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Abstract

In this thesis, we study optimal anytime stochastic search algorithms (SSAs) for solving

general constrained nonlinear programming problems (NLPs) in discrete, continuous and

mixed-integer space. The algorithms are general in the sense that they do not assume

differentiability or convexity of functions. Based on the search algorithms, we develop the

theory of SSAs and propose optimal SSAs with iterative deepening in order to minimize their

expected search time. Based on the optimal SSAs, we then develop optimal anytime SSAs

that generate improved solutions as more search time is allowed.

Our SSAs for solving general constrained NLPs are based on the theory of discrete con-

strained optimization using Lagrange multipliers that shows the equivalence between the

set of constrained local minima (CLMdn) and the set of discrete-neighborhood saddle points

(SPdn). To implement this theory, we propose a general procedural framework for locating an

SPdn. By incorporating genetic algorithms in the framework, we evaluate new constrained

search algorithms: constrained genetic algorithm (CGA) and combined constrained simulated

annealing and genetic algorithm (CSAGA).

All these algorithms are SSAs. One of the most important and difficult issues in using

SSAs is the scheduling of SSAs in order to optimize the average search efficiency. Our

research shows that SSAs can be scheduled in such a way that minimizes their expected

search time. The theory proposes to use iterative deepening to identify the optimal (up to

a constant factor) schedules in such a way that minimizes the expected search time when
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compared to that of the same SSA run under an optimal schedule. We also extend the

theory to identify optimal schedules in parallel processing of SSAs, and show that the search

of an optimal parallel schedule is NP-complete. We propose to use iterative deepening to

find a suboptimal parallel schedule and derive performance bounds between our suboptimal

schedule and the optimal parallel schedule. The theory is general enough for SSAs and has

been applied to CSA, CGA and CSAGA to develop optimal schedules for these algorithms.

Based on the optimal schedules, we propose optimal anytime SSAs that generate solutions

of improved quality as more time is used. We propose new schedules to improve the quality

levels in such a way that the total time of solving all quality levels is of the same order of

magnitude as that of finding a constrained global optimum.

Finally, we apply our optimal anytime SSAs to solve a collection of engineering application

benchmarks. Much better results have been reported in comparison with other existing

methods.
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Chapter 1

Introduction

Many engineering applications can be formulated as constrained nonlinear programming

problems (NLPs). Examples include production planning, computer integrated manufactur-

ing, chemical control processing, and structure optimization [65, 121, 148].

1.1 Problem Definition

Constrained NLPs can be solved by existing methods if they are specified in well-defined

formulae that are differentiable and continuous. However, only special cases can be solved

when they do not satisfy the required assumptions. For instance, sequential quadratic pro-

gramming [46] cannot handle problems whose objective and constraint functions are not

differentiable or whose variables are discrete or mixed. Since many applications involving op-

timization may be formulated by non-differentiable functions with discrete or mixed-integer

variables, it is important to develop new methods for handling these optimization problems.

We divide in Table 1.1 constrained NLPs into 9 classes, according to their variable and

function types. The variables of an NLP can be continuous, discrete or mixed-integer; and

its objective and constraint functions can be continuous and differentiable, continuous but
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Table 1.1: Definition of the 9 classes of constrained NLPs.

Constrained NLP Class Variable Type Function Type

C1 continuous continuous and differentiable

C2 continuous continuous and non-differentiable

C3 continuous discontinuous

C4 discrete continuous and differentiable

C5 discrete continuous and non-differentiable

C6 discrete discontinuous

C7 mixed-integer continuous and differentiable

C8 mixed-integer continuous and non-differentiable

C9 mixed-integer discontinuous

non-differentiable, or discontinuous. Different combinations of variable and function types,

thus, lead to a total of 9 classes, C1-C9, as listed in Table 1.1.

We study in this thesis constrained NLPs in classes C2-C9. We do not consider in

this research constrained NLPs in C1, which have continuous variables and continuous and

differentiable objective and constraint functions. Such problems can be solved efficiently by

existing methods, such as sequential quadratic programming (SQP) [46].

The study of algorithms for solving a disparity of constrained optimization problems is

difficult unless the problems can be represented in a unified way. In this thesis we assume that

continuous variables are first discretized into discrete variables in such a way that the values

of functions using discretized variables approach those of the original continuous variables.

Such an assumption is valid when continuous variables are represented as floating-point

numbers and when the range of variables is small (say between 10−5 and 105). Intuitively,

if discretization is fine enough, then solutions found in discretized space are fairly good

approximations to the original solutions. The accuracy of solutions found in discretized
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continuous NLPs has been studied elsewhere [170]. Of course, the accuracy of solutions

cannot be scaled beyond the precision representable by floating-point numbers.

Based on discretization, continuous and mixed-integer constrained NLPs can be repre-

sented as discrete constrained NLPs as follows: 1

minimize f(x) where x = [x1, x2, . . . , xn]T is a vector of discrete variables, (1.1)

subject to g(x) ≤ 0 and h(x) = 0.

Here, f(x) is a lower-bounded objective function; h(x) = [h1(x), · · · , hm(x)]T is a vector

of m equality constraints; g(x) = [g1(x), · · · , gk(x)]T is a vector of k inequality constraints;

and all discrete variables in x are finite. Functions f(x), g(x), and h(x) are not necessarily

differentiable and can be either linear or nonlinear, continuous or discrete, and analytic or

procedural. The search space X is the Cartesian product of discrete domains of all variables

in x. Without loss of generality, we consider only minimization problems, knowing that

maximization problems can be transformed into minimization problems by negating their

objective functions.

Solutions to (1.1) cannot be characterized in ways similar to those of problems with dif-

ferentiable functions and continuous variables. In the latter class of problems, solutions are

defined with respect to neighborhoods of open spheres with radius approaching zero asymp-

totically. Such a concept does not exist in problems with discrete variables. To characterize

solutions sought in discrete space, we define the following concepts on neighborhoods and

constrained solutions in discrete space [163, 169]:

1For two vectors v and w with the same number of elements, v ≤ w means that each element of v is not

larger than the corresponding element of w. v ≥ w can be defined similarly. 0, when compared to a vector,

stands for a null vector.
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Definition 1.1 Ndn(x), the discrete neighborhood [23] of point x ∈ X, is a finite user-defined

set of points {x′ ∈ X} such that x′ ∈ Ndn(x)⇐⇒ x ∈ Ndn(x′), and that for any y1, yk ∈ X,

it is possible to find a finite sequence of points in X, y1, · · · , yk, such that yi+1 ∈ Ndn(yi) for

i = 1, · · ·k − 1.

Definition 1.2 Point x ∈ X is called a discrete-neighborhood constrained local minimum

(CLMdn) if it satisfies two conditions: a) x is a feasible point, implying that x satisfies all

the constraints g(x) ≤ 0 and h(x) = 0, and b) f(x) ≤ f(x′) for all x′ ∈ Ndn(x), where x′ is

feasible. A special case in which x is a CLMdn is when x is feasible and all its neighboring

points in Ndn(x) are infeasible.

Definition 1.3 Point x ∈ X is called a discrete-neighborhood constrained global minimum

(CGMdn) iff a) x is a feasible point, and b) for every feasible point x′ ∈ X, f(x′) ≥ f(x).

The set of all CGMdn is Xopt. According to our definitions, a CGMdn must also be a CLMdn.

1.2 Theory of Lagrange Multipliers for Solving Dis-

crete Constrained NLPs

In this section, we briefly overview a new theory of discrete constrained optimization using

Lagrange multipliers [163, 169] developed in our research group. In contrast to Lagrangian

methods that work only for continuous constrained NLPs [45, 109], our new theory was

derived for solving discrete constrained NLPs and can be extended to solve both continuous

and mixed-integer NLPs. More importantly, its first-order necessary and sufficient condition

on CLMdn provides a strong theoretic foundation for developing global optimization methods

for solving constrained NLPs.
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The theory is based on solving discrete equality-constrained NLPs similar to that in

(1.1) [163, 170]:

minimize f(x) where x = [x1, x2, . . . , xn]T is a vector of discrete variables, (1.2)

subject to h(x) = 0.

A generalized discrete augmented Lagrangian function of (1.2) is defined as follows:

Ld(x, λ) = f(x) + λT H (h(x)) +
1

2
||h(x)||2, λ ∈ Rm (1.3)

where H is a non-negative continuous transformation function satisfying H(~y) ≥ ~0 and

H(~y) = ~0 iff ~y = ~0, and λ = [λ1, · · · , λm]T is a vector of Lagrange multipliers.

We define a discrete-neighborhood saddle point SPdn(x∗, λ∗) with the following property:

Ld(x
∗, λ) ≤ Ld(x

∗, λ∗) ≤ Ld(x, λ∗) (1.4)

for all x ∈ Ndn(x∗) and all λ ∈ Rm.

The concept of SPdn is very important in discrete problems because, starting from them,

we can derive a first-order necessary and sufficient condition for CLMdn that leads to local

and global minimization procedures. This is stated formally in the following theorem [163]:

Theorem 1.1 First-order necessary and sufficient condition for CLMdn. A point in the

discrete search space of (1.2) is a CLMdn iff it satisfies condition (1.4) for any λ ≥ λ∗, where

λ ≥ λ∗ means that each element of λ is not less than the corresponding element of λ∗.

Requiring H in (1.3) to be non-negative is easy to achieve. Three such examples are

H(h(x)) = [|h1(x)|, · · · , |hm(x)|]T , H(h(x)) = [max(h1(x), 0), · · · , max(hm(x), 0)]T , and

H(h(x)) = [|h2
1(x)|, · · · , |h2

m(x)|]T . Note that these transformation functions are not used

in Lagrange-multiplier methods in continuous space because they are not differentiable at
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H(h(x)) = 0. However, they do not pose problems here because we do not require their

differentiability.

Transformation H provides an easy way to handle inequality constraints because we can

transform an inequality constraint, say gj(x) ≤ 0, into an equivalent equality constraint

max(gj(x), 0) = 0. For this reason, we only consider problems with equality constraints in

the rest of this chapter.

Theorem 1.1 is of great importance because it implies that, for discrete-space optimiza-

tion, it is sufficient to search for SPdn in order to find CLMdn. Furthermore, global opti-

mization, aiming to find a CGMdn, amounts to finding SPdn with the minimum objective

value. In contrast, there is no similar results in continuous-space optimization [109, 170].

1.3 A General Framework to Look for SPdn

One of the observations from existing work is that there are various approaches to look for

discrete-space saddle points but lacks a general framework that unifies these mechanisms.

Without such a framework, it is impossible to know whether different algorithms are actually

variations of each other. Therefore, we propose in this thesis a framework [159] for solving

constrained NLPs that unifies simulated annealing (SA), genetic algorithms (GA), and greedy

searches in looking for saddle points. The framework allows us to show that many leading

algorithms, such as DLM [169], CSA [162], and GA search of penalty formulations [117, 114]

are similar algorithms that differ only in some components of the framework.

Based on the first-order necessary and sufficient conditions in Theorem 1.1, Figure 1.1 de-

picts a general stochastic optimization procedure to look for SPdn. The procedure maintains

a list of candidate points to be searched. It consists of two loops: the x loop that updates

the variables in x in order to perform descents of Ld(x, λ) in the x subspace, and the λ loop
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Figure 1.1: A general iterative stochastic procedural framework to look for SPdn.

that updates the variables in λ , if there are unsatisfied constraints for any candidate in the

list, in order to perform ascents of Ld(x, λ) in the λ subspace. The procedure quits when no

better probes can be generated in both the x and λ subspaces.

The general procedure is guaranteed to terminate only at feasible points; otherwise, new

probes will be generated in the λ subspace to suppress any unsatisfied constraints. Further,

if the probe generator in the x subspace is able to enumerate all the points in Ndn(x′) for any

point x′ in the x subspace, then the point where the procedure stops must be a discrete-space

saddle point, or equivalently, a CLMdn. This is true because the stopping point is a local

minima in the x subspace of Ld(x, λ) and a local maxima in the λ subspace.

The significance of the procedural framework in Figure 1.1 is that it provides a unified

problem-independent way to implement Theorem 1.1. By designing the four components of

the framework, we can design new constrained optimization algorithms to look for CLMdn.

Further, by realizing that existing algorithms are special cases of the general framework, we

can improve these algorithms by tuning one or more of their components in the framework.
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Our survey later shows that existing algorithms looking for SPdn, such as DLM and CSA,

fit into this framework. In Chapter 4, we study various mechanisms and their combinations

for performing ascents in the x subspace and descents in the λ subspace.

1.4 Optimization Algorithms with Stochastic Behavior

In this thesis, we are interested in studying algorithms with random components or random

starting points. These stochastic search algorithms (SSA) do not always lead to the same

solution (or solutions of similar quality) every time the algorithm is run. They may utilize the

differentiability of functions or may rely on sampling to generate new probes. Examples of

such algorithms include local search with random starting points, global search with random

components to escape from local traps, and stochastic global optimization algorithms, such

as SA and GA.

Among the parameters that control the behavior of an SSA, two of the most important

ones are N (number of probes allowed for one run of the algorithm), and Q (the quality

of solutions desired). In general, the longer an algorithm is allowed to run, the better the

solutions it can generate.

Assuming that an SSA iterates by generating probes in a search space and that each

probe is independent of the incumbent already found, the performance of one run of such

an algorithm can be characterized by the number of probes made (or CPU time taken) and

the convergence and reachability probabilities defined as follows:

Definition 1.4 The convergence probability PC(N, Q) of an SSA is the probability that it

will find a solution of quality Q in its N th probe.

Among various convergence conditions, the strongest one is asymptotic convergence to a

solution of desired quality with probability one. In this case, the search stops at a solution of

8



desired quality in the last iteration with probability one, as the number of probes approaches

infinity. This concept is of theoretical interest only but is not of practical importance, because

an algorithm with asymptotic convergence does not imply that it will find better solutions

with higher probabilities when terminated in finite time.

Definition 1.5 The reachability probability PR(N, Q) of an SSA is the probability that it

will find a solution of quality Q in any of the N probes it has made.

PR(N, Q) measures the probability of finding an incumbent of desired quality Q after

the SSA has made N probes. In general, PR(N, Q) is a non-decreasing function of N and

converges to 1 as N → ∞.2 The relationship between PC(N, Q) and PR(N, Q) can be

characterized by the following equation:

PR(N, Q) = 1−
N
∏

j=1

(1− PC(j, Q)), (1.5)

assuming that all probes are independent (a simplifying assumption). Reachability can be

maintained by keeping the incumbent at any time and by reporting it when the algorithm

stops.

From (1.5), we see that PR(N, Q) is less than 1 unless PC(N, Q) reaches 1. For an SSA

with asymptotic convergence, PC(N, Q) = 1 only when N approaches infinity. Hence, all

SSAs will have PR(N, Q) less than 1 with finite N .

Figure 1.2 shows examples of PC(N, Q) and PR(N, Q) of three SSAs. Figures 1.2a and

1.2b show the convergence and reachability probabilities of random probing (PC(N, Q) =

1/R, where R is the number of states in the search space). Other SSAs, such as SA and GA,

have PC(N, Q) increasing with respect to N , as shown in Figure 1.2a.

2For simplicity of notations, we use PC(N, Q) and PR(N, Q) to denote, respectively, the convergence and

reachability probabilities when we focus on a fixed solution quality level Q.
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Figure 1.2: Examples showing PC(N,Q), PR(N,Q), and E(Bs(S
ICS(N), Q)) for random probing,

SA and GA.

10



Although PR(N, Q) is less than 1 for finite N and its exact value is hard to estimate

and control for a given SSA, we can always improve the chance of finding a solution of

quality Q by running the same algorithm multiple times from random starting points, each

examining the search space by N probes. Let E(Bs(S
ICS(N), Q))3 be the expected total

number of probes using a schedule SICS(N) of multiple independent runs of an SSA (each

with N probes) in order to find a solution of quality Q, we have,

E(Bs(S
ICS(N), Q)) =

∞
∑

j=1

PR(N, Q)(1− PR(N, Q))j−1 ×N × j =
N

PR(N, Q)
(1.6)

Figure 1.2c shows examples of E(Bs(S
ICS(N), Q)) for three SSAs. We see that

E(Bs(S
ICS(N), Q)) is convex for SA and GA, each with an absolute minimum with respect to

N in (0,∞) that minimizes E(Bs(S
ICS(N), Q)). In other words, there is an optimal number

of probes that minimizes the expected overhead of finding a solution. Hence, if the algorithm

is run multiple times using a suitable number of probes each, then the expected time to find

a solution of quality Q can be minimized.

This observation generally holds for all SSAs, including SSAs for constrained nonlinear

optimization. As an example, Table 1.2 illustrates such an trade-offs between Nα, the number

of probes spent in one run, and Nα

PR(Nα)
, the expected overhead, in using CSA [162] (a con-

strained SSA using simulated annealing) to solve a constrained NLP with a 10-dimensional

Rastrigin function as its objective:

minimize f(x) = F

(

10n +
n
∑

i=1

(x2
i − 10cos(2πxi)), 200

)

(1.7)

subject to |(xi − 4.2)(xi + 3.2)| ≤ 0.1 for n = 10,

3This notation is used in our theory of SSAs. See Chapter 3 for details.
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Table 1.2: An example illustrating trade-offs between the expected total number of probes in

multiple runs of CSA to find a CGMdn, the number of probes used in each run, and the probability

of success in each run. The optimal Nα at Nα = 2960 leads to the minimum average total number

of probes to find a CGMdn. Note that the probability of success is not the highest in one run using

the optimal Nα. (The problem solved is defined in (1.7). Each cooling schedule is run 200 times

using f ′ = 200.)

Nα cooling schedule length 998 1480 2075 2960 4345 7980 24140 69635

Tα avg. CPU time of one run 0.026 0.036 0.050 0.074 0.11 0.18 0.54 1.58

PR(Nα) succ. prob. of one run 1% 10% 25% 40% 55% 70% 85% 95%

1
PR(Nα)

avg. runs to find sol’n 100 10 4 2.5 1.82 1.43 1.18 1.05

Nα

PR(Nα)
avg. probes to find sol’n 99800 14800 8300 7400 7900 11400 28400 73300

Tα

PR(Nα)
avg. time to find sol’n 2.6 0.36 0.20 0.19 0.20 0.25 0.64 1.7

where F is the transformation function defined later in (5.2). A run of CSA is successful

if it finds a feasible point with objective value less than or equal to 200 in this run, and

the probability to hit a CGMdn is calculated by the percentage of successful runs over 200

independent runs.

Table 1.2 shows that PR(Nα) increases towards one when Nα is increased. An Nα too

large is generally undesirable because the expected number of probes in (1.6) is large, even

though the success probability in one run of CSA approaches one. On the other hand, if

Nα is too small, then the success probability in one run of CSA is low, leading to a large

expected number of probes in (1.6). An optimal Nα is one in which CSA is run multiple

times and the expected total number of probes in (1.6) is the smallest. Table 1.2 also shows

that the number of probes expended is closely related to the execution time.

Table 1.2 shows that Nα

PR(Nα)
is a convex function with a minimum at Nα = 2960. That is,

the average total number of probes of multiple runs of CSA to find a CGMdn first decreases
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and then increases, leading to an optimal Nα of 2960 and an average of 2.5 runs of CSA to

find a CGMdn.

Another important parameter that controls the behavior of an SSA is the solution quality

desired: a more relaxed Q will lead to a smaller minimum point in E(Bs(S
ICS(N), Q)). We

exploit this trade-off in designing strategies in order to refine Q after relaxed solutions have

been found.

1.5 Research Goals and Contributions

There are three major research goals of this thesis:

a) Design of efficient constrained optimization algorithms. We develop new efficient

algorithms for solving constrained NLPs whose functions are not necessarily differentiable

and whose variables may be discrete, mixed-integer, or continuous. Our algorithms, based

on the theory of Lagrange multipliers for discrete constrained optimization, look for discrete-

neighborhood saddle points SPdn in Lagrangian formulations of NLPs, since there is a one-

to-one correspondence between SPdnand CLMdn. The framework in Figure 1.1 provides a

general approach to locate SPdn. Existing algorithms, such as DLM and CSA, are shown

to be special cases of this framework. To generate better probes, we include genetic search

in the original-variable space and suitable combinations of mechanisms in order to lead to

efficient searches.

b) Optimal sequential and parallel search schedules. We develop a new theory of stochas-

tic search algorithms (SSAs) which shows that running a sequence of SSAs according to a

prescribed schedule of quality desired Q and time allowed T will minimize, up to a constant

factor, the expected search time in (1.6) when compared to that of the same SSA run under

optimal Q and T . We develop the schedule using iterative deepening and give the sufficient
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conditions for the schedule to be optimal. We then extend the theory when an SSA is run

on multiple processors and develop optimal schedules for running SSAs in parallel. Based

on the search algorithms derived from the framework in (a), we develop optimal schedules

for these algorithms.

c) Optimal anytime search. Based on SSAs scheduled optimally, we propose new anytime

algorithms that generate solutions of improved quality Q as more time is allowed, eventually

finding a CGMdn. We develop new schedules with improved quality targets Q in such a way

that the total time of solving all quality levels is of the same order of magnitude as that of

finding a CGMdn.

1.6 Outline of This Thesis

This thesis is organized as follows. In Chapter 2, we survey existing work in solving the two

classes of constrained NLPs studied in this research. Chapter 3 presents the mathematical

theory of SSAs. Chapter 4 presents constrained genetic algorithms by incorporating genetic

search in the general framework and the theory of SSAs for finding their optimal schedules.

Based on the optimal schedules, Chapter 5 presents optimal anytime SSAs that always

generate improved solutions as more search time is spent and shows experimental results

on applying our anytime algorithms to solve three sets of standard engineering benchmarks.

Finally, Chapter 6 summarizes our research work presented in this thesis.
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Chapter 2

Previous Work

In this chapter, we summarize previous work in the literature on the two classes of problems

formulated in Chapter 1. We classify these approaches based on whether they utilize the

derivatives of functions. We also overview two existing algorithms that implement the general

search framework for finding SPdn.

2.1 Derivative-Free Methods

We first summarize existing approaches that can be applied to solve constrained NLPs de-

fined in Chapter 1 and that do not require the differentiability of functions. Since any general

problem in this class is NP-hard, existing approaches aim at finding constrained local minima

that satisfy all the constraints. They can be broadly classified into four categories: transfor-

mations into constrained 0-1 NLP problems, direct solution methods, Lagrangian relaxation,

and transformations into unconstrained problems using penalty formulations.

2.1.1 Transformations into constrained 0-1 NLPs

One major approach is to rewrite a discrete constrained NLP into a constrained nonlinear

0-1 programming problem before solving it. This rewriting process is simple because an
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integer variable can naturally be expressed as the summation of several binary bits or 0-1

variables. Existing nonlinear 0-1 integer programming algorithms can be classified into three

categories [88].

First, a nonlinear problem can be linearized by replacing each distinct product of variables

by a new 0-1 variable and by adding some new constraints [167, 79, 80]. However, lineariza-

tion only works for problems with a few simple nonlinear terms, because it introduces many

new variables and constraints, leading to much larger problems. Second, algebraic meth-

ods [86, 130] express an objective function as a polynomial function of its variables and their

complements. These only work for cases in which all the constraints can be removed. Last,

cutting-plane methods [82, 83] reduce a constrained nonlinear 0-1 problem into a generalized

covering problem. In these methods, the objective is assumed to be linear or is linearized.

However, they are limited because not all nonlinear 0-1 problems can be transformed this

way.

For problems with highly nonlinear objective and constraint functions, transformations

into nonlinear constrained 0-1 problems are not helpful because existing techniques for solving

these problems are very limited. On the other hand, if a nonlinear problem with continuous

variables can be linearized, then existing linear programming methods generally have well-

defined algorithmic steps and stopping conditions for locating CLMdn.

2.1.2 Direct methods for solving discrete constrained NLPs

Direct solution methods for solving discrete constrained NLPs without any transformation

on their objective and constraint functions can be classified into two approaches. One major

approach is based on rejecting, discarding [32, 33, 126] or repairing [98] methods that try

to avoid infeasible points. This approach, however, has difficulty in handling nonlinear
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constraints whose feasible regions may be very hard to locate, leading to the generation of

mostly infeasible points that are rejected.

