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Abstract of thesis entitled:
Learning New Features for Effective Dense Matching Using Meta-
Level Deep Neural Networks
Submitted by ZHANG Feihu
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in XX 2017

In dense Matching (including stereo matching and optical flow),
nearly all existing approaches are based on simple features, such as
gray or RGB color and gradient or simple transformations like cen-
sus, to calculate matching costs. These features do not perform well
in complex scenes that may involve radiometric changes, noises,
overexposure and/or textureless regions. Various problems may ap-
pear, such as wrong matching at the pixel or region level, flatten-
ing/breaking of edges and/or even entire structural collapse.

In this thesis, we first propose two fundamental principles based
on the consistency and distinctiveness of features to identify the real
good feature for dense matching and show that almost all existing
problems in dense matching are caused by features that violate one
or both of these principles. Then, to systematically learn good fea-
tures for dense matching, we formulate these two principles as a gen-
eral multi-objective optimization for the learning system and studied
the trade-off between the two principles. Finally, to overcome the

problem that traditional learning systems (e.g. convolutional neural



networks) only tries to find a model with fixed parameters that opti-
mize the average behavior over all inputs, without considering data-
specific properties (e.g. variances in texture or illuminance condi-
tions), we proposed a new meta-learning method which could learn
and assimilate continuous meta-knowledge into the base model to
make the weights/parameters adaptive to different inputs without
losing generalization capability. The proposed meta-level learning
strategy is applied to deep neural networks (DNNs) which finally
works as the feature extractor to find the effective features for dense
matching.

By using two-frame optical flow and stereo matching as applica-
tions, we verify the effectiveness of the proposed feature principles
and objective model. Our experimental results show that the features
learned can significantly improve the performance of state-of-the-art
dense matching algorithms and based on the KITTI benchmarks, our
method ranks first on the two stereo benchmarks by the end of 2016
and is the best among existing two-frame optical-flow algorithms on
flow benchmarks. Besides, by comparing with the state-of-the-art
DNN architectures (e.g. inception net, residual net efc.), the feature
extractors implemented by our MLLNN achieves lower error rates in

both stereo matching and optical flow.
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Chapter 1

Introduction

In this chapter, we give an overview of the feature extraction in dense
matching and focus on the challenges, motivations and our major
contributions to this topic. After that, we describe the organization
of the thesis.

1.1 Motivation

Stereo matching, optical flow and other dense-matching applications
have always been hot issues in computer vision. In the past, a num-
ber of methods have been developed to solve these problems. These
methods consist of three steps: extracting features and their descrip-
tors, computing the matching cost and/or aggregation [19,49,57,75],
and applying matching algorithms [&, 25, 65] to minimize some en-
ergy functions.

In recent years, there is a lot of attention on the last two steps.
However, little has been done on feature extraction that is critical in
dense-matching. The most popular features for stereo matching and

optical flow are still limited to some kind of color space or gradi-
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(a) Inputs examples (b) CostFilter [57] (c) PMBP [§]

Figure 1.1: An illustration of the Consistency Principle using optical flow as
an example. Results on flow field are visualized by the color coding technique
used in [18]. (a) Input views (from KITTI dataset [18]). Enlarged red windows,
illustrating color inconsistencies, are usually caused by radiometric variations,
view-angle changes and over exposure. (b) Original CostFilter [57] with simple
color+gradient features and the improved results using our proposed feature. (c)
Original and improved PMBP [¢] by using 32-channel fast-flow features to im-
prove these matching methods. (See Section 5.2 for a description of the features.)

ent values [26]. Although these simple features are fast to compute
and flexible (like in scaling and subpixel interpolation), they are eas-
ily influenced by radiometric changes, noise, overexposure and the
scene environment (as shown in Fig. 1.1). This is also the major
reason why some of the best methods that work well on benchmarks
of simple indoor scenes [59] report limited success on benchmarks
of complicated outdoor scenes [18]. On the other hand, the pop-
ular sparse features used for shape matching and object detection
(including SIFT [47] and SURF [7]) which are scale and radiomet-
ric invariant met their limitations on performance improvement and
flexibility when directly applied to dense matching. These methods
were not designed for dense matching from the beginning, and they
usually involve a complex step on label densifying [79].

Instead of developing new features for dense matching, some re-
cent methods [ | 7,76] introduce convolutional neural networks (CNNS5s)

to compare the similarity of a pair of patches and use the similarity
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score as the matching cost. These help achieve high accuracy when
used in some stereo matching methods [76]. To address their high
computational cost, Zbontar et al. proposed a faster framework with
some sacrifice in accuracy [/7]. However, as its time complexity
depends on the displacement space, it still cannot be used for opti-
cal flow and other complex algorithms, such as continuous matching
with slanted surface or subpixel accuracy. (The time complexity is
O(K N M), with size K of displacement space, N pixels, and com-
putation complexity M of CNN.)

The primary problem in developing better dense matching algo-
rithms is to identify good features. There has been little work in
this area. A direct approach [26, 27] collects the error rates when
employing one type of features in a specific algorithm. The rates,
however, are not useful for designing feature extractors because they
cannot provide quantitative information on the features of each pixel
and/or region. Also, it is impractical to use them as targets because
not only is it time consuming to run matching algorithms during
feature extraction, the error rate of one matching algorithm cannot

represent the feature’s performance in other algorithms.

1.2 Principles to Identify Good Features

To identify the real good feature for dense matching, we identify
two fundamental principles on good features that each pixel should
possess in order to be effective for dense matching. These principles
help understand the requirements on good features for dense match-
ing, as well as identifying the weaknesses of existing algorithms (as

they violate one or both of these principles).
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The first principle, the Consistency Principle, states that a feature
point (a pixel/location where the feature performs well) should own
the same or similar feature descriptors (such as RGB values when
color is used as the feature) when it appears in different image views
(such as the left and right views of a stereo pair). For example,
many existing features like color or gradient are highly influenced
by noise, radiometric variance, scaling change, translation and/or
rotation. As illustrated in Fig. 1.1, such external disturbances can
easily break the consistency of features between different views.

The second principle, the Distinctiveness Principle, states that
a feature point should be different enough with respect to other
points/pixels in its surrounding regions. For instance, when using
color as the feature, pixels at a corner are unique, whereas those in
smooth regions are not distinct. In large smooth regions, the prin-
ciple is violated in many state-of-the-art features [8, 9,43] because
the color of all the pixels in these regions are very similar. As illus-
trated in Fig. 1.2, the lack of distinctiveness lead to wrong matches
in these regions.

The above two principles can guide us in finding good features.
To facilitate the search of such features, we formulate a multi-objective

optimization that incorporates both principles as objective:

min F'(X, @), (1.1)

where, X is the training data/images, ® is the feature extractor and
C' is the search space for ®. The definition of the objective function

F gives the answer to the question that what is the real good feature.
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(a) Left View

(d) PatchMatch [9] (e) MC-CNN [76] (f) [9] with Our Feature

Figure 1.2: An illustration of the Distinctiveness Principle using stereo match-
ing as an example. (a) Left and (b) right views from Middlebury dataset [59].
(c) Ground truth (with disparity values visualized). (d) Original patchmatch
stereo [9] with color+gradient features. (e) Poor subpixel accuracy produced by
MC-CNN [76] that cannot be used for continuous stereo matching. (f) Signifi-
cant improvements when our 32-channel fast stereo features are embedded in the
original patchmatch algorithm [9].

1.3 Meta-Level Learning for Feature Extraction

Above model can be used to systematically learn good features.
While, in such a model Eq.(1.1), the feature extractor ® is another
key element. It defines the searching space of the solutions and
would heavily influence the features/solutions’ performance. In the
traditional learning systems (e.g. CNNs), the model are always trained
by optimizing the objective across all training data in order to find
a model with fixed structure and weights. It only optimizes the av-
erage behavior across all training data, without specializing to their

variations. That is in the above model, it’s impossible for one kind
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Figure 1.3: Using image super-resolution (Appendix A) to illustrate the benefit of
dynamic model adaptation to inputs. Left: Test errors for each type of inputs with
a mixture of nature images (solid lines) and screenshots (dashed lines) as training
data. Our proposed meta-level system (MLNN) (red lines) with model adaptation
performs better than training after static manual classification (orange lines) and
original CNNs without data classification (blue lines). Right: Training and testing
results for a mixture of five types of images.

of @ to perform well in all regions with different texture and illumi-
nance conditions.

As a comparison, when we manually classify training data into
multiple classes according to their meta-level differences, and train
each to learn a unique model, the results can be significantly im-
proved ( as shown in Fig. 1.3). Namely, the objective model is fur-

ther improved as:

min D F(Xi,6) (12)

0<i<K

where, ¢; is the model/feature extractor for each kind of input X;.
Obviously, such an approach is onerous. In dense matching,
where each pixel is an input as well as a target, it is impossible to
manually classify them. There are another two alternative solutions.
First, we can train a second classifier to categorize the data before

selecting the proper model as done in many meta-learning systems
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Figure 1.4: Comparisons between model Eq.(1.3) and model Eq.(1.4). Left: Clas-
sification results help to select the proper model. The classification results are
discrete and exclusive. The error could be easily accumulated step by step. Right:
The proposed model learned continuous meta-knowledge I'(X) and directly em-
bedded it into the generalization part ¢ to make it adaptive. [' and ® are learned
simultaneously. There is no accumulated errors.

[42,62]. Namely,

- T
min F(X, &* - C(X)), (1.3)

where, T = ¢y, ¢1, ...¢;] are the models/feature extractors for K
kind of input X. The classifier C is pre-trained with an one-hot
decision vector (e.g. C(Xy) = [1,0,...0,...]) as the output.

However, the classification results are discrete and exclusive and
it is hard for the new classifier to accurately classify every input,
leading to the possible selection of an improper model. Moreover,
the number of classes is unknown and can be infinitely many.

Another better solution is done in this thesis, which is to realize
the simultaneous automatic classification and dynamic model selec-
tion with generalization. This is realized though learning and assim-
ilating a flow of continuous meta-information into the base model.
So, the objective is finally improved as

min F(X, ¥(I'(X), ©)). (1.4)
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where, I is used to learn the meta-knowledge, and ¥ combines the
learned meta-information directly into the base feature extractor ®
to make it adaptive to different kinds of inputs without losing gener-
alization. As shown in Fig.1.4, ¥(I'(X), ®) is learned and optimized
simultaneously and a flow of continuous meta-knowledge is directly
combined into the feature extractor to make it adaptive. There is no
classification or accumulation of errors. Therefore, it is far better
than models 1.1-1.3.

1.4 Summary of the Contributions

The major contributions in this thesis lie in that 1) we propose two
fundamental principles which helps to identify the real good feature
for dense matching; 2) we formulate these two principles as a multi-
objective model to learn the effective features for dense matching
and study the trade-off between these two principles; 3) we pro-
pose a new meta-level learning system which learns and assimilates
continuous meta-knowledge into the feature extractor to realize its
adaptive behaviors for different inputs and different regions.

The features learned through the proposed method possess the
following good properties. a) High accuracy with robustness to
noise and radiometric changes. Our evaluations on benchmarks
show that our feature-based method outperforms the current best.
b) Flexible for use in almost all existing dense-matching algorithms.
These are similar to RGB values (e.g. scaling and subpixel interpola-
tion are possible for continuous and pyramid-matching algorithms).
c) Fast speed. The feature extractor consists of several convolu-

tional layers and can be implemented efficiently (e.g., a 16-channel
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fast feature can be extracted in 20 fps). Also, the new features do not

increase the time complexity of the original matching algorithms.

1.5 Organization of the Thesis

The rest of thesis is organized as follows. After reviewing previous
work and their challenges in Chapter 2. In Chapter 3, we propose
and analyze the two fundamental principles (Section 3.1) and these
two principles are formulated as objective function F' of Eq.(1.4)
(Section 3.2). Chapter 4 describes the theory of metal-level learning
system which is used to build the adaptive feature extractor of the
general model Eq.(1.4). Then, the implementation of the whole sys-
tem is presented in Chapter 5. The experimental results in Section
6 demonstrate that our approach is effective and efficient. Finally,

Section 7 concludes the thesis.

O End of chapter.



Chapter 2

Background Study

In this chapter, we give a literature review on the three aspects of the
proposed general model of Eq.(1.4): 1) feature extraction in dense
matching which helps to understand the principles and objective
function F' proposed in the next section. 2) weakness of the exist-
ing meta-learning and dynamic neural networks and the strength of
the proposed meta-level neural networks (MLNN) which will finally
work as the feature extractor of the general model and 3) methods to
optimize a multi-objective model which are the necessary for us to

optimize the model and study the trade-off.

2.1 Feature Extraction in Dense Matching

In this section, we discuss the related knowledge in developing ob-
jectives for feature extraction, namely what is the real good feature
for dense matching.

Traditinally, a dense matching framework usually consists of three
steps: extracting local feature descriptors, calculating and aggre-

gating matching costs, and matching the descriptors by minimizing

10
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some energy functions. Based on the available features, matching
cost can be defined as the distance or difference between two feature
descriptors. Common functions used include the sum of absolute
or squared distances (SAD/SSD), and normalized cross-correlation
(NCC) as well as their mixed or truncated versions [27].

Cost aggregation and matching algorithms have been well studied
in the past. Many powerful approaches have been proposed, includ-
ing fast cost-aggregation methods [19,49,52,57,75] and matching
algorithms [0, 8,25, 65]. They are effective and perform well under
some simple synthetic or indoor scenes. However, they may perform
poorly when applied to complicated outdoor scenes (for instance,
the KITTI datasets [5]) because the simple color or gradient-based
features they employ for calculating matching costs cannot address
the nuances in complex scenes. Various problems, such as wrong
matches in pixels or regions, flattening/breaking in edges, and/or
collapse of the whole structure, may arise when involving radiomet-
ric changes, noises, overexposure and/or textureless regions.

