RESOURCE SHARING ON CSMA/CD NETWORKS
IN THE PRESENCE OF NOISE

BY
DUANE EDWARD DINSCHEL

B.S., University of Illinois, 1985

THES!S

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering
in the Graduate College of the
University of [llinois at Urbana-Champaign, 1987

Urbana, Illinois

i

ABSTRACT

Resource sharing on CSMA/CD networks can be accomplished by using window-control algorithms for bus
contention. The window-control algorithms are designed to grant permission to transmit to the station with the
minimum contention parameter. Proper operation of the window-control algorithm requires that all stations sense

the same state of the network in each contention slot.

Noise causes the state of the network to appear as a collision. False collisions can cause the window-control
algorithm to terminate without isolating any stations. This thesis develops a two-phase window-control protocol
and approximate recurrence equation with noise as a parameter to improve the performance of the window-control
algorithms in the presence of noise. The results are compared through simulation, with the approximate recurrence

eguation yielding the best overall performance.

Noise is even a bigger problem when it is not detected by all stations. In such cases it is possible for the win-
dow boundaries of the contending stations to become out of phase. Consequently, it is possible to isolate a station
other than the one with the minimum contention parameter. To guarantee proper isolation of the minimum, a broad-
cast phase must be added after the termination of the algorithm. This thesis discusses the protocol required to

correct the window-control algorithm when noise is not detected by all stations.

iv

ACKNOWLEDGEMENTS

The author would like to thank his advisor, Professor Benjamin W, Wah, for his help and direction in con-

ducting this research.

The author also wishes to thank NASA (grant NAG 1-613) and NSF (grant DMC 85-19649) for their support
of this work.

Finally, the author would like to thank his family and friends for their support and encouragement.

TABLE OF CONTENTS

1. INTRODUCTION reeesiresesessiesseseisereresissmsssseetessemrestsesssspeetestessssseaneaseresssestesrareanessrases 1
1.1, ReSOUrce SHATING ISSUES wiiricieeeeeecetieeerrrrtrcsacrtesassas et emsssssonessesnsstssmsssnssssasessesnssaasssmsasessmssnes e sensasnsnsoss 1
1.1.1. Scheduling Strategies......cccoeeeeereereraereenas i eretereenessstaas st et ey ass s asan rasnsase e 1

1.1.2. Interconnection Networks........ccorevernenn. b4 eaereaetNphres R ehesssreseta SRLeR s EaR AN SRS RE ReReRRSSIRERAS EnaRaYe e e mreans 2

1.2, OBJECHVE OF TRESIS .ouecrisrrearrorssrssasenserssssnsssnsmasssssissnsssasssssssssssss shsss 1ssnsnssrsss srssssssnssrsn sarsn e et satsrnssarsssass 5

1.3, OTZANUZANON 1evereeraerrrernessrsrrsnsssassnsenssresssenasrasstessassisressssaesossnsssssntssassassatessasatssstass risseseres sarsaesrassserarssnsss 5

2, BACKGROUNDccoconmimmrsmnmssisnnsssmessossansssssanes e rereshanssts sheRseste it arseR e e Rt s n e R RRR e sans 6
2.1. CSMA/CD Networks....... brbsorserstnriesborbebberanrebenesabetanarens Sbrerrbneenren s msraraet s essmebe secs sana se rmasanssemenmesanaires 6

2.2. Window-Control AIGOTIEAINoouieeiiiicsmie i sisnissssseasnisses snssssassssstssssssnsossensansssssssssssssas sossnsssessassssunss 7
2.2.1, GENETAL OPEIALON.. c.ciirirsirasresenesstrsssssrssnasseessarassasstsssssnnsssssasssstnesssssasnssnssssts s sssssessss ennsssanesnsan 7

2.2.2. Binary-Divide Window-Control.......ccimisimneeim nsssssssassossssssreses veetrnioeenneas e 8

2.2.3. Dynamic Programming Window-Control ... sersssssesns 10

2.2.4. Greedy Window-Control and ApproXimationsc.cceerevsscessressnssnsssissssssssssssossssssnssssassssase 13

2.2.5, Load ESHIMALION ...cccverieerrcensensceresrassrrrsanssessessessransensasasssermes srnss rssssnsmmasans snesnessos saranpesasensassssass 14

3. EFFECTS OF NOISE ON CSMA/CD BUS CONTENTIONccccoverrerrermemsasssssessnorsssesnssnsssasessasssssresssnres 15
3.1 TYPES Of INOISE et iuceirivrsintrinincsscterrerestseesme serss s s erneces s sos smmsamssresmassas assases sis ennascs spas srassermes srsanessnssense 15

3.2, Effects of Noise 0n Ethernel NEtWOTK.cciiceeriisimsssrsessscmnsassssseressssmsssssssnssssssnssssrassss sosssssmsssasssns 16

3.3. Effects of Noise on Window-Control Algorithms......... R rrssensersrassraren sesmreseniranatsresrLosTs st senaeara s 21
3.3.1. Noise Detected By All STAtIONS.vuerreesrrcssiirrsssmssrsssrssssrsssassrssssrasssssssvosssssssessssesasssssssssrossasss 22

3.3.1.1. Original Window-Control AIGOTIthIM......vceeiienrssrersesessssssnsessorsssssnssasnessseses it

3.3.1.2, Two-Phase AlBOTINML. ... i niertessaresisnrssnstesnsase s esmessnsnsesssssmesss nnesserssesssasarsanes 24

3.3.1.3. Heuristic Window-Control w1th Noise...ceeeneu et epentemenentrestaeas i et st are s aattr e ram s st s 25

3.3.2. Windows Becoming Qut-0f-Phaseceremeniiimmessnsissnessniesnes eeetebee ettt s b bt srmed b s bt 30

3.4, DePendent NOISE.....eccceerirersrsesssreseamsesassmsessarersssssssssesessseressesss saessssssess sssessesas sssasesas sessessssssesssnassssassasen 32

3.5. L0Ad ESHIMALON c.ieuciicireisssssiosssssssassmssssnsssssansossuss sinss smmessi sossmes sos os amtsons st aemssnsns srassasans srassesssassnrsnsrnses 34

3.6, SUMIMATY «c.uvvrieieirnesirsresnissnssssnessnssnssssrossasers sasrassssssssnssses st sonss setssse se0tesseas satsnsssssessnsssnsts snssessssnssnsstsessensns 34

4. SIMULATION AND ANALYSIS OF WINDOW-CONTROL PROTOCOLS.....ccccerieeceerreretsecessaneseeneas 35
4.1. Independent Noise, Synchronized Windows........ccimmmnerissmssmsssnininscnn wremeersssenas eeen35
4.1.1. Binary Exponential Backoff ALGOTIIc.eeceeeeienienerren e remesseaessaesrcemmsssesnnen s sar senssananscansess 36

4.1.2, Binary-Divide Window-Control AIZOTItIMiuuieismenensssemmirmsersmesssismsimssememsssssnmsscsres 37

4.1.3. Original Dynamic Programming Window-Control Algomhm .. 37

4.1.4. Two-Phase Window-Control AIZOTIthINicmicimrennmnniisenenssnnessnnmmsensss s sesessread 40

4.1.5. Approximate Recurrence RElAHON ..ovciiiiccinirncsssissssscsesssnnsseesessssonssisason sessonsssssnsnssnssnes 40

4.1.6. Comparison of Algorithms..........ccceens SoReaLereRteeNeLR bR RSRR A AR OO SO H RS0 b b 004 o 4w bt mesnm e br e 43

4.2, ASYNCHIONIZEE WINAOWS. ..o cciieieeteeerieimsscercrsrsemnsessestnstas st strbeesasssnssmestosses srasnnssssssnessassnssrasennessesrass sus 45
4.3. Load ESHMALION.cccicrieesrierencestremssreossimcssamesassenssssinsoss sosanssmssssaessassssssntosssssasssset sossssrasasses sensssenas snd 47
4.4, Implementation of a Window-Control Algorithm on Ethemet in the Presence of Noiseccceueue.ns 49

5. CONCLUSIONS ..ot iistirsss i evisrissssssssrsssssssesssrarerasssssssssasssssrosase ssess sesss e sssse sessa sess sssanensssonnan sesss s sassas sssssses 53

APPENDIX A. SIMULATION PROGRAMS IN FORTRAN....ccciimimissmsmsisrrresrrresssessnesssnetsnenssaenssesnesessarens 55
APPENDIX B. SIMULATION PROGRAMS IN C.....coivertrericsnecsocsmsssssrssssmasssrorsassinsssisassassssessssarsssasssssseass 71
REFERENUCEScovvvvimersersssissosssrresssssserssrssmismsssssssss s ssass e sssssssssses s sbss s sssnssssnsnssssrsssssstsan st snsssnssssisssssansnsasassass 80

vi

1. INTRODUCTION

1.1. Resource Sharing Issues

Physical limitations in the size and speed of current semiconductor technologies, combined with the availabil-
ity of inexpensive processors and interconnection networks, have spurred great interest in distributed computing.
One problem of distributed computing is to get the maximum throughput in the system. Chu, Holloway et al. show
that a saruration effect occurs as more processors are added to a system [1]. In other words, the throughput of a sys-
tem increases as more processors are added, but decreases after a certain point dve to interprocessor communication
overheads. Experience shows that a system’s computing power normally increases by only a factor of 0.8 for each

additional processor [2].

Although there are several essential issues involving multiprocessor systems [3], one critical consideration is
a good resource sharing strategy. Such a resource sharing strategy should decompose work among the processors,
in order that the maximum throughput of the system can be realized. There are two major issues to consider in

regard to resource sharing: the job scheduling strategy and the type of interconnection network among the resources.

1.1.1. Scheduling Strategtes

There are many different ways to categorize the various scheduling techniques. Probably the major distinc-
tions are between static and dynamic techniques [4, 5). Static techniques make scheduling decisions based on fixed
probabilities and queueing theory models [6]. Consequently, they are also known as probabilistic techniques. Static
scheduling has the advantages of simplicity and low interprocessor commﬁnicﬁt.ion overheads, but has a disadvan-
tage in that it cannot account for changes in the workload distributions of the system. Ni and Hwang [6], and Chow

and Kohler {4] have discussed various static scheduling strategies.

Dynamic techniques make scheduling decisions based on the current state of the system. Consequently, they
are also often called deterministic techniques. Since dynamic scheduling techniques can account for changes in the
workload distributions, they can potentially perform better than static techniques. However, they also introduce
additional communication overheads to obtain the resource status. Chow and Kohler {4], Lo and Liu [7], Wah and

Hicks [8], and Juang and Wah [9] have discussed various dynamic scheduling strategies.

Scheduling strategies can also be centralized or distributed. In centralized scheduling, one processor is
responsible for scheduling all resources. It must receive status information from each processor, process that infor-
mation according to a scheduling strategy, and send messages to processors to reschedule the tasks. Consequently,
a lot of traffic flows in and out of the central scheduler, causing it to become a bottleneck of the system. Further-
more, the system is not fault-tolerant, because the scheduler is a critical component of the system. These drawbacks
tend to favor distributing the scheduling intelligence among all the processors. The problems with distributed
scheduling strategies are that they are more difficult to implement and require additional overheads for all proces-
sors to maintain the current status on the other processors. Nevertheless, the robustness of distributed scheduling
strategies combined with their better performance, makes distributed scheduling the preferred choice in many mul-

tiprocessor applications [8,9, 10, 11].

1.1.2. Interconnection Networks

The characteristics of the interconnection network among the resources are important factors in determining
the load sharing strategy. There are basically three types of interconnection networks: shared bus, crossbar switch,
and multistage dynamic blocking networks, The following examples assume homogencous resources and proces-

SOrIS.

The most basic and least expensive interconnection network involves a single shared bus that connects p pro-
cessors 1o r resources (Figure 1.1). Each of the p processors must compete for using the bus before it can send a job
to one of the r resources. There are two common methods of resolving bus contentions: token passing and carrier
sense multiple access with collision detection, (CSMA/CD) [12]. This thesis focuses on the design of resource shar-
ing strategies on CSMA/CD networks. Wah and Juang have studied resource scheduling issues on CSMA/CD net-
works for both single shared busses [13] and multiple shared busses [14].

The crossbar switch (Figure 1.2) is at the other end of the spectrum from the single shared bus. It is an expen-
sive network in that connections must be possible from all p processors to all r resources. Such a network involves
p'r switching elements for p processors and r resources. The crossbar switch is non-blocking, that is, connections
from P; to P.i do not inhibit connections from other processors to free resources. Therefore, crossbar networks do

not impose any limitations on the resource scheduling algorithms. However, they are often used in small systems

OOOG

Figure 1.1. Single Shared Bus

Figure 1.2. Crossbar Switch

due to their high cost of implementation.

Multistage dynamic networks offer a wrade-off between cost and flexibility, They are constructed from a
series of stages with switch boxes in each stage. The Omega network (Figure 1.3) is an example in this class. Each
switch box can perform either a straight or exchange connection. Note that this network is less expensive than a
crossbar switch in that there are only O(n*logzn) switch boxes to connect # processors to n resources. However,
multistage networks are often blocking. Consider the scenario in Figure 1.3. The bold lines represent connections
that have already been established. Suppose R is busy and P has a job ready. P, will be blocked from accessing

the only free resource, R, due to the connection from P, to R,.

Owing to the blocking effects in multistage networks, the design of the resource scheduling strategies is often
more difficult. Wah has presented a distributed algorithm for multistage dynamic networks [8]. The algorithm con-
sists of two phases: a resource phase and a request phase. In the resource phase, information concerning the number
of free resources is passed from the resource side to the processor side. Then, in the request phase, the network pro-
pagates requests from the processors to the résources; each switch box makes an independent routing decision based
on the results of the resource phase. If a request is blocked, it must be sent back to the exchange box in the previous
stage for rerouting. Conflicts in a box due to two signals arriving simultaneously are resolved by a priority scheme,

This algorithm is distributed in that exchange boxes operate independently rather than under a centralized control; it

Po RO
P, R,
P, R,
P,y p————— R;

Figure 1.3. A 4-by-4 Omega Network

is deterministic in that requests are routed dynamically.

1.2. Objective of Thesis

This thesis focuses on the study of resource sharing strategies on CSMA/CD networks in the presence of
noise. More specifically, it concentrates on window-control methods for bus contention on 2 particular CSMA/CD
network, the Ethernet. The objective of this thesis is to develop a robust window-control algorithm for resource

sharing on CSMA/CD networks in the presence of noise.

1.3. Organization

There are four chapters following the introduction, Chapter 2 provides background information on
CSMA/CD networks and the various window-control algorithms that can be used to resolve bus contention for load

balancing applications.

Chapter 3 deals with the problems of noise in relation to the window-control algorithms. It outlines the vari-
ous types of noise and discusses how noise can affect the operation of a CSMA/CD network. The effects are
divided into two classes, one in which the window boundaries of all stations remain synchronous, and the other in

which the window boundaries of the stations may become asynchronized.

Chapter 4 contains the effects of noise on both the exponential backoff method and the window-control
methods. It compares the effects of noise with regard to various numbers of stations, various probabilities of noise,
and various window-control methods. This chapter deals with simulations for both synchronized and asynchronized
window boundaries. Finally, this chapter outlines the implementation of a window-control algorithm in a real sys-

tem in which noise is a factor.

Chapter 5 contains a summary of results and future research directions.

2. BACKGROUND

This chapter surveys previous work on CSMA/CD networks and window-control algorithms for resolving bus
contention. The first section describes the operation of CSMA/CD networks and Ethernet’s binary exponential
backoff methed for resolving bus contentions. The second section discusses the varions window-control algorithms

and the techrique used to estimate the channel load.

2.1. CSMA/CD Networks

Carrier sense multiple access with collision detection, CSMA/CD was developed and patented by Xerox as
part of its Ethernet local network [15]. The concept of CSMA/CD is fairly simple. Any station wishing to use the
bus senses it to dcterminer whether it is busy or idle. If the bus is idle, it may attempt to transmit; otherwise, it must
wait until the bus is no longer busy. When two stations both detect that the bus is idle and simultaneously attempt to
transmit, their transmitted signals will collide with each other. A collision detection mechanism is necessary to
detect this event and abort the ransmissions. In the worst case, assuming a signa! propagation delay of 1 from one
end of the network to another, a station at one end of the network may attempt to transmit at time ¢ and another sta-
tion at the other end of the network at a time slightly less than r+t. The two transmissions will then collide, and the
second station will detect the collision almost immediately. However, the first station will not detect the collision
vntil T units after the second station has transmitted. The total time from initial transmission to collision detection in
the worst case is, therefore, 2t. This amount of time is called a contention slot, and is the amount of time a station

must listen to the bus after transmitting to guarantee that no collision will occur.

The fact that there are collisions leads to the issue of determining the time a station should wait before it
retransmits. There are several solutions to this problem. The first is to transmit as soon as the station detects that
the network is idle. This is known as persistent CSMA/CD [12]. However, under heavy traffic, this method works
very poorly because stations constantly collide in their attempt to access the bus. Consequently, a nonpersistent
protocol [12] may be used in which the stations always wait a random amount of time before retransmitting. This
method does not work as well under light traffic. One compromise is to use a p-persistent protocol [12] in which the

stations transmit immediately upon sensing the network idle with probability p and wait a random amount of time

before retransmitting otherwise.