The other approach is based on enumeration or randomized search techniques [95]. Enu-

merative branch-and-bound algorithms [108, 165] decompose a search space and estimate

the bound for each in order to eliminate infeasible subspaces. In these algorithms, branching

variables are chosen according to a fixed a priori ordering, and functions may be approx-

imated by piecewise linear and nonlinear functions. When constraints are nonlinear and

lower bounds are hard to estimate, these methods do not perform well because lower bounds

found using linearized constraints may be inaccurate when constraints are highly nonlinear,

and inaccurate bounds may lead to incorrect pruning and infeasible solutions.

2.1.3 Lagrangian relaxation

There is a class of algorithms called Lagrangian relaxation [72, 74, 68, 142, 41] proposed in the

literature that should not be confused with our proposed discrete constrained optimization

method using Lagrange multipliers. Lagrangian relaxation reformulates a linear integer

minimization problem:

z = minimize Cx

subject to Gx ≤ b where x is an integer vector of variables (2.1)

x ≥ 0 and C and G are constant matrices

into the following form:

L(λ) = minimize (Cx + λT (b−Gx))

subject to x ≥ 0. (2.2)

Obviously, the new relaxed problem is simple and can be solved efficiently for any given

vector λ. The method is based on Lagrangian Duality theory [151] upon which a general
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relationship between the solution to the original minimization problem and the solution to

the relaxed problem can be deduced. There was some research [34] addressing nonlinear

optimization problems. However, as pointed out in [151], Lagrangian relaxation aims to find

an optimal primal solution given an optimal dual solution, or vice versa. This approach is

simple in the case of linear functions but does not work well for nonlinear functions.

2.1.4 Penalty formulations and methods

Penalty Formulations. This approach transforms (1.1) into an unconstrained problem,

consisting of a sum of its objective and its constraints weighted by penalties, before solving

the penalty function by unconstrained methods. A typical penalty formulation is as follows:

eval(x) = f(x) +
n
∑

i=1

wi|hi(x)|, (2.3)

where f(x) is the objective function, and wi is the ith weight coefficient to be determined.

A simple solution is to use a static-penalty formulation [45, 109] that sets wi to be a

large static positive value. This way, a local minimum of eval(x) is a CLMdn, and a global

minimum of eval(x) is a CGMdn. However, if the wi’s are too large, they will cause the

search space to be very rugged. Consequently, feasible solutions are difficult to be located by

local-search methods, because it is hard for these methods to escape from deep local minima

after getting there and to move from one feasible region to another when feasible regions

are disconnected. On the other hand, if the wi’s are too small, then local minima or global

minima of eval(x) may not even be feasible solutions to the original constrained problem.

In general, hard-to-satisfy constraints should carry larger penalties than easy-to-satisfy

ones. However, the degree of difficulty in satisfying a constraint may depend on other con-
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straints in a problem. Without the ability to vary penalties dynamically, search techniques

for unconstrained problems will likely get stuck in infeasible local optima.

Dynamic-penalty methods address the difficulties in static-penalty methods by gradu-

ally increasing penalties. By transforming (1.1) into a sequence of unconstrained subprob-

lems with increasing penalties, dynamic-penalty methods employ the solution of a previous

subproblem as a starting point for the next subproblem. Dynamic-penalty methods have

asymptotic convergence if each unconstrained subproblem in the sequence is solved opti-

mally [45, 109]. Optimality in each subproblem is, however, difficult to achieve in practice,

given only finite amount of time to solve each subproblem. This leads to suboptimal solutions

when the result in one subproblem is not optimal. Moreover, the solutions to intermediate

subproblems may not be related to the final goal of finding CLMdn or CGMdn when penal-

ties are not large enough. Approximations to the process that sacrifice global optimality of

solutions have been developed [102, 111].

Various constraint handling techniques have been developed based on dynamic-penalty

formulations in [94, 97, 114, 125, 115, 77, 32, 138, 122, 137, 42]. Besides requiring domain-

specific knowledge, most of these heuristics have difficulties either in finding feasible regions

or in maintaining feasibility for nonlinear constraints, and get stuck easily in local min-

ima [117, 114]. Some typical constraint-handling techniques are explained next. Note that

these techniques are all heuristic in nature.

In general, methods based on dynamic-penalty formulations can at best, but have no

guarantee to, find CLMdn. Consider a simple problem with only one constraint function

h1(x) and an objective f(x). If a dynamic penalty-based algorithm starts from x∗ and

|h1(x
∗)| = minx∈Ndn(x∗)∪{x∗}{|h1(x)|} > 0 and f(x∗) = minx∈Ndn(x∗)∪{x∗}{f(x)}, then regard-

less of how large the penalty becomes, no feasible solution can be found.
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Next, we review methods for solving problems based on penalty formulations. These

methods can be classified into local search, global search and stochastic global optimization.

Local Search Based on Penalty Formulations. Local search methods based on penalty

formulations rely on local probes or perturbations to generate candidate trial points and

advance their search trajectories. Typical methods include greedy search and hill climb-

ing [31, 109]. These methods usually have well-defined stopping conditions that are closely

related to their algorithmic steps. They, however, have difficulties in finding feasible solu-

tions and get stuck easily in infeasible local minima when the weight coefficients in (2.3) are

not chosen properly. For this reason, local search methods are often combined with various

global search techniques to find high-quality solutions.

Global Search Based on Penalty Formulations. Global search methods based on

penalty formulations normally involve techniques to escape from the attraction of local min-

ima or valleys in a search space. Typical methods include tabu search [76, 78, 40], multi-

start [136, 134, 90, 145], heuristic repair methods [53], break-out strategies [119], guided

local search (GLS) [156], random walk [140, 139], learning-based approaches [49, 35, 36, 47],

and Bayesian methods [118, 157, 152].

In general, global search methods based on penalty formulations can at best find con-

strained local minima (CLMdn), given large penalties on constraints. However, as mentioned

before, selecting suitable penalties often proves to be difficult, and most current methods use

heuristics to select penalties. To address this issue, we describe in the following a systematic

way to locate CGMdn.

Stochastic Global Optimization Based on Penalty Formulations. Given sufficiently

large penalties on constraints and time approaching infinity, stochastic global optimization
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methods, based on penalty transformations for solving discrete constrained problems, are

able to find CGMdn. In practice, it is difficult to achieve global optimality when given finite

time, because a search may commit too quickly to an infeasible region or a region with only

CLMdn.

Simulated annealing (SA) [103] and genetic algorithms (GA) [91] are two well-known

stochastic global optimization algorithms for solving unconstrained NLPs.

SA is a typical global optimization algorithm with asymptotic convergence. It has been

applied successfully to solve unconstrained optimization problems [128, 106, 57, 26]. Its

basic idea is to not only accept trial points with improved objective values, but also accept

trial points with worse objective values probabilistically . For a new trial point x′ generated

from the current point x, a typical acceptance probability is the Metropolis probability [73]

defined as follows:

AT (x, x′) = exp

(

−(f(x′)− f(x))+

T

)

(2.4)

where

a+ =







a, a > 0

0, a ≤ 0.
(2.5)

and T is a control parameter called temperature that is set initially to be a large value and

then reduced slowly.

One the most important properties of SA is that it can achieve asymptotic convergence

to an unconstrained global optimum with probability one, when it uses a slow enough log-

arithmic cooling schedule to decrease temperature T [70]. This important property makes

SA promising in practice and has led to many efficient variations of SA, like fast simulated

annealing (FSA) [150], simulated annealing with extended neighborhood [173], adaptive
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simulated annealing [96, 166], and a combination of simulated annealing with local search

heuristics [112, 37].

The advantage of SA lies in its global convergence property. However, when applied

to solve constrained NLPs using penalty formulations, the global convergence of SA only

ensures that a search will converge to an optimal solution of the penalty function (that may

be an infeasible point, a CLMdn, or a CGMdn of the original constrained problem). That

is, the success of SA in constrained optimization depends heavily on the proper choice of

penalties. Moreover, SA requires a very slow cooling schedule in order to converge to an

optimal solution with high probabilities.

Genetic algorithm (GA) [117, 113, 81, 66, 114, 132, 120, 123, 89, 63, 43] is a stochas-

tic global optimization algorithm with reachability. It generally maintains a population of

individuals. In each generation, it uses some genetic operators, such as crossovers and muta-

tions, to generate new points. All the old and new points are then ranked based on a fitness

function, which is the objective function in case of unconstrained optimization problems. It

then starts a new generation using the top-fit individuals. After iterating for a sufficient

number of generations, it is expected to converge to the best individual.

Similar to SA, GA requires a good choice of penalties in a penalty formulation in order

for the search to converge to a CGMdn of the original constrained problem. Otherwise, the

search may end up finding only CLMdn or even infeasible solutions.

Some variants of penalty formulations have been used in GAs to handle constraint. These

include methods with multi-level static penalties [94], generation-based dynamic penalties

[97], annealing penalties [114], and adaptive penalties [42, 84, 125]. Although they differ

in their ways of modifying the penalties, all of them adjust penalties at the end of each

generation, instead of when the unconstrained problem at previous penalty levels has been
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minimized. Accordingly, these methods cannot achieve asymptotic convergence. Also, they

have difficulties in choosing suitable penalties for different constrained NLPs.

Besides SA and GA, there are some other stochastic global optimization strategies, al-

though not as popular, that can be applied to solve discrete constrained NLPs using penalty

formulations. These include random search [174, 144], adaptive search [124, 50], controlled

random search (CRS) [27, 25] and improved hit-and-run (IHR) [175, 174] methods.

Many of these random search methods do not work well because: a) they depend heavily

on a good choice of penalties in order to find feasible solutions; and b) the trial point

generator, normally based on some random distributions, has no bearing to the final goal of

finding CGMdn or CLMdn.

Limitations of penalty methods The major difficulty in penalty formulations is that

a local/global minimum of an unconstrained penalty formulation is only a necessary but

not a sufficient condition for a constrained local/global minimum of the original NLP. Only

when penalties are chosen correctly that a local minimum of a penalty formulation is a

constrained local minimum of the original NLP. In general, there is no single procedure to

choose penalties for a general NLP in such a way that a local minimum of an unconstrained

penalty formulation is a constrained local minimum of the original NLP. It follows that

existing algorithms do not necessarily solve the original NLP by looking for local/global

minima in an unconstrained penalty formulation.
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2.2 Methods Requiring the Differentiability of Func-

tions

In this section, we summarize previous methods for solving constrained NLPs that utilize

the differentiability of functions. We classify them into two categories: methods for solving

continuous constrained NLPs and those for solving discrete constrained NLPs and mixed-

integer constrained NLPs (MINLPs).

2.2.1 Continuous constrained NLPs

As discussed in Chapter 1, we are interested in this research on constrained NLPs whose vari-

ables are continuous and whose functions are not differentiable. Hence, methods that require

differentiability cannot be applied. Such methods include interval methods requiring deriva-

tives (such as interval-Newton methods) [101, 100, 87], gradient-descent methods, Newton’s

method [109, 121, 129], trajectory methods [158, 155, 58, 135, 30, 143, 149, 28, 152], covering

methods requiring derivatives [38, 39], penalty methods requiring derivatives [52, 69, 152],

and Lagrange-multiplier methods [109]. The last class of methods is the basis on which

sequential quadratic programming [46] is based.

2.2.2 Discrete and mixed-integer constrained NLPs

Penalty formulations of discrete and mixed-integer NLPs with differentiable functions

can be solved by unconstrained algorithms that require differentiability, such as Newton’s

method and conjugate-gradient methods. These methods suffer the same limitations of

derivative-free penalty-based methods discussed in Section 2.1.4.

Methods exploiting the convexity of functions This approach generally formulates

an MINLP in a Lagrangian formulation and then decomposes it into subproblems in such
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a way that, after fixing a subset of the variables, the resulting subproblem is convex and

can be solved easily. Although these methods may not require the derivatives of continuous

subproblems, differentiability can help improve solution time and quality. For this reason,

we classify these methods under this class. There are three types of these methods.

a) Generalized Benders decomposition (GBD) [64, 71, 44] computes at each iteration an

upper bound on the solution sought by solving a primal problem and a lower bound

on a master problem. The primal problem corresponds to the original problem with

fixed discrete variables, whereas master problem is derived through nonlinear duality

theory. Its major disadvantage is that it is only applicable to a class of MINLPs

with restrictions on their variable space, such as a nonempty and convex continuous

subspace with convex objective and constraint functions.

b) Outer approximation (OA) [62, 61] solves MINLPs by a sequence of approximations in

which each approximated subproblem contains the original feasible region. It is similar

to GBD except that the master problem is formulated based on primal information and

outer linearization. This method requires the continuous subspace to be a nonempty,

compact, and convex set, and the objective and constraint functions to be convex.

c) Generalized cross decomposition (GCD) [64, 92, 93, 131] iteratively alternates between

two phases: phase 1 solving the primal and dual subproblems and phase 2 solving

the master problem. Similar to OA and GBD, GCD also requires the objective and

constraint functions to be proper convex functions.

The major limitation of these convexity-based methods is that they are only applicable

to specific classes of MINLPs whose convex subproblems can be constructed and solved.

Accordingly, their application to solve general MINLPs is very restricted. Even for cases in
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which convex subproblems can be constructed, they are prohibitively expensive because the

number of convex subproblems may be too large to be enumerated.

2.3 Existing Algorithms Implementing Theorem 1.1

The first-order necessary and sufficient condition in Theorem 1.1 implies that a strategy

looking for SPdn with the minimum objective value will result in a CGMdn, because there

is a one-to-one correspondence between CGMdn and SPdn. Among the many ways to look

for SPdn, we review two such methods in this section. Both methods fit into the problem-

independent framework for finding SPdn in Figure 1.1.

2.3.1 Discrete Lagrangian method

The first algorithm is the discrete Lagrangian method (DLM) [163, 141, 169, 172, 171]. It

is an iterative local search that looks for SPdn by greedy descents in the x subspace, while

occasionally performing ascents in the λ subspace in order to increase the penalties of violated

constraints.

Given a starting point (x0, λ0), DLM [163] iterates the following steps:

x loop: xk+1 = xk ⊕∆xLd(x
k, λk) (2.6)

λ loop: λk+1 = λk + c1 ·H
(

h(xk)
)

. (2.7)

The x loop performs neighborhood descents of Ld in the x subspace, where Ld is the

generalized discrete augmented Lagrangian function defined in (1.3). ∆xLd(x
k, λk) points

in a direction where Ld is decreasing, which can be obtained by probing all the points in

Ndn(x). Last, ⊕ is the vector-addition operator, where x⊕ y = (x1 + y1, x2 + y2, . . . xn + yn).
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The λ loop performs ascents in the Lagrange-multiplier subspace in order to suppress

constraint violations, if they exist; H is the transformation function in (1.3); and c1 is a

constant controlling the speed of changing the Lagrange multipliers.

It can be shown that the point where DLM stops is a CLMdn when the number of

neighborhood points is small enough to be enumerated in each descent in the x subspace [170].

However, when the number of neighborhood points is too large to be enumerated, then the

point where DLM stops is a feasible point but not necessarily a SPdn. Also, as a local

search method, DLM may get stuck at local minimal points instead of a CGM. Global search

strategies have been incorporated to help DLM escape from local suboptimal traps [141, 169,

172, 171].

2.3.2 Constrained simulated annealing

The second algorithm is constrained simulated annealing (CSA) [162, 161, 164], an appli-

cation of Theorem 1.1 to look for CGMdn with asymptotic convergence. CSA looks for

discrete-space saddle points by performing both probabilistic descents of Ld in the original-

variable subspace and probabilistic ascents of Ld in the Lagrange-multiplier subspace in order

to satisfy all the constraints in (1.1).

Figure 2.1 shows the basic procedure of CSA. Line 2-3 starts CSA from an initial tem-

perature T 0 and a randomly generated starting point. T 0 is decided empirically by sampling

a certain number of points in the search space: it is large if the samples differ a lot in their

objective values and constraint violations; otherwise, T 0 is set to be a smaller value.

Line 4 sets NT , the number of trials at each temperature. In [162, 161], NT was set to

be ζ(20n + m), where ζ = 10(n + m), n is the number of variables, and m is the number of

equality constraints.
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1. procedure CSA
2. set starting point x = (x, λ);
3. set starting temperature T = T 0 and cooling rate 0 < α < 1;
4. set NT (number of trials per temperature);
5. while stopping condition is not satisfied do
6. for k ← 1 to NT do
7. generate a trial point x′ from N (x) using G(x,x′);
8. accept x′ with probability AT (x,x′)
9. end for
10. reduce temperature by T ←− α× T ;
11. end while
12. end procedure

Figure 2.1: CSA: constrained simulated annealing procedure [162].

Line 5-11 implement the annealing process. Line 7 generates a trial point x′ in the

neighborhood N (x) of the current point x, using a generation probability G(x,x′), where

N (x) is defined as follows:

N (x) = {(x′, λ) where x′ ∈ Ndn(x)} ∪ {(x, λ′) where λ′ ∈ Ncn(λ)} (2.8)

Ncn(λ) = {µ ∈ Λ | µ < λ, and µi = λi if hi(x) = 0}
⋃

{µ ∈ Λ | µ > λ, and µi = λi if hi(x) = 0},

where λ > µ means that every element of λ is larger than or equal to the corresponding

element of µ, and that at least one element of λ is strictly larger than the corresponding

element of µ. Hence, point x = (x, λ) has two sets of neighbors: (x′, λ) and (x, λ′). Trial

point (x′, λ) is a neighbor to (x, λ) if x′ is a neighbor to x in discrete subspace X, and

(x, λ′) is a neighbor to (x, λ) if λ′ is a neighbor to λ in continuous subspace Λ and h(x) 6= 0.

Neighborhood Ncn(λ) prevents λi from being changed when the corresponding constraint is

satisfied, i.e., hi(x) = 0.
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Line 8 decides whether to accept trial point x′ using acceptance probability AT (x,x′).

defined as follows:

AT (x,x′) =











exp
(

− (Ld(x′)−Ld(x))+

T

)

if x′ = (x′, λ)

exp
(

− (Ld(x)−Ld(x′))+

T

)

if x′ = (x, λ′)

(2.9)

where (a)+ = a if a > 0, and (a)+ = 0 otherwise for all a ∈ R.

AT (x,x′) allows a search to find points with smaller Lagrangian value in a stochastic

fashion. Stochastic descents of Ld in the x subspace try to enforce a smaller Lagrangian value,

implying either a smaller objective-function value or a smaller total constraint violation,

both of which are desirable. In contrast, probabilistic ascents of Ld, which are absent from

traditional SA, try to increase the Lagrange multipliers on violated constraints stochastically

in order to force them into satisfaction.

Line 10 decreases temperature T using a geometric schedule in order for the annealing

process to work.

Asymptotic Convergence of CSA. CSA has been proved [161, 162] to converge asymp-

totically to a CGMdn. The proof is done by modeling the annealing process by an inhomo-

geneous Markov chain, showing that the Markov chain is strongly ergodic, proving that the

Markov chain minimizes an implicit virtual energy based on the framework of generalized

SA (GSA) [153], and showing that the virtual energy is at its minimum at any CGMdn.

Details of the proofs can be found in [164].

The main result of CSA [161, 162] is summarized in the following theorem.

Theorem 2.1 Asymptotic convergence of CSA [162, 161]. The Markov chain modeling CSA

converges asymptotically to CGMdn x∗ ∈ Xopt with probability one.
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Table 2.1: Both DLM and CSA fit into the general iterative search framework for finding SPdn.

They differs in their implementations of the four components of the framework.

Framework Components DLM CSA

Generation of x probes greedy probabilistic

Generation of λ probes greedy probabilistic

Insertion of x probes deterministic annealing

Insertion of λ probes deterministic annealing

To summarize, CSA is a powerful method in two aspects. First, it is able to solve

general discrete, continuous and mixed-integer constrained optimization problems in a unified

fashion. Second, it can find CGMdn asymptotically, given a sufficiently slow cooling schedule.

Of course, it is not practical to use a cooling schedule that is infinitely long. However, by

choosing an appropriate finite cooling schedule, CSA can find CGMdn with a high probability.

By making multiple runs of CSA with finite schedules, we can improve the success probability

of finding a CGMdn. CSA has been tested to work well for solving nonlinear benchmark

problems [161].

The major deficiency of CSA is that, as a sampling method, it usually takes a very

long time to converge to a CGM and is, therefore, not efficient for solving large complex

constrained NLPs. Also, it is very difficult to determine suitable cooling schedules for CSA

to solve different NLPs.

Both DLM and CSA fit into the general search framework in Figure 1.1 for finding SPdn,

each maintaining a list of one candidate at any time. Table 2.1 summarizes how DLM

and CSA implements the four major components of the general search framework. DLM

entails greedy generations in the x and λ subspaces, deterministic insertions into the list of

candidates, deterministic acceptance of candidates, and stopping the update of λ when all
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constraints are satisfied. On the other hand, CSA generates new probes randomly along

one of the x or λ variables, accepts them based on the Metropolis probability if Ld increases

along the x dimension and decreases along the λ dimension, and stops updating λ when all

constraints are satisfied.

2.4 Summary

We have surveyed in this chapter existing work for solving discrete, continuous, and mixed-

integer constrained NLPs. Our survey shows that direct-solution methods generally have

difficulties in solving a constrained NLP because they involve strategies that try to satisfy

multiple nonlinear constraints simultaneously. A more viable approach is to transform a

constrained NLP into an unconstrained penalty function and solve it by existing uncon-

strained search algorithms. Penalty formulations are also general enough to cover the two

classes of problems defined in Chapter 1, although other formulations may lead to more

efficient algorithms but are more restricted in their scope. Among the methods for solving

penalty formulations, local-search and global-search methods can at best find local minima

of a penalty function but have no guarantee of finding any global optimum. Stochastic search

algorithms (SSAs), such as SA and GA, are general global optimization algorithms that can

find global optimal points of unconstrained problems. For these reasons, we focus only on

penalty formulations and SSAs in this thesis.

Existing search algorithms solving an unconstrained penalty formulation look for uncon-

strained local/global minima to the penalty formulation. These minima are only necessary

but not sufficient for them to be constrained local minima in the original constrained NLP.

When penalties are not chosen properly, constraints in the original NLP at local minima of
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the penalty function may not be satisfied. Hence, existing penalty-based algorithms are not

guaranteed to solve the original constrained NLP.

The newly developed theory of discrete constrained optimization using Lagrange multi-

pliers characterizes constrained local minima in a discrete constrained NLP by a necessary

and sufficient condition on points in the corresponding unconstrained penalty function. Such

a one-to-one correspondence between SPdn and CLMdn enables the search for points satis-

fying the necessary and sufficient condition in the unconstrained penalty function in order

to locate CLMdn of the original NLP. Although these conditions are based on a discrete

variable space, they can be extended to work in continuous and mixed-integer space after

discretizing continuous variables finely and after evaluating errors due to discretization. Two

existing algorithms implementing the necessary and sufficient condition, DLM and CSA, are

able to solve general discrete, continuous and mixed-integer constrained NLPs in a unified

fashion. CSA can further achieve asymptotic convergence to CGMdnwith probability one.

Both DLM and CSA fit into our proposed general search framework for finding SPdn.

In the rest of this thesis, based on the necessary and sufficient conditions, we extend the

mechanisms of the general search framework for finding SPdn by including genetic operators.

We also study the theory of SSAs for determining the optimal schedules of SSAs in order

to minimize the expected search time and its applications in existing stochastic constrained

optimization algorithms.
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Chapter 3

Theory of Stochastic Search

Algorithms

In this chapter, we present the theory of SSAs for minimizing the expected search time of

sequential as well as parallel SSAs.

Based on the observation that a large class of SSAs have a convex relationship between the

expected overhead to find a solution and the duration of each run, we propose to use iterative

deepening to find the optimal duration and prove the optimality of the proposed schedule.

Next, we extend our theory to parallel processing of SSAs and show that the problem of

scheduling of SSAs on multiple processors in order to minimize the expected completion

time is NP-hard. We then analyze the performance limit of parallel SSAs and propose

parallel SSAs with iterative deepening. Finally we derive performance bounds between the

optimal and our proposed parallel schedules.

