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ABSTRACT

In this thesis, optimal mapping of multilayered feed-forward anificial neural networks onto
message-passing multicomputers is formulated as an integer programming problem. The objec-
tive is 10 minimize completion time of parallel simulations of neural networks on target multi-
computers with respect to nwuno_aa computation and communication times, This optimization
problem is NP-hard, in general, and a branch-and-bound algorithm is described for selving the
problem. By observing that computation time is dominant over communication time in most
cases, a simplified aigorithm with negligible ervor is described and anmalyzed. Both static and
dynamic mapping slgorithms are studied for mapping neural networks onto multicomputers
depending on whether werkload is stuic or time-varying, The static algorithm performs the
oplimal mapping once before the neurul-network simulation is started. The dynamic algorithm
performs the optimal mapping during the neural-network simulalion whenever workload
changes significantly. Experimental results for the static mapping algorithn, including those on
a network of workstations and Intel iPSC/2 hypereube computers of different cube sizes, are
shown and are found to be very close (o those predicted by analysis. Experimental results for the
dynamic mapping algorithm, including Mose en 3-processor, 10-processor, 25-processor und
100-processor multicomputers, are obtained by simulations. The azz_m:onw are required for
controlling and reproducing the workload. Numerical results are presented to demonstrale the

advantage of the dynamic mapping algrithm.
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CHAPTER 1.
INTRODUCTION

In this thesis, optimal mapping of multilayered feed-forward artificial neural networks
{ANNs) onto message-passing muiticomputers is stodied. The objective is to minimize com-
pletion time of parallel ANN, simulations on target multicomputers with respest to expected
computasion and communication times. Both static and dynamic mapping schemes are studied
for mapping neural-network simulations onto multicomputers depending on whether the work-
Jond i static or time-varying. The static scheme performs the optimal mapping once before the
ANN simulation is started. The dynamic scheme performs the optimal mapping whenever the
workload changes significantly. To run experiments on the algorithm for solving the static
mapping problems, a progrum called NewMap was develuped. Also, a program catled Dsim
was developed for simuiating workload-varying multicomputers 10 run experiments on the
dynamic mapping problems.

During the course of exploring methods for solving the optimal mapping problems,
several novel techniques were discovered. The major con uibutions of this thesis are
(1) integer programming formulation of the optimal mapping of ANNs onto message-passing

multicomputers,

{2) constrained task graph for modeling the ANN simulation,

(3) novel strategy for mapping coarse-grained task graphs onto message-passing multicom-
puters,

{4) novel stratcgy for mapping the task graphs with many coarse-grained task nodes and few
fine-grained task nodes onio message-passing mullicomputers,

(5) decomposition of error allowanee in the wmultistage solution algerithm for combinatorial
optimization problems,

(6) determination of suitzbility of an existing ?;Encavzwnq system for ANN applications,
and

(7) implementations of NeuMap arnd Dsim.



1.1, Motive and Approach

ANNSs show strong promise in anificial intelligence applications [13,14]. However, the
technologies of implementing ANNs in hardware are not fully mature, and only simple and
medium-scale ANNs can be implemented in YLS1 at this sime {8]. The fexibility of hardware
itnplementation is limited in the sense that it is not easy to change its topology, ANNs are usu-
ally studied by simulations on existing computer systems. These simulations require large
amounts of computational time and are very attractive candidates for parallel processing,

There are two approaches to parallel processing of ANN simulations. In the first
approach, simulations can be coded in an existing programming lunguage, and a parallelizing
compilér extracts the patallelism to the extent possible and restructures the program for parallet
execution, Second, the mapping of simulations can be studied a1 the algorithm level, and
paralle] simulation algorithms can be developed. In this thesis, the second approach is used
because & greaser amount of parallefism can be exploited, given the knowledge about the prob-
lem and the well-defined nature of the simulations,

The target ANNs studied are multilayered networks trained by the static learning rule,
¢.g., back-eror propagation. Two strategies for coping with nonlayered ANNs are also stu-
dicd, Larger networks with an arbitrary interconunection ase not considered in this thesis
because mapping these networks is not solvable under the constraints of computer resources at
the preseni time. The target muliicomputers are those in which each processor has focal
memory and the workload is static or time-varying, instead of the single-user environment in
an earlier paper [18]. Other recent additions 1o this eartier work include study of dynamic
mapping algorithms as well as static, and significant rew results on and technigues for optinal
mapping.

The optimal mapping of learning the weights of an ANN onio a static-workload multi-
computer is formulated as an integer programming problem with respect to computation and
comenunication times. Constraints on feasibility, configuration, resource and dependence are
considered. To reduce the complexity of solving the mapping problem, the multicomputer sys-
tem is partitioned inio disjoint sets of processors according to the ratio of communication to

compulation times., Each set of processots represents a conceptual processing resource,
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Figure 1.1 : General approach 1o solving the optimal static mapping.

Based on the limited history of past workloads and limited knowledge of future work-
loads, it is very difficult to achieve the optimal mapping dynamically when the workload
changes. The approach proposed in this thesis approximates the optimal dynamic mapping by
scheduling a sequence of optimal mapping, based on the variance of time-varying workloads
and the expected time to finish the remaining simulation tasks.

The approach to the optimal mapping of ANN simulations onto static-workload multi-
computers is shown in Figure 1.1. As the general optimal staric mapping problem is NP-hard,
appropriate techniques, such as enumeration and wee search, are considered (6], Experiments
on static-workload and workload-varying message-passing multicomputers are carried out for

validating the correciness of the mappings predicted by analysis.

1.2, Related Work
Related work on this problem includes paralle] software simulations on muliprocessors,

design of generic multicomputers for ANN simulations, and implementadons of computers or
VLSI chips for ANNs.




H. T. Kung ez al. map layered ANNSs onto a linear array WARP processor with 10 cells
[16). They propose two approaches: network partitioning and data partitioning. The partition-
ing of an ANN into slices is optimal because the 1arget muchine is 4 ring of processors and the
neural network is assumed to be layered, In partitioning data, they use the first nine eells in
WARP to perform operations in the forward production phase and the tenth cel! for computing
weight updates in the backward training phase. Thai is, one weight update is done for every
nine wraining patterns, They assume that weight updates are usually small, and that consecutive
weight updates can be neglected by running several iterations of the simulations with fixed
weight values before updating them. In practice, weight updates are not necessarily small and
the range of updates is highly application dependent. Moreover, the scheme may not be satis-
factory when a large number of cells (or processors) are concerned.

Hwang ef al. design generic multicomputers suitable for ANN simulations {7,9]. They
discuss design issues on the processing eletnents and the communication bandwidth require-
ments, and v:.%omo several guidelines for designing generic multicomputers for ANN simula-
tions. However, they use dutagram routing, which may result in unprediciable network conges-
tion, ‘The performance of their scheme also depends on the system-supported routing algo-
rithm,

The weight-update process in 8 multitayered ANN can be considered as a sequence of
matrix-vector multiplications. By exploiting this approach, §. Y. Kung el al. wansform ANN
learning to recursive matrix operations, then to a data dependence graph, and finally 10 a linear
systolic array with a fast interconnection network [11,12). Active neurons in each layer are
evenly distributed to the processing cells of the systolic array, and full resource utilization is
obtained in many cases. In fact, this thesis will show that their scheme is optimal when the
ANN is layered and the interconnection network is fast. However, they did not consider the
case in which the bandwidth is limited and not the same at all links and the processors have dif-
ferent computational capacity. In the Jatter cas¢, active neurons may not be evenly distributed
among ali processing cells,

A number of other multiprocessor simulations have been reported. Researchers at Edin-

burgh simulate ANN leamning on & transputer-based Computing Surface with 42 processors

[4). Researchers at Rochester use a 128-node BBN Buierfly multicomputer for simulating
ANNs [3].

This thesis addresses some of the deficiene | in previous studies which either
assume a tight!y coupled system, such as a systolic array, or present a heuristic mapping algo-
fthm for a sei of heterogencous processors. The integer programming solution presented
allows ANN simulations to be carried out eptimaily on a network of heterogeneous processors.
These results are imponant for designing special-purpose computers for ANN simulations and

for determining the suitability of an existing multicomputer system for ANN applications.

1.3, Orcganization of Thesis

The thesis is organized into eight chapters and five appendices, Chapters 2, 3, and 4
define the model of the ANN, the target multicomputer, and she mapping scheme, respectively.
Chapter 5 formulates 1he mapping problem as an integer programming problem and presents

the related constraimts, Chapter 6 discusses the solution sirategy, techniques and properties.

Lrror decomposition, partitioning algosithms, related theorems, and o banch-und-bound search

are deseribed, Chapter 7 describes the experiments on static-werkload milticomputers, includ-
ing those on a 16-node Inte! iPSC/2 hypercube computer and on a bus-based network of hetero-
geneous workstations. Also, it describes the experiments on workload-varying multicomput-
ers, including those on 3-processor, 10-processor, 25-processor and 100-processor multicom-
puters. Finally, in Chapter 8 the conclusions are drawa,

Brief descriptions and C programs of NeuMap and Dsim with appropriate documentation

are shown in Appendices A and B, respectively. Input files they require are also listed,



CHAPTER 2.
MODEL OF ARTIFICIAL NEURAL NETWORKS

In this chapter, the operations of an ANN and its task-graph representation are described,
and then the mode! of the ANN is formalized. The task. graph used to represent the ANN
operations is slightly different from the traditional one, since certain relations exist between
pairs of task nodes, which will be discussed in this chapter.

This medel works for the multilayered ANN with & static learning rule, which is the ong
whose learning tasks are static. The one whose learning tasks are time-varying is a dynamic
fearning rule. Certain techniques can be appiied to nonlayered ANNs to restructure them into
multilayered ANNs. However, the exact optimality of mapping nonlayered ANNs may not be
achieved due to eiror incurred in restructuring, The restructuring techniques and the error will
be discussed in this chapter. For the ANN with a dynamic learning rufe, the static task graph

can not characterize it.

2,1. Basic Operations of ANN

An ANN can be characterized by several major components: a set of neurons, pattern of
interconnection, propagation rule, activation rule, output function and learning rule.

A neuron is the basic processing unit, which is characterized by iis state, an activation
function and an output function, as shown in Figure 2.1, The activation function transforms the
input signals associated with their weights and its state value to a new state value. The output
function transforms the state vatue to an output signal.

Neurons can be classified into three types: input neurons, hidden newrons and outpur new-
rons. Input neurons receive inputs from the exiernal environment, output neurons send signals
io the external environment, and hidden neurons are invisible to the external environment.

The patiern of interconnection determines the dependence of signal flows in a neural net-
work, The propagation rule specifies the formation of the ner fnput of a neuron. The activation

rule specifics the transformation from the weighted inputs, the global signal (usually used as a
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Figure 2.1 : Generic mode! of a neuron,

threshold) and the current state into a new state, The output function transforms the state of a
neuron into an output signal.

The learning rule specifics the mechanism of modifying the strength of a cornection. The
neural network can learn through incremental modification of connection weights. In general,
the modification of a connection weight is a function of four items: (1) the state value of the
destination neuron of this connection; (2) the output value of the source neuron of this connec-
tion; (3) the current connection weight; and {4) the teaching input, which is the expected outpet
value of the destination neuron, For example, the typical buck-emor propagation (BEP) learn-
ing rule is .

:‘..H.A—.f_v = SEA: + g m..zuv o)+ AS..,H,AD - Ech:v. .0

where g is a gain term, o;{r) is the output signal of neuron § at time ¢, & is a momentum term
(sometimes set to zcro), and 8;(¢) s an crror term for neuron . If neuron j is an output neuron,
then

80 = o) (1 ~0; () (T;(0) ~ o)), 2.0




where {;{(¢) is the teaching input to output neuron j. If neuron j is 2 hidden neuron, then

3i() = o)1) (1= 0,1) ) 3. 8ult) wyn(e+1). @3)
" k

A multilayered neural network can be clusiered such that if one neural cluster is con-
nected 1o another, then all neurons in the frst are connected 1o all neurons in the second, For
brevity, in this thesis, a cluster is used to refer to a neural cluster, A special case is a fully con-
nected multilayered neurak net, which has one cluster in eacht layer. Nate that all newrons ina
cluster are homogeneous in the sensc that they receive the same input signals, perform the same
sequence of operations, and send their output signals Lo the same elusters of nourons.

The operations of an ANN can be divided into two phases: a production phase and a
learning phase. The ANN works by alternating between these two phases. In the production
phase, it receives input signals from the external environment and produces output signals 1o
the external environment. In the learning phase, it receives teaching inputs, if they are pro-

vided, and modifies the connection weights according to the learning rule.

2.2, Constrained Task Graph

The simulation of an ANN can be represented by a task graph. A traditional task graph
consists of task nodes and precedence ares. Each task node and each precedence arc , respec-
tively, Tepresent a well-defined task to be performed and a dependence relationship between
two task nodes. Consider a task node. The task of its ?mma&xm node must be performed before
its task can be performed. On the contrary, the task of its succeeding node cannot be performed
unfl its task is performed.

A task node represents either a production-phase or leamning-phase simulation task of a
cluster and the precedence arc represents the dependence between two clusters. Without ambi-
guity, the cluster of a task node is referred to the once which the task node is representing. The
size of a task node is the amount of unit computation Lo be performed for this node. Note that
the task node size depends on the fan-in of the cluster if the task node is in the production
phase, whereas, the size depends on the fan-ir and fan-out of the chuster if the task node is in

the learning phase. The width of a precedence arc is the amount of unit communication

between two clusters. Note that the task graph is much like the network topology in terms of
clusters.

The task graph representing the ANN simulation is called the constrained task graph
{CTG). A typical example is shown in Figure 2.2, It is slighily different from the traditional
one and the differences are (1) the CTG is verdically symmetric, mnd (2} a 1ask node and its
symmetry image task node correspond to the same cluster in that one of them represents a
production-phase task and its image a leurning-phase task. A major fealre of the CTG is that
cach task node in the CTG consists of two different types of subtasks, Le., 4 computation sub-

task and a communication subtask.

@®) )

Figure 2.2 1 Two examples of CTG: () a fully connected ANN and (b) a multilayered ANN,

the number of neu-

Formally, each task node i consists of u; binary sk tuples, where

rons in the cluster of task node i. Each task tuple defines the amounts of unit computation and
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unil communication of a neuton in its cluster. The task tuples are indivisible in the sense that
one task tuple cannot be executed across different processors, namely, the task twple is the
basic unit for mapping. Each task wyle contains two items: a computation subtask (c-subtask)
and a communication (or routing) task (r-subtask), A ¢-subtask is performed only at one pro-
cessor and a r-subtask is accomplished by migrating data in the multicomputer, The home
node of a subtask, either c-subtask or r-subtask, is the task node which contains this sublask.

A subtask is irrevisable if the size of the subtask canaot be altered during the tmapping
process. On the contrary, a subtask is revisable if the size of the subtask can be changed during
the mapping process. The c-subtasks ate irrevisable and the r-subtasks are revisable. The -
subtasks are not well-defined a priori and .can be févised only afier all the c-subtasks of its
home node and all the c-subtasks of alf the succeeding nodes of its home node are mapped.
Note that atl c-subtasks within a task node are homogeneous, since the computation of all neu-
rons in a cluster is the same. However, the r-sublasks are usually different, since they depend
on the interconnection network of the multicomputer and also on the mapping of related ¢-
subtasks. Figure 2.3 shows a task node in which the solid boxes and dotted boxes denote the

c-subtasks and r-subtask, respectively.

[l
| cosublask |
P

..||.._
-subtask !
in "

Figure 23 1 A task node of the CTG.
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In this thesis, it is assumed that cach neuron is simulated on only one processor and can-
not be simulated across processors. As a result, a task node and its image node must have the
same mapping of c-subtasks. .

The mapping of the ANN simulation can be manipulated on this high-level task graph
rather than the low-level detailed ANN &._nnnmonm [18]. One advantage of using the task graph
representation is that the details of the ANN operations need not to be gone through, Another
advantage is that the task graph representation is independent of the learning rule, as long as
the learning rule is static, such that general ANNs with static learning rules can be represented

instead of being limited to the BEP [14].

2.3. Formal Model

A neural nerwork specification, Sy, is defined formally as <NC, KS, LR>, where NC is
the neural network configuration, K§ is the cluster specification, and LR is'the learning rule.
The neural network configuration NC is a 4-ary wple <K, Iy, Kj, Kg>, where K is the set of
clusters {(ny is the number of clusters), fy is the interconnection matrix specifying the pattern of
interconnection of clusters, Ky is the set of input clusters, and Kp is the set of output clusters.
The cluster specification KS is a 9-ary tuple <n, fi, fa, fo, f5. f1, Tps M1, >, Where # is the
number of neurons in this cluster, f; is the propagation rule of neurons in this cluster in the pro-
duction phase, f3 is the activation function, fp is the output function, f; is the propagation rule
in the leamning phase, fr is the learning function, 7, is the amount of computation of a neuron
in the production phase, 1, is the amount of computation of a neuron in the learning phase, and
T, is the amount of storage needed for the operations of one neuron. The learning rule LR
specifies the learning mechanism (e.g., BEP) used in the ANN simulation. Note that if every
cluster has the same specification, then one specification is sufficient. Example 2.1 below
shows the specification of a fully connected 3-layered ANN.

The nevural network model, Many, is defined formally as <Ng, Jg>, where Ng is a set of
task nodes and [ is a matrix indicating the interconnection of task nodes. Let nz denote the
aumber of task nodes in the CTG. Each task node z; can be represented by a ternary tuple <ny,.

Nz, M5,z where r, is the number of neurons in this task, 7, is the amount of computation for



each c-subtask, and 7y, is the space usage for each neuron in this task. Note that z; represents
the cluster ko), where ${i) = ny — |i—(ng +.5}|+ .5, Recall that ax is the number of clusters.
For example, the task nodes 2 and z,,, correspond to the cluster £ (, and z,, and 2,4 refer to

the cluster k.

i
Exampie 2.1. Consider a fully connected 3-layered neural network with 500, 1000, and 200
neurons in layers 1,2, and 3, respectively. The ANN can be specified as follows,

Neural Network Specification Syyy = <NC, XS, LR >
Neural Network Configuration NC =< K, Iy, Kj, Ko > ¢
Neuron Cluster Set K= { &y, k2, k3 ), ng =3
010
Interconnection Matrix fy = (0 0 1
¢oo0
Set of Tnput Neuron Cluster Ky = { k3 1.
Set of Qutput Neuron Cluster Ko = { k3 }.

Neuron Cluster Specification KS =< n, f, fa, fo, f1. fr. Mp Wi . s 22
Propagation Rule f; : additive, multiplicative,
Activation Function f : sigmoid function.

O:G.E Function fp : identity function.
Propagation Rule f; : additive, multiplicative.
Training Function fi : BEP training function with o=0.
Number of Neurons a:

g, H,MOO_ zwu = HOOD. Ny, =200,
Amount of Computation T,

M, = 50007 +10fa) + nlfo)
Moty = SN+ + (),
Mook, = 100097 + 1) + o)

Amount of Computation 1)
M.z, = 500 n(f) + 500 n{fy),
Ny, = 1000 () + 500 n(fr).
TNk, = 1) + 1000 N(Fr).

Amount of Storage 1;:
Mgk, =500+ 1 (word), My, =500 + 1 (words), My, = 1000 + 1 (words).
Leaming Rule LR : BEP.

Neural Network Model My =< Ng, lg >
Task Node Set Ng = { 21, 22,723, 24, 25,24 ), mz =6
My = g, Ny = Mg, and Mg, = Ty, fori=i23
Py = My Ny = Mg and Ny o = Mgy, fori=1,2.3
010000

001000

000100
Interconnection Matrix Ig = | 0010

600001
000000

24, Coping with Nonlayered ANN

The target ANNs studied in this shesis are multilayered. However, in general, an ANN
may be nonlayered, To fit nonlayered ANNs into the mapping problem, restructuring cither the
ANN or CTG is necessary. The restructuring will be discossed in the following two subsec-
tions. The calculation of errors in optimality incurred in the restructuring will be discussed in

Section 6.3,

2.4.1. Restrucluring a nonlayered ANN into a multilayered ANN

The nonlayered ANN can be restructured inte a *“multilayered™ ANN, After the ANN is
testructured, it can be formally modeled in ,__m CTG. However, solving the best restructuring is
harder than solving the original optimal mapping problem, since the quality of restructuring
cannot be determined until the optimal mapping problem is solved. Consequently, the restruc-
wring must be heuristic and some errors will be incurred. 1t is desiradle that the error bound
can be calculated.

A pure multiiayered ANN has each cluster in a layer communicating only with the clus-

ters in its neighboring layers. However, a nonlayered ANN may not be able 1o be restructured



into a pure mnltilayered ANN, since the above definition may not be satisfied. However, the
newlayered ANN can be restructured into wavefronts of clusters such (hal a wavefvont of clus-
ters can be active concurrently; numely, there is no dependence among the clusters in a wave-
front. Note that a cluster in a wavefront may communicate with certain clusters not in its
neighboring wavefronts. Such an ANN consisting of wavefronts is called a semi-layered ANN,
one in which a cluster may communicate with certain ¢lusters not in its ncighboring layers.
After the nonlayered ANN is restructured into a semi-layered ANN, it fits the optimal mapping
problem. The derivation from oplimality incurred by restracturing can be derived based on the

ratio of communication to computation times, which will be described in Section 6.3,

2.4.2, Restructuring a consteained task graph

Another way to cope with the nonlayered ANN is restructuring the CTG. This is espe-
cially useful to handle singular task nodes in the CTG. A singufar task node is the one whose
size is very limited compared 1o those for the majorily of tusk nodes in the CTG. Since the
singular task node is relutively small, it can be merged into a neighboring task node. The error
in optimality incurred by restructuring can be derived based on the ratio of the size of the
singular task node to the size of the larper 1ask node into which the singular one is to be
werged. The calculation of the error incurred will also be deseribed in Section 6.3. As with

restructuring nn ANN, the optinmal restracturing of o CTG i did cal, Tlcuristic

aneh Impra

restructuring with a gwaranieed error bound is suflicient and is adopted in this hesis,

CHAPTER 3.
MODEL OF MULTICOMPUTERS

In this chapter, the basic architecture of multicomputers and the characterization of the

time-varying workload are described. Then the model of multicomputer will be formalized.

3.1, Basic Architecture of Multicomputers

A multicomputer is a system oosmm.mz:m of w set of processors each with local memory, a
set of coramunication links which connect the processors, workload descriptors and queuing
disciplines. The target multicomputer may have a time-varying workload. The queuing discip-
line is scheduled by the mapping.

A processor consists of a processing unit, its workload descriptor, its local memory and a
set of communication ports through which it can communicate with other processors. A pro-
cessor may alse have an IO facility for communication with the external environment. The
computation power of a processor is characterized by the execution time per unir compuration,
which includes the processing unit activity and memory-access activity. The size of the local
memory of each processor is o constraint in the mapping problem,

"The interconnection network in most multicomputers can be classified into one of four

classes: polnt-to-point, muliistage imcrconnection networks (MIN), crossbar and bus. “The
complexity of the routing problem mainly depends on the interconnection network and the
traffic on it. The routing problem for a bus is the simplest, while that for a point-to-point net-
work is the hardest. For the second case, it can be simplified if a broadcast mechanism is sup-
ported. In this thesis, only the point-to-point and bus interconnection networks are considered,
because it is difficult to cover all possible interconnection networks. MIN and crossbar inter-
connection networks are treated as fully connected point-to-point networks.

The traffic load in the mEm_.nc:_._nn:ca network can be merged into the workload of pro-
cessors. This merge is appropriate, since the imerconnection network can be treated as a set of

resources just like processors and each of them has its own workload, Another reason is that

the ANN simulation alternates computation and communication iteratively such that the effects
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of communication can be merged with the computation. Hereafler, the workload used in (his
thesis refers to the real workload in a processor combined with the effect of random traffic
within the interconnection network.

A communication link § can be modeled by a setup timie 1, & transfer rate rj, and a set
Py, of processors it suppotts. The communication setup time includes that of the physical link
and overhead for processing setup. This parameler can !.u obtained for a real system by
measuring the time for sending a null message. The transfer rate indicates the amount of unit
data which can be mansmitted over a link per unit time. The overhead of processing transmis-
sion is included in calculating transmission time. The transmission time 1y, per unit datum is
the reciprocal of the wansfer rate. The processors supported by a link are those which com-
municate with other processors via this link,

Note that overiapped computations and communications may be allowed. If the associ-

ated overhead is small, then such overlaps should be exploited in the mapping.

3.2. Stochastic Workloads

In & normal operational environment, several processes may be active in a processor dur-
ing the simulation such that a processor may not be able to be dedicated to executing the ANN
simulation. In other words, the workload will affect the final mapping result and should be
treated a5 2 mapping parameter. In an earlicr paper [18], the lime-varying workload is not con-
sidered.

In this thesis, the workload is charcterized by the processor utility, which is the percen-
tage of processor utilization allocated for the ANN simulation. Higher workload means lower
processor wtility,

To be more specific, the workioad e in processer { can be characterized by the processor
utility 1, such that wy, = 1/, in the g-th time quastum. A time quantum is a time interval
during which the workload can be meaningfully measured. Note that 0 < ;o < 1 and § S oy,
The time quantum is selected to be large enough to allow ; to be nonzero. This characteriza-
tion is appropriate, because if the ANN simulation can utilize only j1; within a quantum, then

the expected number of active processes should be the reciprocal of ;. Without loss of

generality, in this thesis, the time quantum is set to the time for one iteration of ANN simula-
tion, such that ; is always nonzero for all i. For simplicity, the workload, is assumed to be
statie during a time quantum.

In a degenerate case, ; is b for every processor i. This is the single-user case. Another
interesting case has a certain set of processors with heavy wortkloads, such as those of a file
seever or network gateway, and other processors have relatively light workloads. Given this
information on the workload distribution, the mapping will faver those with lighter workloads.
Without such informasion, all the processors will be treated the same; as a result, the mapping

may cause bad performance of the simulition.

3.3. Model of Multicomputers

A muliicomputer madel, My, is defined formally as <MC, PS, L8>, where MC is the mul-
ticomputer configuration, P is the processor specification, and LS is the link specification.

The multicompuier configuration MC is a 5-ary wple <P, i, L, P, Po>, where P is the
set of processors, [y 15 the interconnection matrix specifying the interconnection of processors,
L is the set of links, #; is the set of processors that have input facilities, and Po is the set of
processors that have output facilities,

The processor specification PS is u S-ary tuple <T., m, Ky, To, WL>, where 1, is the exe-
cution fime per unit computation, m is the size of local memory, Ky is a binary variable speci-
fying overlapped computations and communications, T, is the overhead of overlapped opera-
tions, and WL is the workload descriptor. If the overlap is allowed, then X, = 1; otherwise, Ky
=0,

The workload descriptor WL is a 6-ary tuple <pg, 71, P2,6, b, B>, where po, py, and p2
are the probabilitics that the workload in the next iteration of ANN simulation will remain the
same, increase, or decrease, respectively, 8 is the slope of change in workload if the workload
increases or decreases, and b, is the upper bound and #; the lower bound on workloads. Note
thit pg +p1 +p2 = L. The procedure of workload gencration based on the workload descriptor

will be described in Section 7.2.



The link specification LS is a wersary tuple <r, 1,, P>, whete # s the data transfer rate of
lhis link, 1, is the corresponding setup time, and Py, is the set of processors supported by this
link. Note that only one processor is assumed 10 be able to transmit a frame on a link at any
time, This assumption is reasonable, because if & processors can transmit on link { con-
currently, then k logical links 14, ..., Iy can be used instead of the single physical link £,

The above definition has to be specified for each different processor and each different
link in the multicomputer. Examples 3.1 and 3.2 below illusirate the models of a 16-node

hypercube and a network of heterogeneous workstations, respectively.
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Example 3.1, Consider the Intel iPSC/2 hypercube computer with 16 homogeneous processors
and 32 homogeneous links, Note that the hypercube is in the single-user mode so that the work-
load is always 1,

Multicomputer Model My = <MC, PS, LS >
Mutticomputer Configuration MC = <P, Iy, L, P1, Py >
Processor Set P = | po,p1, ... P15 | ap=16.

ABBC
BACBE
Interconnection Matrix fyy = BCAR
CBEBA
0110 1000 booo
taot 0100 0000
A=tioo01] 27Joo10] €=|o000
o110 00601 0000

Link SetL ={ {g, fy, . d3g Jomp, =32,
Input Processor Set Py = [ Cube-Manager }.
Output Processor Set Pg = | Cube-Manager }.
Processor Specification PS = < 1., m, Xy, T,, WE >,
Execution Time Per Unit Computation 1., = 1.0 {ms), v i
Local Memory Size my; = I (M words), v i
Overlapping Feature o, =0, Vi
Overlapping Overhead 1, = 0.
Workload Descriptor WL =<pg.p1.p2, 8. b, By >
Po;=Lpy=0,py=08=0b,=1b=1, v i
Link Specification LS = <r, 1,, Py >
Point-to-Point Link:
Duta Transfer Rate r; (1/1,) = 0,253 (word/jLs), v i
Setup Time 1, =065 (ms), V¥ i
Supported Processor Set Py, (i =d} dy dadydg and j = d dy ) =
({xy x=dy0dj g andy=dy;ldj ), V¥ i
Broadcast:
Data Transfer Rate rp, =0.097 (word/ps).
Setup Time 1, = 6.5 (ms).
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Example 3,2, Consider a network of three heterogeneous workload-varying workstations con-
nected by an Ethernet bus.

Multicomputer Model My, = < MC, PS, LS >
Multicomputer Configuration MC =< P, fy, L, P, Po >
Processor Set P={po, pi.p2 ), np=3.
, 011
Interconnection Matrix fyy = |1 0 |
P1e
Link SetL={lg}, np =l #* Ethernet Bus */
Input Processor Set Py = po, py.p2 )
Output Processor Set Po = { po.p1, P2 )
Processor Specification P§ = < 1., m, Xy, T, WL>
Execution Time Per Unit Computation 1!
1o, =28.5(ms), T, =255(ms), T, = 16.7 {ms).
Local Memory Size m ( max { local real memory, disk swap space } ):
mo =3 (M words), my =5 (M words), my =10 (M words).

Overlapping Feature ko, =0, V 4

Overlapping Overhead 1, =0, ¥V 1

Workload Descriptor WL =< pg, p1,pa, & by, by >
Pog=024,p;, =071, py =005, 8y =070,b, =258, =1
po, =0.13,p;, =057, py, =030,8,=0.78,b, =25, =1
Po, =028, py, =053, pg, =0.18,8; =0.59, by, = 25. 8y, = |

Link Specification LS = < r, T, P >

Data Transfer Rate r {(1/7,) = 0.188 (word/jLs).

Setup Time 7, = 108.36 (ms). (one-time cost)

Supported Processor Set P ={ 0, 1,2 ].

K
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CHAPTER 4.
THE MAPPING SCHEME

A mapping scheme of an ANN onto a multicomputer includes a scheme for assigning
neurons (or simulation tasks) o processors and one for routing data across the interconnection
nelwork. The assignment of neurons {or c-subtasks) must meet constraints on integrity, feasi-
bility and resources, The routing scheme must meet consiraiuts on dependence, leasibility,
resources und configurations. Note that the routing of data cannot be determined until the clus-

ters involved are assigned to processors,

4.1, Formalism of Mapping Scheme

A soliution to the mapping problem is called a mapping scheme (&) and is defined for-
mally as a 4-ary wple S{Myy, My, O, D), where Mapy is the ANN model, My, is the mul-
ticomputer model, &, is the assignment scheme, and Dy is the routing scheme. @ and ®p are
related in that the routing of data cannot be determined until the clusters involved are assigned
to processors. All the feasible mapping schemes constitute the mapping space Q(M gy, Mag).

The optimal mapping problem is to find a mapping ®*e Q(Manw, My) such that

Texpc( ®*) = aﬂrm_y Texec (D), “.0

where Teype is the completion time for the given mapping.

The assignmeni scheme 4 can be represented as an integer-valued assignment matrix A
of size nyg-by-np. (Reeall that ng is the number of clusters and np is the number of processors.)
The element a;; of matrix A indicates the number of neurons in cluster | assigned fo processor
j. When a;;>90), processor j is called a hame processor of cluster /.

M, can be represenied as a rowing vector R of candinality ny,. Recall that z_....mm the number
of links. The i-th element of R is a set Z; of 4-ary tuples which keep the statistics of communi-
cation on the i-th link. The 4-ary tuplc is <p, f, 1,, £,>, where p denotes the processor thit
ransmits frames via this tink, f denotes the data frame transferred via this link, £; denotes the
start time for transmission, and ¢, denotes the time period for using this link. The timestamp

provides information about the use of a link at a particular time. The component of the routing
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vector is a set rather than a number because a link can be used at different times by differem
processars and all these uses must be described. Specifically, a member mc. in set &; means that
link § is allocated to processot pr,, starting at time sy, for a peried of fug,

Sonsider the ANN in Example 2.1 o Chapler 2) and the multicompuler in Example 3.2

(in Chapter 3). One possible assignment matrix A is as follows.

96 157 247
A = | 195 312 493|.
39 62 99
One possible  4-ury  member of the sl Zq is < p =0, frime-from-processor-

0, 1, = 26198 (us), t, =319(s) >.

4.2, Computation Segment

The computation of the ANN simulation can be broken into several computation segments
according to the dependence constraints of the ANN. For brevity, a segment is used to refer to
a segment. Lach segment can start only after its preeeding one finishes. A segment is defined
by its enry point and exit point. An entry point of i segment at a particubar processor pinpoints
the time when this processor receives the fitst franre from the preceding processors. The
pieceding processors simulate the preceding neurons. An exit point of a segment pinpoims the
time when this processor sewds the last _.:::m to the succeeding processors. The succceding
processors simulate the succeeding neurens. The overlap of computation and communication
in a processor is defined by the interval between the entry point and the commir poin, which
pinpoints the time when this processor finishes receiving the last frames fram the preceding
processors for the current segment.

Formally, the jth segment at processor { is denoted by sij = <8 g 524> 35 where 51,
5 35 and 83 are the entry point, commit point, and exit point, respectively. Note that two pro-
cossors may have different entry and exit points for the same segment. Let 4 denote the height
of the ANN, which is the number of nwswaw,m.nzec:_,,._c?.m along the longest zcyclic path from
an input cluster to an output c_c._an. In a muitilayered ANN, & is simply the nutnber of layers.

Let K, denote the set of clusiers involved in segment 5. The maximum number of segments is
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2}, because k segments are for the production phase, and another h Is for the leaming phase.

Consider the example of the ANN in Example 2.1, where h is equal t0 3.
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CHAPTER 5.
PROBLEM FORMULATION

The objective function of the mapping problem is the completion time for taining the
ANN, as a function of computation and communication times. The computation time includes
the time for computing neuron output signals in the production phase and the time for updating
weights in the learning phase. The communication time includes ._:... time for sending neuron
output signals to succeeding processors in the production phase and the time for sending error
signals to preceding processors in the learning phase.

The mapping problem can be stated as follows. Given an ANN model and a mukticom-
puter model, find the optimal mapping of the ANN simulation onto the processors such that the
completion time of the ANN simulation, ineluding the production and learning phases with
respect to compulation and communication times, is minimized and that the constraints on

feasibitity, dependence, resources and configurations are all satisfied.

5.1. Mathematical Formulation
The optimal mapping problem can be formulated mathematically as follows. Given a
neural network model My and a mnlticomputes model My, find an assignment matrix A and

a routing vector R to achieve the optimal objective function GBJ.

OBJ = min max Tgxpe (A, R), 5.1)
AR peP 4

such that A and R satisfy the constraints on feasibility, configurations, resources and depen-
dence. The *‘max"’ is to find the completion time which is determined by the last processer
that finishes the simulation, For brevity, Texec, is used instead of u.mxmnvg. R} in the follow-
ing discussion.