Ethemet uses the truncated binary exponential backoff algorithm to determine when a station can retransmit
after detecting a collision [16]. According to the data link layer of the Ethernet specifications, a station has 16
attempts to transmit on the bus [16]. If it is unsuccessful, it waits an integral number of contention slots before
retransmitting. The average delay before retransmission grows exponentially until n=10, but up to 15 retransmis-
sions may be attempted. The number of slot times to delay before the n* retransmission attempt is chosen as a uni-
formly distributed random integer, I, in the range 0</<2*, where k=min(»,10). If all 16 attempts fail, the station

quits transmitting and logs the event as an error.

The binary exponential backoff method has an advantage over the persistent methods for bus contention in
that it can more effectively account for the system load [15). However, its performance degrades as the number of
stations increases. Furthermore, it is not possible to establish priority of one station over the others with regard to
the use of the bus. Hence, it is not easy to implement a Joad balancing strategy in which the priority to transmit is
based on the system workload. Both of these problems can be resolved by the window-control algorithm to be out-

lined in the next section,

2.2. Window-Control Algorithm

The purpose of the window-control algorithm is to identify the extremum from a set of physically dispersed
random numbers called contention parameters [13), The distribution of these numbers varies according to the load
balancing scheme used. For example, the length of the job queue or a random number from a uniform distribution
can be used as the contention parameter. Since procedures for isolating the minimum and maximum contention
parameter are similar, this thesis discusses only procedures for isolating the minimum. Bus contention is resolved

by granting permission to transmit to the station with the minimum contention parameter,

2.2.1. General Operation

B. W. Wah and J. Y. Juang have presented a window-control algorithm for determining priority on
CSMA/CD networks [13). It is a distributed algorithm in which each station maintains a window to decide whether

it will retransmit in the future. Al stations update their windows synchronously, each contention slot, according to

the state of the network,

The algorithm assumes that all contention parameters lic in the interval (L,U]. The initial window is chosen
with a lower bound, a, at L, an upper bound, b, at U, and a temporary upper bound, w, in (a,b]. The value of w is
chosen according to the window-control protocol being used, and varies as a function of @ and b. In each contention
slot, all stations with contention parameters smaller than w transmit. If there is a collision, there must be at least two
stations in the window, (a,w]; therefore, b is Iowered to w in the next contention slot. If the state of the network is
idle, the window must be empty; therefore, 4 is raised to w in the next contention slot. Otherwise, if there is a suc-
cessful transmission, the algorithm terminates. This process is repeated until the minimum contention parameter has

been isolated. The operation of the window-control algorithm for an individual station is outlined in Figure 2.1.

Operation of the window-control algorithm is best illustrated by an example (Figure 2.2) . Initially, each of
the five stations generates a random contention parameter in the interval (L,U], and sets its window to (L,w,]. Pur-
ing the first contention slot, stations 1, 2 and 4 transmit. Collision is detected, and the window is reduced to (L., w,].
In the second contention slot no stations transmit. Therefore, the lower bound of the window is increased o w, and
the upper bound of the window 1o w1, resulting in a window (w2,w3]. Finally, in the third contention slot only sta-

tion 2 remains-- the transmission is successful and the algorithm terminates.

Wah and Juang discuss the performance of several window-control algorithms in which the channel load and
the distribution functions from which the contention paramcters are generated are exactly known: binary-divide,
dynamic programming, greedy window-control, and approximations to greedy window-control [13,17]. These are
outlined in the next sections and evaluated with respect to the presence of noise in the next chapler. In the following
discussion, a is the current lower bound, & is the current upper bound, w is the upper bound of the next window, and

n is the number of contending stations at the start of the algorithm,

2.2.2. Binary-Divide Window-Control

The simplest of the window-control methods is known as the binary-divide window-control. The new upper
bound of the window, w, is set to the value (a+b)/2. If there is a collision, b is set to w; if the line is idle, a is set to
w. The algorithm is reiterated until the minimum is isolated. The expected number of contention slots to resolve the

collisions is O (log,n) [13].

procedure window_protocol_station_i;
/¥ procedure to find window boundaries for isolating one of the contending stations */
/* window - function to calculate window size w,
* random - function to generate local contention parameter,
* transmit_signal - function to send signal to bus with other stations synchronously,
* detect - function to determine state of the network,
* x - local contention parameter,
* Ib - lower bound of interval containing minimum
* ub - upper bound of interval containing minimum
* contending - boolean 1o continue the contention process,
* state- state of the network: collsion, idle, or success

*f
l
Ib:=L;
ub=1;

r := random(L,U);
w = window(lb,ub);
contending := true;
while (contending) do [
if(r2zlbandr=< w)then [
/* parameter is inside window, contend for bus */
transmit_signal();
/* test for unique station in the window */
state := detect;
if (state = collision) then
/* update upper bound of interval containing minimum */

ub = w;
else * successful isolation of minimum */
return(lb,ub);
w = window(lb,ub);]
else[
state 1= detect():
if (state = idle) then
/* all parameters are outside window */
/* update lower bound of interval containing minimum */
Ib:=w
else
f* some other parameters are inside window, stop contending */
contending := false;]
return(failure);

Figure 2.1. Procedure illustrating the execution of the window-control
algorithm by a single station [13]

10

c

Wa

station 1

I

station 2

Station 3

station 4

" VU N DUk
1Y)

L)
]
]
]
I
i
|
1
1
1
[
'
]
1
i
|
1
]
]
]

Station 5

Fig. 2.2. Window-Control Algorithm [13]

2.2.3. Dynamic Programming Window-Control

A significant improvement to the number of contention slots to resolve collisions can be gained by using a
" dynamic programming window-control algorithm. The algorithm attempts to minimize the expected number of
contention slots to resolve collisions, M (a,b), given that there are n contention parameters in {a,U], and that colki-
sion occurs in the current window. The following notations are first defined [13}:
M{a,b):

The minimum expected number of iterations to resolve contention given that there are n contention
parameters in (¢,U'] and collision occurs in the current window {a,b].

g(w,n,a.b):
Probability of success in the next iteration if a window of (a,w]l,a <w < b, is used.

Hw,n,a,b):
Probability of collision in the next iteration if a window of (a,w], a < w < b, is used.

r{w,n.a,b);
Probability of no trransmission in the next iteration if a window of (a.w],a <w < b, is used.

It follows directly from the above definitions that

l(w,n,a,b) + g (w,n,a,b) +r(w,n,a,b) = 1. 2.0
Functions I{w,n,a,b),r (w,n,a,b), and g (w,n,a,b) are conditional probabilities based on the condition that
there was a collision in the last iteration of the protocol. This implies that there must be at least two contention

parameters within the boundary (a,b], and that all contention parameters must be greater than . This condition can

11

be designated as event A,

Three mutually exclusive events can occur by choosing w, a <w <b, which can be identified as follows [13]:

B={exactly one of the x;"s is in (a,w], given that all x,’s are greater than a}
C={no x; is in (a,w], given that all x;’s are greater than a)

D={more than one x; is in (a,w], given that all x,’s are greater than a}

From these events, the conditional probabilities can be expressed as [13]:

Pr{A M B)

8 (w,n,a,b) =Pr (B IA) = W (2.2)
PriA MQC)

r(w,n,a,b) =Pr (C IA) = W (23)

The set A (M B represents the event that exactly one x; is in (g,w], one x; is in (w,b], and all other x;’s are
greater then w. The set A () C represents the event that at least two x;’s are greater than w,

Let F;(x) be the distribution function governing the generation of x;. 'Wah and Juang presented the formulas
for g,r and Pr(A) for the general case of arbitrary independent distribution functions [13]). The functions ¢ and r

can be simplified by assuming uniform distribution functions for each station. F;(x) is then equal to x. These func-

tions can be expressed as:

(1-a)" —n (b—a)(1-b)Y""! — (1-b)"

PrA)= o @4)
The function, M (a,b), can then be formulated recursively as follows:
M(a,by=,Min ,,{ l+g (w0 + 1(w,n,a,b)-M (a,w) + r (w,n,a,byM (w,b}} @.7)

A boundary condition 8 must be set to terminate the algorithm after a reasonable number of iterations. By

assuming that all contention parameters differ by at least §, contention can always be resolved in one step when the

12

window size is smaller than 8. Therefore, the following boundary condition is included:

M@b)=1

forall (b—a) <& . 2.8)

The dynamic programming algorithm requires an average of only 2.4 contention slots to resolve collisions.

What is significant is that this value remains constant as the number of contending stations increases. Figure 2.3

illustrates the performance of the binary exponential backoff method as compared to the dynamic programming

method.

There is an extensive computational overhead associated with this method. This overhead can be overcome in

one of two ways. The first is to precompute N (a,b) for a truncated dynamic programming algorithm and store the

30fF
A
1 binary
- exponential
i backoff
20}
Expected I
Number [
of :
Contention -
Slots
10+
i dynamic programming
[g —— 8 £ 58— 8 & .-
O- PR IO TS T T NS Y A R RN S IR SR T I T ST B
0 20 40 60

Number of Contending Stations

Figure 2.3. Binary Exponential Backoff vs. Dynamic Programming Window-Control

13

results of optimal w's for each (a,b) pair in a table. When (b-a)<38, a binary-divide algorithm can be used to com-
plete the iterations. This method was used in the simulation results shown in Figure 2.3, The other method to
reduce computation time involves using approximations to the dynamic programming algorithm as discussed in the

next section.

2.2.4. Greedy Window-Control and Approximations

The computation time of the dynamic programming algorithm can be greatly reduced by finding a window to
maximize the success probability in just the next iteration rather than in all possibie future iterations. This technique
requires an average of only 2.7 contention slots for bus contention [13]. Similar to the dynamic programming

window-control algorithm, the overhead is also independent of the number of contending stations.

Computation time can be further reduced by using an approximation to the greedy window control scheme

that calculates w directly from the following formula [13]:

W= =C-NC*-4D "’2—4D 2.9)

where

c==r-DIF@+F(})]+2

. (2.10)

_F@+F®)+(n ~2)-F (a)F (b}
n

D

{2.11)

This calculation of w has been shown 1o have a performance comparable to the optimal greedy window-control
algorithm [13].

A final simplification is mentioned by Juang in his Ph.D, dissertation [17]. He showed that the window used
in the first contention slot is critical to the overall performance. The ideal window for this first slot is 1/n. After the
first slot, a binary-divide scheme may be used to complete the algorithm. Again, the performance is comparable to

that of the pure dynamic programming window-control algorithm.

2.2.5. Load Estimation

If the load of the channel is not exactly known, it must be estimated from the distributions of contention

parameters and statistics of previous channel activity [13]. Wah and Juang have presented a method for estimating

14

load, based on the windows used to isolate the successful stations in previous contention slots [13]. The method
computes a moving average based on all previous windows, w(l), w(2), ..., w(t). This moving average, w,.(¢), is

computed according to the following formula [13]:

W) = i"i"—lz)—f—'f-(—'-)— 2.12)

The estimation of the number of stations, »,({t), is approximated by the formula [13]:

-1
log(1-wp, (1)) *

This estimate of » can be used in the approximate greedy window-control algorithm, yielding a performance

n()= OSwy(t) <1 (2.13)

very close to that when the channel load is exactly known. However, the estimate also assumes that there is no
noise on the network. The effects of noise on load estimation will be discussed in Chapter 3 and illustrated by simu-

lation in Chapter 4.

15

3. EFFECTS OF NOISE ON CSMA/CD BUS CONTENTION

One major problem in any communication network is noise. Noise on a network may be defined as any
unwanted signal present in the transmission medium. This chapter discusses the types of noise, how noise can affect
the physical operation of an Ethernet network, and how noise affects the various window-control algorithms for bus

contention,

The effects of noise on the window-control algorithm are divided into two cases in which noise is either
detected by all stations or by just some of the stations. In the first case, the windows of different stations remain in
phase, but in the second case the windows may become out of phase. All window-control algorithms assume that
the channel load is exactly known and that noise is independent for each contention slot. The last section discusses

the effects of noise when these assumptions are invalid.

3.1. Types of Noise

There_ are basically four types of noise: thermal noise, intermodulation noise, crosstalk, and impulse noise
[15]. Thermal noise is caused by the thermal agitation of electrons in the transmission medium. It varies as a func-
tion of temperature, but is otherwise fairly predictable. Thermal noise is often referred to as white noise [15]. Most
communication systems take thermal noise into account in their design and use signals with sufficient strengths such
that thermal noise has little effect. Although thermai noise limits the effective bandwidth of any communication
medium, it normally does not cause signals to be misinterpreted by the receiver. Consequently, thermal noise is not

a factor in regard to the window-control algorithm,

Intermodulation noise is due to signals of different frequencies producing a new signal that is the sum or
difference of a multiple of those frequencies. Intermodulation noise is important when two or more simultaneous
transmissions of different frequencies are attempted on the line. Since all transmission attlempts in the window-

control algorithms are made at the same frequency, intermodulation noise is also not a factor.

Crosstalk can be a problem depending on the communication medium used. It is rare in coaxial cable and
nonexistent in optical fiber, but might occur in twisted-pair lines. Crosstalk is electric coupling between lines such

that the signal on one line affects the signal on the other. Nevertheless, the magnitude of the noise produced by

16

crosstalk is relatively small and can usually be taken into account by the system designer [15).

Impulse noise, however, is 2 major factor in producing false signals. Impulse noise is an unpredictable burst
of electrical energy that lasts a random amount of time. It can be caused by lightning, electromagnetic radiation, or
any sudden pulse of energy. Such noise can often be found in harsh environments, such as those encountered in the
military. Unlike the other types of noise, the randomness in the occurrence, duration, magnitude and nature of
impulse noise makes it impossible to predictably filter ont. Furthermore, impulse noise is usually of sufficient
strength to cause logical 1's to be misinterpreted as logical 0’s and logical 0's to be misinterpreted as logical 1’s. It
can also cause a whole block of transmitted signals to be altered dramatically. As a result, impulse noise has the
greatest net effect on transmission on CSMA/CD networks and will be the main type of noise considered in this

thesis.

3.2. Effects of Noise on Ethernet Network

To determine the effects of noise on bus contention on Ethernet networks, it is necessary to discuss the encod-
ing of transmission signals on the interpretation of network status by stations, and the effects of noise on this
interpretation. According to the physical layer specifications of Ethernets [16], an idle transmission line is set to a
value of 0 volts. Data is encoded using Manchester Code, in which a logical 0 is represented by a transition from
-0.225 V 10 -1.825 V, and a logical 1 is represented by a transition from -1.825 V 10 -0.225 V. Bits are transmitted at
a frequency of 10 MHz, and the transitions are set to oceur in the middle of each bit. Figure 3.1 illustrates the Eth-

emet specifications for its Manchester encoding scheme.

Any two different transmitting stations are likely to have their clocks skewed, and if simultaneous transmis-
sions are attempted by both, the receiver will likely detect a collision either by a voltage level that is lower than it
should be or by the lack of a delected transition in the data at the specified time. The receiver may also detect unex-
pected transitions less than 50 ns (1/2 bit time) apart. Figure 3.2 illustrates the results of a collision. Note that in the
case of a collision, the overall high voltage is reduced from -.225 V to -45 V and that the low voltage occurs at

-3.65 V which is well below -1.825 V. Furthermore, there are two transitions less than 50 ns apart.

When collision is detected by the transmitting stations, the stations do not abort transmission immediately, but

continue to transmit for a period of time to guarantee that the collision is heard by all stations [16]. The resultant

17

-1.825V

100ns

Figure 3.1. Manchester Encoding

transmission is known as a jamming signal.

What happens to a normal signal in the presence of noise? Most impulse noises introduced into the system
will cause the voltage levels 1o be incorrect or cause the 10 MHz transition not to be detected. For example, a-1 V
surge for 200 ns would cause the voltage levels to drop to -1.225 V and -2.825 V triggering a false collision, as
iltustrated in Figure 3.3, Figure 3.3 also shows how noise could interfere with the signal in such a way as to mask
out the expected transition due to the 10 MHz clock. In this sense, it is relatively easy for noise to generate a false

collision on the bus.

A false idle contention slot can occur only if there is a positive voltage surge that cancels out the signals
present on the bus. As it is, a +2 volt surge will cause all voltages on the line to be greater than or equal to 0 when
only one station is transmitting. Hence, it is necessary for the receiving station to recognize that voltages greater
than 0 can be caused only by noise. The current Ethernet specifications [16] do not address this case, although
minimal hardware can be added to the transceiver to detect positive voltages on the line. Under these conditions,
the only way a false idle contention slot can occur is when the noise is the exact inverse of the signal, resulting in a

net voltage of 0. This event is extremely unlikely for any signal, and hence, the probability that either a collided or

18

——
=]
—
—
—
[=}
—
L=}
—
—
—

0225V
Signal A
-1.825V
el T ||
-0.225V
Signal B
-1.825V
ov
©4sv T T
voltage levels for
one signal
205V 0
excessive
Signal A+B negative
voltage
365V

time between successive transitions
less than 50 ns

Figure 3.2. Collision of Two Signals

19

0225V
signal
-1.825V
noise
voltage above 0
0V — - e r i m e e e e e - -
0225V
signal
. 1.825 V.
noise UTT T __——ﬁ_-—}.— ______ voltage below
expected transitions 1825V
undetectable)
B A Y T U

Figure 3.3. Signal with Added Impulse Noise

20

successful contention slot will falsely be detected as an idle slot is negligable.

