
On View Consistency in Multi-Server Distributed
Virtual Environments

Haiyang Hu, Rynson W.H. Lau, Senior Member, IEEE , Hua Hu, and Benjamin Wah, Fellow, IEEE

Abstract—A distributed virtual environment (DVE) is a shared virtual environment (VE) that allows remote users to interact with each

other through networks. DVEs are becoming very popular due to some prominent applications, such as online games and virtual

worlds. To support a large number of users, a multi-server DVE architecture may be adopted, with each server managing a subset of

users. However, there are two critical problems with this architecture: view inconsistency caused by delays and server overloading

caused by uneven distribution of users. While the first problem affects users’ perception of the VE and causes user disputes, the

second problem affects the system response time. In this paper, we first show that the view inconsistency problem and the load

balancing problem are conflicting objectives. We then propose an efficient joint optimization framework to address both problems. Our

results show that the proposed method can improve the view inconsistency problem significantly, which is important to the interactivity

of DVE applications.

Index Terms—Distributed virtual environments, view consistency, DVE load balancing, multi-server architecture

Ç

1 INTRODUCTION

D ISTRIBUTED virtual environments (DVEs) have
emerged as a new technology in distributed applica-

tions, due to advances in networking, computer graphics,
and distributed systems technologies. A DVE system allows
remote users to interact with each other in a shared virtual
environment (VE) through networks, particularly the Inter-
net. Each user of a DVE system may move around in the
VE, communicate with other users, and inquire the states of
objects in the VE. DVE systems are now widely used in vari-
ous applications, such as online training, collaborative
design, and multiplayer online games [30].

Due to the widely availability of the Internet, some
DVE applications have grown to become very large with
a huge number of users from all over the world. In order
to support such a large user population, a multi-server
architecture is typically adopted. As an example, for large
games, a popular approach to handle large user popula-
tion is to partition them to different servers. As the users
join the game, they are immediately assigned to a server.
When this server is full, a new server is started to serve
additional users. This approach is adopted by most

commercial games, such as Quake III Arena (www.idsoft-
ware.com) and Diablo II (www.blizzard.com). Its main
advantages are its simplicity and efficiency. However, it
has two major limitations. First, as each server is running
a separate instance of the game, users served by different
servers may not be able to interact with each other. Sec-
ond, once a user is assigned to a server, it cannot be
changed. Hence, if a user suddenly invokes some compu-
tationally costly operations causing server overloading, it
may not be trivially handled. Another approach is to par-
tition the VE into static regions, with each region served
by one server. Hence, users may be served by different
servers depending on where they are in the VE. This
approach is adopted by some commercial games, such as
EverQuest (everquest.station.sony.com), Ultima Online
(uo.com) and Asherons Call (ac.turbinegames.com). This
approach is also simple and efficient. However, when a
lot of users move into the same region, the server serving
this region can still get overloaded. In addition, as this
approach divides users according to their virtual loca-
tions, not physical geographical locations, users served by
the same server may be coming from different parts of
the world and hence suffer from very different amounts
of network delay. This can significantly affect their inter-
actions, caused by the view inconsistency (VI) problem,
as explained below.

In a DVE system, whenever a user (referred to as A)
changes its state, e.g., making a move, A needs to send an
update message to other users who are near to A in the
VE. We refer to these users as relevant users to A. A typi-
cal approach to determine these relevant users is by
defining a circular region around A, referred to as A’s
area of interest (AOI) [30].

In designing a multi-server DVE system that is scalable
to the number of users, we have two main challenges.
First, it is important for the system to maximize “view
consistency” of all users, i.e., if A changes its state, all

� H. Hu is with both the School of Computer Science and Technology,
Hangzhou Dianzi University, China, and the State Key Laboratory of
Networking and Switching Technology, Beijing University of Posts and
Telecommunications and the State Key Laboratory for Novel Software
Technology, Nanjing University, China. E-mail: huhaiyang@hdu.edu.cn

� R.W.H. Lau is with the Department of Computer Science, City University
of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
E-mail: rynson.lau@cityu.edu.hk.

� Hua Hu is with the School of Computer Science and Technology,
Hangzhou Dianzi University, China. E-mail: huhua@hdu.edu.cn.

� B. Wah is with the Chinese University of Hong Kong, Shatin, Hong Kong.
E-mail: bwah@cuhk.edu.hk.

Manuscript received 24 Jan. 2013; revised 20 Aug. 2013; accepted 3 Oct. 2013.
Date of publication 17 Oct. 2013; date of current version 27 Aug. 2014.
Recommended for acceptance G. Drettakis.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2013.244

1428 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 10, OCTOBER 2014

1077-2626� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



relevant users should receive the corresponding update
message in a timely manner so that their views of the VE
agree with A. When this is not the case, some users may
be acting according to incorrect views, which may cause
disputes among them. If all relevant users are served by
the same server, any update messages sent from the client
(i.e., the client machine) of A involve only client-server
delay. However, if the relevant users are distributed in
multiple servers, any update messages sent from A
involve both client-server and server-server delays. To
minimize server-server delays, we may place all servers
together in the same site. This will reduce server-server
delays to nearly neglectable values. However, this will
increase the client-server delays significantly as the users
may be coming from anywhere in the world. To minimize
client-server delays, we may distribute the servers across
the globe. However, the server-server delays will no lon-
ger be neglectable then. Second, it is important to avoid
server overloading, which would affect user interactions.
A multi-server DVE should have the ability to efficiently
redistribute workloads among servers so as to minimize
the number of overloaded servers.

Unfortunately, these two challenges have conflicting
objectives. As we assign more users, i.e., loads, to the same
server in order to minimize VI, this server will take up a
higher load than other servers and hence become over-
loaded easier. On the other hand, as we partition the users
equally among all servers to minimize the chance of server
overloading, more update messages will need to be sent
among the servers, which involve server-server delays.
Hence, more users will suffer from the VI problem.

To address these two problems, we need a load balanc-
ing method that would minimize both VI and the chance
of server overloading. There are a number of multi-server
load balancing methods proposed for DVEs. Most of them
focus on balancing the workload and communication
costs, and neglect the VI problem. In this paper, we present
a novel joint optimization framework to address the above
two problems. Our main contributions are as follows:

� We classify different types of user movement in
order to quantify the VI problem, by estimating the
rate at which VI events are perceived by users.
(see Section 4.)

� We present a joint optimization framework to find
the proper trade-offs between view consistency and
server workload. By dynamically dividing the VE
into partitions, the objective of the framework is to
reduce VI brought by the server-server delay while
keeping the workload of each partition under a given
threshold. (see Section 5.1.)

� We present a Kuhn-Munkres based algorithm to
assign the partitions to different servers so as to
reduce VI brought by the client-server delay, and
a greedy algorithm to locally refine the partition-
to-server assignment in order to reduce VI brought
by both client-server and server-server delays.
(see Section 5.2.)

To the best of our knowledge, this is the first work on
joint optimization of view consistency and load balancing
in multi-server DVEs. Note that although cloud services

are becoming popular [1], they also suffer from the two
problems as multi-server DVEs when multiple servers
are involved in providing the service. Hence, the joint
optimization framework that we present here is also
applicable in a cloud environment.

The rest of this paper is organized as follows. Section 2
reviews related work on load balancing in multi-server
DVEs. Section 3 introduces our DVE model. Section 4 ana-
lyzes different types of user movement and quantize the
VI problem caused. Section 5 presents optimization algo-
rithms to divide the VE into partitions and then assign the
partitions to different servers so as to minimize client-
server and server-server delays. Section 6 discusses a
number of experiments to evaluate the effectiveness of the
proposed method.

2 RELATED WORK

There has been a lot of research on DVE load balancing. A
straightforward approach, referred to as user partitioning,
is by dividing users directly among the servers. In [34], a
direct client assignment method is proposed to minimize
the total amount of network latency among clients and
servers. Each server manages a copy of the whole VE.
When assigning a new client to a server, it estimates the
total amount of latency between the new client and each
of the clients already assigned. The objective is to assign
the new client to a server with a minimum amount of
latency to all the assigned clients, which includes both cli-
ent-server and server-server latencies. The main limitation
of this method is that since neighboring users in the VE
may potentially be assigned to different servers, many
more update messages need to be sent across servers and
a higher VI problem is expected.

