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Recent studies have revealed that the design of a distributed data base 

management system is a major source of difficulty in designing a distributed 

computer systems. Research has involved an investigation of the data manage-

ment issues, examining in particular the query deco-mposition, the file place-

ment, the task scheduling, and the hardware support issues. The inherent rela-

tionships among these issues are analyzed and a unified approach is provided to 

design data management strategies on distributed data bases. 

One of the major problems in distributed computer systems is the rninimi-

zation of communication overheads among nodes. This is the objective of the 

study in query decomposition and file placement and migration. Two compte-

mentary techniques are developed in query decomposition so that non-

decomposable queries which require the use of multiple files can be decomposed 

into multiple sub-queries which require the use of single file. The communica-

tion overheads are reduced because the queries do n:>t have to be processed at 

a common location and can be distributed to the different nodes on the distri-

buted system. The study of query decomposition has also shown that the place-

ments of multiple files can be decomposed intc the multiple sub-problems, one 

for each file. An investigation is made en the file placernent problem, ·with the 
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objective of minimizing the overall storage, migration, updating and operational 

costs on the system. By showing that the file placement problem and the facility 

location problem are isomorphic, many results derived in one problem can be 

applied to solve the other problem. Further, some results derived in one prob­

lem can be shown to be weaker than the corresponding results derived in the 

other problem. The last two areas of study are related to the distributed 

scheduling of tasks on distributed systems and the design of the necessary 

hardware support for data management. The task scheduling problem for a dis­

tributed system is shown to be NP-complete. However, an optimal average algo­

rithm is developed for a restricted class which minimizes the expected comple­

tion time for a set of random requests. In the hardware support issue, the 

design of an associative memory which is capable of equality, proximity, thres­

hold and extremum searches is investigated. The complexity of the design is 17 

gates per cell. Its extensions to the design of associative sequential memories 

and data base machines are developed. 
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1. INTRODUCTION 

The recent advances in large scale integrated logic and communication 

technology, coupled with the explosion in size and complexity of the application 

areas, have led to the design of distributed architectures. Basically, a Distri­

buted Computer System (DCS) is considered as an interconnection of digital sys­

tems called Processing Ele=ents (PEs), each having certain processing capabili­

ties and communicating with each other. This definition encompasses a wide 

range of configurations from an uniprocessor system with different functional 

units to a multiplicity of general purpose computers (e.g. ARPANET). In general, 

the notion of "distributed systems" varies in character and scope with different 

people [RAM76]. So far, there is no accepted definition and basis for classifying 

these systems. In this thesis, we limit our discussion to a class of DCS's with an 

interconnection of dedicated/shared, programmable, functional PEs and work­

ing on a set of jobs which may be related or unrelated. 

1.1 WHAT IS A DISTRIBUTED DATA BASE 

Due to the information explosion and the need for more stringent require­

ments, the design of efficient coordination schemes for the management of data 

on a DCS is a very critical problem. To indicate the amount of data processed, 

the typical data base processing requirements for a ballistic missile defense sys­

tem [DDP7B], operating in a centralized environment are shown in Table 1.1. In 

order to manage t,he data on a computer system (centralized or distributed) 

and satisfy all the requirements, systematic techniques must be developed so 

that the system can be realized in a cost-effective way. 

Data on a DCS are managed through a Data Base (DB), which is a collection 

of stored operational data used by the application systems of some particular 

enterprise [DAT77, FRY76]. A Distributed Data Base (DDB) can be thought of as 

' . 



2 

objective of minimizing the overall storage, migration, updating and operational 

costs on the system. By showing that the file placement problem and the facility 

location problem are isomorphic, many results derived in one problem can be 

applied to solve the other problem. Further, some results derived in one prob­

lem can be shown to be weaker than the corresponding results derived in the 

other problem. The last two areas of study are related to the distributed 

scheduling of tasks on distributed systems and the design of the necessary 

hardware support for data management. The task scheduling problem for a dis­

tributed system is shown to be NP-complete. However, an optimal average algo­

rithm is developed for a restricted class which minimizes the expected comple­

tion time for a set of random requests. In the hardware support issue, the 

design of an associative memory which is capable of equality, proximity, thres­

hold and extremum searches is investigated. The complexity of the design is 17 

gates per cell. Its extensions to the design of associative sequential memories · 

and data base machines are developed. 
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programs, together with the sub-schema, collectively form the Data Base 

Management System [FRY76, BAC75]. The Data Base Management System allows 

data sharing among a community of users, while insuring the integrity of the 

data over time, and providing security against unauthorized access. It also pro­

vides the transparency of the data, in order to allow the data to be stored in 

different formats in different parts of the system. Finally, it provides an inter­

face between the users and the system. 