For clarity, we list in Table 3.1 major notations used in our theory of SSAs. The notations

will be used in the rest of this thesis.
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Table 3.1: List of major notations and their meaning in the theory of SSAs. We aligned corresponding

notations for sequential and parallel SSAs in the same row of the table. n ≥ 2 is the number of processors

for running SSAs in parallel. Since our study is focused on a fixed quality level Q in Chapter 3 and 4,

we drop the argument Q in in all the notations in these two chapters for simplicity. We investigate the

effect of Q in Chapter 5.

Sequential SSAs Parallel SSAs

Symbol Meaning Symbol Meaning

S a schedule of running sequentially PS(n) a schedule of running an SSA multiple

an SSA multiple times times in parallel on n processors

no counterpart PSasync(n) an asynchronous parallel schedule

no counterpart PSsync(n) a synchronous parallel schedule

SACS an ACS sequential schedule PSACS(n) a synchronous-ACS parallel schedule

SICS(N) an ICS sequential schedule with PSICS(N)(n) a synchronous-ICS parallel schedule

all components being N with all components being N

Bs(S, Q) a random variable denoting Bp(PS(n), Q) a random variable denoting the

the length of one run of S length of one run of PS(n)

Topt(1, Q) the optimal E(Bs(S, Q)) over Topt(n, Q) the optimal E(Bp(PS(n), Q)) over all

all sequential schedules parallel schedules on n processors

N ICS
opt (1, Q) the optimal N that minimizes N ICS

opt (n, Q) the optimal N that minimizes

E(Bs(S
ICS(N), Q)) E(Bp(PSICS(N)(n), Q))

T ICS
opt (1, Q) the minimum E(Bs(S

ICS(N), Q)) T ICS
opt (n, Q) the minimum E(Bp(PSICS(N)(n), Q))

over all ICS sequential schedules over all sychronous-ICS parallel schedules

no counterpart T sync
opt (n, Q) the minimum E(Bp(PSsync(n), Q))

over all sychronous parallel schedules

EID(1, Q) the expected length of SSAID EID(n, Q) the expected length of parallel SSAID
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N N N N1 N2 N4N

: N1, N2, N3, N4, · · ·

N3

a) ICS: N, N, N, · · · b) ACS

Figure 3.1: ICS and ACS sequential schedules of SSAs.

3.1 Existence of Optimal Sequential Schedules in SSAs

LetN be the set of possible numbers of probes in one run of an SSA, and a sequential schedule

S of running an SSA be an infinite sequence S = {N1, N2, N3, · · · }, Ni ∈ N , i = 1, 2, · · · .

We call Ni the ith component of S that represents the ith run of the SSA, when none of the

previous runs were successful. All runs are assumed to be independent and non-preemptive;

that is, after an SSA has been assigned to a processor, it cannot be interrupted until it has

completed.

An execution of a sequential schedule entails running an SSA on a single processor mul-

tiple times, in which the ith run will make Ni probes to the search space, until a solution of

desired quality is found.

A major difference between scheduling SSAs and traditional job scheduling [99] is that

the completion time of an SSA schedule is not deterministic, and the number of times an

SSA has to be run before success may be unbounded.

Let Bs(S) be a random variable denoting the total number of probes in one execution of

schedule S. We have that Bs(S) =
∑k

i=1 Ni, assuming the SSA first succeeds in the kth run.

Our goal is to determine schedule S in order to minimize E(Bs(S)), the expected number of

probes of schedule S.

We classify sequential schedules of SSAs into two types, as shown in Figure 3.1. The

schedule in Figure 3.1a let an SSA run multiple times, each with a constant number of probes

(i.e. Ni = N). We call such a schedule ICS (Identical-Component Schedule) and denote it
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by SICS(N). Another type of schedules, as shown in Figure 3.1b, run an SSA multiple times,

each with a different number of probes. We call such a schedule ACS (Arbitrary-Component

Schedule) and denote it by SACS. In the following, we first find the optimal schedule in

ICS. Then we show that the optimal schedule in ICS remains optimal when compared to

schedules in ACS.

From (1.6), we know that for SICS(N), its expected total number of probes is:

E(Bs(S
ICS(N))) =

N

PR(N)
. (3.1)

From Figure 1.2c, we see that the E(Bs(S
ICS(N))) curves of SA and GA are convex and

have an absolute minimum of N in (0,∞). We also see that E(Bs(S
ICS(N))) of random

probing is monotonically increasing and has an absolute minimum at N = 1. In general,

there exists an optimal N that minimizes (3.1) because PR(0) = 0, limN→∞ PR(N) = 1,

N
PR(N)

is bounded below by zero, and N
PR(N)

→∞ as N →∞. Therefore, for all SSAs, each

has an optimal N that minimizes the expected search overhead of its ICS schedule in (3.1).

We denote this optimal N by N ICS
opt (1).

Intuitively, for any SSA whose E(Bs(S
ICS(N))) is convex, such as SA and GA, if each

component N of S is set to be too small, then the corresponding PR(N) will be too low, and

many runs will have to be made before success; if N is set to be too large, then each run

will have a high PR(N) but an unnecessarily high cost, leading to a high cost before success.

Such trade-off, thus, leads to the existence of N ICS
opt (1).

Next, we show that the optimal ICS schedule, if exists, is still optimal across all ACS

schedules. Let T ICS
opt (1) be the minimum E(Bs(S

ICS(N))) of all ICS schedules, and Topt(1) be

the minimum E(Bs(S)) over all possible sequential schedules, including ICS and ACS. We

have:
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Theorem 3.1 Minimum expected number of probes of any sequential schedule of SSAs.

Topt(1) = T ICS
opt (1) =

N ICS
opt (1)

PR(N ICS
opt (1))

.

Proof. It suffices to prove that the expected number of probes E(Bs(S
ACS)) of any ACS

schedule SACS is always no less than T ICS
opt (1). In fact, for any ACS whose components are

Ni, i = 1, 2, · · · , we have

E(Bs(S
ACS)) =

∞
∑

i=1

[(i−1
∏

j=1

(1− PR(Nj))

)

PR(Ni)

i
∑

j=1

Nj

]

, (3.2)

which may be rearranged by exchanging the order of the two summations as

E(Bs(S
ACS)) =

∞
∑

i=1

{(i−1
∏

j=1

(1− PR(Nj))

)[ ∞
∑

k=i

(k−1
∏

l=i

(1− PR(Nl))

)

PR(Nk)

]

Ni

}

. (3.3)

For any infinite sequence P1, P2, P3, · · · , where Pi ∈ [0, 1] for i = 1, 2, 3, · · · , we can

trivially prove by induction that:

∞
∑

i=1

[(i−1
∏

j=1

(1− Pj)

)

Pi

]

= 1 , (3.4)

Hence, (3.3) can be reduced to:

E(Bs(S
ACS)) =

∞
∑

i=1

[(i−1
∏

j=1

(1− PR(Nj))

)

Ni

]

(3.5)
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From definition of N ICS
opt (1), we know:

Ni

PR(Ni)
≥ N ICS

opt (1)

PR(N ICS
opt (1))

(3.6)

or, Ni ≥ PR(Ni)
N ICS

opt (1)

PR(N ICS
opt (1))

i = 1, 2, · · · (3.7)

Therefore, from (3.5) and (3.7),

E(Bs(S
ACS)) ≥

[ ∞
∑

i=1

(i−1
∏

j=1

(1− PR(Nj))

)

PR(Ni)

]

N ICS
opt (1)

PR(N ICS
opt (1))

(3.8)

Use (3.4) again, we have:

E(Bs(S
ACS)) ≥ N ICS

opt (1)

PR(N ICS
opt (1))

= T ICS
opt (1) (3.9)

The significance of Theorem 3.1 is that, it shows that the optimal expected number of

probes T ICS
opt (1) derived for ICS, is actually the lower bound of that for ACS. Therefore,

Theorem 3.1 implies that SICS(NICS
opt (1)) is the optimal sequential schedule of SSAs.

3.2 Optimal Sequential SSA Schedules with Iterative

Deepening

Our goal in this section is to design a practical strategy of scheduling multiple runs of SSAs

in order to minimize the expected overhead of finding a solution. Further, we prove that

the average overhead of the new strategy is optimal, i.e., of the same order of magnitude as

Topt(1).
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t 2t 4t 8t 16t

fail

fail

fail

fail

success

Total time for iterative
deepening = 31t

Optimal time = 16t

N

N
PR(N)

Figure 3.2: The principle of iterative deepening: the last run dominates the overhead.

The optimal schedule is generally problem dependent and hard to be determined. We

propose to use iterative deepening to estimate it. The basic idea of iterative deepening is

shown in Figure 3.2. If we make a series of runs with geometrically increasing durations,

namely t, 2t, 4t, · · · , the total running time will be dominated by the last run that succeeds

in finding a solution.

Our approach in Figure 3.3 starts from a small number of probes N = N0 and then uses

a set of geometrically increasing numbers of probes in the SSA schedule:

Ni = ρiN0, i = 0, 1, . . . (3.10)

Under Ni, an SSA is run multiple times for a maximum of K times but stops immediately

when a solution is found. For iterative deepening to work, ρ > 1.

Let EID(1) be the expected total number of probes taken by SSAID in Figure 3.3 to find

a solution. The following theorem shows the relative complexities of EID(1) and Topt(1).
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1. procedure SSAID(Q)

2. set initial maximum number of probes N = N0;

3. set K = number of runs at fixed N ;

4. repeat

5. for i← 1 to K do

6. evaluate SSA with N probes;

7. if success then goto 11; end if

8. end for

9. increase maximum number of probes N ← ρ×N (typically ρ = 2);

10. until stopping condition satisfied or solution of quality Q is found

11. end procedure

Figure 3.3: SSAID: A sequential SSA schedule with iterative deepening.

Theorem 3.2 Optimality of sequential SSA schedules with iterative deepening. [160]

EID(1) = O(Topt(1)) if

a) PR(0) = 0; PR(N) is monotonically non-decreasing for N ∈ (0,∞); and

limN→∞ PR(N) ≤ 1;

b) (1− PR(N ICS
opt (1)))Kρ < 1.

Proof. Based on (3.10) (the schedule used by SSAID), define q such that

Nq−1 < N ICS
opt (1) ≤ Nq where Nq = ρNq−1 (3.11)

If PR(x) is monotonically non-decreasing in (0, +∞), we have,

PR(Nq−1) ≤ PR(N ICS
opt (1)) ≤ PR(Nq). (3.12)

Let PNR(N) be the probability that SSA does not succeed in K runs with N probes in

each run. Since all runs are independent, we have:

PNR(N) = (1− PR(N))K (3.13)
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From (3.12) and (3.13),

PNR(N ICS
opt (1)) ≥ PNR(Nq) ≥ PNR(Nq+1) > · · · (3.14)

Let EBi
be the expected total number of probes spent by Lines 4-10 in Figure 3.3, if SSA

is run for a maximum of K times at Ni probes each, but stop immediately if it succeeds in

any one of these runs, then:

EBi
=

K−1
∑

j=0

[1− PR(Ni)]
j ·Ni ≤ K ·Ni = O(Ni) i = 0, 1, 2, ... (3.15)

There are two possibilities for Lines 6-12 in Figure 3.3 to find a target solution f ′:

succeed in iterations running SSA with N0, . . . , Nq, or succeed afterwards. Since the success

probability of all iterations running SSA with N0, . . . , Nq probes is larger than the success

probability of the iteration running the SSA with Nq probes alone, we have:

EID(1) ≤ [1− PNR(Nq)]EBq
+ PNR(Nq)

∞
∑

i=q+1

EBi

i−1
∏

j=q+1

PNR(Nj) (3.16)

From (3.14), (3.16) can be reduced to:

EID(1) ≤ [1− PNR(N ICS
opt (1))]EBq

+ PNR(N ICS
opt (1))

∞
∑

i=q+1

EBi

i−1
∏

j=q+1

PNR(Nj) (3.17)

which can be further reduced to:

EID(1) ≤ EBq
+ PNR(N ICS

opt (1))
∞
∑

i=q+1

EBi

i−1
∏

j=q+1

PNR(Nj) (3.18)
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From (3.14), (3.15) and (3.18), we have:

EID(1) ≤
∞
∑

i=0

(PNR(N ICS
opt (1)))iEBq+i

=
∞
∑

i=0

(PNR(N ICS
opt (1)))iO(Nq+i)

= O(ρqN0)

∞
∑

i=0

(PNR(N ICS
opt (1))ρ)i. (3.19)

For the search to converge in finite average time,

PNR(N ICS
opt (1))ρ = (1− PR(N ICS

opt (1)))Kρ < 1. (3.20)

Hence, we have proved the result in the theorem:

EID(1) = O(ρqN0) = O(ρN ICS
opt (1)) = O(Topt(1)). (3.21)

We thus achieved our goal by showing that EID(1) is up to a constant factor over Topt(1)

under certain conditions. The second condition in Theorem 3.2 requires K to be large enough

because iterative deepening may not succeed before N ICS
opt (1) and may overshoot then. A

large enough K ensures that the expected total overhead will not go unbounded in case

overshoot happens. We discuss in Chapter 4 that it is generally sufficient to set K = 3.

3.3 Parallel SSAs

We discuss in this section parallel processing of SSAs. The goal of parallel processing is to

minimize the expected search time of parallelizing multiple runs of an SSA on n processors.

Here we have a basic assumption that each SSA run is non-preemptive. In other words,

once an SSA run has been assigned to a processor, it will run in that single processor until
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completion without further interruption or partitioning. We have made this assumption

because most SSAs, such as SA and GA, are iterative algorithms that have little parallelism

to be exploited in one run. We are interested in scheduling multiple runs of an SSA on

multiple processors in order to minimize the expected execution time of the search.

In the rest of this section, we first prove that the scheduling of multiple runs of an SSA

in parallel in order to minimize the expected completion time is NP-hard. Then we find the

optimal schedules under certain restricted conditions, and study performance limitations of

scheduling multiple runs of SSAs in parallel. Finally, we extend iterative deepening to the

scheduling of SSAs in parallel and prove its optimality.

3.3.1 Complexity of scheduling multiple runs of SSAs in parallel

Given n identical processors, a parallel schedule PS(n) of running an SSA on n processors

consists of n sequential schedules:

PS(n) =

{

S1, S2, · · · , Sn

}

=

{

{N1,1, N1,2, N1,3, · · · }, {N2,1, N2,2, N2,3, · · · }, · · · , {Nn,1, Nn,2, Nn,3, · · · }
}

.

Ni,j is the jth component of sequential schedule Si, for 1 ≤ i ≤ n and j = 1, 2, · · · . All

components are assumed to be integers.

In one run of a parallel schedule, processor i will run an SSA with sequential schedule

Si, The parallel search will terminate once an SSA (in any processor) succeeds in finding

a solution. Let random variable Bp(PS(n)) be the length of one run of a parallel schedule

PS(n) = {S1, S2, · · · , Sn}. We define:

Bp(PS(n)) = min

{

Bs(S1), Bs(S2), · · · , Bs(Sn)

}

(3.22)
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Our goal of parallel processing of multiple runs of SSAs is minimize E(Bp(PS(n))), the

expected length of a parallel schedule.

This optimization problem does not belong to class NP [55, 67] if we consider its corre-

sponding decision problem: given a positive number C, is there a parallel schedule PS(n)

such that its E(Bp(PS(n))) ≤ C? Any instance of this problem involves n infinite sequences

and will take infinite time to compute E(Bp(PS(n))) in general. Therefore, any solution

instance cannot be verified in polynomial time. It follows that this problem does not belong

to class NP. More formally, this problem cannot be solved by a nondeterministic one-tape

Turning machine (NDTM) [24, 67] in polynomial time, since any guessed instance of NDTM

should have a finite size and can be examined in polynomially bounded time.

The problem of parallel scheduling of multiple runs of SSAs is not in NP if its instances

have infinite sizes. In practice, however, we can only consider scheduling of finite components,

because any algorithm has to terminate in finite time and an infinite schedule is never used.

Further, we can choose a success probability as close to that needed using only finite number

of runs. We show in the following that, even if we restrict a parallel schedule to have

only finite number of runs, the parallel scheduling problem is NP-hard, which implies its

intractability.

If we only have a finite number of SSAs to be scheduled, then a parallel schedule will

consist of n sequential schedules with finite durations. In one run of the parallel schedule,

each processor will execute its assigned schedule and terminate when either an SSA running

on any processor succeeds in finding a solution or all the SSAs in the parallel schedule are

run. Hence, for a parallel schedule PS(n) with a finite number of SSA runs, we can define

Bp(PS(n)) (the length of one run) and E(Bp(PS(n))) (the expected length) in a similar

way.

Formally, we define the problem of PARALLEL SCHEDULING OF SSAs as follows:
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INSTANCE:

• A finite multiset of k components M = {N1, N2, · · · , Nk}, where Ni (positive integer)

is the number of probes in one run of an SSA, for 1 ≤ i ≤ k.

• n processors, where n ≥ 2.

• A total function PR: M −→ [0, 1].

• A positive real number C.

QUESTION: Is there a parallel schedule PS(n) assigning all the k components in M to n

processors such that

E(Bp(PS(n))) ≤ C ?

Theorem 3.3 PARALLEL SCHEDULING OF SSAs is NP-complete.

Proof. PARALLEL SCHEDULING OF SSAs can be solved by a nondeterministic poly-

nomial algorithm: one that guesses parallel schedule PS(n), computes E(Bp(PS(n))), and

compares that with C; hence PARALLEL SCHEDULING OF SSAs is in NP.

Next we show that a known NP-complete problem, PARTITION [67], can be reduced

to PARALLEL SCHEDULING OF SSAs. The PARTITION problem asks whether a given

multiset A = {a1, a2, · · · , am} of m positive integers has a subset A′ such that
∑

a∈A′ a =

∑

a∈A−A′ a.

We first prove that PARTITION can be reduced to PARALLEL SCHEDULING OF

SSAs for n = 2, and the extension to the case of n > 2 is trivial. Given any instance

A = {a1, a2, · · · , am} of the PARTITION problem, define an instance of PARALLEL

SCHEDULING OF SSAs as follows: k = m, M = {a1, a2, · · · , am}, n = 2, PR(ai) = 0,

for 1 ≤ i ≤ m, and C = 1
2

∑

a∈A a. Such a transformation can obviously be done in
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polynomial time. For any parallel schedule PS(n) on this instance, since PR(ai) = 0 for

1 ≤ i ≤ m, any run of PS(n) can only terminate after all SSA runs have been finished.

Therefore, E(Bp(PS(n))) = max{L1, L2}, where L1 and L2 are the total numbers of

probes of the SSAs assigned to processors 1 and 2, respectively. There is a schedule

PS(n) whose E(Bp(PS(n))) ≤ C if and only if there is a partition for A, in which case

L1 = L2 = 1
2

∑

a∈A a = C, leading to E(Bp(PS(n))) = C.

Given the PR(N) curve of an SSA on a problem and n processors, define the optimal

expected completion time Topt(n) to be the minimum E(Bp(PS(n))) over all possible parallel

schedules. In general, Topt(n) is difficult to be determined since the parallel scheduling

problem is NP-hard (when the number of SSA runs to be scheduled is restricted to be

finite), and Topt(n) is not likely to be found in polynomial time. In the rest of this section,

we look for efficient heuristic schedules. Section 3.3.2 finds T sync
opt (n), the minimum expected

completion time of an important class of parallel schedules, and derives two lower bounds

of Topt(n). Section 3.3.3 proposes parallel SSAs with iterative deepening, whose expected

completion time is of the same order of magnitude as T sync
opt (n).

3.3.2 Limitations of parallel processing of SSAs

In this subsection, we first establish a classification of parallel schedules. Then, we find

T sync
opt (n), the minimum expected completion time of a class of parallel schedules in the

classification. Finally, we give two lower bounds of Topt(n).

3.3.2.1 A classification of parallel schedules of SSAs

Figure 3.4 shows a classification of parallel schedules of SSAs. Figure 3.5 depicts each class

of schedules schematically. We divide parallel schedules into synchronous and asynchronous
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Parallel Schedules of SSAs

Schedules

Asynchronous Synchronous Schedules

Synchronous Synchronous-ACS Schedules

Schedules

-ICS

PSsync(n)PSasync(n)

PSACS(n)

PS(n)

PSICS(N)(n)

Figure 3.4: A classification of parallel schedules of SSAs.
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Figure 3.5: Parallel SSAs: Asynchronous, Synchronous-ICS, and Synchronous-ACS parallel

schedules.

ones, denoted by PSsync(n) and PSasync(n), respectively. For synchronous schedules, all

processors run SSAs of the same duration at any time. As in the sequential case, synchronous

schedules can be further divided to ICS and ACS schedules. For a synchronous-ICS schedule

PSICS(N)(n) (Figure 3.5b), all processors run an SSA with N probes repeatedly until success.

For a synchronous-ACS schedule PSACS(n) (Figure 3.5c), all processors run an SSA with

the same number of probes at any time, although the number of probes run at a different

time may change.
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3.3.2.2 Minimum expected completion time of synchronous parallel schedules

In this subsection, we derive the minimum expected completion time of all possible syn-

chronous parallel schedules, including both ICS and ACS. Similar to the sequential case,

we first consider synchronous-ICS, and then extend the result to synchronous-ACS. For a

synchronous-ICS schedule PSICS(N)(n), define the parallel reachability probability ΓR(n, N)

to be the probability that a solution of desired quality is found by at least one of the n

processors, each making runs of SSA with N probes. We have:

ΓR(n, N) = 1− (1− PR(N))n (3.23)

The expected completion time of PSICS(N)(n) is:

E(Bp(PSICS(N)(n))) =

∞
∑

i=1

N · i · [1− ΓR(n, N)]i−1 · ΓR(n, N)

=
N

ΓR(n, N)
(3.24)

Figure 3.6 shows the parallel reachability probability ΓR(n, N) and the expected comple-

tion time N
ΓR(n,N)

of CSA run under synchronous-ICS schedules on a 10-D Rashtrigin problem

(defined in (1.7)). We see that for synchronous-ICS schedules, there are optimal N ’s that can

minimize E(Bp(PSICS(N)(n))). Note that ΓR(n, N) plays the same role in (3.24) as PR(N)

for sequential schedules in (3.1)

Let N ICS
opt (n) be the optimal N that minimizes E(Bp(PSICS(N)(n))) in (3.24), and

T ICS
opt (n) be the minimum E(Bp(PSICS(N)(n))) of synchronous-ICS schedules. We prove

in the following that, the minimum E(Bp(PSICS(N)(n))) for synchronous-ICS is actually

the minimum E(Bp(PSsync(n))) for all synchronous schedules, including ICS and ACS. Let

T sync
opt (n) be the minimum E(Bp(PSsync(n))) of all synchronous parallel schedules. We have:
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Figure 3.6: The parallel reachability probability ΓR(n,N) and the expected completion time

N
ΓR(n,N) of CSA run under synchronous-ICS parallel schedules on a 10-D Rashtrigin problem. Note

the existence of N ICS
opt (n).

Lemma 3.1 Minimum expected completion time of synchronous parallel schedules of SSAs.

T sync
opt (n) = T ICS

opt (n) =
N ICS

opt (n)

ΓR(n, N ICS
opt (n))

. (3.25)

Proof. The proof follows that in Theorem 3.1 by substituting PR(N) by ΓR(n, N).

Lemma 3.1 is important because it gives the optimal completion time for a restricted

class of the parallel scheduling problem of SSAs. Note that the general scheduling problem

is NP-hard.

3.3.2.3 Lower bounds of Topt(n)

Topt(n) is difficult to be determined and is not likely to be expressed in a simple form like

T sync
opt (n) in (3.25). Currently, we know two theoretical lower bounds of Topt(n).
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Proposition 3.1

Topt(n) ≥ Topt(1)

n
(3.26)

Proof. For any parallel schedule PS(n) of SSAs, suppose:

PS(n) =

{

S1, S2, · · · , Sn

}

=

{

{N1,1, N1,2, N1,3, · · · }, {N2,1, N2,2, N2,3, · · · }, · · · , {Nn,1, Nn,2, Nn,3, · · · }
}

.

Let the jth SSA run in the ith processor be the first SSA run that succeeds in finding a

solution of desired quality. Hence, the completion time of PS(n) is:

Fi,j =

j
∑

k=1

Ni,k (3.27)

Let Z+ be the set of positive integers. Define a one-to-one function g : Z+ → Z+ × Z+,

such that for ∀i, j ∈ N, i < j, if g(i) = (i1, i2) and g(j) = (j1, j2), then Fi1,i2 < Fj1,j2 or,

Fi1,i2 = Fj1,j2 and i1 < j1.