Texpe, of a processor can be formulated as the sum of the times Trxpc,, for segment g at
processor p. Since there are 2 k segments,

Texee, = L Texic,,- (5.2)
g=1

tJd
Ln

q.mxmmx should include the compuiation time ,_..nmx_ux and the noEE:&o::o: time
Tcomt,,- ‘The computation time of a segment is the sum of execution times of simulations for
neurons corresponding to it. That is,

Teour,, = % %, dp [ 8:a S0 41, 8.a >R, (53)
iek,
where 8, is a binary function such that 8,(z)=1 if the predicatc z is true; otherwise, it is 0.
Reeall that K, is the set of clusiers invelved in scgment ¢ The commu ation time Teoae
is (It tise interval from the previous exit point 1o the current commit point. That s,
TeomM,, = frp ™ feyer (5.4)

Communication ean be overfapped with computation after the first frame arrives. The
idle time between the previous exit iime and the time when the first frame arrives is called the
bubble time and is denoted by Tpuparr,,. Note that ﬂataahmz < an.:z:. Also note that the
time when the first frame arrives is equal 1o the entey time In the overlapped case, and that the
entry time is equal to the commit time in the nonoverlapped case. The execution time for seg-

ment ¢ at processor p can be written as
Texec,, = o, Tavnsir, +(1=Ko,) Tcomm,, + Tcomp,,- (5.5}

By substituting Eq. (5.5) and Eq. (5.2) into Eq. (5.1), the objective function QBJ can be rewrit-

ten as

u..—
OEU:.L:::; M HK& ﬂhcamgﬁ +A ml_na_.__w.u.ﬁ,g_f._i + ;H.QQ..-:W.Q. Gmu
AR per o v : il

The bubble time TpyppLr,, is equal o the fime interval between the exit point of segment
¢—! and the time when the first useful frame arrives. To determine the arrival time of the first
frame, the anival time of each ,F::n must be known, Let 5, be the arrival time of the frame
comaining values produced at processor & for segment ¢ at processor p. 10k =p, then 1, s
setto 4y, . This means thit frumes produced by itself arrive exactly at the exit time, which

agrees with Eq. (5.8). Then Tpupprg, is



26

Touois, = 10 (fan, = by} a.:
kep

The arrival time of each frame depends on the exit point of the previous segment at the source

ptocessor and the traffic aleng the communication path. Tt can be formulated as

larr, = Fspig +ﬂ._§3__.a>§a_v. ) (5.8)
where Tpapy( Ay} 1s the time needed to send the frame contpining vaiues produced at proces-
sor k for segment g at processor p along the communication path Ay, This represeats the
average transmission time along the path frons processor k to processor p and the average delay
at the intesmediate processors due to traffic, This time can be wrilten as

Trati( Apg) = Y,
UG Ay,
fe=Sta
 is the nest link to
' >€.

?? + Tprtar (fipg: th éw. 5.9

where Tpgray(fipg, 4. v} is the delay time al the processor between link # and v. Recall that

t,, is the link usage time and is defined by fo, =7, +77, T, The delay time mainly

Miar
depends on the traffic on links « and v, and the frames that arrive fisst will be transmitted first.

The delay function can be written as

TotrarU—ipp ) = | | te, = (e, +tug 3 B0 Uiy = 15,) % B Uiy =2, (5.10)
b b L [

where 5 is a diseriminating funcion such that 8g(2)=1 if =0, etherwise 8g(z)=0.

The entry time 1, _, the commit time f;_, and the exit time £, are defined, respectively,

by Eqgs. (5.11), (5.12), and (5.i3).

h;i = M_M:.-_u wn.:.z.. . (5.11)
a.:z = H:mnﬂw.m hn_._.__.x B nm mNu
fie = Teyer ¥ TEXEC, - 5.19
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The link start times s, and Iy and the link usage time 4, in Eq. (5.10) are specified in the

mapping scheme.
In summary, the objective function OBJ for a mapping scheme can be completely deter-
mincd by combining Eqgs. (5.6) through (5.13).
Consider the multicomputer in Example 3.2. The objective function can be written as
2h

OBJ = min max T, +T, H 5.14
i max qm_ coms,, + Teomp,, (5.14)

When a mapping scheme is determined, ag, f;, . and f can be determined accordingly.

Then, by using Egs. (5.3) and (5.4), the above objective function can be calenlated,

5.2. Constraints

Four groups of constrainls must be satisfied: feasibility constraints, configuration con-
straints, resource constriints and dependence constraints.

The feasibility constraints include the feasibility of assignment (Eq. (C.1a)) and the feasi-
bility of link allocation (Eq. (C.1b)). The feasibility of assignment requires all neurons in each
clugter 10 be assigned to a subset of processors and each neuron to be assigned to exactly one
processor. This eonstraint is involved when the neural assignment is made. Note that the
feusibility of assignment is checked oaly when the production task nodes are mapped, since the
assignments for the learning task nodes are constrained to be the same as those for the produc-
tion task nodes. The feasibility of link allocation requires a communication link not to be alle-
cated more than once during the period when it is used. This constraint is involved when the

fink allocation is made.

Feusibility Constraints

a1
M i =n Y i=1,.,K mﬂ.gv
j=0
Iy, hot € ?hs__..gins_ YV Ey2lpe 5. i=0...L-1 (C.1b)
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The configuration constraint is the one on transmilting processers (Eq. (C.2)). This con-
straint requires the processor transmitting a data frame over a link to be a member of the set of

processors supported by this link, This constraint is involved when the transmitting processor
is granted.

Configuration Constraints

12 € mu__..._. v W..H.m ...U....___. i=0.., np - 1. (C.2)

The resource constraint is the constraint on local memory (Eq. {C.3)), which requires the
total amount of space allocated for compautation at a processor not to exceed the limit of its

local memory.

Resource Constraints

Ry

n..m Jn.. s iy v n.HD..:. Rp— 1. ' Aﬁuuu
j=1

i

The dependence constraints include the usage dependence (Eq. (C.4a)) and the production
dependence (Eq. (C.4b}). The usage dependence requires an output value of a neuron to be
used only after the value has been produced. This constraint is involved when the neuron out-
put value at its home processor is to be transmited 1o other processors. The production depen-
dence requires an output value to be produced only after all of its required input signals arrive.

This constraint is involved when an output value is to be produced.

Dependence Constraints
;T.E..Eu L < :_T:F_Sn L. ifay >0V p=0,.., np—Li=1,., ng (C.4a)
:.T%..Eu@ < ;T:c..__:u L. ¥ p=0,..,np—1, i=1,.. 8, {C.4b)

where =, is the production occurrence function, =, is the usage occurrence function, m, is the
arrival occurrence function, and ¢, is the occurrence time funclion. The occurrence fuaction is
1 if the corresponding event occurs; otherwise, it is 0. For exumple, m,(i,p) = 1 if the signals

of cluster i are produced at processor p, otherwise, 0. 7, and &, are defined accordingly.
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For the problem of mapping the ANN in Example 2.1 {in Chapter 2) onto the multicom-

puter in Example 3.2 (in Chapier 3), constraints {C.18) can be written into

dypragy +ayy = 500,

i}

dog +da +dx 1000,

@39+ a3 +ay = 200,

Constraint {C.3) can be written into .
50Lar i + S01xagn + 100xay < ux_ca. .
501xa ) + 501xaoy + H01xdy, < 5x108,

500 13 + S00xagy + W0ty s 1107,

5.3, Complexity

The integer programming formulation described in Sections 5.! and 5.2 is nonlinear
because the objective function is nonlinear and constraints (C.1b) and (C.2) are nonlinear. To
understand the complexity of the formulation, the number of variables used in it is derived first.
These variables are due to the elements of assignment matrix A and those of the routing vector
R, Let ny denote the sumber of variable items in matrix A. n, is simply equal to the number

of elemeats of matrix A, i.e.,
ny = By Rp. a_mv

The number of elements in vector R is equal to its cardinality, i.e., np. However, each element
E; in the routing vector R is itsell a set of 4-ary tuples §j;. Three items in the tuple are vari-
ables, i.e., p, f, and ;. The number of tuples in set &; depends on the number of routing sub-
problems (2 1), the nomber of processors (np), and the diameter ( Dy} of the multicomputer,
There are 2k routing problems because there exists one routing problem between two adjacent

layers and another between an 10 cluster and the external environment. The dizmeter of 3 mul-

ticompuier s the maximum leagth of the shortest path between any pair of processors if cach

link is of unit length. Let np denote the number of varinble items in vector R. Then,



30

MRS Npnex = O 0 ag np Dy, S (5.16)

The number of variable items is equal to the number of variable items in A and R. Let ng

denote the number of variable flems in the mapping. Then,
A = A+ lg £ Homax = g np +6hony, np Dy (5.17)

Mp,max I8 very large in most cases; however, simplification of the mapping problem with negli-
gible error is posstble hecause the computation time is generatly predominant over the com-
munication time. This simplification technique will be introduced in Section 6.1.

For the problem of mapping the neweal network in Example 2.1 onto the multicomputer in

Example 3.2,
fa=3x3 =9 and fpne = 6x2x1x3x1 = 36
“or the problea: of mapping 1o the multicomputer in Example 3.1,
My o= 3x16 = 48, and  mpee = 6%2x32x16 x4 = 24576,

f1R,max for the 16-node hypercube is very large. However, through the simplification technique,

g, max Witl decrense deamatically. For example, if e 16-node hypercube is transformed into

two partitions, then
:.a..:‘:_.::RKL.:.:: = 6x2xbx2x = 24,

The complexity of the integer programming formulation also depends on the number of possi-
ble values that each variable can acquire,

The rauting problem cun be illustrated as follows. Consider a case in which each proces-
sor is associated with a set of frames to be migrated, and each frame is also associated with a
set of Qnﬁ_.am:.o:,u"coawmc? The routing problem is to find a scheme such that the completion
titme is minimal for migrating every frame from its home processor, which produces this frame,
te ils destination processors, This routing problem, eatted the muiriple partial broadcasting
probletn, is very hard 10 solve for firge interconnection networks. I¢ is harder than the radi-
donal NP-complete communication problems, such as the optimum communication spanaing

tree {10 and the minimum broadeast time [5] probiems.
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The mapping problem [onmulated degenerates to the traditional precedence consirained
scheduling problem if the communication overhead is neglected, The precedence constrained

scheduling problem has been proved to be NP-complete by transformation from 3SAT [17].

54 Dynamic Mapping Algorithm

The mullicomputer may have time-varying workloads. The mapping of the ANN simula-
tion should be adjusted when the worklond characteristic changes. However, it may not be
practical to embed the dynamic load balancing handler inside the ANN simulation such that the
ANN simulation is always optimally mapped. Instead, an approximate approach is adopted;
that is, re-map the ANN simulation é:owﬁg the workload changes significantly during its
execution and the new mapping scheme is expected to pay back the cost of re-mapping. Tt may
not be cost-effective if the re-mapping ocours too frequently because the re-mapping itself
canses some overhead.

The decision to perform re-mapping depends on (1) the current simulation time 1, for
one iteration of ANN simulation; (2) the predicted simulation time f.in for one iteration of
ANN simulation; (3) the expected mapping time m.E. for solving the optimal mapping; (4) the
remaining simudation time &y, which predicts the time for completing the remaining simula-
tion tasks based on the carrent sitmulation time t,,; and (5) the predicred remuining simulation
titme §,,,, which predicts the time for completing the remaining simulation tasks and is calcu-
lated as

[

m:._a. = Apgm % . (5.18)

Tsim

Let 1, denote the re-mapping gain which is the difference between the remaining simula-
tion time without re-mapping and the new remaining simulation time after re-mapping plus the
expected re-mapping time. That is,

ty B b = e = Fngp. (5.19)

The re-mapping should be carried out if there is a positive gain, that is, t, > 0.



2 : 3

Afier the new optimal mapping is found, the data for neuren states need to be migrated CHAPTLR 6.
across different uEnnmmoa.. Then the ANN simulation is resumed. In the following analysis, SOLUTION STRATEGY TECHNIQUES AND PROPERTIES

the time for migrating data due to new mapping is assumed to be included in the mapping time,
‘The mapping problem can sometimes be simplified with negligible error because compu-

tation time generally dominates communication time. This dominance occurs either when the
aumber of neurens in each cluster is large or when communication time is relatively small.

In this chapter, a strategy for solving the optimal mapping problem and a technique of
reducing the problem complexity are described. A branch-and-bound search algorithm for
finding the optimal mapping with a guaranteed deviation from the optimality is described.
Finally, a geometric view 1o interpret the rowting scheme is also discussed. Some old resulis

published in an earlier paper (18} are included for comparison,

6.1. Overall Stratepy of Solving Mapping Problem

The mapping problem can be simplificd with negligible error because computation time
usually dominates communication time, t least within some local set of processors called a
partition. The routing scheme can be relaxed 10 a certain heuristic rouling instead of the exuct
optimal routing within each partition. The siratepy proposed is fiest to divide the mulicom-
puter into disfoint partitions and solve the optimal mapping onto these partitions, as shown in
Figure 6.1. That is, solve the optimal assignment on partitions, find the optimal inter-parition
routing, and then resolve the heuristic intra-partition rosting.

This strategy is different fromt ihe taditional one which solves the optimal assignment to
processors as well as the optimal routing among all processors. Note that the assignment and
routing are tightly coupled, regardless of partittons or processors, such that cach cannot be fully
determined independent of the other. This strategy may cause some error; however, this is
negligible and the error bound is guaranteed; that is, the accuracy is guaranteed. These will be

discussed in the following subscciions,



34

INTUY
C-altowed
Semi-optimal Mapping

—

Neusaf Nel
Model

INPLT

1 £

Lewwar

Figure 6.1 : Solution strategy for the optimal mapping problem with guaranteed accuracy.

6.2, Partitioning of Multicomputers

‘The dominance of computation time is characterized by the ratio of communication to
computation times. Before elabornting on the dominance and possibie error, sotme concepts
and notations need to be clarified and defined. Important symbaols arc summarized in Table
6.1, These symbols are explained briefly here.

For a piven partitioning of processors (e beuristic partitioning method will be discussed
lixter), the opiitnal mapping and routing of seurons on the pantilions can be found using ¢
branch-and-bound algorithm based on the noalinear integer programming formulation. As
stared before, these twe problems are Gphily coupled and cannot be solved independently. Fhe
computation and intra-patition routing times for cluster i in the optimal case, fip*, satisly the

following equation,
ig* = n_ﬁ +~wa. 6.1y

Figure 6.2a illustrates the neural network, the assiphment of clusters to partitions, the
mapping of clusters within a partition, and the mapping of clusters on the entire multicompulter.
In Figure 6.2b, the three processors represent one pastition 3. ‘The three blocks on the left

represent the three segments for cluster 1, which are processed concurrently by the processors

in Q. Note that &, includes all imes during which one or more processors are performing

Table 6.1 : Summary of symbols used in lenmmas and theorems.

35

Symbot Meaning Symbol Meaning
of oplimat mapping of clusters b, optimal assignment (without
onto the given multicomputer considering intra-partition
communication delay), optimal
inter-pantition routing, and
heuristic intra-partition routing
tio* for 7, time interval during Lo for &, time interval during
which one or more processors which one er more processors
are performing computation or are performing computations or
communication for cluster i on communications for cluster i on
partition {, and it is not partition @, and it is not
overtupped with computation of overlapped with computation in
the cluster that follows it the cluster that follows it
nu_.e for &, time interval during fep for |, time interval during
which one or more processors which one or more processors
are performing computation for are performing computation for
cluster i on partition @ cluster { on partition
ﬁ_,ﬁ for &F, time interval during Iry for &, time interval during
which all processors are which all processors are
performing intra-partition performing intra-partition
communication for cluster { on communication for cluster i on
partition (2, and it is not partition (J, and it is not
overlapped with computation in overfapped with computation in
this cluster or the cluster that this cluster or the cluster that
follows it follows it
nm.e for ®}, same as uwﬁ except that Iy for &, same as I, except that
inter-partition communication inter-partition communication
time 15 concerned time is concerned
i numsber of neurons in cluster § Yoo = by ey = Yeommyg ! lcompy
assigned to partition 0
feompy | =ty x |Q} i Yeommg | = 10, x 1G] I nig
by optimal mapping of clusters on T ®) | completion time based on
the reference multicomputer certain mapping P on the
reference multicomputer
i | (= Ie,) for Oy, time interval o (= tg,,} for d},p, communication

during which partition @Q is
performing computations for
cluster

time not overlapping with
computation




36

computations for cluster 1, and that t,, | represents the unoverlapped intra-partition communi-
cation times between computations in cluster 2 and cluster 4. If overlaps between comnunicit-
tions and computations are allowed, (4, +tz,,) represents the minimal interval between the
time when the computations of the last segment in cluster 2 are completed and the time when
the first computation in one of the segments of cluster 4 can begin. Figure 6.2¢ shows the tim-
ing diagrams for simulating the five clusters in two partitions.

Similarly, the definition of ki satisfies the following equation.

i
g =ty Yy, = i@ X ﬁ«naﬁuﬁ + n@i:..mu. 6.2)

121

In this case, the neurons in a cluster are first allocated by ignoring their communication require-

rments. It is obvious that an even distribution of neurons according to the computation power of

processors in partition @ will result in the minimat completion time teg- {A more general result

will be proved in Theorem 6.3.)
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The intra-pantition communication time, 1., is computed using a heuristic routing

Q!
scheme, For simplicity, it is assumed that each processor broadeasts its results according to a
minimum spanning tree, and that broadeasts of different processors are done sequentiafly. As a
result, there is never any congestion involved in this communication scheme, It is therefore
simple 1o compute fr.+ the isterval between the time when the last inter-partition communica-
tion in cluster i is completed and the time when the first computation in cluster i begins, Note
that i,,, represents a worst-case communication delay.

Another abservation about the definitions in Table 6.1 is that 1.y, is per-neuron average
computation time for cluster i, and that — is pee-neuron average communication time for
cluster i (hased on a heuristic routing scheme).. Since leg is a lower-bound estimuate and by is

an upper-bound  estimate, g consequently  represends @ worst-case  comanunication-to-

computation time ratio that can be experienced 10 partition @ for processing cluster i

The last observation is that both p* and #; include the execution times in the production
and leamning phases.

The following lemma and theorem show the upper bound on the error due to a heuristic

routing scheme for a given partitioning of processors.

Mapping Heurlstic 6.1.
Neurons within a cluster can be mapped by a branch-and-bound algorithm to one or more parti-

tions with the following assumptions:

{a) optimal partitioning of processors is known and does not change,
{b) routing across partitions is optimal (with time a.,mu. and

(c) routing within partitions is suboptimal (with time trg)-
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Lemma 6.1, Based on Mapping Heuristic 6.1, the difference between fig and £,p* is bounded

from above by t,p* times the comm/comp ratio ¥;p. That is,

Lo € g" (1+%g) (6.3)

Proof, Since t;p* is the optimal execution time, the following relation holds

g hna_s_vﬂ_
nns = I||_IQI_!.| < u..m_v < g (6.4}

The optimal assignment without considering communication overhead will result in shorter
completion time than a mapping in which the communication overhead is included. In the
latter case, the assignment is functionally constrained by the routing. Therefore, it can be

derived
Ly & ﬁa = tip”* lu..n. (6.5)

Simple algebraic manipulations on Egs. (6.4) and (6.5) result in the following inequality, which

proves the lemma,

tp S tig* -6+

. g nng._..:_.c ! _ﬁn: |~Mﬁ
=t4pt i1+ __m|¢

o __33:.,0.___@_ Iuﬂo

S tip* 1+
i 10 leompg 1 101

...nQ‘S:D .

< lig 1+

{eompyg

< et T +§L. (6.6)

QED.
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The following theorem generalizes the concept of Lemma 6.1 to the whole multicomputer

and ANN, and shows that the error bound can be goaranieed if Mapping Heuristie 6.1 is used.

Theerem 6.1. Consider a multilayered ANN with n,, layers and a multicomputer with np+ dis-
joint partitions. Assume that every cluster i in every partition Q of processors has comm/comp
matioyy 4 teommg Hleompg N0 grEALET than a predefined value €. Let T(9)} be the completion time

based on Mapping Heuristic 6.1. Then, !

T(d) s T(ON(1+¢) ®

Proof. Let X; be the set of clusters in layer £ The time in each processor allocated to cluster {
can be computed by the summation of tp* and ¢}, for optimal inwra-partition routing, and by
the summation of £y and zz,,, for heuristic intra-partition routing. If a cluster is not allocated to
a partition, then its time is zero, The completion time T(%}) of mapping @7 can be expressed
by

-1

TOH = max ¥ T ?éta.g. 6.8)

O a0 iek

The completion time T(®,) of mapping P, is
-1

T(Dy) = anwx M M Tﬂé +q_ﬁ¥. mmcu

i=0 iek)
According to Lemma 6.1, 5,5 <t;g* (1+¢) holds. Simple algebraic manipulations show that
At
(e =mx ¥, ¥ Tmﬁ + 1 w
2 =0ick
=1

mameM Tm..ni:mtﬁ*g
2 (=0iek

-1
< max DN T +L Tmm i_.n._

=0 iek;

£ T(ON(1+¢). (6.10)
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Q.ED.

According to Theorem 6.1, given an crror bound & for the commycomp ratio, the multi-
computer can be divided into several partitions such that the conum/comp fatie of each panition
for simulating part of a given cluster is less than the bound & Hence, the optimal mappirg on
the partitioned multicomputer with a heyristic routing scheme within each group will have its
completion time no greater than (1+€) times the completion time of the optimal mapping on the
unpartitioned multicomputer, The maximum of all comm/comp ratios of the partitioned multi-
computer is called the error degree. A small error degree will result when the numbers of neu-
rons In all clusters are large or when the partitions are small,

One problem with Mapping Heuristic 6.1 is that the assumption () of known opiimal par-
titioning is impractical since the optimal partitioning is generally unknown. Further, sobving
the optimal partitioning is much harder in general than solving the optimal mapping problem.
In an earlier paper {18], Mapping Heuristic 6.1 is used except the optimal partitioning is
relaxed to a heuristic partitioning. Since then, new results show that that the error bound still
can be guaranteed even if the assumption (a) in Mapping Heuristic 6.1 is relaxed. This brings
up Mapping Heuristic 6.2 based on Heuristic Pastitioning Algorithm 6.3,

To prove the guarmtee of (he errar bound, a conceptuai multicomputer called the refer-
ence mullicomputer is introduced, The reference multicomputer consists of a set of concepinal
pracessors, each corresponds to a partition of real processors such that the reference multicom-
puter is actually the partitioned multicomputer, except that there is no intra-partition routing
since each partition is treated as a real undividable processor. Note that in this discussion there
will be three types of multicomputers: original {(unpartitioned), partitioned and reference.
Actually, the former two physically refer to the same multicomputer.

The following lemmas and theorem show that the error bound can be guaranteed if Map-

ping Heuristic 6.2 is used.
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Mapping Heuristic 6.2

Neurons within a cluster can be mapped by a branch-and-bound algorithin to one or more

partitions with the following assumptions: (i} rouling across partitions is optimat (with time

:m.qr and (b) routing within partitions is suboplimal {(withtime ¢, ).
!

Ieuristie Partitioning Algorithm 6.3,

L. Select one processor not included in any pariition to form a new partition, If all processors
have been pattitioned, then exit,

2. For a given partition and a processor not included in any other partition, if ¥, for all
processors in this partition (ncluding the newly selected processor) does not exceed the
error allowance e, then include the new processor into this partition, This step is repeated
for all partitions already formed and all processors not included in any partition. Go to

step 1.

Lewnnn 6.2, The compl we based on ayp ._.w.._. on the reference nm

ot

computer is uo greater e based o the opiinal wyspping 4 on the origi

e the completio

nal multicosmputer, That is,

Tl £ T(@F). ®.11)

Proof. The optimal mapping ©F on the original multicompuier is also a feasible mapping
(ignoring the intra-partition communication) on the reference multicomputer. Since there is no
intra-partition communication in the reference multicomputer, we have T, () £ T(df). By
the definition of optimality of Oy, we have

T D5y) < T DF) € T(0F) ' 6.12)

. OED,
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Lemma 6.3. The difference between tg and tfiy,ip is bounded from above by 1y o times yp.

That is,
lig S eyin (1+¥ig). (6.13)

Proof. Since ffy i is the optimal completion time on the reference multicomputer, by the

definition of t,,,, the following relation holds

by = thric: (6.14)
By definition of ;p,
* frg *
fig =ty Ty = g (14 |~.|..v £ ferig (1Y) {6.15)
i
U.ED,

Lemma 6.4, Consider a multifayered ANN with #, layers, and a multicomputer with #p- dis-
Jjoint partitions, and the reference multicomputer, Assume that every cluster { in every partition
@ has comm/comp ratio ¥ w;%su.,m ! eompyy RO Breiter than a predefined value ¢ Let T()) be

the completion time bised on Mapping Hevristic 6.2, Then,

TOBY < T 0 h) (Ve _ {6.16)

Proof, Let X, be the set of clusters in layer . The completion time T,,{ ®/,/) on the reference

multicomputer can be expressed as

-1

.w.&.mewﬂ.ﬂu H__._._mx M M Tmsln +___un__....Dw. naz_v
@ (=0 ick '

The completion time T(®,) on the partitioned multicomputer can be expressed as

A=

1o = mp T % (o 1) (6.18)

1=0 ick;

According to Lemma 6.3, Eq. (6.13) holds, Simple algebraic manipulations show that

ng=1

w.me_u ngx Mu M“ T.ma 2 +n_,mw
@ (=0 ick '
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-1
smax ¥ ¥ Tm..aai_gtn?&
2 oo ek
g1

smax ¥ T :+3Tm_.$s+:...§._.nw
2 qen iek

< T, Oh) (14€). (6.19)

Q.ED.

Theorem 6.2, Consider a multilayered ANN with ay, layers and a multicomputer with rp dis-
joint partitions and its reference multicomputer. Assume that every cluster { in every partition
has comm/comp ratio vy a teommg ! Teampsg MO Breater than a predefined value e. Let T(d,) be the

completion time based on Mapping Heuristic 6.2. Then,

T(@) s T(@H (1 +¢). {6.20)
Proof. By Lemmas 6.2 and 6.4,
T(D®) s Ty{Php (1+€) 3 TR (1 +e). (6.21)
G.ED.

Theorem 6.2 shows that the bound of the error to the optimality can still be guaranteed,
even if Mapping Heuristic 6.2 and Heuristic Partitioning Algorithm 6.3 are used. In an earlier
work [18], the error bound was thought to be unable to be guaranteed. This new result is very
important, because it says that the semi-optimal mapping on the partitioned multicomputer can
have the different assignment of neurons from the exact optimal mapping, Farther, it says that
the partitioning mo& not affect the bound of the esror to the optimality, as long as it satisfies the
comnvicomp ratio. Therefore, any partitioning algorithm will suffice instead of the best pani-
tioning as was previously thought necessary.

The following theorem shows that distributing neurons proportionally within a partition

according to the computational power of processors within the partition is optimal.

Theorem 6.3. Assume that ngg neurons in neural cluster i are assigned to a partition Q. The
optimal assigement on @ canthe obliined by distributing the g peurons evenly necending to
the computation power of processors, Processor j completes at approximately x; v+, where x;
is the aumber of neurons in cluster i assigned 1o processor f, 7; and  are, respectively, the exe-
cution time of unit computation and the amount of time that processor j is not available for the

ANN simulation,

Proof. Since computation time dominates communication time in this partition, only computa-
tion time has to be considered in the proof. Let Xjp be the possible mapping of cluster i on 2.

The optimal execution time can be written as

lip = @.,mn: ﬁam [xj7+n) (6.22)

Let z; (= x;T;+4;) be the computation time of processor J for cluster i Then, the completion

time of mapping X;g is

Cokgs = usmmm [xm+0 ) (6,23

Assume the assignment as stated in the theoren such that zy=C oy, forevery j, where C oxgs

is the completion time of the optimal mapping in Q. Since ¥, xi=ng, € axjp> €an be casily
jeQ

derived as
ng+ X4l
Catyps = %ﬁ (6.24)
where |0 is the cardinality of 0. By assuming another assignment Xjg such that
Caxlyr = wzmum {3 441 2 Cagyer (6.25)
then for every j, assignment x; satislics an inequality x5 7, < Coxys — 4 By summing ali xj;,
Caxfpr =4 Cang>7 15

aig = L xj= L . <% - = np. (6.26)
je@ jeQ ) jeg@ J

A contradiction! Consequently, € oy 2 € xyy»> must hold; that is, the optimal execution time

is ﬁ.akmov.
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QED.
>nnoam‘:m to Theorem 6.3, x; can be calculated by using the following equality.
nig + MU_ _‘........ﬂ...
jeg@
Wy = - 6.27
X T 0 (6.27)

Note that if ;=0 for every j, then a uniform distribution acconding to the cotnputation power of
processars in ¢ follows from Theorem 6.3, Also note that if
rig + M“ 5T

|._IQJM_4-.I <y ‘ (6.28)

is true, then the most negative x; can first be set to zero and x can be recomputed for every k#j

in . This process may have to be repeated several times in the worst case.

Corollary 6.1. In a system with homogeneous processors connected by a fast interconnection
network (such as a linear systolic array assumed by S. Y. Kung eral. [11,12]), an even distri-
bution of neurons in a cluster to all processing cells results in the minimal completion time of

the simulation.

Proaf, Since (he interconneetion network is fast, the computation overhead dominates the com-
munication overhead. According 1o Theorem 6.2, the entire system can be considered as one
pattition with negligible crror i the optimal mapping. Further, according to Theorem 6.3, new-

rons should be mapped evenly to all processing elements.

Q.ED.
The resource parameters of a partition g, including the set 0 of processors, can be defined.
as follows. '
L 5 iwa. (6.29)
Te, ieg Ty
my = X m ' {6.200)
je @
¥, = 1 if kg =1 forsomeie Q, (6.29¢)
1, = averageol t,. (6.29d)
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Alter the partitions are generaled, the communication links connecting a partition to other
partitions can be grouped inio concepiual links such that a conceptual link connecting two par-
titions includes ali links connecting a processor in one partition to any processor in the second
parition. The parameters of conceptual link A, consisting of a set A of real links, can be
defined as follows,

1
T B _ _ (6303

1og L (6.300)

T, =
Py, also needs 1o be modified accordingly.

The complexity of the mapping problem depends on the number of partitions, the inter-
connection of multicomputers and the resource parameters. Figure 6.3 shows the mapping
times for solving the optimal mapping of ANN FC-1 (which will be described in Chapter 7)
onto different numbers of partitions {or processors for e=0). Note that the execution time
grows exponentially with respect to the number of partitions, since the mapping problem is
NP-hard. Figure 6.4 shows that the mapping times for solving the optimal mapping of fully
connected ANNs having different numbers of clusters onto a three-partition (or three-processor
for £ =0) multicomputet. 1L s observed that the mapping time seems to grow exponentially

with the number of clusters.

6.3. Decomposition of Error Allowance

The approach adopted to solving the optimal mapping problem consists of two stages:
multicomputer pastitioning and optimal mapping solver. Each stage can incur ceriain ermor
degree 1o reduce the mapping time. The following lemma and theorems show that the total

error degree incurred can be calculated by the error degrees incurred in each stage.

frre o E v - y
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Lemma 6.5. Consider a two-stage problem solver, say § and Sa, and each stage incurs a cer-
tain error degree, say ¢; by §; and & by §,. Then, the 1otal error degree €, incurred is

bounded above by

£ % B2 sy €] +£3 +Ey Ep. (6.31)

Procf. Let t* be the optimal solution value (the completion time based on the optimal map-
ping). Also let ¢; and 1 be the solution values after crror degrees €1 and €z, respectively, are
incurred. Then, we have

s (i) (6.324)

ty S (1+eg). (6.32t)
By combining the above two exquations,

fp S P (HE ) (14e) = (F (14e Heybe £ (6.33)
Therefore, the maximum of the total error degree is

B2y = B HELTEI €2 ’ {6.34)

The lemma is proved by taking this maximum as its upper bound.
Q.ED,

Theorem 6.4, Consider an n-stage problem solver, say 8y, ..., §,, and each stage incurs certain
error degree, say £, ..., €, Then, the total error degree ey, incurred is bounded above by
n

Et. S Y, ¥ I e 6.3

k=1 forevery Py e §p, i€ Py

where Py is a permutation (i, .., iy} from (1, ., n) and Sp, is the set of ali possible permuta-

tions.

Proof. This theorem can be proved by applying Lemma 6.5 iteratively. First, the composite
error bound €12 sy incurred by stages §; and S, can be caleulated by Eq. (6.31) in Lemma
6.5. Next, include stage $3 and caloulate the composite error bound &3, ) based onerz

and &
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as in Eq. (6.31). leradvely, €l ey CAN be calculated based on & 4 ) and ¢, Finally,

£l fragyy CAN be calculated.

QED,
The integration of error degrees gives the worst-case upper bound of the total error

degree. For the case = 3, the error bound is

Ol 3y = 1T ELHEIHEI G +E) L+ D2 By +E1 B2 By, (3.36)

The transformation of a nonlayered ANN into a scmi-layered ANN (mentioned in Section

2By s o osequence of arerges. 1oean be teeated 18 #ose

cnee of slipes, cacl Tor a THCFRC,
Each merge may incur certain error. degree, which is bounded by the comm/comp ratio. By
applying the result in Theorem 6.4, the total error degree incutred in the transformation can be
calcutated, 1f the error allowance is given, by using the result in Theorem 6.4 the feasibility of
a transformation can be checked.

The transformation of the singular task nodes (mentioned in Section 2.4.2) is also a
sequence of merges. The error incurred in a merge is bounded by the ratio of execution time of
the particular singular task node to that of 4 large task nede into which the singular one is to be

merged.

If the total error degree aliowed is given and the error degree incurted in multicomputer
partitioning is also known, then the error degree alfowed in the optimal mapping selver can be
set based on the tolal esror degree allowed and the error degree incurred in multicomputer par-
titioning, as shown in Figure 6.1, The following theorem and corollary show the decomposition

of error degree in this approach,

Theorem 6.5, Consider a problem solver consisting of two stages, say $, and §,. If the total
error allowance is fimited 1o €7 and the error degree incurred in stage 8 is €y, then the error

degree allowed to be incirred in stage §7 s bounded above by

f2 =0

S By = (6.37)
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Prouf. To achieve the largest error allowance, let €12, equal €3 in Eq. (6.31). Then,

m_.u?ﬁ,& —& £12—Et
= B . 6.38
mn?sa _+m_ d+m_ 6:38)

The theorem is proved by taking &, as the upper bound.
QED. |
‘The decomposition of error allowance in the a-stage problem solver can also be done by
rearranging the equation in Theorem 6.4. The decomposition of error mzo,__,_m:ao provides an

elegant way to reduce mapping time by scheduling error degrees to each stage based on the

gabn versies error in each stage.

Corollary 6.2, If the error allowance to the mapping problem is £ and the error degree (due 1o
ignoring negligible communication time) incurred in multicomputer pantitioning is €, then the
error degree g, allowed in the optimal mapping solver is

E—E,

I7e," (639

£, =
Proof. Becouse the approach to solving the optimal mapping problem consists of two stages,
the result in Theorem 6.5 can be applied. By substituting £=gy3, & =€), and & =¢; into

Theoret 6.5, this corollary is proved by using the worst-case error allowance for g,
Q.ED.

6.4. Scarch Representation

The mapping problem formulated by the nonlinear integer programming can be solved by
search. During the scarch, each node represents either a possible assignment of a certain cluster
or u possible ronting between two layers. One important feature of this representation is that
the search branches on neural clusters rather than on individual neurons.