The data base can be classified according to how these components are put 

together. In [ASC74], two classifications are proposed, the first is based on the 

number of Data Base Management Systems in the network and the second is 

based on the centralization or decentralization of the file directory and the data. 

In [B0076], the DDB's are classified into two structures, partitioned data bases 

and replicated data bases. A partitioned data base is one that has been decom­

posed into physically separate units, and distributed across multiple nodes of a 

DCS. The partitioning will normally be based on the distribution of access 

requirements. In a replicated data base, all or part of the data base is repli­

cated at multiple processing nodes. The amount of partitioning and replication 

depends on the architecture of the distributed system, the amount of traffic 

anticipated and other requirements such as reliability, security, etc. 

1.2 ISSUES IN DESIGNING DISTRIBUTED DATA BASE SYSTEMS 

The issues associated with the design of a DDB can be classified from an 

user's viewpoint or from a system designer's viewpoint. From an user's 

viewpoint, the users are concerned with the type of organization and controls 

which can give efficient and reliable operations and can satisfy their require­

ments. The users usually do not relate very closely other factors such as tech­

nology and architecture in their considerations. On the other hand, from a 

designer's viewpoint, the designers are more concerned with the architecture of 

r 

r' 
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the system and its dependency on technology. However, the issues considered 

from both viewpoints are not independent and must be investigated jointly in 

the design of a DDB. We have therefore taken an integrated approach and have 

classified these issues into four categories. The classification is shown in Figure 

1.1. 

1. 2.1 Issues in Lagicat Organization 

These issues are related to the user-system interface and can be classified 

as: 

(A) User Interface 

The user interface may be defined as a boundary in the system below which 

everything is invisible to the user [DAT77]. The function of this interface is to 

provide the users with an efficient and powerful query language and to help the 

users to manipulate the data in the DB. The query language must be powerful 

enough so that an entire set can be manipulated as a single object, instead of 

being restricted to one record at a time. The complexity of this interface 

depends on the required ease with which users wish to access the data and it 

directly governs the design of communication processors. 

(B) Data Base Organization 

A data base is generally organized in one or more of the data models: rela­

tional, hierarchical or network model, where a data model refers to a represen­

tation of the entire information content of the DB in a form that is somewhat 

abstract in comparison with the way in which data is physically stored [DAT77]. 

There are other models like the binary association model and the external set 

model which are not quite popular. Each user views the data base through an 

external model which may be one of the above data models. The data base 

should therefore be able to support multiple data models for different users and 



User Interface 

Logical Selection of Data Model 
rganization Design of Conceptual Level 

Mapping from Conceptual Level to 
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Figure 1.1 Classification of Issues in Distributed Data Bases 
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to provide users with transparent accesses. The efficiency of a DDB is very much 

dependent on the type of organization since it affects the storage organization, 

access mechanisms and the communication requirements. The criteria for 

designing and selecting a model has not yet been well understood or established, 

nor is it likely to be established in the near future. The designers of a DDB are 

therefore confronted with two decisions: which data model to utilize and how to 

structure the data for a chosen model [81176]. Further, there is the problem of 

mapping the different external models onto the conceptual level. 

(C) Design of the Conceptual Level 

The conceptual level is a level of indirection between the external level 

which consists of different data models and language interfaces and the internal 

level which consists of the physically stored data. The conceptual level actually 

maps the users' views onto physical data and is intended to provide a solid and 

enduring foundation for the total operation of the DDB. Its design depends on 

how the data are stored, the physical storage media, the number of different 

data models, the way that data are distributed on the DCS and other user 

requirements. It is important to construct a conceptual schema at a suitable 

level of abstraction in the design stage [DAT77]. Many of the techniques in 

artifical intelligence have been applied successfully in this design. 

1.2.2 Issues inArchitedure 

(A) Network System Design 

The DCS is made up of nodal processors interconnected together through 

an interconnection network. There are many data base related issues associ­

ated with the design of network systems in addition to the design issues of 

efficient nodal systems. Among these are: the selection of network topology to 

support DDB requests; the selection of the channel type; the design of network 
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control strategies; the design of communication processors. etc. Some of these 

issues have been studied in [RAM76, RAM79b]. 

(B) Nodal Syste-m Design 

The design of the nodal architecture to support a DDB is concerned with the 

design of fast storage sub-system whose function is to provide the nodal proces­

sor sub-system and users with fast retrievals and accesses to the stored data. 