In general, features form the foundation of dense matching ap-
proaches. In state-of-the-art dense matching schemes, features are
more important than the matching-cost function used. As shown
in Fig’s 1.1 and 1.2, good features can lead to impressive results,
whereas improper ones may lead to structural collapses. To this end,
we focus in this thesis on the development of methods for finding
good features.

As discussed above, one simple and widely used feature is the
color-space (e.g., RGB) and/or gradient values. Its biggest advan-
tage is that it can be flexibly and efficiently used in every dense

matching scheme. For instance, it can be used for scaling and sub-
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pixel interpolations to produce sub-pixel accuracy in some continu-
ous and pyramid dense matching approaches [3, 43, 72]. However,
it is easily influenced by radiometric changes, noise, overexposure
and textureless regions (as shown in Fig. 1.1).

As a compensation, some illuminance invariant features have been
proposed, including Laplacian of Gaussian, photometric correlation
by bilateral filter [3], and Adaptive Normalized Cross Correlation
(ANCC) [24]. However, they are still not robust enough for chal-
lenging outdoor scenes. Moreover, they may bring outliers and smooth-
ness effects to some object boundaries.

Some approaches have introduced radiometric and scale invari-
ant SIFT [47] or SURF [7] to their dense matching algorithms [79].
These features have been successfully used in object detection or
scene recognition. However, for dense matching, they are not re-
liable in every region because it is necessary to employ a complex
densifying procedure to generate dense matching maps. This re-
quirement limits their effectiveness and accuracy improvements.

Zbontar, et al. are the first to introduce CNNs to compute the
matching-cost matrix [76]. Their method uses a trained siamese
CNN architecture to learn the patch similarity score. It skips the
feature-extraction step and directly uses the score as the matching
cost. Such a method has largely improved the accuracy of some al-
gorithms (like SGM [25]). However, it sacrifices many good proper-
ties of the traditional feature-based framework; for instance, it can-
not be used in continuous or pyramid matching algorithms [8,9,73].
Also, its time complexity and memory requirement rely on the dis-
placement space and are issues in many large displacement dense

matching applications.
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In short, existing dense-matching applications generally find good
features by trying them one after another and by adjusting their pa-
rameters in order to achieve good performance on some benchmarks.
This is the reason why one effective matching scheme may degen-
erate greatly when applied to a new untested environment/dataset.
This has happened to many schemes (e.g. [8,9,43,73]) that cannot
produce good results on the challenging KITTI dataset, although
they have done well on others.

In this thesis, we identify two fundamental principles on good
features that each pixel should possess in order to be effective for
dense matching. These principles help understand the requirements
on good features for dense matching. Namely, we first identify what
is the real good features for dense matching through the proposed
consistency and distinctiveness principles and then formulate these
two principles into an objective function to automatically learn the
real good features for dense matching without relying on trial-and-

error strategy.

2.2 Meta-Learning and Dynamic Neural Networks

Besides the development of the objectives function mentioned in
previous section, another key elements in feature extraction system
1s the formation/definition of the feature extractor, since it defines
the search space of the solutions and heavily influences the perfor-
mance of the features found by the system. When using traditional
learning systems (e.g. CNNs), feature extractor @ is always trained
by optimizing the objective across all training data in order to find

a model with fixed structure and weights. Therefore, it’s impossi-
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ble for one kind of feature extractor to perform well in all regions
with different texture and illuminance conditions. In this section, we
analysis the existing methods which aim to realize the automatically
classification and model selection. They are the meta-learning sys-
tem and dynamic neural network models (for which the weights of

the model are varying along with the inputs.)

2.2.1 Meta-Learning Systems

In applications with diverse features, it is desirable to have algo-
rithms that dynamically adapt to the features [58, 63, 64]. Meta-
learning [42,62] is an approach that focuses on learning the charac-
teristics of a problem or its inputs that allows the system to select a
suitable model for new or unseen scenarios. By accumulating meta-
knowledge [70], meta-learning systems build self-adaptive learners
using algorithms that improve their bias dynamically.

Many existing approaches combine known solution models into
an integrated system and use meta-knowledge to select a proper
model. Chan et al. [10] proposed to combine the results of multi-
ple learning algorithms, each applied to a different set of training
data, in order for the system to adapt to diverse situations. Alexan-
dros et al. [1] used decision trees as inducers at the meta-learning
level and mapped dataset characteristics to inducer performance in
order to adapt inducers to datasets. Ali et al. [2] used meta-learning
in automatic kernel selection for support vector machines. Ferrari et
al. [16] developed a new method on distance-based problem char-
acterization and ranking combination for selecting clustering algo-

rithms.
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When applied to NN, existing meta-learning approaches can be
used to select among learned models in different scenarios. Such an
approach is inadequate because it is hard to enumerate all possible
cases, and an incorrect selection may result in even worse perfor-

mance.

2.2.2 Dynamic Neural Networks

Besides meta-learning systems, dynamic learning has been studied
for a long time. Recent work explored the idea of introducing more
flexibility in the network structure and their weights. Jaderberg et
al. [31] proposed the Spatial Transformer that allows the spatial
manipulation of data in a NN. Kalchbrenner er al. [35] proposed
structure-dynamic k-Max Pooling in order to handle input sentences
of varying lengths.

There were recent studies on weight-dynamic NNs. Noh et al.
[54] introduced a layer to generate dynamic outputs and to supply
them as parameters of another fully connected layer. Klein et al.
[37] designed a dynamic convolutional layer and used it for short-
range weather prediction. It used one independent branches to learn
the dynamic weights and then use these weights for convolutional
manipulation. However, in these work, a large amounts of parameter
need to be learned to construct the dynamic weights for the fully
connected or convolutional layers. Bert and Xu et al. [32] proposed
dynamic filter networks that generated different filters with adaptive
weights. This scheme do not need a large amount of parameters to
learn the adaptive weights. However, the capacities of these filters

are not always reliable compared with the original CNNs.
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To get similar modeling power as CNNs, Klein ef al. [37] and
Noh et al. [54] need a complex model to generate enough parame-
ters to run the convolutional computation. As a result, the size of
the model is often too large for existing back propagation solvers,
leading to overfitting or getting stuck in local minima. For example,
when we implement the dynamic convolutional layer [37] for fea-
ture extraction at each pixel, the network needs a hundred times of
parameters in order to construct a structure comparable to the orig-
inal CNNs. Such a network can easily get stuck into an all-zero
local minimum, and the memory for storing hidden layers increases
quadratically.

Different with all of them, in this thesis, we propose to com-
bine continuous meta-knowledge directly into the base model to
realize the dynamic properties of the filter kernels/weights without
losing the generalization capabilities. More importantly, the meta-
knowledge could be learned with only a small part of extra param-
eters (usually 5-10%), most of the parameters are still used to guar-
antee the generalization of the learned solutions. When applied this
strategy into the deep neural network, we are able to design a new
feature extractor which could realize the adaptive behavior over dif-

ferent inputs/regions without losing generalization capabilities.
2.3 Multi-Objective Optimization and Pareto Opti-
mality

In this thesis the general model is formulated as multi-objective. So,

in this section, we discuss the possible methods for multi-objective
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optimization.

A general multi-objective optimization can be defined as follows:

fi(o)

min F' = ) (2.1)
fr (o)
Solving Eq. (2.1) amounts to finding a representative set of Pareto
optimal solutions. Pareto optimality or Pareto efficiency is a state of
allocation of resources from which it is impossible to reallocate in
order to make any one objective better off without making at least
another objective worse off. The Pareto frontier is the set of all
Pareto efficient solutions that do not dominate each other. The fol-
lowing four classes of methods are widely recognized approaches.

A) Classical methods based on scalarizing. Scalarizing Eq. (2.1)
entails reformulating it into a single-objective optimization problem
in such a way that optimal solutions to the single-objective prob-
lem are Pareto optimal solutions to the original multi-objective prob-
lem [29]. Using different scalarization parameters, different Pareto
optimal solutions can be produced. There are two popular scalariza-
tion methods.

a) Linear scalarization (weighted-sum) methods [ 1]:

k
min F = Z wi fi(9), (2.2)
1=0

peC

which can be extended to more general non-linear forms.
b) e-constraint methods [| ] optimize one of the objectives and

reformulates the remaining as constraints:

min f;(¢) (2.3)

peC
st. fi(@) < e, i=1.ki#j, ¢¢€C.
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B) Methods based on lexicographic ordering assume that the
multiple objectives in Eq. (2.1) can be ranked in order of impor-
tance, with f; being the most important to the decision maker and f;,
the least important. The following sequence of optimization prob-

lems are then solved one at a time:

min f;(¢) (24)

peC
st fi <yl j=1l.k j#l, ¢€C,

where y? is the optimal value of the above problem with [ = j.

C) Methods based on evolutionary multi-objective optimization
(EMO) simulate the natural evolution by an iterative computation
process. An initial population is first created according to a pre-
defined scheme. Then a loop (generation) consisting of evaluation,
selection, recombination, and/or mutation is executed a number of
times until some termination condition is met. The best individuals
left in the population are output as Pareto optimal solutions. Exam-
ples of popular EMO algorithms include NSGA-II [12] and SPEA-
2 [36].

D) Other methods. In some special cases, no-preference meth-
ods [ 78] and interactive methods [51] can be used.

In this thesis, the feature extractor is defined as DNNs and trained
by a back-propagation solver with mini-batch gradient descent. As
gradient values must be propagated backward in every iteration, only
the formulations based on weighted sum in Eq. (2.2) and e-constraint
in Eq. (2.3) are applicable. Using a weighted sum is easy because
its gradient can be directly calculated. However, for the e-constraint
method, it is impossible to discard solutions out of the e-constraint

in the mini-batch-based training scheme. The only possibility is to
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give a heavy penalty when f;(¢) > ¢; and zero penalty otherwise in
order to make most of the training samples within the e-constraint.

This is similar to the widely used hinge-loss method.

O End of chapter.



Chapter 3

Objective for Feature Extraction

In this chapter, we present the formation of the objective function F’
of the general model Eq.(1.4):mingcc F/(X, V(I'(X), ®)). We first
present details of the consistency and distinctiveness principles in
Section 3.1 which help to identify what is the real good feature for
dense matching. Then, in the Section 3.2, the two principles are
further formulated as a multi-objective optimization which is used as
the objective function F'. (The formulation of the feature extractor

is presented in the next chapter.)

3.1 Maetrics of Features Satisfying Principles

To develop superior features for dense matching, we first present the
metrics on features that satisfy the consistency and distinctiveness

principles discussed in Chapter 1.

20
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) — feature extractor;

®(p) - feature descriptor at pixel p;

Lo — ground truth displacement;

l; — candidate displacement in label space S (I; € .5);

(e.g. for stereo, [; 1s the candidate disparity value).

For stereo matching, stereo images are well rectified, with displace-
ments in the x direction. In contrast, displacements for optical flow
occur in both the x and y directions. In evaluating features for dense
matching, there must be a related image pair (such as a stereo pair)
and a correspondence map that describes the displacement between
the corresponding pixels in the two images. Such a correspondence
map provides the ground-truth displacement [, at each pixel.

In all stereo-matching and optical-flow datasets, ground truths are
usually available and obtained by radar (for natural images). New
features can be learned and validated on the training data based on
the ground truths and then generalized to test data with the ground
truths hidden.

For any pixel p in one view and ¢; in another (¢; = p + [; as
shown in Fig. 3.1), let d(p, ¢;) be the distance between the feature

descriptors of p and ¢;. For convenience, we set:

d(p, ¢;) = d(®(p), ®(¢:)) = d(p,p + ;) = d(p, ;). (3.1)

Although there are many popular functions for d(p, ¢;), suchas L—1
distance ||®(p) — ®(¢;)||1 and L — 2 distance ||®(p) — P(¢;)

introduce in Eq. (5.2) of Section 5.2 our own distance functions that

|2, we

can be specialized for dense matching applications and tailored to
different feature extractors.

We then define the metrics for the two principles below.
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1) Consistency Principle. The principle requires a feature point
to own the same or similar feature descriptors when it appears in
different views. For d(p, q) defined in Eq. (3.1), the principle can be

stated in terms of the consistence measure.

f1(®) =d(p,q) = d(p,lp) =0 or = 0. (3.2)

To increase the consistency of features between different views,
f1 must be as small as possible. In practice, large d(p, ¢) in some
regions will lead to poor accuracy in matching algorithms. For ex-
ample, regions with noises and illuminance changes always have
larger average d(p, q).

2) Distinctiveness Principle. For pixel p in an image, let p; # p €
(1,, where (2, is the surrounding region (called distinctive region)
centered at p in the same image (to be defined more formally later).
The principle requires a feature to be distinct enough with respect to
other pixels in its surrounding region. It can be stated formally as

follows:
Vi €y, pi #p, d(p,pi) > m, (3.3)

where m is the threshold related to the vision system. For instance,
the threshold is known as the just-noticeable difference (JND) in
human vision systems [44,81]. There are plenty of studies that focus
on JND thresholds, which decide whether d(p, p;) is “good.” Note
that the performance of a feature is highly influenced by the size of
its distinctive region |(2,| (the larger the better). For example, Eq.
(3.3) will not be satisfied for pixels in a smooth region and |§2,,| = 0.