Another approach, referred to as spatial partitioning, is by
dividing the VE into partitions, each served by a different
server. In general, spatial partitioning methods can be
roughly classified into two types, global load balancing
methods and local load balancing methods. Global load bal-
ancing methods make use of the load information of all
servers to compute load balancing solutions, while local
load balancing methods only make use of the load informa-
tion of nearby servers to compute load balancing solutions.
In the following two section, we review these two types of
load balancing methods. We then review works that
address the synchronization or VI problem of DVEs.

2.1 Global Load Balancing

In [23], a global method is proposed that models the users
(or nodes) of a VE as a connected graph, with each edge
indicating the communication cost between two connected
users. The graph is then partitioned among the servers to
achieve load balancing. The load of each region is computed
based on the number of users in it and the inter-server com-
munication costs involved. As the optimization process of
this method involves all the nodes, it is very slow. In [25],
two partitioning algorithms based on heuristic search and
genetic algorithm are proposed. They use the aggregated
CPU bandwidth of the servers to avoid system saturation
and try to cluster nearby users to the same server to reduce
the latency. In [32], the entire VE is divided into regular

HU ET AL.: ON VIEW CONSISTENCY IN MULTI-SERVER DISTRIBUTED VIRTUAL ENVIRONMENTS 1429



cells. Greedy, simulated annealing and integer linear pro-
gramming algorithms are used to determine the best way to
assign the cells to different servers based on some global
load information. However, these algorithms have high
computational costs, especially for the integer linear pro-
gramming algorithm, which produces globally optimal sol-
utions. Although [2] attempts to speed up [32] by trying to
obtain suboptimal solutions instead of globally optimal sol-
utions, it is still too slow for large-scale DVEs.

In general, global methods apply optimization techni-
ques to achieve well balanced load distribution while
minimizing the communication costs among the servers.
However, optimization techniques typically have high
computational costs and hence are slow.

2.2 Local Load Balancing

In [27] and [28], an efficient local method is proposed. When
a server is overloaded, it identifies the neighboring servers
with the lightest loads for load redistribution. To minimize
the number of users located at partition boundaries, it also
tries to minimize the perimeter length of each partition.
Although this method is very efficient, it may not be able to
disperse the load quickly if neighboring servers also have
high loads. In [17], a revised method is proposed to address
this limitation. Instead of just finding neighboring servers,
this method identifies a set of connected servers to the over-
loaded server and performs optimized repartitioning of the
corresponding partitions to achieve better load balancing.
As a result, this method has a higher computational cost
than [27]. In [6], a local method that considers QoS is pro-
posed. Each server monitors its own QoS violations, mea-
sured in terms of user response time. It determines if a
perceived QoS violation is due to heavy workload or high
inter-server communication, and then triggers either load
shedding or load aggregation.

In general, local methods are efficient as they simply
redistribute the extra load to neighboring servers.
However, as they produce mainly short-term solutions,
they are usually less effective than the global methods
[8]. On the other hand, although both view consistency
and interactivity are important to users, all the above
methods (global and local) mainly focus on maintaining
interactivity through load balancing and neglect view
consistency. This paper attempts to address both prob-
lems with an efficient joint optimization framework.

2.3 Synchronization and View Consistency

Synchronization schemes are widely used in distributed
systems to ensure state consistency and events being
processed in correct temporal order. There are two kinds
of synchronization approaches [10], conservative and opti-
mistic. While conservative synchronization requires all
events to be processed in causal order and allows no vio-
lations to occur [3], [24], optimistic synchronization
allows violations to occur, but mechanisms are provided
to detect and correct the violations [13], [18], [19], [33].

View consistency may be considered as a specific type
of synchronization. It mainly concerns if users’ views, i.e.,
the contents shown in their AOIs, are consistent with each
other. In [35], a method is proposed to estimate the
amount of time-space inconsistencies between any two

users by considering factors such as clock asynchrony and
communication delay. The objective of this work is mainly
to characterize the time-space inconsistency problem
rather than to find a way to minimize it. Based on [35]
and [31] assumes that users’ positions are predictable, i.e.,
can be modeled as a function of time, and proposes an
update mechanism to help each server decide which enti-
ties to update in each frame, so as to reduce inconsistency
under the constraint of network capacity. In [22], an
update scheme is proposed to construct a graph to repre-
sent the communication delay between any two users,
and then derive an optimal interval for sending update
messages based on Markov chains and the properties of
the fundamental matrix. In [20], a method is proposed to
maintain the time-space consistency of users and their
replicas by adapting each server’s update schedule.

In summary, existing works on view consistency mainly
focus on finding an appropriate error threshold for dead-
reckoning schemes to send out update messages. These
dead-reckoning schemes typically apply polynomial predic-
tors to extrapolate object positions in order to compensate
for the network latency, which help reduce the inconsis-
tency problem. However, there are two fundamental limita-
tions to this approach. First, they are effective only when
the object motion is known in advance, i.e., predictable,
which is often not the case for user movements in DVEs [4],
[5]. Second, it is difficult to predict any sudden change of
motion [18], [19], e.g., when a user will suddenly start/stop
moving. In contrast, the proposed method tries to reduce
the overall network latency, and hence the total VI, through
a joint-optimization scheme.

A concurrent work [21] to ours also tries to address the
inconsistency problem. It formulates the partitioning prob-
lem as a mix integer programming problem and proposes
an iterative partitioning algorithm (IPA) based on alternat-
ing optimization to minimize the total time-space inconsis-
tency of the DVE. Similar to the dead-reckoning schemes,
this method assumes that object motion is predictable. In
contrast, our work focuses on developing a load balancing
method to reduce VI due to user movements and network
latency. We do not assume any user motion behaviors, as
user movements are often unpredictable.

3 OUR DVE MODEL

In our DVE model, we divide a VE regularly into
squared virtual cells fcig, to avoid the partitioning pro-
cess producing completely arbitrary partition boundaries.
These virtual cells are partitioned among the servers
fsjg. The servers may be geographically distributed and
each one manages its assigned virtual cells and the users
inside. Each user has a position, p ¼ ðx; yÞ, in the VE and
an AOI (area of interest). To simplify our discussion, we
assume the size of the AOI for all users to be the same,
and approximate the AOI as a square of dimension
2r� 2r, with the user being at the center.

If a user ak is located inside a virtual cell ci and managed
by server sm, sm is referred to as ak’s local server while ak is
referred to as sm’s local user. Whenever ak changes its state,
it sends an update message to notify its local server, which
will then forward the message to ak’s relevant users. If ak is

1430 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 10, OCTOBER 2014



located near to ci’s boundary, its AOI may contain some
users located in the adjacent virtual cell, cj. In the case
where cj is also managed by sm, sm simply forwards the
message from ak to these users. However, if cj is managed
by another server sn, i.e., this virtual cell boundary is also a
partition boundary, sm will forward the update message to
sn and then sn to the relevant local users. If ak suddenly
moves outside of ci into cj, which is managed by sn, then sm
will send a transfer packet to sn to transfer ak to sn.

Under this scenario, VI among users can be caused by
two types of network delay:

1. Between clients and a local server—We refer to the
VI incurred as local view inconsistency (or local VI).

2. Between any two servers that an update message is
sent across—We refer to the VI incurred as remote
view inconsistency (or remote VI).

4 MODELING OF REMOTE AND LOCAL VI’S

Based on the DVE model in Section 3, we classify differ-
ent types of user movement in a single time step, quantify
the remote and local VIs, and then estimate the total
amount of VI problem in DVEs in this section.