It is also unlikely that a successful contention slot is falsely detected. In the case of an idle contention slot, a
false success could be triggered by an arbitrary 10 MHz signal that varies between -.225 V and -1.825 V. Likewise,
a collision could falsely be detected as a success when noise cancels out the collision in such a way as to produce a
10 MHz signal that varies within the -.225 to -1.825 voltage range. Both of the above are extremely unlikely since
first, random noise is likely to have a voltage outside the range between -.225 V and -1.825 V, and second, even if
the voltage levels are valid, the noise is likely to have a frequency other than 10 MHz. The case of a collision being
falsely detected as a success is even more unlikely, since either transmitting station will detect a signal different
from the one it transmitted, and enforce the collision with a jamming signal. In the worst case, if an idle contention
slot is falsely treated as a successful transmission, all stations will be expecting the nonexistent successful station to

transmit, resulting in an idle channel. This case can be logged as an error, and the stations can restart the algorithm.

All in all, the probabilities of a false idle slot or a false successful slot are extremely small, while the proba-
bility of a false collision in the presence of impulse noise is very likely. In modeling the effects of noise, a fourth
state, noise, could be added to give additional information regarding the state of the network. However, noise is only
distinguishable from a true collision when there are voltages greater than 0 on the transmission line. In all other
cases, noise is indistinguishable from collisions. Therefore, for the purposes of evaluations, all noise will be treated

as resulting in false collisions.

There is still the issue of whether all stations on the network will detect noise when it occurs. The probability
that this is true is high for noise on the global bus since Ethernet is designed to allow collisions to be detected by all
stations through use of a jamming signal. Itis very unlikely that the jamming signal will be misinterpreted as a false
success or ne fransmission since the transmitting station is also listening to the line and can continue to issue the
Jjamming signal if it detects that the signal is being cancelled out by noise. This leaves the problem, however, of
noise occuring while no stations are transmitting. In this case, no station would issue a jamming signal to amplify
the false collision. Whether a station detects a collision will then be dependent on the sensitivity of a stations’s

transmission-line sensing equipment.

Unfortunately, one cannot guarantee that all stations will always detect all noise whenever it occurs. Consider

the Ethernet network in Figure 3.4. If noise is more prevalent only on the right side of the repeater, there will be

21

/ Station

Ethemet Transceiver

Coaxial Cable ‘Twisted-pair Line

Figure 3.4. An Ethernet Network

occasions when stations 4,5 and 6 detect noise while stations 1,2 and 3 do not. If station 4 has a noisy connection to
the network, it might detect noise, while the others do not. There might also be the case where the collision and
noise detection mechanisms are more sensitive in some stations than others. Basically, any condition that causes
noise to be localized to one or more areas of the network, or any discrepancy in transmission-line sensing equipment

of some stations, may result in the stations detecting different states of the network during a given contention slot.

3.3. Effects of Noise on Window-Control Algorithms

The previous section discusses the fact that noise will almost always result in the detection of a collision by
the stations on the network. If there is already a collision, noise has no effect. But if there is no collision, some or

all of the stations may detect a false collision due to the noise, and inappropriately adjust their windows.

Analysis of the noise problem can be divided into two cases. The first case assumes that noise is always
detected by all stations, and that all stations treat noise as a collision. Provided that the stations start with the same
windows in the first contention slot, their windows will remain synchronized with respect to each other, since they
always detect the same state of the network. The second case is more general and assumes that a subset of the sta-

tions detect noise while others do not. As a result, it is possible for stations to have different window boundaries in a

22

given contention slot. These two cases are discussed separately in the following sections.

3.3.1. Noise Detected by All Stations

The assumption that the windows remain synchronized is necessary in developing a theoretical analysis for
the performance of the window control algorithms under the presence of noise. The following sections discuss the
effects of noise on the window-control algorithm along with the development of two new window-control algo-
rithms that attempt to overcome the noise problem-- the two-phase algorithm and an approximate recurrence rela-

tion.

3.3.1.1. Original Window-Control Algorithm

‘When noise is apparent, windows in the original window-control algorithm may be updated incorrectly. Con-
sider the scenario in Figure 3.5, where there is a window with no contention parameters in it and noise occurs in that
slot. After the first real collision, the upper bound of the window is reduced to w, but all contention parameters are
greater than w;. Now suppose there is a burst of noise in the next contention slot that causes all stations to detect a
false collision and reduce the upper bounds of their windows to w,. In successive iterations, idle contention slots are
detected and cause the upper bounds of the windows to increase to ws,w4,ws, and so on, but all are less than w 1- In

any event, the upper bound of the windows will never become greater than w y, and the contention protocol will con-

Wy Wy Wj

station 2

. w
station 1 2

]

1

t

I

[}

i

]

]

L

¢

station 3

Figure 3.5. Window-Control with Noise

23

tinue to iterate indefinitely.

To correct this problem, it is necessary to terminate the protocol after the window has been reduced to a cer-
tain size. The termination point can be set to the value 8, the resolution of the contention parameters, as defined in
Chapter 2. If the window is reduced to 3, the algorithm must be restarted. The number of contention slots to
resolve the algorithm will then depend on the probability that collision is resolved before the window is reduced to a
size § and the associated probability for this event. If the probability of noise is high, then it is highly likely that the
window will be reduced to a size less than & without isolating the minimum. If 8 is small, then extensive overheads
are incurred before false collisions are detected. With respect to the window protocols outlined in Chapter 2, the
number of contention stots to resolve collision has to be modified by the probability that collision is resolved before
the window is reduced to a size 8, Let M be the number of contention slots to either isolate the minimum or reduce
the window size to 8, and § the probability of success before this event occurs. Define T as the total number of con-

tention slots to resolve contention. T is then formulated as follows:

T = §-M+8 (1-8) 2M+S (1-§)*-3M+§ (1-8*-4M+ - - - 3.1
T = SM-Xi-(-Sy~ 32)
i=1
T(1-5) = SM-3i-(1-S) (3.3)
i=1

Subtracting (3.3) from (3.2) yields:

T8 = SM-3(1-S 3.4)

i=l

The summation in (3.4) is a standard geometric distribution that reduces to 1/§ [18). Therefore, Equation (3.4)

reduces to:

T=M/S 3.5)

24

3.3.1.2. Two-Phase Algorithm

The original window protocol suffers from the problem that once the upper bound of the window is reduced
1o a value smaller than the smallest contention parameter, it is not possible to recover until the window size is
reduced to a size less than 8. To alleviate this problem, one can use a two-phase algorithm that adds a check phase
each time no transmission is detected. If no transmission is detected in a given contention slot, then the other half of
the window is tested to see whether it contains any contention parameters. If there is a collision, the protocol carries
on as normal, but if no transmission is detected again, then the window’s upper bound is increased to its previous
value, while the lower bound is increased to the current upper bound. Referring to Figure 3.5, the two-phase algo-

rithm would modify the situation as follows:

Slot 1) Collision:
window reduced to (Z,w].
Siot2) Collision due to noise, although no transmission should be detected:
window reduced to (L,w3].
Slot 3) No transmission:
window raised to (wq, w1
Note: In the original window protocol, the window used is (wz,w3).
Slot 4) Second no transmission:
window raised to (w,wq]-
Slot 5) Protocol continues normally, unless further notse develops.

The state of no transmission is used to correct the windows, since whenever no transmission occurs, it is
guaranteed, based on the assumptions discussed earlier, that the transmission line is definitely in that state, There-
fore, whenever no transmissions occur twice in sequence, it is guaranteed that no contention parameters remain
within the lower and upper bounds defined for the window. As a result, it is necessary 10 retract the lower and upper
bounds to a different region of the contention parameters. This process is repeated until a region with a collision is
found. Since a collision may be due to noise, the occurrence of collision in a contention slot cannot be used to per-
manently fix the upper bound of the window. If the probability of noise is low, then most of the collisions are due to
simultaneous transmissions in a window. The algorithm is set to terminate when a successful transmission is

detected, since it is assumed that there will be no false detections in this case.

Inherently, the two-phase algorithm implies need of additional memory to store previous upper window boun-

daries. However, these bounds are normally defined in the implementation of the window-control algorithms, as

they are precomputed at design time and looked up in real time. In the case in which the window boundaries are

25

computed in real time, such as the binary-divide algorithm, the maximum number of stored window boundaries is

bounded by the difference between the number of collisions and the number of no transmissions.

This can be best illustrated by the binary-divide window control. Assume an initial window size of 1 and a
resolution 8= 2-". Each collision causes the window size to decrease by a factor of two and increases by one the
number of upper bounds that must be stored in memory. However, each no fransmission retrieves a previous value
of the upper bound, and therefore decreases the number of upper bounds to be stored by one. In the worst case there
will be n successive collisions, resulting in » upper bounds stored. The next collision will force the algorithm to re-
start, as the maximum number of collisions is bounded by n. Although each collision decreases the window size by
a factor of two, each no transmission increases the window size by a factor of two only after the second no transmis-
sion is detected. Tt takes only one collision to decrease the size of the window, but it takes at least two no transmis-
sions to increase the window size. Unless there is a sequence of n collisions, the window shrinks at a rate that is
faster than the net growth of the memory stack and, therefore, the maximum amount of memory needed to store the
upper bounds is n. A similar result holds true for the dynamic-programming protocol, except that during collisions

the window is reduced by at least a factor of two. Hence, the required memory is likely to be less than #.

There is additional computational overhead to check the other half of the window in the two-phase protocol.
Although the probability of success is increased in the two-phase protocol over the original protocol, the number of
contention slots to reduce the window size to 8 is also increased. Therefore, the net effect on the total number of
contention slots to resolve contention, as defined by Equation 3.5, is uncertain. A comparison of the performance of

the two-phase and the original protocols is included in the next chapter.

3,3.1.3. Heuristic Window-Control with Noise

The optimal window for each contention slot can be determined by including the probability of noise as a
parameter in the dynamic programming window-control algorithm. First, one must consider the effects of noise on
state detection and window boundaries. No information conceming the state of the network can be gained during
the contention slot in which noise occurs. Windows can be updated with certainty after detection of a successful
transmission or idle state on the network, since those states can occur only when there is no noise. Therefore, one

can always be certain of the lower bound of the window. Windows can be updated only conditionally after detec-

26

tion of a collision, because the collision may be due to noise. Therefore, one cannot be certain of the upper bound

of the window,

During a collision, if noise does not occur, it is guaranteed that there are at least two contention parameters
that are less than the upper bound of the window. However, if noise occurs during a collision, one can guarantee
only that there are at least two contention parameters less than the upper bound of some previous window in which
noise did not occur. Let a true collision be defined as a collision in which no noise occurs. One can guarantee that
there are at least two contention parameters smaller than the smallest previous upper bound of the window in which
a true collision occurred. Unfortunately, it is not possible to differentiate between true and false collisions, so one
must keep track of the upper bounds of the windows from all previous collisions. Since the choice of the window is
history dependent, it cannot be optimized by dynamic programming methods because the Principle of Optimality is

not satisfied.

Assume that the probability of noise is independent for each contention slot and has a fixed value, p, that is
known by all stations. Also, assume that the number of contending stations, 7, is known. Finally, assume that each
contention parameter, x;, has a distribution, F (x), and lies in the interval (L,U]. The following definitions are used

to formulate the problem of choosing the upper bound as a recurrence.

M(a.qlk])
The minimum expected number of contention slots to resolve contention, given k-1 previous collisions
with upper bounds of windows stored in the k-element array, ¢ [k].

gla.w,qikl)
The probability of successful transmission in the interval (a,w], given k-1 previous collisions with upper
bounds of windows stored in the k-element array, ¢ [k].

ra,w.gkl))
The probability of no transmission in the interval (a,w], given k-1 previous collisions with upper bounds
of windows stored in the k-element array, g{k 1.

l(a,w,qlk]) . . - ;
The probability of collision in the interval (a,w], given k-1 previous collisions with upper bounds of
windows stored in the k-¢lement array, ¢ [k].

In the array, ¢[k1, ¢,=U, and g; is the upper bound of the window during the (i-1)* collision. It follows from the

above definitions that:

gla,w,qlkl)+riaw,qlk]+ llaw,qglkD=1. (3.6)

27

Let the elements of ¢ [k] be ordered from smallest to largest; ¢, is now min(g; - ** gy and gy =U. Leta true
upper bound be defined as the upper bound of the window in which a true collision occurred. Since p is indepen-
dent for each contention slot, each g;, except g, has a probability p of being a true upper bound, and (1-p)} of being
false. The probability that ¢, is the smallest true upper bound is (1-p). The probability that g; is the smallest true
upper bound is equal to the probability that all smaller ¢;’s are false and g; is true. The probability that all g;'s are
false is equal to p*™*, Let Pr(Q;) be the probability that g; is the smallest true upper bound.

pi(1-p) 1<€i<k
Pr(Q)= {pk—l i=k 3.7

k
All 0,’s are mutually exclusive, so 3.Pr(Q;) = 1. If g; is a true upper bound, then there are at least two contention
i=1

parameters in the interval (2,4;] and all x;’s are in the interval (a,U]. This condition is designated as event (4 1Q;),

with the following probability:

- »_ . oJ[1- I - [1-F (@)]*
PrAlQ)= [1-F(a)]" - [F (G.Hi ifi);([:)]f: ()] [1-F (g)] 38)

If ¢; is the smallest true upper bound, three mutually exclusive events can occur by choosing a <w <g;,

which can be identified as follows:

[exactly one x; isin (a,w], given A1 Q; }
{ nox;isin {(a,w], given A1Q;]
{

B
C
D = { more than one x; is in (a,w], given A 1 Q; }

wond

Using Bayes’ rule [19], the probabilities of g (a,w,g [k]) and r (a,w,q1k]) can be expressed for all g;’s as:

Pr{(A10,) MB)
PriAlQ) (3.9

k k
glawqlk))= 3 Pr(Q)Pr(BlAIQ) = ¥ Pr(Q:)
i=1 i=1
weg; wegi

Pr(A1@) MC)
Pr{A1Q;) (3.10)

k k
riawqlk)= 3 Pr(Q)Pr(CIAIQ) = 3 Pr(Q)
=}

el
wadgi wegi

The set ((A 1Q;) () B) represents the event that exactly one x; is in (a,w], that at least one x; is in (w,q;], and

that all other x;’s are in (w,U 1. Appropriate substitution in Equation (3.9) yields:

28

[F (w)-F (a)I"[(1-F w)}*™" — [1-F (g)1*~']
Pr(A1Q)[1-F (@)” (3.11)

k
glaw.qlkD= 3 Pr(Q:)-
-

w<q;

The set ((A Q) M C) represents the event that at least two x;’s are in (w,g;], and all x;’s are in (w,U].

Appropriate substitution in Equation (3.10) yields:

_ & [-Fw)"-[F(g)—F W)I-[1-F (g™ — [1-F (g
riaw,qlkl)= z; Pr{Q;) PrAIC) [I-F @I (3.12)

weq;

The henristic recurrence relation can then be expressed as:

Ma,qlkD=, f,l.,h.':u {1 +gla,w,q k)0 + l{a,w,qkyM(a.qlk+11) + r (a,w,q [k)M (w,q [k])} (3.13)

The recurrence terminates upon detection of successful transmission. This is represenied by the term
g (a,w,q [k1)0 in Equation (3.13). However, since the number of collisions may be infinite, the number of states is
unbounded, and Equation (3.13) cannot be solved. Consequently, only an approximation of the exact recurrence

equation may be realized.

The following approximation attempts to reduce the number of states to a tractable finite value, by making
certain assumptions, It assumes that the number of contending stations, n, and the probability of noise, p, are known
at the start of contention. It also assumes p is independent for each contention slot. Furthermore, the approximation
assumes that the upper bound of the next window chosen, w, is always less than the upper bound of the current win-
dow, and that after a collision, the upper bound of the window is reduced to w. Finally, although the conditional
probabilities of success, idle and collision are dependent on all previous upper bounds of the windows, the only
upper bounds used are the current upper bound and the absolute upper bound of the contention parameters. The
probabilities in Equations (3.6-3.12) are then solved by using k=2, g,=b and ¢,=U.