The brine _n_.c.c.,:a, 3.@3 ..m_.cz::: is Ena as the search method in solving the map-
ming problem, since the Ew:n@. .aa,_._uom_m.m__ maumnw _v a general form of a variety of famous

search methods. Further, some domain knowledge about E_._:._ooammﬁ.n architecture and ANN

- | PU— e
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operations can help to accelerate the search by narrowing the scarch space. The B&B is pre-
ferred since the domain knowledge can be easily embedded into it.

A branch-and-bound search is characterized by four components: branching rule, selec-
tion rule, pruning tule and termingtion Tule. The branching rule defines a mechanism for
sprouting children, The selection rule defines a mechanism for selecting an existing node to
evaluate. The pruning rule defines a mechanism for pruning _._%33&:_@ nodes. One mechan-
ism for pruning is using bounding funciions. Each node is associated with a lower bound and
an upper bound. A node can be pruned if its lower bound is larger than the incumbent.

A lower bound consists of two parts: partial solution cost tps and lockahead lower-bound
solution cost gy, The partial solution cost of a node is a cost computed from the root of the

search tree to this node. The lookahead solution cost is an under-estimated cost computed from

this node to the optimal one in the subtree rooted at it. The upper hound also consists of two

parts: partial solution cost and lookuhead feasible solution cost fp. The lookahead feasible
solution cost is a cost computed from this node to a feasible solution in the subiree rooted at it.
Let 72 and £, be the execution times per unit computation on the fastest partition and on
the slowest partition, respectively. Let tf and t7 be, respectively, the transmission time per
unit communication and the setup iime at the fastest link.
Consider a node in the search tree; suppose there are g clusters to be assigned. The loo-
kahead lower-bound cost for computation denoted by f,,, can be computed by simulating g’

neurons on &l partitions, each of which is as fast as the most powerful partition in the system,

*
Te g’ .
o, =~ (6.40)
g
where ng is the number of partitions.
Let the lookahead feasible cost for compulation be denoted by 1, The worst case is 10
simulme all neurons sequentially on the most powerful partitions. Note that in this case no

cormmunication is required.
ey = .ﬁnﬁ Ryt AO.&#V

Another possibility of caleulating fc,, is that the renmining X* clusters are mapped heuristically
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(t¢,,”) plus the worst-case communication (rg,, described later),

T g’
o = e (6.42)

Let the fookahead lower-bound cost for communication be t,,. Suppose there are ng:
frames to be migrmted, sy, f1y o fope- To compute the lower bound, these frames are sent over

a conceptual interconnection network consisting of a, links, each has the same communication

power as the most powerful link, Funther, full utilization of all links is assumed.

LTl Apt
TR RS TR
im| =
Iy = . =, (6.43)

whese #; 15 equal to the number of communication hops in migrating frame f,

Let the Jookahead feasible cost for mﬁ,_d._.F_‘..:._p___ be denated by fg,. The worst ¢ase is o
tigruse [rames onc by oae by broadeasting a frnme 10 its destination partitions via communici-
tion graph G (which will be described in Section 6.5).

L)
e = L (M % T+ L T {6.44)

int ety je Gy

Combining the above equations with overlap predicale %, the lower and upper bounds can be

formuiated as
hp = Ips+ T..__Sm_lxe.,v+~ﬂ:;. aamv

tyg = tpg + min { s +__ﬁ_¥,\_ I, ). A&&mu

6.5. Domy

Knowledpe

Domain knowledge wbaut multicomputer arehitecture and ANN operations is very useful
1o focus search around a path to the optimal mapping by exploring promising nodes and pran-
ing unpromising nodes such that the mapping time is redvced,

Frames having a longer tip shonld be routed in preference to those having a shorter trip,

since the former are very likely to become o communication bottlencck. Broadeast is preferred



in a topologically well-structured multicomputer such as hypercube computers, because neu-
rons are very likely to be assigned to the majority of partitions.

When an ANN grows, computation time will become more dominant over comninica-
tion time. This phenomenon can be illustrated by the following simple calculations. Consider a
simple multilayered ANN has L layers and each layer has N ‘neurons. Assume the number of
processors in the target multicomputer is #. Computation time for 4 neuron is O(N). Then,
total computation time for a layer is G(¥?), However, the communication for each layer is to
migrate N teuton oulputs over P processors w tost. Then, totul communication time for a
layer is O{F N). The ratio of computation 10 communication times is O(N/P). As a result,
computation time will become more dominant over communication time for a given multicom-
puter. This phenomenon is significant since a targer ANN necds less communication require-
ment. This dominance frequently occuss in that most ANNs are large enough.  Actualty, this
dominance has been emiployed 10 reduce the complexity of solving the mapping problem by
partitioning the target multicomputer with a negligible error.

The entire ntulticomputer can be treated as a graph if a partition is a vertex and a com-

nwni

jon Tink is an edge, The set of partitions and links over which a frame 7 travels forms a
communication graph (ot simply c-graphy denvted by Gy Consider o subgeaph G}, which is
composed of all partitions the frame £ heads for and afl links connecting all these partitions.
Such a subgraph is called the destination graph {or simply d-graph). The d-graph usually is a
spanning tree if no redundan: communication occurs. The ¢-graph is the union of a d-graph
and a path from the partition the frame £ originates to any processor in the d-graph. The path is
usually the shortest path between the sourte partition and the d-graph. 1f the source partition is

a metber of the d-graph, then this path is just null. In & routing problem, ke c-graphs of all

frames must be solved. The c-graphs may overlap cach other, but interleave along 4 time axis.
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CHAPTER 7.
EXPERIMENTAL RESULTS

In this chaptet, experimental results .o_._ static-workload multicomputers and workload-
varying multicomputers are shown. The experiments on static-workload multicomputers
include those on a set of these three heterogeneous workstations (with static workloads) con-
nected by Ethenet and those on 16-node, 8-node ".E._ a‘.__oh_m Intel iPSC/2 hypercube comput-
ers. The experiments on workload-varying multicomputers m.._n_:ao those on & network of these
three wotkstations mentioned above (but with :.Boéuém:m workloads), and 10-processor, 25-
processor and 100-processor multicomputers connected by interconnection networks consisting
of high-speed and low-speed communication links. Note that the experiments on time-varying
workloads do not include those for iPSC/2 hypercube computers because their workloads are
static.

Two programs are implemented for solving the optimal mapping problem. A program
called NeuMap is the solver which includes a multicomputer partitioner and an optimal map-
ping solver. Another program called Dsim simulates workload-varying multicomputers.

Dsitn allows communication on (poim-to-point or bus) links as well as broadeasting. Dur-
ing dynamic mapping, Dsim and NeuMup cooperaie in 2 way that Dsim is the client and Neu-
Map is the server. Whenever Dsim decides (based on the rules described in Section 5.4) to do
re-mapping, Dsim calls NeuMap and waits for a new mapping scheme from NeuMap. After
Dsim receives the new one, it starts 1o simulate the ANN simulation. Important symbols used
in this chapter to illustrate the experimental results are summarized in Table 7.1.

All experiments use the ANN benchemarks whose parameters are surmmarized in Table 7.2
{a, b and ¢). All parameters are measured on a base machine which has the highest computa-
tion power among these three workstations. For hypercube computers, due to memory limita-
tion, the sizes of ANNSs are reduced to half, namely, the number of neuroas in each cluster is
reduced to half. For workload-varying multicomputers, including 10 processors, 25 processors
and 100 processors, all ANNs are enlarged such that the number of neurons in each cluster is

10 titnes as much as that Jsted in Table 7.2a, band ¢




Table 7.1 : Summary of important symbols used in symmarizing experimental results.
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Symbol Meaning Symbol Meaning
Teeq completion time of one iteration Ty completion time of one iteration
of seguentiat ANN simulation of parallel ANN simulation on
on the machine which has the the multicomputer according 1o
least completion time the optimal mapping with 2
user-specified error
Tored predicted (by NeuMap) comple- Tyim simulated (on Dsim) completion
tion time of one iteration of time of one iteration of parailel
parallel ANN simulation on the ANN simulation on the multi-
multicomputer according to the computer according to the
optimal mapping with i user- optimal mapping with a user-
specified error specified error
s speedup of parallel ANN simu- Euger error allowance specified by a
lation (5 & T / T3} user
difference between Ty and Ty Esim difference between Ty and Ty
(Epred & | Tpraa =Ty |1 i) Eim | T =Ty 11 T1)
T s total simulated (on Dsim) com- Tim total simulated (on Dsim) com-
pletion time of Ny, iterations of pletion time of N, iterations of
ANN simulation plus one map- ANN simulation plus the sum-
ping time expended in NeuMap malion of all mapping times
expended in NeuMap
I3 gain of using dynamic mapping n number of neurons in cluster k
algorithm over static one
(g W.Ha&..n :_.&L
S maximum possible speedup of & maximum possible gain of using
paralle] pracessing of ANN dynamic mapping algorithm
simulations (if all processors are over static one; it is obtained by
homogeneous, then it is equal to performing mapping for each
the number of processors) iteration and ignoring mapping
overhead
s normalized speedup Ty normatized gain (i, 28 / o)
A._._h W s/ .m.a_-uw
Precy set of preceding clusters of clus- Suecy set of succeeding clusters of
ter k cluster &
Np.k amount of prodection-phase T amount of learning-phase com-

computation per neuron in clus-
ter k

putation per neuron in cluster &

Table 7.2a: Summary of models of these three fully connected multilayered ANNs.
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Fully Connected Feed-Forward ANNs

ANN Topology FC-1 FC-2 FC-3
Cluster k | Precy | Sucey || me P Mt 1 ™ | Mok | e | B | Mok | M
I IN 2 500 1249 | 273 [600 | 2.95 | 3.28 ] 200 | 106 1,08
2 1 3 1000 | 2.49 | 531 {200 [ 299 {6.41 1500 | 1.06 | 2.13
2 ouryj 3 200 | 494 [ 1063500 105 | 2151 200 | 7.35 [ [5.98
Table 7.2b: Summary of models of these three hybrid multilayered ANNs.
Multilayered Feed-Forward ANNs
ANN Topology ML-! ML-2 ML-3
Ciuster k | Precy | Swcey | e | Mot | T | Mpk | Mia | Mk | Mk
1 IN $2,3,4]500)253| 2.80 [[200 | .05 | 1.14 | 800 | 4.26 | 4.60
2 1 5 1200|2531 552 [[300| 105} 217 §300 | 426 | 8.80
3 1 5.6 || 500253 552 [[s0011.05] 217|200 | 4.26 | 8.80
4 i 6 300|253 552 (200|105 217 {400 426 | 8.80
5 2,3 7 a0 {356 | 7.58 1600 | 3.97 | 8.55 (| 2002733534
6 1.4 7 600 | 4.13 | 856 || 400 [ 3.47 | 7.46 | 500 1 3.19 | 6.43
7 5,6 1 ouT [ 200508 | 10.69 ] 200} 4.94 | 10.65 || 400 | 3.74 1.51
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Table 7.2¢: Summary of models of these three nonlayered ANNs,
Nonlayered Feed-Forward ANNs
ANN Topology NL-1 NL-2 NL-3
Cluster & Precy, Sucey iy .:_c.» Nk i J?n i g Tlpk ufn
1 IN 2,3,61300 1.65 | 1.73 | 800 | 4.33 1 4.95 | 400 | 2.01 | 2.14
2 i 4,5 1800 | 1.65 | 3.36 [ 500 ] 4.33 | 9.02 300|201 [ 4.35
3 l 8 GO0 | L5 | 3.29 400 1433 | BAS F200 ) 201 | 430
4 2 8 500 | 427 | 897 4001276 546 (200152} 3.18
§ 2 7 700 | 427 | BO0 | 800 | 276 | 5.39 [400 [ 1.521 3.26
& 1 8 400 | 165 | .29 [ 400 [4.35 | 875 {500 (201} 4.30
7 5 8 600 | 376 | 7.63 | 500 | 435 8.51 300|202} 431
8 3,4,6,7 | OUT (300111322250 | 200 | 8.80 | 18.10 || 400 | 5.89 { 12.86
Table 7.3 Sunmuuy of communication parmeters uscd.
Communication Parameters
Workstation Hypercube Computer
Conununication B Node-tlo-Node | 16-Node §-Node 4-Node
s
Parameter ' Link Broadeast | Broadeast | Broadcast
1, (ms) ‘ 108.36 0.65 6.5 3.6 20
T, (18) 533 295 103 48 21
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The conmunication parameters used are summarized in Table 7.3 which includes those
for a bus connecting these three workstations and those for 4-node, 8-node-and 16-node hyper-
cube computers. Communication setup time is obtained by measuring the transmission time of
a null communication. Transmission time per word is obtained by applying linear approxima-
tion over communication times for different frame sizes. Note that all communication parame-

ters include preprocessing and postprocessing times.

7.1. Experiments on Static-Workload Multicomputers
Static workloads are found in hypercube computers or in a network of workstations under
exclusive usage, which change with time very slowly and negligibly. Note thar all experiments

are measured for one iteration of ANN simulation, since all iterations are identical.

7.1.1. Experiments on static-workload workstations

The target multicomputer is a set of these three heterogeneous workstations connected by
an Ethernet, which is specified in Example 3.2 in Section 3.3, Machine 1 has the lowest com-
punttion power and machine 3 the highest. Each processor is assumed to use virtual-circuit
communication, which has a one-time setup cost. Broadcast using datagrams on Ethernet is
not used in the experiments due o the smali number of processors. However, it will be useful
when the number of processors is large.

The predicted and experimental results are summarized in Table 7.4. The experiments are
conducted as follows, The optimal mappings are solved with user-specified error £,,,, =0 for
FC-1, FC-2 and FC-3, and with €., = 1% for ather ANNs, Note that the predicted error £,,,4 is
larger than the user-specified error allowance £, even though £,,s is very small, around
1%-2%. The reason is that” synchronization and problem-partitioning overheads are not
included in the model proposed. Further, unexpected page faults may also cause same over-
heads. The simulation error g, {on Dsim) is also very small; this could be the empirical evi-
dence of correctness of Dsim,

It is observed in Table 7.4 that the speedup efficiency mg changes W._oi_v. with the com-

smunication requirements, namely, the speedup efficiency is slightly higher for fully connected

i Tl e idan
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Table 7.4: Summary of predicted and experimental results of simulating the nine ANNs on the
three workstations with static workloads,

Experimental Results on the Three Workstatians

ANN .w..!.& Ammnv u..__ Amﬂnw m‘un_ Aﬂ.& .ﬁ«na Awunv 5 s u.t:. nmﬂou Eyim Aﬂeu

FC-1 100,95 | 102221 125 | 22547 N.Nu. 995 101.10 | 109
FC-2 5403 | 54.83 | 147 [ 12623 [2.21}.986) 54.33 | 092
FC-3 74.15 {7495 | 107 || 167.88 |2.23].995] 7420 | L0I

ML-1 19331 | 19542 107 [ 435.80 {2.231.995] 193.96 { 074
ML-2 139.06 | 141021 1.39 | 31040 |2.20|982( 139.52 | 1.06
ML-3 22183 {22563 | 171 ) 48518 |2.15[.9604 222.61 | 1.34

NL-I 318.82 |319.67| 026 | 704.88 [2.21]987] 32026 | .18

NL-2 34436 |355.88 | 324 || 748.07 12.10| 938 34691 | 2.52

NL-3 150.81 |154.87 1 2.62 | 33893 {2.19{.978] 151.84 | 195

ANNs and slightly lower for nonlayered ANNs, because the former have lower communication

requirements and the latter higher.

7.1.2. Experiments on hypercube computers

The L6-node iPSC/2 hypercube computer [}, 2] can be configurated to 16-node, 8-node or
4-node hypercube computers. It provides packet ‘switching for inier-processor communication
[15]. Concurreat asynchronous brondeasts atfow the neiwoerk server o route frames more
efficienty so that full utilization on communication links can alinost be achicved. Note that
the broadcast parameters in Table 7.3 are measured under the condition that all processors

broadcast concurrently and asynchronously rather than that one processor broadcasts at a time.

The predicted and experimental results of simulating these nine ANNs listed in Table 7.2
on hypercube computers of dilferent cube sizes are semmarized in Table 7.5. The experiments
are conducted as follows, The optimal mappings are solved with user-specified ermr g, = 1%
for the 4-node cube, and €, =2% for 8-node and 16-node cubes. As in the workstation case,
the predicted emor €,y is larger than the user-specified €107 Eyr, £VER though e, is very
smull, around 1%-3%. The reason is that synchronization and problem-partitioning overbead

is not included in the model proposed.

able 7.5: Summary of predicted and experimental results of simulating the nine ANNs on the
hypercube compiters.

Experiment Results on iPSC/2 Hypercube Comptiter

4.Node Hypercube 8-Nede Hypercube 16-Node Hypercube

ANN

..._1_5.& u._ Epred u..h_.a .51__ Epred $ .qunm u1— m.uwnn_

(sec) | (sce) (%) (sec) | (sec) | (%) (sec) | {sec) | (%)

FC-1 [} 2.23912.248 10.40{3.89|(1,154| 1.170]1.37 [7.4810.645)|0.645 | 0.00| 13.57

EC-2 | 1.177]1.180(0.25}3.91]0.612|0.627 }2.39{7.37|{0.354|0.3550.28113.01

FC-3 || 1.672]1.66710.30|3.87|.0.880 0.880 [0.0017.34]0.528 [0.524 |0.7612.32

ML-1 || 4.27314.300|0.63{3.64(2.2442.302|2.52]6.80(i1.329]1.359|2.21 {11.52

ML-2 { 3.154]3.185|0.97(3.601.684| 1.701| 1.00|6.73||1,051{ L.033 ] 74| LL.09

ML-3 | 4.727]4.799 [1.5013.65 2,465 2.556[3.67{6.86[1.428|1.495 4.48111.72

NL-1 || 6.797{6.84810.74|3.68|3.54013.585]1.26|7.03/2.044(2.03110.64 [ 12.4]

NL-2 || 7.228(7.311]1.14{3.67{|3.736|3.784 [ 1.27{7.09}2.103|2.1502.1912.48

NL-3 || 3.36913.38210.38|3.64[11.798|1.816]0.99|6.78[1.121|1.153|2.78 | }0.67
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it is intcresting to observe that the speedup n:._,mmc:ow is higher for smatler cubes. This
happens because for a larger cube each node has less computation task and the synchronization
and problem-partitioning overhead beeomes relatively more signiticant,  Another minor reason
is that larger cubes need more time for inter-processor comnunication. 1t is also interesting to
noie that for the same cube size the speedup changes slowly with the communication require-
ment, as in the workstation case, ,

A major limitation on using hypercubes for ANN simutations is due to memory space lim-
itation in cach processor. The system lacks o virtual-memory facility from each processor to
the common secondary memory, and all accesses to the secondary memory must be handled by
the Cube Manager. When the rumber of neurons mapped to each processor is larger than the
capacity of its local memory, part of the data snust be kept in the Cube Manager. This results

in a high volume of traffic between the Cube Manager and the rest of the system.

1.2, Experiments on Workload-Yarying Mullicomputers
The static mapping algorithm is insufficient to capture time-varying workloads. Instead,
the dynansic mapping algorithm is esed. The dynamic mapping algorithm repeats the optimal

mapping of the ANN simulation whenever the workload changes significantly,

Parallel ANN simulations are performed on Dsim rather than on a real multicomputer s
in the previous two experiments. The reason is two-fold.
(1) To illustrate the effect of workloads in ANN simulitions, the reproduction of workloads is

essential; however, it is very difficult to reproduce workloads in a real multicomputer,

(2) The mapping tesults have already been empirically verified in the previous two experi-

ments; therefore, it is reasonable to use Dsim, which also is empirically verified in the

case of the three workstations,

Lach machine is associated with a werkload descriptor E.n::n; in Section 3.3) as G-ary
tuple WL = <pg,py,pz, 8 by, br>, where py, p1, and p; are the probabilities that the workload in
the next iteration of ANN simwidation will remain the same, increase, and decrease, respec-
tively, & is the slope of change in workload if the worklowd increases or decreases, and by, and

are the upper bound and lower bound on workload, respectively. Note that po+p+p2 =1

63

Given a workload deseriptor for each machine after the -th iteration of ANN simulation, the
workload o for the (+1)-th iteration ts generated based on the descriptor and win the &-th itera-
tion, The procedure of workload generation is shown in Heuristic Workload Generation Algo-

rithm 7.1,

Heuristic Workload Generation Algorithm 7.1,

1.  Generate a yandom variable v e {0,1).
2. If &y is not saturated, namely, it is neither equat to b, nor b, then

2.1, If v < po then gy = 0y,

22, Else if v < pg +p then wy, = + 8§,

2.3, Else (namely, v 2po + 1) Weap = 0= 8

24. If 341 > by, then let @y, = b,.

2.5, 1f gyt < by, then let gy = by,

3. If wy is saturated to the upper bound, namely, o = b, then
3.1 IFv < po +p1, then o, =y,

3.2 Else (namely, v 2 pg +p ) g, = 0y =8,

4. If o is saturated 1o the lower bouad, namely, oy = &y, then
4.1, 16 v < pg +pa, then gy =@y,

4.2, Else (namely, v Zpg + pa) 0443 =@0; + 0.

There may exist better workload gencration algorithms in terms of modeling or synthesiz-
ing real workloads. The workload peneration used is not intended to synthesize or reproduce
the past real workloads on real machines. Instead, it is used only for evaluating the dynamic
mapping algorithm through its wide spectrum of reproducible random generations of work-
loads. Table 7.6 shows the workload descriptors (b =1 and b, =25) of WL-1, WL-2 and WL-3
used in the three-processor case. By examining the workloads (not shown here due to space
limitation) generated by Heuristic Workload Generation Algorithm 7.1, it was found to be
sufficient for this purpose. Note that the generation of workloads mw. a Markov process, because

the new workloud is based only on the very previous one rather than the entire history of
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workloads. Further, the generation of workloads can be reproduced because the seed to the

random generator can be controlled.

Table 7.6: Workload descriptors of WL-1, WL-2 and WL-3 used in the three-processor case,

Summary of Workload Descriptors
Workload | Random Maching 1 Machine 2 Machine 3
fndex Seed N o lpilre| 8 [po|pi|pa| 8 [potr|pa] 8
WL-1 1 .241.711.05§0.70[.13].57{.30|0.78}.29].53 |.1810.59
WL-2 2 151.511.34,0.571.02].83|.15|0.40.01 | 82 .17 [(1.54
WL-3 3 220721.06]0.441.271.69].04 |0.69].15].701.15}0.52

The descriptors for all machines in the experiments are generated randomly. The lower
bound and upper bound of worklcads in the experiments are set to 1 and 25. Note that if the
workload is equal to 1, it means that the processor is totally dedicated to the ANN simulation;
while Jf the workload is equal to 25, it means that enly 4% of processor utilization is for the
ANN simulation.

The simulation results on workload-varying mullicomputers, including those on 3-
workstation, i0-processor, 25-processor and 100-processor multicompulers, are shown in Table
7.7. The gain g is referred to the speedup of the dynamic mapping algorithm with respect o
the static. Specifically, for the duration of N,,, iterations, the gain is defined as g & Taton ! Trtatics

where Ty, is total simulated completion time of Ny, iterations of ANN simulation plus the sum

—_—d
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Table 7.7: Summary of simulation results on workload-varying multicomputers,

Simulation Resolts on Workload-Varying Multicomputers with 5% Confidence

3 Processors 10 Processors 25 Processors 100 Processors

ANN (| Workload
Elg} | Em,] || Efg] | Eingl || Efg]l | B, | Elg] | Eing)

FC-1][ WL-1 [|1.46+.03 [ .987£.001(/1.93£.01 | 972+.001||2.43£.01 [.981+.001 |3.43+.15 | 915£.018

FC-2 (| WL-2 }1207201.912¢.002[(2.242.01 | 970,001 [|2.69£.08 ;.971£.001 {4,124.20 | 9342017

FC-3 [ WL-3 1130201 |.996£.001 §2.362.01 | .906:£.007 [|2.83£.01 | .9874.001 4.33+.20 | .953+.013

ML-i[ W4 [142501 9781001 9924001 12.374.02 | 9522002 |[3.924.18{ 8924019

ML-2)| WL-5 [{1,22+.01 [.968£.001([2.09+,01 [ 9605000 [ 1.98£.02 | 832+.0034.08+,19 878+ 019

ML-3] WL-6 224504 (.9684.001(2.28+.01 [.9652.008 [2.25£.02 | 954,001 [[4,35£.19 ] 873+.15

NLd [ WL-7  [4.17+.02 [.959£.001(|2.05£.01 |.9622.001 [[2.12+.02 [ 987+.001 [|3.46.16 [ 032019

NL-2|| WL-8 |200+.01].92E.001|/1.79£.01|.9472.001{12.08+.01|.972£.001 |13.70+.16 | 907+.021

NL-3[ WE-9 [1.594.011.8932.002(12.02£.01 | .968+.0012.22+.01 | 945£.001 |3.76+.15 | 813+.018

of all mapping times expended in the re-mappings, and T, is total simulated completion time
of N, iterations of ANN simulation plus one mapping time.

The expected gains and gain efficiencies shown in Table 7.7 are 95% confidence intervals.
For 3, 10 and 25 processots, in all experiments, each sample has 10 time quantums and each
time quantum corresponds to one iteration of ANN simulation. For 3, 10 and 25 processors,
the number of samples is 100 cach. For 100 processors, the number of samples is 10 only
because of its long simulation time, -

In Table 7.7, the gain is usnally around 1-4, which is not significantly large, because the
dynamic napping algorithm can gain significanly only when the workload in each machine is
significantly divergent. For example, if all machines have similar workload behaviors (high or

low almost at 1the same time), then the re-mapping does not gain too much because the relative
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computation power of each machine still remains the same with respect 1o other machines.
However, if some machines have very divergent workload behaviors, then re-mapping can gain
significantly because the relative computition power of each machine changes.

It is interesting to note that larger multicomputers generally have better gains but worse
gain efficiencies. The reason for better gains is that larger niulticompwers are likely to have
divergent workioad behaviors. Worse gain efficiencics occur because re-mapping overhead is
relaiively higher for larger multicomputers since their simulation times are shortet.

Gain efficiency 1, is referred to the nonnalized poodness of the dynamic mappiag algo-
rithin with respect to the best gain g,,,, which is calcutated under the condition tha re-mappiitg
is performed for each iteration and the time expended in the re-mapping is not counted.

Specifically, 1, A/ g In Tabie 7.7, gain efficiencies are very high; this indicates that the

dynamic mapping algorithm achicves almost full wilization of resources.
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CHAPTER 8.
CONCLUSIONS

In this thesis, the optimal mapping of neurons in the static learning process of the mul-
tilayered artificial neural network on the multicomputer sysiem is studied. Processors in the
multicomputer may be heterogencous and with time-varying workloads, and also may be con-
nected by communication links of different speeds. The mapping problem is NP-hard in gen-
eral. A number of results arc developed for simplifying the complexity of the mapping prob-
lem. By observing that the computation time usually dominates the communication time in the
learning operations within a layer of the neural network, the processors are partitioned into
groups such that the error deviation of a heurlstic routing scheme from the optimal one can be
bounded. Experimental resulis using & 16-node Intel iPSC hypercube computer and a network
of three workstations are shown and are found to be very close to the results predicted analyti-
cally. Experimental results on time-varying worklozds show that the dynamic mapping algo-
rithm can schieve afmost full utilization of computing resources. The results obtained are pse-
ful for designing a special-purpose computer for ANN simalations and for detenmining the sui-

tability of an existing computer system for ANN applications.
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AVPENDIX A,
NEUMAP PROGRAM

This appendix mainly describes NeuMap and how to use it. Section A.} describes briefly

the algorithm, organization and options in NeuMap, Section A2 describes how to use it

Finally, Section A.3 lists its source code.

AL General Description

NeuMap is a program which maps ANN simulitions onto message-passing multicomputers.

The scenario in NeuMap is as belows.

1.
2.

NeuMap reads in multicomputer and ANN specifications.

NeuMap partitions the multicomputer based on a user-specified error allowance. Attributes
in the unpartitioned multicemputer are transformed accordingly.

NeuMap catcitates error allowed in the mapping solver.

NeuMap solves optimal mapping with error allowed.

‘The major components in NeuMap include (1) interface for reading in nwlticompater and

ANN specifications, (2) partiioning of a multicemputer, and (3) branch-and-bound mupping

solver. These compaitents are physically placed in the following directories: include, interface,

partition and search, They are quite self-explained. Detaited descriptions for esch individual file

will be explained in site rather than here because there are toe many files.

The compilation of NeuMap is done by a command “make neumap’’, Other available

makefile options are listed and self-explained in.the Makefile. Dsim of different modes can also

be compiled by it.

Several options are available for reporting statistics and debugging NeuMap:

STATISTICS Reports all important statistics.

DEBUG Provides multiple levels of details in debupging information.
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A.2. Steps for Using NeuMap

M
(2)
&Y
&

5

(n

]

Follow these steps 10 execute the supplied program.

Go 1o the directory “softwarefchu/ms/bin.

Specify the options described in the previous section for compilation in file Makefile.
Compile NeuMap by typing *‘make neumap’”

Create input files for NeuMap. Two input Enu are required; one is the specification of a
multicomputer and the other is the %nn_mﬁEo: of an ANN. mxm:.m_nm are available in
directory womia.a\arcxaﬁ.%\.:ns H__o aoasu. of :65 files is described _Eﬁ.

Run the program by typing :9_3% B_Ba.ann ann-map error debug-mode > outpmt”
where *‘mimd-map’” is an input file name for a multicomputer, “‘ann-map’’ is an input file
name for an ANN, “‘error’” is the user-specified error allowance, e.g., 0. 05, **debug-mode™’
is the level of detail of debugging information, e.g., 1 for less details and 4 for complete
details, and *‘output’” is an output file.

The format of the input file for a multicomputer is described as follows.

Specify the number of processors, the number of links and the diameter of this multicom-
putez. For exampie, for a 16-node hypercube, they are

6 32 4

Next, provide some knowledge of the multicomputer such as the topology, if available. For
example, for hypercube computers,

HOME

SYM

The former indicates that processors and links are all homogeneous. The latter indicates
that the computer is symmetric. For the three workstations, they are neither, then nothing is
required to be specified.

Specify the processors. The specification is enclased by *'startproc’’ and “‘endproc’’. Each
type of proecssors is specificd in two lines. The first line specifies how many processors
belong to this type. The second specifies execution time per unit computation, local
memory size in word, IO facility (1 for yes and 0 for no), overlap predicate (} for yes and 0

for no) and overlap overhead. For example, for a 16-node hypercube, they are



3

“

12

stariproc

homo 16

10 1000 0 0 00

endproc

It means that there are 16 homogencous processors each having 1.0 millisecond for unit
computation, 1000 kilo-words, ne 10 facility, no overlap*and overlap overhend is 0.0. Tor
the network of three workstations, they are

startproc

homo 1

285 20000 1 0 00

homo 1

255 50000 1 0 00

homo 1

16.7 50000 1 0 0Q

endprac

Specify the adjacency matrix of the interconnection network, The specification is enclosed
by “startad]’” and “‘endadj™". If there are P processors, then there will be P fines each hav-
ing P entries. Each entry indicates the link which connects them. For example, for the
three workstations connected by a bus, it can be written as

startadf

-1 00

0 -1 0

g 0 -

endadj

where -1 indicates that there is no such link. For a 16-node hypercube, it is shown in the file
“software/chu/msflabfinput/ipsc/mimd-map-16 listed in this appendix.

Specify the links. The specification is enclosed by “‘startlink™” and *'endlink™. Each line
in between specifies the setup and transmission times for each transmission. For example,

for the three workstations, it is

{5)

(6

startlink .

home 1 .

0.0 000533

endlink

Note that the setup time in the three-workstation case is 0 becavse it is a one-time cost and
will not require setup for cich transmission. For a 16-node hypercube, it is shown in the
file “software/chw/ms/labjinput/ipsc/mimd-map- 16 listed in this appendix.

Specify the processors supported by these links. The specification is enclosed by "*startsup-
port’” and “endsupport’’. Each link requires two lines of specification. The first line
specilies the link and the aomber of sapported processors, The second line specitics all of

the processors it supports, For cxamysde, for the netwark of three workstutions, it is specilied

as

starisupport

03

0 1 2

endsupport

They are read as the link ) has three sipported processors, 0,1,and 2.

Specify broudeast facility. The specification is enclosed by *'stantbe’” and “‘endbe™. Two
lines are required for each broadcast. The first line indicate the broadcast. The second ling
speeifies the scope of precessors covered, setup and wansmission times. For a 16-node
hypercube, it can be written a3

starthe

1

0 15 65 0103

endbe

They are read as this multicomputer has one broadeast which covers processors &, .., 15,
Also, the setup and transmission times aee 6.5 and 0.103, respectively.

The format of the input file for an ANN is described as follows.
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(1} Specify the type of this ANN and its structure. 'The first ting speeifies the type. 'Two types
are covered at the present time. They are FULL (for fully connected multilayered ANN)

and HYBRID (for hybrid multilayered ANN). The sccond line specifies the number of
layers and the number of clusters. Then, each layer is described by one line, each specify-

ing the pumber of clusters in it and what they are. For example, the ML-1 s specified as

HYBRID .
47

0 1o

a1 o2

22405

3006

They are read as ML-1 is a hybrid multitayered ANN which has 4 layers and 7 clusters.
Layer 0 cousists of onc cluster and it is cluster 0. Layer 1 consists of three clusters, 1, 2
and 3. Layer 2 coasists of two clusters, 4 and 5. Layer 3 consists of one cluster and it is
cluster 0.

(2) Specify each cluster one by one. One cluster requires four lines. The first line specifies the
cluster, the range of neusons belonging to it, and its 10 features, The second line specifies
the per-newron production-phase  computation units and  communication  units, and
fcarning-phase computation units and comnmnication units, The third line specifies the
aumber of the preceding clusters and what they are. The fourth line specifies the number of
the succeeding elusters and what they are. For the example of ML-1, they can be written as
O 0 499 10
253 1. 280 1.
¢
323
‘The ticst tine is read as cluster 0 includes searons 0, ..., 499, and it is an input cluster (the

founl is ) and not an output cluster (e 7t is 0.