We consider the situation where two adjacent virtual
cells, cmi and cnj , are managed by two servers, sm and sn,
respectively. We define a boundary region R1 of width r
in cmi (or simply ci) that is adjacent to cnj (or simply cj)
and a boundary region R2 in cj adjacent to R1, as shown
in Fig. 1. As the size of the AOI is 2r� 2r, if a user ak is
located at p within R1, part of its AOI will fall inside cj.
As such, ak may be visible to some users located near to
the boundary of cj, e.g., a2 and a3 in Fig. 1. Here, the AOI
of ak at position p, i.e., AOI(p), is composed of two parts,
the part that falls inside ci (or AOI1(p)) and the part that
falls inside cj (or AOI2(p)).

In general, if a user moves from/to a position in the
border region, i.e., R1 of ci, it will cause local VI to the
relevant users in ci and remote VI to the relevant users in
cj. If it moves from/to the non-border region, i.e., cinR1,
it will only cause local VI to the relevant users in ci. If ak
is currently located in ci, we can classify ak’s movement
between two consecutive time frames into three main
types (referring to Fig. 1) as follows:

Type I: ak moves within the same virtual cell, ci.

� Case I-1: ak moves from R1 of ci to cinR1.
� Case I-2: ak moves from cinR1 to R1 of ci.

� Case I-3: ak moves within R1 of ci.

� Case I-4: ak moves within cinR1.
Type II: ak moves into the adjacent virtual cell, cj.

� Case II-1: ak moves from R1 of ci to R2 of cj.

� Case II-2: ak moves from R1 of ci to cjnR2.
� Case II-3: ak moves from cinR1 to R2 of cj.

� Case II-4: ak moves from cinR1 to cjnR2.
Type III: ak teleports into or out of ci.

� Case III-1: ak joining the DVE or jumping from a dis-
tant virtual cell into R1 of ci.

� Case III-2: ak joining the DVE or jumping from a dis-
tant virtual cell into cinR1.

� Case III-3: ak leaving the DVE or jumping out to a dis-
tant virtual cell from R1 of ci.

� Case III-4: ak leaving the DVE or jumping out to a dis-
tant virtual cell from cinR1.

In the following sections, we first quantify the remote
VI between two adjacent cells for Type-I, Type-II and
Type-III movements in Sections 4.1, 4.2 and 4.3, respec-
tively. We then quantify the local VI inside a single cell in
Section 4.4. We will use a stochastic approach to model
the VI events occurring between each pair of adjacent
cells, due to different types of user movement, which
involve statistical distributions. Finally, we estimate the
total amount of VI in the DVE in Section 4.5.

4.1 Type I: Moving within a Cell

In this section, we consider the remote VI caused by users
moving within cell ci (managed by server sm) to observing
users in cell cj (managed by server sn).

Consider the remote VI caused by a user ak moving
within ci to an observing user ao located in cj. The mes-
sage transmission latencies include from ak to sm, sm to sn
and then sn to ao. Let the average delay between users in
ci and sm be Lm

i , the average delay between users in cj
and sn be Ln

j , and the average delay between sm and sn be
Tm;n. Hence, the total message delay is

c
�
cmi ; c

n
j

� ¼ Lm
i þ Tm;n þ Ln

j :

During this period, ao still see ak in its original location,
which is incorrect. We refer to this as a view-inconsistent
event (or VI event). Let bj be the rate at which users in the
DVE query for the states of other users inside their own
AOIs. (bj is typically set to the frame rate.) The expected
number of VI events observed by ao as a result of ak’s move-
ment can be approximated by bjcðcmi ; cnj Þ.

To quantify the amount of remote VI between ci and
cj, we define ri(p) as the probability of a user in ci being
located at p. The probability, Jj(p), of a user in cj being
inside AOI2(p), when ak is located at p, is then:

JjðpÞ ¼
X

ðx;yÞ2AOI2ðpÞ
rjððx; yÞÞ: ð1Þ

Fig. 1. Different types of user movements.

HU ET AL.: ON VIEW CONSISTENCY IN MULTI-SERVER DISTRIBUTED VIRTUAL ENVIRONMENTS 1431



The probability of a user in cj being inside AOI2ðpÞ[
AOI2ðp0Þ is then

Ijðp; p0Þ ¼
X

ðx;yÞ2AOI2ðpÞ[AOI2ðp0Þ
rjððx; yÞÞ; ð2Þ

where Ijðp; p0Þ models the four Type I cases. For case I-1,
the area of AOI2(p’) in (2) will be zero and the probability
value of Ijðp; p0Þ becomes JjðpÞ. For case I-2, the area of
AOI2ðpÞ in (2) will be zero and the probability value of
Ijðp; p0Þ becomes Jjðp0Þ. For case I-3, the areas of both
AOI2ðpÞ and AOI2ðp0Þ will be non-zero. For case I-4, the
area of AOI2ðpÞ [AOI2ðp0Þ in (2) will be zero and the
probability value of Ijðp; p0Þ becomes zero, indicating that
no users in cj will perceive remote VI events caused by ak.

Let mj!j be the portion of users in cj that move only
within cj at anytime and Njðt�Þ be the number of users
in cj just before time t. The number of users remaining
in cj at time t is then RjðtÞ ¼ Njðt�Þmj!j. If we further
let rp!p0 be the probability of a user moving from p to
p’, the expected number of remote VI events received by
users in cj due to one user moving within ci is

Q1

�
cmi ; c

n
j

� ¼ c
�
cmi ; c

n
j

�
RjðtÞ

X
Cond1

riðpÞrp!p0Ijðp; p0Þbj; ð3Þ

where
Cond1 ¼ p 2 R1 ^ p0 2 cinR1, for case I-1
Cond1 ¼ p 2 cinR1 ^ p0 2 R1, for case I-2
Cond1 ¼ p 2 R1 ^ p0 2 R1, for case I-3
Cond1 ¼ p 2 cinR1 ^ p0 2 cinR1, for case I-4.
As the expected number of users remaining in ci at

time t is RiðtÞ ¼ Niðt�Þmi!i, the expected rate at which
remote VI events occur in cj caused by users in ci mov-
ing within ci is then

vi1
�
cmi ; c

n
j

� ¼ lim
t!1

1

t

Z t

0

RiðtÞQ1

�
cmi ; c

n
j

�
dt ð4Þ

which can also be represented by

vi1
�
cmi ; c

n
j

� ¼ c
�
cmi ; c

n
j

�
h1ðci; cjÞ; ð5Þ

where

h1ðci; cjÞ ¼ lim
t!1

1

t

Z t

0

RiðtÞRjðtÞ
X
Cond1

riðpÞrp ! p0Ijðp; p0Þbjdt:

4.2 Type II: Moving to an Adjacent Cell

In this section, we consider the remote VI caused by
users moving from cell ci (managed by server sm) to an
adjacent cell cj (managed by server sn), to observing
users in cj.

If we let mi!j be the portion of users in ci that move to cj
at anytime, the expected number of users moving from ci to
cj at time t is Ni!jðtÞ ¼ Niðt�Þmi!j. The expected rate at
which remote VI events occur in cj caused by users in ci
moving to cj is then

vi2
�
cmi ; c

n
j

� ¼ c
�
cmi ; c

n
j

�
h2ðci; cjÞ; ð6Þ

where

h2ðci; cjÞ ¼ lim
t!1

1

t

Z t

0

Ni!jðtÞRjðtÞX
Cond2

riðpÞrp!p0Ijðp; p0Þbjdt;

and
Cond2 ¼ p 2 R1 ^ p0 2 R2, for case II-1
Cond2 ¼ p 2 R1 ^ p0 2 cjnR2, for case II-2
Cond2 ¼ p 2 cinR1 ^ p0 2 R2, for case II-3
Cond2 ¼ p 2 cinR1 ^ p0 2 cjnR2, for case II-4.

4.3 Type III: Teleportation

In this section, we consider the remote VI caused by users
teleporting in/out of or joining/leaving the DVE at cell ci
(managed by server sm), to observing users in cell cj (man-
aged by server sn).

Teleportation is very popular in 3D games. In general,
there are two types of teleportation. One is jumping
between ci and a distant cell and the other is moving
through a predefined channel that connects two distant
cells together. The jumping process can be divided into
two parts: teleporting out of one cell and then into
another cell. While the first part is similar to a user leav-
ing the DVE, the second part is similar to a user joining
the DVE. With channeling, we may consider the two cells
connected by a channel as neighboring cells and handle
them in the same way as moving to an adjacent cell
(Section 4.2). As such, we only need to model leaving/
joining of the DVE here.