Since the consistency principle defines a relation between differ-

ent views, whereas the distinctiveness principle states a condition
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Figure 3.1: An illustration of the definition in Eq. (3.5). Here, ¢ = p + [ is the
best matched location for p. The red pixel g; = p + [; is the closest outlier to g.
Hence, the width and height of 2, is v = ||¢ — ¢jlcc = |llo — lj|c0-

between a pixel and its neighborhood in the same view, we can de-
duce from the consistency principle d(p;,¢;) ~ 0 = d(p,q) =~
d(p,p;) and d(p,q) ~ 0, where ¢ = p + [ is the best matched lo-
cation for p. Based on Eq. (3.2), we have d(p,¢;) = d(p,l;) and
d(p,q) = d(p,lp). The distinctiveness principle between different

views can be formulated as follows.
d(p,l;) — d(p,lo) >m' Vg =p+1; € Qy, 1; # lo, (3.4)

where m’ is the new JND threshold that varies in different matching
algorithms.
As shown in Fig. 3.1, we define the distinctive region (1, = ),

with width/height of 2v* and ground truth displacement [, as:

Q,={p+lL|lLies ||li—1blw<7"}withy" =max~y
s.t. d(p, lz) — d(p, lo) > m/,\V/ le — lOHoo < ’77lz 7& lhyes.

We now define f5 as a metric (normalized to the [0,1] range) for

the distinctiveness principle.

f2(®) = [8,[/15], (3.5)
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Table 3.1: Error rates under different precisions based on the results of MC-CNN
[76] from the KITTI 2012 stereo benchmarks. The results illustrate that more
errors appear around ground truths.

Error Threshold | Error of All Regions | Increased Error Rate
2 pixels 5.45 % 1.82%
3 pixels 3.63 % 0.78%
4 pixels 2.85 % 0.46%
5 pixels 2.39 % -

where |S| is the number of candidates in the search space S. The
value is better if it is larger. For example, when it is 1, the feature at
p 1s distinctive in the entire displacement space.

Before understanding the definition of f5, two important proper-
ties of any dense matching algorithms must be emphasized. Firstly,
outliers (for pixel p, [; is an outlier displacement for p if d(p, ;) —
d(p,ly) < m') are more likely to appear around a ground truth be-
cause pixels close to each other in an image usually share similar
texture, 1lluminance and color conditions that make them hard to
differentiate. Secondly, an outlier close to a ground truth has signif-
icant influence on the accuracy of matching, not because of its high
similarity to the ground truth but also their spatial proximity. These
facts make it hard to find correct matches among outliers close to a
ground truth.

Table 3.1 illustrates the above observations on some dense match-
ing results. It shows that 1.82% pixels are matched at the wrong lo-
cations 2-3 pixels away from the ground truths; 0.78% are wrongly
matched 3-4 pixels away; but only 0.46% are wrongly matched 4-5
pixels away.

The definition of f, is designed based on the properties above.

The value of f5 is decided by the outlier closest to the ground truth
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(a) (b)

Figure 3.2: An illustration of the distinctiveness principle with two matching-cost
maps. Each grid corresponds to one candidate that matches ¢; for p, with its color
representing the value of d(p, ¢;) (the brighter the larger). Our target is to find the
center grid corresponding to ground truth ¢, where any grid darker than the center
is an outlier. (a) fo = 0, with 24 outliers close to the ground truth. (b) f> ~ 0.5,
with more than 100 outliers that are all far from the ground truth.

and defines the size of the distinctive region in which there is no
outlier.

As illustrated in Fig. 3.2(a) with fo = 0, although there are only
24 outliers, it 1s hard for any matching algorithm to find the center
best matches. However, in Fig. 3.2(b) with f, =~ 0.5, there are
more than 100 outliers, but it is much easier to find the center best
matches. When the candidate displacement drops into the distinctive
region, the matching algorithm will be guided to converge to the
center pixel during cost aggregation.

Both principles are indispensable for characterizing good fea-
tures. As an illustration, we collect statistics on the effect of one
when that of the other is controlled. For example, we measure the ef-
fect on d(p, q) by keeping the left view fixed and by adding noise and
radiometric changes to the other. We then collect the data from those
regions where distinctiveness is well satisfied. Fig. 3.3(a) shows

how changing f;(®P) can influence the performance of a feature (in
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Figure 3.3: Effects of each principle on accuracy of the matching results. (a) The
effect of the consistency principle (f;) on accuracy of the stereo matching results.
Only regions where the distinctiveness principle is well satisfied is counted (fy >
0.95). (b) The influence of the distinctiveness principle (f2) on result accuracy.
Only regions where the consistency principle is well satisfied is counted (f; <
0.02). We use the evaluation method suggested in [26,27] to collect the accuracy
data. Different lines represent different matching algorithms, including a local
method Costfilter [57], a global method graph cuts and a continuous matching
algorithm Patchmatch [9].

terms of result accuracy) when fo(®) is fixed. The accuracy statis-
tics is collected using the evaluation method suggested in [26, 27].
Likewise, we choose those regions where the consistency principle
is satisfied and then collect the accuracy of these regions to see its
relationship to fs. Fig. 3.3(b) shows the trend on result accuracy due

to changing f>(®) when f;(®) is limited to a small value.

3.2 Optimization Model for Finding Good Features

Based on f; in Eq. (3.2) and f, in Eq. (3.5), we can formulate the
feature extraction problem as a multi-objective optimization over C,

a set of possible calculations/transformations (such as Laplacian of
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Gaussian (LoG) and Sobel operator) over pixels:

fi(@) ]
—fo(®) |

Eq. (3.6) defines the objective on good features for dense match-

min F' =

min (3.6)

ing. Its solution {®1, ...P,, } (feature extractors) is a set of Pareto op-
tima that are decision vectors whose objective cannot be improved
in any dimension without degrading the other. Specifically, solution
®; dominates ¢y (1 > P2) when

J1(®1) < f1(D2) & fo(P1) > fo Do)
or  fi(®1) < fi(P2) & fo(P1) > foDa). (3.7)

Solutions that are not dominated by others are called non-dominated,
and the set of all such solutions form a Pareto-optimal set or fron-
tier. Our target is to systematically find one or more Pareto-optimal
solutions for Eq. (3.6).

In Eq. (3.6), fi can be easily computed when given the feature
descriptors . However, f, is expensive to evaluate because, as de-
fined in Eq. (3.5), we need to traverse all candidate displacement
values in the whole displacement space S in order to calculate f> for
each pixel. Moreover, f5 is non-differentiable with respect to P.

To reduce the complexity of calculating f>, we develop f; to re-
place f> by using the following trend information on f,. According
to Eq. (3.5), we have the following observations.

1) A higher fo(®) comes with a lower outlier rate. As shown
in Fig. 3.1, €2, and f, for p are decided by the closest outlier /; to
ground truth displacement ;. Given any outlier distribution, f5 is,

therefore, directly proportional to the outlier rate.
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2) A high f5(®) also means that all the outliers are far from
ground truth [y; that is, the value of v* in Eq. (3.5) should be as
large as possible.

Hence, to increase f>, we can decrease the outlier rate as well as
control the distribution of outliers in order to make them all far from
the ground truth. Fortunately, these targets can be easily achieved
using f5(®) defined for each pixel p:

? U leeU Wy
where h(l;) =6 -hi(l;) + (1 = 6) - ha(l;)
hi(lj) = —7 - log(d(p, ;) — d(p, lo) + 7)
7 (d(p,l;) —d(p,lo) + 7

€
—7 -log(e) + 7

1 ifd(p,l;) —d(p,lo) +7 > ¢

(3.8)

0 otherwise

Li — oo
wj:exp<—w).

Here, U C S is a small subset from the whole displacement space S
chosen to reduce the high computational cost of f,. |U| represents
the number of samples in U. We use a small sample displacement
set U C S to improve training efficiency. In this thesis, U = U; UUs
contains two parts: U is a sample set of integer-precision displace-
ments and U a set of floating/sub-pixel displacements. d(p, ;) and
d(p, lo) can be easily achieved if [; € Uy. If I; € Us, we use the bi-
linear interpolation to obtain d(p, [%) and d(p, l). (I is also floating-
precision if I’ € Uy.)

w; 18 a popular spatial Gaussian weight for controlling the distri-
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bution of outliers (to give different penalties to make them far from
lp); T 1s used to adjust the penalty to sample [;; and h is a piecewise
function of hy and hs chosen as follows. hy is a slightly altered log
function of the hinge/margin Ad = d(p, ;) — d(p, lp): it gives large
penalties if Ad is small or negative, and small penalties otherwise.
hsy is a supplementary function for hq: it has the same value and
derivative/gradient at the intersection point with /1, and helps set an
upper bound to the derivative/gradient of h; to avoid it becoming in-
finity. € is a very small value chosen to avoid hs being infinity or an
imaginary number. As d(p,l) = d(®(p), P(p + 1)) is differentiable
with respect to ®, h and f} are continuous and differentiable, al-
though they are both piecewise functions. In short, the components
of f4 are chosen to give large penalties to closer outliers, while hav-
ing small penalties to non-outliers.

Fig. 3.4(a) shows that h(l;) is effective for reducing the outlier
rate. When [; is an outlier, it means that d(p, ;) — d(p, ly) is small
or even negative, and h(l;) gives it a higher penalty. On the other
hand, as different matching algorithms have different IND (m/), it is
hard to set a fixed value for m/. Instead of setting a fixed value like
hinge loss, the definition of /([;) can increase generalizability of the
features learned and remove the influence of m’ in our method.

Fig. 3.4(b) shows that f, is monotonically decreasing with in-
creasing f;. We calculate f; by sampling p and /; from the KITTI
datasets with the condition of f;<0.02. f5 is then calculated by
brute-force sampling. Both the sampled values of f> and f are then
averaged over a set of pixels. In this and the following experiments,
we used =10, 7=0.1, e=0.17. These parameters are used to adjust

the penalty and gradient of the function, as they help limit the maxi-
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Figure 3.4: An illustration of the monotonic behavior of f; with respect to fs. (a)
Monotonic trend of h(l;) with respect to d(p,(;) — d(p,ly). (b) Corresponding
monotonic relation between f> and f}. Data for f and f is collected by sampling
from the KITTI datasets. To calculate f5, we use m’ = 0. Note that different m’
does not change the monotonic behavior.

mum of the derivative/gradient’s absolute value || g&% |=2=10 and
o(f3)

set the baseline || A ||=1 if Ad=0. These choices are not unique,

and other reasonable values can also be used.
Finally the original objective in Eq. (3.6) is transformed to in-

clude f; and f} that are differentiable with respect to ®:

min F' = H1(2)

t N TS 39

F' of above model is used as the objective function in the gen-
eral models Eq.(1.4):mingec F/(X, ¥(I'(X), ®)). To get a complete
definition of the proposed model Eq.(1.4), the rest work is to give
the formation of the feature extractor which will be discussed in the

next chapter.

O End of chapter.



Chapter 4

Supplementary Meta-Learning

In the general model Eq.(1.4): mingec F(X, U(I'(X), ®)). Feature
extractor is another key element which significantly influence the
performance of the whole learning system. In this chapter, we will
discuss the proposed supplementary meta-learning method which
is used to make the feature extractor adaptive to different inputs.
Namely, we will talk about the formulation of ¥ (I'(X), ®).

To make the feature extractor adaptive, we need to realize simul-
taneous automatic classification and dynamic model selection with
generalization, we propose to use meta-learning to integrate the two
steps together. Meta-learning systems [7/0] adapt to specific situ-
ations by dynamically searching for the best learning strategy in
response to data diversity. It differs from base-level learning (like
CNNs) in terms of adaptation: meta-level learning studies how to
choose the right model dynamically, as opposed to base-level learn-
ing whose model is fixed with a priori assumptions (or inductive
bias [53]).

These years, deep neural networks (DNNs) have been shown ef-

fective in feature extraction for image classification, recognition and

31
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SNN
input — 5 r LX)
'
input ——> % ['(X) ————= output

BLNN : U(I(X), &)

Figure 4.1: Proposed meta-learning NN (MLNN) using SNN (with function I" and
['(X) outputs) and BLNN (¥ combines base ® and I'(X) together).

detection efc. In this thesis, the feature extractor 1s also defined as
DNNs. In the following section, we will describe the metal-level
learning strategy and its application in CNNSs.

Fig. 4.1 depicts our proposed meta-learning neural network (
MLNN) and its relationship with the general model (Eq.1.4). The
top supplementary NN (SNN) with a small number of weights con-
structs the function I' which learns and outputs meta-level informa-
tion I'(X) to the base-level NN (BLNN) that uses it as part of its
weights. The SNN is a traditional NN that abstracts meta-information
which is important for the BLNN to adapt to different inputs. The
BLNN maintains generalization using base traditional NN ®, and re-
alizes the dynamic behaviors with the meta-information I'(X) from
SNN. It combine the meta-information into the base NN and achieve
the adaptive feature model ¥ (I'(X), ®). Such a system can be trained
by backward propagation and achieves far better performance when
compared to traditional CNNs, especially on complex problems with

large data diversity.
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4.1 Assimilation of the Continuous Meta-Knowledge

In a traditional NN like CNN, we can assume feature extractor & =
{W,b}, with W as the convolutional filter, and b as the bias vector.

The output Y; for input X; of the layer can be represented as follows,
Y,=W-X;+b, (4.1)

The problem is that in above model, the solver optimizes an av-
erage behavior over input X = {X, ..., X,,} to result in fixed W and
b independent of input. That is, all inputs share the same model
despite their individual features.

Let I'(X;) in Fig. 4.1 be the learned meta-knowledge for X,
where I is the function to be learned. To combine I'(X;) into the

original convolutional model, we split it into two parts as follows.
['(X;) = {T'w(X;), I'n(X;) }. 4.2)

We then combine I' into the two parts of Eq. (4.1) by the simple
dot product and addition.

