position or node in C’s star-tree;

4: if ðcnode:count � min supÞ {
5: if (cnode 6¼ root)

6: output cnode.count;

7: else { // initiate a new child in cuboids spanning

tree

8: create CC as a child of T in cuboids spanning

tree;

9: let TC be CC ’s star-tree;

10: TC:root
0s count ¼ cnode:count; }}

11: if (cnode is not a leaf)

12: call starcubingðT; cnode:first childÞ;
13: if (CC is not null) {

14: call starcubingðTC; TC:rootÞ;
15: remove CC from T in cuboids spanning tree; }

16: if (cnode has sibling)

17: callstarcubingðT; cnode:siblingÞ;
18: remove T ;

The efficiency of the algorithm is based on three major
points: 1) It uses iceberg pruning. With a tree structure, each
node in the base tree is a potential root of child tree. The
aggregate value of that root can be tested on the iceberg
condition and unnecessary aggregates are avoided. 2) It
explores the multiway tree aggregation. By scanning the
base tree once, it aggregates value on multiple children
trees. 3) It uses star-tree compression. The algorithm
explores the star-nodes under the iceberg threshold and
builds star-table for each tree. The star-nodes make a tree
shrink quickly. Thus, both computation time and memory
requirement are reduced.

In terms of space requirement, we have the following
lemma to justify that there are always limited number of
cuboid trees in memory.

Lemma 3. At any time, there are at most nþ 1 cuboid trees in

memory, where n is the number of dimensions.

Rationale. A cuboid tree can be released from memory if
and only if all the child cuboid trees in the cuboids
spanning tree have been computed and released. A
cuboid tree will generate multiple child cuboid trees
recursively. We use the notation T ðt; fÞ to represent a
cuboid tree, where t is the total number of dimensions

for the cuboids and f is the total number of free

dimensions (i.e., total number of dimensions minus

number of shared dimensions). The number of child

cuboid trees of T ðt; fÞ is at most f . In our four-dimension

cube example, the base cuboid is T ð4; 4Þ, and it generates

four child cuboid trees T ð3; 0Þ; T ð3; 1Þ; T ð3; 2Þ; T ð3; 3Þ,
representing ABC/ABC, ABD/AB, ACD/A, and BCD.

Suppose that at a particular time, the algorithm just
finished the computation of a cuboid tree T ðt; fÞ. There
are f new children trees generated and the total number
of cuboid trees in memory is Sðt; fÞ. We show that
Sðt; fÞ � nþ 1. We prove the claim by induction. First,
Sðn; nÞ ¼ nþ 1 because there are only one base cuboid
tree and n children trees directly generated by the root.
Assume Sðtþ 1; f 0Þ � nþ 1 is true for all valid f 0.
According to our definition of T ðt; fÞ, f 0 is valid only if
f 0 � tþ 1. Consider Sðt; fÞ, where T ðt; fÞ is generated by
T ðtþ 1; f�Þ. We know that, when T ðt; fÞ is ready for
generating new children trees, all the T ðt; pÞ (p < fÞmust
have been fully released. There are a total of f � 1 trees
which have been destroyed and T ðt; fÞ will generate at
most f � 1 new trees. We have

Sðt; fÞ � Sðtþ 1; f�Þ � ðf � 1Þ þ ðf � 1Þ ¼ Sðtþ 1; f�Þ
� nþ 1:

We conclude that the total number of cuboid trees is up-

bounded by nþ 1 for n dimension cube. tu

4.7 Improve Performance by Indexing

The basic Star-Cubing algorithm works well in dense
and not-so-sparse data sets. However, in a very sparse data
set, where the cardinalities are large, the star tree gets very
wide. Although a sparser cube enables Star-Cubing to
prune earlier, the increase in tree size requires more time in
construction, traversal, and aggregation, which negates the
effects of pruning. On the other hand, while the tree gets
wider, there are lots of single paths in the tree. A single path
is a branch of the tree where no forks exist. For example, in
Fig. 6, a2b*c3d4 is a single path. Single paths have nice
properties that can be used for optimization.

First, a single path enables child tree pruning. The
combination in values of dimensions within the single path
is simpler (the value on each dimension either chooses the
value appears in the path or all, there is no other
possibility). We do not create new child trees on the single
path, instead, a simple enumeration will generate all
possible output.

Second, single paths can be shared by different child
trees. According to the star-cubing algorithm, nodes on the
parent tree will be aggregated to the child trees. Most single
paths on these child trees stay identical or partially the same
to each other (i.e., b1c1d* on Base-Tree, b1c1d* on BCD-
Tree and c1d* on ACD/A-Tree in Fig. 7). To avoid the cost
of traversal and copying on the single paths, it is preferable
to replace the single path with an index, pointing the
original single path which was kept in a reference array.