If one truncates the recurrence relation at (b—a) < §, it is possible that contention may not be resolved.
Therefore, M (a,q [k]) must be redefined as the estimated number of contention slots to resolve contention either
successfully or unsuccessfully, given that the current window is (2,b] and that ail contention parameters are in
(a,U]. Since the only variable upper bound of the window is b, the approximate recurrence equation can be

renamed in terms of @, w and b. Using the assumptions previously stated, the approximate recurrence equation is:

29

M(a,b)= a:‘;‘:,,{ 1+g(aw,q[2)0 + l{a,w.q[2)M (a,w) + r (a,w,q [2DM (w,b)} (3.14)
Since the recurrence relation always terminates when (b—a) < 8, the boundary condition for M (a,b) is:

M(ab)=1 when b-a<3$ (3.15)

As stated in equation (3.5), the total number of contention slots to resolve contention successfully is M/5.
However, § is also dependent on all previous windows, and is as complex to model as M. Tt can also be approxi-
mated as a recurrence equation using the same assumptions that were used to generate M (a,b) in Equation (3.14).
Let S (a,b) be the probability of successfully isolating the minimum, given the current window, {a,b], upper bound
of next window, w, and all contention parameters in the interval (a,U]. S(a,b) is the probability of success in the
current window plus the probability of collision times the probability of success in window (a,w] plus the probabil-

ity of no ransmission times the probability of success in window (w,b]. S (a,b) can then be formulated as:

S(a.b) ={ g (a,w,q [2]) + L (a,w.q [2])S (a.w) + r (@, w,q [2])'S (W.b)} (3.16)

The boundary condition for S(a,b)} when b—a < 8 is the probability that there is exactly one contention

parameter in the window (a.b). This is equal 10 £ (a.5,9 [2D).

The minimum number of contention slots, T (a,b), is then defined as:

_ min M(ab)
T(a‘b)—a<w <b S(a,b) (3'17)
SN S
T(a,b)= 2 @b.a2D) for b—a < & (3.18)

It must be guaranteed that the w chosen for each M (a,b) is consistent with the w chosen for each S{a,b). Since
M (a,b) and S(a.b) are computed from smaller subintervals, the w’s for these subintervals can be computed and
stored in a lookup table to be shared by both M (a,b) and § {a,b). The algorithm for deriving T (a,b) is simulated in

the next chapter, and the associated program is given in Appendix B.

The approximate recurrence relation also requires additional memory overhead for implementation. While
the original dynamic programming algorithm needs a separate table entry for each n, the recurrence relation requires
a separate table entry for each combination of n and p. The number of entries for each (n,p) pair can be reduced by

using a truncated binary decision tree as outlined by Juang and Wah [13]. The decision tree chooses one of two

30

paths depending on whether a station detects collision or an idle line. No path is needed for the detection of a suc-

cessful transmission, since such detection terminates the algorithm.

Using a four-level decision tree with 16-bit entries, and 16-bit random numbers for the contention parameters,
each (n,p) pair would then require 0.03 Kbytes of memory. The standard Ethemet controller chip, MCS 8396, has §
Kbytes of ROM available, so 266 (n.p) pairs may be stored. The next chapter discusses a possible implementation

of the approximate recurrence relation in a real system.

3.3.2, Windows Becoming Out-of-Phase

This section discusses the case of the windows of the contending stations becoming asynchronized due to
noise. As was discussed earlier, it is possible that not all stations may sense the same state of the network during a
given contention slot. Figure 3.6 illustrates how this can affect the window-control protocol. During the first con-
tention slot, all stations except station 1 transmit, and all stations reduce the upper bounds of their windows 0 wo,
Suppose in the second contention slot, station 2 detects noise while the others do not. It will then lower its upper

bound to w4(2), while the other stations detect no transmission and raise the upper bounds of their windows to wj.

station 1—= w3_(2) L L Lia| e U
.] | I
:] | 1
H I | 1
station 2 : o : :
. 1 ¥ |
M ' 1]
: 1 1 '
station 3 : o :
| ! 1
1] |
!] |
station 4 : : ° :
] L] i
I i I
1 1 1
station 5 L L = 1

Figure 3.6. Wrong Minimum Identified by Window-Control Algorithm
when Windows are Out-of-Phase

3

Now, during the third contention slot, only station 3 transmits and is successful. Station 3 is, therefore, falsely

identified as the minimum.

To correct this problem, one logical solution is to add a broadcast phase after the minimum has been
identified, After a station rransmits successfully, it broadcasts its parameter, x, to all other stations in the next mes-
sage. Following the first broadcast, all stations with contention parameters less than x attempt to broadcast their
parameters in a second broadcast. If there is a collision, all stations restart the window-control algorithm with the
upper bound of the contention parameters set 1o x. If some station broadcasts its parameter successfully during the
second broadcast phase, it captures the bus and begins fransmission of its message. Otherwise, if the line remains

idle during the second broadcast phase, the original successful station captures the bus and transmits its message.

There is an additional problem in that all stations may not terminate the algorithm at the same time. This
problem can be alleviated by the successful station continuing to transmit in the next ¢ contention slots before
broadcasting its parameter, where ¢ must be long enough to goarantee that all stﬁtions have an opportunity to either
detect that successful transmission is occurring or ¢lse timeout and terminate the algorithm. During the contention
slot that a station succesfully transmits, it will be the only station wit.ﬁ a contention parameter smaller than the upper
bound of its window. Since the other stations’ contention parameters are higher than the upper bounds of their win-
dows, they will continue to sense the line but will not transmit. In the following contention slots, one of two events
will occur to terminate iterations of new windows. The unsuccessful stations can either detect success and wait for
the broadcast, or they can detect a series of false collisions and reduce the upper bounds of their windows until their
window sizes become smaller than 8. The number of contention slots to reduce a window from its original size to §,
given a series of collisions, is O ({Jog,(1/5)), and is the lower bound on ©. The event of a station reducing its win-
dow to a size smaller than 8 can be designated as the start of a timeou‘f period. If a station senses a successful
transmission within this timeout period, it listens for the broadcasted parameter. If a station senses an idle line
within the timeout period, it restarts the algorithm. Otherwise, if a station continues to sense false collisions during
the entire timeout period, it aborts its contention attempt.

If a station aborts contention due to a timeout, or detects success in the middle of the broadcast phase, it will

not know the value of the broadcasted parameter. Also the value of the broadcast parameter might become cor-

rupted, and therefore, unreadable due to noise. These problems can be remedied by all stations involved in such

32

events forcing a collision in the second broadcast phase, and restarting their algorithms with an upper bound of U. In
this case, the upper bounds of the windows may not be the same for all stations in the restarted algorithm, but this
situation will be corrected during the next broadcast phase. Operation of the window-control algorithm with broad-

cast phase is illustrated in Figure 3.7.

The broadcast phase adds significant overhead to the time required to resolve contention. For applications
where it is not necessary to identify the minimum contention parameter, the broadcast phase can be deleted. The
successful station automatically captures the bus, and all other stations abort contention upon either detecting suc-
cess or reaching a timeout. Even when all stations detect noise independently, the performance of the window-

control algorithm is still better than Ethernet’s exponential backoff algorithm. These results are shown in Chapter 4.

3.4. Dependent Noise

In reality, noise is often longer than one contention slot in length. Therefore, the probability that noise occurs
during a given contention slot is dependeni on whether noise occurred in previous contention slots. To model
dependent noise, it is necessary to retain state information for the entire history of contention. Because of the com-
plexity of modelling dcpéndcnt noise, this section discusses only its general effects and does not attempt a detailed

analysis.

In regards to the window-control algorithms, noise in successive contention slots will result in false collisions
that continue to reduce the window. If the noise terminates before the window is reduced to a size less than §, then
the algorithms continue normally. If the noise continues after the window is reduced to a size less than §, the sta-
tions enter a timeout period, as discussed in the last section. If the noise abates before the end of the timeout period,
then the stations will restart the window-control algorithm; otherwise, the stations will abort the algorithm. The
general effect of longer bursts of noise is that the probability of reducing the window to a size less than & without
being successful is greater. As a result, the algorithm is more likely to need to be restarted, and the total number of
contention slots to resolve contention is increased. The behavior of the system under long bursts of noise should be

similar to the behavior of the independent noise models for very high probabilities of noise.

On the other hand, short bursts of noise less than one contention slot in length will only affect the current con-

tention slot. Therefore, such noise can be modelled as independent noise. If the burst of noise is too short, it might

{bew

start:
Ib=U
la=L
stant
'} J[timeout
counter
choose new w
idle
increment
counter ves
no
sense
transmission f——
collision line
suCcess
sense
transmission e la=w
collision line idle
success
X<W
? no
yes
listen to 1st
broadcast x dcast
i la=lower bound of window
h;t:nm;oc:;:d broadcast X {b=upper bound of window
w=new upper bound of window
11 x=contention parameter
ision success x_broad=broadcasted parameter
coflision idle U=upp'er bound of
lb=x capture contention paramelers
ta=L. bus L=lower bound of
contention parameiers

Figure 3.7. Window-Control Algorithm with Broadcast Phase

33

34

not be detected by all stations, but this problem was already discussed. Consequently, although the probability of
noise is actually history dependent, the general behavior of the system can still be fairly accurately determined

assuming a fixed, independent probability of noise for each contention slot.

3.5. Load Estimation

Noise also has an effect on load estimation. As stated in Chapter 2, the channel load is estimated according to
a moving average of the windows used to successfully isolate the minimum contention parameter. However, noise
causes false collisions such that the window used to isolate the minimum contention parameter may be lower than
the window that is actually needed. Consequently, the added collisions due to noise may make the network appear
as if the channel load was higher. The next chapter simulates the effects of noise on load estimation for the approxi-

mate greedy window-control algorithm,

3.6. Summary

This chapter has shown that noise can affect the detection of the states, collision, idle and successful transmis-
sion on the network. Noise may result in the false detection of a collision, but it will aimost never result in the false
detection of a successful transmission or idle line. Noise can also cause the window boundaries of the contending

stations to become out of phase when its detection is localized to a particular station or set of stations.

This chapter outlined the effects of noise on the original window-control algorithm for the case where noise is
detected by all stations. It also presented two protocols for countering these effects: the two-phase algorithm and
the approximate recurrence relation given by Equation (3.18). In all protocols, it is possible for the window to be

reduced to a size less than 8 without isolating a station. In such cases, the algorithms must be restarted.

In the case where the windows may become out of phase, it is possible for the window-control algorithm to
isolate a station that does not have the minimum contention parameter. Therefore, a broadcast phase must be added
to correct for this phenomenon, The next chapter compares the performance of the various window-control algo-
rithms through simulation, and discusses the implementation of a window-control algorithm in a real system in

which noise is a factor.

35

4. SIMULATION AND ANALYSIS OF WINDOW-CONTROL PROTOCOLS

This section outlines simulation models for the binary exponential backoff algorithm and window-control
algorithms and uses the simulations to gauge the performance of the models under various conditions. It then uses
the results to present an implementation of a window-control algorithm in a real system in which noise is a factor.
The first simulations assume that the channel load is exactly known, that noise is independent for each contention
slot and that windows remain synchronized. They are used primarily to show the general effect of noise on the vari-
ous algorithms. The next set of simulations shows what happens when the windows in the window-control algo-
rithms become asynchronized. The last simulations show the results of load estimation on the approximate greedy
window-control algorithm. All simulations were run on SUN 3/50 and SUN 3/260 workstations. The simulations
involving the 6ﬂginal dynamic programming lookup table and the binary exponential backoff algorithm were writ-
ten in Fortran77, and all other simulations were written in C. The associated programs are included in the appen-
dices.

All the simulations were performed with a 95% confidence interval C, which is £5% of the mean, computed

as follows [19]:

C=1196Xx \/E
z
In the equation above, Z is the total number of trials performed, and 62 is the variance of the sample. In the simula-
tions, C was calculated arbitrarily after every 800 trials. If C was in the interval +[0.05 X mean], then the simula-

tion was terminated, otherwise it was run again with another 800 trials. Consequently, Z was some multiple of B0O.

All simulations considered noise probabilities ranging from ¢ to 0.9. The asymptotic value for the probability
of noise is 1,0, When the probability of noise is 1.0, the algorithms can never terminate, and the number of conten-

tion slots to resolve contention is infinite.

4.1. Independent Noise, Synchronized Windows

All the following models assume that for each contention slot, all stations sense the same state of the network,
and noise is independently generated in each contention slot with a fixed probability. In the simulations, noise was

modelled by generating a random number during each contention slot. 1If that random number was less than the

36

threshold of noise defined for a given simulation, then the network was treated as if it were in a state of collision,
regardless of whether or not there was an actual collision during that contention slot. The contention parameters
were chosen as uniformly distributed random numbers in the interval {0,1}. Upon restart of the algorithm, the con-
tention parameters were regenerated to avoid infinite loops when the two smallest coniention parameters differ by
less than 8. In all the protocols, the number of stations contending in a given slot was counted and placed in 4. If
there was noise or h > 1, then there was a collision, If k =0, then the line was idle. Otherwise, if A =1, then the

algorithm terminated successfully,

4.1.1. Binary Exponential Backoff Algorithm

Figure 4.1 illustrates the effects of noise on the binary exponential backoff algorithm for 10, 20, 30, 40 and 50
contending stations. Note how the performance degrades fairly evenly for probabilities of noise < 0.8, as the number

of stations is increased. This corresponds to the linear degradation in performance of the binary exponential backoff

Number
of
Contention
Slots

0 1 1 1 1 1 1 1
00 01 02 03 ¢4 05 06 07 08 09 10

Probability of Noise

Figure 4.1, Binary Exponential Backoff Algorithm
{n=10,20,30,40,50)

37

algorithm when noise is not present (Figure 2.2). Under the presence of most levels of noise, the binary exponential

backoff algorithm still degrades linearly as the number of stations, », increases.

There seems to be an anomaly for the number of contention slots at 90% noise and 10 contending stations, but
this can be explained from the fact that the exponential backoff algorithm causes the mean waiting time between
successive transmissions to become greater for each retransmission. As the number of contention slots becomes
greater, there are more empty slots. Early in the algorithm, the probabilities of collision are much higher when n is
large than when » is small. However, at some point in the algorithm, the probability of no transmission is greater
when 7 is small than when r is large. Higher probabilities of noise tend to cause the number of contention slots (o
increase to the point where this is the case. Consequently, at very high probabilities of noise, the performance of
the algorithm when » is small may be worse than when » is large. Another consequence of this result is that noise
has a greater effect when » is small than when » is large. This can be seen from Figure 4.1 where the performance

curve is much steeper for n=10 than for n=50.

4.1.2. Binary-Divide Window-Control Algorithm

The first window-control simulation shows the effects of noise on the binary-divide window-control algo-
rithm. The simulation was written in C and simulated on a SUN 3/260. The algorithm was restarted if contention

was not resolved when 8 < 1/ (10n).

Figure 4.2 shows the various performance curves for 10, 20, 30, 40 and 50 contending stations. Note that the
performance degrades logarithmically as the probability of noise increases. The performance also degrades as the

number of stations increases, but nonlinearly, unlike the binary exponential backoff algorithm.

4.1.3. Original Dynamic Programming Window-Control Algorithm

The dynamic window-control simulations were written in Fortran and simulated on a SUN 3/50, using the
dynamic programming method with lookup table as outlined in Chapter 2. The dynamic programming algorithm
was truncated when the window size, 8;, became less then 1/ (10n) as in Wah and Juang’s model {13]. If the win-

dow size became smaller than 5, a binary-divide algorithm was used to complete the iterations, The binary-divide

38

70
60 - -] n=10
O s n=20
a n=30 ;'
501 B reneren n=40 " H
6 ===~ n=50 _:°
Number
of
Contention
Slots

0 1 1 L L E L L 1 1
00 01 02 03 04 05 06 07 08 09 10
Probability of Noise

Figure 4.2. Binary-Divide Window-Control
{8,=1, n=10,20,30,40,50)

algorithm was terminated at &,, at which point the algorithm was restarted if a minimum had not been identified.

The total resolution was therefore: 8;-8; = 8/ (10n).

Figure 4.3 shows the results of varying 8, for n=10 stations, (If 8,=1, then the binary-divide phase is skipped
altogether, and the algorithm is restarted when &, is reached.) As 8, decreases, more iterations are wasted before
the algorithm can be restarted after an error due to noise. For higher probabilities of noise, the probability of failure
increases and the number of restarts increases. The net effect is that decreasing 8, causes an increase in the number

of contention slots that becomes more pronounced as the probability of noise increases.

Figure 4.4 shows the various performance curves of n= 10, 20 and 30 when 8;=1. Note that the number of
contentions is relatively independent of n, unlike the binary exponential backoff and binary-divide window-control

algorithms.

Number
of
Contention
Slots

Number
of
Contention
Slots

120
110+
100+
S0t
8O
70+

50+
40+
30t
20+
10}

0 1 1 1) 1 1 L 1
00 01 02 03 04 05 06 07 08 05 10

Probability of Noise
Figure 4.3. Original Dynamic Window Protocol
(n=10}
50
40 — n=10
....... n=20
--- n=30
30+ ¥
I/
I/
[/
201 .
ot
o7
&
10+
L

0 1 : 1 1 1 1) 1 1
00 01 02 03 04 05 06 07 08 09 10
' Probability of Noise

Figure 4.4, Original Dynamic Programming Algorithm
8 =(10n)" , 8,=1

39

40

4.1.4. Two-Phase Window-Control Algorithm

The two-phase model is the same as the one outlined in Chapter 3, It used the same lookup table as the

dynamic programming algorithm, was written in Fortran, and was simulated on a SUN 3/50,

Figure 4.5 illustrates the effects of varying &, for the two-phase model when n=10. Note that for low proba-
bilities of noise (p < 0.3), the performance is about the same as the original algorithm, but for high probabilities of
noise the performance degrades much more rapidly than the original algorithm as &, is increased. This is due to the
fact that for low probabilities of noise, the two-phase algorithm has a higher probability of correcting itself when the
contention parameters get outside the window. However, at higher probabilities of noise, the probability to correct
this problem is much smaller, and it is more efficient to just restart the algorithm. The effects of noise on the two-

phase protocol are much more extreme when &, is small, as can be seen by the steeper performance curves.