Y; = [Iw(Xi) - WIX; + [I(X5) + b (4.3)
where W; =T'w(X;)-W; b, =T, (X;) +b.

The meta-knowledge introduced in Eq. (4.3) allows different
situations to be classified accordingly. The fixed part {W,b} in
Eq. (4.1) enables generalization of each class to unseen cases. The
model, however, can adapt to different inputs, as the meta-knowledge
captured by SNN and realized as {I'y, I', } will change with differ-
ent inputs. Since the learning of both parts is done simultaneously
in our model, the classification and generalization of each input can

be realized in an integrated manner.
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4.2 Matrix Setting

We discuss in this subsection the setting of {I'y, ', } in Eq. (4.3).
For {W,b} in @, we assume W is an NV x M matrix, and bis an N x 1
vector. To keep the matrix sizes consistent, we set {I'w(X;), I'n(X;)}
as an N x N matrix and an NV X 1 vector, respectively.

Since the output of I', 1s an N x 1 vector that can be easily
learned, we focus on I'y. Learning such a function is expensive
as it needs many new parameters to fit I'y, and N? memory to store
intermediate and final outputs. To reduce the burden in learning,
we need to simplify I'y by reducing the number of parameter to
learn the function I'. There are three possibilities here: a) using a
matrix with repeated elements, e.g. circulant matrix, b) choosing a
matrix with special element distribution, e.g. each row satisfies the
Gaussian distribution that requires learning its mean and standard
deviation, c) employing a sparse matrix.

We encountered some difficulties when using the first two alter-
natives. We observe that convergence is not stable during learning,
the convergent speed is even slower than the original CNNs and it
can easily get stuck in local minima. This could be caused by the de-
pendence of matrix elements that counteract each other. For exam-
ple, when using a matrix with repeated elements in a convolutional
model, each element is used to adjust more than one filters. This is
also the case when elements have a special distribution.

We, therefore, focus on using sparse matrices with independent
elements. Learning in this case is more efficient as the number of
elements is small, although the structure of I'y(X;) has significant

effects on complexity.
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To better utilize the learned meta-knowledge, it is obvious that
I'w(X;) should have full rank, namely, rank(I'y(X;)) = N. For
W; = (wy,...,w,)T, we know that rank(W;) < rank(Tw(X;)). If
rank(I'w(X;)) < N, then there exists j # k such that w;, = aw;,
which makes w;, homogeneous with w; and contributes nothing new
to the model. For example, in an extreme case where rank(I'y(X;)) =
1, (N — 1)/N of the elements in W; are redundant because all the
N filters are homogeneous. This setting performs no better than di-
rectly using a 1 X M matrix as W;. During learning, although we
cannot control the values of the weights, we can eliminate redundant
information in I'y(X;) to reduce the complexity in learning.

In sparse matrices, the band matrix is a special case that always
has full rank regardless of how its bandwidth is changed. We, there-
fore, use a band matrix to implement Iy, (X;), as it is easy to control
the model complexity by adjusting the bandwidth while keeping the
full-rank property.

The following is a band matrix with bandwidth 1 (with both lower
and upper bandwidths of 1),

Such a band matrix has many good properties when realizing DNNs.
Firstly, we only need to learn no more than 3N parameters in a 1-
band matrix (5N for a 2-band matrix). Secondly, learning is fast
and memory efficient in both forward and backward propagations,
since band matrices lend themselves to more efficient computations

than dense ones. Finally and most importantly, band matrices are
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Figure 4.2: Image supper resolution (Appendix A) used to illustrate the effect
of bandwidth on loss value. The graph plots the performance (loss values) of
different trained network architectures (Arcs 1-3) as a function of bandwidth.

more flexible and efficient in utilizing the learned elements when
compared to other sparse matrices, as they always have full-rank
regardless of the bandwidth.

When implementing the output of I'y, as a band matrix, its band-
width will significantly affect the speed, memory usage and accu-
racy in learning. When bandwidth is increased, more elements will
need to be learned and the SNN becomes more complex. Limited
by the ability of back propagation, it will soon lead to either over-
fitting or getting stuck in local minima. Fig. 4.2 illustrates this phe-
nomenon in which learning performance reaches an optimum at a
particular bandwidth. In most cases, the optimum is at a bandwidth
between 1 and 3, with little difference among them. As a result, we
set the bandwidth to 1 in all our experiments.

Now, the whole model Eq.(1.4): mingec F'(X, U(I'(X), ®)) has
been clearly defined. In the next chapter, we will describe the im-

plementation of the model.

O End of chapter.



Chapter 5

Implementation of the Framework

With the well defined general model: mingec F'(X, U(I'(X), @)).
In this chapter, we give a detailed implementation of the general
model. We fist define the loss function for training in Section 5.1
which is achieved from the multi-objective F'. Then, in Section 5.2,
we present two kinds of DNN architectures as the feature extractor
®, including a five-block fast architecture and a five-block accurate
architecture. Consequently, we describe the detailed implementa-
tion of each block of the DNN architectures. We studied two kinds
of implementations of the NN blocks. They are the CNN imple-
mentation and the MLNN implementation (Section 5.2.2). Finally,

Section 5.3 gives the detailed settings of the learning algorithms.

5.1 Loss Functions

In the whole learning system, to solve Eq. (3.9), we employ the

following loss function ¢ to learn the feature extractor. For the input

37
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left view [ and the corresponding right view /',

0 = ﬁZ((l —Nfs+ A7), (5.1)

pel

where |/] is the number of valid training samples, and f; and f
are defined in Eq’s (3.2) and (3.8), respectively. We use \f} to
control the consistency principle in order to achieve different non-
dominated solutions. Different solutions can be found by adjusting
A and/or by changing the form of f;.

Our loss function follows the weighted-sum method while using
a cubic form of f;. This realizes the target by using a small penalty
when f1(®) is relatively small and a heavy penalty when f;(®) is
relatively large. By giving different values to A, we can obtain a set
of non-dominated solutions.

Before deciding on the form of the loss function, we tried d =
1,2, 3,4, respectively, in f{. In each case, we collected several so-
lutions by adjusting \. Finally, we found that the current cubic form
works the best.

In solving Eq. (3.9), it is impossible to get all the non-dominated
solutions on the continuous Pareto frontier, which does not have a
closed form. Due to the high cost in training DNNs, we find four
non-dominated solutions for each architecture. More solutions can
be obtained by changing A and by training the DNN again. These
solutions are non-dominated with respect to each other; that is, no
one solution is better than another, and each may perform differ-
ently under different matching algorithms. For example, in some
local matching algorithms with the Winner-Take-All strategy (such
as CostFilter [57]), the feature when setting A = 0 gets the best ac-
curacy. In other global matching algorithms (such as PMBP [3]),
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spatial propagation (such as PatchMatch [9]) and pyramid matching
(pyramid-MDP [72]), features by setting A in [0.4,0.6] perform a
little better.

5.2 Implementation of the Feature Extractors

Recently, DNNs trained by back-propagation [40] have been found
to perform well on large-scale computer-vision tasks, with superior
performance on feature extraction for classification and recognition
[21,46]. In this section, we develop a method based on DNNs to
solve Eq. (3.9).

Learning Principles Learning
forarc 2 / F forarc1
NS L ———
(Nt ~/
\,-
X N
,’ \ II \\ h
Search space A / \ Search space
ofarc1 _'\4 ] of arc 2
\ )
Pareto frontier Pareto frontier
for arc2 for arcl

Figure 5.1: An illustration of the orthogonal relationship among the princi-
ples on consistency and distinctiveness, network architectures, as well as train-
ing/optimization procedures in our learning system.

In the search space defined by a given DNN architecture, the
multi-objective formulation in Eq. (3.9) identifies the possible trade-
offs between the two principles in this search space. The network
optimization/training procedure is used to find a path in this space
towards those solutions that are on or close to the Pareto frontier
with the best tradeoffs. That is, different DNN architectures will



CHAPTER 5. IMPLEMENTATION OF THE FRAMEWORK 40

lead to different Pareto frontiers as well as tradeoffs. Fig. 5.1 il-
lustrates the orthogonal relationship among the principles, the DNN
architecture, and the learning algorithm. The architectural setting
defines the corresponding search space and limits where solutions
can be found.

Among the principles, the architectures and the learning algo-
rithms, we find the architectures to be the most flexible because they
are always designed empirically. More advanced architectures usu-
ally lead to an expanded solution space and better solutions. How-
ever, when limited by time and computational resources, it is impos-
sible to try all possible architectures one by one in order to find the

best solution.

5.2.1 DNN Architectures Studied

Fig. 5.2 shows our proposed DNN architectures for stereo and opti-
cal flows, and Table 5.1 lists the configurations of two versions, one
designed for speed and the other for accuracy.

For the version designed for speed, we employ a one-branch
structure for which both views share the same model for feature ex-
traction. The input data can be any k& x k& (k > 10) sub-images.
We find that this increases the consistency of the features obtained
and helps training converge faster. With only one branch, we do not
need to exchange the left and right views and compute the feature
maps twice to obtain the matching results for both views. Sigmoid
function is used after the last layer to restrict the range of values to
(0,1). This will not affect accuracy but will accelerate convergence.

For the version designed for accuracy, we employ a symmetric
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Table 5.1: Configurations of the DNN architectures studied for stereo and optical
flows. Two versions, one designed for speed and the other for accuracy, are used.
In these architectures, batch normalization [30] are embedded before each ReLU
and Max-Pooling layer.

Laver Stereo
Y One-branch Fast Two-branches Accurate
Set
Layer shape Layer shape
input 1xkxk input 1x11x11
-0 Normalize 1 x 11 x 11
3 x 3block nx(k-2)x(k-2) 3 x 3 block nx9x9
O=0 | gerLu _ ReLU -
3 x 3block nx(k-4)x(k-4) | 3 x 3 block nx7x7
D=0 | Reru - ReLU -
3 x 3block nx(k-6)x(k-6) 3 x 3 block nXHxXDd
@=0 | ReLu - ReLU -
3 x 3block nx(k-8)x(k-8) 3 x 3 block nx3x3
O=@ | peru - ReLU -
3 x 3block mnx(k-10)x(k-10) | 3 x 3 block nx1xl
®) Sigmoid —
Laver Optical Flow
Y One-branch Fast Two-branches Accurate
Set
Layer shape Layer shape
-0 nput 1xkxk 1nput. 1x31x31
Normalize 1x31x31
0—® 5x 5block  nx(k-4)x(k-4) 3 x 3block n x 29 x 29
ReLU — MaxPooling n x 15 x 15
D=0 5 x bblock nx(k-8)x(k-8) 3x3block nx13x13
ReLU — MaxPooling nxX7x7
©—0 5 x bblock mnx(k-12)x(k-12) | 3 x 3 block nxXHxDb
RelLU — MaxPooling nx3x3
5 x 5block nx(k-16)x(k-16) | 3 x 3 block nx1lxl
O=@ | peLu _ ReLU -
5 x b block nx(k-20)x(k-20)
-0 Sigmoid —
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min /

min /

Figure 5.2: DNN architectures used as feature extractors. Upper panel: fast ar-
chitecture, with left and right views using the same network as feature extractors.
The inputs can be images of any size. Lower panel: two-branch accurate archi-
tecture, with both left and right views having its own network branch as feature
extractor. Inputs must be 11 x 11 patches; M x N images must be sliced to M N
patches before input.

two-branch architecture, one for the left view and another for the
right. Its inputs are fixed-size patch pairs at each pixel. Before
they are input to the network, we reduce the influence of radiometric
changes between the views by normalizing both patches (subtract-
ing the mean and dividing by the standard deviation). After training,
to extract features for the whole images, mirror-padding is used in
each convolutional layer for pixels in image borders.

Based on the fast and accurate DNN architectures, we can define

the distance-measurement function (cost function) of two feature de-
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scriptors d(p, ;) = d(®(p), P(p + ;) = d(P(p), P(g;)) as follows:

2

(p+l)
d(p. 1) = H|‘I’ WMo~ T+, fast .
(p7 Z) - o <I>(p) ( - )
igmoid { a + 3] accurate.

Q(p+1;)

For the fast (resp., accurate) architecture, we use the first (resp.,
second) form as the cost function. Here, o and (3 are both learned
parameters that can be implemented using one fully connected layer.
The time complexities of both functions in Eq. (5.2) are O(n), where
n 1s the number of channels in the feature descriptor. More complex
forms are not employed, as they highly influence a matching algo-
rithm’s complexity.

These two functions both restrict the range of distance values to
[0,1]. There are two main reasons for using this range. Firstly, re-
stricting the distribution of distance values will help adapt them eas-
ier in different matching algorithms, as it is easy to adjust parameter
settings in different matching algorithms (such as setting the bal-
ance between matching-cost and smoothness terms). Secondly and
more importantly, this helps reduce the influence of some extreme
outliers. Without restricting the matching cost, d(p, y) of the best
matches in some difficult cases can be very large and will signifi-
cantly influence the neighborhoods in cost aggregation of matching

algorithms, leading a whole region to wrong matches.

5.2.2 Implementation of MLNN Block

For each of the five NN blocks in both fast and accuracte architec-
tures, we studied two kinds of implementation, the base CNN imple-

mentation and the implementation of the proposed MLNN. In above
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DNN architectures (both fast and accurate), the five NN blocks can
be easily implemented as CNN layers. For example, in this thesis,
we studied the architectures where each of the block is implemented
as one [3 x 3, n] convolutional layers for 3 x 3 blocks or [5 X 5, n]
convolutional layers for 5 x 5 blocks. For this CNN implementaion,
we studied the tradeoffs between the proposed principles and verify
its effectiveness of the principles in the experiments.