For case III-1, let NVE!iðtÞ ¼ Niðt�ÞmVE!i be the
expected number of users joining the DVE at ci or jump-
ing from a distant cell to ci at t. The rate at which remote
VI events occur in cj caused by these users is

vi3
�
cmi ; c

n
j

� ¼ c
�
cmi ; c

n
j

�
h3ðci; cjÞ; ð7Þ

where

h3ðci; cjÞ ¼ lim
t!1

1

t

Z t

0

NVE!iðtÞRjðtÞ
X
p2R1

riðpÞJjðpÞbjdt:

For case III-3, letNi!VEðtÞ ¼ Niðt�Þmi!VE be the expected
number of users leaving the DVE at ci or jumping from ci to
a remote cell at t, the rate at which remote VI events occur
in cj caused by these users is

vi4
�
cmi ; c

n
j

� ¼ c
�
cmi ; c

n
j

�
h4ðci; cjÞ; ð8Þ

where

h4ðci; cjÞ ¼ lim
t!1

1

t

Z t

0

Ni!VEðtÞRjðtÞ
X
p2R1

riðpÞJjðpÞbjdt:

Since cases III-2 and III-4 concern with users joining or
leaving ci at the non-border region, they only incur local
VI within ci and are discussed in Section 4.4.

4.4 Local View Inconsistency

In this section, we consider the local VI caused by all three
types of usermovements, to observing users in virtual cell ci.

1432 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 10, OCTOBER 2014



As the message delay between two users in ci is 2Lm
i

and the number of users in ci at time t is RiðtÞ, the
expected number of local VI events observed by users in
ci due to one user moving inside ci (Type I) is

Q1
LOC

�
cmi

� ¼ RiðtÞ2Lm
i

X
p2ci^p02ci

riðpÞrp!p0I
0
iðp; p0Þbi;

where I 0iðp; p0Þ ¼
P

ðx;yÞ2AOI1ðpÞ[AOI1ðp0Þ riððx; yÞÞ.
Let ADJðci; tÞ be the set of cells adjacent to ci at time t.

The expected number of local VI events observed by users
in ci at t due to one user in ci moving to an adjacent cell
cj 2 ADJðci; tÞ (Type II) is

Q2
LOC

�
cmi ; cj

� ¼ RiðtÞ2Lm
i

X
p2ci^p02cj

riðpÞrp!p0I
0
iðp; p0Þbi:

The expected number of local VI events observed by users
in ci due to one user joining/leaving the DVE at ci or tele-
porting in/out of ci (Type III) is

Q3
LOC

�
cmi

� ¼ RiðtÞ2Lm
i

X
‘p2ci

riðpÞJ 0
iðpÞbi;

where J 0
iðpÞ ¼

P
ðx;yÞ2AOI1ðpÞ riððx; yÞÞ.

At time t, the expected number of users moving
inside ci is Ni!iðtÞ ¼ RiðtÞ ¼ Niðt�Þmi!i. The expected
number of users joining/leaving the DVE at ci and tele-
porting in/out of ci is N$iðtÞ ¼ Niðt�Þðmi!VE þmVE!i þPNC

k¼1;k 6¼i^k 62ADJðci;tÞ mi!kÞ. Hence, the expected number of
local VI events observed by users in ci is obtained by
combining the above three types of local VI events

lvi
�
cmi

� ¼ 2Lm
i hLOCðciÞ; ð9Þ

where

hLOCðciÞ ¼ lim
t!1

1

t

Z t

0

RiðtÞ Ni!iðtÞ
X

p2ci^‘p02ci
riðpÞrp!p0I

0
iðp; p0Þ

2
4

þ
X

cj2ADJðci;tÞ
Ni!jðtÞ

X
p2ci^p02cj

riðpÞrp!p0I
0
iðp; p0Þ

þN$iðtÞ
X
p2ci

riðpÞJ 0
iðpÞ

#
bidt:

.

4.5 Total View Inconsistency in the DVE

Based on the above analysis, we may now quantify the total
amount of VI in the DVE.

As each cell is managed by only one server, we use a flag
xim to indicate if a cell ci is managed by server sm. Hence, if
ci is assigned to sm, xim ¼ 1; otherwise, xim ¼ 0. The total
amount of VI in the DVE can be computed by adding all the
remote and local VI events together

XNC

i;j¼1
i 6¼j

XNS

m;n¼1
m6¼n

X4
k¼1

ximxjnvik
�
cmi ; c

n
j

�þXNC

i¼1

ximlvi
�
cmi

�
; ð10Þ

where NS is the number of servers in the DVE. The first
term of (10) adds up all three types of remote VI, i.e., (5), (6),
(7) and (8), while the second term represents the local VI, i.
e., (9).

Since cðcmi ; cnj Þ ¼ Lm
i þ Tm;n þ Ln

j , (10) can be rewritten as

XNC

i;j¼1
i6¼j

XNS

m;n¼1
m 6¼n

X4
k¼1

ximxjnTm;nhkðci; cjÞ

þ
XNC

i;j¼1
i6¼j

XNS

m;n¼1
m 6¼n

X4
k¼1

ximxjn

�
Lm
i þ Ln

j

�
hkðci; cjÞ

þ
XNS

m¼1

XNC

i¼1

xim2L
m
i hLOCðciÞ:

ð11Þ

From (11), we can see that the first term depends on
Tm;n, the server-server delays. Hence, if two cells, ci and
cj, are both managed by server sm, the VI between them
due to Tm;n, i.e.,

P
k Tm;mhkðcmi ; cmj Þ, becomes zero. Thus, to

reduce the VI caused by Tm;n, we need an algorithm to
partition the virtual cells in such a way that those cells
with large values of

P
k hkðcmi ; cnj Þ among themselves form

a partition to be managed by the same server, while at the
same time this algorithm should not violate the constraint
of load balancing. For the second and third terms, which
depend on the value of Lm

i , we need an algorithm to
assign partitions to the appropriate servers so as to mini-
mize the latency between users and their local servers.

5 VE PARTITIONING AND ASSIGNMENT

Given the view consistency model presented in Section 4, it
may now be possible to partition the VE so as to minimize
both the VI problem and load imbalance among the servers.

To convert the VI problem shown in (11) into a partition-
ing problem, we let Pm be the partition of virtual cells man-
aged by server sm, and NS be the number of servers in the
DVE. We need to find a partitioning strategy PA to partition
all the cells of the VE into NS disjoint subsets, P1,
P2; . . . ;PNS

, so that for any 1 � m;n � NS;m 6¼ n, it holds
that Pm \ Pn ¼ f and [NS

m¼1Pm ¼ fcig. Next, each Pm is
assigned to a different server sm; this is a one-to-one assign-
ment function that assigns all the cells in Pm to server sm. An
indicator Xim is used to denote if partition Pi is assigned to
server sm such that if Pi is assigned to server sm, then Xim ¼
1; otherwise,Xim ¼ 0. Equation (11) can now be rewritten as:

min
XNS

i;j¼1
i6¼j

XNS

m;n¼1
m6¼n

X
ck2Pi
cl2Pj

XimXjnTm;nsðck; clÞ

þ
XNS

i;j¼1
i 6¼j

XNS

m;n¼1
m 6¼n

X
ck2Pi
cl2Pj

XimXjnðLm
i þ Ln

j Þsðck; clÞ

þ
XNS

m¼1

XNS

i¼1

X
ck2Pi

Xim2L
m
k hLOCðckÞ

s:t:
XNS

j¼1

Xij ¼ 1; i 2 f1; . . . ; NSg

XNS

i¼1

Xij ¼ 1; j 2 f1; . . . ; NSg

Xij 2 f0; 1g;

ð12Þ

where sðck; clÞ ¼
P4

i¼1 hiðck; clÞ.