Further, for ∀i ∈ Z+, define :

ηi =

∑i

k=1 Ng(k)

Fg(i)

(3.28)

We have:

E(Bp(PS(n))) =

∞
∑

i=1

Fg(i)PR(Ng(i))

i−1
∏

k=1

(1− PR(Ng(k))) (3.29)

=
∞
∑

i=1

[(
∑i

k=1 Ng(k)

ηi

)

PR(Ng(i))
i−1
∏

k=1

(1− PR(Ng(k)))

]

(3.30)
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It is obvious that for ∀i, j ∈ N, i 6= n, ηg−1(i,j) < n. Therefore,

E(Bp(PS(n))) >

∑∞
i=1[(

∑i

k=1 Ng(k)) · PR(Ng(i))
∏i−1

k=1(1− PR(Ng(k)))]

n

≥ Topt(1)

n
(3.31)

The last inequality was obtained from Theorem 3.1.

Proposition 3.2

Topt(n) ≥ 1− ΓR(n, Nlnopt)

ΓR(n, Nlnopt)
Nlnopt, (3.32)

where Nlnopt = argminN

(

N
−ln(1−PR(N))

)

.

Proof. Following the definitions in the last proof, define

Pσ(i) = 1−
i
∏

j=1

(1− PR(Ng(i))) (3.33)

E(Bp(PS(n))) in (3.29) can be rewritten as:

E(Bp(PS(n))) = Fg(1) +

∞
∑

i=2

[

(Fg(i) − Fg(i−1))(1− Pσ(i))

]

(3.34)

It is easy to verify that Nlnopt is so chosen that, for ∀i, k ∈ Z+, Fg(i) < kNlnopt, the

following inequality holds:

Pσ(i) ≤ 1− (1− Γ(n, Nlnopt))
k (3.35)
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1. procedure Parallel SSAID(Q)

2. set initial number of probes N = N0;

3. set K = number of runs at fixed N ;

4. repeat

5. for i← 1 to K do

6. Execute SSA with N probes on each processor;

7. if success on any processor then goto 11; end if

8. end for

9. increase number of probes N ← ρ×N (typically ρ = 2);

10. until stopping condition is satisfied or solution of quality Q is found

11. end procedure

Figure 3.7: Parallel SSAID: Parallel scheduling of SSAs with iterative deepening.

From (3.35) and (3.34), we get:

E(Bp(PS(n))) ≥
∞
∑

k=1

[

Nlnopt(1− ΓR(n, Nlnopt))
k

]

=
1− ΓR(n, Nlnopt)

ΓR(n, Nlnopt)
Nlnopt (3.36)

3.3.3 Parallel scheduling of SSAs with iterative deepening

In this subsection, we design a parallel schedule of SSAs with iterative deepening in such a

way that its expected completion time is up to a constant factor over T sync
opt (n). Figure 3.7

shows our algorithm to schedule multiple runs of SSAs in parallel while using iterative

deepening to increase the number of probes in successive runs of SSAs. All the processors

execute a series of SSAs with geometrically increasing number of probes synchronously un-
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til a solution of desired quality is found. Parallel SSAID, therefore, can be classified as a

synchronous-ACS schedule. For each SSA scheduled to run on, it has a reachability proba-

bility ΓR(n, N) to succeed, and it will double N if it does not succeed. Hence, its expected

completion time is equivalent to that of a sequential schedule of SSA with iterative deepen-

ing, with ΓR(n, N) as its reachability probability making N probes. Therefore, let EID(n)

be the expected completion time of parallel SSAID on n processors. From Theorem 3.2, we

have,

Theorem 3.4 Optimality of parallel SSAID. EID(n) = O(T sync
opt (n)) if

a) ΓR(n, 0) = 0; ΓR(n, N) is monotonically non-decreasing for N ∈ (0,∞);

limN→∞ ΓR(n, N) ≤ 1;

b) (1− ΓR(n, N ICS
opt (n)))Kρ < 1.

The expected completion time of the parallel SSAID is of the same order of magnitude

as that of the optimal synchronous parallel schedules. That is, although the parallel SSAs

scheduling problem is NP-hard in general, we have developed a sub-optimal parallel schedule

using iterative deepening that is optimal (up to a constant factor) for the special class of

synchronous parallel schedules.

3.4 Summary

In this chapter, we first show that SSAs have an optimal sequential schedule that can min-

imize its expected overhead of finding a solution of desired quality by multiple runs of an

SSA. We have then proposed to use iterative deepening to develop the optimal schedule. We

have proved that multiple runs of SSAs with iterative deepening are optimal in the sense that

their expected overhead is of the same order of magnitude as the optimal expected overhead.
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We have extended our theory to the scheduling of multiple runs of SSAs in parallel, proved

the NP-completeness of parallel scheduling of SSAs under the assumption that the number

of SSAs to be scheduled is finite, and studied the performance limitations of scheduling mul-

tiple runs of SSAs in parallel. We have then proposed to use iterative deepening to determine

the number of probes in the scheduling of multiple runs of SSAs in parallel and proved its

optimality.

Although there are many past studies aimed at designing schedules that allow one run of

an SSA to have a higher chance of success, there was no prior studies that examine trade-offs

between multiple runs using different durations of one run and the improved probabilities of

getting a solution. Our approach based on iterative deepening is unique because it exploits

the convex relationship between the expected overhead and the duration of one run of an

SSA and the fact that the total overhead is dominated by the last run. The theory is general

enough and can be applied to many existing SSAs, as shown in the following chapters.
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Chapter 4

Optimal Schedules of SSAs for

Constrained Optimization

In this chapter we develop new stochastic constrained optimization algorithms and their

optimal schedules. The constrained algorithms are derived from the general search framework

for finding SPdn, and their optimal versions are developed by using iterative deepening to

estimate their optimal schedules. This chapter consists of three parts. First, in Section 4.1,

we develop Constrained Genetic Algorithm (CGA) and its combination with CSA (CSAGA)

by incorporating genetic operators to search the original-variable subspace in the general

framework. Then, in Section 4.2, we apply the theory of SSAs to CSA, CGA, and CSAGA

and develop their optimal versions. They are optimal in the sense that they generate feasible

solutions of certain prescribed quality using an average time of the same order of magnitude

as that spent by the original SSA with an optimal schedule in generating a solution of similar

quality. Finally, Section 4.3 evaluates 24 possible combinations of the search framework and

identifies the optimal combinations.
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4.1 Constrained SSAs with Genetic Search

In Figure 1.1 of chapter 1, we have proposed a general problem-independent framework that

unifies various search mechanisms for solving constrained nonlinear programming (NLP)

problems whose functions are not necessarily differentiable and continuous. The framework

is based on the first-order necessary and sufficient conditions for constrained local mini-

mization in discrete space that show the equivalence between discrete-space saddle points

and constrained local minima. It implements the search for discrete-space saddle points by

performing ascents in the original-variable subspace and descents in the Lagrange-multiplier

subspace in order to reach equilibrium at saddle points.

From our survey, existing algorithms looking for SPdn, such as DLM and CSA , fit into the

search framework, each maintaining a list of one candidate. DLM entails greedy generations

in the x and λ subspaces, deterministic insertions into the list of candidates and deterministic

acceptance of candidates. CSA generates new probes randomly along one of the x or the

λ variables, accepts them based on the Metropolis probability if Ld increases along the x

dimension and decreases along the λ dimension. Both methods stop updating λ when all

the constraints are satisfied. In this section, we extend the mechanisms in the framework to

include genetic operators and present in Section 4.1.1 CGA and in Section 4.1.2 the combined

CSAGA.

4.1.1 Constrained genetic algorithm (CGA)

CGA was developed based on the general framework in Figure 1.1 that looks for discrete-

space saddle points. Similar to traditional GA, it organizes a search into a number of

generations, each involving a population of candidate points in the search space. However,

it searches in the Lagrangian space, using genetic operators to generate new probes in the
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1. procedure CGA(P , Ng)

2. set generation number t← 0 and λ(t)← 0;

3. initialize random or user-provided population P(t);

4. repeat /* over multiple generations */

5. evaluate Ld(x, λ(t)) for all candidates in P(t);

6. repeat /* over probes in x subspace */

7. y ← GA(select(P(t)));

8. evaluate Ld(y, λ) and insert into P(t)

9. until sufficient number of probes in x subspace;

10. λ(t)← λ(t)⊕ c×H(h,P(t)); /* update λ */

11. t← t + 1;

12. until (t > Ng)

13. end procedure

Figure 4.1: CGA: Constrained genetic algorithm. P is the population size and Ng is the number

of generations.

original-variable subspace, either greedy or probabilistic generations in the λ subspace, and

deterministic organization of candidates according to their Lagrangian values. Figure 4.1

outlines the pseudo code of the algorithm that is called with P , the population size, and

Ng, the number of generations. Table 4.1 shows how CGA fits into the general framework

to look for discrete-space saddle points.

Lines 2-3 initialize to zero the generation number t and the vector of Lagrange multipliers

λ. A starting population can be either randomly generated or user provided.

Line 4 terminates CGA when either the maximum number of allowed generations is

exceeded or when no better feasible solution within some precision is found in some successive

generations. (The stopping condition is specified more precisely later in CGA with iterative

deepening.)
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Table 4.1: Both CGA and CSAGA fit into the general iterative search framework for finding

discrete-space saddle points.

Framework Components CGA CSAGA

Generation of x probes GA SA & GA

Generation of λ probes probabilistic probabilistic

Insertion of x probes annealing annealing

Insertion of λ probes annealing annealing

Line 5 evaluates in generation t all individuals in population P(t) using the generalized

discrete augmented Lagrangian function Ld(x, λ(t)) as the fitness function.

Lines 6-9 explore the original-variable subspace using genetic search by selecting from

P(t) individuals to reproduce using genetic operators and by inserting the new individuals

generated in P(t) according to their Lagrangian (fitness) values.

Line 10 updates the vector of Lagrange multipliers λ according to the vector of maximum

violations H(h,P(t)), where the maximum violation of a constraint is evaluated over all the

individuals in P(t). That is,

Hi(h,P(t)) = maxx∈P(t)H(hi(x)) i = 1, 2, · · · , m, (4.1)

where hi(x) is the ith constraint function, H is the non-negative transformation in (1.3), and

c is a positive step-wise parameter controlling how fast the Lagrange multipliers change.

As shown in the framework, there are two options in implementing operator ⊕. The

first is to generate a new λ in a probabilistic or greedy fashion. In a probabilistic way, we

generate a new λ from a uniform distribution on {−c × H/2, c × H/2}. In contrast, in a

greedy way, we generate new λ from a uniform distribution on {0, c×H}, in order for only

ascents in the Lagrangian function in the λ subspace.
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The second option in searching the λ subspace is to accept the probes deterministically

or by annealing rules. In a deterministic way, we only accept candidates that improve the

Lagrangian function. In contrast, using an annealing rule, we accept candidates λ′ that

reduce the Lagrangian function with the Metropolis probability: exp
{

− L(λ)−L(λ′)
T

}

where

T is a control parameter that decreases over time. In any case, a Lagrange multiplier will

not be changed if its corresponding constraint is satisfied.

Finally, Line 11 updates the generation number before advancing to the next generation.

It should be obvious that the necessary condition for CGA to converge is when h(x) = 0

for every individual x in the population, implying that all individuals are feasible solutions

to the original problem. If any constraint in h(x) is not satisfied by any of the individuals,

then λ will continue to evolve in order to suppress the unsatisfied constraint. Note that

although we only need the constraints for one (rather than all) candidate to be satisfied, it is

difficult to design a penalty-update procedure that decides on a specific candidate to enforce

constraint satisfaction. As a result, our penalty-update procedure tries to enforce constraint

satisfaction for all candidates.

One difficulty encountered in applying CGA is in choosing a suitable population size.

For the benchmark problems tested, the optimal population size ranges between 20 and 50.

Although we have developed a dynamic procedure to select a suitable population size at

run time, we do not present the procedure here because CGA does not perform as well as

CSAGA presented in the next subsection, which uses a small and fixed population size.

Another difficulty is in determining the proper number of generations to use in each run.

It is not necessary to run CGA once for an exceedingly long duration in order for it to find

a CGMdn. Similar to CSA, CGA is another example of the SSAs studied in Chapter 3 in

which multiple runs of CGA can be scheduled in order to minimize the expected overhead of
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1. procedure CSAGA(P,Ng)

2. set t← 0, T0, 0 < α < 1, and P(t);

3. repeat /* over multiple generations */

4. for i← 1 to q do /* SA in Lines 5-10 */

5. for j ← 1 to P do

6. generate x′
j from Ndn(xj) using G(xj,x

′
j);

7. accept x′
j with probability AT (xj,x

′
j)

8. end for

9. set T ←− αT ; /* set T for the SA part */

10. end for

11. repeat /* by GA over probes in x subspace */

12. y ← GA(select(P(t)));

13. evaluate Ld(y, λ) and insert y into P(t);

14. until sufficient number of probes in x subspace;

15. t← t + q; /* update generation number */

16. until (t ≥ Ng)

17. end procedure

Figure 4.2: CSAGA: Combined CSA and CGA called with population size P and number of

generations Ng.

finding a solution of desired quality. In Section 4.2, we use iterative deepening to determine

to optimal number of generations.

4.1.2 Combined constrained SA and GA (CSAGA)

Based on the general framework in Figure 1.1, we design CSAGA by integrating CSA in

Figure 2.1 and CGA in Figure 4.1 into a combined procedure. Table 4.1 shows how CSAGA

fits into the general framework for finding SPdn.

60



Figure 4.2 shows the pseudo code of the combined algorithm. The new algorithm uses

both SA and GA to generate new probes in the original-variable subspace. Again, the

procedure is called with P , the population size, and Ng, the number of generations.

Line 2 initializes population P(0). Unlike CGA, any individual x in the population

in CSAGA is defined in the joint original-variable and Lagrange-multiplier subspaces, i.e.,

x = (x, λ). Initially, x can be either user-provided or randomly generated, and λ is initialized

to zero.

Lines 4-10 perform CSA using q probes on every individual in the population, generating

probabilistically a point in the x and λ subspaces, and accepting the point based on annealing

and the Metropolis probability distribution. The control parameter q is set to be Ng

6
after

experimental evaluations.

Lines 11-14 start a GA search after the SA part is completed. The algorithm searches

in the original-variable subspace using GA and evaluates the augmented Lagrangian value

of each individual in order to select the individuals with the best fitness. In ordering the

individuals, since each individual has its own vector of Lagrange multipliers, we first get

the average value of each Lagrange multiplier over the population and then calculate the

Lagrangian value for each individual using the averaged Lagrange multipliers.

Note that we have difficulties with CSAGA similar to those with CGA in deciding on a

proper number of candidates to use in the population and in the duration of each run. We

address these issues in the CSAGA with iterative deepening in the next section.

4.1.3 Implementation details

In theory, algorithms derived from the framework, such as CSA, CGA, and CSAGA, will

look for SPdn. In practice, however, it is important to choose appropriate neighborhoods
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and generate proper trial points in the x and λ subspaces in order to solve constrained NLPs

efficiently.

An important component of these methods is the frequency at which λ is updated. Like

in CSA [162], we have set experimentally in CGA and CSAGA the ratio of generating trial

points in the x and λ subspaces from the current point to be 10n to m, where n is the

number of variables and m is the number of constraints. This ratio means that x is updated

more often than λ.

In generating trial points in the x subspace, we have used a dynamically controlled

neighborhood size in the SA part [162] based on the 1:1 ratio rule [56], whereas in the GA

part, we have used the seven operators in Genocop III [116] and Ld as our fitness function.

In implementing CGA and CSAGA, we have used the default parameters of CSA [162] in

the SA part and those of Genocop III [116] in the GA part.

The generation of trial point λ′ in the λ subspace is done by the following rule:

λ′
j = λj + r1 φj where j = 1, · · · , m. (4.2)

Here, r1 is randomly generated in [−1/2, +1/2] if we choose to generate λ probabilistically,

and is randomly generated in [0, 1] if we choose to generate probes in λ in a greedy fashion.

We adjust φ adaptively according to the degree of constraint violations, where

φ = w ⊗H(x) = [w1H1(x), w2H2(x), · · · , wmHm(x)], (4.3)

where ⊗ represents vector product, and H is the vector of maximum violations defined

in (4.1). When Hi(x) is satisfied, λi does not need to be updated; hence, φi = 0. In contrast,

when a constraint is not satisfied, we adjust φi by modifying wi according to how fast Hi(x)

is changing:

wi =







η0 wi if Hi(x) > τ0T

η1 wi if Hi(x) < τ1T
(4.4)
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where T is the temperature, and η0 = 1.25, η1=0.8, τ0 = 1.0, and τ1 = 0.01 were chosen

experimentally. When Hi(x) is reduced too quickly (i.e., Hi(x) < τ1T ), Hi(x) is over-

weighted, leading to possibly poor objective values or difficulty in satisfying other under-

weighted constraints. Hence, we reduce λi’s neighborhood. In contrast, if Hi(x) is reduced

too slowly (i.e., Hi(x) > τ0T ), we enlarge λi’s neighborhood in order to improve its chance

of satisfaction. Note that wi is adjusted using T as a reference because constraint violations

are expected to decrease when T decreases.

4.2 SSAs with Iterative Deepening

One of the difficulties in using SSAs, such as CSA, CGA and CSAGA, is to determine N ,

the number of probes in one run of the algorithm. As we have shown earlier, all SSAs have

PR(N) < 100% with a finite N . In previous applications of SSAs, users generally have to

experiment by trial and error with different N ’s until a solution with desired quality can be

found. Such tuning is obviously not practical, especially in solving large complex problems.

In this section, we are interested in running a single version of an SSA that can adjust its

schedule adaptively in order to find a schedule close to the optimal one.

Our theory of SSAs in Chapter 3 has shown that for SSAs, there is generally an optimal

schedule of multiple runs of SSAs that can minimize the expected overhead of finding a

solution. In practice, we have also observed that when using an ICS schedule with N probes

per run of the SSA, setting N to be either too large or too small is inefficient, and there is

an optimal N that will result in the least average search time.

Unfortunately, it is very difficult to determine the optimal N that depends on the

problem-dependent PR(N) curve of the SSA. We have proposed in Chapter 3 to use iterative

deepening in order to estimate the optimal duration of a run. In the rest of this section, we
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apply iterative deepening to CSA, CGA, and CSAGA, resulting in CSAID, CGAID, and

CSAGAID. Based on the theory of SSAs, we show the optimality of the iterative-deepening

versions that do not require specific problem-dependent tuning of search schedules.

4.2.1 Optimal schedules of SSAs

In order to apply iterative deepening, it is important to identify the parameters of an SSA

that control its number of probes in one run of the search framework in Figure 1.1.

In general, for algorithms fitting the search framework in Figure 1.1, let L be the length

of the candidate list, and S be the total number of iterations in one run of the search

framework, the total number of probes N in one run is:

N = L × S (4.5)

We first consider CSA in which case L = 1, then CGA and CSAGA with L > 1.

CSA maintains a list of one candidate during the search, and like conventional simulated

annealing (SA) [103], the cooling schedule determines the total number of probes to be

generated. Initially, the asymptotic convergence of CSA to a CGMdnwith probability one

was proved with respect to a cooling schedule in which temperatures are decreased in a

logarithmic fashion [162], based on the original necessary and sufficient condition developed

by Hajek for SA [85]. It requires an infinitely long cooling schedule in order to approach a

CGMdnwith probability one.

In practice, asymptotic convergence can never be exploited since any algorithm must

terminate in finite time. There are two ways to complete CSA in finite time. The first

approach uses an infinitely long logarithmically decreasing cooling schedule but terminates

CSA in finite time. This is not desirable because CSA will most likely not have converged

to any feasible solution when terminated at high temperatures.
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The second approach is to design a cooling schedule that can complete in prescribed finite

time. In this thesis we use the following geometric cooling schedule with cooling rate α [162]:

Tj+1 = α× Tj, j = 0, · · · , Nα − 1, (4.6)

where α < 1, j measures the number of probes in CSA (assuming one probe is made at each

temperature and all probes are independent), and Nα is the total number of probes of the

cooling schedule. A probe here is a neighboring point examined by CSA, independent of

whether CSA accepts it or not. Given T0 > TNα
> 0 and α, we can determine Nα, the length

of a cooling schedule, as:

Nα = logα

TNα

T0
. (4.7)

Thus, we can control the total number of iterations in CSA by first setting Nα and then

setting α according to (4.7):

α = (
TNα

T0
)

1

Nα . (4.8)

The expected overhead of multiple runs of CSA in order to find a solution of desired

quality, with Nα probes in one run, is:

E(Bs(S
ICS(Nα))) =

Nα

PR(Nα)
(4.9)

In order to verify the existence of an optimal Nα that minimizes (4.9), we have collected

statistics on PR(Nα) and Nα

PR(Nα)
by using CSA to solve test problems G1-G10 [117] and

problem 2.7.1, 5.2, 5.4 in the Floudas and Pardalos’ problem set [65]. The results indicate

that, for all the test problems, Nα

PR(Nα)
has an absolute minimum in (0,∞). In other words,

CSA has an optimal Nα that minimizes E(Bs(S
ICS(Nα))) for each of these problems.
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Figure 4.3: An example showing the existence of a minimum in Nα

PR(Nα) when CSA was applied

to solve (1.7). Each cooling schedule is run 200 times.

.

Figure 4.3 illustrates the existence of the optimal Nα in applying CSA to solve (1.7). We

see that the Nα

PR(Nα)
curve is convex and has an optimal Nα.

CGA and CSAGA maintain a list of more than one candidates. The number of probes

expended in CGA and CSAGA is N = P ×Ng, where P is the population size and Ng is the

number of generations. Therefore, for CSA and CSAGA,

E(Bs(S
ICS(N))) =

N

PR(N)
=

P ×Ng

PR(P ×Ng)
(4.10)

As a result, there are two parameters controlling N and E(Bs(S
ICS(N))) of an SSA. For

these cases, it is generally difficult to use iterative deepening to adjust the multiple control

parameters simultaneously in order to lead to schedules that minimize E(Bs(S
ICS(N))).

Our research has found that the performance of CGA and CSAGA is more sensitive

to Ng than to P . The performance of CGA and CSAGA does not differ much in certain

range of P , while varying Ng will have a significant impact to the search efficiency. For
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Figure 4.4: An example showing the existence of a minimum in
Ng

P̂R(Ng)
when CSAGA with a

population size P = 3 was applied to solve G1 [117]. The experiments were run 200 times at each

Ng.

different problems with different size and complexity, the best Ng can differ by several orders

of magnitude, whereas the best P remains within a relatively small range. For this reason,

in developing optimal schedules of CGA and CSAGA, we apply iterative deepening to Ng

with a fixed P .

For any fixed P , let P̂R(Ng) be the reachability probability with Ng generations; i.e.,

P̂R(Ng) = PR(P ×Ng). The expected number of probes using multiple runs of CGA is:

N

PR(N)
=

P ×Ng

PR(P ×Ng)
= P

Ng

P̂R(Ng)
(4.11)

Therefore, Ng determines the expected overhead of CGA with a fixed population size P .

Hence, (4.11) has the same form as (1.6) except for constant P , and there is generally an

optimal Ng that minimizes Ng

P̂R(Ng)
.

We have also collected statistics on Ng

P̂R(Ng)
at various P by using CGA and CSAGA

to solve the set of problems solved by CSA. The results indicate that, for both CGA and

CSAGA, Ng

P̂R(Ng)
has an absolute minimum in (0,∞). In other words, each of these problems
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has an optimal number of generations that minimizes the expected overhead to find a solution

by multiple runs of CGA or CSAGA.

Figure 4.4 shows the existence of an optimal Ng in applying CSAGA to solve problem

G1 with P = 3. We see that Ng

P̂R(Ng)
is convex with an optimal Ng.

4.2.2 Iterative deepening applied to CSA, CGA and CSAGA

Figure 4.5 shows CSAID, the scheduling of multiple runs of CSA with iterative deepen-

ing. Derived from the generic algorithm in Figure 3.3, CSAID uses a set of geometrically

increasing cooling schedules:

Nαi
= ρiN0, i = 0, 1, . . . , (4.12)

where N0 is the (small) initial cooling schedule. Under each cooling schedule, CSA is run

for a maximum of K times but stops immediately when a solution is found. For iterative

deepening to work, ρ > 1.