The storage sub-system usually consists of a memory hierarchy that is divided 

into levels. These levels are made up of memory elements of varying speeds and 

the fastest level is interfaced to the processor sub-system. Further, intelligence 

have also been distributed to the various levels of the hierarchy. One such 

design is the data base machine [HSI77]. Issues like the selection of the number 

of levels and the size of each level of the memory hierarchy; the design of virtual 

memory for automatic file management; the utilization of new memory techno­

logies; the hardware design for supporting data base operations in a data base 

machine; the interconnection structure between memories and processors; etc. 

must be considered in the design. 

1.2.3 Issues in Operational Control 

These issues are concerned with the efficient, correct, reliable and secure 

operations of the data base. They can be classified into: 

(A) Resource Manage1nent of Data 

These are issues related to the management of data and files as resources 

of the system so that multiple users can share the files on the data base 

efficiently [RAM79a]. The control of files as resources is not only applied at the 

file level, where the files have to be placed at nodes easily accessible to users 

and the data have to be compressed for efficient c~mmunication and storage, 

but it ranges from the users' level to the physical level. On the users' level, the 
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queries have to be processed so that the amount of data movements is 

minimum. On the physical level, the individual file requests have to be 

sequenced so that maximum hardware parallelism can be achieved. Some of 

these issues are the focus of study in this thesis. 

(B) Cancurrent Accesses and Updates 

In a DDB where users share the same data, there are several problems asso­

ciated with multiple accesses and updates. When users try to access the com­

mon data, there would be interference among the accesses, and the communica­

tion protocol should be designed to minimize this interference. Another prob­

lem related to consistency arises when data elements with multiple copies at 

different locations are to be updated. Simple locking mechanisms cause exces­

sive delays and may cause throughput degradation in the DCS. Efficient updat­

ing schemes are needed and the architectures would be very much influenced 

by such schemes [ESW76]. 

(C) Directory Manage-ment 

The directory is a spe cia! file in which the addresses for various files on the 

system are provided. Each access to a file must therefore pass through the 

directory. Due to the high intensity of the accesses on the directory, special 

attention must be paid to its design. In particular, the designer has to consider 

the type of directory structure which is most suitable for his application and 

whether the directory should be replicated or partitioned. In general, a combi­

nation of replication and partition is used. Further, reliability considerations 

must be made in the design of the directory [ROT77]. 

(D) Security and Privacy 

Another important issue in the design of a DDB is security and privacy. 

Security refers to the protection of data against deliberate or accidental 
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destruction, unauthorized access or modification of data. On the other hand, 

privacy refers to the right of an individual user to determine for himself what 

personal information to share with others as well as what information to receive 

from others. As the size of the data base increases, the threat to security and 

privacy increases. In addition, it is increasingly difficult to implement effective 

measures in a DDB. Additional techniques such as data encryption would affect 

the transmission efficiency and the communication mechanisms [BAD78, 

DOW77]. 

(E) Reliability- Rollback and Recovery 

The determination of the necessary hardware for reliable operations, the 

data redundancy and the reconfiguration strategies are another major issue in 

the design of a DDB. Multiple copies of data base realm offer fast recovery; 

checkpointing of realms, dumping and journal rollback and roll-forward offer a 

slower but cheaper recovery. The effect of any recovery mechanism and 

reconfiguration strategy on the response time and the associated overhead must 

be weighed against the reliability requirements [KRI78]. 

1.2.4 Issues in Evolution 

In order for the system to be able to adapt to new application requirements 

and technology advancements, evolutionary measures must be incorporated 

into the system at the design stage. Three of the contradicting issues of evolu­

tion are: 

(A) Technology Dependence 

Technology is one of the most important driving force for the success of a 

computer system. As seen in Figures 1.2 and 1.3, the number of components 

per chip is approximately doubling each year, and the CPU speed is growing 

exponentially each year. These faster and denser logic, together with a variety 
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of device manufacturing technologies [MOE78], offer a variety of semiconductor 

memories with different access times and prices [THE78, UPT78, FET78]. In 

Table 1.2, the typical access time and power consumption for several semicon-

ductor memory types are shown. Given these diverse types of memories avail-

able on the market, the designer must therefore decide at the design stage the 

most suitable memory to use. Moreover, magnetic device technologies have also 

improved significantly. With the improvement of disks, drums and tapes, the 

invention of the bubble memories [BOB71], and the Electron Beam Access 

Memories (EBAMs) [HUG75], it is now possible to provide inexpensive secondary 

and archival storage to the computer system (see Figure 1.4). 