Specifically, examples of multicomputers are in files

“softwarefchu/ms/lab/input/sun-3fmimd-map

15

“software/chu/ms/iubfinput/ipsc/mimd-map-4
“software/chu/msAab/finput/ipsc/mimd-map- 8
“software/chu/ms/labfinpu/ipsc/mitnd-map-16
Examples of ANNs for mapping onto workstations are in files
~software/chu/ms/labfinput/full-net/ann-map-{1-6]
“software/chu/ms/lab/input/multi-layer/ann-map-[1-6]
~“softwarefchu/ms/labfinput/non-layered/ann-map-{1-61
Examples of ANNs for mapping omo hypercube computers are in files
“software/chu/ms/labfinput/ipsc/ann-map-FC[1-3]
“soltwarc/chu/ms/lab/inpufipsc/ano-map-ML{1-3]
“soltware/chu/ms/lab/input/ipsc/ann-map-NL{1-3]
The output is very self-explained and can be easily understood, because all output data are

accompanied with clear explanations. Therefore, they are not repeated here,

Ay et heie [ e [
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“soltwarc/chu/ms/lab/input/multi-layer/ann-map-1
ML-1 (4 Layers and 7 Clusters)

HYBRID
47

g10

131213
2245

316
0049910
2531.2801.
0

3123
150069900
2531.5521.
10

14

2700 1199 00
2531.5521.
19

245

31200 149900
2531.5521.
10

15

41500 189500
3561.7.58 1.
212

16
51500249900
4.131.8561,
223

16
625002699 0 1
5081, 10.69 1.
245

0

“soltwarefchu/msAabfinputfsun-3fmimd-map
3 Workstations Conmeeted by Ethemel

311

stanproc

homo 1
28.520000 1 00.0
hemeo 1
255500001000
howmo 1

16.7 500001000
ehdproc

startadj

100

0-10

001

endadj

starlink

fiomo 1

0.0 0.00533
caullink
startsupport
03012
cndsupport

“soflware/chu/ms/ab/Anput/sun-3/mimd-map
16-Node 1PSC/2 Hypercube Computer

16324

HOMO

SYM

startproc
bomo 16
L0160 0000
endproc

starladj

‘10
0-
1 -

—
-y

LR

Wi -

RN
v

£
“ns

'
—_—— -

+

[- R

T

Lweel Ll L L
)

'
v

1
—
o]
Ln
1
—
0
—
[

1
- — —
[
e e
'



endadj

startlink

homo 32

0.65 04395 §

endlink

stantsupport

020l

1202

2213

3223

4204

5215

6226

1237

£245

9244

157

1ze7

12289

132810

142911

152104t

162812

172913

1821014

1924115

2621213

2121214

2221315

2321415

4208

25219

262210

272314

282412 )
292513
0264
2718
codsupporn
stanbe

i
0156.50.103
cndhe
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A.3. Program Lisling

™

Makefile
# mike neunap =o>  nOWNGP
# make dsim ==>  dsim
# make gamx ==  pMax
# make sim ==> §im
# make ali ==>  neumap, dsim, gamx and sim

# Thee compilation options:

# STATISTICS: reports impartant statistics.

L] DEBUG: provides mutiple levels af details in debugging information.
4 NOLOGO: docs not print a [0go. .

CC=ce

CminorFlugs = -DDEBUG -DSTATISTICS -g
#CminorFlags = -DNOLOGO -

CFlags = -DDMAPPING $(CminorFlags)
LoadFlags = -l

HloadFlags = -Im -1g

HOME = .,

INCL = $(HOME)Y/ncumapfinclude
INTFC = mﬁzogmw\:n:_aw%ss_.-.snn
PART = $(HOME)/neumap/partilion
SEARCH = $(HOME)/ncumap/search
DSIM = ${HOME)dsinm

BIN = $(HOME)bin

MajorHelpFiles = SINCLY/limits.h S{INCL)/define.h $(INCL)/config.h $(INCL)macre.h
HelpFiles = $(MajorHetpTiles) S(INCL)Avar.h

Objites = include.o interface.o partilion.o search.o

DSimFiles = ${DSIM)/sim.h S(DSIM)fvar.c $(DSIM)/main.c $(DSIM)/sim.c $(DSIM)/event.c\
$(DSIM)/map.c

# main program
neumip: ${HelpFiles) $(ObjFiles)
$(CC) $(CFlags) $(0biFiles) $(L.oadFlags) -0 neumap

dsim; $(DSimFiles)
touch .dsim.c; rm dsineg; cal 3{DSumFiles) > dsimted
$CC) $CHags) Asink.e $(EodFlags) -o dsim

genax: $(DSimFiles)
touch .gim.c; rm sim.c; cal ${DSimFiles) > simeh
$(CC) -DOMAX $(CminorFlngs) sim.c ${LoadFlags) -0 gmax



sim: ${DSimFilcs)
wuch sim.c; rm .sim.g; cat ${DSimFilcs) > sime
$(CC) ${CminorFings) .sim.c $(LoadFiags) -0 sim

all: $(HelpFiles) ${ObjFiles) $(DSimFiles)
$(CC) $(CFlags) S(ObjFiles) $(LoadFlags) - reumap: \
touch .dsim.c rm dsim.c; cat ${DSimFiles) > dsimeh
$(CC) $(CFlags) .dsim.c $(LoadFlags) -0 dsim

print:
o ${HOME); PRINT.
clean: i
m -£ ${BIN)/* .0 $(BIN)/core S(BIN).*.c $(BIN}/ncumap
nosa;
m -{ S(BIN).*¢
# include/

include.o: $(MajorHelpFiles) $(INCL)/varc
louch .include.c; rm .include.c\
cat $(MajorHelpFiles) SUNCL)ivar.e > .include.cih
$(CC) $CFlags) < include.c -0 inchude.o;

# interfacef

interface.0: $(HelpFiles) $(INTFC)/*.c
touch .interface.c; rm .interface.c
cat $(HelpFiles) SANTFC)/*.c > Jdnterface.ch
${CC) H{CFlags) -¢ .interfacec -0 interfacc.o

# pantition/

panition.o: ${HelpFiles) SPPART)™.c
touch .partition.c; i partition.c\
cat ${HelpFiles) S(PART)*.c > Jpartition.ch
$(CC) $(CFlags) ¢ parlition.c -0 partition.o

# scarch/

search.o: $(HelpFiles) S(SEARCH)*.c
touch .scarch.¢; rm search.c\
cat ${HelpFilcs) S(SEARCH)/*.c > search.ch
$(CC) $(CFlags) -¢ search.c -0 search.o
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INCLUDE IMrectory

include/limits.h

Hifndel _neumap_limits_h_
Hdefing _ncumap_liamits_h_

#Hinclude <limils.h> v

#dchne HUGE_SHORT SHRT_MAX 1** 32767 **/

#dcfine HUGE_INT INT_MAX ¥ 2147483647 ¥4/

#define HUGE_LONG LONG_MAX for 2147483647 **/

#define HUGE_FLOAT FLT_MAX /4 1.4(282346638528860e+38 *Y/
#define HUGE_DOUBLE  DBL_MAX 1#% 1.797693148623157e+308 **/

#define HUGE_DEFTH HUGE_INT
Bendil _ncumap_limits_h_
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includefdefine.h

+* Glabal constanits and type declarations are in shis fle.
*+ Somne of them are quile sell-cxplanatory, but some are not,
** For those not, deseriptions are added. **/

Hiludel __define_h_
#define__define_h_

Hinclude <stdioh>
#inchule <ctype.i> )
#include <math.h> )
#include <sysflypes.h>
Hinclude <sysftimes.h>
#idefincfree(c) 1+ Avoid strange deallocation routines n Unix, **/
#defineBUFFER_SIZE 256
wypedef enum (NO=0, YES = 1) YESNG;
typedef enum [ FALSE = 0, TRUE=1} boolean;
typedef coum
{ ** Communication relaicd constants **/
BC, ** Broadcast **/
PP, J** Point-ip-point **/
PCOMM, ** Production-phase communication **/
LCOMM /* Learning-phase communication **/
] comm;
typedefl enum
[ 7+* Kinds of neural clusters **/

IHDDEN_NELRON, /** ilidde

INPUT_NEURON,  /** Inpt

QUTPUT_NEURON, /** Output neurul clusters **/

TO_NFURON /#* Inputfoutput neural clusters **
] neatype;

typedef eoum
[ F+* Kinds of nodes #*/
GOAL_NODE, 1** Gaal node ¥*/



ROOT_NODE,

FROUT_NODE,

LROUT_NGDE,

TERM_ASGN_NODE,

NTERM_ASGN_NODE
] nodiype;

82

/** Root node **/

/** Production-phase routing node **/
** Lcaming-phase routing node ¥¥/
4+ Terminal assignment node **/

f#+ Nonterminal assignment oede *#/

stracd _route__
{ 1** Type of route **/
comm type; /** Broadcast and point-lo-point ¥*/
float crror, /** Error degree **/ !
struct _ronte,_ next;
B
typedel struct _touts__ route;
typedel struct
[ £** Data sype for processors **/ .
float 3 /% Computalior. power **/
int mem_size;  /%* Local memary size **/
int kappa; /** Qverlup feature **/
foat tkappa 1** Overhicad ol overkap **/
YERIN i #** 10 fonture **/
int partinlD; ** Parlition membxezship **f
} process;

(ypedef struct
[ £+ Data type for links *¥/

Noat ts, 1x: /4 Setap and transmission times **/
int idlx; % Tralfig index **f
i tovsupy ** Support sct **/
inl nsnpn £ Number of supporis **/
int chiy; % Chonel 1044/

1 link;

typedef stnuct

[ ** Data type Tor broadeasts **f
float ts, 1x; /** Setup and lransmission timess **/
int from, 1o} f+* Range **/

] beast;

typedel struct

{ #** Data type for ANN neural clusters **/

int tayerlD;

int from, 10}

int n

float peunit;

Nox frunit;

Noat leunit;

fNoat Teunit;
neutype type,

inl npred, *pred;

nt nsuce, *succ;
| clugier;

/+* Layer 1D this cluster residos **/

/** Range **/

f+* Number of peurons, n=to-(roms1 **/

#+* Uniits of production-phase comgputation **/
7% Units of production-phase routing +*/

74 Units of learning- pluwse computation ¥*/-
7#* Units of learning-phase routing **/

++ Type of nguren glusler **/

{** Predecessors and its number **/

** Successors and ils number **/

Lypedef struct
{ f+* Data type lor purtilinns **/

Tloat [ /** Computation power **/
int mem_size; ¥ Local memory sive **/
int kappa;: ** Overlap feature **/
Moat tkappa; ** Qverbsead of overlap **f
yesno io, J** 10 feature **/
int o J** Size of thig partition **/
int viember;  ** Member sct of Whis partition **/
1 partitn;
typedel struct
{ /** Data type for chanmels (connecting partiions) **/
fipat 15, Lx; /** Sctup and transmission times *4/
int *sup; ** Support sct ¥/
int nsup; 1** Number of suppons **/
int n #** Size of this channel **/
int *member; /** Member set of this channel **/

] channc!;

typedel struct
[ £#* Data 1ype Tor ANN layers **/

i n /** Nomber of members **/

inl *member;  /** Member set of this layer **/
} layer;

struct _node
{ £+* Data type for search nodes **/
struct _noxde__*pargnl, *next;

float _LOst /** Current actual cost **/
flow lowh, aph; — /** Lower amd upper bounds **/
int nk; J** Cluster if il i 2n assignmnent pode **/
int degree; f** Dranching degree **/
int nsproul; /#* Number of children **/
i depth; f** Depth of this node *#/
nodtype 1ype; 1** Type of node **/
float *itimae; I Array of initial times **/
Avat *clime; J¥* Amay of completion times **/
it *assign; f** Assignment veclor **/
roule *route, ** Routing veclor **/

h

Lypedef struct _node__ node;

flendif __define_h_
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inclutde/macro.h

Bifndef __macro_h_
Hdefine __macro_h_



#definesteeqi(x,y) (! stremp{x,y)} /** Check equality for two strings **/
#definexcluster(i)  (CLUSTER + i} f++ Amay of ANN neural clusters ey
#definexlayer(i) (LAYER +i) /** Amay of ANN laycrs vy
$definexprocessG)  (PROCESS + B 1** Arcay of processors **/
fdefinexpartitn(i)  {(PARTITN +1) J** Amay of pariitions **/
Kkdefinexbeast(i) (BCAST +3) /** Amay of broadcasts **/
#definextink(i} (LINK +1)  /** Array of links **f
#definexchanncl(®  (CHANNEL +1i) ** Aray of chaancls **/

/+* Element {i.f) of this ANN interconnection matrix **/
#definexanmicmiL,j) (ANN_ICM + (i * nCluster) + j)

/+* Element (i,j) of this mullicomputer inlerconnection matrix **/
#dchinexprocessicm(i,j} (PROCESS_ICM + (i ¥ nProcess) + h]

1+* Element (i,j) of this mulli-partition interconnection malrix **/
#defincapartitnicm(i,j) (PARTITR_ICM + (i * aPantiln) + j)

f** Computation speed of this processor **/
#dcfinexspeed{pid) 1.0/ xprocess{pid}->1)

/+ Assignment of the second (cluster) onto the first {processor) 4/
#dehinexasgni(pid,nk) {ASGNT # (pid * nCluster) + nk)

#++ Completion lime of this scarch node **/
#éefinscompletion_time(x) {x->g_cost}

J** Production-phase computation time **/
#definepart_P_comp_time(n,nk.pl) {a* schusier(nk}->peunit * xpartit(pk}->t)

<* Leaming-phase computation time **/
K%=8§|r|noau|m=.%.=w.w5 (n * xcluster{nk)->lcunit * xpartitn{pk}->1)

#* Completion time **/

#defincproc_comp_time(nk,p} (xcluster(nk)->n * xprocess(p)->L * (xcluster(nk)->pownit + xcluster(nk)->Ecunil)}

#endil _ macre_h_

INTERFACE Directory

imerlace/mal

main {arge, argv}
J#* Enter NeuMap, **/

£5

int arge; char *argv(];
{ struct LW [_start, L_end;
char *mimdfile ="

" ",

imd-in", *annfile = "ann-in";

if (arge >= 2) mimdfile = argv{1h

if (arge >= 3y annfitc = argvi2);

if {arge = 4) sscanf {argv[3], "%, &allowApprox);
read_MIMD {mimdfile);

read_ANN (annfile);

Hildef STATISTICS
limes {&¢_slan);
Hendif
times {&isim0);
parlitioning ();
#ifdef STATISTICS
times (&t _cend);
partitionTime = 1_cnd.ims_utime - L_start.ms_stime;
Hendif
sel_mapping_approx ()}

Nifddef STATISTICS .
times (&t_staet);

Hendif
mapping ()

#if defined(STATISTICS) & defincd(MONITOR)

times (&t_cnd);

mappingTime = {_enddms_utime - {_slart.tms_utime;

printf ("\iiMapping Profilc\a);

prinif ("Paritioning Time = g, partiionTime)s

printf {"Mapping Time = %d\a”, mappingTime);

printl ("Total Exee Time = %d\n", partitionTime + mapping Time);
fiendif
}

intesface/mimd.c

0+

FILE *inpot = Topen { "'y

gettine {inputlBuller, BUFFER_SIZE,
ssconf GnpuiButior, "%d %k %™, &nProcess, &oLink, &diameterMIMD)
while (getline (inpumBulfer, BUFFER_SIZE, inpusd) {

sscanf (inputBuffor, “%s", pattemTemp);

if (streq) (patieenTemp, "stanproc”}} read_pracossors (input);

else if (streq! {patternTemp, "startadj™)) read_adj_matrix (input)



eise if {streyl (pattenlemy, *startlink"}} read_tinks {inputy;
(streql {patteraTemp, "starl poets {input);
else if (streq) (patiemTemp, “starthe"}} reml_broadeasts {inpet);
cise if (streq) (pasteenTemp, "HOMO™) homoMIMD = E

clse if (stregl {pattemTemp, "SYM"}} symMIMD = 13

1
[close {input); .,
if (homoMIMD && ! BCAST) error ("read_MIMD: "HOMO' & 'BC Are Supposed To Come Together™);

rcad_processors {input)
/#* Read in the specifications of processors, **/

FILE *inpul;
{rocess *p, *g; int nhomo, i

if (nProgess) PROCESS = (process *} malloc (nProcess * sizeol {process));
clse crror {“read_processors: nProcess Undelined");
p = PROCESS,
white (getling {inputBuffer, BUFFER_SIZE, input)) {
sscanf (inputButfer, "%s", patternTemp):
if (streqt (patteniTemp, "endgproc™)) Dreak;
il (streq? (patteenTemp, “homo™) sseanf (inpuiBaflor, "%s %d", pauernTemp, &nhomo);
clsc nhome = 1; .
if (getling (inpuiBulfer, BUFFER_SIZE, inpul))
sscanf (inpatBuffer, "% %d %d %d %I, &(p->1),
&(p->mem_sizc), &(p->io) &(p->kagpa), &{p->kappaj);
elsc error ("read_processors: [ncorrect Proc Formal");
for (i = 11 i < nhomo; i++) {
{q = pHi)->t = p->0
->hem
g->ka|

iz 40 - oy
2, q->ikappa = p->tk:

!

1 += nhotiog

)

{p-PROCESS 1= nProcess) crror (“read_processors: Processor Spee Are Reuined™);

read_adj_matrix (input)
** Read in a multicomputer interconnection matrix. **f

FILE *input;
intd, ji

PROCESS_ICM = (int *) malloc (nProcess * nPracess * sizeol (int));
for (i = 0y i < nProcess; i++)
for (j = 0: < nProcess; jr+) fseant (&
while (getling (inputBuffer, BUFFER_SIZE, it
sscanf (inputBuffer, "%s”, patleraTemp);
if {stregl (patternTemp, "endadj"}} break;

wil, ", xprecessicm(i )

)

read_tinks (input)

#** Read in the speciGeations of links, **f
FILE *input;

{ link *1p, *1; int nhemo, i

if (nLink) LINK = (link *) malloc {(oLink * sizeof {link)};
clse error {"read_links: nLink Undefined”);
Ip=LINK;
while (getfing (inpuBuffer, BUFFER_SIZE, input)} {
sscanl-{inpuiBulfer, "%s", paticriTemp):
if (streqk (patternTemp, "endlink™) break:
if {streql (patiern Temp, “homo'™)) sscanf {inputBuffer, “%s %d”, patiernTemp, &ohoma);
else nhomo = 1;
if (getting (inpuwBuller, BUFFER_SIZE, input))
sscanl (inputBuffer, "%f %f*, &{lp->ts), &(Ip->1x))
else crror ("read _links: Incomect Prec Format”™y,
for (i = 1; i <nhomo; i++) {
{lq = Ipp+i)-=15 = 1p->1s;
Ig-=1a = [p->ix;
]
tp += nhomo;
i
for (i = 0; i < nLink; i++) xtink()->chlD =-1;
if (§p-LINK *= nLink} etror ("read _links: Full Link Spec Are Required™);

read_supports (input)

** Read in supporting processors of links. **/
FILE *input;

{ Yink *lpy; it i,

for (i = 0; i < nLink; i++) [
fscanf (input, "%d %d", &id, &n),
{ip = xlink{i)}->nsup = n;
Ip->sup = (int *}malloc (n * sizeof{ing});
for j = {0 j < n; j++) fscanf (input, "%d", (Ip->supH))
]
skip_input_to (input, "endsuppon”, "read_supports: ‘endsupport’ Expecied, but EOF);

read_broadcasts (input)

+* Read in the specifieations of broadeasts in a multicompuler. **/
FILE *input;

| beast *be; int 3

getline (inputBufler, BUFFER_SIZE, input);
sseanf (inputBuffer, "%d", &nBcast);
BCAST = (beast *) malloc {hBeast * sizeol(bcast));
for (i = 0; i < nBeast; i++) |
be = xbeast(i);
getline {inputBulfer, BUFFER_SIZE, input);
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sscanf (inputBufler, "%d %d %f %I, &(be->lram), &(he->10), &(be->18), &be->1x));
)
skip_inpul_to {input, “cndbc”, "read_broadcasts: Full Broadcast Spee Are Required”),

skip_input_io {input, pattern, crmsg)

** Check closing commands and skip unnecessary whilc spaces. ¥*/
FILE *input;
char *pattern, *ermsg;

{
do [ if (getline (inpmBufier, BUFFER _SIZE, input)) !
sscanf{inputBuffer, “%s", pattemTemp);
else ervor (errmsg):
] while {! streqt (patternTemp, patterm));
]

interfacefonng

read_ANN (flename)

/¢* Read in an ANN specification, **/
char *filcname;

{ cluster *nc; int i, j, in, out, n, id, *member;
FILE *input = fopen {filename, "r")

#** Read in gencral attributes of an ANN. **/

fullANN = hybridANN =0;

geiline (inpuiBuffcr, BUFFER_SIZE, inpul);

sscanfl (inputBufler, "%s”, patternTemp);

if (streql (patternTemp, "FULL™)) {ull ANN = 1;

else if (sweql (pattemTemp, "HYBRID")) hybrid ANN = 1; .

else error ("read_ANN: "FULL’ Or "HYBRID® Are Expected At The First Line");

#+* Read in the specifications of neural fayers. **f
fscanf (input, "%d %d", &nlayer, &nCluster);
if (Tull ANN && nLayer l= nCluster}
eror("read_ANN: 'FULL’ Means # Of Layers Equals To # Of Clusters"),
LAYER = (layer *) malioc {nLayer * sizeol (layer));
CLUSTER = (cluster *) malloc {nCluster * sizeof {cluster)};
for (i = 0; i < nLayoer; i++} .
Fscanf (input, "5d %d”, &id, &n);
alayer(id)->n = n;
rayer(idp-=member = meniber = (in *)
for (f=0; j< o je+) {
fscanf (input, "%d", member+j);
xchuster(*(member+ j))->layerl ) = id,

loe (n * siveol (ing);

%% Readd in the specifications of oeural clusters. *¥/
for i = 0; i < nClusier; q+) |
fscanf (input, "9d", &id); .
nc = xclustes(idy; ¢
fscanf (input, "%d %", &{nc->{rom), &{nc->10)); .
nNguron += (nc->n = ne->10 - ne->from + 1)
fscanf {inpul, "%d %d", &in, &out);
if {in && out) ne->type = 10_NEURON;
else if (in) ac->lype = INPUT_NEURON;
else il {oun) nc->type = QUTPUT_NEURON,
else ne->type = 1EDDEN,_NEURON;

fscanf {input, "%{ %E", &(nc->peunit), &(nc->prunit));
fscant (input, "%{ %F", &(nc->leanit), &(nc->Innit));

fscanl (ingut, "%d", &{nc->npred));
if (ne->npred > 0) |

nc-xpied = (ol *}nslloc

for {§ = 0; j < nc->npred; j++)

zaped * sizeaf (in))
i (impul, %", (ne->predH)

]
clse ne->pred = NULL;

Fsound (inpul, "9ed”, & (ne->msuee));
il (ne->nswce > () {
ne->succ = (it *) malloce {nc->nsuce * sizeol (inl}):
for (j = 0; j < ne->nsuce; j++) Esconl (inpus, "%d”, (nc->succHj))
}
clse ne->suce = NULL;
]

fetose {input);

PARTITION Direclory

partition/entry.c

e 1S,

** he algorithm ol past Chupter 6,
+¥ Please refer to it for detils, **/

l

#if defined( DEBUG) [ deflined(MONITOR)

char *msg| = "Partitioning processoes .n";
B g P
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char *msg2 = "No virtual nk due to single partition’n”;
char *msgd = "Virtu ng Links , . "
Bendil
Hifdef DEBUG
Hilndel MONITOR
if (debugModle >= 1) prinid {"%s", msgi)
#endif
Herlil
#ildel MONITOR
prinif ("%s", msgl):
Henelil
partition_processors {3
#illef DEBUG
if (debugMode »= 1) {
dimdel MONITOR
printf ("%s", (nParin == 1) T msg2 : msg3);

#endif

]
#endil
#ildel MONITOR

printl {"%s”", {nPartitn == 1) ? msg2 : msgd);
#endil .
virtualize_links £ /** Find channels, **/

partition/pastition.c

/** Temporary arrays for partiioning are declared here, **/

inl *_pariitn_; {** Processots in a parlilion **/

int  *_pactitnSizg_; #** Sizcs of panidons **/

float  *_compT_; 4+ Minimum cotnputation time in cach processor **/
floal  *_commT_; /* Maximum communicalion time in each processor **f
float  *_minCompT_; /** Minimutn computation time in cach partition **/

float  *_masCommT_; /4% Mazimum communication time in cach parlition **/

partition_processors {3
£** Parition a multicomputer, **/

cover_number_of_partitions ();
discover_partition_membership ();
sort_paetition_members {;
cotisiruct parlition_atiributes G
sorl_pattitions ();
find_extreme_partition_attributes (%
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alloc_partition_associates
/** Allocate lemporary artays for partitioning, **/
{ intd, j; foat i;

** Rescl patitions. **/
_partitn_ = (int *) malloc (nProcess * sizeof (int));
for (i = 0; i < AProcess; i++) *(_partitn_+i} = i;

** Alloc auailary structures, **/

_partitnSize_ = (int *) matloc (nProcess * sizeof (int));
_compT'_ = (float *) malloc (nProcess * sizeof (floa));
_commT_ = (float *) maltoc (nLink * sizeof (Hoat));
_minCompT_ = (Mot *) malioc {nProcess * sizeof (foat));
_maxCommT_ = (Moat *) malloc (nProgess * sizeofl (flaat));

#+* Find minimam completion time (per neuren), **/
for (i = 0; i < nProcess; i++) [
*(_partitnSize_+i}=1;
*{_compT_+t) = HUGE_FLOAT,;
for (j = 1; j < nCluster; j++) [
/** eoum ail poss clusiers **/
1= proc_comp,_time(j,i),
f** min compT lor cluslers **/
ift < *{_compT_+i) *_compT_+i} =1;
|
*C_minCompT_+i) = *{_compT_+i);
*{_maxCommT_+i) = 0.0;

7** Find max communication lime {per neuron). **f
for {i=0; i < nLink; i++) {
*(_commT_+i) =00,
for (j = 1; j < nCluster; j+) {
/** Enumcraie all possible ncural clusters. **/
1= {alink(i}->ts + xlink(D)->t * xctuster()->n} { acluster(j->n;
if (t > *(_commT_+i)) *(_commT +i) =1;

find,_pariitions ()
/+* Find pactitions sccording to the algorithm of partitioning. **/
[ i i, 3, k, link_itx, proc_id, size, diuneter;

tloat teomp, wcompl, teomp2, tesmm, err;

£** Find partitions. **/
Tor €i = 0, i < nProgess! i++) |
Tor {proc_idx = 0; proc_idx < nProcess; proe_idx++) {
if ((Eink_idx = *xprocessicm(i,proc_idx)) »=0) {
i (*{_partitn_+i) 1= *(_partitn_+proc_idx}) (
tcompl = *(_minCompT_+i);
tcomp2 = *(_minCompT_+proc_idx);
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teomp = {icomp] < icomp2} 7 icomp! : womp2;
teomm = *{_maxCommT_+i) + *(_maxCommT_+proc_idx)
+ *{_cormmT_+link_idx),

. size =*(_partitnSize_+i) + *(_partinSize_+proc_idx);
diameter = (diameterMIMD <= size-1) 7 diameteeMIMD : size-1;
e = lcomm * diameter * size;
if (err / tcomp <= allowApprox) |

if (err > timeError)
1+* Find max error. **/
timcError = orr;
il (err [ toomgy > partApprax)
partApprox = oiT / icomp;
for {k = 0; k < nProcess; k++) (
i (4(_partitn_+k) == *{_partitn_+proc_idx)
1 *Cpantitn_+k) == *(_partitn_si}} {
*(_partitn_+k) = *{_partitn_+i);
*(_minCompT_+k) = tcomp;
*{_maxCommT,_+k} = comm;
*(_pantitnSize_+k) = sive;

dealloc_partition_associates
/+* Relcase temporary areays. **/
{ free {_compT_); frec (_commT_); free {_minCompT_); free (_maxCommT_}; }

discover_number_of_partitions )
f+* Discover the number of partitions, **/
{ inti, j, size, *id = (int *) malloc (nProcess * gizeof (inl));

for (i = 0; i < nProcess; i++) *(id+i}=-1;
for (i = 0: i < nProcess; i++) *(id + *(_partim_+)) = I;
for {i = 0; i < nProcess; i++)
if(Gdeiy =1} [
*{id4§) = nPartitn++;
for (size = j = 0 j < nProcess; j++)
if (*(_partitn_+j) == i} size++
*(_partitnSize_+ *{id+1)) = size;
1
for (i = 0; i < nProcess; i++)
aprocess(i}->pasdindD = ¥(id + *(_partita_+i))
frog (id); Troe {_pantitn_);

discover_pactition_membcership
4 Discover members of cach pantition. **/
{ i i, , index; B

partitn *pk;

PARTITN = (partitn *) matloc (nPartitn * sizeof (partiin));

for (i = 0; § < nPartita; i++) xpartitn(i)->n = *(_partinSize_+i)

for (i = 0 < nPartitn; i++) {
(pk = xpartitn(p))->member = (int *) matloe {nProcess * sizeof (int));
for (index =] = 0; j < nProcess; j++)

if {xprocess(->partitnlD == i) *{pk->member + index++)=j;

if (pi->n 1= index) error ("discover, -_partitn_membership”);

}

free {_partinSize ):

sort_partition_members )
* Son members inside each partition according 10 computation power. **f
{ int 1, j, k. m, wha, *membcr, itmp; float 1, smir;

for (i = 0; i < nPartitn; i++) {
n = xpactitn{i)->n;
member = xpartin)->member;
for (= 0; < w5 j+4} {
tmin = xprocess(*{member+i)->1
who =,
for (k =ik <ny k) {
1 = xprocess(* (member+k))->1
it i > 0  tmin = 1; who = k; }

}

if (who =} {
itmp = *(member+j);
*(member+j) = *{memberswho)
*(member+who) = fungy,

constract_partition_aliributes (f
/+* Transform attribuics of processors into thosc of partitions. **/
[ inti, j, n; process *p; partitn *pk;

for {i = 0; 1 < nPantitn; i++) {

n = {pk = xpanitn(i)->n;

pk->t = 0.0; pk->mem_size =0 pk->kappa = 15 pk->tkappa = .0

for(3=0; j<n j+e) {
p = xprocess(*(pk->member+j
pk->1+= (1.0 f p->1); ph->incm e 4= P> MCH_SiTe;
pk->kappa = pk->kappa && p->kappa; pk->skappa += p->1kappa;
if (p->io) pk->io =13 v

v
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1 -~
pk->t= 1.0/ pk->1; pk-stkappa /= ((Noat) n):;

sott_parlitions ()
/** Sert pantitions according 1o compulation power, **/
{ inti, j, who: Aloat 1, tmin;
partitn *pk, *pkiemp = (partitn *} malloc (sizeol (partitn));

for (i = 0y i < nPantitn; i+4) {

Lnint = {pk = xpartiinfi)}->t; who = i

for (j = i+1; j < nPuartitn; je+) {
L= xpartita(j}-»t;
if(tmin > 0 [ tmin = who = j; |

)

if {who 1= 1) (
*pktemp = * (xpartitn(i));
*(xparlitn(i)) = *(xpartitn(who));
*{xpartitn{who}} = *pkicap;

}

free (pklemyp);

find_extreme_partition_attribuies ()
#** Find the best and worsl atiributes, **/
| inti;

for (i = 0; i <nPartitn; i+4) |
if (xpartitn(i}->t < bestParlitn'T) bestPartinT = xpactitn{id-»1;
il (xpartitn{i)-»t > worstPartim T) worstPartileT = xpartitn(i}->t

partition/channel.c

viriualize_links ()

/** Transform links into channcls, **/

{
if (nPartitn == 1) { aChannel = 0; CHANNEL = NULL: reluns; }
CHANNEL = (channel *Y matloc (nLink * siveof (channel)y;
diseover partition_supputs O
discover_ partilion_il)_matrix ();
thiscover_channel_membership ();
sort_charmel_memibers (3,
construct_channel_attribwies ():

find_extreme_channel_attribuies ();

discover_partition_supports ()

/** Discover supporting partitions of cach Link, %/

{ inti, j, k, nsup, *sup, diff, n_part_sup; channcl *ch:
int *part_sup = (int *) malloc (nPartitn * sizcof (ini));

for (i = 0; i < nLink; i++) {
nsup = xlink{i)->nsup; sup = xtink(i}->sup;

/** Reset supporting partitions. ¥*/
for (j = 0; j < aPanitn; j++) *{part_sup+j) = 0;

J** Sel supporing partitiong, **/
for (j =1 j < nsup; J++} *(part_sup + xprocess{*(sup-j))->partiinID) = 1;

#+* Calculate the number of partilions connected by this.link. **/
for (n_part_sup = j = 0, j < nPartitn; j++) if (*(part_sup+j)) n_parl_sup+;
il n_pari_sup == 1) continne;

** Check difference between this channel and cxisting channels, **/
for (Il = £, j = 0; j < nChanined && diff; j++)

if (n_par_sup == {th = xchannel@)->nsup) [
for (k =k k < n_part_sup; k++)

If (¢ *{parl_sup + *{ch->sup+k)))

** Force to exit immediately. **/

k= n_part_sup+1;

i (k == n_part_sup) diff = 0;

/** This chunnel is dilferent from all existing channels, **/
i (il |
xlink(i)->chlD = nChanncl;
{ch = xchannel(nChannct++))->nsup = n _part_supy;
ch->sup = (int *} matloc (n_parl_sup * sizeof {ing));
for (k=7=0; j<n_part_sup; j++)
while(! *(part_sup+k)) k++;
*eh-ssup+)) = k++;

)
/** j-1 ig necessary becauso j was increased by one, **/
else alink(i)->chlD = j-1;

discover_partition_adj_marrix ()
#4* Discover a multi-partition adjacent matrix, **/
[ int i, j, k, nsup; partitn *pk; channel *ch;

PARTITN_ICM = (int *) malloc {nPartitn * nPuartitn * sizeof {int));
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for (i = 0; i < nPartitn; i++) for (j = 0; j < nPartiin; j++) *(xpartitnicm{i,j)) = 13

f** Calculate pantition TCM. **/
for (i = 0; i < nChannel; i++) [
nsup = {ch = xchannel(i))->nsup;
for (j = 0; j < nsup; j++)
for (k = 0; k < nsup; k++)
if 4 1= k) * (xpartitnicm{* (ch->sup+j) *(ch->sup+k))) = ii

discover_chaanci_membership
** Discover members of cach channel. **/
{ int i, j, index; channcl *ch;

for (i = 0; i < nChanncl; i++) (
(ch = xchanncl(i))->n = 0;
for (; = 0; j < nLink; j++)if (xlink(§)->chiD == i) {Ch->n}++;
ch->member = (int *) malloc (ch->n * sizeof Gni));
for (index = j = (& } < nLink; j++) if(xlink(j)}->chiD == i} *(ch->member + index++) = j;
if (ch->n 1= index) error {"discover_channcl_membership™);

sort_channet_members ()
* Sort members inside each channel according 10 communication power, **/
{ inti, j, k. n, who, itmp, *member; float tmin, t; channei *cly;

for (i = 0; i < nChannel; i++} [
n ={ch = xchannel(i))->n; member = ch->membern;
for (j=0;j < jH)
tmin = xlink(* (member+j)}->tx: who =
for (k=L k<n k) |
t = xlink(*{member+k))->1x;
il (unin > 1) { min= who=X; |
)
if (whal=)) [
itmp = *(member+j);
*{member+j) = *(member+who);
*(member+who} = itmp;

construct_channcl_sttribuies ()
/** Transform atiributes of links into those of channels. **/
{ inti, j, », *member; channel *ch;

for (i = 0; i < nChannel; i++} {
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n = {ch = xchannel(i})->n; member = ch->membern;
ch->1s = ch->tx =00,
for =00 j <oy je+y ]

ch->1s += xlink(* (membar+j})->1s;

ch->tx += (1.0 xlink{*(membersj})->tx);
}
ch->15 /= ((Doat} n); ch->tx = 1,0/ ch-»1x;

find_cxucme_channcl_attributes ()
£** Find the best and worst sutributes of channels. **/
[ int i; channel *ch;

for (i = ; i < nChannek; i++) [
¢h = xchanne¥i);
if {ch->18 < bestChTs) besiChTs = ch-»1s;
il {ch->x < bestChTx) bestChTx = ch->x;
if {ch->ts > worsiChTs) worstChTs = che»1s;
if {ch->tx > worsIChTx} worstChTx = ch->(x;

yesno is_partitn_support (pactitn_id, ch_id}

1** Check if the scoend {channet) is supporied by the first {partition). **/
i partin_id, ch_if;

[ int §, n; chaancl *ch = xchannel(ch,_id);

for (3 = 0; 1 < ch-»nsup; i++) if {partitn_id == *{ch->sup+i)} retum YES;
retarn NO;

SEARCH Directory

searchfabe.c

/** This file contains temporary arays [or the search solver. *¥/

int tinTempArray; £+* Combination **/

i touTemphtray; % Combinution *¥/

int *ourTempArmay; 4 Combinasion **/

floal  *timeTempAmay,; * Time retated bulTers **#/

float  *tauTempArray; /*+* Timg related bin-packing distribution **/
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Moal  *hTimeTempArray, 7+* Time selated bounding **/
float  *bTaiTempArs £+ Time refated bounding **f

in *source TempArriy: 1% Routing **/

int *destTempArTny; ** Rouling **/

int *diffTempArray; ** Routing **/

it *bcTempArray; ** Broadeast routing **/

it **dataTempMatrix; f** Reuling **/

#dahnexdaiz(i.j) *{*{dataTempMalrix + ) + 5 /** Data matrix **/

J+* Avorages of parameters of channels *4/
foal  avgChTs /*+ Average sctup time of channels **f
flomt avgChTx; /** Average Lransmission lime of chanrels *4/

/** Bollleneck of parameters of channels **/
Noat  bolkeChTs;

Noat  boltleChTx;

int bolleCh:

/+* Currend broadeast altribites **/

float  beTs = 0.8, /** Broadcast transmission time **/
float  HTx =00 /** Broadcast setup time **/
scarchfenlry.C

(
#if defined(DEBUG) || defined(MONITOR)
char *msg1 = "inilializing search cnvisonment L
char *nisg? = "searching optimal napping Ly
#endif
#ifdel DEBUG
Eifndef MONITOR
if {debugMode »= 1) printf ("%s", msgl);
#endif
#endif
Fifdef MONITOR
printf {"%s", msg1):
fendil
init_search {);

#ildef DEBUG

dilndel MONITOR
if (debugMode >= 1) printf ("%as”, mspl};

#eadif

Aendif

Rillel MONTTOR

At s

tiendil

search ()

#if defined(STATISTICS) && defincd(MONITOR)
prietf (“mwnSearch Simistics ")
print] ("Number of Nodes Generated = %dn”, nGenerated);
printf ("Number of Nodes Feasible = %", nFeasible);
printf (“Numbcr of Nodes Infeasible = %, ninfeasible);
printf ("Number of Nodes Praned = %", aPruncd);
Hendif
]

rool_generator ()

#** Generaw a root node for the search tree, */
{ .
rootNede = aliocate_node (NULL, 0.0, -1, -1, ROOT_NODE):
rootNode-slewb = evaluate_lower_bound {rootNode);
rootNode->upb = evatuate, upper_bound (rootNode);

insert {rootNode);

init_search
J** Initiatize scarch environment. **/
[ inLi, j;

/** Temporary arrays lor combination **/
inTempArray = (int *} maloc (wProcess * sizeof (inf));
outTempArray = {int *) malloc {nProcess * sizeof (int)),
pelempAreny = (int *y makloe (nProcess * sizeal (in1)):
for (it = 0; i < nParlite; i++) *(inTempAreay+§) = i

/** Temporacy arrays for assignment and routing nodes **/
timeTempArray = {float *) malloc (nProcess * sizeof (float));
wauTempArray = (float *) madloc (nProcess * sizeof (float));

{** Temparary artays for bounding **/
YTimeTempArray = (float *) maloc (nProcess * sizeof (floan));
WrauTempArray = (Boat *) malloc (nProcess * sizeof (float)).