In a similar way, we apply iterative deepening to derive the schedule of running CGA

multiple times. CGAID in Figure 4.6 uses a set of geometrically increasing Ng to find a

solution of quality Q:

Ngi
= ρiN0, i = 0, 1, . . . (4.13)

where N0 is the (small) initial number of generations used. CSAGA with iterative deepening

(CSAGAID) can be obtained by substituting CGA with CSAGA in Figure 4.6.

According to Theorem 3.2, we have EID(1) = O(Topt(1)) if the sufficient conditions in the

theorem are satisfied. Typically, ρ = 2, and in all the benchmarks tested, both PR(N ICS
opt (1))

and P̂R(N ICS
opt (1)) are no less than 0.25. Substituting these values into the second condition

in Theorem 3.2 yields K > 2.4. In our experiments, we have used K = 3. In addition, we
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1. procedure CSAID(Q)

2. set initial number of probes Nα = N0;

3. set K = number of CSA runs at fixed Nα;

3. repeat /*using iterative deepening to find Q*/

4. for i← 1 to K do call CSA(Nα) end for

5. set Nα ← ρ×Nα (typically ρ = 2);

6. until a feasible solution of quality Q has been found

or Nα exceeds a maximum number allowed

or (no better solution has been found in two

successive increases of Nα and Nα > ρ5N0

and a feasible solution has been found);

7. end procedure

Figure 4.5: CSAID: CSA with iterative deepening, called with desired solution quality Q.

have set N0 = 10 · nv, and Nmax = 1.0× 108nv in our experiments, where nv is the number

of variables, and N0 and Nmax are, respectively, the initial and maximum number of probes.

Line 6 in Figures 4.5 and 4.6 imposes a stopping condition in order to let the algorithm

terminate. The algorithm will stop when a solution of target quality Q has been found,

or when the total number of probes spent in solving a target level Q exceeds a maximum

threshold, or when at least five deepenings have been performed, and no better solution has

been found in two successive geometric increases of the schedule after at least one feasible

solution has been found. These stopping conditions are to ensure that iterative deepening

has been applied a sufficient number of times.

In practice, CSAID(Q), CGAID(Q), CSAGAID(Q) may be called as a module by the

anytime search algorithms developed in the next chapter. In that case, the SSAs scheduled

in an iterative deepening fashion will be used as a module in the anytime search that will

call it with different quality targets and will not stop until the allowed search resource (CPU
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1. procedure CGAID(Q)

2. set initial number of generations Ng = N0 and population size P ;

3. set K = number of CGA runs at fixed Ng;

3. repeat /*using iterative deepening to find Q*/

4. for i← 1 to K do call CGA(P , Ng) end for

5. set Ng ← ρ×Ng (typically ρ = 2);

6. until a feasible solution of quality Q has been found

or Ng exceeds a maximum number allowed

or (no better solution has been found in two

successive increases of Ng and Ng > ρ5N0

and a feasible solution has been found);

7. end procedure

Figure 4.6: CGAID: CGA with iterative deepening, called with desired solution quality Q.

time) has been used up. The solution quality depends on how much search time the user

can afford. The longer the search time, the better the solution quality will be delivered.

The only remaining issue left in the design of CGAID and CSAGAID is in choosing a

suitable population size P in each generation. For CSAGAID, we have set P = 3 in our

experiments. Our experimental results in the next section show that, although the optimal

P may be slightly different from 3, the corresponding expected overhead to find a solution

differs very little from that when a constant P is used. For CGAID, the optimal population

size ranges from 4 to 40 and is difficult to determine a priori. Although it is possible to

choose a suitable population size dynamically, we do not present the algorithm here because

it performs worse than CSAGAID.

70



Table 4.2: Results on CGAID and CSAGAID with P = 3 in evaluating the 24 combinations of

strategies in the framework in Figure 1.1 on problem G2. All CPU times in seconds were averaged

over 10 runs and were collected on a Pentinum III 500-MHz computer with Solaris 7. ’−’ means

that no solution with desired quality can be found.

λ Probes Insertion Strategy Target Sol. Q 1% off CGMdn Target Sol. Q 10% off CGMdn

Generation x subspace λ subspace CSAID CGAID CSAGAID CSAID CGAID CSAGAID

probabilistic annealing annealing 6.91 23.99 4.89 1.35 − 1.03

probabilistic annealing deterministic 9.02 − 6.93 1.35 2.78 1.03

probabilistic deterministic annealing − 18.76 − 89.21 2.40 −
probabilistic deterministic deterministic − 16.73 − − 2.18 −

greedy annealing annealing 7.02 − 7.75 1.36 − 0.90

greedy annealing deterministic 7.02 − 7.75 1.36 − 0.90

greedy deterministic annealing − 25.50 − 82.24 1.90 −
greedy deterministic deterministic − 25.50 − 82.24 1.90 −

4.3 Evaluations of Combinations of Strategies in the

Search Framework

The purpose of this section is to evaluate the 24 possible combinations of strategies in the

general framework in Figure 1.1, and determine the best combination for generating probes

and for organizing candidates.

Table 4.2 shows the evaluation results on problem G2 [117, 105] using each of the 24

combinations of strategies in Figure 1.1 when SA, GA, or combined SA and GA was used to

generate probes in the x subspace. We show the average time of 10 runs for each combination

of strategies in order to reach two solution quality levels (1% or 10% worse than CGMdn).

We have also gotten similar evaluation results on other benchmark problems.
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Our results show that using pure GA to generate probes in the x subspace is usually

less efficient than using SA or combined SA and GA. When using CSAID or CSAGAID,

we found better performance when probes generated in the x subspace were accepted by

annealing rather than by deterministic rules. The former prevents a search from getting

stuck in local minima or infeasible points. On the other hand, we found little performance

difference when new probes in the λ subspace were generated by probabilistic or by greedy

rules and when new candidates were inserted according to annealing or deterministic rules.

In short, generating probes in the λ subspace probabilistically and inserting candidates in

both the x and λ subspaces by annealing rules leads to good and stable performance. For

this reason, we use this combination of strategies in our following experiments.

Next, we show experimental results of evaluating our proposed algorithms on ten con-

strained NLPs G1-G10 [117, 105]. These problems have objective functions of various types

(linear, quadratic, cubic, polynomial, and nonlinear) and constraints of linear inequalities,

nonlinear equalities, and nonlinear inequalities. The number of variables is up to 20, and

that of constraints, including simple bounds, is up to 42. The ratio of feasible space with

respect to the whole search space varies from 0% to almost 100%, and the topologies of

feasible regions are quite different.

Table 4.3 compares the performance of CSAID, CGAID, and CSAGAID with respect to

T̄ID(f ∗), the expected total CPU time of multiple runs until a solution of value f ∗ is found.

The first two columns show the problem IDs and the corresponding known f ∗. Since

CSAID, CGAID and CSAGAID can all find a CGMdn in all 10 runs, we compare their

performance with respect to T̄ID(f ∗), the average total overhead of multiple runs until a

CGMdn is found. The third and fourth columns show, respectively, the average time and

number of Ld(x, λ) function evaluations CSAID takes to find f ∗.
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Table 4.3: Results on CSAID, CGAID and CSAGAID in finding the best-known solution f ∗

for 10 discretized constrained NLPs. T̄ID(f∗), the CPU time in seconds to find the best-known

solution f ∗, was averaged over 10 runs and was collected on a Pentinum III 500-MHz computer

with Solaris 7. #Ld represents the number of Ld(x, λ)-function evaluations. The best T̄ID(f∗) for

each problem is boxed.)

Problem Best CSAID CGAID CSAGAID

ID Solution f∗ T̄ID(f∗) #Ld Popt T̄ID(f∗) P T̄ID(f∗) #Ld Popt T̄ID(f∗)

G1 (min) -15 1.65 173959 40 5.49 3 1.64 172435 2
�

�

�

�
1.31

G2 (max) -0.80362 7.28 415940 30 311.98 3
�

�

�

�
5.18 261938 3

�

�

�

�
5.18

G3 (max) 1.0 1.07 123367 30 14.17 3
�

�

�

�
0.89 104568 3

�

�

�

�
0.89

G4 (min) -30665.5
�

�

�

�
0.76 169913 5 3.95 3 0.95 224025 3 0.95

G5 (min) 4221.9 2.88 506619 30 68.9 3 2.76 510729 2
�

�

�

�
2.08

G6 (min) -6961.81 0.99 356261 4 7.62 3 0.91 289748 2
�

�

�

�
0.73

G7 (min) 24.3062 6.51 815696 30 31.60 3 4.60 547921 4
�

�

�

�
4.07

G8 (max) 0.095825 0.11 21459 30 0.31 3 0.13 26585 4
�

�

�

�
0.10

G9 (min) 680.63 0.74 143714 30 5.67 3
�

�

�

�
0.57 110918 3

�

�

�

�
0.57

G10 (min) 7049.33
�

�

�

�
3.29 569617 30 82.32 3 3.36 608098 3 3.36

The next two columns show the performance of CGAID with respect to Popt, the optimal

population size found by enumeration, and the average time to find f ∗. These results show

that CGAID is not competitive as compared to CSAID, even when Popt is used.

Finally, the last five columns show the performance of CSAGAID. The first three present

the average times and number of Ld(x, λ) evaluations using a constant P , whereas the last

two show the average times using Popt found by enumeration. These results show little

improvements in using Popt. Further, CSAGAID has between 9% and 38% in improvement

in T̄ID(f ∗), when compared to that of CSAID, for the 10 problems except for G4 and G10.
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4.4 Summary

In this chapter, we have extended the general framework that unifies various mechanisms

to look for SPdn, that has a one-to-one correspondence to CLMdn. New constrained opti-

mization algorithms, CGA and CSAGA, have been derived from the framework by including

genetic search as one of the strategies.

Being SSAs, CSA, CGA and CSAGA all have similar difficulties in determining a suitable

duration for each run in order to minimize the expected time to find a solution of desired

quality in multiple runs. In this chapter, we have applied the theory of SSAs to these

algorithms and have developed their schedules in which successive runs are increased in

duration by iterative deepening.

We have evaluated the 24 possible combinations of strategies in the framework exper-

imentally and have identified a good combination that works well in practice. We have

demonstrated improvement in performance of CGA and CSAGA when compared to that of

CSA. Further, we have found that CGA does not perform well and that CSAGA outperforms

CSA and CGA in terms of average search times to find a CGMdn.
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Chapter 5

Optimal Anytime Schedules of SSAs

for Constrained Optimization

In this chapter, based on the optimal schedule of multiple runs of SSAs proposed in Chapter

4, we design an anytime version of scheduling multiple runs of SSAs that generates gradually

improved feasible solutions as more time is spent, eventually finding a CGMdn. In our study,

we have observed an exponential relationship between the objective target that SSAID is

looking for and the average completion time. Based on this exponential relationship, we have

designed SSAAT−ID, the anytime search that utilizes a set of improved objective quality

targets based on the principle of iterative deepening . We then prove the optimality of our

proposed anytime search algorithm. Finally, we test our proposed algorithm on a set of

standard benchmarks and compare its performance with other existing methods.

5.1 Problem Formulation

We have developed in Chapter 4 CSAID, CGAID and CSAGAID that are able to deter-

mine the schedules of multiple runs of SSAs, in order to minimize the expected search time.

However, even the optimal search time may be too long when solving some large complex
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constrained NLPs or in real-time applications. For such cases, one is interested in an opti-

mization algorithm that will find a suboptimal solution within a time limit.

An anytime algorithm is an algorithm that can generate improved solutions as more

computation time is used. The goal of this chapter is to design a set of objective targets

that allow a search schedule with iterative deepening to generate improved solutions as more

time is spent, eventually finding a CGMdn. Moreover, the search schedule is optimal in the

sense that the time it takes in generating a CGMdn is of the same order as that used by the

original SSA with the optimal schedule to find a CGMdn.

The approach we take is to first study statistically the performance of SSAs. Based on the

statistics collected, we propose an exponential model relating the value of objective targets

sought by SSA and the optimal average execution time. This model leads to the design of

SSAAT−ID, the anytime search schedule with iterative deepening, that schedules multiple

runs of SSA using a set of geometrically increasing number of probes in each run and a set

of linearly improving objective targets.

Let Topt(1, f
∗) be the expected number of probes taken by the original SSA with an

optimal sequential schedule to find a CGMdn, and EAT−ID(1, f ∗) be the expected total

number of probes taken by SSAAT−ID to find solutions of values Q0 > · · · > f ∗ that are

gradually improved with time. Based on the principle of iterative deepening [104], we prove

the optimality of SSAAT−ID by showing:

EAT−ID(1, f ∗) = O(Topt(1, f
∗)) (5.1)
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5.2 Performance Modeling of SSAs for Constrained

Optimization

The performance of an SSA procedure to solve a given application problem from a random

starting point can be measured by the probability that it will find a solution of a prescribed

quality when it stops and the average time it takes to find the solution. We have studied

in previous chapters the relationship between the search time and the success probability

of one run. In this section, we focus on the relationship between objective targets and the

average time of finding a desirable solution using the optimal schedules.

5.2.1 Relaxation of objective target

One way to improve the chance of finding a solution by an SSA is to look for CLMdn instead

of CGMdn even though its original goal is to look for CGMdn. An approach to achieve this

is to stop the SSA whenever it finds a CLMdn of a prescribed quality. This approach is

not desirable in general because SSA may only find a CLMdn when it has used up most of

its allocated time, leading to little difference in times between finding CLMdn and CGMdn.

Further, it is necessary to prove the asymptotic convergence of the relaxed SSA procedure.

A second approach that we adopt in our study is to modify the constrained NLP in such

a way that a CLM of value smaller than Q in the original NLP is considered a CGMdn in the

relaxed NLP. Since the SSA procedure is unchanged, its asymptotic convergence behavior

remains the same. The relaxed NLP is obtained by transforming the objective target of the

original NLP:

F (f(x), Q) =







Q if f(x) ≤ Q

f(x) if f(x) > Q .
(5.2)
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Figure 5.1: A 3-D graph showing the statistics relating Q, Nα, and PR(Nα, Q), when CSA

is applied to solve (1.7). The dotted line shows the trace taken in a run of CSAAT−ID.

Assuming that f ∗ is the value of the CGMdn in the original NLP, it follows that the

value of the CGMdn of the relaxed NLP is f ∗ if Q ≤ f ∗ and is Q if Q > f ∗. Moreover, since

the relaxed problem is a valid NLP solvable by CSA, CSA will converge asymptotically to a

CGMdn of the relaxed NLP with probability one.

As a relaxed objective function leads to a possibly larger pool of solution points, we

expect SSAs to have a higher chance of hitting one of these points during its search. This

property will be exploited in SSAAT−ID in the next section.

5.2.2 Exponential model relating Q and Topt(1, Q)

In order to develop SSAAT−ID that dynamically controls its objective targets, we need to

know the relationship among Q, the degree of objective relaxation, N , the number of probes

in one run of SSA, and PR(N, Q), the reachability probability. In this section we find this

relationship by studying the statistical behavior of SSAs in evaluating five constrained NLPs.
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Figure 5.2: An example showing the performance model of CSA. Note that there is an absolute

minimum in the Nα

PR(Nα,Q) curve, and the optimal expected overhead increases exponentially with

an improved solution quality level. (The problem solved is defined in (1.7). Each cooling schedule

is run 200 times). a) and b) show the results with Q = 200.

Figure 5.1 shows a 3-D graph relating the parameters in solving (1.7), in which PR(Nα, Q)

was obtained by running CSA 200 times for each combination of Nα and Q. From Figure

5.1, we can further derive the relationship between Q and the optimal Nα

PR(Nα,Q)
. Figure 5.2

shows example results derived from Figure 5.1.

Figures 5.2a and 5.2b illustrate the PR(Nα, Q) curve and Nα

PR(Nα,Q)
curve at Q = 200

derived from Figure 5.1. We see that there is an absolute minimum in the Nα

PR(Nα,Q)
curve. We

can get similar curves at other objective levels. Hence, for each Q, there exists an optimal

Nα that minimizes Nα

PR(Nα,Q)
. Figure 5.2c shows the optimal expected overhead Topt(1, Q)

under different solution quality level Q.

From the model, we see an exponentially decreasing relationship between Q and

Topt(1, Q). The observation leads to the following exponential model:

Topt(1, Q) = ke−aQ for positive real constants a and k. (5.3)
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Problem ID Problem G1 Problem G2 Rastrigin Problem 5.2 Problem 5.4

R2 0.9623 0.9475 0.9842 0.9508 0.9931

Table 5.1: The coefficients of determination R2 on linear fits of Q and log2(Topt(1, Q)). The

benchmarks evaluated are G1, G2 [117], Rastrigin, Floudas and Pardalos’ Problem 5.2 and 5.4 [65].

To verify statistically our proposed model, we performed experiments on several bench-

marks of different complexities: G1, G2 [117], Rastrigin (1.7), and Floudas and Pardalos’

Problem 5.2 and 5.4 [65]. For each problem, we collected statistics on Q and Topt(1, Q),

regressed a linear function on Q and log2(Topt(1, Q)) to find a best fit, and calculated the

coefficient of determination R2 of the fit. Table 5.1 summarizes R2 of the linear fit for each

test problem, where R2 very close to 1 shows a good fit. Since R2 are very close to one for

all problems, Topt(1, Q) is verified to be exponential with respect to Q.

5.3 Anytime Schedule with Iterative Deepening

We design in this section a schedule to decrease objective target Q in SSAAT−ID that allows

it to find f ∗ using an average time of the same order of magnitude as Topt(1, f
∗).

SSAAT−ID in Figure 5.3 first finds low-quality feasible solutions in relatively small

amounts of time. It then tightens its requirement gradually, tries to find a solution at

each quality level, and outputs the best solution when it stops.

It is important to point out that SSAAT−ID does not use regression at run time in order to

find the values of parameters of (5.3). One reason is that the problem-dependent parameters

of the model are hard to estimate. Rather, SSAAT−ID exploits the exponential relationship

between Q and Topt(1, Q) in order to derive a set of SSA runs with different parameters. The
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1. procedure SSAAT−ID

2. set initial target of solution quality at Q =∞;

3. repeat /* over gradually improving solution quality target Q */

4. call SSAID(Q); /* generate a solution of quality Q */

5. if (Q ==∞) then Q = Q0; end if /* Q0 is the first fesasible solution found */

6. reduce target level Q← Q− c;

7. until the SSA fails to solve the last target level;

8. end procedure

Figure 5.3: SSAAT−ID: Anytime SSA procedure with iterative deepening that calls

SSAID(Q) in Figure 3.3. The only problem-dependent run-time information used is Q0.

only run-time information used in SSAAT−ID is Q0, the value of the first feasible solution

found with an initial objective target of Q =∞.

Recall that in SSAID(Q) (Figure 3.3), we have imposed a stopping condition that will

terminate the search if it fails after sufficient deepenings. Therefore, in SSAAT−ID, we

terminate the anytime search if SSAID(Q) fails to solve the last solution quality target level

Q. In practice, we can eliminate the stopping conditions in SSAID(Q), and use SSAAT−ID

in an anytime fashion. The anytime procedure will not stop until the allowed search resource

(CPU time) has been used up. The solution quality depends on how much search time the

user can afford. The longer the search time, the better the solution quality will be delivered.

5.3.1 Anytime search using decreasing objective targets

After finding a solution of quality Q using SSAID in Figure 3.3, Line 6 adjusts Q to a new

objective target so that better solutions will be found if more time is allowed. (If this were

the first time that a feasible solution was found, then Line 5 updates Q to Q0, the value of

first feasible solution with an initial objective target of Q = ∞.) Based on the exponential
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model in (5.3) and the principle in iterative deepening [104], the average number of probes

to find a solution of value Q grows geometrically if Q is decreased using the following linear

schedule:

Qj+1 = Qj − c, where c is a positive constant. (5.4)

In our experiments, we have set c = max{10%Q0, 0.1}.

Let EAT−ID(1, Qn) be the expected total number of probes SSAAT−ID takes to find Qn,

starting at objective target levels Q0, Q1, . . . , Qn. The following theorem proves the relative

complexities of EAT−ID(1, Qn) and Topt(1, Qn).

Theorem 5.1 EAT−ID(1, Qn) = O(Topt(1, Qn)).

Proof.

From Theorem 3.2,

EAT−ID(1, Qn) =
n
∑

i=0

EID(1, Qi) =
n
∑

i=0

O(Topt(1, Qi)) (5.5)

Hence, from the exponential model in (5.3), we have:

EAT−ID(1, Qn) =

n
∑

i=0

O(e−aQi) =

n
∑

i=0

O(e−a(Q0−ic))

= O(e−a(Q0−nc)) = O(Topt(1, Qn)) (5.6)

The theorem shows that, despite finding solutions of intermediate quality by a linear se-

quence of improving objective targets during the search, the overall complexity is dominated

by that in finding solutions to the last objective target Qn. In particular, we have established

(5.1) by showing that EAT−ID(1, f ∗) = O(Topt(1, f
∗)).
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Our anytime optimal schedules can be extended without any difficulty to scheduling of

multiple runs of SSAs in parallel on multiple processors. We shall use the parallel SSAID(Q)

(Figure 3.7) to find a solution of quality Q, verify statistically the exponential relationship

between T sync
opt (n, Q), the expected overhead of parallel SSAID(Q), and Q, the target quality

level, and use the linear schedule to reduce Q so that the total overhead is dominated by the

overhead for finding the solution of the best Q. Hence, we can obtain parallel SSAAT−ID by

substituting SSAID(Q) in Figure 5.3 with parallel SSAID(Q) (Figure 3.7).

Let EAT−ID(n, Qn) be the expected total number of probes parallel SSAAT−ID takes

to find Qn, starting at objective target levels Q0, Q1, . . . , Qn. Assuming the exponential

relationship between T sync
opt (n, Q) and Q, we have:

Theorem 5.2 EAT−ID(n, Qn) = O(T sync
opt (n, Qn)).

Proof. The proof follows that in Theorem 5.1 by substituting Topt(1, Qn) by T sync
opt (n, Qn).

5.3.2 Behavior of anytime search

We demonstrate the behavior of the anytime search by applying CSAAT−ID on four con-

strained NLPs of different sizes and degrees of difficulty. G2 [117] and Rastrigin (1.7) are

relatively easy NLPs with multiple feasible regions. In particular, (1.7) is characterized by a

large number of deep infeasible local minima in the objective function. Floudas and Pardalos’

Problems 5.2 and 7.3 [65] are large and difficult NLPs with many equality constraints.

Figure 5.4 compares the anytime behavior of CSAAT−ID and the original CSA in terms

of solution quality and execution time. The anytime performance of the original CSA was

found by running CSA using the same cooling schedule multiple times until a CGMdn was
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Figure 5.4: A comparison of the anytime performance of CSAAT−ID and the original CSA in

solving four constrained minimization NLPs.
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found. Without knowing its optimal schedule, we tried two geometric schedules with α = 0.3

and α = 0.8, respectively. CSA and CSAAT−ID were each ran from three random starting

points.

In general, the results show that CSAAT−ID performs substantially better than the

original CSA as an anytime algorithm. When compared against a given amount of time,

CSAAT−ID found much better suboptimal solutions than CSA. When compared against

solutions of the same quality, CSAAT−ID took between one to two orders less time than

CSA.

5.4 Experimental results on constrained NLP bench-

marks

In this section, we first survey existing constrained NLP benchmarks and solvers in Sec-

tion 5.4.1. Then, in Section 5.4.2, we report experimental results of comparing CSAAT−ID

and CSAGAAT−ID with SQP methods to solve three sets of discrete and mixed-integer

optimization benchmarks, derived from continuous benchmark problem sets. Last, in Sec-

tion 5.4.3, we compare our methods with branch and bound methods for solving constrained

MINLPs.