Besides the base CNN implementation, in this section, we will
focus on the implementation of the advanced MLNN block. Dif-
ferent with the CNN block, we replace the convolutional layer with
Eq.(4.3): Y; = [['w(X;) - WIX; + [['p(X;) + b], which combine the
meta-knowledge into the base NN and realize the adaptive behavior
of the filter kernels/weigths and the bias term. Namely this section
talks about the implementation of W(I'(X), ®).

The original Eq.(4.3) is not flexible when used in DNNs. Here,
we simplify the model to facilitate the implementation in existing
deep-learning platforms by employing simple transformations to I'y,
and I'y,. We first assume I'y(X;) and I'p(X;) to be near linear trans-
formation of X;, which can be implemented by several convolutional

layers. Since I', has no fixed form, we give it a new form:
[y(Xi) = [(Tw(Xi) = 1) - b + (X)), (5.3)

Note that ' (X;) and [(T'w(X;) — I) - b]T can be treated as a base
shift vector. In that case, I'}(X;) is still dynamic to inputs but now
becomes the target of learning. As the original ['y, and Iy are learned
as a set of convolutional layers, I'}, can also be learned using these

layers.
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(a) (b) (e)

®

Figure 5.3: Implementation of MLNN, where pixel-level meta knowledge
{Tw(X;), 'y(X;)} is extracted in SNN by two sub-branches. (a) Input sample;
(b) Output of wq; (c) I': two-branch SNN; (d) Learned meta-knowledge I'(X;):
{Tw(X;), T'p(X;)}; (¢) Combining the meta-knowledge T'(X;) by Eq. (5.4); ()
Output of MLNN. For implementation of Eq. (5.5), the input to SNN in Stage (c)
is changed to the gray dashed arrows.

By substituting Eq. (5.3) into Eq. (4.3), we have
Y, = Tw(Xi) - (WX, +b) + I, (X)). (5.4)
We further introduce a linear transformation of X; to I'y(X;) and
I (Xi),
Y, =T (WX; +b)- (WX; +b) + T, (WX, +b) (5.5)
where T'y(X;) =T (W-X; + b)
and I'}(X;) =, (W-X, +b).

As indicated above, the fixed part WX, +b in Eq’s (5.4)-(5.5) can
be implemented by convolutional layers. In this thesis, we assume
that I, , T}, and I, can all be fitted by some convolutional layers.
We further restrict the values of [, (X;) in a range (—1,1) using an

activation function like T'anh to avoid the influence of the initial-

ization of the parameters in SNN. This also helps limit the search
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space and improves convergence, while avoiding getting stuck in lo-
cal minima. Finally, the outputs of I'}, are reshaped to the required
band matrices.

Fig. 5.3 shows that WX; + b can be achieved in BLNN as ®. We
further implement SNN using two sub-branches for I';, and I'} /T,
respectively. The difference between their implementations is that
Eq. (5.4) needs to use the output of the previous layers in Stage (a) as
inputs to the sub-branches, whereas Eq. (5.5) directly uses the output
of the major branch in Stage (b). When the BLNN layerisa k X k
convolutional layer, to guarantee shape and range consistency, the
two branches of SNN also need similar £ X k£ convolutional scope.
For Eq. (5.5), we can always use 1 x 1 filters to improve efficiency.
For these reasons, we use Eq. (5.5) to realize the dynamic model
in our experiments. Eq. (5.4) will only be used in fully-connected
layers or when the inputs of SNN is different from those of BLNN.

5.3 Details of the Learning Algorithm

This section present the details of the learning algorithms including
the processing of the training data and the parameter settings during

the learning course.

5.3.1 Preprocessing of training data

Training data are constructed from the KITTTI stereo and optical-flow
datasets [ | 8]. For the fast architecture, each whole image is normal-
ized by subtracting its mean and dividing by its standard deviation.

As mentioned before, the fast architecture can use any size of sub-
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Table 5.2: Approaches and parameter ranges for training-data augmentation on
the KITTI datasets

Ranges
Types Parameters stereo optical flow
contrast [0.8,1.2] [0.8,1.2]
. . constrast_dif | [—0.15,0.15] | [—0.25,0.25]
Radiometric | =y piness | [~03,03] | [~0.3,0.3]
brightness_dif | [—0.2,0.2] [—0.4,0.4]
scale [0.9,1.1] [0.75,1.25]
. scale_di f [—0.1,0.1] | [-0.25,0.25]
Scale&Rotation angle (~20°,20°] (~30°,30°]
angle_di f [—10°,10°] [—20°,20°]
Notse mean [—0.05,0.05] | [~0.05,0.05]
stdev [0,0.2] [0,0.2]

images as inputs. To ensure the same size of training-image pairs,
all training images are sliced into overlapping 71 x 71 sub-image
pairs. The center of each pair is required to be highly matched (e.g.
the KITTI 2012 dataset contains 194 image pairs that can be sliced
to about 200,000 sub-image pairs). In contract, for the accurate ar-
chitecture, training data are sliced into 11 x 11 (stereo) or 31 x 31
(flow) patch pairs as in [76]. During the training process, all invalid
regions and pixels, such as occlusions and pixels without ground-

truth displacements, are neglected.

5.3.2 Data-set augmentation

Augmenting the training data set is commonly used to reduce gen-
eralization errors. To make the learned feature robust to imperfec-
tions such as noise, illuminance changes and view rotations, for sub-
images I' and I" of the, respectively, left and right views, we control
their radiometric variance by I! = I' x constrast + brightness and
I = I" x (constrast + constrast_dif) + (brightness + brightness_dif).
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Further, to make the feature extractor robust to noise, Gaussian noises
(controlled by their mean and standard deviation) are randomly added
to each sub-image pairs during training. Likewise, each pixel in the
training data is scaled and rotated by the scale and rotation param-
eters. Table 5.2 shows the ranges in which the random values are

taken for these radiometric, noise, scaling and rotation parameters.

5.3.3 Learning platform and parameters

We modified the CNN platform Caffe [33] to implement our own
learning procedures. For training-data sampling, we set U = {[;|I; €
S, |li — lg|o > 3} and the sampling numbers |U;| = 2 and |Us| = 1.
Mini-batch gradient descent with the momentum term set to 0.9 is
used to minimize the loss. The batch size is set at 256 (resp., 64)
for the accurate (resp., fast) architecture. The models are trained for
a total of 800K iterations with the learning rate initially set to 0.01,
and then decreased by a factor of 10 at the 300K™ and the 600K"

iterations.

O End of chapter.



Chapter 6

Experimental Results

In this chapter, we present the experimental design and results. The
experiments include two parts: 1) experiments with CNN imple-
mentation which mainly study the trade-off between the proposed
consistency and distinctiveness principles and evaluate the feature’s
performance with dense matching algorithms on the KITTI datasets
and benchmarks; 2) experiments which compare the features found
by MLNN implementation and other state-of-the-art base NNs (e.g.

residual and inception network architecture).

6.1 Parameter settings

In experiments of Section 6.2, the 3 X 3 or 5 X 5 blocks are directly
implemented as [3 x 3, n] or [5 X 5, n] convolutional layers. More ad-
vanced architectures are evaluated in the Section 6.3. There are two
key parameters in our learning system. The first is n, the number of
channels in the DNN architecture. It denotes the length of the fea-
ture descriptor that highly influences the accuracy and efficiency of
the features found. We set n to different integers (64, 128, 256) and

49
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train the DNN to get the feature descriptors. Section 6.2.4 analyzes
the effect of n on complexity. The second key parameter is A in Eq.
(5.1) that balances the weights between consistency and distinctive-
ness. Different A will lead to different non-dominated solutions. In
our experiments, we set A is to {0.8,0.6,0.4,0} to get four sets of
non-dominated features.

All the other parameters, including learning rate, training itera-
tions, batch-size and data augmentation parameters, are set empir-
ically. Reasonable settings are decided using trial-and-error, back-
ground experience, and suggestions from related works. Until now,
there is no easy way to automatically set the best values for these

parameters in learning DNNGs.

6.2 Evaluations of Features Found by CNN imple-

mentation

In this section, we first compare the performance (error rates of the
results) of our feature found by CNN implementation with other
existing features in different kinds of matching algorithms (Sec-
tion 6.2.1). Then, we study the tradeoffs between the consistency
and distinctiveness principles, analyze and evaluate features through
these two principles (Section 6.2.2). Finally, we evaluate the fea-
tures’ performance (error rates) on the KITTI benchmarks (Section
6.2.3) and analyze the complexity and efficiency of the system and

the feature extractor (Section 6.2.4).
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6.2.1 Comparisons and Evaluations in Different Matching Al-

gorithms

The learned features (in 256 channels) are evaluated in various ex-
isting dense matching (stereo matching or two-frame optical-flow)
algorithms. The features found by our method are flexible and can
be used for subpixel-location interpolation and size/shape scaling
for each channel, allowing them to be used in almost all existing
dense matching algorithms. One or two algorithms are selected
for each of the 5 existing classical frameworks and their perfor-
mance is compared using different features. The matching algo-
rithms studied include cost-filtering methods [57], global-matching
algorithms [65], semi-global matching algorithms [25], continuous
(subpixel accuracy/slanted surface) matching algorithms [%, 9], and
pyramid-matching algorithms [72]. The features (or the matching-
cost method) for comparisons include Census (used in [25]), color,
gradient, color+gradient [9], Dense SIFT [47]/SURF [7] and MC-
CNN matching cost [76].

In our evaluations, test data are chosen from the KITTI 2012
(stereo and flow) dataset: 194 training-image pairs are randomly
divided into 4 sets (each with 48 or 49 two-view pairs), with 3 sets
chosen for training and the rest for testing.

Table 6.1 presents the performance results, which are evaluated

by the 3-pixel-threshold error rate of the non-occluded regions and
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Table 6.1: Performance evaluation (in error rate %) and comparisons of different
features in various matching algorithms

CostFilter [57] | PatchMatch [9] PMBP [8] SGM [25] | MDP [72]

Features
stereo  flow | stereo flow stereo  flow stereo flow
color || 30.19 39.94 | 19.92 23.9 17.99 21.79 11.75 15.9
gradient 23.1 28.31 | 14.81 15.51 14.1 14.61 6.91 13.41
color+grad || 21.51  27.5 1425 1335 | 1295 10.5 7.01 11.15
census 11.54 19.1 X X X X 5.17 X
SIFT* 9.13 17.51 X X X X 4.92 X
SURF* 9.91 18.19 X X X X X X
mc-cnn-fast 6.49 X X X X X 3.41 X
mc-cnn-acc 6.04 X X X X X 3.09 X
Our fast 6.01 1047 | 4.74 5.74 4.64 5.46 3.24 5.84
Our acc 5.67 9.34 4.37 5.17 3.83 4.81 3.01 5.17

* Keypoint-detection step is discarded for SIFT [47] and SUREF [7] features (refer to the
dense SIFT implementation in [69]). Descriptors are generated at each pixel in order to
run above dense matching algorithms.

calculated by:

1
er = mz 5, (6.1)

pel

1 if [[i(p) — lo(p)ll2 > 3

0 otherwise,

0p =

where | /| is the number of valid pixels in an image; [(p) is the match-
ing result at pixel p; and ly(p) is the ground-truth displacement at p.
The results show that our features found can significantly improve
the performance of existing dense matching algorithms, especially
with respect to popular features like color, gradient or census.
When compared to the current best MC-CNN matching-cost com-
putation [76], our features perform better in all matching algorithms
tested. Fig. 6.1 illustrates the improvements using examples from
the KITTI datasets. It shows that matching algorithms using our

features perform better in some large smooth regions such as cars.
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(b) mc-cnn-acrt [76] (6.16%) (c) with our feature (5.28%)

(d) challenging stereo pairs (e) mc-cnn-acrt [76] (18.80%) (f) with our feature (14.96%)

(g) optical flow pairs (h) PMBP [8] (7.99%) (i) with our feature (4.88%)

Figure 6.1: Improvements using features found by our method. (b)~(c), (e)~(f)
and (h)~(i) are visualized disparity/optical-flow results (upper: color coded by
KITTT stereo/flow benchmarks) and visualized error map (lower) corresponding
to stereo/flow pairs (a) (d) (g), respectively. 3-pixel threshold error rates are re-
ported in the captions. Gaussian noises (only right view) and irregular illuminance
variations (both views) are added to the stereo pair of (d) to evaluate the robustness
of the features to noise and illuminance variations.