Nevertheless, the performance of the two-phase algorithm is relatively independent of n, as illustrated in Fig-
ure 4.6. The algorithm is simulated for 8;=1 and n = 10, 20 and 30, and the performance is very similar to that of

the original algorithm.

4.1.5. Approximate Recurrence Relation

Chapter 3 developed an approximate recurrence relation (Equation 3.17) to minimize the number of conten-
tion slots to resolve contention with the probability of noise added as a parameter. This algorithm was written in C
and simulated on a SUN 3/260 with floating point accelerator. No binary phase was used, implying 8,=1 as in the

other window-control algorithms.

The approximate recurrence relation estimates that the probability that b is a true upper bound is equal to the
probability of noise in a contention slot, 1-p. Letp, be the probability that is a true upper bound. In Equation
(3.7, Pr(Q) = p; and Pr(Q3) = (1-p,). It turns out that p, = 1 —p is not a good approximation, since b may bea
false upper bound due to previous false collisions. A much better heuristic approximation can be made by assuming

a smaller probability that b is true, such as p, = (1-p)*.

Table 4.1 contains a comparison of the theoretical and simulated performance of the approximate recurrence
equation for both values of py. The theoretical performance is the expected number of contention slots to resolve

contention as calculated by the approximate recurrence equation. During calculation, the optimal window for each

Number
of
Contention
Slots

Number
of
Contention
Slots

120

110+

PR
.

"""

01 02 03 04 05 06 07 08 09 10
Probability of Noise

Figure 4.5. Two-Phase Algorithm
(n=10)

50

01 02 03 04 05 06 07 08 09 10

Probability of Noise

Figure 4.6. Two-Phase Algorithm
81=(IOn)_1 » 82__'1

41

42

pair of lower and upper window boundaries was computed and stored in a table. The simulated performance is the
actual performance of the network when using these windows. The correlation between the simulated and theoreti-
cal performance is dependent on the accuracy of the approximation. In Table 4.1, the simulated performance is
much closer to the theoretical performance when p, is approximated by (1-p)2. The overall performance is also
improved by using p; = (1-p)%.

It is possible to obtain even further improvements by developing an even more accurate approximation of p;.

Such an approximation should yield a better overall performance and simulated values that are even closer to the

Table 4,1. Comparison of the Performance of the Approximate Recurrence
Equation for Various p,’s.

Dynamic Programming Algorithm (n=10)
p = probability of noise during contention slot,
p, = estimated probability that b is a true upper bound

Probability prL=1-p pr= (1-p)*
of Noise Theory | Simulation || Theory | Simulation
0 2.5 2.4 2.5 24
0.1 2.6 2.9 2.7 2.8
0.2 28 34 29 3.2
0.3 3.0 4.0 33 4.0
0.4 33 4.9 3.9 4.8
0.5 3.7 6.0 4.8 6.0
0.6 4.5 8.0 6.2 7.3
0.7 5.8 114 8.6 9.6
0.8 8.4 16.7 13.5 15.1
0.9 16.5 36.5 28.5 28.5

Table 4.2. Comparison of the Performance of the Approximate Recurrence
Equation for Various n’s

Dynamic Programming Algorithm
Probability n=20 n=30
of Noise Theory | Simulation || Theory | Simulation
0 2.6 2.5 2.6 2.5
0.1 2.8 3.0 2.8 2.9
0.2 3.0 3.3 3.0 3.4
0.3 34 3.9 34 3.9
0.4 4.0 48 4.0 4.9
0.5 4.9 6.2 49 6.3
0.6 6.3 7.6 6.4 7.7
0.7 8.9 9.5 8.9 9.9
0.8 13.8 15.1 14.0 15.0
0.9 29.2 29.6 204 30.2

43

theoretical values. Such developments are left to future research. At any rate, both approximations perform better

than the original dynamic programming algorithm, which does not account for noise.

The performance of the approximate recurrence relation is also relatively independent of the number of sta-
tions, similar to the other window-control algorithms, Table 4.2 compares the simulated expected number of con-

tention slots of n=20,30and p, = (1-p)?, under various probabilities of noise; (n=10 is shown in Table 4.1}.

There is one drawback to the approximate recurrence relation-- the time required to create the lookup table.
Table 4.3 compares the time to create the lookup tables for the simulations. The long computation time prohibits

simulation of higher values of n.

4.1.6. Comparison of Algorithms

Figure 4.7 contains a comparison of all the algorithms for n=20 and 8,=1. For low levels of noise, all
window-control algorithms perform better than the binary exponential backoff algorithm. For higher levels of
noise, most window-control methods, except binary-divide, still perform better than the binary exponential backoff
algorithm. All algorithms suffer from a logarithmic degradation in performance as the probability of noise

increases.

Several interesting observations can be made by comparing the performance of the window-control algo-
rithms. As expected, the pure 5ina1y-divide algorithm has the worst performance. However, the performances of
the original dynamic programming algorithm and two-phase algorithm are almost identical when 8,=1. The
approximate recurrence equation has the best performance for all Jevels of noise. The improvements gained are
most pronounced at higher levels of noise. Therefore, it is worthwhile to include noise as a parameter in the forma-

tion of the recurrence equation.

Table 4.3. Time to Create Lookup Table for Simulation of Approximate
Recurrence Equation

Time to Compute Lookup Table for Approximate
Recurrence Equation (in minutes)

n=10 n=20 n=30 n=40

9.9 81.0 280.4 456.8

Number

of
Contention

Slots

binary exponential backoff

a - - - original dynamic-programming window-control

& —— two-phase

o = - - binary-divide !
]
]
I
N . . !
recurrence-relation with noise ':

!

0.9

10

OT I 1 1 [- 1 1
0.1 0.2 0.3 04 0.5 06 0.7 0.8
Probability of Noise

Figure 4.7. Comparison of Bus Contention Algorithms
(=1, n=20)

45

4.2, Asynchronized Windows

This section looks at the effects of noise when it causes individual stations to detect different states of the net-
work. In the worst case, each station may have a noisy link to the network with # given probability of noise that is
independent from that of other links. The simulation models the two-phase algorithm with 8, = 1/(10s) and 8,=0.1.
It compares the case where all stations detect all noise for n=10, to the case where all stations have independent but

equal probabilities of detecting noise for n=10, 20 and 30.

In the simulation, restarts were allowed only upon the detection of an idle line, as outlined in Section 3.3.2.
To keep track of the true minimum, contention parameters were not regenerated during a restart. To guarantee that
each contention parameter differed by at least 8 = 8,-8; = 1/(100n), the contention parameters were modified by
including each station’s unique identification number. The identification number was an integer, 7, in the interval
[0,n). Contention parameters were formed by selecting a random integer in the interval [0,100), and by adding to it
I/m. The contention parameter was scaled to the range [0,1) by dividing the result by 100. Figure 4.8 illustrates the
effects of noise on isolating a station (not necessarily the minimum), when the windows remain synchronized and

when the windows become asynchronized.

It is interesting that the performance for the asynchronized windows is better than the performance for syn-
chronized windows. This becomes more evident at higher levels of noise, but should not be surprising due to the
operation of the two-phase protocol. If the proper minimum is not isolated due to noise, some other contention
parameter may lie within its designated window and just happen to be the only one transmitting. Some stations may
reduce their windows faster than others and be able to restart the a]gorithm sooner or some stations may lag behind
and still happen to be within the window bounds. Either of these cases opens up greater possibilities of isolating a

station more quickly when noise is significant.

The window-control algorithm can be used just as a means for resolving contention without finding the
minimum. In such cases, it has the same function as the binary exponential backoff algorithm. Since the perfor-
mance of the window-control algorithm for isolating stations is improved when the windows become out of phase,
the same arguments hold concerning the superiority of the window-control algorithms to the binary exponential

backoff algorithm.

46

200}
L e synchronous stations
180} asynchronous stations
B a n=10
160 : o n=20
1 40 | a n=30
Number 120 .
of -
Contention 100+
Slots i
80
601
401
20 - o
- seet? hd '
v

00 01 02 03 04 05 06 07 08 09 10
Probability of Noise

Figure 4.8: Two-Phase Algorithm with Independent Noise Detection
3,=(10m)7" , 8,=0.1

Table 4.4 shows the percent of true minimums identified at the termination of the algorithm. Note that the
percent of true minimums decreases as n is increased. This decrease is more pronounced at higher probabilities of
noise. To find the true minimum, the algorithm would have to be restaried after the broadcast phase with modified
initial window boundaries, as outlined in Section 3.3.2. As a result, the number of contention slots to resolve con-
tention would actually be greater than the number shown in Figure 4.8, One would also have to add in the time to
complete the broadcast phase for each restart. Therefore, the time required to isolate the minimum may increase
dramatically if the windows become out of phase.

One should note that in reality, it is very unlikely that all stations on the network will sense the network dif-
ferently. Instead, it is more likely that one or two stations or groups of stations may detect noise differently than the
others. As a resuli, the percent of true minimums in Table 4.4 and the performance curves of the independent sta-

tions in Figure 4.8 are lower bounds.

47

Table 4.4. Percent of True Minimums

Independent Stations
Probability % true minimums

of Noise n=10 | n=20 | n=30
0 100 100 100
0.1 94.1 939 93.6
0.2 85.2 864 86.1
0.3 80.1 819 7.7
0.4 72.6 709 70.3
0.5 68.5 64.9 62.9
0.6 61.0 577 54.6
0.7 556 49.7 45.6
0.8 51.5 433 394
0.9 50.1 41,1 35.6

4.3. Load Estimation

This section simulates the effects of noise on load estimation. The number of contending stations was
estimated by a moving average of previous windows using Equations (2.12) and (2.13). These load estimating
equations were used in the approximate greedy window-control outlined in Chapter 2. The approximate greedy
window-control algorithm was chosen because it was the simplest of the load dependent window-control algorithms
to simulate. The simulation assumed that there were 100 stations in the system. Since contention only occurred
when there were two or more contending stations, the estimated value of n was constrained to the interval, [2,100].
The simulation was written in C and performed on a SUN 3/260. As in previous simulations, n was the number of

contending stations, and 8,=1/(10n).

Figure 4.9 illustrates the effects of noise on the approximate greedy window-control algorithm with load esti-
mation. In all cases, the performance when the channel load is estimated is worse than when the load is exactly
known. The performance is much worse for smaller values of n, especially when the probability of noise is high.
This problem is due to the fact that false collisions may cause the minimum contention parameier to be isolated by a
window with an upper bound smaller than that which is actually needed. The net result is thai the network appears
to be more heavily loaded than it actually is. Consequently, noise has a greater effect on load estimation when » is

small.

47

Table 4.4. Percent of True Minimums

Independent Stations
Probability % true minimums

of Noise n=10 { n=20 | n=30
0 100 100 100
0.1 94.1 939 93.6
0.2 85.2 86.4 86.1
0.3 80.1 819 1.7
0.4 726 709 70.3
0.5 68.5 64.9 62.9
0.6 61.0 577 54.6
0.7 55.6 49.7 45.6
0.8 51.5 43.3 304
0.9 50.1 41.1 35.6

4.3, Load Estimation

This section simulates the effects of noise on load estimation. The number of contending stations was
estimated by a moving average of previous windows using Equations (2.12) and (2.13). These load estimating
equations were used in the approximate greedy window-control outlined in Chapter 2. The approximate greedy
window-control algorithm was chosen because it was the simplest of the load dependent window-control algorithms
to simulate. The simulation assumed that there were 100 stations in the system. Since contention only occurred
when there were two or more contending stations, the estimated value of n was constrained to the interval, [2,100].
The simulation was written in C and performed on a SUN 3/260. As in previous simulations, n was the number of

contending stations, and &;=1/(10n).

Figure 4.9 illustrates the effects of noise on the approximate greedy window-control algorithm with load esti-
mation. In all cases, the performance when the channel load is estimated is worse than when the load is exactly
known. The performance is much worse for smaller values of », especially when the probability of noise is high.
This problem is due to the fact that false collisions may cause the minimum contention parameter to be isolated by a
window with an upper bound smaller than that which is actually needed. The net result is that the network appears
to be more heavily loaded than it actually is. Consequently, noise has a greater effect on load estimation when a is

small,

49

Figure 4.11 illustrates the performance of various bus contention algorithms with load estimation for 7=20.
Modifications were made for the dynamic programming algorithm and approximate recurrence relation because of
the large amount of time required to create the lookup tables. Consequently, tables were only created for n equal to
multiples of five between five and fifty inclusive. The scaling factor in the load estimation equation was not used
for the approximate recurrence relation, since better performance was obtained by omitting it. The scaling factor is
not as critical to the performance of the approximate recurrence relation, since choice of the windows is dependent
on noise, unlike the other window-control algorithms. As a result, the window used to isolate the minimum can be
used to determine the load of the network more accurately in the approximate recurrence relation than in the other

algorithms.

Note that the load dependent window-conirol algorithms have a worse performance than the performance
obtained when the load is exactly known, which can be seen by comparing Figure 4.7 1o Figure 4.11. Nevertheless,
the performance of the window-control algorithms is still better than the exponential backoff algorithm for most lev-
els of noise. Also, the performance of the approximate recurrence relation is better than the performance of the

other bus contention algorithms in the presence of noise, even when the load is estimated.

4.4, Implementation of a Window-Control Algorithm on Ethernet in the Presence of Noise

Implementation of a window-control algorithm on a 10-Mbit/s Ethernet network is restricted by the stringent
real-time requirement that each contention slot has a duration of less than 60 s [16]. The only algorithm that can
be computed quickly enough in real time to satisfy this time requirement is the binary-divide algorithm. The
approximate greedy window-conirol algorithm may be used if a lookup table is employed to compute the square
root [13]. To use any of the other window-control algorithms, the sequence of windows would have to be precom-

puted and stored in a lookup table.

Because of its superior performance for all probabilities of noise, the approximate recurrence relation ought to
be used in implementations where noise is a significant factor. Chapter 3 discussed how the sequence of windows
could be stored on an MCS 8396 using a four-level binary decision tree with each (n,p) pair requiring 0.03 Kbytes
of memory. One practical arrangement is to let # range from 5 to 100 by 5°s, and let p range from 0 to 0.9 by 0.1.

The required memory would then be 6 Kbytes, which can fit on the MCS 8396. Interpolation could be used for

Number

of
Contention
Slots

50

------- load exactly known
load estimated

X a n=10
- n=20
e n=30
s n=50

0 1 I3] i Il 1 L
00 01 02 03 04 05 06 07
Probability of Noise

08 09 10

50

Figure 4.10. Approximate Greedy Window-Control with Improved Load Estimation
(n=10,30,50, & =(10n)", 8;=1)

Number

of
Contention
Slots

51

-}

o
o
&

binary exponential backoff $
- - - binary-divide '
- - = original dynamic-programming window-control H
approximate greedy window-control N
recurrence-relation with noise !

1]

.......

J (] L

0 L Il 1 i i 1
04 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.1 02 0.3
Probability of Noise

Figure 4.11. Comparison of Bus Contention Algorithms with Load Estimation
{61, n=20)

52

intermediate values of n and p. Nevertheless, the one drawback to this method is the enormous amount of time

required to create the lockup tables.

In situations where the probability of noise is low, (p < 0.3), the original dynamic programming algorithm has
a performance that is almost as good as the approximate recurrence relation. The advantage of the dynamic pro-
gramming algorithm is that only one table is required for each n. Consequently, the intermediate values of n may
also fit into the ROM of the MCS 8396. Furthermore, the computation time to create the tables in the original
dynamic programming algorithm is about 1/4 the time required to create each table in the approximate recurrence
relation with the same n. As a result, one might want to consider using the original dynamic programming algo-

rithm if the probability of noise in the system is low most of the time,

In order to get the maximum benefit from the window-control algorithms, the channel load has to be estimated
as accurately as possible, and the probability of noise has to be estimated for the approximale recurrence relation.
The channel load can be estimated using the moving window technique with appropriate scaling to account for
noise. The probability of noise can be estimated by the contending stations from the percentage of errors in transmit-

1cd messages. Coding theory techniques could be used to determine this value.

To guarantee that the window-control algorithm operates properly if the windows get out of phase, the
modifications of Section 3.3.2 should be included. The major modifications are that a broadcast phase must be
added to verify that the isolated station is the true minimum, and the algorithm should never be restarted unless the
contending station detects that the line isidle. The broadcast phase can be omitted for use in bus contention where it
is not necessary to isolate the minimum, Finally, the contending station should abort contention if it continues to

sense collision on the network after it has reduced its window size to 8 and the timeout period has expired.