With these evolving technologies, there are three significant impacts on the 

design of computers. First, new technologies add extra design alternatives to 

the designers which allow the designers to design a system with improved per-

formance and decreased system complexity. An example is shown by the recent 

developments of bubble memories, CCD memories and EBAMs which have 

emerged to fill the "access gap" between the two traditional memory technolo-

Ta:ble 1.2 Typica:l va:lues for LSI Semiconductor RAMs (1978) (Price is shown 
for quantities of 100) 

Memory Acc1~~s 'l'vn" '!'imP ,.,,..\ 
Power Cf

1

n-
''inn lmw\ 

Appf,ox. ~rice 
¢/hit 

16K MOS dynamic 125-300 400-600 0.30 
4K NMOS dynamic 150-350 460 0.33 
4K ~L static 30 1000 0.85 
4K I L dynamic 120 450 0.59 
4K TTL static 50-70 500-900 0.80-1.00 
4K MOS static 55-170 30-500 0.51-0.92 
1K CMOS static 150 4 1.02 
1K TTL static 40-100 500-800 0.95 
1K ECL static 35-50 ' 500-800 1.30 
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gies (see Figure 1.4). The access gap is the region characterized by an access 

time between 10-6 sec. (MOS memories) and 10-3 sec. (fixed head magnetic 

disk). Much time and effort is expended in finding efficient ways to accomplish 

at minimum cost the necessary transfers of information across the access gap. 

With the utilization of "gap-filler" technologies, improved performance and less 

complex transfer algorithms can be envisioned. Second, increasing logic on a 

chip allows the designer to incorporate more logical capabilities into the storage 

sub-system in addition to the storage capabilities. These logical capabilities 

include abilities to execute arithmetic operations like summation, averaging, as 

well as logical operations like maximum/minimum searches, equality search, 

etc. The designer has to decide on the necessary logical capabilities in the sys­

tem and how they should be designed. The last impact of changing technologies 

on computer system design is the increasing speed mismatch among the ele­

ments of the computer system. With the development of high speed processors 

such as the CRAY-1 and multi-processor system such as the C.mmp, there is an 

increasing need of higher bandwidth from the supporting memory sub-system. 

In order to improve the bandwidths of memories, it is necessary to have intelli­

gent architectural designs and efficient access algorithms for supporting 

retrieval operations in addition to the utilization of faster memory components. 

Special emphases should therefore be placed on the utilization of new technolo­

gies, the design of new memory architectures and the study of efficient access 

algorithms. 

Evolving technology allows the users more freedom in specifying and 

operating the system. More stringent requirements can be specified and many 

of the system's functions can be designed in hardware. However, the depen­

dence of the system on evolving technologies is usually a severe constraint on 

the designer, and the evolutionary capabilities of a system depend very heavily 

on how well the designer can predict the future technologies. 
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(B) Application Dependence 

Because the size and the complexity of applications change with time, the 

design of the system may have to be altered after the system has been 

deployed. However, much too often, systems are designed without taking into 

account the provision for future changes. When the system evolves, the changes 

are incorporated into the system in a very disorganized manner. As a result, 

the unstructureness of the system increases enormously [BEL77] and leads to a 

regenerative, highly non-linear increase in the effort and cost of the system 

maintenance [LEH76]. In addition to this, the reliability and the integrity of the 

system are also jeopardized greatly. One provision is to have a systematic 

design and development methodology which provides guidelines for the sys­

tematic design and construction of DDBs and allows the system to evolve as the 

application requirements and technology change [RAM78b, RAM79b]. 

(C) Standardization 

One of the major inhibiting factors in the development and evolution of 

DDBs is the lack of standardization in the areas of programming languages, user 

interface commands, data models, concurrency control mechanisms, hardware 

components (e.g. disks, tapes), data formats, network protocols, etc. Standardi­

zation of hardware and software components allow modular expansion of the sys­

tem. On the other hand, with a highly evolving technology, standardization may 

cause costly refitting later and may even hinder acceptance of new ideas. 

We have outlined some of the issues in the design of a distributed system 

supporting a DDB. These issues are by no means complete and other issues, 

both design and operational, have to be considered. Alternative solutions to 

these issues provide the options to be decided upon by the designers during the 

design phase of the system. 
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1.3ARCHITECTURE OF THE SYSTEM SUPPORTING A DDB 

The memory system on a DCS is made up of nodal memories connected 

together by a network and communicates via the connected processors (Fig. 

1.5a). Each node in the system, which consists of a set of processing elements 

and the supporting storage sub-system, may be active or passive. If the node is 

active, it acts as a requesting source and can access the memories at other 

nodes via the communication sub-system. Each of the active nodes in the sys­

tem has the following functions in addition to the local file accesses. 

(1) Remote access control 

This module detects all remote access requests originating from this 

node and is responsible for processing them. When a remote request is 

detected, this module looks up the network directory, and assesses the 

file status. If the file exists on the network and is accessible by the 

request, this request will then by transmitted. 

(2) Local access control 

This module is responsible for processing all remote requests received 

from other nodes in the network. It acts as a security filter and deter­

mines whether the file is accessible. If so, the local .file is accessed and 

the data will be transmitted. 