Further, our features are more robust to illuminance variations and
noises. More importantly, they are general and can be used in all
9 stereo and optical-flow matching algorithms. In contrast, MC-
CNN [76] can only be used in the three integer-precision stereo-
matching algorithms due to its time complexity, as it needs to use all
possible patch pairs to calculate the matching-cost matrix. This re-
quirement is impractical for optical flow and continuous or pyramid

matching algorithms.
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Table 6.2: Comparison of consistency and distinctiveness with respect to different
features on the KITTI 2012 dataset

Stereo Optical Flow
Feature Types Matching
1 f2 bil f2
Color 0.14 0.17 0.23 0.09
Gradient 0.10 0.29 0.16 0.14
Grad+Color 0.11 0.31 0.19 0.17
Census 0.08 0.49 0.15 0.28
dense sift 0.06 0.57 0.11 0.39
dense surf 0.07 0.52 0.13 0.32
MC-CNN fast [76] | 0.20 0.77 X X
MC-CNN acc [76] 0.13 0.80 X X

Our Four Sets of 0.05 0.76 0.06 0.51
Non-dominated 0.09 0.79 0.11 0.55
Fast Features 0.15 0.81 0.17 0.58
Found 0.24 0.83 0.25 0.60

Our Four Sets of 0.07 0.80 0.05 0.57
Non-dominated 0.11 0.83 0.1 0.62
Accurate Features 0.16 0.86 0.16 0.65
Found 0.24 0.88 0.25 0.68

6.2.2 Analyzing Features through Consistency and Distinctive-

ness

In this subsection, we compare different features and explain why
our features learned can outperform other state-of-the-art approaches.
Features are compared with respect to how they satisfy the consis-
tency and the distinctiveness principles by calculating f; (Eq. (3.2))
and f5 (Eq. (3.5)). For f, we first normalize their values by subtract-
ing min( f1) and dividing by max( f;) — min( f;), before comparing
the average normalized values. Then, fs is calculated by assuming
integer displacements. JND m/ in f5 is set to zero, as different values
of m’ do not change the relative partial order of solutions as well as

the monotonic behavior of f5 (as illustrated in Fig. 3.4). For exam-
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Figure 6.2: Referring to details in Section 6.2.2, an illustration of Pareto opti-
mality and a comparison of the solutions found in stereo matching. The z axis
shows the consistence f; (Eq. (3.2)), the smaller the better. The y axis shows the
distinctiveness fo (Eq. (3.5)), the larger the better. The target of the search is to
find the Pareto optimal frontier with trade-offs between f; and f>. The results of
ten feature methods are plotted, and four non-dominated solutions with each of
our CNN solvers are shown. Data is collected using the KITTI datasets [5] and
shown in Table 6.2. The dash curve illustrates a hypothetical Pareto frontier for
some CNN architecture.
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ple, our feature always dominates the others regardless of whether
m' =0orm’ =0.1.

Table 6.2 shows the values of f; and f; when setting A to 0.8,
0.6, 0.4 and 0, respectively, to get four non-dominated solutions on
the KITTI 2012 dataset. Fig’s 6.2 further depict all the (fi, fo) tu-
ples. The results show that the features found by our method are the
closest to the Pareto frontier that achieve the best tradeoffs between
consistency and distinctiveness. For stereo matching, we get the fol-
lowing dominance order: our feature (fast or accurate) > MC-CNN
(fast or accurate) > dense sift > dense surf > Census > gradient (or
color+gradient) > color. Such a dominance order is also visible in

Fig. 6.2. For optical flows, we get similar conclusions.

6.2.3 Evaluations of Our Features Using KITTI Benchmarks

We evaluate our features using the stereo and optical-flow bench-
marks by embedding it in one of the existing matching frameworks.
For stereo evaluations, the whole stereo framework in [76] with
the matching-cost matrix calculated by our accurate 256-channel
features are employed. The depth edges are further refined by a
weighted median filter (with radius=11, ¢ = 0.05).

Table 6.3 shows the evaluation results on the stereo benchmarks.
When evaluated on non-occlusion areas, our feature with the SGM
stereo matching algorithm (CNNF+SGM) ranks top in the KITTI
2012 and 2015 stereo benchmarks.!

'With respect to the public KITTI benchmarks at http://www.cvlibs.net/
datasets/kitti/index.php, our visualized results and ranking data are available at (by
clicking to access each) (a) 2012 stereo benchmarks; (b) 2015 stereo benchmarks; (c) 2012 flow
bechmark; and (d) 2015 flow benchmarks.



http://www.cvlibs.net/datasets/kitti/index.php
http://www.cvlibs.net/datasets/kitti/index.php
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow_detail.php?benchmark=stereo&error=3&eval=all&result=1a7944d8789a957188acc469c09f417f035ea6eb
http://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?benchmark=stereo&result=eb8aba2e21960d803fd6a0c6f22a646d4b6684e7
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow_detail.php?benchmark=flow&error=3&eval=all&result=4850dd8680a4b0e52a334fec5baa5fb3bd48d285
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow_detail.php?benchmark=flow&error=3&eval=all&result=4850dd8680a4b0e52a334fec5baa5fb3bd48d285
http://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?benchmark=flow&result=2cfc7903c155d3795bd9b86067edf5907ac27bd1
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Table 6.3: Stereo matching evaluations (non-occlusion areas) on two KITTI stereo
benchmarks with ranking data, error rates and run times reported. The stereo
matching algorithm [76] with our learned feature achieves the current best accu-
racy.

KITTI 2012 Benchmark ‘
Method Rank | Error Rate Run Time (Device)
Our CNNF+SGM 1 2.28% 71s (GPU TESLA K40)
PCPB [60] 2 2.36% 68s (GPU Titan X)
Displets v2 [20] 3 2.37% 265s (CPU >8 cores)
MC-CNN-acrt [76] 5 2.43% 67s (GPU Titan X)
cfusion [55] 6 2.46% 70s (GPU Titan X)
KITTI 2015 Benchmark
Method Rank | Error Rate Run Time (Device)
Our CNNF+SGM 1 3.04% 71s (GPU TESLA K40)
Displets v2 [20] 2 3.09% 265s (CPU >8 cores)
PCPB [60] 3 3.17% 68s (GPU Titan X)
MC-CNN-acrt [76] 4 3.33% 67s (GPU Titan X)

For optical-flow evaluations, we only test our features on classi-
cal two-frame optical-flow applications. Since our method does not
use extra information like multi-view frames, stereo/depth and/or se-
mantic segmentation results, for fair comparison, methods like mo-
tion stereo flows and multi-view flows are not compared. PMBP [&]
with slanted surface assumption (just like the PMBP-stereo) are im-
plemented to collect the initial results for both the left and right
views. Consistency checking as thatin [76] 1s used to find occlusions
and invalid regions which are recovered by an iterative weighted me-
dian filter (with radius=20, €=0.075). (We applied the weighted me-
dian filter several times until all the invalid regions are filled with
displacement values.) Finally, we employ a 5 X 5 median filter
and a bilateral filter (with radius=11, €=0.1). The above three post-
refinement steps are repeated twice to collect the final results for

benchmark evaluations.
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Table 6.4: Optical-flow evaluations on two KITTI flow benchmarks with rank-
ing data, error rates and run times reported. The optical-flow algorithm [8] with
our learned feature achieves the current best accuracy among state-of-the-art two-
frame optical-flow algorithms.

KITTI 2012 Benchmark
Method Rank | Error Rate Running Time (Device)
Our CNNF+PMBP 11 4.70% 30min (CPU 1 core)
PatchBatch-s 12 4.81% 60s (GPU)
CNN-HPM [4] 13 4.89% 23s (GPU)
PatchBatch [17] 15 5.29% 50s (GPU)
PH-Flow [74] 21 5.76% 800s (CPU)
KITTI 2015 Benchmark
Method Rank | Error Rate Run Time (Device)
Our CNNF+PMBP 4 12.26 % 45min (CPU 1 core)
SOF [50] 7 16.81% 6min(CPU)
JES [28] 8 17.07% 13min (CPU)
PatchBatch [17] 14 21.69% 50s (GPU)

The original PMBP [8] was run on a CPU with one thread. Its
computational complexity is K N k%, where K is a constant, N is
the number of pixels in an image, and R is the patch width. It is
slow and cannot be parallelized due to the spatial-propagation step.
We use PMBP instead of other improved algorithms based on PMBP
because it is the first and the most classical version among these
algorithms. There are some faster versions, such as GC-LSL [67]
and SPMBP [43] that achieved speed through limiting the candidate
displacement space or discarding the spatial-propagation step. Our
features can be easily introduced in all these algorithms to improve
their accuracy. When our features are embedded, using half of the
patch width slightly affects accuracy, but the whole algorithm can
be sped up by 2 ~ 3 times.

Table 6.4 shows the ranks and the error-rate information. Our
method ranks 11" on the KITTI 2012 benchmarks and 4™ on the
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Table 6.5: Efficiency and time complexity of our feature extractors without the
matching algorithm. The running times are elapsed times for just one view (reso-
lution: 1242 x 375). The numbers in brackets are the CPU run times.

Feature Time Running Time
Extractor | Complexity | n =16 n = 64 n =128
fast-stereo | O(4n2N) | 0.05s (4s) | 0.15s (10s) | 0.3s (19s)
fast-flow O(4n®N) 0.1s (7s) | 0.4s (21s) | 0.7s (37s)
acc-stereo | O(84n%N) 3s 12s 21s
acc-flow | O(195n2N) 7s 23s 35s

Table 6.6: Elapsed time (1-core CPU) when embedded in different matching al-
gorithms.

Matching Original Running Time With Our
Alogirthm Running Time Feature
n=106 | n=64 | n =128
CostFilter [57] 8s 13s 27s 41s
PMBP flow [§] 800s 500s 1300s 2100s
Particle BP [65] 5s 7s 15s 27s
SGM [25] 3s Ss 11s 20s

2015 optical-flow benchmarks. More importantly, the results show
that our method is the current best two-frame optical-flow method
without using extra multi-view, motion stereo or semantic segmen-

tation reinforcement.

6.2.4 Analysis of Time Complexities

In this subsection, we analyze the time complexities of our feature-
extraction procedure and those of using it in existing matching algo-
rithms. Each convolutional manipulation of one pixel in a channel
is set as one basic unit of computation time (while ignoring acti-
vations, like ReLU, max-pooling and Sigmoid computations due to
their negligible times). For example, for an n-channel fast-feature

extractor, we have five convolutional layers for an N-pixel image.
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According to the DNN architectures in Table 5.1, the time complex-
ity for the fast-feature extractor is O(n?N), as it needs (4n> + n)N
units of convolutional computations. Table 6.5 lists the time com-
plexities and elapsed times for all the feature extractors.

The time complexities of using our features in matching algo-
rithms directly depend on the complexities of the cost functions in
Eq. (5.2). Since both are linear with n channels of the feature de-
scriptor, the time complexity when using our feature is O(nM) if the
complexity of the matching algorithm is O(M ). Table 6.6 compares
the run times for the matching algorithms before and after using our

features.

6.3 Experiments with MLNN

In this section, we studied and evaluate the MLNN implementation
of the general model (Eq.1.4). We first illustrate the performance
improvements of the MLNN by analyze the filter kernels and the
learned meta-knowledge (Section 6.3.1), then, evaluate the features
found by MLNN implementation by comparing them with some
state-of-the-art base NNs (e.g. residual net, inception net efc.) in
Section 6.3.2.

6.3.1 Illustration of Performance Improvement

This subsection illustrates the source of performance improvements
in MLNN from two aspects.
Meta-level learning. As discussed earlier, traditional NN opti-

mizes the average performance across all inputs, without tailoring its
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Figure 6.3: Image Super-resolution (Appendix A) used to compare filter kernels.
(a) The fixed 64 first-layer filters of the original CNN model. (b) and (¢) MLNN
model: adaptive filter kernels on two different input patches (last one). Most of
the filters are slightly different, whereas some are significantly different (indicated
by red arrows). MLNN, based on adaptive kernels, can use a simple 48 first-layer
model to achieve better performance.
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behavior to address the diversity of inputs. In contrast, MLNN uses
SNN to learn input-specific meta-knowledge and provides this infor-
mation in the form of dynamic weights to BLNN. An example of the
meta-knowledge learned is visualized in Stage (d) of Fig. 5.3. The
example shows that SNN learns the meta-information for each pixel,
and different colors correspond to different classes of inputs.>? By
introducing meta-knowledge into BLNN, the new model can adapt
itself to different types of inputs, leading to better adaptability of
MLNN.

Dynamic neural networks. Our MLNN successfully introduces
flexibility into a NN by using dynamic weights. As shown in Fig.
6.3, the filter kernels of MLNN are always adaptive to inputs, whereas
those of traditional NN are fixed. As a result, even when using sim-
pler 48-channel outputs for MLNN, its performance is still better
than a fixed model with 64-channel outputs.

As discussed in Sec. 2.2, existing weight-dynamic NNs are ac-

“More visualized examples on the meta-knowledge learned are available in the appendix.
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tually special cases of MLNN shown in Fig. 4.1. They do not have
a term to realize the balance between generalization (®) and input-
adaptation (I'). In contrast, MLNN uses a small number of addi-
tional parameters in SNN to make the model dynamic to inputs.
Most of the parameters are used in the generalization term ¢ to avoid
overfitting and to generalize to unknown scenes.

We can find evidence of MLNN’s good generalization behavior
by comparing the filter kernels of different inputs. Fig. 6.3 visual-
izes the filter kernels of the first layer in a learned MLNN model.
For the two different input patches, most of the filters are slightly
different from each other and only some are significantly different.
It is likely that those similar filters realize the generalization of the
MLNN model, whereas those that are significantly different adapt

the model’s behavior to different inputs.

6.3.2 Evaluations and Comparisons of the MLNN

Here, we show that MLLNN could significantly improve the accuracy
of results in dense matching. MLLNN’s performance is also verified
with many other low-level and hight level vision applications which
are presented in the appendix. Each simple convolutional layer is
replaced with MLNN block (as shown in Fig.6.5). We also compare
it with the recently proposed residual and inception strategies. For
the residual strategy, we employ more advanced 4D transformed set-
ting [71] instead of the original setting [22]. For the inception strat-
egy, a four-branch inception block with residual connections similar
to [66] 1s tested.