53

5. CONCLUSIONS

The main resnlt of this study is that by making a few adjustments to the window-control protocols, they can
still be used to resolve bus contention when noise is present. One major adjustment is to include a termination con-
dition, 8, for when the window size becomes t00 small, and to restart the algorithm with the original window when
this occurs. Another adjustment is needed to account for the case where all stations do not detect the noise. In this
case, the window boundaries may become out of phase, and the wrong station may be isolated. A broadcast phase

must be added to verify that the proper station has been identified.

Another conclusion of this study is that the performance of most window-control algorithms in the presence
of noise is superior to the performance of the binary exponential backoff algorithm. The gain in performance is
greater at low probabilities of noise and high channel loads. Since normal operation of the network is likely to have
low probabilities of noise, the window-control algorithms are preferable to the biﬁary exponential backoff algorithm
for resolving bus contention. Improvements to the dynamic programming algorithm outlined in Chapter 2 can be
made by including noise as a parameter in a recurrence equation, This study developed an approximate recurrence

relation that had superior performance to previously developed window-control algorithms in the presence of noise.

One drawback to the performance of the window-control algorithms is due to the effect of noise on load est-
mation. These effects are greater when the number of contending stations is small and the probability of noise is

high, but can be corrected by adjusting the load estimation equation to account for noise.

Future research should investigate several of the issues discovered in this study. A good implementation of
the broadcast phase should be realized with minimum added cost to resolve bus contention. Also, one should
develop a better method for estimating the load of the system when noise is present. Additionally, one should inves-

tigate methods for estimating the probability of noise on the system for use in the approximate recurrence equation.

Previous discussion assumed that the stations were all synchronized initially and that they all began iterations
of the window-control algorithms at the same time. In actuality, some stations may begin iterations before the oth-
ers. Furthermore, their clocks might become skewed so that their contention slots overlap. Future work could be to

investigate the problems of initializing the algorithms and synchronizing the clocks. In light of the study of asyn-

54

chronized windows, it is very likely that the performance of the window-contro! algorithms will continue to be

better than that of the exponential backoff method.

APPENDIX A, SMULATION PROGRAMS IN FORTRAN

L L , aAk * ¥k chm Programs Aol e ol b e el o oo sl e o o ok ol o el ol ool ok ok
¥ binary exponential backoff, dynamic programming window-control,

* two-phase, and two-phase with independent noise detection algorithms
L T SRR RS- - -

aonNooao

Each program consists of a declaration of variables, Lookup Table Generation
¢ (except binary exponential backoff), Simulation, and Data Analysis.

¢ The Lookup Table Generation and Data Analysis are exactly the same for

¢ &ll programs, and are therefore, listed only once in detail.

c

c

¢ Note:)

¢ Operation of all Fortran programs requires that the output from a

¢ random number generator be piped into the standard input. The random

¢ generator function is written in C and the executable file is called

¢ 'randgen’.
COCCCCCLCOCCCCCCCOCCCOECCOCCCCCCiCCOCOCCCOrLCCCleCOteOeCOCCCCECtreert
c

g
g
|
g
8
5
8
g
g
g
g

Dynamic Programming Window-Control

1. Compute optimal window size of the window protocol with continuous i.i.d.
distributions :
- using dynamic programming formulation
~ evaluation of dynamic programming is truncated when interval
is less than 1.0 /(5 * no. of contending stations)
- binary-divide window search is used after truncation point
in dynamic programming algorithm
- algorithm is restarted if minimum has not been identified
in binary-divide window search and window size is less than delta2

2. Evaluate the dynamic programming window search scheme by simulations
- assume that the no. of contending stations is known

onooocoOcO00O0o000000

CCCCCLCOECCCCECCCCCCOCCCCLCeLeCetCCCCCCOCCOCCCCCCCCCCCCCCCCCCCCCCCeCCeeect
c variables :
¢ n,nr: no. of contending stations
dw : size of antomic interval
cn(400,400) : matrix to store intermediate window size and expected
no. of contentions and the search tree
tx(i}) : contending parameter of station i
tb(i) : contention parameter for binary phase of station i
wb(30) : working space for histogram
r: random number read in from standard input file
vflag: specifies whether or not simulation is due to a new set of
parameters or is just a continuation due to the 95% confidence
interval not being satisfied
cce: confidence interval calculated from the variance and number of trials
pfc: random number used to determine the probability of noise during a
contention slot
icount: total number of trials for a given simulation
feist: threshold of noise
delta2: resolution of window size for binary phase
Ia,lb: lower,upper bounds of window in dynamic programming phase
a,b: lower,upper bounds of window in binary-divide phase

o000 0O000n

35

¢ w,lw: next upper bound of window

¢

c .

double precision r

integer n,la,lb,Iw

real dw,tx(40),cn(400,400),1b(40)

real a,b,w

real nr,jj,ccc,delta?

integer wb(30)

common ns,rr,dw

logical vilag

¢

¢ file (cc.data) : store the evaluation results

c
open(unit=1,file="cc.data’,status="new")
write(6,1200)

1200 format(’+++++ window control using dynamic programming +++++',
. +++++ continuous iid (discrete approximation) +++++')
write(6,1210)

1210 format(+++++ (dw = 1.0/ r * no. of contending stations) +++++")

c

¢

c

B T eI ST T Tl Sttt ot

c

¢ Lookup Table Generation:

¢ iterate on no. of contending stations assuming there is no noise

¢ (This portion of the program was developed by I, Y. Juang [17])

c

CCCCCCOCOLCOCTOCCCCTOCCOCCCoCCECOeCCCeCeCECCECeECOCCeCCoCCCeCeCeCCeaeee

c

2000 do 7700 ns=10,30,10

c

¢ initialize parameters

c
nr=float(ns)
do 7700 iter=10,10
n=ns¥iter
dw=1.0/float(n)

c

c
do 3010 i=1n
do 3010 j=i,n

3010 en(i,j)=0.0

c

¢ i: lower bound of last window

c i+k : upper bound of last interval

¢ j : candidate of optimal window

c

¢ iterate on lower and upper bound of last window

c
do 4400 k=1,n-1
do 4400 i=1,n-k
wmin=9999.0

¢ exhaustive enumeration on all possible candidates of optimal window
do 4300 j=i,i+k-1
call prob(i,j,i+k,pg,pl.pr)
tw=pl*cn(i,j)+pr*cn(+1,i+k)
if(tw .ge. wmin) goto 4300
kwin=j

56

wimin=tw
4300 continue
en(i,i+k)=1.0+wmin
cen(i+k,i)=float(kwin)
¢ write(1,4350) ij.kwin,en(i,i+k)
c4350 format('lower bound : °,i3," upper bound : *,i3,’ window : ’,
¢ .i3," exp. contentions : ",f7.5)
4400 continue
c
¢ save evaluation results
c
c write(6,5100) ns,iter,cn(1,n)
c5100 format(//,"+++++ no. of contending stations : °,id,/,
¢ +++++ resolution factor r (n =t * no. of station) :*,i4./,
c . '>>>>> ave. no. of contentions (analysis) : *,f9.3)
c write(6,5150)
¢5150 format{//,'<<<<< matrix of optimal windows >>>>>")
¢ do5200i=1n
¢ write(6,5300) i
¢ do5200j=1,n/10
e write(6,5400) (en(i k), k=10%-9,10*j)
¢5200 continue

¢5300 format(/,’=====row ’,i3," =====")
5400 format(10(9.5,1x))

c .

¢

COCCCEECCCOOCCCCCOCCEOCCCCOCCCCCCCOCECCECCCOCCOCCOCCCOCCOCCECCCCOCECees
¢ Simulation
c
CCCCOLCCECCOCCCCCCCCOCCCCeOCCCCtCCCCCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCecees
c
¢ format standard input file
133 format{d15.10)
¢
¢ set window resolution for binary phase

delta?=1

c
7900 do 7710 j=0,90,10
ji=float(j)
fetst=j;*0.01
npkt=800
vilag= false,
8001 rewind 1
[
¢ initialize number of contention slots

c
8000 kstep=0

c

¢ generate contention parameters

c
8110 do 8100 i=1,ns
read(5,133) r

tx{i)y=tr
8100 continue
la=1
1b=n
8500 kstep=kstep+1
[+
¢ generate noise
c

read(5,133) r
ple=rr
c
¢ contention resclutions
c
if(lb .eq. la) goto 8700
¢ if Ib=la then go to the start of the binary phase, otherwise
¢ retrieve the discrete window value and convert it to integer
85%) w=cn(lb,la)
Iw=ifix(w)
¢ convert to real window value
w=dw*w
c
¢ collision detections
<
8601 ntrx=0
do 8600 i=1,ns
f(x(i) .gt. w) goto 8600
nirx=ntrx+1
8600 continue
¢
¢ collision?
if (pfc .le. fotst .or. nirx .gt. 1) then
1b=lw
goto 8500
¢ success?
else
if (ntrx .eq, 1) goto 9000
endif
€ no transmission?
la=lw+1
goto 8500
c
c
c
¢ Binary Phase

c
8700 if (delta2 .eq. 1.0) then
kstep=ksiep-1
goto 8110
endif
€ regenerate contention parameters for binary phase
w=dw*float(Ib)
do 8720 i=1,ns
read(5,133) rr
if(x(1) .gt. W) thi)}=1.1
if(x (i) le. w) thii}=1r
8720 continue
c
¢ contention resolution using binary-divide algorithm
8730 a=0.0
b=1.0
8800 w=0.5*(a+b)
Z=w-a
c
¢ restart evaluation if window has becomes too small.
c
if (z le. delta2) goto 8110
¢
¢ collision detection

8621 ntrx=0
do 8820 i=1,ns
if(tb(i) .gt. w) goto 8820
ntrx=qrx+1
8820 continue
c
c collision ?
if(pfc le. feist .or. nirx .gt. 1) then
b=w
goto 8800
endif
¢
¢ success 7
if (ntrx .eq. 1) goto 9000
c
¢ no transmission 7
a=w
goto 8800
c
¢
¢ contention resolved. collect data

c
9000 write(1,9100) kstep
9100 format(i5)
npkt=npkt-1
if(npkre .gt. 0) goto 8000
c
CCCOCCCCCCOOCCCCCCOOCOCOCCCeCiiteCtlireCeCiieCCeoeeooeectieCaeaeeeees
¢
¢ Data Analysis
c
CCCCCOCCCOCOLCCCOOCCCOCCCCCOCCEECOoCCCOCCCCECCCOCELECTCCTCCCOeCerrees
c
¢ initialize sum, variance and histogram to O for new simulations
¢ {e. g. not continuations due to failure to satisfy requirements
¢ for the 95% confidence interval)
c
if (not. vilag) then
5=0.
v=0,
do 99 i=1,30
99 wh(i)=0
icount=0
endif
rewind 1
¢ calculate mean and store number of contention slots in appropriate wb(i)
100 read(1,110,end=199)ncp
110 format(is)
s=s+float(ncp)
icount=icount+1
incp=ncp
¢ histogram has bins for number of contention slots greater than 24
if (ncp .gt. 25 .and. nep le. 50) incp=25
if (ncp .gt. 50 .and. ncp le. 100) incp=26
if (ncp .gt. 100 .and. nep le. 200) incp=27
if (ncp .gt. 200 .and. nep .le, 1000} incp=28
if (nep .gt. 1000 .and. nep .Je. 9999) incp=29
if (ncp .gt. 9999) incp=30
wb(incp)=wb(incp+1
goto 100

59

199 xmean=s/ficount
c calculate variance
200 rewind 1
vioad=0
. 210 read(1,110,end=300)ncp
v=v+{float(ncp)-xmean)**2
goto 210
300 varian=vficount
c calculate 95% confidence interval and run another 800 trials if necessary
conf=1.96%sgrt(varian/icount)
rewind 1
c
¢ distribution of no. of contentions
c
write{6,500) icount
500 formai(*#**** no, of packets transmitted : ",i5)
cce=0.05*xmean
if (conf .gt. ccc) then
npkt=800
vilag=.true,
rewind 1
goto 8001
endif
¢ print results
write(6,400) xmean,varian,conf
400 formmat(/,"<<<<< ave. no. of contentions (simulation) : *
. Jf94/
<< variance of contention period : ° 9.2,
"confidence=",{0.4)
write(6,502)
502 format(//,’-- ncp --- frequency --- probability --- curn.--")
cum=0.
do 550 i=1,30
k=i
if (k .eq. 25) k=50
if (k .eq. 26) k=100
if (k .eq. 27) k=200
if (k .eq. 28) k=1000
if (k .eq. 29) k=4999
if (k .eq. 30) k=5000
pr=float{wb{i))ficount
cum=cum-+pr
if ¢k .It. 25) then
write(6,560)k,wb(i),pr,cum
else
write(6,561)k, wb(i),pr,cum
endif
550 continue
560 format{2x,i4,7x,i5,7x,f6.4,7x,£6.4)
561 format(x,'<".i4,7x.i5,7x,{6.4,7x,16.4)
¢
write(6,570) j1
write(6,580) j
570 format (//,’neise level= ",15,"%")
580 format ("continued noise= "i5,"%")
tm=etime(at,bt)
write(6,601) tm,at,bt
601 format ("elapsed time=",3(f10.2,3x))
7710 continue
7700 continue

stop

end
c
CCCCCCTCCLCOCCCCOCCCCCCCCCCOCCTCCOCCOCLCOOCCCCCOCCLLCOCOLCCLCCoCCoCCCeeee
c
¢ subroutine for computing probability of collision, success, and idle
c
COCCCOCCOCECCLOCCOCCCOCCCCOCOCCCECCECtCOCCeeCOCCCCCCCCCCCCoCCotesoees
c

subroutine prob(nl,nw,n2,pg.pl,pr)
c

real nr

common ns,nr,dw

peg=1.0
p1=0.0

pr=0.0
if(nl .ge. n2-1) return

a=dw*float(nl-1)
b=dw*float(n?)
w=dw*float(nw)

x=nr*(w-a)y* ((1.0-w)**(ns-1) - (1.0-b)**(ns-1))

y=(1.0-a)**ns - (1.0-b)**ns - nr*(b-a)*(1.0-b)**(ns-1)

z=(1.0-w)**ns - (1.0-b)**ns - nr*(b-w)*(1.0-b)**(ns-1)

if (y .le. 0.0) return

Pg=xfy

pr=zfy

pl=1.0-pg-pr

return

end
CCCCCCCECCCCCCeCeOECOCCCCCCCCCCeCCCCCCOCCCCECCCCCCerOtCCeCoCeCreesoees
¢ end of Dynamic Programming Algorithm
CLCOCCCCCCOLLCCCCCOCCCCCOCCLLCECCCLECCCECCeCiCttCCerCeeCoreCoCeoCeeerees

O00aa006

CCCCCOCCOCCOCCOCCOLOOCCECCCCCCCELOCCOECCTCCOCCCCOCCCCeCtittitCCOteCoCoecee
c Two-Phase Algorithm

c
¢ The two-phese algorithm is exactly the same as the original dynamic

¢ programming algorithm except for the method by which windows are

¢ updated after an idle contention slot is detected.

c After an idle contention slot, the lower bound of the window, a, is

c raised to the value, w; the upper bound of the window, b, is raised

¢ to the value of the upper bound from the previous contention slot.

c
CCCCCOOCOCCCCCCOCOCCCOCOeCCCOCoCCCCCOCCCOOCOCECeeCCCOCCOCCOCCCeeoOCeCCCecee
c

New variables (variables from dynamic programming algorithm are retained):

¢ kdeep=level of iterations within dynamic programming part of algorithm

¢ bdeep= level of iterations within binary divide algorithm

¢ kw(),bw()= arrays that store previous upper bounds for backwracking

c within the dynamic prog. alg. and the binary alg.
c

1]

real kw(10),bw(20)

61

integer kdeep,bdeep :
CCECCECECEOOECCCCLLCCCCLCECCOCECCCCiECCCOOCCOLCCOCCCOCCECLErCecCeeseeoce
c
c inclnde Lookup Table Generation here
c
CECCCECCCCLOCCOCCCCOCECECeCCeCCCCCCOCCCCCCCCCCoCCOCeOCCECCeCeCeeCreorecee
c Simulation
c
COCCCOCOOCEOCTUC Ot CotCeOCeCCOCtCCCCCCCECCOCCCEECCCCCCCCCECCCoCCreees
¢ .
¢ generate contending parameters
c
delta2=1.0
133 format(d15.10)
7900 do 7710 j=70,90,20
vilag=.false.
ii=float(j)
fetst={j*0.01
npkt=800
8001 rewind 1
c
¢ contention resolutions
c
8000 kstep=0
8555 la=1
Ib=n
kdeep=1
kw(kdeep)=n
wz=cn(lb,la)
c
¢ generate contention parameters

c
8500 do 8100 i=1,ns
read(5,133) r
tx(i)=mr
8100 continue
c
¢ generate noise
c
read(5,133) rr
ple=rr
¢
kstep=kstep+1
if(Ib .eq. la) goto 8700
¢ if Ib=la, then go to the start of the binary phase
8601 ntrx=0
Iw=ifix(w)
¢ convert to real window value
w=dw*w
c
c collision detections
c
do 8600 i=1.ns
if(mx(i) .gt. w) goto 8600
ntrx=ntrx-+1
8600 continue
c
¢ collision?
if (pfc .le. fotst .or. ntrx .gt. 1) then
if (kdeep .eq. 30) goto 8500