(3) Redundant jUe maintenance control 

This module coordinates all the local and the remote updates at this 

node and manages the multiple copies of files on the system. In coordi­

nating updates, if the update originates from a remote node, the status 

of the file is checked. In case that a conflict occurs and the data cannot 

be updated, a status message is sent. On the other hand, if no conflict 

occurs, the file is updated. If the update originates at this node, this 

module looks up the network directory and sends out all the requested 
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updates to every redundant copy on the system. 

The relation of these modules to each other in an active node is shown in 

Fig. 1.5b. The logical issues in a DDB, such as security and privacy, concurrency 

control. etc., are resolved in these modules. 

On the other hand, the physical storage system at a node comprises a 

memory hierarchy that stores programs and data. It has been realized for a 

long time that the conflicting requirements for high performance and low cost 

storage sub-system at a node can be satisfied by a combination of expensive 

high performance devices with inexpensive low performance devices which 

results in a memory hierarchy. The spectrum of storage devices ranges from 

bulk store and magnetic tape on one end, to the fast register storage and cache 

memory in the CPU on the other hand {Figure 1.6). Many issues have to be con­

sidered when these different speed elements are put together. These include: 

the selection of some physical parameters such as the number of levels in the 

hierarchy and the size and the speed of each level [RAM70, WAR76]; the design of 

the interconnection mechanism among levels [SMI76, POH75]; the design of 

efficient scheduling algorithms and record/tile distribution and migration algo­

rithms [MUN74, STR77]; the provision of virtual memory support for an 

automatic file management system [TUE76, POH75, DEN70, BAS70], etc. The last 

issue is particularly important because the success of a DB is very much depen­

dent on the efficiency of the virtual memory. A file on a DB is likely to be large 

and cannot reside entirely in the main memory. The use of virtual memory can 

relieve the users from the laborious task of storage management. It is seen that 

research is urgently needed in this area. 

There is also an increasing tendency to distribute the processing of the CPU 

to the various levies of the storage sub-system. One successful implementation 

of this is the DB machine {Figure 1.7)· [HS177]. The DB machine may be a 
._, 
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separate member of the storage sub-system or it may represent a level of the 

memory hierarchy with additional intelligence. The use of a DB machine relieves 

the processing load of the central processor and allows more parallelism in the 

processing of DB requests. Further, processing on large file systems are often 

1/0 bound and many of the file operations are quite simple. A significant com­

munication overhead is incurred in transferring the file to a level of the memory 

hierarchy where the processor can access it. By distributing the intelligence to 

the different levels of the memory hierarchy, the DB machine can allow parallel 

processing with very little communication overhead. 

Although DB machines have been successfully designed or implemented, 

e.g. Data Base Computer (DEC) [BAU76], Context Addressed Segment Sequential 

Storage (CASSM) [LIP7B], Relational Associative Processor (RAP) [OZK77], Rotat­

ing Associative Memory for Relational Data Base Applications (RARES} [LlN76], 

Datacomputer [MAR75], etc., the design of DB machines are still plagued by 

many issues. Examples of these issues are: deciding on the kind and the degree 

of parallelism; selecting the appropriate techniques for implementing the 

storage media; designing the hardware and the software interface; building the 

storage structure and the backend primitives and designing the control algo­

rithms. These issues are very important because the storage sub-system is very 

expensive and can be more than 50% of the total hardware system cost [SCH7B]. 

Some of these issues are discussed in Chapter 5 of this thesis. 

This section has described some of the necessary architectures in support­

ing DDB applications. Data base processing generally has some special charac­

teristics and these allow the architecture to be designed differently from con­

ventional architectures. In the next section, the issues on the resource manage­

ment of data on a DDB are discussed. 

1.4 OBJECTIVES AND CONTRIBUTIONS OF THIS RESEARCH 
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1. 4.1 Problem Statement 

The primary objectives of this research effort are the development of a 

realistic, comprehensive, analytical model for the management of data as 

resources on a DDB. This design problem encompasses the issues of establishing 

a systematic way of classification of the different levels of resource management 

in a DDB, design of performance measures for each level and development of 

procedures for the optimal solution for certain problems in each level. We hope 

to provide a strong framework for future research into problems associated with 

these large scale systems as well as the solutions to some specific design prob­

lems. 