HU ET AL.: ON VIEW CONSISTENCY IN MULTI-SERVER DISTRIBUTED VIRTUAL ENVIRONMENTS 1433



Since directly finding an optimal solution to this sto-
chastic problem is very difficult, in (12), we use the average
rate at which VI events occur between each pair of adjacent
cells (or inside one cell) to define the amount of remote/
local VI. Thus, the original stochastic problem is abstracted
into a deterministic model. As shown in Theorem 1 of the
supplementary, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2013.244, the partitioning problem of
dividing the virtual cells fcig among servers based on this
deterministic model is NP-hard and there does not exist a
polynomial time �-approximation algorithm for this prob-
lem. Hence, we propose a two-step process to address this
problem. First, we propose a greedy Knapsack-based parti-
tioning (KP) algorithm to minimize the first term of (11)
when dividing the cells into NS partitions, while keeping
the load deviation among the partitions within a specified
threshold. This is discussed in Section 5.1. Second, we pro-
pose two assignment algorithms to minimize the second
and the third terms of (11) when assigning the NS parti-
tions to the NS servers. This is discussed in Section 5.2.

5.1 Dividing Virtual Cells into Partitions

To present our KP algorithm, we first formulate our parti-
tioning problem into a joint optimization of remote VI and
load balancing as follows:

min
XNS

m;n¼1;m 6¼n

mðPm;PnÞ

s:t:
Max1�m�NS

fwðPmÞg � w

w
� u;

ð13Þ

where mðPi;PjÞ ¼
P

ck2Pi;cl2Pj
sðck; clÞ is used to quantita-

tively measure the amount of VI occurring in Pn caused by
users in Pm. wðPmÞ is the workload of Pm, and
w ¼ 1

NS

PNS
n¼1 wðPmÞ is the average workload of all partitions.

u is a workload deviation threshold. Let W be the average
server computation cost in handling a single user. The
workload of ci, denoted by wðciÞ, can be measured by the
average number of users in ci multiplied byW as follows:

wðciÞ ¼ W � lim
t!1

1

t

Z t

0

�
Niðt�Þ

�
mi!i þmVE!i

�mi!VE �
X
j6¼i

mi!j

�
þ
X
j6¼i

Njðt�Þmj!i

�
dt

ð14Þ

where cj is a neighboring cell of ci. The total workload of
Pm, denoted by wðPmÞ, is then

wðPmÞ ¼
X
ci2Pm

wðciÞ: ð15Þ

We then construct a weighted undirected graph
VIG ¼ ðV; EÞ of the VE, where V represents the set of {ci}
in the VE, and E represents the set of edges such that for
any ci; cj 2 V , there is an edge eij 2 E between them.
Thus, VIG is a complete graph. The weight of each node
vi, denoted by wðviÞ, is defined by the workload of ci, that
is, wðviÞ ¼ wðciÞ. The weight of edge eij, denoted by

wðeijÞ, is defined by the amount of VI between ci and cj, i.
e., wðeijÞ ¼ sðci; cjÞ þ sðcj; ciÞ. With this VIG, Theorem 2 of
the supplementary, available online, shows that the vir-
tual cell partitioning problem given in (13) is NP-hard. As
such, we present a greedy partitioning algorithm, named
KP, based on the idea of the 0-1 knapsack problem [7].

In this KP algorithm, we start with the VIG graph. Given
any vi 2 V in VIG, we define the worth and the weight of
another node vj (j 6¼ i) as follows:

1) worji: The worth of vj to vi is defined as the weight
of the edge between vi and vj, i.e., worji ¼ wðeijÞ.
Hence, for vi, the worth of vj is the total amount of
VI between ci and cj. It holds that worji ¼ worij.

2) weij: The weight of vj is defined by its workload in
integer value, i.e., weij ¼ dwðvjÞe.

Next, for each node vi in the current VIG, we use the 0-
1 knapsack algorithm to find SNðviÞ, which contains a set
of nodes that are most valuable to vi under the constraint
that the total workload of the nodes in SNðviÞ cannot be
higher than dð1þ uÞw� wðciÞe. For simplicity, we use
SNþðviÞ to denote the set of nodes in SNðviÞ plus vi, i.e.,
SNþðviÞ ¼ fvj j vj ¼ vi or vj 2 SNðviÞg. Then, for the set
of SNþðviÞ found, i.e., fSNþðviÞg, we choose the one cur-
rently holding the maximum worth, SNþðvkÞ. As wðeljÞ ¼
sðvl; vjÞ þ sðvj; vlÞ, vk can be rewritten as follows:

vk ¼ argmax
vi2V

X
vl;vj2SNþðviÞ;l6¼j

wðeljÞ
0
@

1
A: ð16Þ

Then, SNþðvkÞ forms a partition in our algorithm. We
then remove from VIG all the nodes in SNþðvkÞ and the
edges incident to them. This algorithm repeats until the final
partition is formed.

Our virtual cell partitioning algorithm is summarized
in Fig. 2. It has two main steps. In the first step, at each
iteration, the algorithm finds a partition that has the maxi-
mum amount of VI under the constraint of load balanc-
ing, and then remove the nodes in this partition from the
graph. In the second step, each node remaining in the
graph is proportionally assigned among the partitions
based on the amount of VI between this node and those
nodes inside the partitions.

5.2 Assigning Partitions to Servers

After partitioning the virtual cells, we may now perform a
one-to-one assignment of partitions to servers, with a main
objective to minimize the client-server delays.

We first propose a matching algorithm for reducing the
local VI in the partitions, i.e., the second and third terms in
eq. (12) caused by Lm

i . We construct a weighted complete
bipartite graph GB ¼ ððXB; YBÞ; EBÞ, where XB represents
the set of partitions, {Pi}, YB represents the set of servers,
{sm}, and EB represents the set of edges, such that for any
xi 2 XB, ym 2 YB, there is an edge eim 2 EB between them.
The weight of each edge eim, wðeimÞ, is defined by the
amount of VI caused by the latency between users in Pi and
sm when Pi is assigned to sm, due to the second and third
items in (12):

1434 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 10, OCTOBER 2014



wðeimÞ ¼
X
ck2Pi

Lm
k

�
2hLOCðckÞ

þ
XNS

j¼1;j6¼i

X
cl2Pj

ðsðck; clÞ þ sðcl; ckÞÞ
�
:

ð17Þ

Our assignment problem is now transformed into find-
ing a minimum weighted perfect matching in this bipartite
graph GB, so as to minimize the total amount of VI. Hence,
eq. (17) can now be rewritten as:

min
XNS

i¼1

XNS

m¼1

XimwðeimÞ

s:t:
XNS

j¼1

Xij ¼ 1; i 2 f1; . . . ; NSg

XNS

i¼1

Xij ¼ 1; j 2 f1; . . . ; NSg

Xij 2 f0; 1g:

ð18Þ

Here, we may apply the Kuhn-Munkres algorithm [16],
[26] to find the minimum weighted perfect matching. We
first transform it into a maximum weighted perfect matching
problem. Let MB be the matrix to denote the weights of EB

in GB, i.e., the value of each element: mbij ¼ wðeijÞ. Let mb�

be the element having the largest value in MB, i.e.,
mb� ¼ max1�i;j�NS

mbij. Let MB0 be another matrix, with the
value of each element:mb0ij ¼ mb� �mbij.

Next, we construct another bipartite graph, G0
B ¼

ððX0
B; Y

0
BÞ; E0

BÞ, which holds X0
B ¼ XB, Y

0
B ¼ YB, E

0
B ¼ EB,

and the weight of each edge wðe0ijÞ in E0
B is set to be

wðe0ijÞ ¼ mb0ij. Thus, the maximum weighted perfect match-
ingMA�, which can be found in G0

B, is exactly the minimum
weighted perfect matching MA in GB [16], [26]. In the
perfect matching MA returned by the Kuhn-Munkres algo-
rithm, for each exy 2 MAðx 2 X0

B; y 2 Y 0
BÞ, the correspond-

ing partition Px is then assigned to the server sy.
Based on the results generated by the matching algo-

rithm, we further present a greedy algorithm for reducing
the remote and local VI’s of the DVE. Let VIT j½Pm

i ;P
n
j � be the

total amount of VI in the DVE under current assignment
scenario, where Pi and Pj are assigned to sm and sn, respec-
tively. Now, we attempt to change this assignment by
assigning Pi to sn and Pj to sm. Let VIT j½Pn

i ;P
m
j � be the total

amount of VI in the DVE under this new assignment sce-
nario. If VIT j½Pn

i ;P
m
j � < VIT j½Pm

i ;P
n
j �, we should accept this

new assignment. Hence, our greedy algorithm is shown in
Fig. 3. During each iteration, we choose the new assignment
that maximizes the reduction of VI.