/** Temporary arrays [or routing **/

sourceTempArray = (int *} malloc (nProcess * sizeof (ing));

destTempArray = (int *) malloc (nProcess * sizeof @int));

diffTempAray = (int *) maltoc (nProcess * sizeol {iny));

dataTempMatrix = {int **) malloc (nProcess * sizeol {nt *)%

for (i = 0; § < nPartitn; i++) *(GataTempMasrix+i) = (int *) malloc {nProcess * sizeof (int));

f** Temporary arrays for broadcasting **/
beTempAnay = (pBeast) T (int *) malloc (nBeast * sizeof (inl)) : NULL;
avgChTs = avgChTx = 0.0;
il (nChannel) (
For {1 = 1; i < aChanael; i++) {
avpChTs = schannel(iy->ts;
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avgChTx += xchannel(i)->1x;
]
avgChTs /= ({floa) nChannel);
avgChTx /= {{float) nChanncl);

bolleChTs = xchannel(i)-»is;
boltlcChTx = xchannel{i)->Lx;
bottleCh = 0;
for (i = 1; i < nChannel; i++}
if (bottleChTx < xchannel(i)->1x) {
bouleCh=i;
bowleChTx = xchannel(i}->tx; \
bollleChTs = xchanncl{i)->ts;

/** Resct the assignment matrix, **%/
ASGNT = (int *) malloc (nProcess * nCluster * sizeof (ing));
for (i = 0; i < nProcess; i++} for (= 0; j < nClusier; j++) *{xasgnl{ii) =0

heap_init (:

yesno is_infeasible (x)
{** Check infeasibility of a scarch node. **/
node *x;

if (x->lype == NTERM_ASGN_NODE && x->degree I=-1 && x->degree < 2) return YES;
return NO;

yesno is_feasibic (x)
1** Check Feasibitity of a search node, **/
node *x;
{ return ({x->type =="GOAL_NODE)? YES : NO); }

fioat evaluate_cost {p)

/** Evaluate the cost of a search node. **/
node *p:

{ return p->g_cost; §

#define clear_stack() sp=-1;

#define push(p) *{stack + ++spl = p
#define pop() {*(stack + sp--
#define emply_stack() sp<)

evaluate_sotution {Ip, x)
** Given a goat node, trace back up to the root and
*+ push alf scarch nodes enlo a stack along the path

10t

** from this goal node to Lhe foot node.
** Evcntually, the geal node s at the botiom and
*% the root nede is al the top. Then, pop node by node
** from the stack to construct 2 mapping schenc. **/
FILE *{p; node *x; ’
[ it i, sp, count = 1, amount; nede **stack, *p; Aoat *bp_time;
FILE *tpsim, *fpmachine = fopen ("map-machine™, "w"};
#ifdef MONITOR
fleal time;
Hendif
if (x == NULL) error ("strange! no sofution”):
fpsim = fopen ("map-sint”, "w");
fprintf (fpsim, “%[ %", completion_time (x), ((oat} (tsim . 1ms_utime - tsim0,tms_utime})):

% Tnitialize processoss far intea-pactition even distribution. **/
bp_time = (floal *} mallec (nirocess * sizeol (Moa));
for (i = 0; i < nProcess; i++) *(bp_time+i) = 0.0;

* Calculate the number of terminal a
for {p = x; p; p = p->parent) counts+;
if (count <= 1) ceror ("Strange ! No Solution ? Internal Error 17"

pnment nodes. **4/

/+* Push ail scarch nodes onto Lhe stack along the path

** from this goal node to the root nede., **/

stack = (node **} malloc (coumt * sizeof (node *));

clear_stack ()

for {p = x ; p; p = p->parent) push {p); ,

** Pop node by node 1o consiruct a mapping schome. *¥/
while (| empty_stack ) {
swilch ((p = pop ()->type) [
cose TERM_ASGN_NODE:
detailed_assign {p, bp_time);

Hifdef MONITOR
fpeintd (fp, "For Cluster Baba®, p->ak);
fpeintl (O, "Partition-Levet Assignueent; "), '
fprindf (€p, " fpartitn #ncaren 1"}
for (i =0; i < nParti; 44} Fprined (T, " (%, %d) ", i, *(p->assiga+));
fprintd (Ip, ™");
fprintf ([p, “Processor-Level Assignment: “¥;
fprined {fp, " (process,#neuren]\n”);
Tor (i = 0; i < nProcess; i++) fprint (fy, " (%d.%d) ", i, *{xasgnt(i,p->nk));
fpeintf (Ip, ™07
CprintF ([, "node = %d, ctime = %egn”, p, max_foat (p->ctime, nPartitn}};
#endil '

for (i=1% i< nProcess; i++) |
fprintl (fpmachine, "machinc=%4, cluster="%d => ¥ i, p->nkk
fprintf (fpsim, "%d %d “, i, >0k,
ameani, = *(xasgnt(i,p->nk));
fprinif {fpmachine, “%dn", amount);
fprintf (fpsim, "%0 %0 %l %",
amount * scluster(p->nk}->peunit,
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amount * xeluster(p->nk}->prunit,
amount * xchwter(p->nk)->lewrit,
anmounl ¥ xeluster(y->uk)-> il

]
break;
. case PROUT_NQDE:
#ifdel MONITOR
if (p->roule) timeError 4= p->rovle->erer;
fprintf {fp, "Routing ...a");
fprintf {Ip, "node = %d, ctime = %g\t", p, max_float (p->ctime, nPartiin});
hreak;
case LROUT_NODE: .
if {p->route) timeError 4= p->rowe->error;
Tpeintd {fp, "Learning+Rouling .. Ja");
fprintf (fp, "nodde = %d, clime = %ghn”, p, max_oat (p->clime, nPartitn}};
breaks :
Hondif
defanft: break;
]
}

fclose {Tpsim); fclose ([pmachincy;

#ildjel MONITOR

time = completion_tme {x);

fprintf (fp, "OFTIMAL MAPPING\1");

fprintf (fp, “Min Cornpletion Time = %ghn”, time);

Fprintf {Ip, "With Error = %aghn", timeErroz / time);

Iprintf {fp, "Approx Allowed = %g\n", ailowApprox};

forintf (Ip, "Approx Partition Introduced = %bg\n", partApprox);

Tprintf (fp, "Approx Allocated for Mapping = %g\n”, mappingApprox);
dendif

free {bp_time); free {stack);

_Sck()
Hundefl push(p)

#undef popQ
Hundef emply_siack) -

set_mapping_approx (b

/** Caleulste an approximation degree for the mapping solver

** hased on user-specificd error allowance and crror incurred

** in partitioning, **/

{ mappingApprox = (allowApprox - panApprox) / (1.0 + partApprex);

cnier_pruned (x)

1** Mark this scarch node as pruned, **/
noxde *x;

{

Hifde [ STATISTICS
nPrunced-++;

Hendil
frec_node(x);

yesna is_tdominated (x) node *x; { return NO: )
** Check dominance of this scarch code, **f

detailed_assign (x, bp_time)
** Solbve a detailed mapping scheme at processor lovel
** rather than at partition level *4/
nogke *x; Moal by _time(;
{ int pk;

for (pk = 0; pk < nPartitng pk++}
if (*{x->assign+pk) > 0) detaited_partitn_assign (pk, x->nk, *(x->assign+pk), bp_time);

detailed_partitn_assign (pk, nk, amount, bp_time)
J** Auxiliary routine for detailed_assign above,
** Even distribution of newrons over processors inside a partition
*+ according 10 computation powct, **/
int pk, nk, amount;
fioat bp_time();
A inl n = xpartitn(pk}->n, *member = xpartiin{pk)->member;
int i, diff, pid;
lloat rzlio = 0.0, inverse = 0.0, num, portion;
flgat unit = xcluster(nk)-==peunit + xclusier(nk)->kcunit:

for (=08 < i) {
pid = *{member+i);
*{tnTempArray+pid) = xprocess(pid}->1 * uniy;

for (i = 0y § < n; i++) |
pid = *{member+y;
ratio += {hp_time| pid] / *(aaTempArmay+pid)):
inverse += (1.0 / *(sauTempArray+pidy

)

nuem = {amount + ralio) / inverse;

Tor (dilT = amount, i = 0;1 < n; i+4) {
pid = *(member+);
portien = (hum - bp_time([pid]) / *(tlauTempArray+pid);
il -= (*{xasgni(*(mermber+i),nk)) = ({int) portion));

#** make up roundolT crror *+/
while (il >= )

Tor (i = 0; § < n; i++, GiEl-) (*(xasgnt(*(member+D),nk)))++;
for {i= 0; i < dill; i+4) {

e mpm ey [ e
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pid = *(member+i);
(*(xasgrt(pid,nk})++;
bp_time[pid] += (xprocess(pid)->t * unit):

search/zcarch.c

scarch
7* This routine is actually a branch-and-bound algarithm. */
[ node *x; float cost;
#ildel MONITOR
#define MONITOR_COUNT 100
int monitor_count = (;
Hendif
1o0t_generator ()
for (x = delete (); x; % =delete ) {
#ifdel MONITOR
if (++monitor_count >= MONITOR_COUNT) {
prind ("%
monitor,_count = 0,

}

if (optimalSolution & & x->lowb > glUpperBound || is_deminated (x)) [
#ifdel STATISTICS

#Hendif

++hPruncd;
#endif
frec_node (x);
] else
if (is_feasible (1)) {
#ifdel STATISTICS
++nFeasible;
#endif .
cost = evaluate_cost {x);
if {cost < completienTime) {
gUpperBound = completionTime = cost;
if (optimalSolution) free_node {optimalSotution);
optimalSolution = x;
)
clse Free_noxde (x);
}else
if (is_infeasible (x)} {
difdef STATISTICS
++aknfcasible;
#endil

free_rode (x);
} else split {x);
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}
#ifdef MONITOR
printf(™a"};
#endif
times {&1sim1);
cvaluate_sotution (stout, optimalSolution);

search/split.c

splie (x)

7* Split a seach node into several child nodes, *f
node *x;

{ noile *p; nodlype type = x->type; .
inluk = x-20k, L1, & lom G

if {type == PROUT_NODE |[ type == LROUT_NODE) 1 = (] = k) + 1;
clse {

1= xcluster{nk)->layerTD;

i (nk >=nCluster - 1) [1 =1; else 11 = xcluster(nk+1)->layeriD;

swilch (type) {
case GOAL_NODE:
crror ("split: impossible GOAL_NCDE here™);
break;

case ROOT_NODE; /** Sprout from a root node, *#/
for (i = 0; i < nPartitn; i++) *(imeTempArray+i) = 0.0;
sprout (x);
beeak;

case PROUT_NODE: /** Find the nexl assignment. **/
if (1 < nLayer - 2) { '
for (i = 0; i < aPartiln; i++) *(imeTempArray+i) = *(x->clime+i);

f** inlerface to nex| assign node **/
for (xe>nk = -1, 1= 0; i <= 18 i+4) x>0k += xlayer{i)->n;
sprout {x);
x->nk = I; /** Restore from initialization. **f
} else |
x->nk = nLaycer;
for (i =0 i < nParlitn; i++} *(UmeTempArray+8) = *{x-»ctine+i);
L_routing (x);
}

break;

case LROUT_NODE: /** Solve learning-phase routing. **/
>0



for (i = 8; i < nPartitn; i++) *(timeTempArray+) = *(x-»ctime+i);
L_routing (x);
) else {
P les 1
t = max_oat (x->clime, nPartitn);
p = allocate_node (x, 1,0, -1, GOAL_NODE);
L_comp (p);
p->g_cost =max_float (p->ctime, nPartitn);
cstablish_ncw (pk

}

break;

case TERM_ASGN_NODE: .

il ((nk == 0 && PullANN} | ¢H <= 1 && hybrid ANN)) [

/** This case is sprouting only and no rouling necessaty.

** For a fully-connected ANN, it is a terminal

** assignment node with tieoml cluster (),

*# Por n hybrid multitayer ANN, it is 2 neural cluster

** within the lirst 2 layers, *%/
Tor (i =0; i < nParliln; i++) *(mcTompArray+) = *(x->clime+);
sprost {x);

] else
i {(nk == nCluster- 1 10 >= 1 && 1 == L+1)) {

% Dayer 1, %%/
P_routing (x);

Yelse |
for (i = 0; | < nPartiln; i++) *(UmcTempArtay+i) = *(x->clime+i);
sprout {x);

]

break;

case NTERM_ASGN_NODE:
#* This s on is same [or all kinds of ANNs, */
for (i = 0; i < nPartitn; i+4) *(UmeTempArtay+i) = *(x->itime+iy
cxpand (x);
break;

default; /** Thi spossible case, **f

search/expand.c

Hirj

#* Expand a node from a nenterminal assignment node (NTERM_ASGN_NODE).
#» Chitdren are different combinalions of assignments from this node
** a2 well as s NTERM_ASGN_NODE child, **/

i, firsi_time, degree = x->degree, nk = x->nk;

if {(degree < 2) ( /#* This NTERM_ASGN, NODE node is closed. **/
Hiklef STATISTICS
++nlnfeasible;
frendif
free_node (1); '
relum; :

1

/+* Sprout (subset) full assingment children. **/
first_time = 1;
for {i = 0; i < nPartitn; i++) * (inTempArray+i) = i
while {gel_cotnh (degree, nPani, firsy_time) == YES) (
first_time =1
new = allocate_pode (x, 0.0, nk, -1, TERM_ASGN_NODE);
bp._assiga (nk, oulTempArray, degree, new);
establish_new (new);

)

/** Sprowt a nonterminal assignment node, **f

new = ntlocate_node (5, x->g_cost, ok, degree-1, NTERM_ASCGN_NOBRE)X,
cstatdish_new (new);

{x->RSprowt}++; .
for {i = 0; i < nPartitn; H+) *{new->clime+i} = *(new->itime+i) = *(imeTempAmay+);

sprowt (x) )

% A now assignmenl node is going to sprout its childeen, 1t sprouts

** 5 number of TERM_ASGN_NODES and a NON_TERM_ASGN_NODE node. **/
nodle *x;

i node *new; int nk = x->nk+1, i, j;

x->nsprout = nPartitn + 2;

** Sprout singular children, **/
for (i = 0; i < nPartite; i4+4) {
new = allocate_node (x, 0.0, ok, -1, TERM_ASGN_NODE);
for (j = 0; j < nParttn; j++)
if (i == j) *(new->assign+f) = scluster(nk)->n; else *{new->assign)) =0;
fox (j = 0; j < nPartitn; j++) *{new->ctime+j) = *(new->itme+j) = *(limeTempArray+j);
assigh_comp_lime {new, ok}
new->g_cost = max_float (new->ctime, nPartin};
cslablish_new (new);

£+* Sprout full-ussignment childeen. **/
new = aftocate_node (x, 0.0, nk, -1, TERM_ASGN_NODE);
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bp_assign (nk, inTempArray, nPartitn, new):
establish_ncw (new):

f** Sprout a nonterminal assignment node, **/

new = allocate_node (x, x->g_cost, ik, nPartiwn-1, NTERM_ASGN_NODE},
esuablish_new (new);

for {i = 0; i < nPattitn; i++) *(new->clime+i} = *(new->iime+) = *(imeTempAsmay+ik

establish_new (new)
/** Evaluate lower and upper bounds of this new node.
** Pruning test is done accordingly.
** Insert this node into a heap iF it is not pruncd, **/
node *new; .
[
if {new->type =w NTERM_ASGN, NODE) {
new->lowh = new->patent->fowb;
new->upb = new->parent->upb;
] else {
new->lowb = evaluaie_lower_bound (new):
new->upb = cvajuae_upper_bound (new);
if (mew->upb < gUpperBound) gUpperBound = new->upb;
)

if {optimalSolution && new->lowh > get_expocted_opt (gUpperBound)} eoter_prancd {new);
else insert (new):

yesno get_comb (a1, m, first_time)

/** Find a permutation of n processors selected from m processors, **/
int o, m, first_time;

{ inti;

il (fist_time} for (i = 0; | < m; i++) puTempAmay(il = i;

f** Consider the special case for symmelric and homogencous MIMD, **/
if (homoMIMD & & symMIMD) [
if (first_time} [
for {i = 0; i < m; i++) outTempArray[i) = i;
retern YES;
Wa:_:_ NO;
]

1** Now, come & the general cases, **/
il (pirTempArray[n-1} < m) {
for (i = 0; i < n; i++) outTempArmy[i] = inTempArrayipie TempAreaylil);
for (i = n-1; ++ptrTempArrayli] > men+i; i--} il (i <= 0} break;
for (i=Li<nits)
if (pirTempAmay[i] > m-n#) puTempArray(i] = puTempAmayli-1) + 1
return YES;

" o ]

)
return NO:

float get_cxpected, opt (val) float val;
* Calculate the expected optimality for bounaing by approximation. ¥/
{ return (val / (1.0 + mappingApprox)); |

search/bound.c

flom evabuate_lower_bomd (x)
4% Evalunie the Tower baud of a node.
** The algoritlm is deseribed in Chapter 6. %%/
nede *x;
{ nodlype type = x->1ype;
intnk = x>0k, 1= x>0k, i
float cline = x->g_cost, omp = 0,0, womm = 0.0;

if (uPartitn <= 1) retum 0,05

switch (iype) {
case GOAL_NODE: break;

case ROOT_NODE:
tcomp = best_PCF (0, nCluster-1) + best_LCT (nClusler-1, 0);
tcomm = best_PRT {0, nLayer-2) + best_LRT (nLayer-, 1);
clime = {tcomp + teomm) / nParlitn; /** both nPactitn **/
break;

case PROUT_NODE:
tcomp = hest_LCTF (nCluster-1, 0}
tcomm = hest_LRT (nkayer-1, 1);
il (I <nlayer-2) {
far (nk =i =0; i < 1+2; i++} nk += xlayer(i}->n;
teomp += best_PCT (nk, nCluster-1);
tcomm += best_PRT (1+1, nLayer-2);
} .
ctime += ({lcomp + tcomm) / nPartitn);
break;

case LROUT _NODE:
ita>o(
for 0k = -1, =000 < I; i++} 0k += xlayer(i}->n;
tcomp = best_LCT (nk, O
if {1 > 1) womm = best_LRT {1-1,1);
clime += {{icomp + teonun) / nFartitn);

break;



case TERM_ASGN_NODE:

ister-1, 0);

= best_LRT (nLayer-i, 1)

il {nk < nCluster - 1} 1comp += best_PCT (k.

il = xeluster(nk)->layeriDy == 0} i = [}
lcomm += best_PRT {I-1, nLayer-2);
ctime += ((tcomp + tcomsm) / nParlitny;
break;

Chusier- 1)

case NTERM_ASGN_NODE:
if (x->parcul) [ \
if (cime < xe>parenl->lowb) clime = x->parcnt-> lowb;

else error ("evaluale_lower_bo impaossible condition™;
break;
defauit:
error "evahite_lower_botnudz no sueh node type”;
break;

if (x->parent) if (x->parent->lowb > ctime) clime = x->pacent->lowly;
retum ¢lime:

float evaluale_upper_bound (x)

f** Evaluate the upper bound of a node.

** The afgorithm is described in Chapter 6. *%/
nocke *x;

| nodiype lype = x->type;

intnk = x-»nk, 1= x-»nk, i

float clime = x->~p cost, leomp = 04, ieomm = 0L,

i {nPartitn <= 1) retum HUG LOAT
switch (ype) [

case GOAL_NODE: break;

case ROOT_NODE;
tcomp = worst_PCT (0, nClustet-1} + worst_LCT {nCluster-1, 0);
fcomm = worst_PRT (0}, nLayer-2) + worst LRT {nLayer-1, i)
if (nBeast > 0 clime = comp / nParlin + lcommy,
clse ctime = {icomp + icomm* aChannel) / nPartitn;
teomp = best_PCT (0, nCluster-1) + best_LCT {(nClusler-1, 0);
if {tcomp < ctime} clime = {comp;
break:

case PROUT_NODE:
teamp = worst LCT (nCluster-1, 0);
womm = worst_LRT {nLayer-1, i),
if (1« nLayer-2) {
for {nk =i = 0;§ < i+2: i#4) nk += xipyer(i}->n;
eonyp += worst_PCT (nk, nCluster-1);
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lcomm += worst_PRT (I+], nLayer-2);
)
if (nBoust > 0) ctie += (lcomp / aPartiin + omin);
else ctime += {lcomp + tcomm * nChanncl) / nlartitn;
break;

case LROUT_NGDE:

>0
for {(nk =-1,i = 0; i < I; i++) nk += xtaycr(i}>n;
tcotp = worst_LCT (nk, O}
il (1> 1) tcomm = wors, LRT (1-1,1):
if (nBeast » 0} ctime += ((comp / nPaztitn + comm);
clse clime += {lcomp + tcomm * nChanncl) / nPartim;

}

break;

case TERM_ASGN_NODE:
tcomp = worst_LCT (nClusier-1,0);
tcormn = worst_LRT (nLayer-1, 1);
if {nk < nCluster - 1} 1comp += woesl_PCT (pk+1, nCluster-1);
if ({1 = xcluster(nk)->FayerID) == 0} 1= 1;
tcomm += worst_PRT (I-1, nLaycr-2);
if {nTeast > () chime += {icomp f nPartita + teomm):
clse clime += (icomp + lcomm * aChanncl) / nParlin;
break;

case NTERM_ASGN_NODE:
if (x->parent) ciime = x->parent->upb;
elses error ("evaluate_upper_bound: impossible condidon");
break;

defaunk:
error {'c
break:

e such node Lype™);

uate:_ieppee, houn,

)

relum ctime;

floal best_PCT (nk1, rk2)

£** Caleulate the best priduction-phase computation time, **/
int nkt, nk2;

[ i i; Noat t = 0.0;

for (i = nk1; i <= nk2; i++) t +2= (besiPartitnT * xcluster(i)->n * xcluster(->peunit);
fetuen ¢

Mot best_LCT (nkl, nkZ2)

£ Caleulate the best leaming-phase computation time. **/
int nkl, nk2;

{ int i; float 1 = 0.0;



Tor (i = nk1; i >= nk2; j--) L += (hestPartiinT * xeluster(i)->n * xcluster(i)->leunit);
return

float best_PRT (l1, 12)

/** Calculate the best production-phase routing time. **/
int11,12;

[ int i, j, nk; float £ = 0.9, amount:

for (i=11;i<=12; i++) L
for (j = 0; j < xlayer(i)->n; je+)
nk = *(xlaycr{i)->member +
Aamount = xcluster{nk}->n * xclusier(nk)->prunit;
il (nBeast > 0) {
amount /= nProcess;
/** BCAST(Q) is the primary broadcast, **/
L 4= {abeas(0)->ts + amount * xbeasi(()->1x);
}
tlse t+= (bestChTs + amount * bestChTx);

return 1,

float best_LRT (1L, 12)

£** Caleulate the best learning-phase routing time. **/
int1l,12;

{ inti, j, nk: lioat 1 = 0.9, amount;

for(i=1i>=12;i)
for (j = 0; j < xlayer(i)->n: j++) {

rk = *(xlayer(i)-»>member + j);

amount = xclusier(nk)->n * xclester(nk)->lrunit;

if (nBeast > 0)
amount /= nProcess;
f** BCASTI0] is the primary broadcast, **/
1+= (xbcast(0)->(s + amount * xbeast{0)->x);

]

else t+= (bestChTs + amount * bestChTx);

]

retum §;

float werst_PCT {nk1, nk2)

/** Calculate the worst production-phase computation time. **/
int nk1, nk?2;

[ int i; float t = 0.0;

for (i = nk1; { <= nk2; i+ 1 4= (worsiPantitnT * xcluster(i)->n * acluster(i)->peunicy
retam t;
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Ikent worst_ECT {nkt, nk2)

/** Calculme the worst leaeming-phase computation lime, **/
int nkl, nkZ; .

{ il i; float 1 = 0.k

for (i=nkt; i >= nk2; i--} t += (worstParlitnT * xcluster(B->n * xchuster(i)->lcunit);
returm t;

foat worst_PRT (I, 12)

£* Calculate the worst production-phase routing time. %/
it 1,12;

{ int L, J, nk; float ¢ = 0.0, amount;

for (i =111 <= 12; i++)
for (j = 0; ] < xtayer(i)->u; j++) {
nk = *(xlayer{i)-»member + j);
amotnt = xelusier(nk)->n * xeluster{nk)->pranit;
il {nBeast > ()
/** BCASTI0] is the primary broadcast. *¥/
L= (xbeasi(0)->13 + amount * xbeast(()->1e);
clse L= (worsIChTs + amount * worsiChTx);

]

relum §;

float worst, LRT (i1, i2)

#+* Calculate the worst learning-plase routing lime, **/
int 11,12

[ int i, j, nk; floar £ = 0.0, amount;

for (i= 15 i>=12; §--)
for (= O; § < xlayes{i)->n; j++) (
nk = *(xlayes(E)->member + j;
amount = xeluster(nk)->n * xcluster(nk)->lrunjt;
if (nBeast > 0)
£** BCAST(O} is the primary broadcast, *¥/
4= (abeast{0)->15 + amount * xbeasi(0)->ta);
else 1 4= (worsiChTs + amount * worstChTx);

retom 4

" scarch/comp.c

assign_comyp_time (x, nk)
{* Calculale computation time for assignment nodes, */



nodke *x; int nk;
{ int i, amount;

fot (i = 0; i < nPartitn; i++) |
amaount = *{x->assign);
*(x->tlime+) += pari_P_comp_time (amount, nk, i)

_ )
1
L_comp (x}
/** Perform learning-phase computation tasks for a layer, **/
nodde *x;
[ inl 1 = x->rk, i, amount; node *p;
for {p = x->parent; p; = p->parent}
it (p->type == TERM_ASGN_NODE}
if (xetusier{p->nk)->layerlD == 1)
for (i = 0; i < nParfitn i++} {
amount = *(p->assign+i);
Hx-sclimedi) += port_L_comp_time (amount, p->ak, iy;
}
]

bp_assign (nk, pklist, n, x)
/** Assign a neural elusier over a sel of partilions aceording to
** computation power and idlencss of cach partition,
** The arrays ilime, clime and g_cost are evalualed accordingly.
£+ The algarithm is deseribed in Chaprer 6. **/
ingask, pklist]], w; node *
44 Parametet o is the nmber of partitions in listpklist, **/
{ int i, pk, amount;

for (i = 0; i < nPartitn; i+4) * (x-5ctimeti) = *(x->iEme+i) = *(HmcTempArsay-+);
bp_dislr {nk, pklist, n, x);

assign_comp_time (x, nk);

x->g_cosl = max_float (x->ctime, nPartiln);

bp_distr (nk, pklist, n, x}
f** Perform a bin-packing distribulion based on
** the initial siaet time in node x and '
** computation power of partitions specified in List pklist.
** The algorithim is deseribed in Chapter 6. **/

inL nk, pklist[}, n; node *x;
int i, j, k, ni, i€y Noat sgio = 0.0,

erse = (L0, mun, portion;

for (i = 0; i < nPartitn} i+4) *(eTempArray+i) = 0.0
for(i=0ii<n i+

k = pklist[il;

*(tanTempArray+k) = pact_P_comp_time (1, nk, k)
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]

ni = xcluster(nk)->n;

for (i=0;i<miet) [
k = pklist[il;
ratio += ("{(x->itime+k) / *(LauTempAmay+k));
inverse += (1.0 *{tauTempArray+k)):

num = {ni + rotio) / inverse:

for (i = 0: i < nPartiin; i++) *(x->assign+t) = 0;

diff = ni;

for{fi=0cian;in) |
j = phlist(il
portion = {num - *(x->itime+j}} / *{louTempArray+j);
il -= (*{x->assign+j) = ((inl) portion));

f** Make up roundoll ceror, **f
while (dilf >=n) for (i = O; i < n; i++) [ diffes; (*(x->assign + pklisii]}}++; )
Tor (i = 0; i < diff; i++) ((x->assign+pklist[i])}++;

scarch/comm.c

P_touting (x)
/** Solve production-phase routing from layer }o layer 141,
** The areay ctime and the g_cost of node x are updated accordingly,
** and the array ctime and g_coxt of u new node are updated also. **/
node *x;
{ int type = ->type, | = xclugter(x->nk)->layerID - 1;
int, j, z, n, *member, nk;
ngde *new, *p_s, *p_d; route *r, *rd;

ngw = allocale_nede (x,0.0, 1, -1, PROUT_NQDE);
for {i = 0; i < nPartitn; i++) *(imeTempArray+i) = *{new->ctime+i);
for {p_s = x; p_s; p_s = p_s->parenc) |
if (n_s->lype == TERM_ASGN_NODE} {
if (xclugter(p_s->nk)}-slayerlD == J) [
for (i = 0; i < nPartitn; ++) {
*(sourceTempArray+i) = *(p_s->assign+i);
*{destTempArray i) = 0;
}
for {(p_d = x; p_d; p_d = p_d->parcn) {
il (p_d-»type == TERM_ASGN_NODE) [
if (is_succe_cluster {p_d->nk, p_s->nk} == YES) {
for (i = 0; i < nPartitn; i++)
*{destTempArray+i) =
*{destTempAmay-+i) )| *(p_d->assign+i);



)
{r =routing {p_s->nk, PCOMM,))->next = NULL;
if (new->routc) |
for (10 = new->route; r0->next; 1 = )->next}
->next=r1;
}

else new->route = r;

1

for i = 0 i < nPurliln; i++) *(new->ctime+i) = *(limeTempArray+);
new->g_cost = max_float (new->clime, nPartitn);
establish_ncw (new);

L_routing {x)
** Solve learning-phase routing from Jayer | to fayer I-1.
** ‘The array ctime and (he g_cost of node x are updated accordingly,
** and the array clime and g_cost of a new node are updated alse. **f
node *x;
{ int type = x->type, I = x->nk - 1,4, j, 7, », *member, nk;
node *new, *p_s, *p_d; route *r, *10;

L_comp ((new = allocate_node {x, 00,1, -1, LROUT_NODE)))
for {i = 0; i < nPartitn; i++) *(timeTempAray+H) = *(new->clime+);
for (p_s = x; p_s; p_s = p_s->parent) {
if {p_s->1ype == TERM_ASGN_NODE) {
if {xetuster(p_s->nk}->layerlD == 1) [
for (i =0; i < nPanlitn; i++} {
*{source TempAmay+i} = *(p_s->assign+i);
*(destTempAnay+i) = 0;
}
for (p_d = p_s->parent; p_d; p_d = p_d->parent)
if {p_d->type == TERM_ASGN_NODE) [
if (is_pred_ctuster (p_d->nk, p_s->nk) == YES} {
. for (i = 0; 1 < nPartitn; i++)
*{destFempArray+i} =
*{destTempArray+i) || *(p_d->assign+i);

(r = routing (p_s->nk,

L.COMM))->next = NULL;

if {pew->roule) |
for () = new->route;
->next; i} = r)->neal)
Hhsneat =

}

else new->rople =,
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H
“ -5
for (i = 0y i < nPartisn; b++) *(now->ctime+H) = *@mcTempArray+i)
new->g_cost = max_float (new->clime, nParlitn);
cstablish_new (new):

yesno is_pred_chuster {nk1, nk2}
#* Check if cluster nk1 is one of the predecessors of cluster nk2. **/
int nkl, nk2;
[ int npred = xcluster(ak2}->npred, *pred = xcluster(nk2)->pred, it

for (i = 0; § < npred; i++) i (nk1 == *{pred+i)) return TRUE;
return FALSE;

yesno is_suce_cluster (nk I, nk2)
J* Cheek i clusser nk1 is one of the successors of clusier ak2. **/
int nkl, nk2:
4 it nsee = xelustes{nk2)->nsuce, *suce = xcluster(nk2)->suce, 1)

for (i =0 i < nsuce; i++) il (nk 1 == *(succ+i)) return TRUE;
return FALSE;

17

scarchfroute.c

route *routing (nk, phasc}
/* Find a route. */
int nk comn: phase;
{ roule *r = {roule *) malloc (sizeof (route));

** Resel routing error, **/
r->error = rowteEnor = 0.0;
r->next = NULL;

/** See if breadcast is applicable or not. **/
if {(homoMIMD & & symMIMD) ||
i {hroadeasi_rowe {nk, phase) == YES) { r->type = BCrelurnr; |

&

* Unfortunately, broad is nol applicable, posmtte-poist

tink_roule: (nk, phase);
r->errof = routeError;
FeLurm r;

_subset (sourccTempArray, destTempAmay, nPartiln) == YES))



tink_route {nk, phasc)

/** Solve a point-lo-point routing.