5.4.1 Existing constrained NLP solvers and benchmarks

We summarize existing constrained NLP benchmarks in Table 5.2. The first column lists

the names of the benchmarks. Columns 2-10, if checked, indicate that the benchmark con-

tains the corresponding class of constrained NLPs. The next two columns indicate, respec-

tively, the number of variables and the number of constraints (other than fixed variables

and bounds) of the NLPs in that benchmark suite. The last column shows the available for-
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mats of the benchmark. We see that G1-G10 [117], Floudas and Pardalos’ problem set [65],

CUTE [48, 12], COPS [59, 60, 7], the Sparse Optimization Problem Set [110, 11], and

the Testenvironment for DONLP2 [146] mainly contains continuous constrained NLPs with

continuous and differentiable functions. MacMINLP [17], SIF MINLP Test Problems [18],

GAMS model library [14], AMPL model library [22], and MIPLIB [9] contains continuous,

discrete, and mixed-integer constrained NLPs whose functions are not necessarily differen-

tiable.

We summarize existing constrained NLP solvers in Table 5.3. The first column lists

the names of the solvers. Columns 2-10, if checked, indicate that the solver can be ap-

plied to solve the corresponding class of constrained NLPs. Column 11 indicates if the

solver requires the convexity of functions; Column 12 shows the main method used by

the solver; Column 13 shows the input formats acceptable by the solver; and, column 14

shows any additional requirements needed by the solver. We see that DONLP2 [146, 6],

LANCELOT [54, 13, 107]. LOQO [154, 20], MINOS [147, 21], KNITRO [51], SNOPT [75],

FSQP [5], HQP/OMUSES [2], and MOSEK [29, 19] mainly deal with continuous differ-

entiable constrained NLPs. LOQO [154, 20] and MOSEK [29, 19], in addition, require

the convexity of functions. Genocop [116, 10] and COBYLA2 [127] can solve continuous

constrained NLPs whose functions are not differentiable or continuous. BARON [3, 133],

BNB [1], MINLP BB [16], SBB [15], mittlp [4], and AlphaEcp [168, 8] can solve continuous,

discrete and mixed-integer constrained NLPs whose functions are continuous and differen-

tiable.

5.4.2 Comparison results with SQP methods

SQP is a leading algorithm for solving constrained NLPs in C1. Existing SQP packages, such

as DONLP2 [146] and LANCELOT [54, 107], can solve large-scale constrained NLPs in C1
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Table 5.2: Summary of existing constrained NLP benchmarks.

Constrained NLP Coverage Number of Number of Available

Benchmark C1 C2 C3 C4 C5 C6 C7 C8 C9 Variables Constraints Formats

G1-G10
√

up to 20 up to 9 Fortran

Floudas and Pardalos Problem Set
√

up to 46 up to 36 GAMS, Fortran

CUTE
√ √

up to 14000 up to 14000 SIF, AMPL

COPS
√

parameterized parameterized AMPL

Sparse Optimization Problem Set
√

parameterized parameterized Fortran

Testenvironment for DONLP2
√

up to 183 up to 1539 Fortran

MacMINLP
√ √

up to 12906 up to 3338 AMPL

SIF MINLP Test Problems
√ √

up to 621 up to 531 SIF

GAMS Model Library
√ √ √

parameterized parameterized GAMS

AMPL Model Library
√ √ √ √

parameterized parameterized AMPL

MIPLIB
√ √

up to 87482 up to 6803 MPS
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Table 5.3: Summary of existing constrained NLP solves.

Constrained NLP Applicability Convexity Principal Input Special

Solver C1 C2 C3 C4 C5 C6 C7 C8 C9 Required Constraints Formats Requirement

DONLP2
√

No sequential quadratic programming Fortran, AMPL

LANCELOT
√

No sequential quadratic programming SIF, AMPL

LOQO
√

Yes infeasible primal-dual interior-point AMPL, Matlab

MINOS
√

No sequential linearly constrained algorithm GAMS, AMPL modest nonlinearity

KNITRO
√

No primal-dual interior-point AMPL

SNOPT
√

No sequential quadratic programming GAMS, Fortran ,AMPL modest free variables

CONOPT
√

No feasible path method GAMS

FSQP
√

No sequential quadratic programming AMPL

HQP/OMUSES
√

No interior-point, Newton-type SQP SIF, C++

MOSEK
√

Yes best interior-point method AMPL

Genocop
√ √ √

No genetic algorithm C

COBYLA2
√ √ √

No SLP method with estimation of gradient Fortran inequality constraints only

BARON
√ √ √

No branch and reduce BARON model f,g,h be factorable

BNB
√ √ √

No branch and bound Matlab

MINLP BB
√ √ √

No branch and bound, SQP AMPL

SBB
√ √ √

No branch and bound GAMS

mittlp
√ √ √

Yes extended cutting plane C

AlphaEcp
√ √ √

No extended cutting plane Fortran, LP f,g,h be pseudo-convex

88



very efficiently. They can also be used to solve constrained NLPs in C4 and C7, by applying

them to solve the corresponding problems in C1 (by regarding variables as continuous ones)

and discretizing the solutions found.

5.4.2.1 Continuous benchmark problems and their

derived discrete and mixed-integer versions

To compare our methods with SQP methods in solving constrained NLPs in C4 and C7, we

derive discrete and mixed-integer benchmarks from the following three sets of continuous

benchmarks [117, 105, 65, 48]: 1)G1-G10 [117, 105], 2)Floudas and Pardalos’ problems [65],

and 3) selected problems from CUTE [48], a constrained and unconstrained testing environ-

ment.

In generating a constrained DNLP, we assume that all variables are discrete. In generating

a constrained MINLP, we assume that variables with odd indices are continuous and those

with even indices are discrete. In discretizing continuous variable xi in range [li, ui], where

li and ui are lower and upper bounds of xi, respectively, we force xi to take values from the

set:

Ai =







{

ai + bi−ai

s
j, j = 0, 1, · · · , s

}

if bi − ai < 1

{

ai + 1
s
j, j = 0, 1, · · · , b(bi − ai)sc

}

if bi − ai ≥ 1,
(5.7)

where s = 10000.

These problems have objective functions of various types (linear, quadratic, cubic, poly-

nomial, and nonlinear) and linear/nonlinear constraints of equalities and inequalities. The

ratio of feasible space with respect to the whole search space varies from 0% to almost 100%,

and the topologies of feasible regions are quite different.
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Problems G1-G10 [117, 105] were originally developed for testing and tuning various

constraint handling techniques in evolutionary algorithms (EAs). The number of variables

in this test set is up to 20, and that of constraints, including simple bounds, is up to about 50.

The second set of benchmarks [65] were collected by Floudas and Pardalos and were derived

from practical applications. The number of variables in this test set is up to about 50, and

that of constraints, including simple bounds, is up to about 100. The last test problem set

was selected from CUTE [48] based on the criterion that at least the objective or one of

the constraints is nonlinear. Both the number of variables and the number of constraints in

CUTE can be as large as several thousand.

5.4.2.2 Experimental results on G1-G10 and Floudas and Pardalos’ problems

In this section, we report experimental results of CSAAT−ID and CSAGAAT−ID on ten

constrained NLPs G1-G10 [117, 105] and all of Floudas and Pardalos’ benchmarks [65]. As

a comparison, we also solved these problems using DONLP2 [146], a popular SQP package.

SQP is an efficient local-search method widely used for solving continuous constrained NLPs.

For both discrete and mixed-integer problems, SQP discretizes its corresponding continuous

solutions as a result.

For every problem, all the three algorithms run 100 times with the same sequence of

random starting points. For comparison, we measure the performance of DONLP2 using

Tr/Pr, where Tr is the average time to finish one run and Pr is the probability of finding a

feasible solution with prescribed quality of solution. Therefore, Tr/Pr gives the average time

to find a feasible solution with prescribed quality.

Table 5.4 shows experimental results on derived discrete problems G1-G10. The first two

columns show the problem IDs and the best-known solutions. The next six columns list,

respectively, Tr/Pr to find feasible solutions that differ within 0%, 1%, 5%, and 20% from
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Table 5.4: Performance comparison of DONLP2 (SQP), CSAAT−ID and CSAGAAT−ID in

solving derived discrete constrained NLPs G1-G10. All times are in seconds on a Pentium-

III 600-MHz computer running Solaris 7. ‘-’ stands for no feasible solution found for the

specified solution quality within 100 runs. All algorithms use the same sequence of starting

points.

Problem Best-known DONLP2 for Discrete NLPs CSA for Discrete NLPs CSAGA for Discrete NLPs

ID Solutions 0% 1% 5% 20% 0% 1% 5% 20% 0% 1% 5% 20%

G1 (min) -15 1.13 1.13 1.03 0.163 1.61 1.61 1.61 1.10 2.08 2.03 2.03 1.93

G2 (max) 0.8036 - - - - 11.73 9.03 3.09 0.51 9.09 8.04 2.90 0.70

G3 (max) 1.0 0.405 0.405 0.405 0.405 1.38 1.38 1.38 1.38 1.69 1.69 1.69 1.69

G4 (min) -30665.5 1.17 1.17 1.17 1.17 0.499 0.344 0.0051 0.0031 0.687 0.655 0.0044 0.0016

G5 (min) 4221.9 - 0.105 0.105 0.105 0.84 0.84 0.84 0.84 0.76 0.76 0.76 0.76

G6 (min) -6961.81 - - - - 11.26 6.22 0.74 0.074 8.33 8.042 0.88 0.067

G7 (min) 24.3062 - - - - 3.08 2.42 2.39 1.46 3.04 2.70 2.70 2.21

G8 (max) 0.095825 0.056 0.056 0.056 0.056 0.074 0.051 0.028 0.007 0.097 0.068 0.024 0.010

G9 (min) 680.63 0.0425 0.0425 0.0425 0.0425 0.40 0.026 0.004 0.002 0.48 0.038 0.017 0.011

G10 (min) 7049.33 - - - - 2.93 2.93 2.13 1.08 3.29 2.84 2.40 1.79

the best-known solutions. The following eight columns show the results for CSAAT−ID and

CSAGAAT−ID. The timing results are the average time that CSAAT−ID and CSAGAAT−ID

find solutions that differ within 0%, 1%, 5%, and 20% from the best-known solutions during

an anytime search run. Table 5.5 reports the results on discrete problems derived from

Floudas and and Pardalos’ continuous benchmarks [65].

Table 5.6 and Table 5.7 show the comparison results of DONLP2, CSAAT−ID and

CSAGAAT−ID on solving derived MINLPs.

Obviously, CSAAT−ID and CSAGAAT−ID perform much better than DONLP2 in solving

both discrete and mixed-integer constrained NLPs. CSAAT−ID and CSAGAAT−ID are able

to find best-known solutions to all the discrete and mixed-integer problems (except 7.3 and

7.4), whereas SQP even fails to find feasible solutions to many problems, such as G2, G6,

5.2 and 5.4. This means that discretization of continuous solutions found by SQP sometimes

may not lead to feasible discrete and mixed-integer solutions. Besides, SQP finds very poor
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Table 5.5: Performance comparison of DONLP2 (SQP), CSAAT−ID and CSAGAAT−ID

in solving derived discrete constrained NLPs from Floudas and Pardalos’ continuous con-

strained benchmarks [65]. All times are in seconds on a Pentium-III 600-MHz computer

running Solaris 7. ‘-’ stands for no feasible solution found for the specified solution quality

within 100 runs. All algorithms use the same sequence of starting points.

Problem Best-known DONLP2 for Discrete NLPs CSA for Discrete NLPs CSAGA for Discrete NLPs

ID Solutions 0% 1% 5% 20% 0% 1% 5% 20% 0% 1% 5% 20%

2.1 (min) -17 0.85 0.85 0.213 0.0708 0.197 0.151 0.038 0.007 0.594 0.580 0.075 0.026

2.2 (min) -213 0.022 0.022 0.022 0.022 0.178 0.169 0.033 0.004 0.163 0.161 0.044 0.003

2.3 (min) -15 1.13 1.13 1.03 0.163 1.610 1.610 1.610 1.108 2.084 2.041 2.041 1.935

2.4 (min) -11 0.134 0.103 0.0848 0.0629 0.365 0.250 0.074 0.017 0.851 0.735 0.242 0.032

2.5 (min) -268 - - - - 1.930 1.729 1.729 1.575 4.753 2.688 2.445 2.181

2.6 (min) -39 9.50 2.38 2.38 1.36 0.436 0.261 0.145 0.026 0.955 0.806 0.516 0.187

2.7.1 (min) -394.75 - - - 14.2 15.16 12.90 12.44 9.469 11.65 10.31 10.31 9.908

2.7.2 (min) -884.75 - - - - 8.407 8.407 8.344 6.462 9.756 9.559 9.559 9.417

2.7.3 (min) -8695.0 - - - - 9.24 9.24 9.24 4.93 7.65 6.31 6.31 5.90

2.7.4 (min) -754.75 - - - 71.6 12.53 12.44 11.40 0.215 10.16 9.917 9.917 1.456

2.7.5 (min) -4150.4 - - - - 31.81 11.60 6.45 4.22 16.06 10.89 5.10 3.81

2.8 (min) 15639.0 - - - - 8.33 6.75 1.84 1.84 9.37 7.906 2.72 1.99

3.1 (min) 7049.33 - - - - 2.93 2.93 2.13 1.08 3.29 2.84 2.40 1.79

3.2 (min) -30665.5 1.17 1.17 1.17 1.17 0.499 0.344 0.0051 0.0031 0.687 0.655 0.0044 0.0016

3.3 (min) -310.0 - - - - 0.227 0.216 0.211 0.171 0.652 0.521 0.424 0.348

3.4 (min) -4.0 0.091 0.084 0.084 0.084 0.147 0.140 0.052 0.002 0.170 0.156 0.088 0.002

4.3 (min) -4.51 0.18 0.18 0.18 0.15 0.193 0.193 0.193 0.189 0.221 0.199 0.199 0.199

4.4 (min) -2.217 0.52 0.371 0.217 0.186 0.305 0.183 0.179 0.175 0.193 0.187 0.185 0.178

4.5 (min) -13.40 - - - 3.10 0.411 0.400 0.397 0.397 0.482 0.482 0.482 0.482

4.6 (min) -5.51 - - - - 0.126 0.095 0.007 0.002 0.148 0.107 0.013 0.003

4.7 (min) -16.74 0.0706 0.0461 0.0461 0.0461 0.063 0.060 0.058 0.057 0.042 0.040 0.037 0.035

5.2 (min) 1.60 - - - - 4578.06 3708.74 795.65 200.52 1504.78 1342.29 561.9 188.0

5.4 (min) 1.86 - - - - 2265.43 2265.43 1298.77 53.36 706.34 604.42 598.12 206.01

6.2 (max) 400.0 - - - - 6.215 5.000 3.442 0.819 4.572 4.436 3.764 1.434

6.3 (max) 600.0 - - - - 38.22 30.43 22.74 10.26 33.47 31.47 23.25 11.89

6.4 (max) 750.0 - - - - 1.140 1.077 1.014 0.750 0.908 0.802 0.789 0.779

7.2 (min) 1.05 - - - - 848.15 445.84 219.60 6.88 574.54 419.29 377.46 20.87

7.3 (min) 1.51 - - - - - - - - - - - -

7.4 (min) - - - - - - - - - - - - -
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Table 5.6: Performance comparison of DONLP2 (SQP), CSAAT−ID and CSAGAAT−ID

in solving derived mixed-integer constrained NLPs G1-G10. All times are in seconds on a

Pentium-III 600-MHz computer running Solaris 7. ‘-’ stands for no feasible solution found

for the specified solution quality within 100 runs. All algorithms use the same sequence of

starting points.

Problem Best-known DONLP2 for Mixed-Integer NLPs CSA for Mixed-Integer NLPs CSAGA for Mixed-Integer NLPs

ID Solutions 0% 1% 5% 20% 0% 1% 5% 20% 0% 1% 5% 20%

G1 (min) -15 3.10 3.10 2.48 0.365 1.60 1.60 1.60 1.20 1.43 1.41 1.41 1.24

G2 (max) 0.8036 - - - - 12.75 9.13 2.96 0.58 8.83 6.85 2.66 0.67

G3 (max) 1.0 0.405 0.405 0.405 0.405 1.33 1.33 1.33 1.33 1.07 1.07 1.07 1.07

G4 (min) -30665.5 1.17 1.17 1.17 1.17 0.45 0.36 0.007 0.004 0.70 0.56 0.01 0.0006

G5 (min) 4221.9 0.35 0.0309 0.0309 0.0309 0.66 0.66 0.66 0.66 0.98 0.98 0.98 0.98

G6 (min) -6961.81 - - - - 12.76 9.44 0.85 0.06 10.04 7.48 0.85 0.07

G7 (min) 24.3062 - - - - 4.17 3.65 2.65 2.17 2.95 2.01 2.01 1.57

G8 (max) 0.095825 0.056 0.056 0.056 0.056 0.07 0.04 0.02 0.006 0.11 0.06 0.05 0.02

G9 (min) 680.63 - - - - 0.37 0.021 0.004 0.003 0.56 0.061 0.013 0.007

G10 (min) 7049.33 - - - - 3.87 3.25 1.98 1.32 3.76 3.76 2.48 1.10

feasible solutions for some problems such as mixed-integer 2.7.1, where DONLP2 can only

find feasible solutions within 20% worse than the best-known solutions.

However, for those problems in which SQP are able to find feasible solutions, the average

CPU time of SQP is generally shorter than that of CSAAT−ID and CSAGAAT−ID, because

each run of SQP is much quicker although the success ratio Pr is lower. The limitation of

SQP is that it requires the differentiability of the objective and constraint functions and that

it will not be able to solve NLPs whose derivatives are hard to calculate or are unavailable

(such as discrete and mixed-integer NLPs).

Comparing CSAAT−ID with CSAGAAT−ID, we found that their performance does not

differ much for small problems that require little solution time. However, for large and

complex problems such as G2, 2.7.5, 5.2, and 5.4, the search time used by CSAGAAT−ID
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Table 5.7: Performance comparison of DONLP2 (SQP), CSAAT−ID and CSAGAAT−ID

in solving derived mixed-integer constrained NLPs from Floudas and Pardalos’ continuous

constrained benchmarks [65]. All times are in seconds on a Pentium-III 600-MHz computer

running Solaris 7. ‘-’ stands for no feasible solution found for the specified solution quality

within 100 runs. All algorithms use the same sequence of starting points.

Problem Best-known DONLP2 for Mixed-Integer NLPs CSA for Mixed-Integer NLPs CSAGA for Mixed-Integer NLPs

ID Solutions 0% 1% 5% 20% 0% 1% 5% 20% 0% 1% 5% 20%

2.1 (min) -17 0.85 0.85 0.213 0.0708 0.194 0.114 0.036 0.008 0.594 0.580 0.075 0.026

2.2 (min) -213 0.022 0.022 0.022 0.022 0.174 0.170 0.035 0.005 0.163 0.161 0.044 0.003

2.3 (min) -15 3.10 3.10 2.48 0.365 1.602 1.602 1.602 1.198 2.084 2.041 2.041 1.935

2.4 (min) -11 0.134 0.103 0.0848 0.083 0.257 0.214 0.066 0.011 0.851 0.735 0.242 0.032

2.5 (min) -268 - - - - 1.913 1.653 1.653 1.635 4.753 2.688 2.445 2.181

2.6 (min) -39 9.50 2.38 2.38 1.19 0.420 0.240 0.136 0.028 0.955 0.806 0.516 0.187

2.7.1 (min) -394.75 - - - 11.7 13.41 11.75 11.37 8.097 11.65 10.31 10.31 9.908

2.7.2 (min) -884.75 - - - 37.2 7.804 7.099 7.003 4.813 9.756 9.559 9.559 9.417

2.7.3 (min) -8695.0 - - - - 9.36 5.25 5.25 4.67 10.94 7.15 7.15 6.89

2.7.4 (min) -754.75 - - - 71.6 12.63 12.33 11.59 0.258 10.16 9.917 9.917 1.456

2.7.5 (min) -4150.4 - - 9.66 9.66 37.06 18.38 5.59 4.88 19.91 11.90 6.82 5.99

2.8 (min) 15639.0 - - - - 7.38 6.27 1.48 1.48 7.74 7.01 2.12 2.12

3.1 (min) 7049.33 - - - - 3.87 3.25 1.98 1.32 3.76 3.76 2.48 1.10

3.2 (min) -30665.5 1.17 1.17 1.17 1.17 0.45 0.36 0.007 0.004 0.70 0.56 0.01 0.0006

3.3 (min) -310.0 1.30 1.30 0.229 0.0812 0.217 0.202 0.201 0.167 0.652 0.521 0.424 0.348

3.4 (min) -4.0 0.091 0.084 0.084 0.075 0.138 0.126 0.048 0.001 0.170 0.156 0.088 0.002

4.3 (min) -4.51 0.18 0.18 0.18 0.15 0.141 0.141 0.141 0.141 0.221 0.199 0.199 0.199

4.4 (min) -2.217 0.52 0.371 0.289 0.236 0.142 0.142 0.141 0.141 0.193 0.187 0.185 0.178

4.5 (min) -13.40 - - - 3.10 0.371 0.371 0.366 0.366 0.482 0.482 0.482 0.482

4.6 (min) -5.51 - - - - 0.117 0.086 0.009 0.001 0.148 0.107 0.013 0.003

4.7 (min) -16.74 0.0667 0.0545 0.0545 0.0545 0.047 0.046 0.045 0.043 0.042 0.040 0.037 0.035

5.2 (min) 1.60 - - - - 6238.5 3686.8 831.1 309.56 4576.91 3428.2 1190.34 476.45

5.4 (min) 1.86 - - - - 2589.8 1539.1 499.1 84.66 1255.51 1255.51 473.52 219.86

6.2 (max) 400.0 - - - - 5.773 4.926 3.653 0.794 4.572 4.436 3.764 1.434

6.3 (max) 600.0 - - - - 39.80 34.75 25.65 10.50 33.47 31.47 23.25 11.89

6.4 (max) 750.0 - - - - 1.033 0.919 0.827 0.720 0.908 0.802 0.789 0.779

7.3 (min) 1.09 - - - - - - - 16034 - - - 9766

7.4 (min) 1.08 - - - - 4888.4 4888.4 3492.9 3118.1 3427.9 3427.9 3368.1 2789.0
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is usually 1.3 to 3 times shorter than that taken by CSAAT−ID to find a solution of similar

quality, for both discrete and mixed-integer versions.

5.4.2.3 Experimental results on CUTE benchmarks

Tables 5.8 and 5.9, report respectively comparison results in solving discrete and mixed-

integer constrained NLPs derived from selected CUTE benchmarks [48] using the given

starting point in each problem. The first column shows the problem IDs, and the next two

give the number (nv = n) of variables and the number (nc = m + k) of constraints. The

next five columns show the type of the objective function (linear, quadratic, or nonlinear),

the number of linear equality constraints (nle), the number of nonlinear equality constraints

(nne), the number of linear inequality constraints (nli), and the number of nonlinear inequal-

ity constraints (nni). The next six columns show the solutions and CPU times that we obtain

by using LANCELOT [54, 107], CSAAT−ID and CSAGAAT−ID, respectively.

CSAAT−ID and CSAGAAT−ID are much better than LANCELOT in terms of their ability

to solve discrete and mixed-integer NLPs. LANCELOT are unable to find feasible solutions

for about half of the problems. For many problems, discretization of continuous solutions

found by LANCELOT does not lead to feasible discrete and mixed-integer solutions.

For the problems that LANCELOT can solve, we see that CSAAT−ID and CSAGAAT−ID

take similar or even shorter time as those of LANCELOT in solving small NLPs, but the run-

ning times of CSAAT−ID and CSAGAAT−ID are not competitive with those of LANCELOT

for solving large continuous constrained NLPs with many variables and constraints. This

happens because CSAAT−ID and CSAGAAT−ID are sampling based, whereas LANCELOT

uses information on derivatives. CSAAT−ID and CSAGAAT−ID, however, are much better

in terms of solution quality. LANCELOT could not find feasible solutions for many prob-

lems, but CSAAT−ID and CSAGAAT−ID were able to solve all the problems and obtained
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better solutions than LANCELOT. For example, CSAAT−ID found a solution of 188.0 and

CSAGAAT−ID found a solution of 186.1 for discrete Problem DEMBO7, but LANCELOT

could not find a feasible solution. For discrete Problem HS20, LANCELOT found a solution

of 40.2, but CSAAT−ID and CSAGAAT−ID found the best solution of 38.2.