6 RESULTS AND DISCUSSIONS

To study the performance of the proposed method, we
have implemented four other methods for comparison:
UA [34] and IPA [21], which employs optimization tech-
niques for assigning users directly to servers, and PA [23]
and GRASP [25], which employs optimization techniques
for partitioning users into regions to be served by differ-
ent servers. All five methods are implemented in C++.
The testing platform is a PC with an i5 2.8 GHz CPU and
4 GB RAM. We have set up a game scene of 5� 5 km2 in
size and equally divided it into 32� 32 virtual cells to be
managed by 64 servers. We have created two groups of
users, each of 800 users. One group simply moves around
the VE randomly to model the statistical behavior of

Fig. 3. A greedy algorithm to reduce total amount of VI.

Fig. 2. Our Knapsack-based partitioning algorithm.

HU ET AL.: ON VIEW CONSISTENCY IN MULTI-SERVER DISTRIBUTED VIRTUAL ENVIRONMENTS 1435



typical users, and the other moves circularly around of
the perimeter of the VE to model large crowd movement
in order to test how the five methods respond in such a
demanding situation. All users move at speeds randomly
changing between 0 and 5 m per frame, with an average
speed of 2.5 m per frame. We set the frame rate to
10 frames per second, and execute the five methods once
a second, i.e., once every 10 frames. Based on this move-
ment information, we can determine the values of most of
the statistical parameters. In addition, we set 1-2 percent
of the users dynamically joining or leaving the DVE each
second, but the total number of users is kept around
1,600. For simplicity, we assume that all users generate
the same amount of load and each server can handle a
maximum of 30 users.

In the following sections, we discuss three sets of experi-
ments to study the performance of our method.

6.1 Experiments on View Inconsistency

To evaluate the effectiveness of our method in reducing the
VI problem, we vary three parameters, Lm

i (client-server
latency), Tm;n (server-server latency), and b (rate of users
generating queries), and measure the total number of VI
events observed by the users for every 10-frames, i.e.,
between two consecutive load balancing processes.

The first experiment studies the impact of Tm;n on the
number of VI events observed by the users. Each Lm

i is
randomly selected from the range of (0, 0.3 s]. b is set to
10, i.e., once per frame. Tm;n is also randomly selected
from a range but we vary the range from low to high:
(0, 0.2 s], (0, 0.4 s] and (0, 0.6 s]. (According to our earlier
study [5], round-trip network delays vary from 5 ms for
LAN to 325 ms between HK and UK. These delays also
vary from day to night. The three ranges are to cover a
wider network latency conditions.) Table 1 shows the
average numbers of VI events observed by the users.
Fig. 4a shows the situation when Tm;n is randomly
selected from the range of (0, 0.6 s]. The second experi-
ment studies the impact of Lm

i on the number of VI events
observed by the users. Each Tm;n is randomly selected
from the range of (0, 0.3 s]. b is set to 10. Lm

i is also ran-
domly selected from a range but we vary the range from

TABLE 1
Effect of Tm;n on Average Number of VI Events Observed

Fig. 4. Experiments on the total number of VI events observed by users.

1436 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 10, OCTOBER 2014



low to high: (0, 0.2 s], (0, 0.4 s] and (0, 0.6 s]. Table 2 shows
the average numbers of VI events observed by the users.
Fig. 4b shows the situation when Lm

i is randomly selected
from the range of (0, 0.6 s]. The third experiment studies
the impact of b on the number of VI events observed by
the users. Both Tm;n and Lm

i are randomly selected from
the range of (0, 0.3 s], but we vary b from 10 to 100, as
shown in Fig. 4c. The fourth experiment studies the
impact of NA on the number of VI events observed by the
users. Both Tm;n and Lm

i are randomly selected from the
range of (0, 0.3 s], b is set to 10, and we increase NA from
100 to 1,600 as shown in Fig. 4d.

From Tables 1 and 2, we can see that for all five meth-
ods, the average number of VI events observed by the
users increases as the range of Tm;n or Lm

i increases. We
can also see that our method has much lower numbers
than all the other methods. This means that our method
can significantly reduce the number of VI events. The
reason is that although PA and GRASP try to minimize
the inter-server communication costs while UA tries to
minimize the client to client latency, which help reduce
VI in some way, their analyses are based on users’ static
positions or the latency at every time moment. As we
have shown in Section 4, when a user changes its state,
the amount of VI events caused depends on the initial
and the final positions of the movement in each frame.
While PA, GRASP and UA do not consider this, our
method is designed to address this VI problem through
the proposed joint optimization framework. As a result,
our method has a much lower number of VI events
observed. Although IPA is designed to address the
inconsistency problem, it needs to know in advance the
user position over time in order to reduce time-space
inconsistency among all the clients. However, as users’
motion behaviors are often unpredictable, IPA can only
help reduce the communication delay among the users
and users close to each other in the VE may be assigned
to different servers. This explains why IPA does not per-
form too well in reducing VI. For a similar reason, we
can see from Figs. 4c and 4d that although the numbers
of VI events for all methods increase as we increase the
rate of user generating queries and the total number of
users, our method increases much more gently than the
other four methods.

It is interesting to note that with our method, the increase
in the number of VI events observed due to the increase in
the range of Tm;n (Table 1) is much smaller than that due to
the increase in the range of Lm

i (Table 2). This indicates that
our method is able to cluster interacting users to the same
partitions to minimize the need to send update messages
among the servers. As a result, increasing the range of Tm;n

only slightly increases the number of VI events. However,

increasing the range of Lm
i affects every user and thus has a

more significant effect on the number of VI events. On the
contrary, with UA and IPA, the increase in the number of
VI events observed due to the increase in the range of Tm;n

is much higher than that due to the increase in the range of
Lm
i . The reason is that since UA assigns a new user to a

server that will give the lowest total latency between this
new user and each of the other users already assigned, it
puts a higher weight on a server with a lower latency to the
new user than a server with a lower latency to the other
servers managing the relevant users. In a similar way, IPA
assigns a new user to a server in order to minimize the total
latency between the new user and all other users already-
assigned as well as not-yet-assigned. As a result, UA and
IPA can address Lm

i better than Tm;n.

6.2 Experiment on Computation Time

To study the efficiency of our method, we investigate the
impact of the number of users, NA, on the computation time
in this experiment. We vary NA in the set of {1,200, 1,600,
2,000}, with radius of the AOI, r ¼ 25 m. Again, half of the
users move randomly and the other half move circularly
around the VE. Table 3 shows the computation times of the
five methods. We can see that UA and our method are
much more efficient than the other methods, with UA being
the most efficient one and PA being the most inefficient one.
As we increase the number of users, the computation times
of IPA, GRASP, UA and our method also increase, while PA
only increases slightly. We also note that as the number of
users increases from 1,200 to 2,000, the changes in computa-
tion time of UA (þ160%), GRASP (þ385%), and IPA
(þ316%) are much higher than that of our method (þ78%).

To explain the results shown in Table 3, we need to ana-
lyze the complexity of the five methods:

� Our method consists of three main algorithms:
knapsack-based partitioning (KP), Kuhn-Munkres-
based (KM) and greedy assignment (GA). The dom-
inant process is the KP algorithm, with a complex-
ity of OðNA �N2

CÞ, where NC is the number of cells.