To make the idea of indexing transparently embedded

into the Star-Cubing algorithm, several techniques are

developed as outlined below.

XIN ET AL.: COMPUTING ICEBERG CUBES BY TOP-DOWN AND BOTTOM-UP INTEGRATION: THE STARCUBING APPROACH 119

4.7.1 Index Node

As presented in the last section, memory management is an
important factor for the performance. The presupposition
for repeatedly using the nodes is that they have the same
data structure: (attribute, measure, child, sibling). We use
the same data structure to represent an index by letting the
attribute field be an index value. To differentiate from the
previous notations, we call the nodes with attribute value as
attribute node, nodes with index value as index node. An index
node is always a leaf of the tree (see Fig. 10). If a leaf is found
at the depth less than the depth it is supposed to be (i.e., the
last depth of the tree), then it is an index node, and the
difference of depth is the length of the single path. To avoid
confusion, we never use an index node to point to a single
path whose length is 1, that is, if the leaf node appears at the
last depth of the tree, it must be an attribute node.

4.7.2 Aggregation with Index

In the process of multiway aggregation, when an index
node is aggregated to a child cuboid tree, we use the
corresponding attribute value in the single path to find the
target node in the child cuboid tree. There are several
possibilities: If the target node (i.e., nodes with the attribute
value) does not exists, then a new node is created, and the
index is assigned to the node. If the target node is an
attribute node, then the measure of that node is updated,
and the index node is aggregated to its children recursively.
If the target node is an index node, then a comparison is
done between these two single paths, a sequence of
attribute nodes are generated until the attribute values on
these two single paths are different. Two new index nodes
are created as the children of the last attribute node.

4.7.3 Pruning Child Trees

All the single paths we mentioned above are branches
whose end nodes are leaves of a cuboid tree. In order to
fully exploit the single path pruning in the algorithm, we
extend our definition of single path to a branch whose end
node cannot necessarily be a leaf. These single paths are not
necessary to be represented using index nodes. As shown in
Fig. 11, a1b1c1 is a single path. When a (extended) single
path is met during the traversal, we delayed the creation of
new child tree until the forking point is reached. In our
example, child trees a1CD/a1 and a1b1D/a1b1 are
pruned, only child tree a1b1c1/a1b1c1 is created.

5 PERFORMANCE ANALYSIS

To check the efficiency and scalability of the proposed
algorithm, a comprehensive performance study is con-
ducted by testing our implementation of Star-Cubing

against the best implementation we can achieve for the
other two algorithms: MultiWay and BUC, based on the
published literature. We denote Star1 as the Star-Cubing
algorithm described in Section 4 and Star2 as Star-

Cubing with indexing. All the four algorithms were coded
using C++ on an Intel Pentium-4 2.6GHz system with 1G of
RAM. The times recorded include both the computation
time and the I/O time. Similar to other performance studies
in cube computation [30], [6], [13], all the tests used the data
set that could fit in main memory.

We have conducted experiments on both synthetic data
set and real data set. In synthetic data set, D denotes the
number of dimensions, C the cardinality of each dimension,
T the number of tuples in the base cuboid,M the minimum
support level, and S the skew (zipf) of the data. When S
equals 0.0, the data is uniform; as S increases, the data is
more skewed. S is applied to all the dimensions in a
particular data set. In real data set, we use the weather data
set SEP83L.DAT1 which has 1,002,752 tuples. We select
13 dimensions, and the attributes (cardinalities) are as
follows: year month day hour (238), sky brightness
indicator (2), station number (6,515), present weather
(100), lower cloud amount (18), lower cloud base height
(21), low cloud type (36), middle cloud type (95), high cloud
type (93), middle cloud amount (79), change code (110),
solar altitude (1,535), and relative lunar illuminance (155).

5.1 Full Cube Computation

The first set of experiments compare Star-Cubing with all
the other three algorithms for full cube computation. The
performance of the four algorithms is compared with respect
to tuple size (Fig. 12), cardinality (Fig. 13), and dimension
(Fig. 14). In the first experiment, we randomly generated data
sets with five dimensions, varying the number of tuples from
1,000K to 1,500K. In the second experiment, we varied the
cardinalities for each dimension from 5 to 35. Finally, we
increased dimension number from three to seven while
keeping the cardinality of each dimension at 10. The tuple
size for the latter two data sets was 1,000K. All the data were
uniformly distributed, i.e., skew was 0.