Figure 5.5 depicts the normalized solution quality and normalized CPU time [164] of

CSAAT−ID and CSAGAAT−ID with respect to LANCELOT for those derived discrete CUTE

benchmarks that are solvable by all three algorithms. Figure 5.6 depicts the results for mixed-

integer benchmarks. In these two figures, the smaller is the value, the shorter will be the

CPU time or better solution quality. The CPU times of CSAAT−ID and CSAGAAT−ID are

generally longer than the corresponding CPU time of LANCELOT, but their overall solution

qualities are better.

Tables 5.10 and 5.11 list the discrete and mixed-integer NLPs, respectively, derived

from selected CUTE problems that can be solved by LANCELOT but cannot by solved

by CSAAT−ID and CSAGAAT−ID at this time. These problems either are too large or

have nonlinear constraints that make them very difficult for sample-based CSAAT−ID and

CSAGAAT−ID to find feasible points.
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Table 5.8: Results comparing LANCELOT, CSAAT−ID and CSAGAAT−ID in solving discrete

constrained NLPs derived from selected continuous problems in CUTE, using the starting

point specified in each problem. All times are in seconds on a Pentium-III 600-MHz computer

running Solaris 7. ′−′ means that no feasible solution can be found by both the public version

(01/05/2000) and the commercial version of LANCELOT (by submitting problems through

the Internet, http://www-neos.mcs.anl.gov/neos/solvers/NCO:LANCELOT/). Boxed num-

bers represent the best solutions among the three methods if they have different solutions.

Problem

IDs

nv nc f(x)
h(x) g(x) LANCELOT CSAAT−ID CSAGAAT−ID

nle nne nli nni solution CPU time solution CPU time solution CPU time

ALJAZZAF 3 1 quadratic 0 1 0 0 75.0 0.46 75.0 0.21 75.0 0.52

ALLINITC 4 1 nonlinear 0 0 0 1 - -
�

�

�

�
30.44 1.29

�

�

�

�
30.44 1.02

ALSOTAME 2 1 nonlinear 0 1 0 0 0.082 0.57 0.082 0.109 0.082 0.132

BATCH 46 73 nonlinear 12 0 60 1 - - 307252 4634
�

�

�

�
278626 8757

BT11 5 3 nonlinear 1 2 0 0 0.825 0.62 0.825 2.019 0.825 1.134

BT12 5 3 quadratic 0 3 0 0 6.188 0.47 6.188 2.47 6.188 2.21

BT6 5 2 nonlinear 0 2 0 0 0.277 0.56 0.277 3.72 0.277 2.90

BT7 5 3 nonlinear 0 3 0 0 306.5 0.51 306.5 1.21 306.5 1.43

BT8 5 2 quadratic 0 2 0 0 1.0 0.57 1.0 0.439 1.0 0.559

CB2 3 3 linear 0 0 0 3 1.952 0.60 1.952 0.800 1.952 0.449

CRESC4 6 8 nonlinear 0 0 0 8 - - 1.884 1.399
�

�

�

�
1.037 2.130

CSFI1 5 4 linear 0 2 0 2 -49.07 0.63 -49.07 12.17 -49.07 4.48

DEMBO7 16 20 quadratic 0 0 0 20 - - 188.0 9.950
�

�

�

�
186.1 12.87

DIPIGRI 7 4 nonlinear 0 0 0 4 680.6 0.68 680.6 0.980 680.6 1.62

DIXCHLNG 10 5 nonlinear 0 5 0 0 0.0 1.12 0.0 14.01 0.0 9.76

ERRINBAR 18 9 linear 0 8 1 0 - -
�

�

�

�
30784 184.3 61317 4438.

EXPFITA 5 22 nonlinear 0 0 22 0 1.13 × 10−3 0.65 1.13 × 10−3 6.15 1.13 × 10−3 2.15

FLETCHER 4 4 quadratic 0 1 3 0 19.53 0.57
�

�

�

�
11.65 7.659

�

�

�

�
11.65 12.65

GAUSSELM 14 11 linear 0 5 6 0
�

�

�

�
-2.25 0.55 -2.006 0.019 -2.20 205.5

GIGOMEZ2 3 3 linear 0 0 0 3 1.952 0.59 1.952 0.975 1.952 0.879

HIMMELBI 100 12 nonlinear 0 0 12 0 - -
�

�

�

�
-1735 432.1

�

�

�

�
-1735 216.7

HIMMELP2 2 1 nonlinear 0 0 0 1 -62.05 0.63 -62.05 0.009 -62.05 0.009

HIMMELP6 2 5 nonlinear 0 0 2 3 -59.01 0.69 -59.01 0.019 -59.01 0.009

HONG 4 1 nonlinear 1 0 0 0 22.57 0.50 22.57 0.49 22.57 0.70

HS100 7 4 nonlinear 0 0 0 4 680.6 0.72 680.6 1.74 680.6 1.61

HS101 7 5 nonlinear 0 0 0 5 - -
�

�

�

�
1809 407.5

�

�

�

�
1809 96.88

HS102 7 5 nonlinear 0 0 0 5 - -
�

�

�

�
911.8 29.54

�

�

�

�
911.8 89.93

HS103 7 5 nonlinear 0 0 0 5 - -
�

�

�

�
543.6 356.2

�

�

�

�
543.6 216.4

HS104 8 5 nonlinear 0 0 0 5 - -
�

�

�

�
3.951 3.819

�

�

�

�
3.951 4.71

continued on next page
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Problem

IDs

nv nc f(x)
h(x) g(x) LANCELOT CSAAT−ID CSAGAAT−ID

nle nne nli nni solution CPU time solution CPU time solution CPU time

HS107 9 6 nonlinear 0 6 0 0 5055 0.59 5055 690.3 5055 263.4

HS108 9 13 quadratic 0 0 0 13 - -
�

�

�

�
-0.86 9.63

�

�

�

�
-0.86 2.96

HS111 10 3 nonlinear 0 3 0 0 -47.7 0.83 -47.7 22.11 -47.7 4.32

HS114 10 11 quadratic 1 2 4 4 - -
�

�

�

�
-1768 523.4

�

�

�

�
-1768 208.8

HS117 15 5 nonlinear 0 0 0 5 - -
�

�

�

�
32.35 47.63

�

�

�

�
32.35 47.51

HS119 16 8 nonlinear 8 0 0 0 244.9 0.54 244.9 143.75 244.9 118.90

HS12 2 1 quadratic 0 0 0 1 -30.0 0.46 -30.0 0.019 -30.0 0.05

HS18 2 2 nonlinear 0 0 0 2 - -
�

�

�

�
5.000 0.060

�

�

�

�
5.000 0.029

HS19 2 2 nonlinear 0 0 0 2 - -
�

�

�

�
-6938 0.139

�

�

�

�
-6938 0.55

HS20 2 3 nonlinear 0 0 0 3 40.2 0.52
�

�

�

�
38.2 0.460

�

�

�

�
38.2 0.05

HS23 2 5 quadratic 0 0 0 5 - -
�

�

�

�
1.999 0.399

�

�

�

�
1.999 0.439

HS24 2 3 nonlinear 0 0 3 0 - -
�

�

�

�
-0.99 0.249

�

�

�

�
-0.99 0.270

HS26 3 1 nonlinear 0 1 0 0 0.0 0.65 0.0 0.159 0.0 0.159

HS27 3 1 nonlinear 0 1 0 0 0.04 0.49 0.04 0.219 0.04 0.409

HS29 3 1 nonlinear 0 0 0 1 -22.6 0.53 -22.6 0.18 -22.6 0.17

HS30 3 1 quadratic 0 0 0 1 1.0 0.52 1.0 0.009 1.0 0.019

HS32 3 2 nonlinear 1 0 0 1 1.0 0.54 1.0 0.17 1.000 0.27

HS33 3 2 nonlinear 0 0 0 2 -4.0 0.55
�

�

�

�
-4.58 0.15

�

�

�

�
-4.58 0.20

HS34 3 2 linear 0 0 0 2 - -
�

�

�

�
-0.83 0.18

�

�

�

�
-0.83 0.22

HS36 3 1 nonlinear 0 0 1 0 - -
�

�

�

�
-3299 0.079

�

�

�

�
-3299 0.140

HS37 3 2 nonlinear 0 0 2 0 - -
�

�

�

�
-3455 0.119

�

�

�

�
-3455 0.199

HS39 4 2 linear 0 2 0 0 -1.0 0.52 -1.00 2.599 -1.00 0.879

HS40 4 3 nonlinear 0 3 0 0 -0.25 0.58 -0.25 68.77 -0.25 84.11

HS41 4 1 nonlinear 1 0 0 0 1.926 0.52 1.925 0.129 1.925 0.100

HS42 4 2 nonlinear 1 1 0 0 13.86 0.56 13.86 0.350 13.86 1.139

HS43 4 3 quadratic 0 0 0 3 - -
�

�

�

�
-44.0 0.469

�

�

�

�
-44.0 0.740

HS46 5 2 nonlinear 0 2 0 0 0.0 0.54 0.0 2.970 0.0 1.029

HS54 6 1 nonlinear 1 0 0 0 - -
�

�

�

�
-0.908 38.96

�

�

�

�
-0.908 11.68

HS55 6 6 nonlinear 6 0 0 0 6.667 0.49
�

�

�

�
6.333 6.679

�

�

�

�
6.333 6.780

HS56 7 4 nonlinear 0 4 0 0
�

�

�

�
-3.456 0.55 -1.0 0.001 -1.0 0.019

HS57 2 1 nonlinear 0 0 0 1 - -
�

�

�

�
-7.80 0.079

�

�

�

�
-7.80 0.249

HS60 3 1 nonlinear 0 1 0 0 0.0326 0.62 0.0326 0.389 0.0326 0.289

HS61 3 2 quadratic 0 2 0 0 -143.65 0.57 -143.65 17.11 -143.65 1.38

HS62 3 1 nonlinear 1 0 0 0 -26273 0.61 -26273 0.32 -26273 0.53

HS63 3 2 quadratic 1 1 0 0 961.72 0.55 961.72 5.319 961.72 3.230

HS64 3 1 nonlinear 0 0 0 1 - -
�

�

�

�
6299.8 0.060

�

�

�

�
6299.8 0.340

HS68 4 2 nonlinear 0 2 0 0 -0.92 0.72 -0.92 7.98 -0.92 9.09

HS69 4 2 nonlinear 0 2 0 0 -956.7 0.80 -956.7 15.63 -956.7 8.94

HS7 2 1 nonlinear 0 1 0 0 -1.73 0.56 -1.73 0.170 -1.73 0.159

HS71 4 2 nonlinear 0 1 0 1 17.01 0.62 17.01 2.519 17.01 9.309

HS73 4 3 linear 1 0 1 1 - -
�

�

�

�
29.9 1.75

�

�

�

�
29.9 1.46

continued on next page
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Problem

IDs

nv nc f(x)
h(x) g(x) LANCELOT CSAAT−ID CSAGAAT−ID

nle nne nli nni solution CPU time solution CPU time solution CPU time

HS77 5 2 nonlinear 0 2 0 0 0.241 0.56 0.241 2.410 0.241 10.02

HS78 5 3 nonlinear 0 3 0 0 -2.92 0.58 -2.92 71.87 -2.92 1.460

HS79 5 3 nonlinear 0 3 0 0 0.0788 0.57 0.0788 40.34 0.0788 46.06

HS80 5 3 nonlinear 0 3 0 0 0.054 0.58 0.054 430.5 0.054 222.0

HS83 5 3 quadratic 0 0 0 3 - -
�

�

�

�
-3066 1.549

�

�

�

�
-3066 2.420

HS84 5 3 quadratic 0 0 0 3 - -
�

�

�

�
-5280 38.15

�

�

�

�
-5280 1.149

HS87 6 4 nonlinear 0 4 0 0 - - 8951 95.41
�

�

�

�
8946 127.24

HS93 6 2 nonlinear 0 0 0 2 - -
�

�

�

�
135.0 1.360

�

�

�

�
135.0 2.0

HUBFIT 2 1 nonlinear 0 0 1 0 0.0169 0.46 0.0169 0.009 0.0169 0.009

LIN 4 2 nonlinear 2 0 0 0 -0.02 0.70 -0.02 1.38 -0.02 1.25

LOADBAL 31 31 nonlinear 11 0 20 0
�

�

�

�
0.453 0.69 1.546 0.159 1.546 0.489

LOOTSMA 3 2 nonlinear 0 0 0 2 - -
�

�

�

�
1.414 0.289

�

�

�

�
1.414 0.420

MADSEN 3 6 linear 0 0 0 6 - -
�

�

�

�
0.616 0.629

�

�

�

�
0.616 0.990

MARATOS 2 1 quadratic 0 1 0 0 -1.0 0.40 -1.00 0.211 -1.00 0.170

MATRIX2 6 2 quadratic 0 0 0 2 0.0 0.52 0.0 0.340 0.0 0.420

MESH 41 48 nonlinear 4 20 24 0 - -
�

�

�

�
0.0 1.56

�

�

�

�
0.0 0.709

MISTAKE 9 13 quadratic 0 0 0 13 - -
�

�

�

�
-0.99 6.579

�

�

�

�
-0.99 9.889

MWRIGHT 5 3 nonlinear 0 3 0 0 24.97 0.56
�

�

�

�
1.288 67.79

�

�

�

�
1.288 44.25

NGONE 8 8 quadratic 0 0 2 6 -0.5 0.51 -0.5 6.680 -0.5 6.719

ODFITS 10 6 nonlinear 6 0 0 0 -2380 0.50 -2380 4.110 -2380 2.150

OPTCNTRL 32 20 quadratic 10 10 0 0 550 0.51
�

�

�

�
0.0 0.049

�

�

�

�
0.0 0.015

OPTPRLOC 30 30 quadratic 0 0 5 25 - -
�

�

�

�
-16.4 40.30

�

�

�

�
-16.4 58.97

PENTAGON 6 15 nonlinear 0 0 15 0 - -
�

�

�

�
0.014 0.050

�

�

�

�
0.014 0.029

POLAK1 3 2 linear 0 0 0 2 - -
�

�

�

�
2.718 0.290

�

�

�

�
2.718 0.219

POLAK3 12 10 linear 0 0 0 10 - -
�

�

�

�
5.933 27.36

�

�

�

�
5.933 19.27

POLAK5 3 2 linear 0 0 0 2 - -
�

�

�

�
50.00 0.330

�

�

�

�
50.00 0.379

POLAK6 5 4 linear 0 0 0 4 - -
�

�

�

�
-43.9 3.45

�

�

�

�
-43.9 4.59

QC 9 4 nonlinear 0 0 4 0 -956.5 0.58 -956.5 0.328 -956.5 0.279

RK23 17 11 linear 4 7 0 0
�

�

�

�
0.0833 0.75 0.467 60.75 0.344 82.02

ROBOT 14 2 quadratic 0 2 0 0 5.463 0.55 5.463 6.649 5.463 5.76

S316-322 2 1 quadratic 0 1 0 0 334.3 0.48 334.3 0.129 334.3 0.179

SINROSNB 2 1 nonlinear 0 0 0 1 0.0 0.56 0.0 0.419 0.0 0.259

SNAKE 2 2 linear 0 0 0 2 - -
�

�

�

�
0.0 0.009

�

�

�

�
0.0 0.019

SPIRAL 3 2 linear 0 0 0 2 0.0 0.71 0.0 1.563. 0.0 1.370

STANCMIN 3 2 nonlinear 0 0 2 0 4.25 0.58 4.25 0.21 4.25 0.17

SVANBERG 10 10 nonlinear 0 0 0 10 - -
�

�

�

�
15.73 15.69

�

�

�

�
15.73 20.80

SYNTHES1 6 6 nonlinear 0 0 4 2 - -
�

�

�

�
0.759 2.940

�

�

�

�
0.759 7.25

SYNTHES2 11 14 nonlinear 1 0 10 3 - -
�

�

�

�
-0.55 52.49

�

�

�

�
-0.55 7.21

SYNTHES3 17 23 nonlinear 2 0 17 4 - -
�

�

�

�
15.08 140.4

�

�

�

�
15.08 127.5

TENBARS4 18 9 linear 0 8 1 0 - - 196226 93.38
�

�

�

�
35883.9 650.00

TWOBARS 2 2 nonlinear 0 0 0 2 1.51 0.53
�

�

�

�
1.508 0.019

�

�

�

�
1.508 0.180

continued on next page
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Problem

IDs

nv nc f(x)
h(x) g(x) LANCELOT CSAAT−ID CSAGAAT−ID

nle nne nli nni solution CPU time solution CPU time solution CPU time

WOMFLET 3 3 linear 0 0 0 3 - -
�

�

�

�
0.0 0.180

�

�

�

�
0.0 0.529

ZAMB2-8 138 48 nonlinear 0 48 0 0 -0.153 1.20 -0.153 18403 -0.153 5466

ZECEVIC3 2 2 quadratic 0 0 0 2 97.31 0.54 97.31 0.090 97.31 0.249

ZECEVIC4 2 2 quadratic 0 0 1 1 7.558 0.59 7.558 0.090 7.558 0.129

ZY2 3 2 nonlinear 0 0 0 2 2.0 0.46 2.0 0.300 2.0 0.200
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Table 5.9: Results comparing LANCELOT, CSAAT−ID and CSAGAAT−ID in solving

mixed-integer constrained NLPs derived from selected continuous problems in CUTE

using the starting point specified in each problem. All times are in seconds on a

Pentium-III 600-MHz computer running Solaris 7. ′−′ means that no feasible so-

lution can be found by both the public version (01/05/2000) and the commercial

version of LANCELOT (by submitting problems through the Internet, http://www-

neos.mcs.anl.gov/neos/solvers/NCO:LANCELOT/). Boxed numbers represent the best so-

lutions among the three methods if they have different solutions.

Problem

IDs

nv nc f(x)
h(x) g(x) LANCELOT CSAAT−ID CSAGAAT−ID

nle nne nli nni solution CPU time solution CPU time solution CPU time

ALJAZZAF 3 1 quadratic 0 1 0 0 75.0 0.46 75.00 0.230 75.00 0.340

ALLINITC 4 1 nonlinear 0 0 0 1 - -
�

�

�

�
30.41 1.289

�

�

�

�
30.41 2.0

ALSOTAME 2 1 nonlinear 0 1 0 0 0.082 0.57 0.082 0.140 0.082 0.220

AVION2 49 15 nonlinear 15 0 0 0 - -
�

�

�

�
9.47 × 107 1176

�

�

�

�
9.47 × 107 1097

BATCH 46 73 nonlinear 12 0 60 1 - -
�

�

�

�
25990 5079

�

�

�

�
25990 4023

BT11 5 3 nonlinear 1 2 0 0 0.825 0.62 0.824 1.060 0.824 1.779

BT12 5 3 quadratic 0 3 0 0 - -
�

�

�

�
6.188 10.81

�

�

�

�
6.188 5.039

BT6 5 2 nonlinear 0 2 0 0 0.277 0.56 0.277 0.899 0.277 1.299

BT7 5 3 nonlinear 0 3 0 0 306.5 0.51 306.5 4.730 306.5 3.190

BT8 5 2 quadratic 0 2 0 0 1.0 0.57 1.0 0.560 1.0 0.910

CB2 3 3 linear 0 0 0 3 1.952 0.60 1.952 0.610 1.952 0.460

CRESC4 6 8 nonlinear 0 0 0 8 - - 1.910 1.429
�

�

�

�
1.232 1.810

CSFI1 5 4 linear 0 2 0 2 -49.07 0.63 -49.0 9.689 -49.0 3.980

DEMBO7 16 20 quadratic 0 0 0 20 - -
�

�

�

�
174.8 154.9

�

�

�

�
174.8 12.83

DIPIGRI 7 4 nonlinear 0 0 0 4 680.6 0.68 680.6 0.980 680.6 0.75

DIXCHLNG 10 5 nonlinear 0 5 0 0 0.0 1.12 0.0 129.6 0.0 17.63

DNIEPER 61 24 nonlinear 0 24 0 0
�

�

�

�
1.87 × 104 0.83 22911 4316 20035 2669

ERRINBAR 18 9 linear 0 8 1 0 - - 10527 13.76
�

�

�

�
28.05 9273

EXPFITA 5 22 nonlinear 0 0 22 0 0.001 0.65 0.001 2.009 0.001 1.740

FLETCHER 4 4 quadratic 0 1 3 0 19.53 0.57
�

�

�

�
11.65 21.05 ovalbox11.65 13.02

GAUSSELM 14 11 linear 0 5 6 0
�

�

�

�
-2.25 0.55 0.0 0.019

�

�

�

�
-2.25 111.0

GIGOMEZ2 3 3 linear 0 0 0 3 1.952 0.59 1.952 0.360 1.952 0.460

HIMMELBI 100 12 nonlinear 0 0 12 0 - -
�

�

�

�
-1735 67.28

�

�

�

�
-1735 89.1

HIMMELBJ 45 14 nonlinear 14 0 0 0 - -
�

�

�

�
-1910 2207

�

�

�

�
-1910 1359

HIMMELP2 2 1 nonlinear 0 0 0 1 -62.05 0.63 -62.05 0.009 -62.05 0.001

HIMMELP6 2 5 nonlinear 0 0 2 3 -59.01 0.69 -59.01 0.019 -59.01 0.009

HONG 4 1 nonlinear 1 0 0 0 22.57 0.50 22.57 0.529 22.57 0.345

HS100 7 4 nonlinear 0 0 0 4 680.6 0.72 680.6 0.970 680.6 0.730

HS101 7 5 nonlinear 0 0 0 5 - -
�

�

�

�
1809 188.3

�

�

�

�
1809 198.3

continued on next page

101



continued from previous page

Problem

IDs

nv nc f(x)
h(x) g(x) LANCELOT CSAAT−ID CSAGAAT−ID

nle nne nli nni solution CPU time solution CPU time solution CPU time

HS102 7 5 nonlinear 0 0 0 5 911.9 * 911.9 123.5 911.9 97.37

HS103 7 5 nonlinear 0 0 0 5 - - 544.4 19.81
�

�

�

�
543.6 100.3

HS104 8 5 nonlinear 0 0 0 5 - -
�

�

�

�
3.951 12.34

�

�

�

�
3.951 10.01

HS107 9 6 nonlinear 0 6 0 0 5055 0.59 5055 82.11 5055 55.7

HS108 9 13 quadratic 0 0 0 13 - -
�

�

�

�
-0.86 8.409

�

�

�

�
-0.86 1.320

HS111 10 3 nonlinear 0 3 0 0 -47.7 0.83 -47.7 171.5 -47.7 38.40

HS114 10 11 quadratic 1 2 4 4 - -
�

�

�

�
-1768 244.8

�

�

�

�
-1768 167.6

HS117 15 5 nonlinear 0 0 0 5 - -
�

�

�

�
32.35 20.19

�

�

�

�
32.35 21.79

HS119 16 8 nonlinear 8 0 0 0 244.9 0.54 244.9 451.4 244.9 115.3

HS12 2 1 quadratic 0 0 0 1 -30.0 0.46 -30.0 0.019 -30.0 0.029

HS18 2 2 nonlinear 0 0 0 2 4.999 0.65 4.999 0.060 4.999 0.029

HS19 2 2 nonlinear 0 0 0 2 - - -6907 0.039
�

�

�

�
-6954 0.109

HS20 2 3 nonlinear 0 0 0 3 40.2 0.52
�

�

�

�
38.19 0.579

�

�

�

�
38.19 0.699

HS23 2 5 quadratic 0 0 0 5 - -
�

�

�

�
1.999 0.330

�

�

�

�
1.999 0.819

HS24 2 3 nonlinear 0 0 3 0 -1.0 0.55 -1.0 0.189 -1.0 0.280

HS26 3 1 nonlinear 0 1 0 0 0.0 0.65 0.0 0.139 0.0 0.200

HS27 3 1 nonlinear 0 1 0 0 0.04 0.49 0.04 0.190 0.04 0.409

HS29 3 1 nonlinear 0 0 0 1 -22.6 0.53 -22.6 0.189 -22.6 0.159

HS30 3 1 quadratic 0 0 0 1 1.0 0.52 1.0 0.009 1.0 0.009

HS32 3 2 nonlinear 1 0 0 1 1.0 0.54 1.0 0.290 1.0 0.200

HS33 3 2 nonlinear 0 0 0 2 -4.0 0.55
�

�

�

�
-4.58 0.140

�

�

�

�
-4.58 0.189

HS34 3 2 linear 0 0 0 2 -0.834 0.38 -0.834 0.280 -0.834 0.209

HS36 3 1 nonlinear 0 0 1 0 - -
�

�

�

�
-3299 0.100

�

�

�

�
-3299 0.150

HS37 3 2 nonlinear 0 0 2 0 - -
�

�

�

�
-3455 0.109

�

�

�

�
-3455 0.179

HS39 4 2 linear 0 2 0 0 -1.0 0.52 -1.0 0.409 -1.0 0.280

HS40 4 3 nonlinear 0 3 0 0 -0.25 0.58 -0.25 3.960 -0.25 1.710

HS41 4 1 nonlinear 1 0 0 0 1.926 0.52 1.926 0.119 1.926 0.100

HS42 4 2 nonlinear 1 1 0 0 13.86 0.56 13.86 0.219 13.86 0.310

HS43 4 3 quadratic 0 0 0 3 - -
�

�

�

�
-44.0 0.469

�

�

�

�
-44.0 0.740

HS46 5 2 nonlinear 0 2 0 0 0.0 0.54 0.0 0.829 0.0 0.63

HS54 6 1 nonlinear 1 0 0 0 - -
�

�

�

�
-0.90 9.969

�

�

�

�
-0.90 1.240

HS55 6 6 nonlinear 6 0 0 0 6.667 0.49
�

�

�

�
6.333 8.300

�

�

�

�
6.333 11.40

HS56 7 4 nonlinear 0 4 0 0
�

�

�

�
-3.456 0.55 -3.377 34.27 -2.17 15.55

HS57 2 1 nonlinear 0 0 0 1 0.03065 0.57
�

�

�

�
0.028 0.009

�

�

�

�
0.028 0.050

HS59 2 3 nonlinear 0 0 0 1 - -
�

�

�

�
-7.80 0.070

�

�

�

�
-7.80 0.249

HS60 3 1 nonlinear 0 1 0 0 0.032 0.62 0.032 0.249 0.032 0.519

HS61 3 2 quadratic 0 2 0 0 -143.6 0.57 -143.6 2.059 -143.6 3.030

HS62 3 1 nonlinear 1 0 0 0 -26273 0.61 -26273 0.310 -26273 0.469

HS63 3 2 quadratic 1 1 0 0 961.7 0.55 961.7 32.97 961.7 3.880

HS64 3 1 nonlinear 0 0 0 1 - -
�

�

�

�
6299 0.060

�

�

�

�
6299 0.340

HS68 4 2 nonlinear 0 2 0 0 -0.92 0.72 -0.92 1.97 -0.92 2.97

continued on next page
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Problem