1.4.2 Approach 

In order to achieve the global objective, the resource management issues 

are classified into four related levels, namely, the query level, the file level, the 

task level and the hardware support level. The specific data management issues 

investigated are: 

(1) Query Decomposition on DDB's 

A query is an access request made by a user or a program in which one 

or more files have to be accessed. When multiple files are accessed by 

the same query on a DDB, these files usually have to reside at a common 

location before the query can be processed. Substantial communication 

overhead may be involved if these files are geographically distributed 

and a copy of each file has to be transferred to a common location. It is 

therefore necessary to decompose the query into sub-queries so that 

each sub-query accesses a single file. These sub-queries may then be 

processed in parallel at any location which has a copy of the required 

file. The results after the processing are sent back to the requesting 

location. It is generally true that the amount of communications needed 
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to transmit the results is much smaller than the amount needed to 

transmit the files. This approach has been proposed in the design of the 

centralized version of INGRES [WON76] and is extended to the design of 

SDD-1 [WON77], and distributed INGRES [EPS78]. However, in some 

cases, decomposition is impossible and some file transfers are still 

necessary. Two techniques are proposed in Chapter 2 so that the overall 

operational costs of the system can be reduced. 

(2) File Place-ment and Migration 

This issue relates to the distribution and migration of data base com­

ponents, namely, files and control programs, on the DDB with the objec­

tive of minimizing the overall storage, migration, updating and access 

costs on the system. A file assignment algorithm is proposed in Chapter 

3. 

(3) Task Scheduling 

Requests on the DDB must be scheduled so that high parallelism and 

overlap can be achieved. The request may be a single word fetch or it 

may be a page or file access. This parallelism is important because in 

order to attain high throughput, the parallel hardware and resources 

must be efficiently utilized. The control of task scheduling can be distri­

buted or centralized. In distributed control, each node may act indepen­

dently and coordinate with each other. In centralized control, there is a 

primary node in which all scheduling control are performed. The deci­

sion of which is the better control mechanism depends very heavily on 

the interconnection structure and the communication overhead 

involved. This issue is discussed in Chapter 4. 

(4) Hardware Support 

In addition to studying the logical data management techniques, the 
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design of the necessary hardware support is also very important. This 

hardware does not necessary implement a solution to one of the data 

management issues, e.g. file placement, but it provides auxillary support 

to these solutions so that they can be implemented efficiently. The par­

ticular hardware supports studied are the associative memory and the 

data base machine. These are discussed in Chapter 5. 

The relationships among the various data management issues are shown in 

Figure l.B where a relation-> is said to exist between two design issues a;, o, i.e. 

a;->o if the solution of o is transparent to the solution of"'· That is, the solution 

of a; is not affected by the solution to o, but not vice versa. The solution to "' 

can therefore be developed independent of o. In Figure 1.5, it is seen that gen­

erally, task scheduling is transparent to file placement and migration which in 

turn could be transparent to query decomposition. Further, hardware support 

is transparent to all these logical issues and are generally developed after the 

algorithms for the logical issues have been designed. Due to the independency, 

algorithms for query decomposition can be developed independently. In 

developing algorithms for file placement and migration, the solutions for query 

decomposition should be taken into account. However, in most cases, assump­

tions can be made about their solutions and the file placement and migration 

problem can be solved independently. For example, it may be assumed that all 

queries which access multiple files may be decomposed into sub-queries that 

access single files. This assumption is only true in some circumstances. an 

example of which is shown in Chapter 2 of this thesis. The file placement and 

migration problem for multiple files is therefore decomposed into many single 

file optimization sub-problems. It must be noted that other operational control 

requirements may also impose restrictions on the solutions to the data manage­

ment issues. For instance, different reliability requirements may demand 

different lower bounds on the number of copies of a file on the DDB; different 

~-: 
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concurrency control mechanisms may have different costs on the file placement 

problem; etc. Reasonable assumptions must therefore be made about these 

techniques in order to determine their effects on the resource management 

issues and to solve these issues independently. 

1.4.3 Contributions of this Research 

Some specific contributions of this research, arranged in the order of dis­

cussion. are listed below. 

(A) A model for query decomposition on relational data bases has been 

developed. It is shown that the optimization of placements of multiple 

relations can be done independently for each relation. 

(B) Two cost reduction models have been designed to reduce the operational 

costs of a relational data base. The first model reduces the retrieval cost, 

but increases the update cost. The second model reduces the update cost 

but increases the retrieval cost. These two cost reduction models can be 

combined to form a unified approach to reduce the operational costs of 

the DDB's. Further, it is also shown that the optimization of placements of 

multiple relations under the use of these techniques can be done indepen­

dently for each relation. 

(C) The isomorphism between the file placement problem and the single com­

modity warehouse location problem has been proved. Due to this isomor­

phism, it is also shown that some conditions and techniques developed in 

computer science to solve the file placement problem are weaker than the 

corresponding conditions and techniques developed in operations research 

to solve the warehouse location problem. and vice versa. Further, the 

technique developed in both problems are inter-changeable. 