** The initial stan time is in array timeTempArray.

** ‘The completion time will be in amary timeTeinpArray.

bup

int nk; comm phasc;
int | §, *path; '
float au ] = 0.0, tan2 = .0, 1sum = 0.0, tmax = 0.0, rt =20, 4, unit:

** Culculale the amownls of communication per neuson, *47
unit = (phase == PCOMM) 7 xeluster(nk)->prunit : xcluster(nk)-»Irunit;

£** Sel a difference veetar between souree and destination vectors, /
for (i = 08 < nlurtitg i+4)
*(ilfTempArray+) = (*(source TempAreay+) » 0 && *{destTempArray+i) == ) ¢
*(sourccTempArray+i) 1 G;

if (discover_broadeast (des TempArriy) == YES) |
£** As described in Chapler 6, a comntunication graph consists of
** a path and a broadeast within a destination graph, **/
1 Find a path, */ .
for (i = 0; i < nPartitn; i+4) |
il (*(diftTempArray+)) {
t=comm_path (, destTempAreay, *(dil[TempArtay+i) * unit);
tsum +=1;
ift>rn=c

]
roplelror += {lsum - 11);
#* Find a lroadeast, ¥/
for (i = 0; i < nPartim; i++) |
il (*(sourceTempArray+i) & & *destTempArray+i)
taul += (beTs + *{sourceTempArray+i) * unit * be'T'x);

IF (*{dilfTempArray+i)
tau2 += (beTs + *(dilfTempArray+i) * unit * beTxy

/** Update time in array destTempAreay, *2/
Tor (i = 01 { < nPartin; i++}
if (*(destTempArrmy+1)
*QimeTempArray+i) += (rt> taul ? re+tau? ; Gk +aul):
1else {
** The case is poinl-lo-point couting only, **/
puth = (it *) malloe (WPartitn * sizeofl {n));
for (i = 0; 1 < uPartiog i++) *pahad) = ;
tor {i = 0y 4 < alarting i++)
v i (*(sourceTempArray +))
for (j = 0; § < nPartith; j++)
il (*(destTempArray+5) |

*{path+j) = 1:

*{timeTempArray+j) +=

comen, path (i, path, *(sourceTempArray+i) * unit);
*pathj) = 0;

frec (path};

flont comm_path (s, dest, unit)
{** Find a path from the source to a destination. **/
int s, dest(§; float unil;
{ int i, *path = (int *) malloc (nPartitn * sizeof (nth): float 1;

Tor (i = 0; i < nPartitn; i++) *(patli+i} = 0; *(path+s) = 1;
= aux_comm_paih (s, dest, unit, path);

free {path);

retuen

float aux_comm_path {s, desL, unit, path)
/** This routine in Fact is an auxilary rowtine for the above routing,
** It recursively (inds a path from the source to a destination. **/
int s, dest[}, path{]; Aoar uniy;
{ int i, *patharray, " neighbor, n, nbor, found = -1; channel *ch;
float t, 8 = HUGE_FLOAT, x = HUGE_FLOAT, imin = HUGE_FLOAT;

il (dest[s]} rewurn 0.4

neighbor = (iat *) malloc (aPanitn * sizeof (intd);
for (i = 0; | < aPartitn; i+4) *(acighbor+i} = 0;

n = discover_ncighbor (s, neighbor);

for(i=0;i<n;ies) [
nbor = *{ncighbor+i);
il (dest[nberd {
ch = xchannel(*(xpartitnicm(s,nbor)));
if (che>tx < tx) [ found = nbaor; s = ch->15; 1x = ch->tx; }

if (found >= 0} { path{found] = 1; frec (reighbor); return (ts + unkt * x); 1

patharray = (int *) maltoc (nPartitn * sizcof (inD);

for {i = 0; 1 < nPartin; i++) *(patharray+i) = *(path+i);
*(patharray+s) = 13

tmin = HUGE_FLOAT;

found = -f;
for(i=0ii<n;ive) |
nboe = *{neighhor+i);

il (! *(patharray+nbaor)) (
t=aux_comm_path (nbor, dest, unit, patharray);

354
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ch = xcharnel(* (xpartitnicm(s,nbor))y;
- L+= {che>18 + unit * ch->1x);
il (¢ < tmin) { found = nbor; tain =1 )

}

if (found »>= 0y pathjfound] = 1; else ertor ("aux_comin, path: negative found™);
free {neighbor); froe (patharray);

refuen nin;

int discover_ncighbor (s, neighbor) .

* Discover all immediate ncighbors of a partition (or processor), **/
int 5, neighbor(J;

{ int count, i;

for (count =i = 0; 1 < nPartitn; i++)
if (xpartiinicm(s,i) [ xpartitniem(i,g}) neighboricount++) = i;
reluem count;

yesna discover, broadeast (list)
* Discover an appropriate broddoast, **/

int list{]; /* This is a list of partilivns (or processors), **/
{ int be, i, j, in_range, count = 0; beast *bopy;

beTs = beTx = HUGE FLOAT:
for (i = 0; i < nPartitn; i++) if {list[i]) count++;
if (nBeast) [
for (bc = 0; be < nBeast; bo++) *(heTempArmmay+be) = 0;
for (bc = 0; be < nBeast; be++) [
bep = abeast(be);
in_range = 1;
Tor (i =0; i < nParditn; i++)
if isi[i))
if (bep->from <= i && i <= bep->10) (*{bcTempArray+hc))++;
elsc in_range = 0;
if (in_range) [ beTs = bep-»t8; beTx = bep->tx; retum YES; ]
/** only in one group **/

be = which_max_int (be TempArray, nBicast);
il (*(bcTempArray+be) == count) [
#** belong 10 the same BC region **f

beTs = xbeasi(be)->1s;

beTx = xheasi(ix)->tx;

ety YES;;

}

return NO;

yesno hroadcast_route (nk, phisc)
/** Find a broadeast rouie, .
** The inilial stant [ime is in array | timearray,

** The completion time will be in amay _timearray. N
o ,

int nk; comm phase; -
[ inLi; foat 1, sum, wnit;

if {dhiscover_broadeast (destTempAsiay)) [
for (sum = 0.0, i = 0; i < nPadtitn; i++) (
* find dominaling frame **/
unit = (flom) *(sourccTempArray+i);
unit /= ({Moat) xpartitn(i)->n);
i€ {unit > suny) sum = unit;
i
unil = (phase == PCOMM) ? xcluster(nk)->prunit : xcluster{nk)->lruniz;
sum = (phase == PCOMM) 7 (sum * unit) ; (xcluster(nk)->n * unit);
L= bel's+ smm * beTx;

F++ 1f broadeast is used, atl data migrations are assumed
** {0 be compleled at the same lime, e.g., in iPSC/2.*+/
for (i = 0; i < nPartitn; i++) *{timeTempArcay+) += G
1= mix_{koat fimeTempAroay, nPartiin;

for (i = & i < mlartis ClemnArmay ) =t
resumn YES;

}

return NO;

scarch/memory.c

nxle *pool_mgr = MULL;

node *_atloc_node

72+ Allocale a search node from the NeuMap-maintained froe Tist. **/
{ node *p; inim, n0, nd, n2, n3, 1, *adde;

n0 = sizeof {node) { sizeol (ing);

nl = nPartiwn * sizeof (int} / sizeof (inth
n2 = nPartitn * sizeof (float) / sizeof (inl);
03 = Partitn * sizeof (float) / sizeol (inl);
n=nd+at+02+n3;

it {pool_mgr == NULL) {
pool_ingr = (node *Y matlk (256 * n * sizeof (in));
for (1 =0, i < 256; is+} {
wdde = {int *) pood_mpr+ it
p = (node *) ackir;
addr = {inl *) pocl_mgz + (i+]) * n;
p->next = (node *) addr;



] .
addr = (int *) pool_mgr + 255 * n;
P = {nodc *} addr;
p->next = NULL;
]
pool_mgrt = {p = pool_mgr)->next;
addr = (i1 *) p;
p->assign = addr + n0;
p->iime « (float *} (addr + n0 + nl);
p->etime = (float *} Guddr + 0 + n1 + n2);
relum p;

node *allecate_node (parenip, g_cost, nk, degree, ype)
M™* Mlocate & search node. Certain fields are indtialized, b’}
owde *pancayy; fom g_cost; it ok, degree, type;
{ i node *p = _alloc_node 45
#illel STATISTICS
++aGenerated;
Hendif
p->parent = pareatpy, p->niext = NULL; p->lowb = g_cost;
p->uph = HUGE_FLOAT; p->g_cost = g_cost; p->nk = uk: p->roule = NULL;
p->degeee = degree; p->naprout = (i p>lype = types
if {parentp} p->depth = parenip->ddepth + 15 ¢lse p->depth =0
for (i = 0; i < nPartitn; i++) il {type == TERM_ASGN_NODE) *{p->assigned) = 0;
il {parentp)
for (i = 0 i < nPartit; #+4) *(p->ctimei) = *(p->itime+i) = *(paralp->clime+i);
else for (i = 0; i < nPartitn; i++) *(p->clime+i) = *(pr>itime+i) = 0.0;
if (parentp} (parerip->nsprout)++;
return

free_node (x)

f* Release a search nodde 10 the Neubap-maimained free list, */
node *x;

{ inti;

if {x->nsprout > 0 return;

if {x->parcat) il ((--(x->pareni->nsprot)) <= 0) free_nodle {x->parcnat);
x->next = pool_mgr;

pool_thgs = x;

free_list (fist)

* Releasc a list of search nocdes., */
tde *lise

! nekle *p, *po;

for (p = lisg: pi ) { p0 = p>next; free_node php=po; )
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fidefine getkeyHeap(x) {(x->lowb)

insert {x)

f** Inscrt a node into 2 pricrity heap, *+/
nocke *x;

[ hnexde *p;

£** create a heap nods *4/

(= heap_node_atloc ())->info = x:
p->key = getkeyHeap (x);
heap_insert (p);

node *delete ()
** Delele a nocde from a privrity heap, **f
{ hroxle *p; noxde *q = NULL:

if (heap_root) { p = heap_deicte (); 4= p->info; heap_nede_release (p); }
relurn g;

Huslef getkeyHeap(x)
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searchiese.c

int geuline (Fine, timit, input)
f** Read in a ling, *+/

char tingf]; int limi; FILE *input;
{ int i;

if (fgets (tinc, limit, input)) {
for (i=0;i<limit&& linefif f=" * && tine[i] 1= "’ i++}
if (tine[i] == "a*) lineli} =" *;
relurn 1;

]

clse relem 0;

crtor {s)

** Report an crror and exit NeuMap, *+}
char s[1:

[ chiar msgl2001;

Sprintf {msg, "***+4* GRROR *+*+s ; Fos\", g
perror (msg);
exig {0);
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yesno is_input_cluster (k)

/** Check if cluster x is an input cluster, **/
intk; ,

[ neutype type = xcluster(k)->type;

relum ({type == INPUT_NEURON jf typa == I0_NEURON) 7 YES : NO);

yesao is_output_clusier (k)

** Check if cluster x iz an outpus cluster, **/ ¢
int k;

{ neutype type = xclusier(k)->lype;

return {{type == QUTPUT_NEURON || type == IO_NEURON) ? YES : NO);

yesno i_2nd_Leyer_clusier (k)
** Check if cluster x is in the second layer. **/
int k;
[ int n = xiayer(1}->n, *member = xlayer(1)->member, i;

for (i = 0, § < n, i++) if (*(member+i} == k) return YES;
return NQ;

yesno is_subsct (s1,52,n)
[** I 5] <= §2, retumn YES. Otherwise, return NO. *%/

int 5141, s2[}, n; /** Parameter n is the length, **/
{ int i

for fi =0 i< ng ie4) i (s1[H} && (1 s2[E])) retum NO;
return YES;

float max_float (Jist, n}

f** Find an maximum out of a list of n Nloating-point numbers, **/
float list[]: int n;

[ int i; Aoat the_max = - HUGE_FLOAT;

for (i =0 i < n; i++) if(*(fist+i) > the_max) the_max = *{list+i);
relurn the_max; .

flaat min_float {list, n}

/** Find an minimum cut of a list of n floating-point numbers. **/
Aoat K[}, int n;

{ int i; float the_min = HUGE_FLOAT;
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for (1= 0; 1 <0y i++) i (*(list+i) < the_min) Sola..___._ = *(list+i);
relurn $he_min;

int which_max_int {list, n}

/** Find which eotry is holding the maxinwm inlcger, **/
int lisd], m;

[ int i, who = 0, the_max = lis([0];

Toe (i = 1; 1< ng i) i {list]3§ > the_max) [ the_max = lisi[i); who = §; )
retarn who;

scarch/heap.c

f** This file contains routines maintaining a dynamic linked heap,
** These routines arc pot documented because they will not afleet
** the cormectness of NeuMap if they are replaced by anather

** priowily quenc, cg. o single-linked 1ist 10 the extreme case. **/

Hdeling HEAP_ALLOC_SIZE L)
typeder float keytype:
struet _hixde__
(
keytype key;
node *info;

struct _tmode__ *pareny;
struct _hnode__ *lefe_child;
struet _finode__ *right_child;
JH
typedef struct _hnode__ knode;

hnode *heap_manager = NULL:  /** List head of a free list of heap nodes **/
hnode *beap_rootl = NULL; /** Root of this heap **/
hnode *heaplast = NULL: /** Last node of this heap *¥/
cnunt Irhand { LEFT HAND = 1, RIGHT_HAND =2 ] whichHeapTemp:
heap_nmle_release {p} hnode *p; [ p->parcnt = heap_manager; biesp_manager = p; )
heap_release (p)

Tivle *p;

i negle o,

i€ {p) return; -
if (p->lelt_child) heap_release (p->lcft




if (p->right_child) heap_reicase {p->right_child);
q = p>info;

q->neal = activeLisy;

activeList = q;

heap_node_gelease {p);

haode “heap_node_allog ()
| hnexde *p; int i;

£#* 1 ahe ool of froe heap nodes is caipty, then
** allocate 1000 heap nexdes at a time Lo aveid spreadont of
** heap nodes 1o n wite tange of victual-mempry pages. *4
if (! heap_manager) |
P = heap_manages = {fmode *)
malloc (HEAP_ALLOC_SIZE * sizcof {hnode)};
for (i=0; i < HEAP_ALLOC_SIZE-1; i++) (p+i)->parent = pri+1;
(+HEAP_ALLOC_SIZE-1)->parent = NULL;
)
—uﬂm.—_l:_w:bmnq = Q_ = _._Ohnuln:m:mhnﬂvnvﬁwﬁ_d:—w
p->parent = p->lefl_child = p->right_child = NULL;
p->info = NULL;
relum p;

hnode *locate_neat ()
hnexle * gy

F** 17 the heap contains only the roat, then the nextis -
4+ the left chitd of the moot, **/ '
if {p == heap_roo1) [ whichHeapTemp = LEFT_HAND; teturn )

/** 1 the heap_last is the lefi_child of its parent, then
** the next is the right_child of ils parent, **/
if {p == p->parent->lefi_child) { whichHeapTemp = RIGHT_HAND; 1ctum p->parent; )

1** Trace upward until p is the le_child of ils parent. *+/
for (p = p->parent; p !=heap_root; p = p->parcat)
il (p == p->parcat->lefl_child) {
/** Trace downwasd, first te the right then to the
T Lelt, and all the way to Lhe (crminal anc. *4/
for (p = p->parcnt->right_child: p->teft
p=p->leli_child};
whichHeapTemp = LEFT_HAND;

retuen m

** Trace downward to the left from the heap root. *4/
while (p->left_child) p = p->lefi_child;
whichlicapTemp = LEFT_HAND;

rewm
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hnode *locate_peev (p, prev_root)
hnode *p, *prev_root;

J** I( the heap contains only one node, then just Iet it be
** cinpty after the delction, **/
il (p == heap_root) relurn NULL;

J** 1T the heap_last is the righi_child of its parent, then
** the prev is the left_child of its parent. **/
if (p == p->parent->right_child} retumn p->parent->left_child;

J** Trace upward until p is the right_child of its pareat, **/
for (p = p->parenl; p 1= prev_rool; p = p->parcot}
if {p == p->parent->right_child) {
for {p = p->parent->left_child; p->right_child; p = p-»right_child);
return p;

f** Trace downward to the right from the heap root. **f
while (p->right_child) p = p->right_child;
return

heap_insert {p)
hnode *p;
[ hnexde *q;

£** I the heap is emply, just modify heap_root and heap_lase. **f
if (! heap_lase) { heap_root = heap_last = p; retuemn; }

/** Locate which node is the one immediately preceding to heap_last, **/
g = locate_next (heap_ltasty;

/** Update new heap_last. **/
(heap_last = p)->pasent = q;

/** Determine this new node p should be connccled o left_child
*¥ or to right_child, **/
il (whichHeapTemp == LEFT_HAND) q->lefi_child = p; clse q-»right_child = p;

/** Maintain the heap property. A bias is introduced 10 the tic
** in which the newer one is prefeeced. **f
while (p->key <= g->key) |

exchange (4, p):

J** check if o0t is micL **/

if{! (g = (p=g)->parcrl)) break;

¥4
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hnade *heap_delete () [ keytype key_imp; nede *info_tmp;
{ haode *to_be_retumed = heap_root, *p; Key_tmp = pasentokey;
i - =child->key;
£** If there is only one node in this bea, then just retumn it =_.=_n.mz Hrnml __na: na vA cy
** and reset heap_last and heap_root to NULL, **/ child->key = key_tmpy;
if (heap_last = heap_root) ) .
. = he = NULL: info_tmp = parent->info:

_._Evrgmawnmul_”_-. h ' parent->info = child->info;

] Tl 0_be._retumed; child->info = info_tmp;
}

** After delction, oniy the root cxists. *#/ ¢
if (heap_tast == heap_root-»left_child) | o

(heap_root = heap_last)->parcnt = NULL; n_a.:u|_=._ 0

re 0. be. retumed: heap_refease (heap_root);
) heap_root = heap_last = NULL;

, ist (activeListy

heap_last = locate_prev {(p = heap_last), to_be_retumed); Mﬂﬂw““,"aﬁ_ .“,H M:_ms
i {(p == p->parcnt->left_child) p->parcat->lefi_child = NULL: ) A8 '
else p->parent->right_child = NULL;
#** Let p be the heap root. *#/
p->parent = NULL;

p->left_child = heap_root-»lefi_child;
p->right_child = heap_root->right_child;

if (p->left_child) p->left_child->parcnt = m

if (p->right_child) p->right_chid->parent = P
heap_root =

while (p->left_child)
if (p->key <= p->left_child->key) {
il (! p->right_child) return 1_be_returncd: ;
if (p->key <= p->right_child->key) return to_be_retumed;
exchange (p, p->right_child);
P = p->right_child;
} else
(! p->right_child) |
exchange {p, p->lelt_child);
p = p->left_child;
else ’
il (p->lelt_child->key <= p->right_child->key) {
exchange (p, p->lelt_child); ;
= p->left_child: _
Jelse |
exchange (p, p->right_child);
p = p->right_child;

H

return to_be_ectumcd; _

exchange (parent, child)
hnode *parent, *child:
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APPENDIX B.
DSIM PROGRAM

This appendix mainly describes Dsim and how to use it. Section B.1 describes briefiy the
algorithen, organization and ogtions in NeuMap. Settion B.2 describes how to use it. Finally,

Scetion 1.3 lists its source code.’ .

B.1. General Deseriplion
Dsim is a program which simulates purailel ANN simuiations on a uniprocessor. The
scenario in Dsim is as belows.
1 Dsiin reads in multicomputer and ANN specifications.
2. Dsim randotnly generates workload deseriptors for all processors.
3. Dsim randomly generates the workload for each nrocessor based on its descriptor.
4. Dsiem reports a multicomputer specification {including workload) and an ANN specification
to NeuMap and calls it to solve the optimal mapping.
5 Dsim waits unti! the optimal mapping is sotved, and then reads in the new mapping scheme.

b Dsim stans 10 siwatate (he ANN pacallel siuufation, until the current ileration is completed.

7. Dsim randomly generates a new workload fot cach processor.
8 Dsim checks the gain of calling NeuMap again. 1F positive, then go to Step 4, Otherwise, go
to Step 6. This process is repeated until all required iterations are completed.

The major componers in Dsim include (1) intetface for reading in multicomputer and
ANN specifications and mapping schemes, (2} generator of workload and its descriptor, (3)
event manager, (4) resource manager, and (5) mapping manager. These components are pliysi-
cally decomposed into the following files: sim.h, var.c, main.c, sim.c, event.c, map.c and oad.c.
They are briefly explained here. )
st Al constant declarations wd type definitions are included n it
var.c All important globul variables are declared init.
mainc  Trgger routines for Dsim, including 10 routines and workload penerator, tre

included in it Several handy utilities are also included in it
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sim.c Simulation routines, including resource and event managers, arc in it
eventc  General utilities for handling events are in it, including an event queue manager and
an event space manager.
map.¢ Routines for mapping management, including decision-making for calling NeuMap
and handshaking with NeuMap, are in it
loade  Performance modes and interdependency of source files in Dsim are specified in it.
For different purposes, Dsim can be configurated into three medes: .
DMAPPING  Simulates the ANN and calls NeuMap for a new mapyping schemes if there is 2
gain (for measuring Tyyn)-
GMAX Simulates the ANN and calls NeuMap for a new mapping schere at every itera-
tion (for calculating g x>
SiM Calls NeuMap only once and then simulates the ANN (for measufing Taric)-
Furiher, severat options are available for monitoring execution progress of and debugging Dsim.

STATISTICS Reports alt important statistics.

MONITCOR Reports execution progress of Dsim and the control thread between Dsim and
NeuMap,
DEBUG Provides multiple tevels of details in debugging information.

B.2. Steps for Using Dsim
Follow these steps to exccute the supplied prograrm.

(1) Go 1o the directory ~softwarefchu/ms/bin.

{2) Specify the options described in the previous section for compilation in Makefile.

(3) Compile Dsim by typing *'make dsim"* Other options are available, like Gmax by typing
“‘make gmax”* and Sim by typing “'make sim”’

(4) Create input files for Dsim. Four input files are required; two are the specifications of 2
mujticomputer and the other two are the specifications of an ANN. Examples are avaitable
in directory “softwarc/chu/ms/labfinput. The formals of input fles are described later. The
input file names are required to be specified in the file FILES. For example, the file names

in FILES normally are
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mimd-sim

mimd-slot

mimd-map

ann-sim

ann-map

map-sint \

The file mimd-sim specifies a multicomputer for Dsim. The file mimd-slot is used by Dsim
1o generate a file mimd-map which NeuMap can understand. The file ann-sim specifies an
ANN for Dsim. The file ann-magp is used by NeuMap and Dsim does frot use it. Finally, the
file map-sim is the pipe used between Dsimn and NeuMap.

Run the program by typing “dsim num-gquants rand-seed error debug-mode”” where
“pum-quanta’’ is the number of iterations of ANN simulation, *‘rand-sced”’ is the seed for
a random workload generator, “error™ is the user-specificd error allowance, €.8., .05, and
““depug-mode’” is the level of details of debugging informalion, e.g., 1 for fewer details
and 4 for complete details. Three outpul files are available. Onc is *swl-param”’ which
specifies the workload descriptors used. Another is “wl-pf** which specifies the workloads

used, The other is *‘dsimtime-p** which contains the results produced by Dsim.

The format of file mimd-sim is described as follows.

ey

@

Specify the number of broadcasts in the first kine. Then, specify the number of processors
and the number of links. For the network of three workstations, they are

0
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They are read as there is no broadeast (0 in the first fing) and 1 machines and 1 communica-
tion link. For the case of 23 processors, there is | broadeast, then the specification is

I 25 0025 0 24

I is read as the cz.uE_&m. 1 has setup time 2.5 (ms} and {ransmission time per word is
(.025(ms) and it covers processors from 01024,

Specify the number of homogencous processors and their compulation power in terms of

execution time per unit computation. For the network of three workstations, they are

(3

@

1 285

1 253 S

1 167

They are read as one Processor has power 28.5 and another one has 25.5 and the third one
has 16.7.

Specify the number of homogencous links and setup and transmission times. For the net-
work of three workstations, they are

1 00 000333

Specify the interconnection in terms of gateway. If there are P processors, then P x P lings
are required. Each processor requires P lines, A ling for processor [ specifies the number of
destination processors which it must go through the specified gatewny to reach, the Hink w0
the gateway, and the gatcway. For example of the network of three workstations, for pro-
cessor 0

100

I o1

1o 2

“The first line specifies the destination processor 0, the tink to the gateway is 0, and the gate-
way is processor 0. Note that this line actually is useless and is only for padding, because il
is meaningless to send frames from a processor 1o itself, The second line specifies the desti-
nation processor i, the link 1o the gateway is 0, and the gateway is 1. Because the gateway
is the destination processor, it implies there is a direct link connecting processors 0 and 1.
“Ihe third Hine is for destination processor 2. For a mose interesting example, the case of 10
processors is considered here. For processor 0

I ¢ 0

o

~—
=
w PO

L
[t
W R
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The first five lines are read as before. The interesting line is the sixth, It is read as proces-
sors from § to @ (consecutive 5 processors having the sathe specifications), the link to the
gateway I link 2, and the gateway is processor 5.
The fornat of file ann-sim is described as follows.

(1) Specily the number of clusters, the starting cluster in the input layer, the starling cluster in
Ihe second layer and the starting cluster in the ouiput _36,... For the example of ML-1, they
are
7016
They are read as ML-1 has 7 clusters, its input layer starts from cluster {, its second layer
stasts from cluster 3, and its output layer starts from cluster 6.

(2) Specify the clusiers. Each cluster requires 3 lines. The first line specifies the cluster and the
number of neusons in this cluster. The sccond line specifies the number of preceding ¢lus-
ters and what they are. The third line specifies the number of succeeding clusters and what
they are. For the cxample of MEL.-1, the specification for cluster Ois
0 500
0
i1 213
They are read as cluster (F has 500 neusons, it has no preceding clusters (0 in the second
line), and it has 3 succeeding clusters and they are clusters 1, 2 and 3,

The file mimd-slot is exietly the same as the file mimd-map used in NeuMag, except the
cxeculion times pre unil computation for alk processors are parameterized such that Disim can

change them according to workloads. The resulting file is mimd-map which is used by NeuMap.

The file ann-map is exactly the same as the file ann-map vsed in NeuMap and Dsim does not use
it. 'The file map-sim is the pipe used between NeuMap and Dsim, The outpus file dsimtime-pf
reports the performance it a line for every 10 quanta. The format is the current quantum, cumu-
lative simulation time, simulation time for this quantum, predicted simulation time, cumulative

mapping time and latest mapping time.
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~software/chu/ms/labfinput/sun-3/mimd-sim

0

31
128.5
1255
1167
10.00.00533
160
10t
102
100
101
102
100
101
102

a.érem.a\%&amb%_a_sv:cmc:.w?wan-aon

3l

sLakproc

oo 1

$0 20000 1 000
home 1
$1500001 000
hote 1

$2 50000 100.0
endproc

startadj

100

0-10

0 0-1

endadj

startlink

homo |

0.0 0.00533
endlink
startsupport
03012
endsupport
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“softwarc/chu/msAab/input/multi-layesfann-sim-i

7036

ONO-—NM—-N&———WN—N_-M-_L,JQO

B.3. Program Listing

dsimfload.c
#definc STATISTICS
#define MONITOR
#ideline DMAPPING
dsiny/sim.h
Hifndef _DSIM_H__
#define _DSIM_N__
<stdio,h>
<mally h>
AdefineNUM_WL_PARAM 7
#dehineMAX_FNAME_LENGTH 30
#dcfineNOP 630427
#defineMACHINE_WEIGHT 72317
#defineWL_IN_TREND_LOWD .5
#defineWL_IN_TREND_UPB 09
#defineWL_OUT_TREND_LOWB 0.0
#defineWL_OUT_TREND_UPB (1.0 - intrend}
#defineWL_STRAIGHT (1.0 - intrend - outtrend}
BdclineWE_XMIN_SLOPE a2
#defineWL_XMAX_SLOPE 10
#efineWL_YMIN_SLOPE 4.1
#defineWL_YMAX_SLOPE 0.5
BdefineWL_UPPER_BOUND 25.0
fidefineWL_LOWER_BOUND 10
typedef cnum
( +* Kinds of ovents **/
DONT_CARE, f** This eveat does nol care, i
COMP, f#* Computation **/

NEXT, *+* Compuintion is next, **/



COMM, £+ Coma 3
ARRIVE, 4+ Agtival of a frame rf
BCAST, 7+* Broadeast *¥/
BCAST_ARRIVE, f** Amival due to breadeast **/
PRODUCTION, 7+ Produciion-phase task **/

LEARNING, /+* Leaming-phase task **/

IDLE, A+ Macking is idle, **/

BUSY ' #+% Maching is busy. **/
} simlype
typedel enum \
{ #* Kinds of workioad descriplor parameters **f

IN_TREND =1 ##* In-tiend parameler had)
OUT_TREND =1, /** Ow-of-rend parameter **/
STRAIGHT =2,  /** Go-straight pasamated "

SLOPE=13, /** §lope of change of workload **/
UPB =4, * Upper bound of workload **/
LOWB =5, #* Lower beund of workload ** -
TREND =0 4+ Trend of workload, 1 up, D straizh, -1 down **
} wilype:
typedel fioat simtimes
typedef enm { FALSE = 0, TRUE=1] boalean;
wypedel struet { int1,m; ] icnet;

struct _event,
{ 74+ Data type for events **/
simtype Lype:

simtime time;
i md, m1, m2,my /4% These are aachines. 'l
int kid: f+* Cluster 1D *¥/
simtype phase; 7 Produe lion ur tearning **/
seruct _event_ *next:
B
Lypedel struct _evenl evenl;
typedel siruct
( fo* Data type lor Finks **/
fioat s, 1xd
simype slabus;
event *wiitQ;
} link;
Lypedef struct
{ J++ Data type for mapping schemes **/
float  peomp. poomm; /** Amounls of producsion-phase tasks **/
float  Icomp, lcomnn, 4+ Amounts of learning-phase tasks **f
} mapping;
Lypedel suuct )
( 7+ Data type for machiocs had)
sintype stalus, 4% Buisy status or idle stifus **}

1 oi.q

slmtype phase;
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it kitly /#* Currently simulated cluster wef
float te, noload_te; J*+ Exccwtion lime per unil computation *of
Noat wiparam|NUM_WL_PARAMI; f** Workload descriptor **/
mapping *MAP; J+* Mapping scheme **f

) machine;

typedef struct

I ** Data type for ANN neural clusters s}
int num; f++ Number of ncurons **/
int num_jred, nam_succ; +* Number of ncighbors **/
it *pred, *succ; #** Neighbors **/

Y ¢luster;

** Aty of machines **/

#defincxMACHINE{m) (MACHINE +m)

7= Array of links **/

#denexLINK(®) (LINK + 1)

/* Access 1o workload descriplors hat}
Adefinex WL{m which) QZ>Q__ZmAav.vi_vEua?EnEV

** Access to napping schemes **/
#definexMAP(m) (xMACHINE(m)->MAP)

1** Amray of neural clusters **/
#defincxCLUSTER(X) {CLUSTER + k)

7+* Tnterconniection matrix w+/
Hulefinex ICNETGL)) {{CNET # i * NumMachines + )

4 Inwrconnection links **/
HdelinexICLINK(j) (xLINK(XICNET(i.j)->1)

** Array of maching status **/
#defincxMSA(m) (*(MSA + m}}

** Data matrix **/
HdelinexDATA(mL, M2k} (*(DATA +ml* NimMachines * NumClusters + m2 * NumClusters + 1))

#defincis_inpud layer(kid) (kid <= InClusteTh}
#defineis_2nd_inpwi_layer(kid) {kid <= In2ndClusterTh)
Hlefincis_oulput_layer(kid) (kid = OwClusterTh)
#endif _DSIM_H__ )
dsim/var.c

** This filc contnins inportant global variables. **/



int NumCiusters = &;

int NumMachines = 0;

int - NumLinks =0;

int NumBcasts =0;

int NumQuaniumng = -1
int Quantumn =);

fong NumEvents = 0;

int RandomSced = 1;

foat ErrorAllowance = 0.0;
char *MIMD_Sim = NULL}
char *MIMD_Slot = NULL;
char *MIMD_Map = NULL;
char * ANN_Sim = NULL;
char * ANN_Map = NULL;
char *MAP_Sim = NULL;
int EnClusterTh =0;

int In2ndChusterTh = 0;

int OutClusterTh =0;
foat BeastTs = 0.0

float BeasiTx = 0.0;

int BeastFrom = 0;

int BeastTo=0;

machine *MACHINE = NULL;

link *LINK = NULL;
icnel *ICNET = NULL;
cluster *CLUSTER = NULL;
simtime SimTime= 0.0;
simtime AvgSimTime =0.0;
simtime PredSimTime = 0.0;
simlime MapTime = 0.8

simtime CST=00;
simtime CMT=00;

eveat *EvemQ = NULL;
int sM5A = NULL:
int *DATA = NULL;
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+* Number of ANN neural ¢lusters b
£+ Number of processors **/

/+* Number of cammunication links #3f
* Number of broadcasts **/

i+ Number of simulation iterations **/
7+* jteration limer **/

+* Mumber of events created **/

++ Random seed to a random generaior i
J** User-specified eeror atfowanice */

++ Input filename pointer **/

J** Input filename poinier **/

7+ Tnput filename pointer **/

/** laput filenaeme pointer **/

7+* Input filcname pointer **/

*+* Input filename pointer **/

/** Input cluster theeshold **/
4+ 2nd input cluster theeshold *f
++ Output cluster threshold **/

f++ Braadcast sewap time **/

+* Broadcasl transmisston time **/
+* Broadcast coverage **/

/** Beoadcast coverage **/

/** Amay of machines **/

J+* Armay of links ¥/

** Inerconnection net **/

/% Array of clusters **/

+ Simulation time **f

/+* Average simutation time**/
7+ Predicied simarlation time *3¥f
¢ Mapping time **f

** Cumulative simulation time **f
+* Cumulative mappiag time **/
% Head of an cvent gueue **/
f#* Machine slalus array >

+* J-dimensionat data matrix */

dsim/main.c

/** command: dsim  #quantumns randorm-sced error debug **/

main {arge, argv)
int argc;
char *argv([k
{ FILE *fp, *fopen O

MIMD Sim = {char *} malloc (MAX_FNAME_LENGTIL®* sizeof {char))
MIMD_ Sk = (clar *) malloc (MAX_FNAME_LENGHIL * sizeol {chan);
MIMD_Mup = {char *) matlec (MAX_FNAME_LENGTH * sizeol (char));
ANN_Sim = (char *} malloc (MAX_FNAME_LENGTH * sizeod (char));
ANN_Map=(char *} malloc (MAX_FNAME_LENGTH * sizeof (char));
MAP Sim= {chir *) malloc (MAX_FNAME_LENGTH * sizcof (char));

fp = fopen ('FILES™, "%

if (1 got_ting (MIMD_Sim, MAX_FNAME_LENGTH, fp)) caror "MIMD,_Sin", NOPY;
if ¢ get_linc (MIMD_Slat, MAX_FNAME_LENGTH, Ip)) ercor ("MIMD_Slo", NOP);
il (! get_ line {MIMD_Map, MAX_ENAME_LENGTH, {p)) error {"MIMD _Map", NOP).
if {1 got_tinc (ANN_§im, MAX_FNAME_LENGTH, [p)) error CANN_Sim", NOPY;

i {1 gol_line (ANN_Map, MAX_FNAME_LENGTH, [p)) error CANN_Map", NOP);
il (! gol_line (MAP_Sim, MAX_ENAME_LENGTH, fp)) ervor ("ANN_Sim", NOP)
felase (pk;

il (arge >= 2) if {largv(1D 1= ") NumQuantumns = atof {argv{13);
if {arge »= 3) if (*(argv[2]) 1= ") RardlomSeed = atoi (argv[28):
il (arge »= 4} il (*Carge(3]) 1= "*") sscanl (argv[3), "%, & ErrorAliowance);

read_cluster );
read_machine ();

if (ErrorAblowance »= 0.4} [ init_sim{); sim (% } clse workload_only ()t

read_machine ¢
¢+ Read in ke specifications of machines, bt !