The experimental results are shown in Fig. 12, Fig. 13,
and Fig. 14. We did not use more dimensions and greater
cardinality because in high dimension and high cardinality
data sets, the output of full cube computation gets
extremely large, and the output I/O time dominates the
cost of computation. This phenomenon is also observed in

120 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007

1. http://cdiac.ornl.gov/ftp/ndp026b/.

Fig. 10. Star tree with indexing.

Fig. 11. Pruning child trees with single path.

[6] and [21]. Moreover, the existing curves have clearly
demonstrated the trends of the algorithm performance with
the increase of dimensions and cardinality.

There are three main points that can be taken from these
results. First, Star-Cubing and MultiWay are both
promising algorithms under low dimensionality, dense
data, uniform distribution, and low minimum support. In
most cases, Star-Cubing performs slightly better than
MultiWay. The performance of MultiWay degrades
quickly when the dimension increases. Second, in those
cases, BUC shows the worst performance. BUC was initially
designed for sparse data set. For dense data, the cost of
partition is high, and the overall computation time

increases. Finally, the two Star-Cubing algorithms show
similar performance. Star2 takes advantage of single path
when the cardinality increases; however, it also suffers from
the overhead to manage attribute node and index node at
the same time and visit attributes via index transforming.

5.2 Iceberg Cube Computation

The second set of experiments compares the four algo-
rithms for iceberg cube computation. Except MultiWay, all
the algorithms tested use some form of pruning that
exploits the antimonotonicity of the count measure. As
seen in the previous experiments, MultiWay does not
perform well in high dimension and high cardinality data
sets. We compared BUC and Star-Cubing only. The
results are shown in Fig. 15, Fig. 16, and Fig. 17.

The data set used in Fig. 15 has 1,000K tuples with seven
dimensions and zero skew. The min sup is 1,000. The
cardinality of each dimension is increased from 5 to 15. We
can see that BUC and Star-Cubing performs better in
sparse data. Star2 shows better performance than Star1
when the data gets sparser. We further compared these two
algorithms with higher dimension and cardinality. In
Fig. 16, the data set has 1,000K tuples with 10 dimensions,
each with cardinality of 10. The skew of data is 0. At the
point where min sup is 1,000, Star-Cubing decreases the
computation time more than 50 percent comparing with
BUC. The improvements in performance get much higher
when the min sup level decreases. For example, when

XIN ET AL.: COMPUTING ICEBERG CUBES BY TOP-DOWN AND BOTTOM-UP INTEGRATION: THE STARCUBING APPROACH 121

Fig. 12. Full cube computation with regard to number of tuples, where

D ¼ 5, C ¼ 25, and S ¼ 0;M¼ 1.

Fig. 13. Full cube computation with regard to cardinality, where T ¼ 1M,

D ¼ 5, and S ¼ 0;M¼ 1.

Fig. 14. Full cube computation with regard to dimension, where T ¼ 1M,

C ¼ 10, and S ¼ 0;M¼ 1.

Fig. 15. Iceberg cube computation with regard to cardinality, where

T ¼ 1M, D ¼ 7, S ¼ 0, and M¼ 1; 000.

Fig. 16. Star-cubing versus BUC with regard to Minsup, where T ¼ 1M,

D ¼ 10, C ¼ 10, and S ¼ 0.

min sup is 50, Star-Cubing runs around five times faster
than BUC.

Fig. 17 shows the performance comparison with increas-

ing cardinality. Star-Cubing is not sensitive to the

increase of cardinality; however, BUC improves its perfor-

mance in high cardinality due to sparser conditions.

Although a sparser cube enables Star-Cubing to prune

earlier, the star-tree is getting wider. The increase in tree

size requires more time in construction and traversal, which

negates the effects of pruning. The Star2 algorithm with the

indexing techniques reduces the overhead and the experi-

mental results shows that it works quite well. The

simultaneous aggregation does not play an important role

here because most of the outputs have a small number of

nontrivial (not all) attributes (for example, in Fig. 17, when

the cardinality is 150, 47.3 percent of the outputs have at

most two nontrivial attributes, and 91.4 percent of the

output have at most three nontrivial attributes). We believe

this is a rare case in real-life applications since the data cube

loses the power of multidimensional analysis.