� PA also consists of three main algorithms: recursive
bisection partitioning (RBP), layering partitioning
(LP) and communication refinement partitioning
(CRP). The complexity of RBP is OðjNC j3� ðNS � 1ÞÞ,
where NS is the total number of servers. The com-
plexity of both LP and CRP is OðN6

SÞ.
� UA consists of two main algorithms, a greedy algo-

rithm (GA) and a distributed greedy algorithm
(DGA). The dominant process is the GA algorithm,
with a complexity of OðNA �NS � ðNS þNAÞÞ.

� GRASP has three main steps. Its complexity is domi-
nated by the third step, which involves assigning the
non-assigned avatars and reassigning avatars inside

TABLE 3
Computation Times

TABLE 2
Effect of Lm

i on Average Number of VI Events Observed

HU ET AL.: ON VIEW CONSISTENCY IN MULTI-SERVER DISTRIBUTED VIRTUAL ENVIRONMENTS 1437



their AOIs to servers according to the total intra-
server workload and inter-server communication
cost. It has a complexity of OðNNA �N2

A �NS � r2Þ,
where NNA is the number of non-assigned avatars
after the initial partitioning step.

� IPA has two main steps. Its complexity is dominated
by the second step, which assigns each user to serv-
ers so as to minimize the total amount of time-space
inconsistency between the user and all other users of
the DVE. It has a complexity of OðN2

A �N2
SÞ.

From this complexity analysis, we can see that PA,
GRASP and IPA have much higher complexities than UA
and our method. This explains their higher computation
times as shown in Table 3. In addition, as the complexity
of PA is independent of NA, its computation time only
changes very little as we increase the number of users. On
the other hand, the complexity of UA, GRASP and IPA
quadratically increases with NA, while our method line-
arly increases with NA. This explains why the changes in
computation time of UA, GRASP and IPA are much
higher than that of our method. From this experiment, we
may conclude that UA and our method are much more
efficient than PA, GRASP and IPA, and are more suitable
for DVE applications in practice.

6.3 Experiment on Load Balancing

To study the load balancing performance, we set b ¼ 10 and
r ¼ 25 m, and measure the number of overloaded servers
during each 10-frame period, i.e., between two consecutive
load balancing processes. Since a higher number of over-
loaded servers means that more users suffer from higher
response time, we would prefer a method with a lower
number of overloaded servers.

Table 4 compares the average numbers of overloaded
servers for the five methods over a simulation run. Recall
from Table 3 that PA, GRASP and IPA take much longer
than 1 s to run each load balancing process. In order to focus
our comparison on the load balancing performance, we
have neglected this time constraint and allow extra time for
these methods to complete their load balancing processes
during the experiment. We can see from Table 4 that the
numbers of overloaded servers for all five methods are very
small, meaning that all methods can effectively prevent
servers from getting overloaded, with our method having
the best performance.

6.4 Overall Evaluation

In this paper, we first point out that view consistency
and load balancing are both important, but also conflict-
ing, objectives of DVEs. From our experimental results
shown in Section 6.1, we may summarize that our
method produces a much lower number of view incon-
sistent events than all the other four methods that we
compare with. This is mainly because PA, GRASP, and
UA do not consider this issue in their designs, while IPA

needs to know in advance the users’ movement behav-
iors in order to be effective. Minimizing the number of
view inconsistent events is important as it helps improve
the overall interactivity of the DVE and reduces the
chance of user arguments. Our results in Section 6.3 also
show that our method has a lower average number of
overloaded servers than the other methods. This means
that our method is able to improve both the VI problem
as well as the load balancing performance. Although our
method has a slightly higher computation time than UA
as shown in Section 6.2, it is efficiently enough for DVE
applications.

7 CONCLUSION

Due to network latency and user movements, users of
DVEs often suffer from the view inconsistency problem.
How to minimize the view inconsistent problem is impor-
tant to the popularity of DVEs, such as online games. In
this paper, we have analyzed different types of user
movement and estimated the amount of view inconsis-
tency events that they may cause. Based on this analysis,
we have proposed an efficient joint optimization frame-
work to reduce the view inconsistency problem under the
constraint of load balancing. We first construct a view-
inconsistency graph (VIG) for the VE, and present a parti-
tioning algorithm to divide the cells into partitions so as
to minimize the amount of view inconsistency while at
the same time, keeping the workload of each partition
below a given threshold. We then propose another algo-
rithm to assign the partitions to different servers by con-
sidering the resulting amount of view inconsistency in
each partition due to network delays. Our experimental
results show that the proposed method performs better
than existing methods, in terms of view consistency and
load balancing. At the same time, the proposed method is
shown to be efficient enough for DVEs.

As a future work, we are currently working an incremen-
tal version of the proposed joint optimization framework. If
it is successful, we expect the computational cost of the
method to be further reduced. Another interesting work is
to extend the proposed method to heterogeneous servers.
This will require modifying both the partitioning and the
assignment algorithms.

ACKNOWLEDGMENTS

We would like to thank the three reviewers for their insight-
ful and constructive comments/suggestions on this paper.
The work described in this paper was partially supported
by the National 973 Programs (Grant No. 2013CB329102),
four NSFC grants (Grant No. 60903053, 61100194, 61300117,
61272188), the Natural Science Foundation of Zhejiang
Province (Grant No. LY12F02005), the Open Foundation of
State Key Laboratory of Networking and Switching Tech-
nology in Beijing University of Posts and Telecommunica-
tions (Grant No. SKLNST-2013-1-14), the Open Foundation
of State Key Laboratory for Novel Software Technology of
Nanjing University (Grant No. KFKT2014B15), and two
GRF grants from the RGC of Hong Kong (RGC Reference
Numbers: CityU 116010 and CityU 115112).

TABLE 4
Average Number of Overloaded Servers

1438 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 10, OCTOBER 2014



REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, andM. Zaharia, “AViewof
CloudComputing,”Comm. ACM, vol. 53, no. 4, pp. 50-58, Apr. 2010.

[2] B. van Den Bossche, B. de Vleeschauwer, T. Verdickt, F. de Turck,
B. Dhoedt, and P. Demeester, “Autonomic Microcell Assignment
in Massively Distributed Online Virtual Environments,” J. Net-
work and Computer Applications, vol. 32, no. 6, pp. 1242-1256, 2009.

[3] R. Bryant, “Simulation of Packet Communication Architecture
Computer Systems,” technical report, Computer Science Labora-
tory, MIT, 1977.

[4] A. Chan, R. Lau, and B. Ng, “Motion Prediction for Caching and
Prefetching in Mouse-Driven DVE Navigation,” ACM Trans. Inter-
net Technology, vol. 5, no. 1, pp. 70-91, Feb. 2005.

[5] A. Chan, R. Lau, and L. Li, “Hand Motion Prediction in Distrib-
uted Virtual Environments,” IEEE Trans. Visualization and Com-
puter Graphics, vol. 14, no. 1, pp. 146-159, Jan. 2008.

[6] J. Chen, B. Wu, M. Delap, B. Knutsson, H. Lu, and C. Amza,
“Locality Aware Dynamic Load Management for Massively Mul-
tiplayer Games,” Proc. ACM SIGPLAN Symp., pp. 289-300, 2005.

[7] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms. second ed., McGraw-Hill, 2003.

[8] Y. Deng and R. Lau, “Heat Diffusion Based Dynamic Load Balanc-
ing for Distributed Virtual Environments,” Proc. ACM 17th ACM
Symp. Virtual Reality Software and Technology, pp. 203-210, 2010.

[9] C. Diot and L. Guatier, “A Distributed Architecture for Multi-
player Interactive Applications on the Internet,” IEEE Network,
vol. 13, no. 4, pp. 6-15, July/Aug. 1999.

[10] R. Fujimoto, Parallel and Distribution Simulation Systems. John
Wiley & Sons, 1999.

[11] E. Frecon, “DIVE: A Scalable Network Architecture for Distrib-
uted Virtual Environment,” Distributed Systems Eng. J., vol. 5,
no. 3, pp. 91-100, 1998.

[12] M. Garey and D. Johnson, “Computers and Intractability: A Guide
to the Theory of NP-Completeness,” Freeman, 1979.