62

kdeep=kdeep+1
kw(kdeep)=lw
Ib=lw
w=¢cn(lb,]a)
goto 8500
c success?
else
if { ntrx .eq. 1) then
goto 9000
endif
endif
¢ no transmission?
c
[+
la=lw+1
Ib=kw(kdeep)
w=lb
if (kdeep .gt. 1) kdeep=kdeep-1
if (b .It. 1a) Ib=la
goto 8500

c
¢ Start of Binary Phase

c
8700 if (delta2 .eq. 1) then
kstep=kstep-1
goto 8555
endif
c
c regenerating contending parameters
¢
w=dw*float(lb)
Ixdeep=1
bw(bdeep)=1.0
do 8720 i=1,ns
read(5,133) r
if(x (i) gt w) tb(i)=1.1
if(tx(i) Je. w) tb(i)=1r
8720 continue
c
¢ contention resolution using binary-divide algoirthm
8730 a=0.0
b=10
w=0.5*{a-+b)
8800 z=w-a
c
¢ restart evaluation if window has become too small.
c
if (z Je. delta2) then
Ib=n
la=1
kdeep=1
kw(kdeep)=n
w=cn(la,lb)
w=dw*w
goto 8555
endif
[+]
¢ collision detection
8621 nirx=0
do 8820 i=1.ns

63

if(th(1) .gt w) goto 8820
nirx=ntrx+1
8820 continue
¢
c collision ?
if¢ pfc .le. fetst .or. ntrx .gt. 1) then
be=w
bdeep=bdeep+1
bw(bdeep)=b
w=0.5*(a+b)
goto B80O
endif
c
¢ success 7
if (ntrx .eq. 1) then
goto 9000
endif
c
¢ no transmission ?
c
if (bdeep .eq. 0) then
la=la+1
if (kdeep .gt. 1) kdeep=kdeep-1
1b=kw (kdeep)
if (b .It. Ia) Ib=la
goto 8500
else
a=w
b=bw(bdeep)
w=b
bdeep=bdeep-1
endif
goto 8800
c
c contention resolved. collect data

¢
9000 write(1,9100) kstep
9100 format(i5)

npkt=npkt-1

if(npkt .gt. 0) goto 8000
¢
COCCCCCLEOCOoOCCeiCiOCCCCCCCLCCoCtieaOCCCOCCOCCCOCCeeCCeCCeCcCeces
c
¢ include Data Analysis here
c
COCOOCCOCECCOCECCOCCUECOCCCCCECCCCCCotEiCCCeCCCCOECOOCCOCEEoCCeCCeeeecee
c
¢ include subroutine for computing
¢ probability of collision, success, and idle here
. .
CCEOECCCCCECCCCOCEECCCCCCCECCOCCCCCEeCCCCoCiCCoCCeCetteCCCiCCCeCeoctese
¢ end of Two-Phase Algorithm

COCCCOCCCCCCt e OO CCOCCCoCCOCCCCCLCCOCCCCCCCCCeCOCCCLLCCOl coCoCcocceee

c

oo 0cao

CCCOCECEECCCCECECOCCCeCCCeCOeteCietClCCOCCEECtiCCOCCCCoCCCCCCiCCoreoece
c Two-Phase Algorithm with Independent Noise Detection

This program uses the same protocol as the two-phase algorithm
except that the noise is detected independently for each station.
Consequently, arrays were set up to keep track of all the necessary
information (such as window boundaries) for each station.

The resoclution of the dynamic programming lookup table is 1/10n,
and the resolution of the binary window size in the binary-divide
phase is 1/10. This leads to a net resclution of 1/100n.

o000 nO0O0

§
§
:
:
§
§
%
§
g
:

c

¢ All variables are the same as those used in the two-phase algorithm,
¢ except the following variables were converted to arrays:

la,w,Ib: 1a(40),w(40),1b{40)

a,b: 1a2(40),162(40)

kdeep,bdeep: kkdeep(40),bbdeer40)

kw(10),bw(20): kw{40,10),bw(40,20)

pfc: pfc(40)

The following new variables were added:

mintx: station with minimum contention parameter

newtx: station isolated by two-phase algorithm

truecnt: number of true minimums at end of simulation

wait(40): used to keep track of which stations are in wait state
Wait state is entered when the window size becomes less
than 1/100n.

binary(40): used to keep track of which stations are in binary-divide

phase
done: flag to denote that some station has transmitied suecessfully

scoooCcoOo0oOGO0OnRO00Q0O000

integer mintx,newtx, truecnt
logical binary(40),wait(40),done
CECCCCCCOCetCCOoCOeCiCCOECOCCCiCECCCOCCCCCCCCCOOCoCEiCerEReCoCeoeeoeees

c

¢ include Lookup Table Generation here

c
COCTOCECCECCCCOECEECECCCCOLCOCCiCeCeCCCCeCteCOreCOCCCCOCCECCCLEeceeee
¢ Simulation

c
CLCCOECECERECCCECCOOOeteCOeCCrCOCCCCCCOCCECCORCOCCCCCCOCCCCCoCCCUiereos
]

¢ generate contending parameters

c
133 format(d15.10)
7900 do 7710 j=0,90,10
vilag=.false.
ji=float(j)
fetst={j*0.01
truecnt=0
npkt=800
8001 rewind 1
¢ generate contention parameters for first set of stations
8000 mintx=1
do 8100 i=1,ns
read(5,133)
nl=int(100%T)
1n2=(i-1.0)/(nr+0.0)
w(i)=(n1+n2)/100
¢ set mintx to mirntimum of contending parameters
if (ox(i) b x(mintx)) minmx=i

65

8100 continue

¢ initialize contention for first set of stations
kstep=0

6000 do 6003 i=1,ns
kw(i,1)=n
la(i)=1
1b(i)=cn(n,1)
kkdeep(i)=2
kew(ikkdeep(i))=Ib(i)
binary(i)=.false.
wait(i)=false.
done=.false.
1a2(i)=0
Ib2(i)=1

6003 continue

c

c
6010 ntrx=0
¢ generate noise + transmissions
¢ include line 6011 here instead of where it is now for synchronous
c noise detection
do 6013 i=1,ns
6011 read(5,133)mr
w(i)=dw*1b(i)
if (.not. wait(i)) then
if (binary(i)) then
if { th(i) .le. Ib2(i)) nux=ntrx+1
else
if (tx(i) .le. w(i)) ntx=ntrx+1
endif
endif
ple(i)=rr
6013 continue
¢
¢
¢ analyze state of system for each station
¢ and adjust window accordingly
¢
do 6023 i=1,ns
if (wait(i)) goto 6200
c goto start of wait state
if (Ib(i) .le. la(i)) goto 6100
¢ goto start of binary phase
¢ collision?
if (pfe(i) Je. fetst .or. nirx .gt. 1) then
Hb=1Ib(i)
1la=la{i)
w{i)=cn(llb,11z)
Tw=ifix(w(i))
w(i)=dw*w(i)
kkdeep(i)=kkdeep(i}+1
kw(ikkdeep(i))=lw
1b(i)=1w
6083 goto 6023
endif
¢ success?
if (ntrx .eq. 1) then
if ((i) Je. w(i)) then
done=.true.
newbx=i

else
tx(ix=1.1
endif
goto 6023
endif
¢ no transmission?
la(i)=Ib(i)+1
if (kkdeep(i) .gt. 1) kkdeep(i}=kkdeep(i)-1
Ib(i)=kw(i,kkdeep(i))
goto 6023
c
¢ start of binary phase
c
6100 if (.not. binary (i)) then
c initialize if necessary
binary(i)=.true.
bbdeep(i)=1
1b2(i)=w(1)
la2(i)}=w(i)-dw
bw(i,bbdeep(i))=1b2(i)
if { tx(i) .gt. w(i)) then
th(i)=1.1
else
th{(i)=tx(i)
endif
endif
¢ collision?
if (pfcdi) .le. fotst .or. ntrx .gt. 1) then
Th2(3)=0.5%(1a2¢y+1b2(i))
bbdeep(i y=bbdeep(i)+1
bw(i,bbdeep(i))=1b2(i)
6183 goto 6500
endif
¢ success?
if (nirx .eq. 1) then
if (th(i) .le. 1b2(i}) then
done=.true.
newtx=i
else
w(i)=1.1
endif
goto 6500
endif
¢ no trangmission?
if (bbdeep(i) .eq. 1) then
binary(i)=.false.
la(i)=la(i}+1
if (kkdeep(i) .gt. 1) kkdeep(i)=kkdeep(i)-1
Ib(i)}=kw(ikkdeep(i))
else
bbdeep(i)=bbdeep(i)-1
1a2(i)=1b2(i)
1b2(i)=bw{i,bbdeep(i))
endif
6500 if ((1b2(1)-1a2(i)) .It. 1.0/(200*ns)) then
¢ enter wait state if window is too small
1b(i)=cn(n,1)
la(i)=1
binary(i)=.false.
kkdeep(i)=2

67

kw(ikkdeep(i))=1b(i)

wait(i)=.true.
endif
goto 6023
[
¢ start of wait state

c
6200 if (pfe(i) .gt. fetst .and. ntrx .eq. 1) then
x(i)=1.1
else
if (pfc(i) .gt. foust .and. nrx .eq. 0) wait(i)=.false,

endif
c
6023 continue

kstep=kstep+1

if (.not. done .and. kstep .le. 10000) goto 6010

if (mintx .eq. newix) ruecnt=truecnt+1
9000 write(1,9100) kstep
9100 format(iS)

npkt=npkt-1

if (npkt .gt.) goto 8000
c
CCCLLCCECCCECCCCECOCCCOCCOlCCeTECeCeCoCeCCCCiCCCCCCOCECCECrreeeeseece
¢
¢ include Data Analysis here (plus the following lines)
c
CCCCCCEEOtEECEOCCOCTECiteeitCeCCeOCCCCCCCCCOCCOCCOOCCoCCECerteeceseee

write(6,580) truecnt
580 format ('number of true minimums=",i5)
€CCCOCEECCCOCOErOiEetiCetOOCCOCCCOCOCCEOCCOCCOECCOCCELEiCCtCCCeCCeCoCCoce
c
¢ include subroutine for computing
¢ probability of collision, success, and idle here
c
CCCCOCCOECeCCCCCCeCCCCCCCeCCCCCCCCOCiCOiiEeCeCCCeCeECCCCCCieCoCeCorcCess
¢ end of Two-Phase Algorithm with Independent Noise Detection
CCCCECCECCCCOoCCaiCOCCOrCECCOEeCoCCCCeCtCCiOCCCCeCOCCCCCCCeCiCseCereee

oODoOoOO0

CCCOCCOOCCCCLCCCOCCOECOCCCOOCECeLeeCCOeCCCeCCCCOOCCOCCCCOCCECCOreaeeeeeoeece
Binary Exponential Backoff Algorithm

This program simulates the exponential backoff algorithm of an ethernet
network in the presence of noise.
ns=#of stations
slot(i=next slot that station i will attempt to transmit
doub(i)=number of transmission attempts station i has made

(new wait time= (rand#)* 2**doub(j) if i<=10

or 1024 (2**10) ifi>10)

(station i drops out of contention if i=16)
¢ kstep=number of contention slots to resolve conflict
¢ keount=number of stations transmitting in a given contention slot
¢ npkt=number of runs per simulation '
COCCCLEEECCECCECCECCCTOCOeECCCCECCCCCCCCCCECCOOCTCOCECECCCCCeCCCCCCCCCCeeeecs
[+
¢

ocoGoato6on

double precision

68

integer ns,npkt
integer slot(60),doub(60)
integer wb(30),wj,wjl
logical vflag

¢

c

¢ initialization simulation

c
133 format(d15.10)
write(6,5110)
5110 format(’Ethernet Exp Backoff Model’)
do 7720 ns=10,10
write{6,5100) ns
5100 format(///,’'number of contending stations:",i5)
do 7700 j=0,90,10
vilag=.false,
fetst=float(j)/100.0
npkit=800
8001 rewind 1
2000 kstep=0
¢ initialize noise for the first slot and the next slot that
¢ a station may transmit if it detects a collision
read(5,133)
do 1001 i=1,ns
doub(i)=1
read(5,133)
slot(i)=2.0*rr+1
1001 continue
c
¢ count the number of transmissions in the current slot

[o4
1000 kecoum=0
kstep=kstep+1
do 2001 i=1,ns
if (slot(i) .eq. kstep) then
kcount=kcount+1
doub(i)=doub(i)+1
if (doub(i) .gt. 16) then
slot(i)=0
goto 2500
endif
c

¢ determine next slot that station will transmit if collision is detected

[
read(5,133) rr
if (doub(i) .1le. 10) then
slot(i}= 2**doub(i)*rr +1 +slot(i)
else
slot{i}= 1024%rr +1 +slot(i)
endif
c write (6,999) kstep,i,slot(i)
c999 format(i5,4x,i5,4%,i5)
endif
2001 continue
2500 if (kstep .gt. 5000) goto 9000
c
¢ add noise
c
read(5,133) rr
pfe=rr

69

¢ If there is a collision (kcount>1 or noise) or no ranmission (keount=0)
¢ then repeat above procedure for the next contention slot.
¢ If there is a successful wansmission, terminate contention,
if (pfc .le. fotst) keount=2
if (kcount .ne. 1) goto 1000
¢
¢ write(6,998) kstep
c998 format(//,"kstep=",i5)

c
9000 write(1,9100) kstep
9100 format(i5)
5000 npkt=npkt-1

if (npkt .gt. 0) goto 2000
[+ .
COCCOCCCOCOEOTOCEEECOLeOCelCOCCOCCCCCCCOCCCCCEOCeCoCCCCCCCOCCeCeCeeees
¢
¢ include Data Analysis here
c
CLCCOCCECeOCOCCCECCOCeCtCiCeCCECCCCCCCCCCCeCCCeCCCeCeleCoCeCeecoeeecee
¢ end of Binary Exponential Backoff Algorithm
CLOCOCCCORCOCCEECCCCEsCeCCaCCOCCCCOECCECCOCCCCECCOECleCiCOCCeeoeeeces

This program generates a continuous stream of random numbers
and is written in C. The corresponding executable file is

called "randgen’. The output from randgen must be piped

into the standard input of all Fortran programs in this Appendix.