Many real data sets have skews, correlations, and mixed

dimensions with both high and low cardinalities. All these

properties favor the star-cubing algorithm. For example, the

skews and correlations in the data introduce more star nodes

and, thus, the star tree will be dramatically compressed. Our

performance studies on the real weather data (Fig. 24 and

Fig. 25), which has cardinalities as high as 6,515, shows that

Star-Cubing is significantly faster than BUC. We also

observed that: 1) In the cases where the application have

high cardinality and high minimum support, both Star-

Cubing and BUC run very fast. 2) In other cases, both

algorithms run slower due to higher complexity, and Star-

Cubing can be significantly faster than BUC.

5.3 Data Skew

In this section, we show that skewness affects the perfor-
mance of the algorithms. We use Zipf to control the skew of
the data, and vary Zipf from 0 to 3 (0 being uniform). The
input data had 1,000K tuples, 10 dimensions, and cardinality
of 10 for each dimension. The min sup was 100.

Fig. 18 shows the computation time for the four
algorithms. Skewed data made MultiWay and Star-

Cubing perform better. BUC is the only one that degrades.
MultiWay improved because many chunks now hold a
zero count while other chunks hold a very big count. The
array indices with zero count do not need to be processed at
all while the bigger counts do not increase the workload of
MultiWay.

We also compared BUC with Star-Cubing in a sparse
data set in Fig. 19. The result is similar to Fig. 18: BUC’s
performance degraded with increased skew while Star-

Cubing improved.
Finally, Fig. 20 shows the memory usage o Star-

Cubing (without indexing) comparing with the original
data size.

122 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007

Fig. 17. Star-cubing versus BUC with regard to cardinality, where

T ¼ 1M, D ¼ 10, S ¼ 1, and M¼ 100.

Fig. 18. Runtime with data skew, where T ¼ 150K, D ¼ 10, C ¼ 8, and

M¼ 1; 000.

Fig. 19. Star-cubing versus BUC with regard to skew, where T ¼ 1M,

D ¼ 10, C ¼ 10, and M¼ 100.

Fig. 20. Memory usage with regard to skew, where T ¼ 1M, D ¼ 10,

C ¼ 10, and M¼ 100.

5.4 Additional Star-Table Aggregation

Star-Cubing requires the construction of the star table in
advance. The benefits of the star table are profound: It
collapses the attributes dynamically and makes the star-tree
shrink quickly. There are additional costs that come with
this construction, but we will show that it is not a major
expense in the context of computing the iceberg cube.
Furthermore, without the star-table, the algorithm as a
whole will suffer.

Fig. 21 shows the comparison of computation times

between Star-Cubing (without indexing) with and with-

out star-tables. When the min sup is 10, both perform

similarly; however, when the min sup gets larger, star-table
contributes to reduce the size of star-tree, thus reducing the
computation time. The proportion of time used in con-
structing the star-table over the total runtime is less than
30 percent.

5.5 Scalability

Using dimension of 10, cardinality of 10, skew of 0, and
minimum support of 100, we generated several data sets
with up to 1,000K tuples. Fig. 22 shows the scalability of
Star-Cubing (with indexing) with respect to different
min sup level. The figure shows Star-Cubing is scalable
with respect to database size. Fig. 23 shows the total
memory requirement with respect to size of data sets. As
seen from the figure, the total memory requirement is
slightly larger than the original data size, and the total
memory usage is almost the same for different min sup
levels. This is because the memory is mainly used by the
base tree. The subtrees are relatively small.

5.6 Real Data Set

The first experiment in real data set compares Star-

Cubing and BUC for a different number of dimensions.
We picked the first 4, 6, 8, 10, and 13 dimensions in the
weather data set which we introduced in the beginning of
this section, themin sup is 100. Fig. 24 shows Star-Cubing
is substantially better than BUC, especially in high dimension
data. Fig. 25 shows the computational performance with
regard tomin sup. The first 10 dimensions are used here. We

XIN ET AL.: COMPUTING ICEBERG CUBES BY TOP-DOWN AND BOTTOM-UP INTEGRATION: THE STARCUBING APPROACH 123

Fig. 21. Runtime with star-table effectiveness, T ¼ 1M, D ¼ 10, C ¼ 10,

and S ¼ 0.

Fig. 22. Scalability with regard to the number of tuples, where D ¼ 10,

C ¼ 10, and S ¼ 0.

Fig. 23. Memory usage with regard to the number of tuples, D ¼ 10,

C ¼ 10, and S ¼ 0.

Fig. 24. Star-cubing versus BUC with regard to the number of

dimension, real data set, and M¼ 100.

Fig. 25. Star-cubing versus BUC with regard to minsup and real data set.

varied min sup from 10 to 1,000. Similarly, Star-Cubing
outperforms BUC, especially in low min sup, where Star-
Cubing gets more benefits from shared computation.