Fig. 6.5 shows these architectural blocks. Limited by avail-
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Table 6.7: Performance evaluations and comparisons of different network archi-
tectures in the feature learning system

Architectural Stereo Matching
Setting param | speed (fps) (f1, f2) error rate
fast-64 0.15M 6.5 (0.094,0.73) | 6.31%
Res-Incep | 0.14M 4.1 (0.096,0.76) | 6.21%
4D Res-Net | 0.34M 2.8 (0.095,0.77) | 6.16%
MLNN-64 | 0.45M 2.1 (0.093,0.79) | 6.04%
fast-256 2.4M 0.9 (0.091,0.79) | 6.01%
Architectural Optical Flow
Setting param | speed (fps) (f1, f2) error rate
fast-64 0.41M 2.7 (0.12,0.50) 10.89%
Res-Incep | 0.24M 23 (0.12,0.52) 10.74%
4D Res-Net | 0.7M 1.7 (0.11,0.53) 10.67%
MLNN-64 | 0.89M 1.3 (0.11,0.55) 10.53%
fast-256 8.2M 0.4 (0.11,0.55) 10.47%

able computational resources, only fast 64-channel architectures are
tested to illustrate the performance differences. Table 6.7 and Fig.
6.4 lead to the following observations.

a) 64-channel MLNN-net could already achieve similar accuracy
as that of 256-channel CNN net and far better than the 64-channel
CNN net. While, MLNN-net runs more than two times faster and
utilizes fewer parameters in the model.

b) MLNN-net outperforms the state-of-the-art network architec-
tures including the residual inception [66] and 4D-residual net [71]
both in stereo matching and optical flow applications.

When involving large data diversity, MLNN will have big supe-
riorities over state-of-the-art DNN architectures because the learned
model are adaptive with the inputs. For feature extraction in dense
matching, each pixel will become an independent target. The scale
of the task will easily exceed ten million. Moreover, different re-

gions will have variances in illuminance and texture conditions. These
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Figure 6.4: Convergence of training in different network settings as illustrated by
stereo matching. 4D-residual and residual inception blocks are implemented in
the original 64-channel fast architectures to replace the original five convolutional
layers.

all increase the diversities in the feature extractor task. As a result,
MLNN could achieve the best performance for feature extraction in
dense matching even compared with several state-of-the-art network

architectures.

6.4 Summary of the Experiments

The performance comparisons with existing features under different
matching algorithms show that our learned features could achieve
the lower error rates in various dense matching algorithms. The
study of the trade-offs between the consistency and distinctiveness
principles and the evaluations of different features through the con-
sistency and distinctiveness principles verify that either of these two
principles is indispensable for finding good features for dense match-

ing and our learned feature could dominate all other existing fea-
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tures. Finally, the MLNN experiments show that the adaptive MLNN
feature extractor has big superiorities over other feature extractors
defined by traditional NNs.

O End of chapter.
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Figure 6.5: Advanced architectural settings studied. Each of the original-layer
sets can be replaced by one of the above blocks. Batch normalization (BN) is
performed right after each convolution, followed by ReLU (except the last one
that is performed after adding the residual connection). Before and after all the
five blocks, there is an extra [1 x 1, n] convolutional layer. (a) Inception-Residual

block similar to that in [66]. (b) More advanced 4D-residual block similar to that
in[71].
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Chapter 7

Conclusion

This thesis solves two important problems in dense matching. a)
What are good features that lead to better performance? b) How can
these good features be found systematically?

For the first problem, we developed two fundamental principles,
namely, the consistency and the distinctiveness principles, and then,
formulated them into a general multi-objective formulation for find-
ing good features in dense matching. We also studied the tradeoffs
between these two principles and showed that either of these princi-
ples were indispensable for good features in dense matching.

For the second problem, we designed two DNN architectures
(one for speed and the other for accuracy) as feature extractors and
achieved the loss function from the multi-objective function to learn
new features for both stereo matching and optical flow. Besides,
in the formulation of the feature extractor, we solved the challenge
that traditional NNs always find a model with fixed structure and
weights by optimizing the average behavior across all training data
without specializing to their variations using the proposed MLNN

and employing into the advanced DNN feature extractors to realize

67
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the adaptive behaviors for different inputs in different regions.

Different with existing feature methods, the proposed feature learn-
ing model and system design could be used to learn new effective
features for any existing matching algorithms, including the most
challenging pyramid matching scheme which has strict requirement
for interpolation at sub-pixel locations. Also, the proposed MLNN
which worked as feature extractors is especially beneficial when the
data has large diversity, such as different image types, textures, and
radiometric and noise conditions. Usually, as the data scale is in-
creased, data diversity is more prominent, and the improvements
brought by MLLNN will be more pronounced. Moreover, the MLNN
could not only be used to improve performance in feature extrac-
tion for dense matching, but many other applications (e.g. image
denoising, upsampling and classification et al.) where data-diversity
1s significant (as shown in the appendix).

There are several directions which can be studied in the future.
In this thesis, we have focused only on two-frame matching applica-
tions (stereo matching and optical flows). Other applications, such
as multi-view matching/flow or reconstruction, can lead to further
improvements. Secondly, our approach is based on existing match-
ing frameworks and does not develop new approaches specialized
for the features learned. The design of such new matching schemes
by ameliorating some existing work will be beneficial. Thirdly, the
limitations of our method appear in those reflection regions (such as
windows of a car) that are prevalent in most existing work. In these
regions, no useful matching information can be found. To further
improve the performance in these regions, semantic segmentation

information would be helpful (as done in [20, 61]). Finally, design-
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ing new DNN architectures and learning algorithms will improve the
accuracy of results, leading to better features found. Using parallel
computers with GPUs will further enable effective explorations of

large search spaces in manageable time.

O End of chapter.



Appendix A

Experimental Verification and
Analysis of MLNN

In the appendix, we provide more evidences to show the effective-
ness of the proposed MLNN. First, we analyze MLNN’s links to the
existing polynomial and residual nets which are all used to improve
the power of the DNN model (Section A.1). Then, we design more
other experiments to verify the effectiveness of the proposed MLNN,
including low-level image upsampling, denoising (Section A.3) and
high-level image classification (Section A.4). Which shows that the
proposed MLNN are beneficial when the dataset has large diversity,
such as different image types, textures, and radiometric and noise

conditions.

A.1 Relation to Polynomial and Residual Nets

Polynomial NNs (PNNs) [56, 68] are designed to learn a polyno-
mial model and process more powerful capabilities to represent or
classify data. The popular CNNs can be understand as a near lin-

ear system, although they use activation functions to increase their

70
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power.

Our MLNN can be treated as one kind of well-controlled and
organized PNNs. Since we utilize the dot product to combine meta-
knowledge I'y (X;) into the original convolutional layers, 'y (X;) can
be represented as a near-linear transformation of X;. After each
MLNN layer, the degree of the model will increase quadratically,
which significantly increases its complexity compared with CNNs.
Meanwhile, due to the well controlled architecture and parameters,
MLNN overcomes the common problems of PNNs [15,45] that are
hard to implement and can easily overfit.

In a more general sense, the MLLNN layer can also be used as
one kind of quadratic activation function to effectively increase the
searching space of the NN model.

Deep Residual Nets [23] insert shortcut connections and turn a
network into its counterpart residual version. This successfully solves
the convergence problem in very deep NNs and significantly im-
proves the classification accuracy.

Similar to residual learning, we use element-wise additions to
combine meta-knowledge I',(X;). In particular, in implementing
Eq. (5.4) and (5.5), when we remove the branch of I'y, the SNN
(as 1llustrated in Fig. 5.3) is directly transformed to residual connec-
tions as those in [71] and [23]. In a general sense, the residual net
partially realizes dynamic learning in the bias term. We believe that
our MLNN helps partially understand the performance of residual
nets. On the other hand, the convergence behavior of our MLNN can

also be attributed to the realization of residual learning in MLNN.



APPENDIX A. EXPERIMENTAL VERIFICATION AND ANALYSIS OF MLNN72

Table A.1: Baseline Network Architectures

Low-Level Vision

Layer Arc 1 Arc 2 Arc 3 Arc 4
Set 3-layer [14] 3-layer [14] 4-layer [14] 21-layer [80]
set 1 conv,9 X 9,64 <1 conv,9 x 9,128 <1 conv,9 x 9,128 «1 conv, 3 X 3,64 <1
ReLU, 64 ReLU, 128 ReLU, 128 ReLU, 64
N B n - conv, 3 X 3,64
1x1,32 conv,1 x 1,64 conv, 5 X 5,64 ’ ’
set 2 cony 9% X1 [ ’ ’ } 1 ’ P%x1|| BatchNorm |x19
| RelLU, 32 ReLU, 64 | RelLU,64 | ReLU, 64
conv,1 x 1,64 .
set 3 [conv,5 x 5,1] x1 [conv,5 x 5,1] x1 ReLU, 64 x1| [conv,3 x 3,1]x1
set 4 [conv,5 x 5,1] x1
Layer High-Level Classification
Set Arc 5 4-layer [34] Arc 6 4-layer Alexnet [39]
conv, b X 5,32 conv, 11 x 11,4, 96
conv,5 X 5,20 Maxpool, 2,2 ReLU, 96
set 1 [ Maxpool, 2,2 :| 1 ReLU, 32 x1 Maxpool, 3,2 x1
BatchNorm BatchNorm
conv, 5 X 5,32 conv, b X 5,256
conv,5 X 5,50 ReLU, 32 ReLU, 256
set 2 [ Maxpool, 2,2 } 1 Maxpool, 2,2 x1 Maxpool, 3,2 x1
BatchNorm BatchNorm
fe. 500 conv, 5 X 5,64 conv, 3 X 3,384
set3 {RGE’U 500} x 1 ReLU,64 |x1 ReLU,384 |x3
’ Maxpool, 2,2 Maxpool, 3,2
set 4 [fc,10] x 1 [fc,10] x 1 [fc, 4096] x 2
set 5 [fc, 1000] x 1

A.2 Parameters and Network Settings

The baseline network architectures in different applications are shown

in Table A.1. We replace some convolutional or fully connected lay-

ers with our MLNN layers to get new dynamic models. The per-

formance of these new MLNN models are measured and compared

with the original standard models in different applications. Fig. A.6

shows the corresponding MLNN network architectures of Arc 1-6
(Table A.1) and Alexnet [

Given an original [k X k, n] convolutional layer, to make sure the

].

speed and the number of parameters won’t be changed greatly, here,

we talk about the parameters’ setting on realizing a corresponding
MLNN layer. For BLNN, we employ a [k x k, 3n/4] convolutional
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layer. For SNN, in each SNN branch (I'y, and I'})), we use two 1 x 1
convolutional layers with ReLLU activation between them. Specifi-
cally, we implement one [1 x 1,7n/4] and one [1 x 1,3n — 2] convo-
lutional layer for I'y,. While, for Iy, [1 x 1,n/4] and [1 x 1, n| layers
are used. To combine I'y, we first employ T'an H (for classification
tasks) or Sigmoid (for low-level vision tasks) to restrict the output

of I'y, and then reshape it to a 1-band matrix.

A.3 Low-Level Image Quality Improvement

In almost all low-level vision applications, each pixel will be a tar-
get and the training data can contain more than ten million samples.
The data diversity is very common and significant. Therefore, dy-
namic MLNN model would possess apparent advantages over stan-
dard model.

A.3.1 Image Super-Resolution

Image Super-Resolution aims at recovering a high-resolution image
from a single low-resolution image, is a classical problem in low-
level computer vision. Dong et al. show that the traditional super-
resolution algorithms can be replaced with a deep CNN to get bet-
ter performance and faster speed [14]. Due to the convenience of
collecting and controlling of training data, this is one of the most
suitable applications to verify the performance of MLNN strategy.
To control the data diversity, we build mixed datasets with five
kinds of different images, including the natural images, screenshots,

depth images, carton images and oil paintings (with about 100,000
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51 x 51 patches for each type of images, 9/10 for training and 1/10
for testing). We refer natural image as “dataset-1", mixture of natu-
ral image and screenshot as “dataset-2” and mixture of all five kinds
of images as “dataset-5”. Three kinds of network structures pro-
posed in [14] and another much deeper 21-layer residual net [80]
are used as the base models for evaluations and comparisons. In
each of the comparisons, 3 x super-resolution is implemented. We
replace the first one (for Arc 1-2), two (for Arc 3) or five (for Arc
4) original convolutional layers with our MLNN layers. All other
settings in the training process are set same as those in [14]. After
training for 64 epochs, we use PSNR to measure the difference be-
tween testing results and ground truths. Evaluations are shown in
Table A.2. Comparisons of convergent curves of Arc 1 are shown in
Fig.1.2. We can observe that 1) in all the network architectures, our
MLNN would help to get 0.1-0.3 dB improvement in PSNR evalua-
tions. 2) As the increasing of the data diversity, the improvement of
our MLNN model becomes more obvious. For example, in Arc 1,
MLNN only improves 0.14 dB for “dataset-1”. While for “dataset-
5 which has more significant data diversity, our MLNN model gets
0.23 dB improvement.

For Arc 1, Detailed results of each kind of images in “dataset-5"
are shown in Table A.3. Compared with a single CNN model trained
on “dataset-5”, training the same CNN architecture for each type of
images to get five models leads to better performance. Our MLNN
performs even better in four out of five cases than CNNs trained
for each kind of images. This is because MLNN learns pixel-level
meta-knowledge for each pixel and can differentiate input diversities

of each pixel even within a single kind of images.
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Table A.2: Evaluation using image supper-resolution (PSNR: dB)

Data set Model Dataset-1 Dataset-2 Dataset-5
Original 29.97 29.01 32.64
Arc 1 CNN-c 30.01 29.07 32.71
MLNN 30.11 29.20 32.87
Arc 2 Original 30.05 29.08 32.73
MLNN 30.18 29.26 32.93
Arc 3 Original 30.21 29.26 32.88
MLNN 30.31 29.39 33.03
Arc 4 Original 30.34 29.38 32.99
MLNN 30.43 29.50 33.11

Table A.3: Evaluations of each kind of images (PSNR: dB)

Data CNN Individual MLNN

Set model model model
natural image 29.81 29.97 30.02
screenshot 28.09 28.30 28.38
depth image 43.89 44.23 44.11
carton image 32.77 32.92 33.02
oil painting 30.22 30.32 30.38

We show examples of the testing results in each types of images
in Fig.A.1 and A.2. Arc 1 trained on dataset-5 is used. In each type
of the images, our MLNN strategy will help to achieve better results
compared with original network model. Especially for “depth im-
ages” and “screenshots”, the improvements of our MLNN strategy

are usually larger than 0.4 dB.