(The random number had to be written in C, because the standard
random number generator in the Fortran lbrary cycled after a
certain point.) */

PR

#include <stdio.h>

main()

{
int i;
double z;
srand(1);
for (;;)

{
z=rand()/2147483648.0;
printf("%5.10{0,z);

} /* end of random number generator */

70

APPENDIX B, SIMULATION PROGRAMS IN C

I*#*#***********t*tt**#***#***********#****#*#******t&***t***ti#*********

C programs

includes the programs for the approximate recurrence relation,

binary-divide algorithm, greedy approximate window-control,

and load estimation

-t 0 N e s e sl o e 3 adeofe ol e el ol o o oK ¥ * *t****************t**i*t********&**l

* * K ¥ #

#include <stdio.h>
#include <math.h>
#include <sys/types.h>
#include <sysftimes.h>

#define NMAX 799 /*number of trials in a given run */

Jretecaten s st o s ok o e sl s ol oo ol o ok sl e sk ok e s ool o el o ek o el ol e sk ek sl s ks ke ook ol kol e ke e

* Approximate Recurrence Relation:

* -create a lookup table from the recurrence relation outlined in
* section3.3.1.3

* -simulate contention using the lookup table

*

* The lookup table has a resolution of 1/(10n), and the algorithm
* is restarted with new contention parameters if contention is not

* resolved when the window size is less than 1/(10n).
FHERR AR AR AR AR A R Ak R AR R R RO K

A s o e oo ool ol ol ol ol o e sl oo s ook e o ko s ek ool o ook o o
* global variables:
*

t*******t************#*******t******#*******##*****t********************’

float Nx[401][401]; /* lookup table for computing N(a,b)
For current window [a,b), Nx[a][b] contains the
expected minimum number of contention slots to
resolve contention. Nx[b]]a] contains the
optimal window for interval [a,b).
Nx{b][a] is shared by both subroutines:
NQ) and 8(). */

float §x[401][401]; /* lookup table for computing $(a,b)
For current window [a,b), $x[a][b] is the estimated
probability of success and Sx[b][a]=Nx[b][a]. */

double p, /* probability of noise */

dw; /* window resolution-- 1/(10n) */
intn; /* number of initial contending stations */

l****#****#****#**********************&***t*#****t*t**t*t**********&*#*#*

* subroutines :
YYYYY Nk ——— RISk SR ARk

£* prot), return random # Uniform[0,1)
*/

double
1{:mb()
static double divis = 2147483648.0;

71

double y;

y=rand(};
return (y/divis);

double
£2(a,w,b) /* compute g in dynamic programming formulation */
double w,a,b;

(

double pow(),x,y,z1,22,2,p1;

/¥ compute g2 assuming false collision-- b invalid */
p1=(1.0-p)*(1.0-p);
x=n*{w-a)*pow((1.0-w),(n-1.0)y*(1.0-p);
if (a< 1.0)

{

y=pow((1.0-8),(n-0.0));

zl=xfy;

)
else

z1=0.0;
/* compute g2 assuming true collision — b valid */
x=n*{w-a)y*(pow{(1.0-w),(n-1.0))-pow((1.0-b),(n-1.00));
if(a< 1.0)

{
y=pow{{1.0-a),(n-0.0))-n*(b-a)*pow((1.0-b),(n-1.0))-pow((1.0-b),(n-0.0});
?2=x/y;

else
z2=0.0;

/* compute z ¥/

z=(1.0-pl)y*zl + pi*z2;

retirn(z);

)

double
r2(a,w,b) /* compute r in dynamic programming formulation */
double w,a,b;

double pow(),x,y,2,21,22,p1;
/* compute r2 assuming false collision-- b invalid */
p1=(1.0-p)*(1.0-p);

if(a<1.0)

{

%x=(1.0-w){1.0-a);
y=n+0.0;
z1=pow(x,y)*(1.0-p};
}

else

z1=20.0;
f* compute r2 assuming true collision-- b valid ¥/
if(fa<1.0)

x=pow((1.0-w),(n-0.0))-n*(b-w)*pow((1.0-b),(n-1.0))-pow({1 0-5),(n-0.0));
y=pow({1.0-a),(n-0.0))-n*{b-a)*pow((1.0-b),(n-1.0))-pow((1.0-b),(n-0.0));
22=x/y;
}

else

22=0.0;
/¥ compute z */
2=(1.0-pl)*zl +pl*z2;
retwrn(z);

}

double
N(a,b) /* Compute the estimated minimum number of contention slots to resolve
contention given the current window [a,b). N() is dependent
on minimizing the term N()/S() for smaller subwindows.
The terms N() and S{) are computed recursively until (b-a)<1,
at which point the following boundary conditions are used:
“ N(a.b)=1, 5(a.b)=g(a,b).

int a,b; /* a = lower bound; b = upper bound ¥/
{

double N().50,220.r2();
double aa,ww,bb,wtest,ntest,stest,nmin, zmin smax,g.r,1;
Nt W, Winin;

Wmin=a;
if (Nx[z][b] > 0.0) /* do not recompute Nx[a][b] if already in table®/

nmin=Nx[a]{b];
)

else if {b <= (a+1))
if (b==(a+l))

{
Nx[a][b]=1.0;
Nx[bl[a}=a;
H
nmin=1.0;
H
else

aa=dw*(a-1.0);
bb=dw*(b-0.0);
zmin=9999.0;

for (w=a; w<b; w++)

ww=dw*w;
g=g2(aa,ww,bb});
r=r2(aa,ww,bb);
1=1.0-g-1;
/* recursion equation for N{a,b) */
ntest=(1.0+1¥N(a,w)+r*N{{w+1),b));
Nx[b][a]=w;
/* calculate S(a,b) using same w as N(a,b) */
stest=S8(a.b); .
if (stest == 0) /* to prevent possible divide by zero in wiest ¥/
stest=0.0000001;
/* caleniate N(/S(); store minimums in appropriate tables */
wtest=ntest/stest;
if (wtest < zmin)
{
Zmin=wtest;
nmin=ntest;
smax=stest;

73

wmin=w;

} }
Nx[a]lb]=nmin;
Nx[b}{a]=wmin;

Sx[a][b]=smax;

retern(nmin);

double

8(a,b) /* Compute the estimated probability of suecess given the current
window [a,b). This value is used in N{a,b) to calculate the
minimum N(a,b)/S(a,b) */

int a,b; M a = lower bound; b= upper bound */

{
double S(),g2(),r20;
double s,aa,ww,bhb,zz;
double g.i;
int w,wmin;

aa=dw*(a-1.0);

bb=dw*b;

if(Sx[a][b] > -1.0) /* do not recompute Sx[a][b] */
{

zz=8x[a][b];
}
else if (b <= (a+1))

zz=g2(aa,bb,bb);

Sx[a][b]=2z;

if (b |=a)

} Sx[b][a]=g;
else

{
w=Nx[b][a]; /* choose w equal to same value chosen by N(a,b) */
ww=dw*w;
g=g2(aa,ww,bb);
r=r2(aa,ww,bb);
/* recursion relation for S(a,b) ¥/
2z=(gH1.0-g-1)*S(a,w)+r*S({{w+1).b));
)

return(zz);

f*****t*#*t#*t*t*t#t*#***t*t*******#**#******************#%****t*

* main program for Approximate Recurrence Relation

i*#*t***ti**#t*t*t*#*t***t*****#***##***#*****************&**t**l

main()

f*** The following variables have the same definitions asin ***
*+# the original dynamic programming algorithm kxS
int i,jk,la.Ib,lw,ns,pp,whi41];
int npkt kstep,ntrx,icount,ncp,done,vflag;

74

double w,sum,v,varian,xmean,conf;
float pfc,cce,x[41];
Rk kR bR R ok Ak |
int ¢e[1000], /* array storing number of contention slots to resolve
contention for each iteration of the algorithm */
cflag; /* flag to determine whether confidence interval is
satisfied */
float nl,51,z1; /* temporary values for calculation of N(1,ns)/S(1,ns)=
theoretical number of contention slots to resolve
comtention */
double z,
NQO.S() /* procedures as defined above */
struct tms buffer; M used to determine time required to simulate */
long int tm,tm1; /* algorithm and to create lookup tables */

standd(1);
{for(pp=20; pp<=20; pp+=10)

/¥ formulate dynamic programming table */
/* initialize matrices */
for (1=1; i<=300; i++)
for (j=1; je=300; j++)
{
Nx[i][j}=0.0;
Sxlilfj}= -1.0;
}

/* iterate on number of stations */
n=40;
ns=10%n;
dw=0.1/(n+0.0);
p=(pp+0.0)/100.0;
la=1;
lb=ns;
7* N{) creates table */
z=N(la,lb);
nl=Nx[la}{1b];
s1=Sx[la][1b];
printf("number of stations= %d0,n);
printf("number in theory(N),(S)=");
printf("964.5f %4.5f0,n1,s1);
printf{"total number of slots= %4.500,n1/51);
printf("user time, system time0};
buffer.tms_utime=times(&buffer);
buffer.tms_stime=times(&buffer),
tml=buffer.tms_stime;
tm=buffer.tms_utime;
printf("Fld---%1d0,tm,tm1);
fflush(stdout);

PR ORIk o R bl ok
* simulate results
*
*
A A e e A s e R o N KA A oA A N e
cflag=1;
vilag=1;
while (cflag == 1) /* repeat NMAX trials until 95% confidence is
established */

for {npkt=0; npkt<=NMAX; npkt++)
{

kstep=0;
done=1;
while (done == 1) /* repeat contention until minimum has been isolated */
{
la=1;
{b=ms;
for (k=1; k<=n; k++)
x{k]=prob();
while (done == 1 & 1b > 1a)

{
iw=Nx[Ib}{la];

w=dw*lw;

/* collision detections */
for (k=1,ntrx=0; k<=n; k++)
if (x[k] <= w)
ntrx++;

J* generate noise */
ple=prob();

/* determine state of network */

if (pfc <= p lintrx > 1) *collision*/
Ib=lw;

else if(ntrx == 1) f*success*/
done=0;

else /* no transmission */
la=lw+1;

kstep++;

}

}

/* contention resolved, store result */
cefnpki|=kstep;
} /* end npkt loop */

[*******#***t*t*********###***#*****t##**t**********##*t***i#****
* data analysis
*

*
***************#*******#***#*#********#********#***************t’
if (vflag=1)
{ /* initialize variables if new est of iterations, otherwise
add values in ccfi] to previous set(s) */

sum=0.0;

v=0.0;

vilag=0;

for (k=1; k<=30; k++)

wh[k]=0;
icount=0;

)
for (npkt=0; npkt<=NMAX; npkt-+-+)
{ /* caleulte mean and place nep into appropriate bin for histogram */
nep=cc[npkt];
icount++;
sum+=(ncp+0.0};
if (ncp > 4999)
nep=30;
else if (ncp > 1000)
ncp=29;

else if (ncp > 200)
ncp=28;

else if (ncp > 100)
ncp=2T;

else if (nep > 50)
ncp=26;

else if (nep > 25)
nep=25;

wh[ncpj++;

Xmean=sum/ficoumnt;

1
for (npkt=0; npkt<=NMAX; npkt++)

{ /* calculate variance */

nep=cc{npkt);

v+=(nep-xmean)*(ncp-xmean);

}
varian=vficount;
conf=1.96*sgrt{(double)(varianficount}));
printf{"number of packets transmitied= %d0,icount);
printdf("avg. no. of contentions (sim)= %9.3f0,xmean);
printf("variance,confidence= %10.3f %9.3f0,varian,conf);
fliush(stdout);
/* if confidence is not great enough, do more iterations */
cce=0.05*xmean;
if (conf < ccc)

cflag=0;
} /¥ end while(lcflag) loop */

/* print distribution */
printf{"noise{percent)= %d0,pp);
printf("---ncp--- ---frequency---0);
for (k=1; k<=30; k++)

{

printf("%d" k);
pﬁntf(" ”);
printf("%d0,wb{k]);
}

printf("user time, system tirne0);
buffer.tms_utime=times{&buffer);
buffer.tms_stime=times(&buffer);
tmi=buffer.tms_stime/3600;
tm=buffer.tms_utime/3600;
printf("%ld---%1d0,tm,tm1);
fAush(stdout);

)

f****#***#******##********t*;***t*#******#*#**#*

* end of main program for Approximate Recurrence Relation

s sk ol ol ofe sk oo sk

*********#t***t*****#*******t******************************#*****t*#***/

sp5

/**t*t******t**************#****#*#********&*#*#******t*#************

* This program models both the greedy approximate window-control
and binary-divide algorithms with or without load estimation.

The appropriate sections are outlined be /* ... ¥/ and can

LR I K R

be substituted in, depending on which simulation is desired.

As in all the other programs, delta = 1/(10n), and the algorithm
is restarted if the window size becomes smaller than delta.

*#‘******##*****#*i*********#*t*t***#*t***#*****#*****t*************l

#include <stdio h>

77

#include <math.h>
#include <sys/fiypes.h>
#include <sys/times.h>

#define NMAX 799 f*number of trials in a given run */
1* prob(), return random # Uniform{0,1)
*f

double
prob()

static double divis = 2147483648.0;
double y;

y=rand();
return (y/divis);

f************#**##*******#***#************#*t****t***********t*t*/
main(}

int i,j,k,pp,oc[1000],wb[41];
intN;
int npktkstep,ntrx,icount,ncp,done,vflag,cflag;
double p,dw.n,sum,v,varian,xmean,conf;
float pfe,cec,tx[51];
struct tms buffer;
long int tm,tm1;
double a,b,w,
wiv, /* wmv = moving average of previous windows used to
estimaten */
C,D; /* temporary values used in the calculation of the
approximate greedy window-control algorithm */

srand(1);
for{pp=0; pp<=90; pp+=10)
{

/* iterate on number of stations */
Nz30;
n=N+0.0;
wmv=1.0/n; /™ initialize moving window average to 1/n */
dw=0.1/(n+0.0);
p=(pp+0.0)/100.0;
printf("Oumber of stations= %d0,N);

f***#*******lt*lt***********#***********#***********#*#****#****#**

* simulate results
*

%*
******#******************t*****t#*******#*t**i*t*#*##********#**’
cfiag=1;
vflag=1;
while (cflag == 1)

{

for (npkt=0; npkt<=NMAX; npkt++)
{

kstep=0;

done=1;

while (done == 1)

{

78

=0.0;

b=1.0;
for (k=1; k<=N; k++)
{
tx{k]=prob(};
while (done = 1 & (b-a)>dw)
{

/* compute new window */
/t*****#******#*********#***t*#*#*t#*#*t*#******#*t#***
* use the following calculations for the approximate
* greedy window-control algorithm:
* C=((n-1)*(a+b)+2) / n;
* D=(a+b + (n-2)*a*b) /n;
¥ w=(C-sqri(C*C4*D))/2;
a3 3 20 e ol o 0 2 e o ol ajeabe e o e ke s 3 e ke sk e ol ol o ke sl e ool e e e sk ol ol skl ol ek e ek R R R
* o1 use this caleulation for binary-divide: '
* w=(a+b)/2.0;

*#****************t*##***#****************#***#****#**/

/™ collision detections */
for (k=1,ntrx=0; k<=N; k++)
if (x[k] <=w)
nrx-++;

/* generate noise */
pic=prob();

J* determine state of network */
if (pfc <=p l ntrx > 1) f*collision*/
{

b=w;

else if(ntrx == 1) Msuccess*/
done=0;
else /* no transmission */

if (kstep > 5000)
break;
/* contention resolved: store result, *f
/* compute moving window average and update estimation of n */
ccinpktl=kstep;
f***#****t*#***#*&*****&****i*t**#*t*t******************#*t
* add these calculations if using load estimation:
* wmv=(wmv+w)/2;
* n=1/Qog(1/(1-wmv)));
*#********************#*t*t*t*t*****t********#*****t*#*#**/
} /* end npkt loop */
!ﬁ*********#*i**t*#*******#***t******i*****#***********#***#*****
*
* include data analysis here (exactly the same as the last program)
*
i*t*******t*t***#**##***##***#*t*#*#***********t*t****#***#**t*i’

/* end of program

t*#****#&**#*******#*****#*t*****#********t****#****t*t*****l

(1]
f2]
[3]
(41
[5]
(6]
(71
(81
!
(10]
{11}

(12]
[13]

[14]
[15]
[16]

[17]
(18]

(19]

80

REFERENCES

W. Chu, L. J. Holloway, M. T. Lan, and K. Efe, ‘“Task allocation in distributed data processing,”” IEEE
Computer, vol. 13, pp. 57-69, Nov. 1980,

G. Fielland and D. Rogers, **32-bit computer system shares load equally among up to 12 processors,”
Electronic Design, vol. 32, pp. 153-168, Sept. 6, 1984,

D. D. Gajski and J. K. Peir, ‘*Essential issues in multiprocessor systems,”” JEEE Computer, vol. 18, pp. 9-
27, June 1985.

Y. C. Chow and W. Kohler, ““Models for dynamic load balancing in a heterogeneous multiple processor
system,” IEEE Transactions on Computers, vol. C-28, pp. 334-361, May 1979.

Y. T. Wang and R. J. T. Morris, ‘‘Load sharing in distributed systems,”” IEEE Transactions on Computers,
vol. C-34, pp. 204-217, March 1985.

L. M. Ni and K. Hwang, ‘‘Optimal load balancing strategies for a multiple processor system,”” Proceedings:
1981 International Conference on Parallel Processing, pp. 352-357, 1981,

V. Lo and J. W. S. Lin, ““Task assignment in distributed multiprocessor systems,” Proceedings: 1981
International Conference on Parallel Processing, pp. 358-360, 1981.

B. W. Wah and A. Hicks, ‘‘Distributed scheduling of resources on interconnection networks,’” Proceedings:
1982 National Computer Conference, AFIPS Press, pp. 697-709, 1982.

J. Y. Juang and B. W. Wah, *‘Optimal scheduling algorithms for multistage resource sharing interconnection
networks,’’ 1984 IEEE Computer Software and Applications Conference, pp. 217-224, 1984,

F. A. Briggs, K. S. Fu, K. Hwang, and B. W. Wah, ““PUMPS architecture for pattern analysis and image
database management,”’ IEEE Transactions on Computers, vol. C-31, pp. 969-983, Oct. 1982.

1. Y. Juang and B. W. Wah, *“Unified window protocols for contention resolution in local multi-access
networks,”’ 3rd Annual Conference of the IEEE Computer and Communications Societies, 1984,

A. S. Tanenbaum, Computer Networks. New Jersey: Prentice Hall Inc., 1981.

B. W. Wah and J. Y. Juang, ‘‘Resource scheduling for local computer systems with a multiaccess network,’”
IEEE Transactions on Computers, vol. C-34, pp. 1144-1156, Dec. 1985.

1. Y. Juang and B. W. Wah, ‘“Channel allocation in multiple contention bus networks,” JEEE INFOCOM
Conference, 1986,

W. Stallings, Data and Computer Communications. New York, New York: Macmillan Publishing Co.,
1985. '

Digital Equipment Corp., Intel Corp., and Xerox Corp., The Ethernet: Local Area Network Data-Link
Layer and Physical Specifications. Version 1.0, Sept. 30, 1980.

1. Y. Juang, Resource Allocation in Computer Networks. Ph. D. Dissertation, Purdue University, Aug. 1985,

G. B. Thomas and R. L. Finney, Calculus and Analytic Geometry. Reading, Massachusetis: Addison-
Wesley Publishing Co., 1980.

W. Mendenhall and R. L. Scheaffer, Mathematical Statistics with Applications. North Scitate,
Massachusetts; Duxbury Press, 1973.