[13] D. Jefferson, “Virtual Time,” ACM Trans. Programming Languages
and Systems, vol. 7, no. 3, pp. 404-425, 1985.

[14] X. Ji and E. John, “Branch-and-Price-and-Cut on the Clique Parti-
tioning Problem with Minimum Clique Size Requirement,” Proc.
IMA Special Workshop: Mixed-Integer Programming, 2005.

[15] T. Koopmans and M. Beckmann, “Assignment Problems and the
Location of Economic Activities,” Econometrica, vol. 25, no. 1,
pp. 53-76, 1957.

[16] H. Kuhn, “The Hungarian Method for the Assignment Problem,”
Naval Research Logistics Quarterly, vol. 2, pp. 83-97, 1955.

[17] K. Lee and D. Lee, “A Scalable Dynamic Load Distribution
Scheme for Multi-Server Distributed Virtual Environment Sys-
tems with Highly-Skewed User Distribution,” Proc. ACM Symp.
Virtual Reality Software and Technology, pp. 160-168, 2003.

[18] F. Li, L. Li, and R. Lau, “Supporting Continuous Consistency in
Multiplayer Online Games,” Proc. ACM Multimedia, pp. 388-391,
2004.

[19] F. Li, F. Li, and R. Lau, “A Trajectory-Preserving Synchronization
Method for Collaborative Visualization,” IEEE Trans. Visualization
and Computer Graphics, vol. 12, no. 5, pp. 989-996, Sept. 2006.

[20] Y. Li and W. Cai, “Consistency Aware Update Schedule in Multi-
Server Distributed Virtual Environments,” Proc. Int’l Workshop on
SIMUTOOLS, 2010.

[21] Y. Li and W. Cai, “Consistency-Aware Partitioning Algorithm in
Multi-Server Distributed Virtual Environments,” Proc. IEEE 26th
Int. Parallel and Distributed Processing Symp. (IPDPS ’12), pp. 798-
807, 2012.

[22] J. Lui, “Constructing Communication Subgraphs and Deriving an
Optimal Synchronization Interval for Distributed Virtual Environ-
ment Systems,” IEEE Trans. Knowledge and Data Eng., vol. 13, no. 5,
pp. 778-792, Sept./Oct. 2001.

[23] J. Lui and M. Chan, “An Efficient Partitioning Algorithm for Dis-
tributed Virtual Environment Systems,” IEEE Trans. Parallel and
Distributed Systems, vol. 13, no. 3, pp. 193-211, Mar. 2002.

[24] M. Mauve, “Consistency in Replicated Continuous Interactive
Media,” Proc. ACM Conf. Computer Supported Cooperative Work,
pp. 181-190, 2000.

[25] P. Morillo, S. Rueda, J. Orduna, and J. Duato, “A Latency-Aware
Partitioning Method for Distributed Virtual Environment Sys-
tems,” IEEE Trans. Parallel and Distributed Systems, vol. 18, no. 9,
pp. 1215-1226, Sept. 2007.

[26] J. Munkres, “Algorithms for the Assignment and Transportation
Problems,” J. SIAM, vol. 5, no. 1, pp. 32-38, 1957.

[27] B. Ng, A. Si, R. Lau, and F. Li, “A Multi-Server Architecture for
Distributed Virtual Walkthrough,” Proc. ACM Virtual Reality Soft-
ware and Technology (VRST ’02), pp. 163-170, 2002.

[28] B. Ng, R. Lau, A. Si, and F. Li, “Multi-Server Support for Large
Scale Distributed Virtual Environments,” IEEE Trans. Multimedia,
vol. 7, no. 6, pp. 1054-1065, Dec. 2005.

[29] S. Sahni and T. Gonzalez, “P-Complete Approximation Prob-
lems,” J. ACM, vol. 23, no. 3, pp. 555-565, 1976.

[30] S. Singhal and M. Zyda, Networked Virtual Environments. ACM
Press, 1999.

[31] X. Tang and S. Zhou, “Update Scheduling for Improving Consis-
tency in Distributed Virtual Environments,” IEEE Trans. Parallel
and Distributed Systems, vol. 21, no. 6, pp. 765-777, June 2010.

[32] B. de Vleeschauwer, B. van Den Bossche, T. Verdickt, F. de Turck,
B. Dhoedt, and P. Demeester, “Dynamic Microcell Assignment for
Massively Multiplayer Online Gaming,” Proc. ACM SIGCOMM
Workshop on Network and System Support for Games, pp. 1-7, 2005.

[33] D. West, Optimizing Time Warp: Lazy Rollback and Lazy Re-evalua-
tion, Technical Report, Computer Science Department, University
of Calgary, 1988.

[34] L. Zhang and X. Tang, “Client Assignment for Improving Inter-
activity in Distributed Interactive Applications,” Proc. IEEE
INFOCOM, pp. 3227-3235, 2011.

[35] S. Zhou, W. Cai, B. Lee, and S. Turner, “Time-Space Consistency
in Large-Scale Distributed Virtual Environments,” ACM Trans.
Modeling and Computer Simulation, vol. 14, no. 1, pp. 31-47, 2004.

Haiyang Hu received the BS, MS, and PhD
degrees in computer science from Nanjing Uni-
versity, Nanjing, China, in 2000, 2003, and
2006, respectively. Currently, he is a professor
of the Hangzhou Dianzi University, Hangzhou,
China. His research interests include mobile
computing and distributed computing. His
research results have been published in more
than 20 papers in international journals and
conference proceedings.

Rynson W.H. Lau received the PhD degree
from the University of Cambridge. He was with
the faculty of Durham University and Hong
Kong Polytechnic University. He is currently
with the City University of Hong Kong. He
serves on the Editorial Board of computer ani-
mation and virtual worlds, International Journal
of Virtual Reality, and IEEE Transactions on
Learning Technologies. He has served as the
guest editor of a number of journal special
issues, including ACM Transactions on Internet

Technology, IEEE Transactions on Multimedia, IEEE Transactions on
Vision and Computer Graphics, and IEEE Computer Graphics and
Applications. In addition, he has also served in the committee of a
number of conferences, including Program Co-chair of ACM VRST
2004, ICEC 2007, ACM MTDL 2009, IEEE U-Media 2010, and Con-
ference Co-chair of CASA 2005, ACM VRST 2005, ICWL 2007, ACM
MDI 2009, and ACM VRST 2010. His research interests include dis-
tributed virtual environments and multimedia systems.

HU ET AL.: ON VIEW CONSISTENCY IN MULTI-SERVER DISTRIBUTED VIRTUAL ENVIRONMENTS 1439



Hua Hu received the BS, MS, and PhD degrees
in computer science from Zhejiang University,
China, in 1989, 1992, and 1998, respectively. He
is a full professor of Hangzhou Dianzi University,
China. His research interests mainly include par-
allel computing and distributed system and per-
vasive computing. His research results have
been published in more than 50 papers in inter-
national journals and conference proceedings.

Benjamin Wah received the PhD degree from
UC Berkeley. He is currently the provost of
The Chinese University of Hong Kong and the
Wei Lun professor of Computer Science and
Engineering. He is also a professor emeritus of
The University of Illinois, Urbana-Champaign.
His current research interests include the
areas of nonlinear optimization, multimedia sig-
nal processing, and computer networks. He
cofounded the IEEE Transactions on Knowl-
edge and Data Engineering in 1988 and served

as its editor-in-chief between 1993-1996. He received the IEEE-CS
Technical Achievement Award in 1998, the IEEE Millennium Medal in
2000, the Raymond T. Yeh Lifetime Achievement Award from the
Society for Design and Process Science in 2003, the IEEE Computer
Society W. Wallace-McDowell Award in 2006, and the IEEE-CS
Richard E. Merwin Award and IEEE-CS Technical Committee on Dis-
tributed Processing Outstanding Achievement Award both in 2007.
He has served the IEEE Computer Society in various capacities,
including vice president for Publications (1998 and 1999) and the
president (2001). He is a fellow of the IEEE, the ACM, and the AAAS.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1440 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 10, OCTOBER 2014



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