FILE *fp; int i, j, k, count, num, m, 1, sun = 1
Noat e, ts, Ix, comp, comm, inteend, outtrend; char fnamef30};

{p = lopen (MIMD,_Sim, "T");
/** Read in the specification of mahcine. **/
fscanf {fp, "%d”, &NumBcasts);
it (NumBensts) fscanf (fp, "%{ % %d %d”, &Bcas(Ts, &BcastTx, &BeustFrom, &BcastTo);,
fscanf (fp, “%d %d", &NumMachines, &MumLinks); f
MACHINE = (machine *) malloc (NumMachines * sizeol {machine));
LINK = (link *) malloc {(NumLinks * sizeol (link)); .
ICNET = (ienet *) malloc (NumMachires * NumMachines * sizeof (icncl));
for (i = 0; i < NumMaghincs; i++) -
xMAP(i) = {mapping *) malloc (Num{lusters * sizeof (mapping)):

/% Read in exccution time per unil compuiation. *
for (i = 0; 1 < NumMachines;) {
fecanf (Ip, "Fod %", &num, &1);
for = 0; j < pum; &+, i+4) xMACHINE(i)->noload_ic =t}

)

+* Read in the specifications of links, **/
for (i = 0; i < NumiLinks;) (
[scant {{p, "% %F %", &num, &1s, &t
for {j = 0 < num; j++, i+ |
FLINK{)->18 = ts; xLINK(Q)->1x = 15
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xLINK(i)->status = IDLE; sLINK(D)->waitQ = NULL;

]

7+ Read in speification of an interconnection net, **/
for (k = 0, k < NumMachines * NusMachines;) [
fscanf (fp, "% %d %", &num, &L &m);
for (count = {; count < um; count+, k+4) {
j = k / NumMachines; j = % % NumMachines; 1
if (i == j) [ XICNET(i,j)-»1 = -1; xICNET(i,j)->n = it}
¢lse § XICNET( j}->1 = 1 XICNET{ij}->m = m; ]

J
Tetose {Ip);

7** Generale workload descriptors. **f

srand (RandomSced);

for (i = 0; i < NumMachines; i++) |
intrend = gen_sandom_rnge (WL_IN_TREND_LOWDS, WL_IN_TREND_UPB);
ouitecnd = gen_ran nge (WL_OUT_TREND_LOWE, WL_QUT_TRERD_UPB);
KWL IN_TREND) = intrend;
1WL(i, OUT_TREND) = outtrend;
2WL(LSTRAIGHT) = WL_STRAIGHT;
xWL(i,SLOPE) = gen_random_range (WL_YMIN_SLOPE, WL_YMAX_SLOPE)

{ gen_randon_range (WL_XMIN_SLOPE, WL_X MAX_SLOPE);

*WLG,LOWR) = WL_LOWER _BOUND;
xWL{i.UPB) = WL_UFPER_BOUND;
XWL(I,TREND) = ger_random_int {-1, m

]

srd (RandomSeedy:

read_clusier {)
/*+ Read in ANN newral clusters **/

FILE *[p: int kid, i, j, n ks

Ip = lopen (ANN_Sim, "r"},
Cscand {[p, "Fod %d %d %od", &NumClusters, &InClusterTh, &inZndClusierTh, &OutChusterThy,
CLUSTER = (¢luster *) malloc (NumClusters * sizeu! (cluster));
for (i = 0; i « NumClusters; i++} {
fscanf (Ip, "%d %d", &kid, &n):
xCLUSTER(kid)->num = n;
fseanf (fp, "%ed”, &n};
ACLUSTER (RkD-
if{n =0
LCLUSTER{Kid)->prod = (int *)
for (=0 jemjet{
fscanf {fp, "%d", &k}
*(xCLUSTER (kid)->pred + D =k:

loc (n* sizead {inth);

|
fecant {Ip, "%d", &n):
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*CLUSTER(Kid)->num_suce = ;
iffn>0( [
xCLUSTER{kid)->suce = {int *) malloc (n * sizcol {in));
for (=0 j <n; -+ .

[scanf {Ip, "%d", &k}

*(xCLUSTER(kid)->suce + J) = k;

gen_new_workload ()
1** Generale new worklond based on its worktoad descriptor, **/

int i; float noload_te, wl, ic, p;
float intrend, outtren, straight, slope, lowb, upb, up, down;

for (i = 0; i < NumMachines; i++)
intrend = xXWL(i,IN_TREND);
outtrend = xWL({IL,0UT_TREND),
straight = xWL(LSTRAIGHT);
stope = xWL{i,SLOPE);
lowb = xWL{i, LOWB);
upb = xWL(i,UPB); )
wl = (ic = xMACHINE(i)->tc} / (nolond_te = AM ACHINE()->noload_tc);

if (wl == Towb) { up = intrend + cuttread; down = 0.0 } else
if (wl == upb) [ up = 0.0; down = intrend + outtrend; ]
else {
switch (xWL{i, TREND)} |
case -1: f** down **/
up = cuitrend; down = inwrend; break;
case 0 /** straight **/
up = intrend; down = owtrend; break;
case 1 ** up**/
up = intrend; down = oultrend; break;
defauly;
eror ("gen_new_workload: no such trend”);
beeak;

p = gen_random_[loat (:

if (p < up) [ wl+=slopes AWL(, TREND) = 1; } else

i (p < up + down) { wl -3 slope; AWE(LTREND) = -]
clse | AWLHETRERD) =4 ]

if {wh > apb) wi = upby; clse
il {wl < lowb) wl = lowb;
xMACHINE()->1c = wil * nolead_tc;



workload_only ()
1+* Investigate workload cnly, **/
[ int i; char fame{30}: FILE *Ip;
#dcfincTRANSIENT_PHASE 500
sprindf (fname, “WL-%d-%«d", NumMachincs, RandemSced);
fp = fopen {{name, "w");
for (Quantumn = 0; Quantmn < Num@Quantumns + TRANSIENT _PHASE; Quantumn++} ¢
gen_new_workload o
if (Quantumn >= TRANSIENT_PHASE) { '
fprintf {fp, "%d ", Quaniumn};
far (i = 0; i « NumMachines; i++)
fpeintf (fp, " %, AMACHINE(i)->1c 1 xMACHINE()->noload_te);
fprintf {Ip, ™)
} b
#urklef TRANSIENT_PIASE
]

it gen_random_int (teft, right)
/+* Generate a random integer over {eftsight]. **/
int left, right;
[ retum {left + ((int} {gen_random_fAoca1() * (right - [eft + 1)

fioat gen_random_float
J** Generate a random floating number over [0.0,5.0). **/
( retm (({float} rand(3} / ({float) (OxHICCED)); )

float gen_randem_range (left, Tight}

* Generate a random fioating number over [kl right). **/
fioat left, right;

{ return el + gen_random_float() * (right - ef1)); }

error (str, val)

/** Repart an exvor and exit, **f
char *str; int val;

{ char bul{2001;

if (val == NOP) sprinlf (buf, "*** ERROR Wy Gg”, i),
cls¢ sprinif (buf, ™*** ERROR *** => %5 %d", str, vai);
printf ("%s\n”, bufl;

exit (0):

char *get_line {line, Iength, Ip}
7#* Read in a line. **/
char linc(]; int fength; FILE *p;
[ char *¢, *p = fgets {ling, length, M)
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for e = Fing; *o; c++} if (Yo == "'} { *o = NULL; break; )
return '

dsiinfsim.c

ini1_sim (}
/+* Initialize simutation cnvironment. **/

{
MSA = (int *) maltoc (NumMachines * sizeaf (int}): !
DATA = (int *} malloc (NumMachines * NumMachines * NumClusters * sieof (int));
] .
sim ()
J+* Simulatc parallel ANN simulations. **/
{ cvent ¥e;
for (Quantunn = 0; Quantumn < NumQuaniumns, Quanalemn++) {
gen_new_workload ()
#ifdef DMAPPING
if (nced_remapping ()) remapping &t
#elif GMAX
remapping Q;
#else
if {Quantumn == 0) remapping (s
Hendif
pre_sim {5
schedule_starusp _cvents );
while (¢ = get_event (3} {
if (SimTime <= ¢->time) |
SimTime = e->time;
switch (e->type) |
case COMI™: sim_comp (c); bseak;
case NEXT: sim_next (¢); break;
case COMM: sim_comm (g); break;
case ARRIVE: sim,_amive {¢); break:
case BCAST; sim_beast (¢); break;
case BCAST _ARRIVE; sim_bcasi_arrive {¢); break;
default: break,
]
]
}
past_sim ();
]
}
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pre_sim (}
4 D preprocessing for sim
[ incm0, 3,k

LY

SimTime = (stmiime) &; Even) = NULL;
for (m0=0; m0 < NumMachines; mi++) xMSA(m0) = [+
for (uf) = 0; m0 < NumMachines; mO++)
for fm3 = ml < MumMachines; m3-++}
for (k = 0; k < NumMachines; k++) sDATA(MGMIK) = 0;

i
for (1= 0 | « NumLinks; 1+4) [ ALINK()->wailQ = NULL: sLINX(§)->stats = [DLE; }

posL_siat
#* Do postprocessing for simulation. **/
[ FILE *ip; int m;

CST += SimTime;
¥ifdel STATISTICS .
/+* Report workload parameters. vl
if (Quantumn == 0} {
{p = fopen ("wi-param’, “w')
for (m=0:m< NumMsachings; m++)
tpeintl (Tp, "%f %f %0 %f %l Fln”,
*WL{m STRAIGHT), xWL{m JIN_TREND), KWL{m QUT_TREND),
aWL(m,SLOPE), xWLOn,LOWB), xWL(m UFB))
Telose ([p):
|

4+ Repost workloml, **/
fp = fopen ("whpf", "a"%
tpeind (Tp, "%d 7, Quaniumn);
for{m=0:m< MumMachines; ma-+) fpringf {fp, "%f " sMACHINE(m)->1c);
fprintf ([p, ")
felose (Ip):
tendif
/** Print simylation Lime (simtime) in unit of m
#ifdel DMAPPING
fp= fopea (dsimtime-pl", "a"%
Aciif GMAX
{p = fopen ("gmax-pl, "a)

isceond. **/

#telse
o

{p= lopen (7 mtime-pl, "a");

¥endil

fclose {Ip}

schedale_startup_events

{** Create startup events. **/
i event *¢; maching *my; int ny;

for (m = 0; m < NumMachincs: me+) |
mp = xMACHINE(m}); mp->kid=0;
mp->phase = PRODUCTION; mp->status = 1DLE;
create_event (COMP, SimTime, m, -1, -1 - 1,0, PRODUCTION);

}

)

sim_comp (¢}

J** Simulatc computation. b
event *e; :

{ int 0 = e->m0; simtime 1; simiype phase; event *new_g;
xMACHINE(c->tD)-»status = BUSY:
cale_comyp_time (&t, m0, e->kid, e-»phase);
recreale_event (¢, NEXT, SimTime + 1, md,-1,-1,-1, e->kid, e->phase);

}

sim_comm ()

/+* Simulale communication. b4
cvent el

{ int m0 = ¢->mf, ml =c->m1, m2, m3 = ¢->m3; simtime t;
m?2 = xICNET(m1,m3)->m;
cale_pomm_time (&1, m1, m2, e->kid, e->phase);
schedule_comm {1, m0, ml, m2, m3, e->kid, c->phasc);
free_cvent (e):

]

sim_beast (¢}

4% Siinulne broadeast. **/
cvend *e;

[ simtime t;

cale_beast_time (&t, e->m0, e->kid, e->phase);
recreate_event (&, BCAST_ARRIVE, SimTime + t, e->m0, -1, -1, -1, e->kid, e->phase).

sim_arive (¢}

i te sirrival of o fame, 7/
cvent *e

{ int b = e->mbl, ml = e->ml, w2 = c-om2, w3 = c->mb
machine *mip = xMACHINE(e->m3); simtinse 1

1= 2ICNET(m1,m2)->1;
xLINK()->status = IDLE;
if (m2 =m3) {
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aDATA{mOm3c->kid)y = |

4+ 1f the target machine is idle now, try o trigger it. **/
if (m3p->status = IDLE) {
if (is_rcady_to_sim {m3}}
create_event (COMP, e->time, m3, -1, -1, -1, m3p->kid, m3p->phase);
H
Jelse
ml=m2;
m? = xICNET{m1,m3)->m; \
cale_comm_time (&1, m1, m2, e->kid, e->phasc);
schedule_comm (t, m0, m1, m2, m3, e->kid, e->phusc);
i
free_event (e);
wakeup_comm {1}

sim_bcast_arrive (¢)

+* Stmulate arrival of a frame due 1o broadcast, **/
event *e;

{ int m: machinc *mp:

for {m = BeasiFrom; m <= BeastTo; m+) xDATA(c->m0,m,c->kid) = 13
/* 11 the target machine is idle now, try to trigger it. **/
for {m = BeastFrom; m <= BeastTo; m++) {
mp = xMACHINE(m);
if (mp->stalus == IDLE && is_ready_to_sim (m))
create_event (COMP, e->time, m, -1, -1, -1, mp->kid. mp->phasc).
] .

free_event (£);

sim_next (g}
F** Simulate ready-for-computation. **/
event *c;
{ int m0 = e->m0, m3, 1, *arr,
ftoat comp; smaching *m0p = XMACHINE(e->mi):

1#* Send outputs. **/
if (get_succ_machines (MSA, &n, &arr, e->kid, e->phase}) (
if (NumBcasts && is_in_bcast_range (m0, MSA, NumbMachines)) {
create_gvent (BCAST, SimTime, m0, -1, -1, -1, e->kid, c->phasc);
}else {
for (m3 = 0; m3 < NumMachines; mi++) |
if (xMSA(m3)) {
if (m0 = m3) 1DATA(mOmI c=kid)= b
¢lsc creaie_cvent (COMM, SimTime, mil, ), -1, m3, ¢->kid, e->phase};

m0p->status = {DLE;
do {
if (get_ncxt_cluster (mOp-»kid, mOp->phase, &(nlp->kid), &(mOp->phase)) == FALSE) {
f** No more compulation is scheduled. **/
free_event {e);
Telum;
1
comp = (m0p->phase == PRODUCTION) ?
(xMAP(m0} + mOp->kid)->peomp : (xMAP(mO) + mOp->kid)->lcomp;
} while (comp <=0.0);
if (is_rcady_to_sim (m0O}}
recreate_cvent (e, COMP, SimTime, m0, -1, -1, -1, mOp->kid, mOp->phase);
else free_cvent (c);

scheduie_comm (Lm0, m1, 02, m3, kid, phise) s
£+ Scliedule comnwunication cvents. ¥%/

simtime 15 int m0, m1, m2, m3, kid; simiype phase;
[ cvent *waitQ = xICLINK(mE,m2)->waitQ, *p, *c;

¢ = alloc_event (ARRIVE, 1, mG, m1, m2, m3, kid, phasc);

if (waitQ} ( for (p = waitQ; p->next; p = p->next) ; p->nexi =¢; ]
else XICLINK(m E,m2)->wailQ =¢;

wakcup_comm ICNET(mn1,m2)->1);

wakeup_comm ()

J¥* Wake up a queucd communication cvenL. **/
it

[ cvent *e;

il (F < 0) crvor ("wakeup_cosun: no sueh Tink”, o

if ((LINK (}->staus == IDLE && XLINK(1->waitQ) [
xLINK{1)->status = BUSY;
ALINK()->wait) = (¢ = xLINK()->wailQ)->next;
¢->lime += SimTime;
schedule_cvent (e); ,

baolean is_tcady 10._sim (m)

J#* Check if this maching is kile and has enough inputs to star. *+
int m;

{ int i, j, n, *arr; machine *mp = iMACHINE(m):

i { {is_input_layer (mp->kidy && mp->phase = PRODUCTION)

II tis_output_layer (mp->kid) & & mp->phase == LEARNING))

retur TRUE;
if (get_pred_machines (MSA, &n, &arr, mp->kid, mp->phase) == FALSE) return FALSE;
for (i = & i « NumMachines; i++)
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if (xMSA(D)
for (=0 j<njt)
it (\DATA(.m, *arr+3)) == 0) return FALSE;
retum TRUE;

boalean get_nexi_cluster {kid, phasc, new_kidp, new_phasep)
/+* Find what is the next neural cluster io simulate. **/
int kid, *ncw_kidp; simtype phase, *new_phasep;

swiich {phase) (

casc PRODUCTION:
if (kicl »= OuCluster Th)
[ *new_phasep = LEARNING: *new_kidp = kid;
else | *new_phascp = PRODUCTION; *new_kidp = kid + 1 ]
break;

case LEARNING:
if (kid <= InClusterTh) celurn FALSE;
*new_phasep = LEARNING;
*new_kidp = kid - 1
hreak;

defoull
relurn FALSE;
break;

)
retwn TRUE;

7¢* Find the predecessors of this ne

l
*n=0; *arr = NULL; :
switch (phase) |
case PRODUCTION:
if {is_input_layer (kid)} return FALSE;
*n = 3CLUSTER(Kid)->num_pred;
*arr = xCLUSTER(kid)->pred;
break;
case LEARNING: i
if (is_output_layer (it} relurn FALSE
s = xCLUSTER(kid)->num_succ;
¢ tarr = xCLUSTER (kid)->su0¢;
brcak! '
default:
retum FALSE;
break; |
]
retumn TRUE:
)
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boolean get_suce_clusters (kid, phase, n, T}
/+* Find the successoes of this neural cluster, **/
int kid; simtype phasec; int *n, **are;

{
*p =0 *arr = NULL,
switch (phase) [
case PRODUCTION:
if (is_owtput_Jayer (kid)) return FALSE;
*p = xCLUSTER (kid)->nunm_suec;
*arr = xCLUSTER{kid)->suce;
break;
case LEARNING:
if (is_2nd_input_tayer (kid)) return FALSE;
*n = xCLUSTER(kid)->num_pred;
*arr = xCLUSTER (kid)->pred;
break;
default:
return FALSE;
break;
)
if {*n <= 0) return FALSE;
return TRUE;
}

poolcan get_pred_machines (msa, n, arr, kid), phase)
/+* Find the machincs corresponding to the predecessors of
** thig clusier, **/
int msal}, *n, **arr, kid; simtype phase;
i inti, k, m;

for (m = 0, m < NumMachines; w+) msa[m] = 0
if (ret_pred_clusters (kid, phase, n, ar} == FALSE) ecturn FALSE;
if {*n <= O} relum FALSE;
for (m=0;m < NumMachines; m++}
for (j =t i<*nite) |
k = *{*arr + i);
il ({msafm] = {(xMAP(M) + K)-S>peomp > 0.0) 7 1:0)) break;
)
relurn TRUE:

boolean get_suec_machines (msa, n, arv, kid, phase)
J** Find the machines corresponding to the suc of
** (his clustcr. **/
int msaf], ¥, **arr, kid; simtype phase;
[ e, n

for (m = 0; m < NumMachines; m++) msa[m] = 0;

if (zet_suce_clusters (kid, phasc, n, art) == FALSE) return FALSE;
if (*n <= 0) rern FALSE;

for (m = {, m < NumMachines; m++)



for (i=0;i<*n; i++} {
Ck=t{tarr4i);

if {msa[m] = ((xMAP{m} + k}->pcomp > 047 1:00) break;

]
return TRUE;

cale_comp_time (1p, m, kid, phasc)

f+* Calcufale the computation time of clusier kid on mackine m, **f
sitmtime *tp; int m, kid; simtype phase;

[ float comp = 0.0; *1p = (simtime) O;

comp = (phase == PRODUCT. TON) 7 (xMAP{m) + kid)->pcomp : {xMAP(m) + kid)->lcomp;

if (comp > 0.0) *tp=comp * AMACHINE(m)-»tc;

cale_comm_time (g, mt, m2, kid, phase)
7+ Calculatz the commaunication Lime Foe cluster kid
* between machines ml and m2. **/

simtisme *1p; int m ¥, m2, kid; simtype phasc;
[ float comm = (L0; *1p = (sientine) O;

ir(mi !=m2)

comm = {phase == PRODUCTION) 7 (xMAP(m1} + kid)->pcomm : (xMAP(m1) + kid}->lcom;

if (comm > 0.0) *1p += (xICLINK(m1,m2)->ts + comm * XICLINK{mi

calc_beast_time (1p, s, kid, phasc}
J+* Calculate Uhe broadeast lime for clustor kid from machine m, **/
simtime *tp; int m, kid; simtype phasc;

l float comm = (phase = PRODUCTION) ? (xMAP{m} + kid)->peomm {(xMAP{m) + kid)->lcomm;

*tp = BeastTs + comm * Beas(Tx;

boolcan is_in_bcast_range (5, msa, n}
7+ Check if machine s and destinations in aray msa arc all covered by
** this broadcast. **/
im s, msafl,
[ inti;

if (s < BeastFrom && s> BeastTo) return FALSE;
for (i = 0; i< n; i++}iF (msali} < B rom && ms
reinm TRUE,;

m2)->1);

dsimfevente

cvent *get_cvent ()
% Remove an event fromy the event queve and retunt iL, *
( cvent *e;

if (EvemQ) Event( = (e = EveriQ)->niext; else e = NULL,;
TCUM ¢}

create_cvent (type, time, mi), mi, m?2, m3. ki, phase)
4* Create a new evenl and inserl il injo 1he event quene. *ef

sindype type; simtime time; int mo, m1,m2, m3, kid; simtype phise;
{ schedute_cvent (alloc_gvent (type, time, md, mi, m2, m3, kid, phase)); |

recreate_cvent (g, type, time, m0, m1, m2, m3, kid, phase)
%% Re-use cvend ¢ and inser i inlo the event gqueue, Aad
cvent *e; simiype ype; simtime time;
intam0), m1, m2, m3, kid; simtype phase;

reuse,_event (e, Lype, time, m0, m1, m2, m3, kid), phase);
schedule_cvent ()

schedule_cvent (c)

/#* Insert event ¢ inlo the event gueue.
gvent *e; '

{ cvent *p0, *p;

if (Evem) (
for (pll =p =EventQ; pip = (10 = pi->next)
if (c->time < p->time) [
if (p == ) (EventQ = g)->next =
clse (p->aext = e)->nexl = P
return;
}
{pU->next = ¢)->nexL = NULL;
]
clse (Tvenl(Q = c)->next = NULL:

event *_e_ponl_mgr = NULL;

event *_nlloe_event {3

/** Allocate a froe space of an event from the free list manager. **f
[ cvenl *¢; inti;



il ¢_o_pool_mgr == NULL) {
_¢_pool_mgr = (cvent *) mallec (1006 * sizeof {evenl));
for (i=0; i< 1000, i+4) (_e_pool_mpe+i)->next = _c_pool_mgr+i+1;
{_e_pool_mgr+599)->next = NULL;

}

_¢_pool_mgr={e= _6_pool_mgr)->nest

return e

free_cvent {¢) event ¥¢; { e->next= _e_poei_mygr; _¢_pool mpr=¢; ]

cvenl *alkx event iype, ime, m, m1, m2, m3, ki, phasc)
7+ Allocate an cvenl with propet pacimeters lilled. *+/
simtype 1ype; simtime Lime;
int m0, m1, m2, m3, kid; simtype phase;
{ cvent *e = _atloc_event (;

NumEvenis++!

c-sext = NULL: e-stype = Lype; e->lime = lime;
coml = il ee>ml = mlje->m2 = m e->md=md;
¢->kid = kid; ¢->phase = phase;

fetume,

reuse._cvent {g, type, lime, m0, ml, m?2, m3, kid, phase)

/** Re-use the event ¢ by re-leeding parameters. i)
evenl *e,
int mi, m

e->nexl = NULL; e->type = 1ype; e->ne = time;
g->m0 = ml; e->mi = ml;e->m2 = m?2: e->m3 = m3;
c->kid = kid; e->phase = phase;
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dsim/map.c

if (Quantumn == ) relum THRU;

/4% Avcrage from the first o the previous ane **/

AvgSimTime = (AvgSimTime * (Quantumn - 1) + SimTime) / Quantunty,
roturm {(q_tem * {SimTime - AvpSimTime) >= MapTime) ? TRUE: FALSE);

remapping 0

#+ Decide o call NeuMap for a new mapping scheme,
*+ Handshake with NouMap, **/

{ int d = 0, dela = 0.0; FILE *fp; char emd 1001

construct_MIMD_Map (;
do[ /** Remove old resuls, **/
system("rm map-sim"});
J+* Calt NeuMap Lo satve optimal mapping. *f
sprintf (cmd, "neumap %s %s of od”, MIMD_Map, ANN_Map, ErrorAllowance + delia, d):
#ifdel MONITOR
printf "EXECUTING COMMAND ==> %s\n", cond);
Hendif
system {cmd):
if (T = Topen (MAP_Si
] while (1);
read_MAP_Sim (:

")) [ felose (5p); break; ) else dela +=0.1;

construcl_MIMD_Map (}

J#* Consiruct the specification of a multicomputer such that the
** gnecification can be understood by NeuMap, **/

[ int m; FILE *fpr, *fpw; char *c, buf[500)

M+ read MIMD_Slot and generate MIMD_Map **/
fpr = fopen (MIMD_Slot, "),
fpw = lopen (MIMD_Map, "w"),
white (fgets (buf, 500, Tpr)) [
for (¢ = buf; *¢: c++)
if (re=="8") [
oot aseanf (o, "Hd”, &m);
fpeintf (Epw, " %1 ", xMACHINE(m)->1e),
while (*¢ >='0" && "c<="V) o+
] elsc fprintf (fpw, "%c”, *c)i
)
fclose (Tpe); fclose (Tpw),;

read_MAP_Sim )
/#* Read in & ticw mapping scheme, **f
{ FILE *ip; int m, nk, i, j; float comp, comm;

/** Read in u new mapping scheme, **f
Ip = fopen {MAP_§im,"r");
[scuaf (fp, "%l %i", &PredSunTime, &MapTine);
1e *= (MACHINE_WEIGHT * 1000L0 / 60.0%;
CMT += MapTime;
for (i =0; i < NumMuachines; is) {
for {j = 0; j < NumClusters; j++) {
fscanf {fp, "%d %d", &m, &nk);
fscanf {fp, "%E %l”. &comp, &comm);




}
fclose (fp):

{(xMAP(m) + nk)->pcomp = compy
(xMAP(m) + nk)->pcomm = comm;
tscanf (fp, "%[ %[, &comp, &comm);
{(xMAP(m) + nk)->Icomp = comp;
(xMAP(m) + nk)->lcomm = comm;
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APPENDIX C.
PARALLEL ANN SIMULATIONS

This appendix mainly describes parallel ANN simulations on a 16-nodé iPSC/2 hypercube
computer and a network of three workstations, and describes how 1o use them. Section C.1
describes briefly their organizations. Section C.2 describes how to use them. Finally, Section

C.3 lists the programs.

~ 1. General Description
A parallel ANN simnfation is E_.m_mrc: based-on the mapping resolt of NeuMap. Two siow-
lation programs are described here, One is on the 16-node iPSC/2 hypercube computer. The
ather is on the network of three workstations.
Tor the one on a 16-node iPSC/2 hyperenbe computer, it inghides the following files:
host.c For i program to be able to ran on an iPSC/2 hypercube, there must have a cooperat-
ing routine which is run on the Cube Manager. This cooperating routine is niinly
used to load and start the program on each participating node.
node.c  ‘This is the program which is Tun on each participating node. It includes the main
simulation body.
map.h The declarations of a mapping scheme onto & hypercube are included in it.
def h Several constants particular for a hypercube computer and some debugging short-
hands are included in it.
comp.h  Tmportant computation-refated shorthands are inctuded in it.
comm.i  Important communication-related shorthands are included in it.
For the one on the network of three workstations, it includes the foliowing files:
node.c It includes the main simulation body.

comm.c  ‘The wilities for stream-based communicalion are in it,

comprht Impertant computation-related shovthands are inchaded in it

comm.t Imporiant communication-related shorthands are included in it.
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C.2. Steps for Using Simulations

The sitmulations on hypercubes for different ANNs are stored in different directorics. For
fully connected multitayered ANNs, they are in “softwarefchu/ms/ipsc/full-net, For hybrid miul-
tilayered ANNS, they are in “software/chu/ms/ipse/multi-layer. For nonlayered ANNs, they are
in “software/chu/msfipsc/non-Tayered. Here, tuke ML-1 as an cxample. Follow these steps to
execute the supplied simutation of ML-1 on a 16-node iPSC2 hypercube computer.

(1) Go to the direetory “software/chu/ms/ipsc/malti-tayer.

(1) Compile the simulation progsam by typing “make ™ which will generite exceutable fles
fiost and node.

(4) Create 4 16-node cube by typing “'getcube -t 16m4” which allocates a 16-node hypercube
in which each node has 4 mega-byte memory.

(5} Run the program by typing *‘host”

The simulations on the network of three workstations for different ANNs are also stored in
different directories. For fully connected multilayered ANNs, they are in “software/chu/ms/sun-
Yfull-net. For hybrid multilayered ANNs, they are in “softwure/chu/ms/sun-3fmulti-layer, For
nonlayered ANNs, they are in ~software/chu/ms/sun-3/non-layered. Here, tuke ML-1 as an
example. Follow these steps to execute the supplicd simulation of ML-1 on the network of three

workstations,

(1) Go to the dircctary "sofly -arg/ehufms/sun-3/mulii-layer.

{2) Compile the simulation program by typing “make node- 17" which witi generate an execul-
able file node-1.

(3) Run the program node-1 on three workslations by typing “‘node-1"" and supply a node
identifier for each workstation, for example, 0 for workstation 0, 1 for workstation 1, and 2

for workstation 2.

C.3. Listing of Parallel ANN Simulations on a 16-node iPSC/2 Hypercube

15%

~softwarefchu/msfipsc/multi-layer/Makelile.c

CrLAGS=-0
LDFLAGS = -0

HLIB=/usrfipscAib/chost.a -host flibytibm.a
NLIB=/usrfipscfiib/Llibenode.a -node fivfiibm.a

all: host nwde

NODE_OBJECTS= nude.o
HOST_OBIECTS= hoslo

node:  ${NODE_OBJECTS) R . o
ec -0 note ${NODE_QOBIECTS) ${NLIB}

host:  $(HOST_OBJECTS)
ce -0 host $[HOST_OBIECTS} $(HLIB}

clean:
rm -f *.0 host node

“softwarc/chu/msfipsc/multi-faycr/host.c

flinclude " Jsrclder .