A.3.2 TImage Denoising

Image Denoising is another low-level vision application which ben-
efits from the development of the DNN. With the Berkeley Segmen-
tation Database [48] as the ground truth, we randomly add noises

to construct the training and testing data. 240 images are randomly
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chosen as the training set, 60 images are used for testing. Gaussian
noises are randomly added with standard deviation in the range of
[0, 50]. We employ simple fast 3-layer Arc 1-2 and the much deeper
21-layer residual net developed in [80] as base network settings. All
other settings are kept same as those in [80] and our models are same
as those in image super-resolution. The PSNR evaluations are shown
in Table A.4 after training for 64 epochs. In all the three network
structures, our MLNN strategy would help to get about 0.11-0.16
dB improvement compared with the original CNN models. Testing
examples are shown and compared in Fig.A.3. Arc 1 is used as base
architecture. MLNN strategy performs a little better by preserving

more details in these results.

A.4 High-Level Image Classification

In scene classification tasks, the data diversity is not as significant as
low-level vision applications since the existing training datasets only
contain no more than one million samples. However, our MLNN
strategy still helps to get 0.4~1.5% accuracy improvement on the
following three datasets. Moreover, as the increasing of the data
scale, the improvement by our MLNN is more significant.

MNIST database of handwritten digits [4 1] of 0-9 , has a training
set of 60,000 examples, and a test set of 10,000 examples. We use a
4-layer network [34] (Arc 5 in Table A.1) as the base setting which
gets a 1.11% error rate on the test set after 10 thousand iterations’
training. We then change the first fully-connected layer to MLNN
of Eq. (5.4), it helps to get a lower error rate of 0.71%.
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Table A.4: Evaluation using image denoising (PSNR: dB)

Architecture CNN model MLNN model
Arc-1 28.71 28.87
Arc-3 28.87 28.98
Arc-4 29.02 29.14

Table A.5: Performance comparisons in image classification

Top-1 Error Top-5 Error

Data Set Model (%) (%)
. Arc 5 1.11 —
Mnist MLNN 0.71 .
Arc 6 18.7 —

MLNN 18.3 —

. ResNet-44 7.61 —
Cifar-10 Res-MLNN-44 6.97 .
ResNet-110 6.38 —

Res-MLNN-110 5.82 —

AlexNet 42.6 19.6

MLNN-1 42.2 19.0

MLNN-2 41.3 18.5

ImageNet MLNN-3 41.1 18.2
ResNet-50 24.53 7.89

Res-MLNN-50 23.27 7.02

CIFAR-10 dataset [38] consists of 60,000 32x32 colour images
in 10 classes, with 6,000 images per class (50,000 for training and
10,000 for testing). The CIFAR10 Caffe model [34] (Arc 6 in Ta-
ble A.1) was trained for the CIFAR-10 classification task. Without
any data augmentation, we trained it for 70,000 iterations with a
batch size of 100. Table A.5 shows the error rates obtained with
and without MLNN. The original Arc 6 achieves a top-1 error of
18.7%. After replacing the fist two convolutional layers by MLNN
(as shown in Fig. 5.3) with nothing else changed, the error rate is
reduced to 18.3%. We also tested the more complicated 44-layer
and 110-layer residual nets [23]. By replacing the first 3 x 3 layer
in each of the residual blocks by MLLNN and training them with data
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augmentation, the accuracy has been improved by 0.6%. Since the
CIFAR-10 dataset contains only 60,000 samples, data diversity is
not as obvious as that in low-level vision applications where each
pixel is a target. The performance of MLNN is, therefore, limited,
but we still can achieve 0.4~0.6% accuracy improvement.

ImageNet [13] is a data set with over 15 million labeled high-
resolution images belonging to roughly 22,000 categories. We use
the ILSVRC-2012 which is a subset of ImageNet with 1000 images
in each of 1000 categories for training and another 50 in each cate-
gory for validation.

We first use AlexNet [39] as the base setting of the network ar-
chitecture, which contains five convolutional layers, three fully con-
nected layers and some non-linear activations. For MLNN-1, we
replace the fist fully connected layer of AlexNet by the implemen-
tation of Eq. (5.4); for MLNN-2, we change the 3" and the 4" con-
volutional layers to the MLNN implementation of Eq. (5.5); and for
MLNN-3, we include all the changes in MLNN-1 and MLNN-2.
We fixed all other settings and trained the models for 310,000 itera-
tions without data augmentation. We then tested the more advanced
ResNet-50 [23] with data augmentation to increase data diversity
and to avoid overfitting. We replaced the bottleneck 3 x 3 layer of
each residual block by MLNN layers (with 16 layers changed).

Table A.5 reports the top-1 and top-5 error rates on the validation
data. Convolutional nets with MLNN outperform the base models
by a large margin (0.4%-1.5% in top-1 error rate and 0.6%-1.4% in
top-5 error rate). Moreover, the improvement is more pronounced
as we increase the number of MLNN layers from one to three in the

base model.
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A.4.1 Effects on Number of SNN Branches

We first study whether improvements are caused by adding extra
branches to the original network. In the CNN-c model (Table A.2),
we use concatenation to replace the dot product and element-wise
addition in Eq. (5.5). That is, CNN-c has the same network branches
and even more parameters when compared to MLNN. However,
CNN-c has very limited improvements (0.04~0.06 dB) when com-
pared to MLNN (0.14~0.23 dB). This illustrates that the improve-
ments brought by MLNN are attributed to the its dynamic behavior
with respect to each input.

Since the meta-level knowledge is split into two parts (Fy and
Fy) in our implementation, we test the effects of each branch in the
SNN implementation individually. Firstly, we replace F,, by tra-
ditional fixed-weight structures and add F}, directly to Fy, with the
output of Fy, adjusted to the same shape as F,. We find that for
image upsampling, PSNR drops from 32.87 dB to 32.68 dB, and
for AlexNet classification, the top-1 error rate increases by 0.61%.
These results support our claim that adaptive weights are effective
in MLNN. Secondly, we change F}, to an identity mapping [?]. We
observe that for image upsampling, PSNR drops from 32.87 dB to
32.7 dB and for AlexNet classification, the top-1 error rate increases
by 0.73%. It 1s obvious that both SNN branches are indispensable in

our model to get good performance.

A.4.2 Effects on Number of MLNN Layers

The number of the MLNN layers also affects the model’s perfor-

mance. In general, as the number of MLNN layers is increased, the
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accuracy of the model will first increase and then begin to drop. For
example, in AlexNet [39], if we continue to change the 5% convo-
lutional layer to MLNN to get MLNN-4, we get similar accuracy
as MLNN-3. However, if we further change the second fully con-
nected layer to get MLNN-5, the accuracy begins to drop by 0.2%.
This happens because after adding a new MLNN layer, the degree of
the model will increase quadratically. As we ceaselessly add more
MLNN layers to a model, overfitting begins to occur at some point.
Our experience shows that in a neural net, we change 1/4~1/2 of the

traditional layers to MLNN layers in order to get good performance.

A.S Efficiency Comparisons and Analysis

Here, we compare the efficiency of our MLNN models with the stan-
dard CNN models. The MLNN strategy is implemented based on
the deep learning platform caffe [34] with a TESLA K40C GPU. We
compare the computation complexity and the speed of the standard
CNN and dynamic MLNN models in Table A.6. For low-level vision
applications, the computation complexity is in direct proportion to
the number of the parameters in the model. During the implementa-
tion, we control the number of parameters by reducing the channels
of the output after MLLNN layers to offset the extra parameters used
in learning meta-knowledge. As a result, the efficiency doesn’t de-
crease too much. While for image classification, the running time of
the new MLNN model is only sightly increased by 5-10%.
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Table A.6: Complexity and Efficiency Comparisons

Architecture Model Params FLOPs Speed
Arc 1 Original 8k 8.0 x 103 2.5MPixel/s
MLNN 8.5k 8.5 x 10 | 2.3MPixel/s
Arc 4 Original 0.7M 7.0 x 10° 21KPixel/s
MLNN 0.69M 6.9 x 10° 21KPixel/s

Original 60M 7.3 x 108 675fps

AlexNet MLNN-2 60.6M 7.8 x 108 633fps

MLNN-3 66M 7.9 x 10% 619fps

A.6 Learned Meta-Knowledge

During the training, meta-knowledge are learned and then combined
into the weights to make the model adaptive. Here, we show more
examples of the learned meta-knowledge using image super-resolution
trained with Arc 1 on dataset-5. Fig.A.4 illustrates the learned pixel-
level meta-knowledge. The color images (third column) are the the
second row of the 48 x 48 band matrix I'y(X) which has three non-
zero elements (They are visualized as the values of R G and B re-
spectively). Before visualizing, each of the three R G and B chan-
nels are normalized by reducing the minimum and then dividing the
value range of the whole images. Similarly, for bias term, the second
row/element of 48 x 1 vector ['y(X) is normalized and then visual-
ized as gray images. We can observe that pixels in these images
are categorized into three major classes represented by three major
colors (blue, orange and black/shadow around object edges.). This
means when these mate-knowledge are combined into the convolu-
tional model, there will be around three kinds of filter kernels for the
second channel of the convolutional model. Similar situation also
appears in other filter kernels (other rows of I'y,(X) and 'y, (X)). As
shown in Fig.A.5, the 2 — 21th rows of the meta-knowledge I'y (X)
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are visualized.

A.7 Conclusion

MLNN studied in this thesis introduces meta-knowledge to DNNs in
order to allow them to adapt to inputs with 5%~10% extra computa-
tion costs. Meta-knowledge is first learned by SNN to differentiate
various types of inputs and then combined in BLNN to make the
MLNN model adaptive to inputs. Besides used for feature extrac-
tion in dense matching, the appendix further verify its performance
improvement using some other several high- and low-level vision
applications. By replacing some standard convolutional or fully-
connected layers with our MLNN layers in a traditional NN, our
new model can outperform the base model by a large margin.

The MLNN layers are beneficial when the dataset has large di-
versity, such as different image types, textures, and radiometric and
noise conditions. Usually, as the data scale is increased, data diver-
sity is more prominent, and the improvements brought by MLNN
will be more pronounced.

The limitation of MLNN is that in very deep NNs, overfitting
may occur when too many MLNN layers are used (like in a pure
MLNN net), as they significantly increase the degree of the model.
As aresult, MLNN layers must be used in conjunction with standard

layers (convolutional or fully-connected layers) in any DNN model.
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Supplementary Meta-Learning: Towards a Dynamic Model Supplementary Meta-Learning: Towards a Dynamic Model Supplementary Meta-Learning: Towards a Dynamic Model
For Deep Neural Networks For Deep Neural Networks For Deep Neural Networks

IR wemievamen 20.04 dB remmievamn 20.42 dB

Paper ID 1927 Paper 1D 1927 Paper

Abstract Abstract

(a) ground truth (b) original Arc 1 (c) MLNN of Arc 1

Figure A.1: Testing examples of 3x super-resolution using Arc 1 trained on
“dataset-5"(mixture of five types of images). An example is shown for each type
of images. They (from top to bottom) are natural images, screenshots, depth im-
ages, carton images and oil paintings. Amplified details of differences (as tagged
in red rectangles) are shown in bottom-left corners. In some edges, original Arc
1 will bring some artifacts. MLNN performs a little better around major edges.

PSNR values (top right corner) are measured only in the first YCbCr channels.
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27.33dB E 27.61 dB

(a) ground truth (b) original Arc 1 (c) MLNN of Arc 1

Figure A.2: Continuing of Figure A.1. Testing examples of 3x super-resolution
using Arc 1 trained on “dataset-5"(mixture of five types of images). An example
is shown for each type of images. They (from top to bottom) are natural images,
screenshots, depth images, carton images and oil paintings. Amplified details of
differences (as tagged in red rectangles) are shown in bottom left corner. In some
edges, original Arc 1 will bring some artifacts. MLNN performs a little better
around major edges. PSNR values (top right corner) are measured only in the first
YCbCr channels.
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(a) ground truth (b) noisy input (c) original Arc 1 (d) MLNN of Arc 1

Figure A.3: Testing examples of image denoising using Arc 1 trained on 240
images. Bottom-left corners are the amplified red windows to show the details of
differences. MLNN seems to be able to preserve more details during the denoising
process. PSNR values (top right corners) are measured in all YCbCr channels.
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(a) color images (b) input to the model (c) second row of I'y (XJd) second row of I'y,(X)

Figure A.4: Visualized meta-knowledge. (a) original color images. (b) the first
channel of YCbCr is used as input. Before that, 3x bicubic interpolation is used

as done in [14]. (c) visualized second row of I'y(X). (d) visualized second row of
[p(X).
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Figure A.5: Learned meta-knowledge: 2-21 row of I'y(X). Each row has three
non-zero elements. They are visualized as R G and B values respectively.
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Figure A.6: MLNN implementation of original Arc 1-6 and AlexNet [39].
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