5.7 Dimension Order

Finally, we tested our dimension ordering strategy. We

generate a data set with eight dimensions. Four of them

have cardinalities 10 with different skews (0, 1, 2, and 3), the

other four have cardinalities 100 with different skews (0, 1,

2, and 3). The min sup is varied from 10 to 1,000. Org is the

original dimension order, Card means the dimensions are in

cardinality-descending order and Entropy represents the

order we discussed in Section 4.4. Fig. 26 shows that Card

and Entropy obviously outperform Org, while Entropy is

slightly better than Card.

In summary, we have tested three cubing algorithms:

MultiWay, BUC, and Star-Cubing, with the variations of

density, min sup, cardinality, and skewness. For dense

data, Star-Cubing is always the best, MultiWay is good

when dimensionality is low. For sparse data, both Star-

Cubing and BUC are good candidates. Usually, Star-

Cubing performs better than BUC. If the cardinality is low,

Star-Cubing runs several times faster than BUC. How-

ever, if the cardinality goes really high, BUC performs better.

For skewed data, Star-Cubing improves its performance

when the data skew increases, while BUC’s performance

deteriorates. Although there is no clear winner for all cases,

however, in most cases, Star-Cubing performs better

than others.

6 DISCUSSION

In this section, we will discuss a few issues related to
Star-Cubing.

6.1 Handling Large Databases

All the data sets used in our performance tests can fit in

main memory. One may wonder what may happen if the

data set cannot fit in memory. Actually, Star-Cubing

does not require that the base star-tree fit in memory. This is

because for any branch of the base star-tree, Star-Cubing

will need to scan it only once, as demonstrated in Fig. 7,

Fig. 8, and Fig. 9. Thus, one can load the star-tree page by

page. When a used star-tree page is swapped out, the space

it occupies can be released since one will not need to visit it

again in the cubing process. Thus, the largest star-tree,

which is the initial base tree, will not need to be in memory.

Only the lower level, smaller trees will need to be kept in

memory during cube computation. Note that the memory

management method proposed in Section 4.3 has taken this

factor into consideration by designing our own efficient but

simple memory management routines.

One may also consider the case that even the much

smaller, nonbase trees may not fit in memory, although we

believe that such a chance is rare if the dimension ordering

rule is observed. In this case, one can adopt projection-

based preprocessing similar to that in Fptree-based

frequent pattern mining [14] and do cubing for each

projected database.

We have slightly modified the Star-Cubing algorithm

to support large data sets. The new algorithm, we called

StarCubing-branch, loads the initial base star-tree branch by

branch. The method first scans the whole data set, loads the

tuples with one specified value on a dimension, and

partitions rest tuples in separated small data files. For

example, tuples with value 1 on the first dimension are

loaded and tuples with value i (i 6¼ 1) are saved in files

datai. When the first branch in the base tree finishes, the

released memory can be used to load the second branch

from data2.

The experiments were conducted on a computer with

128M physical memory. We compared the performances of

Star-Cubing and StarCubing-branch on four data sets

with 5M, 10M, 15M, and 20M tuples, respectively. Fig. 27

shows the peak memory requirements. As we analyzed

above, the StarCubing-branch consistently uses much less

memory. Fig. 28 shows the runtime of the two algorithms.

StarCubing-branch consumes more time than Star-Cub-

ing in the cases where the whole data set can fit in the main

memory, this is because StarCubing-branch has additional

cost on partitioning the original data set into separated files.

While the size of data set keeps increase, the Star-Cubing

becomes unacceptable due to the limited memory.

124 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007

Fig. 26. Dimension order effectiveness with regard to Minsup, where

T ¼ 1M;D ¼ 8.
Fig. 27. Peak memory requirement, D ¼ 7, C ¼ 10, S ¼ 0, and

M¼ 1; 000.

6.2 Computing Complex Measures

Throughout the paper, we have used count() as the
iceberg measure. Complex measures such as average()

can be easily incorporated into our algorithm, based on the
technique proposed in [13].

For example, for computing iceberg cube with the
condition, “min supðcÞ ¼ k and averageðcÞ > v,” for each
cell c, one may store top-k quant-infos at each node of the
tree and use the same technique as that proposed in [13],
[17] to perform antimonotonicity testing to filter out those
unpromising nodes during the cube computation process.
Computing other complex measures may adopt the similar
techniques suggested in [13].

It should be noted that for nonmonotonic measure such
as average(), Star-Table does not have the benefit of
compressing the tree size. The shared computation can
always be achieved if the measure or its converted one is
distributive [12].