IDs

nv nc f(x)
h(x) g(x) LANCELOT CSAAT−ID CSAGAAT−ID

nle nne nli nni solution CPU time solution CPU time solution CPU time

HS69 4 2 nonlinear 0 2 0 0 -956.7 0.80 -956.7 1.18 -956.7 1.34

HS7 2 1 nonlinear 0 1 0 0 -1.73 0.56 -1.73 0.060 -1.73 0.209

HS71 4 2 nonlinear 0 1 0 1 17.01 0.62 17.01 0.479 17.01 1.029

HS73 4 3 linear 1 0 1 1 - -
�

�

�

�
29.89 0.860

�

�

�

�
29.89 41.51

HS74 4 5 nonlinear 0 3 2 0 - -
�

�

�

�
5126 1.340

�

�

�

�
5126 6.300

HS75 4 5 nonlinear 0 3 2 0 - - 5407 14.73
�

�

�

�
5284 2636

HS77 5 2 nonlinear 0 2 0 0 0.241 0.56 0.241 0.699 0.241 1.029

HS78 5 3 nonlinear 0 3 0 0 -2.9 0.58 -2.9 83.12 -2.9 27.15

HS79 5 3 nonlinear 0 3 0 0
�

�

�

�
0.0788 0.57 0.116 5.010

�

�

�

�
0.0788 2.140

HS80 5 3 nonlinear 0 3 0 0 0.054 0.58 0.054 21.19 0.054 13.52

HS83 5 3 quadratic 0 0 0 3 - -
�

�

�

�
-3066 0.790

�

�

�

�
-3066 2.049

HS84 5 3 quadratic 0 0 0 3 - -
�

�

�

�
-5280 63.02

�

�

�

�
-5280 2.490

HS87 6 4 nonlinear 0 4 0 0 - -
�

�

�

�
8926 14.97

�

�

�

�
8926 7.350

HS93 6 2 nonlinear 0 0 0 2 - -
�

�

�

�
135.0 1.300

�

�

�

�
135.0 1.009

HS99 7 2 nonlinear 0 2 0 0 - - −8.24 × 108 53.55
�

�

�

�
−8.31 × 108 6.61

HUBFIT 2 1 nonlinear 0 0 1 0 0.0169 0.46 0.0169 0.009 0.0169 0.009

LAUNCH 25 28 nonlinear 6 3 12 7 - -
�

�

�

�
10.57 1670 10.92 2681

LIN 4 2 nonlinear 2 0 0 0 -0.02 0.70 -0.02 1.450 -0.02 2.210

LOADBAL 31 31 nonlinear 11 0 20 0
�

�

�

�
0.453 0.69 0.647 4765 0.527 725.2

LOOTSMA 3 2 nonlinear 0 0 0 2 - -
�

�

�

�
1.414 0.180

�

�

�

�
1.414 0.419

MADSEN 3 6 linear 0 0 0 6 - -
�

�

�

�
0.616 0.629

�

�

�

�
0.616 0.970

MARATOS 2 1 quadratic 0 1 0 0 -1.0 0.40 -1.0 0.059 -1.0 0.079

MATRIX2 6 2 quadratic 0 0 0 2 0.0 0.52 0.0 4.159 0.0 2.810

MESH 41 48 nonlinear 4 20 24 0 - -
�

�

�

�
0.000 0.230

�

�

�

�
0.000 0.679

MISTAKE 9 13 quadratic 0 0 0 13 - -
�

�

�

�
-1.00 6.570

�

�

�

�
-1.00 4.530

MRIBASIS 36 55 linear 1 8 43 3 - -
�

�

�

�
18.21 2468 21.17 2226

MWRIGHT 5 3 nonlinear 0 3 0 0 24.97 0.56 1.301 0.819
�

�

�

�
1.289 13.79

NGONE 8 8 quadratic 0 0 2 6 -0.5 0.51 -0.5 4.099 -0.5 6.5

ODFITS 10 6 nonlinear 6 0 0 0 -2380 0.50 -2380 4.599 -2380 3.809

OPTCNTRL 32 20 quadratic 10 10 0 0 550 0.51
�

�

�

�
0.0 0.050

�

�

�

�
0.0 0.149

OPTPRLOC 30 30 quadratic 0 0 5 25 - -
�

�

�

�
-16.4 44.66

�

�

�

�
-16.4 113.5

ORTHREGB 27 6 quadratic 0 6 0 0 - -
�

�

�

�
0.0 94.37

�

�

�

�
0.0 242.0

PENTAGON 6 15 nonlinear 0 0 15 0 1.509 × 10−4 0.56
�

�

�

�
1.365 × 10−4 8.159

�

�

�

�
1.365 × 10−4 7.019

POLAK1 3 2 linear 0 0 0 2 - -
�

�

�

�
2.718 0.289

�

�

�

�
2.718 0.409

POLAK3 12 10 linear 0 0 0 10 - -
�

�

�

�
5.933 27.40

�

�

�

�
5.933 21.25

POLAK5 3 2 linear 0 0 0 2 - -
�

�

�

�
50.00 0.409

�

�

�

�
50.00 0.350

POLAK6 5 4 linear 0 0 0 4 - -
�

�

�

�
-43.9 1.570

�

�

�

�
-43.9 2.029

QC 9 4 nonlinear 0 0 4 0 -956.5 0.58
�

�

�

�
-1076 5.509 -956.5 0.620

READING6 102 50 nonlinear 0 50 0 0 - - -101.18 252.17
�

�

�

�
-125.38 676.0

RK23 17 11 linear 4 7 0 0
�

�

�

�
0.0833 0.75 2.883 43.61 1.555 23.25

ROBOT 14 2 quadratic 0 2 0 0 5.463 0.55 5.463 71.79 5.463 8.609

continued on next page
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Problem

IDs

nv nc f(x)
h(x) g(x) LANCELOT CSAAT−ID CSAGAAT−ID

nle nne nli nni solution CPU time solution CPU time solution CPU time

S316-322 2 1 quadratic 0 1 0 0 334.3 0.48 334.3 0.070 334.3 0.179

SINROSNB 2 1 nonlinear 0 0 0 1 0.0 0.56 0.0 1.23 0.0 1.15

SNAKE 2 2 linear 0 0 0 2 - -
�

�

�

�
0.0 0.002

�

�

�

�
0.0 0.019

SPIRAL 3 2 linear 0 0 0 2 0.0 0.71 0.0 2.039 0.0 2.876

STANCMIN 3 2 nonlinear 0 0 2 0 4.25 0.58 4.25 0.140 4.25 0.170

SVANBERG 10 10 nonlinear 0 0 0 10 - -
�

�

�

�
15.73 12.51

�

�

�

�
15.73 9.229

SYNTHES1 6 6 nonlinear 0 0 4 2 - -
�

�

�

�
0.759 2.269

�

�

�

�
0.759 3.509

SYNTHES2 11 14 nonlinear 1 0 10 3 - -
�

�

�

�
-0.55 22.71

�

�

�

�
-0.55 40.39

SYNTHES3 17 23 nonlinear 2 0 17 4 - -
�

�

�

�
15.08 53.15

�

�

�

�
15.08 31.5

TENBARS4 18 9 linear 0 8 1 0 - -
�

�

�

�
368.4 251.3

�

�

�

�
368.4 171.5

TWOBARS 2 2 nonlinear 0 0 0 2 1.51 0.53 1.51 0.100 1.51 0.179

WOMFLET 3 3 linear 0 0 0 3 - -
�

�

�

�
0.0 0.170

�

�

�

�
0.0 0.169

ZAMB2-8 138 48 nonlinear 0 48 0 0
�

�

�

�
-0.153 1.20 1.279 5633 1.132 7631

ZECEVIC3 2 2 quadratic 0 0 0 2 97.31 0.54 97.30 0.079 97.30 0.119

ZECEVIC4 2 2 quadratic 0 0 1 1 7.558 0.59 7.558 0.079 7.558 0.120

ZY2 3 2 nonlinear 0 0 0 2 2.0 0.46 2.0 0.280 2.0 0.409
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Figure 5.5: Normalized solution qualities and normalized CPU times of CSAAT−ID and

CSAGAAT−ID with respect to LANCELOT in solving derived discrete CUTE benchmarks

that are solvable by all CSAAT−ID and CSAGAAT−ID and LANCELOT.
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Figure 5.6: Normalized solution qualities and normalized CPU times of CSAAT−ID and

CSAGAAT−ID with respect to LANCELOT in solving derived mixed-integer CUTE bench-

marks that are solvable by all CSAAT−ID and CSAGAAT−ID and LANCELOT.
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Table 5.10: Discrete constrained NLPs derived from selected CUTE problems that were

solvable by LANCELOT but not by CSAAT−ID and CSAGAAT−ID at this time. All times

are in seconds on a Pentium-III 500-MHz computer running Solaris 7.

Problem

IDs

nv nc f(x)
h(x) g(x) LANCELOT

nle nne nli nni solution CPU time

BRAINPC0 6907 6900 nonlinear 0 6900 0 0 1.5E-3 55.5

BRAINPC1 6907 6900 nonlinear 0 6900 0 0 0.0 84.8

BRAINPC2 13807 13800 nonlinear 0 13800 0 0 4.1E-8 93.2

BRAINPC3 6907 6900 nonlinear 0 6900 0 0 1.687E-4 89.4

BRAINPC4 6907 6900 nonlinear 0 6900 0 0 1.288E-3 79.1

BRAINPC5 6907 6900 nonlinear 0 6900 0 0 1.362E-3 143.7

BRAINPC6 6907 6900 nonlinear 0 6900 0 0 5.931E-5 85.2

BRAINPC7 6907 6900 nonlinear 0 6900 0 0 3.82E-5 109.4

BRAINPC8 6907 6900 nonlinear 0 6900 0 0 1.652E-4 112.8

BRAINPC9 6907 6900 nonlinear 0 6900 0 0 8.27E-4 68.2

BRITGAS 450 360 nonlinear 0 360 0 0 0.0 8.3

C-RELOAD 342 284 linear 26 174 0 84 -1.027 51.1

HYDROELL 1009 1008 nonlinear 0 0 1008 0 -3.586E6 70.5

LEAKNET 156 153 linear 73 80 0 0 8.0 25.7

SARO 4754 4015 linear 0 4015 0 0 252.3 3739.0

SAROMM 5120 5110 linear 365 4015 730 0 57.35 9147.5

TWIRISM1 343 313 nonlinear 50 174 5 84 -1.01 136.1

TWIRIMD1 1247 544 nonlinear 143 378 5 186 -1.034 10158

ZAMB2-10 270 96 nonlinear 0 96 0 0 -1.58 2.99

ZAMB2-11 270 96 nonlinear 0 96 0 0 -1.116 1.83
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Table 5.11: Mixed-integer constrained NLPs derived from selected CUTE problems that were

solvable by LANCELOT but not by CSAAT−ID and CSAGAAT−ID at this time. All times

are in seconds on a Pentium-III 500-MHz computer running Solaris 7.

Problem

IDs

nv nc f(x)
h(x) g(x) LANCELOT

nle nne nli nni solution CPU time

BRAINPC0 6907 6900 nonlinear 0 6900 0 0 1.5E-3 55.5

BRAINPC1 6907 6900 nonlinear 0 6900 0 0 0.0 84.8

BRAINPC2 13807 13800 nonlinear 0 13800 0 0 4.1E-8 93.2

BRAINPC3 6907 6900 nonlinear 0 6900 0 0 1.687E-4 89.4

BRAINPC4 6907 6900 nonlinear 0 6900 0 0 1.288E-3 79.1

BRAINPC5 6907 6900 nonlinear 0 6900 0 0 1.362E-3 143.7

BRAINPC6 6907 6900 nonlinear 0 6900 0 0 5.931E-5 85.2

BRAINPC7 6907 6900 nonlinear 0 6900 0 0 3.82E-5 109.4

BRAINPC8 6907 6900 nonlinear 0 6900 0 0 1.652E-4 112.8

BRAINPC9 6907 6900 nonlinear 0 6900 0 0 8.27E-4 68.2

BRITGAS 450 360 nonlinear 0 360 0 0 0.0 8.3

C-RELOAD 342 284 linear 26 174 0 84 -1.027 51.1

HYDROELL 1009 1008 nonlinear 0 0 1008 0 -3.586E6 70.5

LEAKNET 156 153 linear 73 80 0 0 8.0 25.7

SARO 4754 4015 linear 0 4015 0 0 252.3 3739.0

SAROMM 5120 5110 linear 365 4015 730 0 57.35 9147.5

TWIRISM1 343 313 nonlinear 50 174 5 84 -1.01 136.1

TWIRIMD1 1247 544 nonlinear 143 378 5 186 -1.034 10158

ZAMB2-10 270 96 nonlinear 0 96 0 0 -1.58 2.99

ZAMB2-11 270 96 nonlinear 0 96 0 0 -1.116 1.83
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5.4.3 Comparison results with branch and bound methods

We compare our methods with MINLP BB [16], an MINLP solver using the branch and

bound method, in solving selected problems in the MINLP benchmark suite MacMINLP [22].

We summarize the experimental results in Table 5.12. The first column lists the prob-

lem IDs. We select all the problems with no more than 100 variables in MacMINLP [22].

The next five columns show, respectively, the type of objective function (linear, quadratic,

or nonlinear), the number (nv) of variables, the number (ni) of integer variables, the

type of constraint functions (linear, quadratic, or nonlinear), and the number (nc) of

constraints. The next six columns show the solutions and CPU times that we ob-

tained by using MINLP BB (by submitting problems to the NEOS server at http://www-

neos.mcs.anl.gov/neos/solvers/IP:MINLP-AMPL/), CSAAT−ID and CSAGAAT−ID, respec-

tively.

For the problems that CSAAT−ID and CSAGAAT−ID can solve, our methods are much

better than MINLP BB in terms of solution quality. For example, CSAAT−ID found a so-

lution of objective value 1.856 and CSAGAAT−ID found a solution of objective value 1.877

for problem SPRING, but MINLP BB failed to find a feasible solution. For problem TRIM-

LOSS2, MINLP BB found a feasible solution of objective value 5.3, whereas CSAAT−ID and

CSAGAAT−ID found a solution of objective value 2.33.

However, the running time of CSAAT−ID and CSAGAAT−ID are not competitive with

those of MINLP BB for solving large problems. This happens because CSAAT−ID and

CSAGAAT−ID are sampling based, whereas MINLP BB utilizes information on derivatives

of functions during search.

Finally, we should point out that branch and bound methods are not able to solve con-

strained NLPs in classes C5, C6, C8 and C9, since they require differentiability of functions.
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Our methods, CSAAT−ID and CSAGAAT−ID, are general, derivative-free methods that are

able to solve constrained NLPs in classes C2-C9.
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Table 5.12: Results comparing CSAAT−ID, CSAGAAT−ID and MINLP BB [16] in solv-

ing selected MINLPs from MacMINLP benchmark suite [17]. All times for CSAAT−ID

and CSAGAAT−ID are in seconds on a Pentium-III 500-MHz computer running So-

laris 7. All times for MINLP BB are in seconds on the NEOS server at http://www-

neos.mcs.anl.gov/neos/. ’-’ means that no feasible solution can be found. Boxed numbers

represent the best solutions among the three methods if they have different solutions.

Problem
objective nv ni constraints nc

MINLP BB CSAAT−ID CSAGAAT−ID

ID solution T solution T solution T

BATCH nonlinear 46 24 nonlinear 73 285507 0.58
�

�

�

�
9.16308 96.78

�

�

�

�
9.16308 41.82

C-SCHED1 nonlinear 73 60 linear 16
�

�

�

�
-30639.3 0.42 - - - -

FEEDLOC linear 90 37 nonlinear 259 - - - - - -

MITTELMAN nonlinear 16 16 nonlinear 7 16 0.26
�

�

�

�
2.65625 0.01

�

�

�

�
2.65625 0.01

OPTPRLOC quadratic 30 25 quadratic 29
�

�

�

�
-8.06414 0.78 -2.502 38.59 -2.502 21.95

SPRING nonlinear 17 11 nonlinear 10 - -
�

�

�

�
1.856 29.34 1.877 14.16

SYNTHES1 nonlinear 6 3 nonlinear 6 6.00976 0.01
�

�

�

�
2.3756 0.76

�

�

�

�
2.3756 0.60

SYNTHES2 nonlinear 11 5 nonlinear 14 73.0353 0.04
�

�

�

�
3.285 18.90

�

�

�

�
3.285 12.58

SYNTHES3 nonlinear 17 8 nonlinear 19 68.0097 0.10 3.2659 204.53
�

�

�

�
3.2657 370.67

TRIMLON2 linear 8 8 nonlinear 12 5.3 0.11
�

�

�

�
2.3312 52.37

�

�

�

�
2.3312 34.52

TRIMLON4 linear 24 24 nonlinear 26 11.1 6.70
�

�

�

�
2.528 30.01 2.553 105.10

TRIMLON5 linear 35 35 nonlinear 33 12.5 10.60
�

�

�

�
2.674 418.42

�

�

�

�
2.674 1385.49

TRIMLON6 linear 48 48 nonlinear 41
�

�

�

�
27 13.71 - - - -

TRIMLON7 linear 63 63 nonlinear 42 - - - - - -

TRIMLOSS2 linear 37 31 nonlinear 24 5.3 2.59
�

�

�

�
2.33 27.73

�

�

�

�
2.33 22.27

WIND-FAC linear 15 3 nonlinear 14
�

�

�

�
0.254487 0.04 1.627 259.86 1.627 186.92
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5.5 Summary

Anytime search algorithms are important in solving large complex constrained NLPs in which

the time to find a CGMdn is limited, and suboptimal CLMdn are acceptable if they can be

found within the time limit.

In searching for a CLMdn of certain quality level, SSAAT−ID controls the scheduling and

duration of multiple runs of SSAs by iterative deepening in order for the overhead in the last

SSA to dominate the total overhead of all SSA runs in the schedule.

In designing an anytime search that finds gradually improving CLMdn with increased

time, based on a statistically exponential model, SSAAT−ID controls objective targets by

iterative deepening in order for the overhead in the last SSA run to dominate the total

overheads of all previous runs. The last objective target is the CGMdn of the problem.

For both CSAAT−ID and CSAGAAT−ID, we have proved their optimality and show that

they have the same order of magnitude in terms of completion time as that of the original

SSA with an optimal schedule.

Experimental results on discrete and mixed-integer benchmarks show the improvements

of CSAAT−ID and CSAGAAT−ID over SQP. Even though SQP can quickly solve continuous

benchmarks, discretization of its continuous solutions may lead to either infeasible discrete

solutions or worse solutions. Further, SQP cannot be used to solve problems whose deriva-

tives are difficult to evaluate or are unavailable.

Experimental results on a standard MINLP benchmark suite show that CSAAT−ID and

CSAGAAT−ID can improve solution qualities over branch and bound methods. But branch

and bound methods are better than CSAAT−ID and CSAGAAT−ID in terms of solution

times. Similar to SQP, branch and bound methods also cannot be apply to solve problems

whose functions are not differentiable.
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Chapter 6

Conclusions

In this thesis, we have studied optimal schedules for controlling multiple runs of SSAs in

order to solve general constrained NLPs in discrete, continuous and mixed-integer space.

The NLPs we study are general in the sense that their functions may not be differentiable

or convex.

We have proposed a general search framework for solving constrained NLPs. The frame-

work is based on the theory of discrete constrained optimization using Lagrange multipliers.

The main result of the theory gives a first-order necessary and sufficient condition for con-

strained local minimization in discrete space that shows a one-to-one correspondence between

CLMdn and SPdn. To implement this theory, we propose a general search framework that

performs descents of Ld in the original-variable subspace and ascents of Ld in the Lagrange-

multiplier subspace in order to reach equilibrium at SPdn. The general framework unifies

existing methods, such as DLM and CSA. New constrained algorithms, CGA and CSAGA,

were derived from the framework by incorporating genetic algorithms in its search mecha-

nisms.

All these constrained algorithms are stochastic search algorithms (SSAs) that succeed in

finding a solution of desired quality with a reachability probability less than one in one run
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when the number of probes is finite. To enhance the probability of finding a solution, we

make multiple runs of an SSA in order to minimize its expected time in finding a solution

of desired quality. The trade-offs between the success probability and the number of probes

spent raises an important issue in using SSAs; namely, the scheduling of multiple runs

of an SSA. In this thesis, we have proposed the theory of SSAs that studies the optimal

scheduling of SSAs. The theory proposes to use iterative deepening in order to derive the

optimal schedules dynamically. We then prove the optimality of the schedules. We have also

extended the theory to the scheduling of multiple runs of SSAs in parallel. We have proved

the NP-completeness of the parallel scheduling problem, proved the performance limitations

of different classes of parallel schedules, and proposed approximate schedules with iterative

deepening that are optimal for the class of synchronous parallel schedules. Our theory is

general and has been applied to CSA, CGA and CSAGA in this thesis.

Based on the optimal schedules of SSAs, we have proposed anytime search schedules

that generate solutions of improved quality as more time is used. Such an algorithm is

desirable when solving large complex NLPs and in real-time applications in which suboptimal

solutions are acceptable if they can be found within reasonable time. Based on an exponential

model relating objective quality targets and expected search times, we have proposed a

linear schedule of successively improving quality levels in such a way that the time used

to find a solution with the best quality dominates the overall search time. Our proposed

anytime schedule is optimal in the sense that the time it takes to find feasible solutions of all

quality levels is of the same order of magnitude as that taken by the original SSA with an

optimal schedule to find a CGMdn. Experimental results of our proposed anytime schedule on

standard engineering benchmarks have shown the wide applicability, adaptability in choosing

suitable schedules, and robustness in generating anytime solutions with improved quality.
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In short, our general search framework provides a unified way for solving nonlinear con-

strained nonlinear optimization problems.
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