(D) A file placement heuristic has been developed. While not necessarily yield­

ing optimal system design. this heuristic yields solutions of lower cost than 
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those generated by other currently available heuristics. 

(E) A model for the scheduling of tasks on a distributed system has been 

developed. This model assumes that global control is infeasible and all the 

scheduling decisions have to be made locally at each node. It is shown that 

the scheduling of tasks in this model when all the task processing times 

are deterministic, is an NP-complete problem. A heuristic has been 

developed and the performance of this heuristic has been verified using 

simulations. 

(F) A more restricted model than the model developed for the scheduling of 

tasks on a DCS has been proposed. By using the additional constraints, it 

is shown that the optimal scheduling problem is polynomially solvable. 

This model actually represents an organization of an interleaved memory 

system. The performance of the scheduling algorithm has been verified 

using simulations. Further, the degradation in performance due to depen­

dencies has been estimated. 

(G) An associ~tive memory has been designed which is capable of searching 

the maximum and the minimum in a time independent of the number of 

words in the memory. It is also capable of doing equality search, threshold 

searches and proximity search. The design is very efficient and has a com­

plexity of 17 gates per cell. The design is asynchronous and utilizes a 

word-parallel and bit-serial algorithm. The delay is 1 to 4 gate delays 

across each bit slice. 

(H) The associative memory concept is extended to the design of data base 

machines. The logic designed can be implemented on the same chip as the 

memory elements. 
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2. QUERY DECOMPOSITION ON A DISTRIBUTED RELATIONAL DATA BASE 

In this chapter, the problems of query decomposition and its association 

with the optimal placements of relations on a distributed relational DB are stu­

died. Our objectives are to study techniques which allow query decomposition to 

be done more efficiently and to investigate properties on the optimal place­

ments of multiple copies of relations or segments of relations on the DCS that 

minimize the total operational cost of the system (e.g. storage cost, multiple 

update cost, retrieval cost, query processing cost, file migration cost, etc.). The 

theme of this chapter is to demonstrate that the placements of multiple rela­

tions on a distributed relational DB can be optimized for each relation indepen­

dently. It is assumed that a technique exists to find the optimal placements of 

multiple copies of a single relation on a DDB, an example for which is shown in 

Chapter 3. In this chapter, two methods have been proposed to reduce the 

operational costs of the system. The first method utilizes additional redundant 

information on the DDB so as to reduce the total retrieval cost and increase the 

total update cost. The second method uses file partitioning to reduce the total 

update cost and increase the total retrieval cost. It is shown by an example DB, 

that under certain conditions, either method, or a combination of both methods, 

can reduce the total operational costs of the system. A relational data model is 

chosen in this discussion because it is very popular and the results obtained 

would be more specific. However, the techniques proposed in this chapter can 

be generalized to any type of data model and file system. 

2.1 QUERIES ON A RELATIONAL DB 

In a relational DB [ COD70 ], data is viewed as relations of varying degree, the 

degree being the number of distinct domains participating in the relation. Each 

instance of a relation is known as a tuple, which has a value for each domain of 
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the relation. Thus a relation can simply be represented in tabular form with 

columns as domains and rows as tuples. 

A Query is an access request made by a user or a program, in which one or 

more relations have to be accessed. A query on a relational DB consists of two 

parts: the part specifying the domain{s) of the relation to be retrieved and the 

part specifying the predicate which is a quantification representing the defining 

properties of the set to be accessed. Let S be a relation of domains sf!, sname, 

city, inventory; and SF be a relation of domains sf!, p# (Figure 2.1). The queries 

on a relational DB can be classified into the following categories [DAT77]: 

( 1) Retrieval Operations 

(a) Single Relation Retrieval: The predicate representing the defining pro-

perty of the set to be retrieved is defined on the same relation as the 

set. 

(a) RelationS 

s sll sname citv inventorv 
1 Supplier A New York 1500 
3 Supplier B San Francisco 700 
5 Suoolier C Chica"o 2500 

(b) Relation SP 

SF sll oil 
1 A1 
2 A1 
3 A2 
4 A2 
5 F2 

Figure 2. 1 Relations S and SP 



E.g. GET (S.sname): (S.city="Paris" AND S.inventory>lOOO) 

(b) Multiple Relation Retrieval: The predicate, as well as the set to be 

retrieved, may be defined over multiple relations. 

E.g. GET (S.sname): (S.s#=SP.s# AND SP.p#="P 2") 

Relations S and SP must be available simultaneously before the 

retrieval can be processed. 

(2) Storage Operations 

(a) Single Relation Update; 

(b) Multiple Relation Update; 

(c) Insertion; 

(d) Deletion. 