7 CONCLUSIONS

For efficient cube computation in various data distributions,
we have proposed an interesting cube computation method,
Star-Cubing, that integrates the strength of both top-
down and bottom-up cube computation, and explores a few
additional optimization techniques. Two optimization
techniques are worth noting: 1) shared aggregation by
taking advantage of shared dimensions among the current
cuboid and its descendant cuboids and 2) prune as soon as
possible the unpromising cells during the cube computation
using the antimonotonic property of the iceberg cube
measure. No previous cubing method has fully explored
both optimization methods in one algorithm.

Our performance study demonstrates that Star-Cub-
ing is a promising method. For the full cube computation,
if the data set is dense, its performance is comparable with
MultiWay, and is much faster than BUC. If the data set is
sparse, Star-Cubing is significantly faster than Multi-

Way and faster than BUC in most cases. For iceberg cube
computation, Star-Cubing is faster than BUC, and the
speedup is more when the min sup decreases. Thus, Star-
Cubing is the only cubing algorithm so far that has
uniformly high performance in all the data distributions.

There are many interesting research issues to further
extend the Star-Cubing methodology. For example,
efficient computation of condensed or quotient cubes,

computing approximate cubes, computing cube-gradients

[16], and discovery-driven exploration of data cubes [22]

using the Star-Cubing methodology are interesting

issues for future research.

ACKNOWLEDGMENTS

This work was supported in part by US National Science

Foundation grants NSF IIS-03-08215/05-13678 and NSF

BDI-05-15813. Any opinions, findings, conclusions, or

recommendations expressed in this paper are those of the

authors and do not necessarily reflect the views of the

funding agencies.

REFERENCES

[1] S. Agarwal, R. Agrawal, P.M. Deshpande, A. Gupta, J.F.
Naughton, R. Ramakrishnan, and S. Sarawagi, “On the Computa-
tion of Multidimensional Aggregates,” Proc. Int’l Conf. Very Large
Data Bases (VLDB ’96), pp. 506-521, Sept. 1996.

[2] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. Int’l Conf. Very Large Data Bases (VLDB
’94), pp. 487-499, Sept. 1994.

[3] E. Baralis, S. Paraboschi, and E. Teniente, “Materialized View
Selection in a Multidimensional Database,” Proc. Int’l Conf. Very
Large Data Bases (VLDB ’97), pp. 98-12, Aug. 1997.

[4] D. Barbara and M. Sullivan, “Quasi-Cubes: Exploiting Approx-
imation in Multidimensional Databases,” SIGMOD Record, vol. 26,
pp. 12-17, 1997.

[5] D. Barbará and X. Wu, “Using Loglinear Models to Compress
Datacube,” Proc. First Int’l Conf. Web-Age Information Management
(WAIM ’00), pp. 311-322, 2000.

[6] K. Beyer and R. Ramakrishnan, “Bottom-Up Computationn of
Sparse and Iceberg Cubes,” Proc. ACM-SIGMOD Int’l Conf.
Management of Data (SIGMOD ’99), pp. 359-370, June 1999.

[7] Y. Chen, G. Dong, J. Han, B.W. Wah, and J. Wang, “Multi-
dimensional Regression Analysis of Time-Series Data Streams,”
Proc. 2002 Int’l Conf. Very Large Data Bases (VLDB ’02), pp. 323-334,
Aug. 2002.

[8] Z. Chen and V. Narasayya, “Efficient Computation of Multiple
Group by Queries,” Proc. ACM-SIGMOD Int’l Conf. Management of
Data (SIGMOD ’05), pp. 263-274, June 2005.

[9] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M.
Venkatrao, F. Pellow, and H. Pirahesh, “Data Cube: A Relational
Aggregation Operator Generalizing Group-By, Cross-Tab and
SubTotals,” Data Mining and Knowledge Discovery, vol. 1, pp. 29-54,
1997.

[10] H. Gupta, “Selection of Views to Materialize in a Data Ware-
house,” Proc. Seventh Int’l Conf. Database Theory (ICDT ’97), pp. 98-
112, Jan. 1997.

[11] H. Gupta, V. Harinarayan, A. Rajaraman, and J.D. Ullman, “Index
Selection for OLAP,” Proc. Int’l Conf. Data Eng. (ICDE ’97), pp. 208-
219, Apr. 1997.

[12] J. Han and M. Kamber, Data Mining: Concepts and Techniques.
Morgan Kaufmann, 2001.