Finclude “mah"
char dehugl LOO];
main ()

[ £+* This is the host process at the host node, **/
long start_time, exec_lime, ack, |_buffer{3], time_bulles[NODES]{2];
FILE *cutdp, *fopen(); int i, n, iter;

¥+ Sct the host process's 1D to HOST_PID. **/
seipid (HOST_PID);

#++ 1.oud the exceutable file node to process NODE_PID on cach node. **/
toad (“nodc”, ALL_NODE, NODE_PID);

#** Send inpul signals 10 all podes, **/

for (iter = 0; jter < ITER; iter++)
csend (INPUT_TYPE, inbul, nbytes * NUM_INPUT, ALL_NODE, NODE_PID);
csend (TEACH_TYPE, tbuf, nbytes * NUM_OUTPUT, ALL_NODE, NODE_PID);
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1
}
~sofiware/chwims/ipsc/src/def.h
Hinchude <sidionh> '
#include <cube.bi>
#include <math >
#dchincHOST_PID 100
#defineNODE_PID 1
#defineALL_NODE 1
#defincALL_PID -
#defineEND_TYPE 0
#defincINPUT_TYPE 1
#delineQUTPUT_TYPE 2
#define TEACH_TYPE 3
#dafincERROR_TYFPE 4
HdelineACK_TYPE 5
#defincDEBUG_TYPE [}
Hidelinel TER ;
:mo_,EBo.a:E.Ba._u«&B.c__m._&_.ne_naub
/+* ANN Model **/
#defineNL 250
HdefineN2 100
#defineN3 250
#dcfineN4 150
#delineN5 200
#defineN6 300
#defineN7 100
#defineN12 91 +N2)
#defineN13 (NE2 + N3}
#delineN14 {N13+ N4)
#defineN15 (M14 + N5)
#delineN16 (N5 + NG}
#dchinelN17? (N16+N7)
#delingNEURONS Ni7)
#defincCLUSTERS. T

HdeineLAYERS 4

#dpfine NUM_INPUT Ny
Bdeline NUM_OUTPUT  (NT)

it nk[CLUSTERS!= [ NI, N2, N3, N4, N5, N6, N7 IH
it nkfcom[CLUSTERS] = [ 0, N1, N12,N13, N14, N5, NI6 |
int  mkiofCLUSTERS] = { Zu.r25.“.z_u-__ZZ-_.ZG.__ZE._.ZS-_ h

flomt wOL[N1I[NT], wi2[NTINZ], wi3[NT]JIN3], wid[N1][N4], w25{N2])[N5);
float  w3S[N3]INS], w36[N3ING], waGNA]ING], wST[NSIINT), w6 T[NEINT];

4+ Multicomputer Model **/

#ifdel SEQUENTIAL

#ilefineNODES 1 .
#else

HdelineNODIS Hil

fleadif

J+ Mapping **f

im aspufNODESICLUSTERS] =
{
#ildel SEQUENTIAL
{ 250, 100, 250, 150, 200, 307, 106 )

Relse
P16, 7,85, B 12,18, 5],
[ 14, 7,15 8 12,18, 5},
( 16, 7. 15, 8 12,18, 5],
{16, 7,15 8, 12,18 5}
[ 16, 6, 16, 9,12, 18, 6],
{16, 6, 6, 9,12, 18, 6],
[ 16, 6, 16, 9,12, 18, 6),
[ 16, 6 16, 9,12, 18, 6},
[ i6, 6 15, 10,13, 19, 5},
{ 16, 6, §5, 10, 13, 19, 5],
{15, 6, 16, 11, 13,19, 7}
{15, 6 16,11, 13,19, 7},
[ 15, 6, 16,10, 13,20, 8],
{15, 6,16, 10, 13,20, &],
( 15, 6 16, 10, 13, 20, 8},
[ 15 6, 16,10, 13,20, 8],

Hendif

I

struct [ int front, ;) mapiNODES[CLUSTERS],

/4 Simulation **/
fidefincl TER 1

float  outfNEURONS]; /4% Oulputs of neurons **f
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/*+ Pantial errors of neurons **/
7** Threshald **/

float  delta NEURONS],
float  thela| NEURONSE

float  inbuf|NEURONS+2]; 7+* tnpul bufler **/
floal  outbul[NEURONS+2]; #+ Qutput buffer **/
float  thul[NEURONS+2): J** “Feaching input buffer **/

flom  gain:
int my
im  my_col

** Shorthands;
s+ (o gvoid intzactbility in prediction of comp time for exp,
*+ |he comp Lime is 5ol to be fixed, **f

adefinefioat_expla)  {(Hoat) exp ({doulle) ©.50))
¥definesipmoid{s)  (1.0/(1.0+ foat_exp &)
#cfincnbyics {sizeof (Noat) / sizeof (char))
#deline span{s.e) {c-%)
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~sollwarefchu/ms/ipsc/src/comp.h

#define iFSC2_INITO
my_node = mynode {; my_pid = mypid (0 host = mybost ()
time_bufler[0] = my_node; outbult0) = {lom) my_node;
for (k = 0; k « CLUSTERS; k) [
for (comit = j = 0 § < my_node; J++) coual += asg 1HEkY;
my_count{k} = count;

1

#definePROD_COMP_0(kid}
count = 1;
for (1 = map[my_node]{kid- L].from; i <= map[my_nwde]
fiel = thetafil; i = i - ekfrom{kid-1};

1- 1100 i 44) {

= sipmuid{nct); }

#define PROD_COMP_L{kid) outhuljcount++]} = ou

_:_2.___,.n.o7_ﬁ.\z_ﬂ.n_zﬁc.._,?E_..,,snn_,.._n_:m:.;.mcﬁnnb:ﬁ_:
for (k = 0; & < nk{pred-1); ke++4) ot += {w_matrix [k]{ii] * source [k+offseld);

BiefineMEASURE_O(kid phase) start_time = melock (t

e e MEASURE_ 1(kid pl
cod_time = melock {); tsgan = {foal) span
ot = {float) {map{my_node =11k«
printf ("my_node=%d == ,my_node);
printl (*%s{%d|=%10, {(phase == *P*) 7 "peunit” : “leunit”), kid, tspan / 1)
tsii += (Ispan / num); icompsum += Lspat;

ime, ool _Hime),
[nsy_nade [Tkid-10.leom + 1)

el

P

#dcline LEARN_UPDATE(pred succ,w_malrix Jis_oulpul_cluster)
if {is_output_cluster)
for {i = map[my_node}[succ-1].from; i <= map[my_nodel{suce- 1)40; i+4)
deliafi] = outli] * (1.0 - owlli]} * Qbuffi] - outli];
¢lse
for (i = mapmy_nods]{succ-1].from; i <= map[my_node](succ-1].10; i++)
deliafi] -= oatlil;
for (i = map{my_nodel{succ-1)from; i <= maplmy_nodel{suce-1]0; i++) [
ii =1 - nkirom[suce-11;
for (k = 0; k < nklpred-1J; k++) w_malrix {k1tii] += (gain * deltafil)
]

#dcfine LEARN_ERROR (pred suce,w_matrix,is_output_clusier)
for (i = akfrom[pred-1]; i <= nklo{pred-13; 1+4) [
delea(il = 0.0; ii = i - nkfrom{pred-11;
for (j = map|my_nedelisuce-1].from - nklrom[suce-1];
j <= maplmy_nodefsuce-1).10 - nkfrom{suce-11; j++}
deliafil += (delta[j+okfrom{succ-1]} * w_matrix [ii][}}% outbuflcount++] = delajil;

)

#defineINIT _WEIGHT(pred,suce,w_matrix)
for {j = map[my_node](succ-1}.front - nkfrom[succ-1];
j <= mapimy_node]{succ-11.0 - nkfrom[suce-1}; j++)
for (i = 0; < nfpred-§); i++) w_matrix [i}{j] = 0.5;

#define TEACH_INPUT()
creey (WPUT_TYPE, inbuf, nbytes * NUM_INPUT),
crecy (FEACH_TYPE, tbuf, nbyles ™ NUM_OUTPUTY);

P A

A A A

-
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-software/chu/ms/ipse/srcfcomm.h

#ildc! STATISTICS
#elinePROD_COMM(_pred, _suce)
#else

ddefincPROD_COMM(_pred, succ)

isend (OUTPUT_TYPE, outbuf, nbytes * (asgni{my_node]{_pred-1] + 1), ALL_NODE, NODE_PID};

for (i=1;i < NODES; i++) {
erecy (OUTPUT_TYPE, outbul, nbytes * (nk[_peed-1] + 1))
this_node = {int} outbuf[0]; count = 1;
for {k = map({this_node]{_pred-1}.from; k <= raplthis_node][_pred-1].0; k++}
cut[k] = ontbullcount++];
)
Bemlil

ifddef STATISTICS
idelineLEARN_COMM(_pred, _succ)
fielse
#defineLEARN_COMM{_pred,_succ)
isend (ERROR_TYPE, cuibuf, nbytes * nk[_succ-1], ALL_NODE, NODE_PID);

PP



for {i = 1; i <« NODES; i+4) {
crecy (ERROR_TYPE, outbuf, nbyles * nk[_suce-1]);
count = my_couni[_suce-11;
for (k = map[my_node][_succ-1}.from; k <= maplmy_peade][_suce-110; k++)
deltalk] += outbuflcount++];

#endif

o
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1
~software/chw/ms/ipsc/multi-layer/node.c

¥include " Jsicfgel.h”
#inchide "map.h"
#include " Isrcfeomp b”
Hinclude " fsc/comm.h?

mairn (arge, argv}
int arge; char *argv[];
[ £** This is a node process. **/
long my_node, my_pid, host, start_time, end_time, time_bulfer(5);
int 1, ii, j, k, count, iter, this_node;
float net, tspan, num, tsum = 0.0, tcompsum = 0.0;

iPSCZ_INIT ()
inil_ANN_sim {my_node};
TEACH_INPUT ()

tie_buffer[}] = meleck (5

/** The following is main operations of an ANN. **/
for (iter = 0 iter < ITER; iter++} (

/** Start the PRODUCTION phase. **/

difdef STATISTICS
MEASURE_0(1, P}
#endif
/#* Produce the outpuls of neurons in eluster 1,**/
PROD_COMP_0 (1}
COMP_NET_INPUT (3, L, w01, inbuf, 0}
PROD_COMP_1 (1)
#ifdef STATISTICS
MEASURE_L (1, P}
#endifl

Hifdel STATISTICS
MEASURE 0 (2,'P")
Hendil
fifndel SEQUENTIAL
PROD_COMM (1,2}
#endif
*+ Produce the outputs of neurons in cluster 2.4
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PROD_COMP_{ (2)
COMP_NET_INPUT (1,2, w12, out, D}
PROD_COMP_I (2} '
Hifdel STATISTICS
MEASURE_1 (2, "P")
#endif

#ifdel STATISTICS
MEASURE_0 (3, 'P")

Hendil
+* Cluster 1's outputs are already available, then
*+ produce oulputs of newsons in chuster 3. %/
PROT_COMP_O (3)

COMP_NET_INPUT (E, 3, wid, out, 0}

PROD_COMP_1 (3)

#ifdel STATISTICS
MEASURE_I {3,'T)

Hewdil

#ifdef STATISTICS
MEASURE_0 (4, 'P")

Hendil
4+ Cluster 1% oupets are alecady svailsble, then
*#* produce oulpuis of newrons in clusier 4, **/
PROD_COMP_0 (4)

COMP_NET_INPUT {1, 4, w14, out, 0)

PROD_COMP_1 (4}

Hildef STATISTICS
MEASURE_I (4, 'P7)

#endif

#ildef STATISTICS
MEASURE_0(5,'P")
fHendif
#ifrelef SEQUENTTAL
PROD_COMM (2, 5)
PROD_COMM (3, 3)
Hondif
A Produce the cutputs of acurons in cluster 5. **/
PROD_COMP_0(5)
COMP_NET_INPUT (2, §, w25, out, N1)
COMP_NET_INPUT (3, 5, w35, eut, N12}
PROD_COMP_1 (5)
Hifdef STATISTICS
MEASURE_L (5, 'F")
flendif

Hifdel STATISTICS

MEASURE_0 (6, 1)
Hendif ’
#ifndel SEQUENTIAL

#+* Cluster 3°s oulputs are alrendy available. **/

PROD_COMM {4, 6}



Hendif
/** Produce 1he outpuls of neurans in cluster 6. *4/
PROD_COMP_U {(6)
COMP_NET_INPUT (3, 6, w35, oul, Ni2)
COMP_NET_INPUT (4,6, w46, out, N13)
PROD_COMP_L (6)
ifdef STATISTICS
MEASURE_1 (6, 'P")
#endif

Bildef STATISTICS
MEASURE_0 (7, 'P")

if
Filnlef SEQURNTLAL
PROD_COMM (5,7)
PROD_COMM (6,7
#endil
J** Produce the outputs of ncerons in cluster 7. **/
PROD_COMP_O(7)
COMP_NET_INPUT (5.7, w57, enl, Nid)
COMP_NET_INPUT (6, 7, w67, out, N15)
PROD_COMP1 (T)
pifdel STATISTICS
MEASURE_1(7,'PY
#endil

#+ Start he LEARNING phase, b

fildel STATISTICS
MEASURE_0(7.'L.")

#endif
** Update he weight matrix between clusters 5, 6and 7. **/
LEARN_UPDATE (5.7, w57, 1j
LEARN_UPDATE (6, 7. w61, 1)
count = 0;
LEARN_ERROR (5,7, w57.1)
LEARN_ERROR (6, 7, w61, 1}

#irdef STATISTICS
MEASURE_S (7.'L7)

#endif

#ifdef STATISTICS
MEASURE_0(6,'L")

Hendif

Hifndel SEQUENTIAL
LEARN_ COMM (5,1
LEARN_COMM (6,7}

Hendif
4+ Updie (he: weight mallrix between ¢lusters 3,
L EARN_UPDATE (3,6, w6, 0)
LEARN_UPDATE (4, 6, w6, ()
counl = (0
LEARN_ERROR (3, 6, w30, 0}

iR el

LEARN_ERROR (4, 6, w46,0)
#ildef STATISTICS

MEASURE_L (6,'L")
Hendif

#ildef STATISTICS
MEASURE_0{5,'L")

Fendil

#ifndef SEQUENTIAL
LEARN_COMM (3,6)
LEARN_COMM {4, 6)

#endil
{+* Update the weight matrix between clusters 2, 3and 5.**/
LEARN_UPDATE (2, 5. w25, 0)
LEARN_UPDATE (3,5, w35, ()
count = 0);
EEARN_ERROR (2, 5, w25,0)
LEARN_ERROR (3, 5, w35.0)

yildef STATISTICS
MEASURE_i (5.'L")

Hendil

Hilde! STATISTICS
MEASURE_(H(4, "L}

Hemlif

Hifndel SEQUENTIAL
LEARN_COMM (Z, 5
LEARN_COMM {3, 5)

#endif
7% Updale the weight matrix between clusters 1 and 4. **/
LEARN_UPDATE (1,4, w14,0}
count =1
LEARN_ERROR {1,4,w14,0)

#ifdef STATISTICS
MEASURE_1 (4, 'L}

#endif

Hildef STATISTICS
MEASURE_0(3,'L")

#endif

Hifndel SEQUENTIAL
LEARN_COMM (1,4}

Hendif
+* Update the weight matrix between clusiers tand 3. **/
LEARN_UPDATE (1,3, wi3,0)
count =0,
LEARN_ERROR (1,3, wi3, 0

Hitdel STATISTICS
MEASURE 1 (3,"L7)

Hendil

Aifel STATISTICS
MEASURE_0(2, L)
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#endil

#ifndel SEQUENTIAL
LEARN_COMM(1,3)

#endil

** Update: the weight matrix between clusters Land 2. **/
LEARN_UPDATE (1.2, w12,0)

court = (%

LEARN_ERROR (1,2, wi2,(}
Hildel STATISTICS

MEASURE_L (2.'L") '
Hendil

Hildef STATISTICS,
MEASURE_0 (1, L")
#oendil
#ifndef SEQUENTIAL
LEARN_COMM {1,2)
Hendil
J** Update the weight matrix between INPUT and 1.**f
LEARN_UPRATE (1, 1, w01,0)
#ifdel STATISTICS
MEASURE_1{1,'L")

Hendil
Hildef STATISTICS

printf ("my_node=%d ==> sum=%[0, my,_node, lsum);
Hendif

/+* This is the end of onc ITERATION, **/

}

tirme_buffer[2) = melock (;
#ifndef STATISTICS

tspan = (float) span (ime_bufferl1], time_buffer[21);

printf ("my_node=%d => °, my_node};

printf ("hier=%d, ComplTime=%g(ms), Compl Time/ter=%g(ms)), ITER, tspan, tspan / ITER),
#ondil

}

init_ANK_sim (my_nodc}
long my_node;
{ inti, ji

£** initiatize the gain wrm. **/
gain = 0.7

1¢* Set up the assignment scheme. **/
for (j=0; j < CLUSTERS; js-+) {
maptOf]jlfrom = nkfrom|jf;
mapl0)5j10 = mapl0]Lj].from + asgatj] - 1;
for (i = 1; § < NODES; i+4) {
maptil(§).from = mapli-1)Ejl.to + 1
maplilij].to = mapli](j}.from + asgathillif - b

]

INIT_WEIGHT {1, 1, wO1)
INIT_WESGHT (1,2, w12)
INIT_WEIGHT (1, 3, w13}
INIT_WEIGHT (}, 4, w14)
INIT_WEIGHT (2, 5, w25)
INIT_WEIGHT (3, 5, w35)
INIT_WEIGHT (3, 6, w36)
INIT_WEIGHT (4, 6, w46}
INIT_WEIGHT (5,7, w57)
INIT_WEIGHT (6,7, w67)

for (i = 0; 1 < NELJRONS; i+4) [

thetalil =4.5;
inhufli] = 1.0;
outbuffi] = LG;
thulli] = 14%

e 1buf. * 4/

14



1)

C.4. Listing of Paraliel ANN Simulations on a Network of Three Workstalions.

-sofiware/chuAnis/sun-3/multi-layer/Makefile

comp-1: map.h-1 .Jsrcfcomp.h Jsrefcomm.b node.c
touch emp.g; rn temp.c; cat map.hi-1 node.c > temp.c; e LDSTATISTICS .lemp.c -In -0 comp-1

comp-2: map.h-2 Jsrcieomplh Jsrefcomm.h node.c
touch temp.c: i temp.cs cat aph-2 node.c > temp.c; cc -DSTATISTICS demp.c -im -0 comp-2

comp-J map.h-3 . fsrejcomphr . Jsee/comm.h node.s
touch .temi.c: m temp.c; cal maphi-3 node.c > temp.c, ¢c -DSTATISTICS temp.¢ ~lm -0 comp-3

seq-15 maph-1.Jsre/comp.h JJsrefcomath nodec

touch femp.g; em lemp.c; cat map.h-1 node.c > s.c: co -DSEQUENTIAL tempg -l -0 5eq-1

seg-2 maph-2 Jsteieomph Jste/eomm.h node.¢
touch _temp.c; g lemp.c; cat maph-2 nodeg > semp; oc -DSEQUENTIAL iemp.c -l -0 seq-2

map.h-3 . fsrefcomph L fstcfcomm.h nodec
touch .temp.c; rm temp.c; cat magh-3 ande.c > Lemp.e; ¢¢ -DSEQUENTEAL lemp.c - -0 seq-3

node-1: map.h-t . Jsrefcomp.h . Jsrefcomm.h node.c
\otich Llemp.c; T teaw.c; cal map.hi-1 node.c > lemp.c: cc temp.e -Im -0 node-1

e 2 naph siefeompd faecfoomin, o wew
tonch dempa; i dempa -2 nodest > e

;e Lemge -1m -0

nekle-3: maph-1 . fsrcfcomph fsrcfcomn.h nodec
touch temp.g: tm demp.es cat map.h-3 node.c > femp.ci cc 1CRp.C “loy < a3

~software/chomsfsun-3/mulli-layer/map,h-1

{1+ ANN Modcl **/

¥defineN1 300

#defincN2 200

#defineN] 500

#idefineNd kLt

KdelineNS 200

#defineNG 600 N
¥deflineN7 200 A

BdeGneN12 {N! + N2)

HdefineN13 T (N124ND3)

(N13 + N4

HdefineN15 (N14 + N5}
#defincN16 (N15 + N6}
#defineNLT (NI16+ N
#defineNEURONS (N17)
#delineCLUSTERS 7
#delincLAYERS 4

int  nk[CLUSTERS] = ( NI,N2,N3, N4, N5, N6, N7 );
i nkfrom{CLUSTERS] = { 0, N1, N12, N13, N14,N15,N16 };
i ok CLUSTERS] = { N1-1, N12-1, N13-1, N14-1, N15-1, N16-[, N17-1 );

float  wON[NI[NLL, wi2[N1J[N2], wl3[NFEN3], wi4[N1]{N4), w25[N2J(N5)
float  w3S[N3J[NS], wI6INIJING], wBIN4IING], wS7[NSIINT], wET[NG]EINTI;

7+ Multicomputer Model *4/

flillel SEQUENTIAL

#defineNODES f
#else

#dcincNODES 3
Headil

1+ Mapping *4/

it asgn[NODESICLUSTERS] =
{
#Hillel SEQUENTIAL
[ SO0, 200, 500, 300, 40K, 600, 200 |

flelse
{ 130, 52,138, 79,105,138, 53§,
{ 146, 59,146, 87,117,175, 58 ), '
{224, 89,223,134, 178,267, 89)

flendil

ki

steact { int from, to; § map[NODES{CLUSTERS];

7+* Simulation **/

#definel TER |

float  out[NEURONS); 1+* Outputs of ncurons *¥/
float  deha[NEURONS]; 7+* Partial crrors of neurons **/
lgat  thew[NEURONST P4 “Threshakd **f

float  inbul[NEURONS+2]; /7% Input buffer **/

float  outbuf[NEURONS+2); /** Output buffer **/

foat  thulfNEURONS+2]; J** Teaching input buffer **/

float  gain;
it my_id;
typedef structuns systime;

i



f* Shorthands:
*% 10 avoid intractability in prediction of comp time for exp,
** (he comp time is set 1o be fixed. **/

#defineAoa_exp{a)  ((Noal) exp {{doubic) (0.5)))

#dchincsigmoid(a)  (1.0/{1.0 + float_exp (a)))

Hdchinenbyles {sizeof (float) / sizcof (char)}

Hdefine span(s,e) (e.tms_ulime - s.tms_wlime + c.tms_stime - s.ims_stime)}
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#defincPROD_COMP_0(kid)
count = 0;
for (i = map{my_id|[kid-1}.lrom; i <= map(my_id]ikid-1}.10 i) {
net = thew[ifs - nkfromikid-1}

#define PROD_COMP._1(kid} outbullcount++] = outfi] = sigmoid{nct}; }

a%_.__._nnozv|2m..~.|_.7%5€_g.mcoa.£|amia.mc;ao.o_._.mac
for (k =10; k < nk[pred-1); k++} nct += {w_matrix {k}(ii] * source [k+offscti)

#defineMEASURE_O(kid,phase)  times (&start_timel:

#dehineMEASURE_1(kid phase)
times (&end_time); tspan = (float} span (s1ary_time,end_time);
num = {float) (map(my_id]kid-i].lo - maplmy_idlikid-1].from + 1}
print€ ("%s[%od)=%(0, ((phase == *p*) 7 "peunit” + "lcunil™), kid, tspan [ nupm);
tsum += {ispant / num};

#define LEARN_UPDATE(pred suce,w_matrix Jis_output_cluster)
if {is_output_ctustce)
for (i = map[my_id]{succ-{].from; i <= map{my_id][succ- 114, i++)
deltafil = outgil * {1.0 - out[il) * (tbudlil - out[il);
clse
for (i = map{my_idlsuce-1].from; i <= map(my, idjfsuce-1]10; i+4)
deltafi} -= outfi};
for (i = maplmy_id]{succ-1].from; i <= maplmy_id)fsucc-11.10; i++) [
ii = i - nkfrom(succ-1];
for (k = 0 k < nkfpred-1); k++} w_matrix [k][ii} += (gain * delwfil);
)]

#define rm>mz|mmwow€q&u=nn.£|3u5r.alan_u:,in_:_ﬁs_.u
for {i = nkfrom[pred-1]; i <= nkio{pred-1T; i++} {
deftali] = 0.0 ii = i - nkFrom(pred-13;
for {j = map[my_id}{succ-1].from - nkfrom{succ-1};
j <= map[my_idj[suce-i].10 - nkfrom[suce-11; j++)
delia[i] += (dealj+nkfom[suce- 11 * w_matrix [iT3[if};
outbuflcount++] = dehalik

P g P -

R A

Hedeline INIT_WEIGHT(pred, suce, w_matrix}
for (j = maplmy_id][suec-1).Lrom - uklromsce-1];
j <= map{my_id}[suce-1).t0- nk(rom[succ-1]; j++)
for {i = 0; i < nk[pred-1]; i++) w_matrix [iyi=0.5
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aa%zavxmm.zn.|>zUnﬁmnﬁlar:aarnn&.um:ns
_sock = send_socki_tol;
SEND {send_sock]_tol, (thas *) cuthul, nbyles * asgm[my_id]{_pred- 11}
send_socki_to] = _sock;
RECY (msgsack[_from), (char *) inbuf, nbytes * asgrt_fram[_pred-1]x

for (count = 0, k = map(_f won][_peed-11.0rom; k <= mapl_lrom}[_pred- Lo, k++)

putlk) = inbuflcouni++];

HefinePROD_COMM{(_pred,_suce)
switch (my_id) {

case O; P_SEND_AND_RECV( 1,2, pred,_suce)
P_SEND_AND_RECV(2,1,_pred,_succ)
break;

case 1. wlmmzcl>zU..wmncﬁ_crca;rwﬁ&
P_SEND_AND_RECV{0,2,_pred,_succ}
break:

ease 2 P_SEND_AND_RECV(0,1 \_pred, _succ)
P_SEND_AND_RECV(i 0,_pred,_siecc)
break;

)

#definel,_SEND_AND_RECV{_to, from, _presl,_suec)
_soek = send_sovk[_tok N
SEND (sond _sock[_to}, (char *} outbaf, nbytes * nk[_suce-11};
send_sock]_ta] = _sock;
RECY {msgsock{_{rom], {char *) inbuf, nbytes * nkj_succ-11%
for {count = i= 1% i <my_id; i++)} count += asgnt[i][_suce-1};

for {k = map{my_d]{_succ-1].drom; % <= map[my_id][_succ-1].to; X++) deltalk] += outbuflcount++};

#defincLEARN_COMM(_pred,_succ)
switch (my_id} ¢

case 0: L_SEND_AND_RECV(i.2,_pred,_succ)
L_SEND_AND_RECV(Z,1, pred,_succ)
break;

case 11 L_SEND_AND_RECV(20, pred,_succ)
L_SEND_AND_RECV(0.2, pred,_suce)
break;

case 3 1L_SEND_AND_RECY{0.1, _prod,_succ)
L_SEND_AND_RECV(1 0. pred,_suece}
break;

P A A P R A e PV A A
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“solware/chu/msfsun-3fsre/comm.c

3_._n§_o

Hinclude
Hinclude
#include
#include
finclude
Einclude

int
int
inl
i
stnxct hostent

<sidinh>
<math.h>
<sysitypes.h>
<sysflimes.h>
csysfsockel.h>
enclinetinh>
<strops.h>
cncldbh>
“.fste/socketh”

send_sock[NODES+1];
_serql_sock| NODES+11;
recv_sock[NODES+iL
msgsk[NODES+1T;
*gethosthyname ()

-

strct sockadde_in  send_server[ NODESL
struct sockaddr_in  reev_serveriNODESE

init_vekt {my_|

id)

int my_id:

{ inei

switch (my_id) |

case 0 ** This is for SUSIE. **/

CREATE_RECY {&reev_sock(2], &reev_servee] 21
SEND_ciaine_susic_PORT,
RECV_claine,_susic_PORT,

"glaing”, &msgsock[2])

CREATE_SEND (& _send_sock[!], &sead 83.2:_.
SEND_susie_thea_PORT,

RECY _susie_thea_PORT, "rhea”);

CREATE_SEND (&_scnd_sock[2), &send_server(2),
SEND_susie_ctaine_PORT,

RECY _susi¢_claine_PORT, "¢lainc™},

CREATE_RECV (&reov_sock[1], &recv_server[11,
SEND_rhea_susic, PORT,
RECY_rhea_susie_PORT,
"rhea”, &msgsock(11):

break:

-

case 10
seever] 2,

RECY_rhea_chiine, _qu,_. "claine"),
CREATE_RECY (&recv_sockl0], &reev_server(G),
SEND_susic_rhea PORT,

RECY _susic_rhea_POR'T,

}
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"susic", &msgsock[M):

CREATE_RECY (&recv_sock{2), &reev_server(2],
SEND_claine_thea _PORT,
RECY_ehaine,_rhea_PORT,

“etaine®, &msgsock[2]);

CREATE_SEND (& _send_sock[0}, &send_server|0],
SEND_thea_susic, PORT,

- RECY_thea_susic_PORT, "susic™),
break;
case 2 f+* This is for ELAINE. **/

CREATE_RECY (&recv_sock(1), &recv_server{1],
SEND_shea_claine PORT,
RECV_rhea_elaine_PORT,

"rhea”, &msgsock{1]);

CREATE_SEND (&_send_sock{0], &send_server{Q),
SEND_elaine_susie_PORT,
RECV_elainc_susic_PORT, "susie");

CREATE_RECV (&recv_sock(0], &recv_server[0],
SEND_susie_elaine. PORT,

w ECV_susic_clainc_PORT,
ic", &msgsock[H);

CREATE_SEND (& _send_sack{1], &send_server[1),
SEND_elaine_thea_PORT,
RECV_elaing_rhea_PORT, "rhea”);

break;

default: beeak;

for {i = 0; i <« NODES; i++)
if (my_id 1=1) {
send_sock[i] = _send_sock[il;
ioctl (msgsockli], I_SRDOPT, RMSGD)

close_vckt (my_id)

(

}

int my_id;
inti;
for (i =0; 1 < NODES; #+4)
if (my_id 1=} { close (send_sock[il}; close {msgsock[il); close (recv_sockfil); }

SEND (sock, buf, fen)
f** Send a frame, **f
_E sock; char *buf; int _.S.

RECY {msgsock, bul, len)
f** Read a frame. **f
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int msgsock; char *buf; intlen;
[ int rval = read (msgsock, buf, fen);

if {rval < 0} perror ("read 2 frame”),
if (rval == D) printf ("close this connection0);
)

CREATE_SEND (send_sock, send_server, send_port, recv_part, dest_host)

/+* This routine is based on the one in Sun Manual for network programming. **/
int *send_sock; struct sockaddr_in *send_scrver;
int send_port, recv_port; char dest_host(];

{ inl status;

1

*send_sack = sockel (AF_INET, SOCK_STREAM, 0);
send_server->sin_family = AF_INET,

send_server->sin_adde.s_addr = INADDR_ANY;

send_server->sin_port = recv_port;

staws = bind (*send,_sock, send_server, siveof (*send_scrver)),

if {status < 0} perror {“binding fails");

hp = gethostbyname (dest_host);

beopy ((char *) bp->h_adds, {char *) & (sond_server->sin_addr), hp->h_lengLh);
connect (*send_sock, scnd_server, sizeol (*send_server));

}

CREATE_RECY (recv_sock, recy_server, send_port, recv_port, dest_host, mspsock)
/** ‘This routine is based on the one in Sun Manual for network programming, **/

int *recv_sock: struct sockaddr_in *recv server;

int send_port, recv_port; char dest_host[]; int *msgsock;
[ int status;

*recv_sock = socket (AF_INET, SOCK_STREAM, ).
recy_server->sin_family = AF_INET;
recv_server->sin_addr.s_addr = INADDR_ANY;
FECY_SErVer->Sin_port = recv_port:

statas = bind (*recv_sock, recv_server, sizeol (* recv_server));
if (status < () peror ("binding fails™);

listen (*recv_sock, 5%

*msgsock = accept {*recv_sock, (struct sockaddr *) 0, (int ¥y 0);

“software/chw/ms/sun-3multi-layerfnode.c

#include * Jsrcleomp.h”
#include ".fsrcfcomm.h”
finclude " fsrcfcomm.e”

main {argc, argv)
imt arge; char *argv(l;
{ J** This is a node process. **/

i

int_suck, i, ¥, j, k, count, iler, this_nodles
flaut net, tspan, num, tsum = 0.0; long ack:~
systime start_time, end_time, Lsim_0,1_sim_1;

my_id = atoi (argvil)

printd ("my_id = %0, my_id);
#ifndef SEQUENTIAL

init_vekt {my_id);
#endif

init_ANN, sim ();

times (&t_sim_O),
J#* This is the main operations of an ANN. *»}
for (iter = 0; iter < ITER; iter++) L

¥+ Start the PRODUCTION phase. **/

Hiflel STATISTICS
MEASURE_({1,'"}

Hendil '
/+* Produce the eutputs of neurons in cluster 1.* *
PROD_COMP_D(1)

COMP_NET_INPUT (1, 1, w01, inbuf, 4]
PROD_COMP_1 (1)

#ifdel STATISTICS
MEASURE_] (1,'F")

#endif

#ifndef SEQUENTIAL
PROD_COMM (i, 2}
#endil
#ifdel STATISTICS
MEASURE_0(2,'P")
#endif
/#* Produce the cutputs of neerons in cluster 2. hid]
PROD_COMP_(1{2)
COMP_NET_INPUT (1,2, w12, oul, 0)
PROD_COMP_1 (2}
Hifdef STATISTICS
MEASURE_1 (2,'")
Hendif

7** Cluster t's outputs are alrcady available. **/
#ifdel STATISTICS
MEASURE_0 (3,'P)
Bendil
* Produce the putpsls of neugons in cluster 3. %4/
PROD_COMP_0 (3)
COMP_NET_INPUT (1, 3, w3, out, 0)
PROD_COMP_1 (3)
#illef STATISTICS
MEASURE_1 (3,'P")
#endif
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/+* Cluster 1's outpuls arc already available. **/
#ifdef STATISTICS
MEASURE_0 {4,'F)
#endif
+* Produce the eutputs of ncurons in clustet 4.4
PROD_COMP_O &)

COMP_NET_INPUT (1,4, w14, out, D) -
FROD_COMP_! (4} '
#ifdef STATISTICS :
MEASURE_1 (4."P")

¥endif '

#ifndel SEQUENTIAL
PRO[_COMM (2, 5)
PROD_COMM (3, 5)
#endif
#ifdef STATISTICS
MEASURE 0(5'F)
#ondif .
£+ Produce the outgmls of neutons in clustes 5. *f
PROD_COMP_Q (5}
COMP_NET_INPUT (2, §, w25, ont, NI
COMP_NET_INPUT (3, 5, w35, out, N12}
PROD_COMP_3 (5)
#ildel STATISTICS
MEASURE_! (5.'P")
fendif

ifndef SEQUENTIAL,
/** Cluster 3's outpuis sre already availatde. **/
PROT_COMM (4,6
kendif
Hifdel STATISTICS
MEASURE_0 (60"}
#endif
* Produce the outputs of newzons in cluster 6. **/
PROD_COMP_0 (6)
COMP_NET_INPUT (3, 6, w18, oul, N17)
COMP_NET_INPUT (4, 6, w46, out, N3}
PROD_COMP_I (&
#ildel STATISTICS
MEASURE_1(G,"P")
#endif

Hifude! SEQUENTIAL
PROP_COMM (5,
PROD.COMM (6, T

Hiftdef STATISTICS
MEASURE_0(.'P")

gendif
¢ Produce the autputs of acurons in cluster T.*
PROD_COMP_D(D

COMP_NET_INPUT (5, 7, w57, out, N1d}
COMP_NET_INPUT (6, 7, w67, out, N15)
PROD,_COMP_L (T
#ifdel STATISTICS
MEASURE_1 (7,'P")
#endif

/** Start the TRAINING phase. **/

#ildel STATISTICS
MEASURE_0(7,'L"}

dendif
##* Update the weight mairix between clustors 5,6and 7. **/
LEARN_UPDATE (5,7, w57, 1)
LEARN_UPDATE (6, 7, w67, 1)
count=0;
LEARN_ERROR (5,7, w57,1)
LEARN_ERROR (6, 7, w57, 1)

Wildel STATISTICS
MEASURE_I (7,1.)

ilemdif

#ifndel SEQUENTIAL
LEARN_COMM (5.
LEARN_COMM (6,7)

#endif

fifdef STATISTICS
MEASURE 0 (6,1.)

Fendil
J+* Ut the weight matrix between clusters 3,4 and 6. **/
LEARN_UPDATE (3, 6, w36, 0}
LEARN_UPDATE {4, 6, wif, 0}
count =0;

LEARN_ERROR (3, 6, w36, 0}
LEARN_ERROR {4, 6, wd6, 0)

#ifdef STATISTICS
MEASURE_! (6,'1.")

Hendif

#ifndel SEQUENTIAL
LEARN_COMM (3,6)
LEARN_COMM (4, 6)

Hendil

Hifde! STATISTICS
MEASURE_0(5,'L.")

fendif
74% Updatg the weight malrix betweens ch
LEARN_UPDATE (2, 5, w23, 0}
LEARN_UPDATE (3, 5, w35, U}
count = 0;

LEARN_ERROR (2, 5, w25,0)
LEARN_ERROR {3, 5, w35,0)
Hifde! STATISTICS

rs 2, 3 and 5,4/
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MEASURE_} (5,17}
Hendif

Hifndef SEQUENTIAL
LEARN_COMM (2, 5)
LEARN_COMM (3. 5)

#endif

#ifdel STATISTICS
MEASURE_0(4,'L7}

feadil
#+* Update the weight matrix between clusiers 1 and 4, **/
LEARN_UPDATE (i,4, wi4, 0)
count =0k
LEARN_ERROR (1,4, wl4,0)

#ifdel STATISTICS
MEASURE_L {4,'L")

Hendif

Hifndel SEQUENTIAL
LEARN_COMM (1,4}

#endif

Hildef STATISTICS
MEASURE_0(3,'L7)

Hendil
#* Update the weight matrix between ctusters 1 and 3. **/
LEARN_UPDATE (1,3, wi3, )
count = 0;
LEARN_ERROR (1,3, wi13,0)

ifdef STATISTICS
MEASURE_1 (3,L.")

#endif

#ifndef SEQUENTIAL
LEARN_COMM (1,3)

Hendil

#ifdel STATISTICS
MEASURE_@(2,'L")

#endil
J** Update the weight matrix belween clusters 1 and 2. **/
LEARN_UPDATE (1,2, w12,0)
count =
LEARN_ERROR (1,2, w12, 0)

#ifdel STATISTICS
MEASURE_1§2,'L7)

Hendil

Hifndel SEQUENTIAL
LEARN_COMM(1,2}
tendif
Hifdef STATISTICS
MEASURE_0(1,'L")
Hendif
{** Update the weight matrix between INPUT and 1.**/

150

1

LEARN_UPDATE (3, 1, w01, 0}

#ildel STATISTICS ..,
MEASURE_t{1,'L)

Hendif

#ifdel STATISTICS
printf ("sum = %{0, tsum);

Hendil
/** This is the end of onc ITERATION, **/
H

times (&1 sim_L);

tspan = (float) span {t_sim_0, t_sim_ 1%

tspan *= (1000.0/ 60,0,

printf ("Ticr=%d, Total Compi Time=%g, Comp! Time per lter=%g0, ITER, tspan, fspan {ITER);

/4% Sed up the mupping scheme, **+/
for (j =1 j « CLUSTERS; j#+)
mapfOl1j]-from = nkfrom{j} map}03[j1.to = map{0}(jl.from + asgnt[0][j] - 1:
for (i = 1; i < NODES; i++) {
raapli](j].from = map(i-1}(il.lo + 1;
map{i}[jl.to = maplilijl.from + asgat[i)if) - |

}

INIT_WEIGHT (1, 1, w01}
INIT_WEIGHT (, 2, w12
INIT_WEIGHT (1, 3, wi3)
INIT_WEIGHT {1, 4, w14)
INFE_WEIGIIT (2, 5, w25)
INIT_WEIGHT (3, 5, w35)
INIT_WEIGHT {3, 6, w36)
INIT_WEIGHT {4, 6, wd6)
INIT_WEIGHT (5,7, w57}
INIT_WEIGHT (6, 7, w6T)

for (i = 0; < NEURONS; i++) {

theta(i] = 0.5; +* Inilialize thresholds, **/
inbufii] = 1.0; /¥ Ini

outbuflil = 1.s "l

thulli] = L FAlal| 2o Ll 44