[13] J. Han, J. Pei, G. Dong, and K. Wang, “Efficient Computation of
Iceberg Cubes with Complex Measures,” Proc. ACM-SIGMOD
Int’l Conf. Management of Data (SIGMOD ’01), pp. 1-12, May 2001.

[14] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without
Candidate Generation,” Proc. ACM-SIGMOD Int’l Conf. Manage-
ment of Data (SIGMOD ’00), pp. 1-12, May 2000.

[15] V. Harinarayan, A. Rajaraman, and J.D. Ullman, “Implementing
Data Cubes Efficiently,” Proc. ACM-SIGMOD Int’l Conf. Manage-
ment of Data (SIGMOD ’96), pp. 205-216, June 1996.

[16] T. Imielinski, L. Khachiyan, and A. Abdulghani, “Cubegrades:
Generalizing Association Rules,” Data Mining and Knowledge
Discovery, vol. 6, pp. 219-258, 2002.

[17] L.V.S. Lakshmanan, J. Pei, and J. Han, “Quotient Cube: How to
Summarize the Semantics of a Data Cube,” Proc. Int’l Conf. Very
Large Data Bases (VLDB ’02), pp. 778-789, Aug. 2002.

[18] L.V. S. Lakshmanan, J. Pei, and Y. Zhao, “QC-Trees: An Efficient
Summary Structure for Semantic OLAP,” Proc. ACM-SIGMOD
Int’l Conf. Management of Data (SIGMOD ’03), pp. 64-75, June 2003.

XIN ET AL.: COMPUTING ICEBERG CUBES BY TOP-DOWN AND BOTTOM-UP INTEGRATION: THE STARCUBING APPROACH 125

Fig. 28. Runtime, D ¼ 7, C ¼ 10, S ¼ 0, and M¼ 1; 000.

[19] X. Li, J. Han, and H. Gonzalez, “High-Dimensional OLAP: A
Minimal Cubing Approach,” Proc. Int’l Conf. Very Large Data Bases
(VLDB ’04), pp. 528-539, Aug. 2004.

[20] R. Ng, L.V.S. Lakshmanan, J. Han, and A. Pang, “Exploratory
Mining and Pruning Optimizations of Constrained Associations
Rules,” Proc. ACM-SIGMOD Int’l Conf. Management of Data
(SIGMOD ’98), pp. 13-24, June 1998.

[21] K. Ross and D. Srivastava, “Fast Computation of Sparse
Datacubes,” Proc. Int’l Conf. Very Large Data Bases (VLDB ’97),
pp. 116-125, Aug. 1997.

[22] S. Sarawagi, R. Agrawal, and N. Megiddo, “Discovery-Driven
Exploration of OLAP Data Cubes,” Proc. Int’l Conf. Extending
Database Technology (EDBT ’98), pp. 168-182, Mar. 1998.

[23] J. Shanmugasundaram, U.M. Fayyad, and P.S. Bradley, “Com-
pressed Data Cubes for OLAP Aggregate Query Approximation
on Continuous Dimensions,” Proc. Int’l Conf. Knowledge Discovery
and Data Mining (KDD ’99), pp. 223-232, Aug. 1999.

[24] A. Shukla, P.M. Deshpande, and J.F. Naughton, “Materialized
View Selection for Multidimensional Datasets,” Proc. Int’l Conf.
Very Large Data Bases (VLDB ’98), pp. 488-499, Aug. 1998.

[25] Y. Sismanis and N. Roussopoulos, “The Complexity of Fully
Materialized Coalesced Cubes,” Proc. Int’l Conf. Very Large Data
Bases (VLDB ’04), pp. 540-551, Aug. 2004.

[26] Y. Sismanis, N. Roussopoulos, A. Deligianannakis, and Y. Kotidis,
“Dwarf: Shrinking the Petacube,” Proc. ACM-SIGMOD Int’l Conf.
Management of Data (SIGMOD ’02), pp. 464-475, June 2002.

[27] J.S. Vitter, M. Wang, and B.R. Iyer, “Data Cube Approximation
and Histograms Via Wavelets,” Proc. Int’l Conf. Information and
Knowledge Management (CIKM ’98), pp. 96-104, Nov. 1998.

[28] W. Wang, H. Lu, J. Feng, and J.X. Yu, “Condensed Cube: An
Effective Approach to Reducing Data Cube Size,” Proc. Int’l Conf.
Data Eng. (ICDE ’02), pp. 155-165, Apr. 2002.

[29] D. Xin, Z. Shao, J. Han, and H. Liu, “C-Cubing: Efficient
Computation of Closed Cubes by Aggregation-Based Checking,”
Proc. Int’l Conf. Data Eng. (ICDE ’06), p. 4, Apr. 2006.

[30] Y. Zhao, P.M. Deshpande, and J.F. Naughton, “An Array-Based
Algorithm for Simultaneous Multidimensional Aggregates,” Proc.
ACM-SIGMOD Int’l Conf. Management of Data (SIGMOD ’97),
pp. 159-170, May 1997.

Dong Xin received the BS and MS degrees from
the Department of Computer Science and En-
gineering at Zhejiang University in 1999 and
2002, respectively. He is currently a PhD
candidate in the Department of Computer
Science at the University of Illinois at Urbana-
Champaign. His research interests include data
mining, data warehousing, and database system.
He is a student member of the IEEE and the IEEE
Computer Society.

Jiawei Han is a professor in the Department of
Computer Science at the University of Illinois at
Urbana-Champaign. He has been working on
research into data mining, data warehousing,
stream data mining, spatiotemporal and multi-
media data mining, biological data mining, social
network analysis, text and Web mining, and
software bug mining, with more than 300
conference and journal publications. He has
chaired or served in many program committees

of international conferences and workshops. He also served or is
serving on the editorial boards for Data Mining and Knowledge
Discovery, the IEEE Transactions on Knowledge and Data Engineering,
the Journal of Computer Science and Technology, and the Journal of
Intelligent Information Systems. He is currently serving as founding
editor-in-chief of the ACM Transactions on Knowledge Discovery from
Data (TKDD), and on the board of directors for the executive committee
of ACM Special Interest Group on Knowledge Discovery and Data
Mining (SIGKDD). He is an ACM fellow. He has received many awards
and recognitions, including ACM SIGKDD Innovation Award (2004) and
IEEE Computer Society Technical Achievement Award (2005). He is a
senior member of the IEEE.

Xiaolei Li received the BS degree in computer
science with a minor in mathematics and the MS
degree in computer science from the University
of Illinois at Urbana-Champaign in 2002 and
2004, respectively. He is currently a PhD
candidate in computer science at the University
of Illinois. His research interests include data
warehousing, anomaly detection, and spatio-
temporal data mining.

Zheng Shao received the BEng degree from
Tsinghua University, Beijing in 2003, the MS
degree from the University of Illinois, Urbana-
Champaign in 2005, and is now on leave of the
PhD program at the University of Illinois,
Urbana-Champaign. His research interests in-
clude data mining, Web mining, and large-scale
distributed system. He is currently working at
Yahoo! Web Search.

Benjamin W. Wah received the PhD degree in
computer science from the University of Cali-
fornia, Berkeley, in 1979. He is currently the
Franklin W. Woeltge Endowed Professor of
Electrical and Computer Engineering and pro-
fessor of the Coordinated Science Laboratory at
the University of Illinois at Urbana-Champaign,
Urbana, IL. Previously, he served on the faculty
of Purdue University (1979-1985), as a program
director at the National Science Foundation

(1988-1989), as Fujitsu Visiting Chair Professor of Intelligence
Engineering, the University of Tokyo (1992), and McKay Visiting
Professor of Electrical Engineering and Computer Science, the
University of California, Berkeley (1994). In 1989, he was awarded a
University Scholar of the University of Illinois; in 1998, he received the
IEEE Computer Society Technical Achievement Award; in 2000, the
IEEE Millennium Medal; in 2003, the Raymond T. Yeh Lifetime
Achievement Award from the Society for Design and Process Science;
and in 2006, the IEEE Computer Society W. Wallace-McDowell Award
and the Pan Wen-Yuan Outstanding Research Award. His current
research interests are in the areas of nonlinear search and optimiza-
tion, multimedia signal processing, and computer networks. He
cofounded the IEEE Transactions on Knowledge and Data Engineering
in 1988 and served as its editor-in-chief between 1993 and 1996, and is
the Honorary Editor-in-Chief of Knowledge and Information Systems.
He currently serves on the editorial boards of Information Sciences, the
International Journal on Artificial Intelligence Tools, the Journal of VLSI
Signal Processing, World Wide Web, and Neural Processing Letters.
He had chaired a number of international conferences, including the
2000 IFIP World Congress and the 2006 IEEE/WIC/ACM International
Conferences on Data Mining and Intelligent Agent Technology. He has
served the IEEE Computer Society in various capacities, including as
Vice President for Publications (1998 and 1999) and President (2001).
He is a fellow of the AAAS, ACM, and IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

126 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 1, JANUARY 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