(3) Library Functions 

These represent more complicated operations on the predicate than the 

equality operations, e.g. counting the number of occurences, selecting the 

maximum/minimum etc. 

Single relation queries can be processed very easily on a distributed rela­

tional DB. When the relation is geographically distributed, the query can be sent 

to a node that has a copy of the relation and be processed there. The results 

after the processing can be sent back to the requesting node. It is generally 

true that the amount of communications needed to transmit the results is much 

smaller than the amount needed to transmit the relations. 

On the other hand, the processing of a mult-relation query is more compli­

cated. When multiple relations are accessed by the same query on a DDB, these 

relations usually have to reside at a common location before the query can be 

processed. Substantial communication overhead may be involved if these rela­

tions are geographically distributed and a copy of each relation has to be 

transferred to a common location. It is therefore necessary to decompose the 

30 
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query into sub-queries so that each sub-query accesses a single relation. This 

technique has been proposed in the design of the centralized version of INGRES 

[WON76], and is extended to the design of SDD-1 [WON77) and distributed INGRES 

[EPS7B]. Specifically, the technique consists of two steps. The first step is to 

select a site with the minimum amount of data movements to that site before 

the query can be processed. This is used as a starting point for the second step 

of the algorithm which determines the sequence of moves that results in a 

minimum cost. The algorithm used is a greedy algorithm and only local optima 

can result from such an algorithm. Hevner and Yao [HEV79] have followed a 

similar approach and have developed two optimal algorithms for arranging data 

transmissions and local data processing with minimal response time and 

minimal total time, for a special class of queries. These optimal algorithms are 

used as a basis to develop a general query processing algorithm for a general 

query in which each required relation may have any number of joining domains 

and output domains and each node may have any number of required relations. 

This general algorithm is a heuristic which uses an improved exhaustive search 

to find efficient query distribution strategies. Ghosh also proposed a model of 

data distribution on a DB which facilitates query processing [GH076]. 

Specifically, the model consists of a DB with multiple target segment types and 

there are queries with multiple target segment types. The objective is to distri­

bute the segments on the DB so as to maximize the number of segments that 

the queries can retrieve in parallel from different nodes. The model only looks 

at the problem from a retrieval point of view and no cost is associated with 

retrieving a segment from a node. 

Most of the previous work addresses the problem from two separate 

viewpoints. The first one is concerned about the questions of what are the pro­

cessing sequence of the query and where it should be processed. The second 

viewpoint is concerned about where the files should be placed so that they can 
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be accessed efficiently. These two viewpoints are not entirely independent and 

should be investigated together. Further, there exists queries which are non­

decomposable. For example, the query: 

GET (S.sname): (S.s#=SP.s# AND SP.p#="P 2") 

is not decomposable into single relation retrievals because there is a logical 

relation "="which is defined over a common domains# of the relations S and SP. 

These relations must be available simultaneously at a common location before 

the retrieval or update operations can be performed. Instead of solving the 

problem of decomposing the queries, we study two techniques to reduce the pro­

cessing and communication costs for non-decomposable queries in this chapter. 

It is shown later, by the introduction of some redundant information on the DB 

and by the use of file partitioning, non-decomposable queries may be made 

decomposable, (see also [RAM79a, RAM79c]}. The basic assumption made over 

here is that all the required relations are moved to the node at which the query 

originates, before the processing of the query begins. It is possible to consider a 

sequence of moves which will minimize the total amount of data transferred. 

However the problem will be very complicated and the intention of this chapter 

is to demonstrate the usefulness of the techniques of using redundant informa­

tion and file partitioning. 

Before the techniques are discussed, the problem of placements of rela­

tions on a DDB is first formulated. 

2.2 THE PLACEMENTS OF RELATIONS ON A DDB 

In this section, a model for the placements of multiple relations on a DDB is 

formulated. The model is shown for the special case of two relations and is gen­

eralized later to the case of more than two relations. 
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Consider two relations a and b, the retrieval and the update rates at node i 

are (see Figure 2. 2) 1: 

q;~a.(qf,b) =rate of access at node i for a single relation retrieval accessing 

relation a(b ); 

q p. ,bb = rate of access at node i for a multi-relation retrieval accessing both '1. .a.. 

relations a and b; 

'Uj~11 ( uJ'.b) = rate of update at node i for a single relation query updating 

relation a(b ); 

u.[';;.b('Uj~bb) = rate of update at node i for a multi-relation query accessing 

both relations a and b before updating relation a(b). 

The costs for each unit of access are: 

S;~;(Sf,1 ) =communication and processing cost per unit query of accessing 

relation a(b) from node ito node j; 

Mf:;(Mf.;) = communication and processing cost per unit update of multiple 

updating relation a(b) from node ito node j. 

We differentiate between the costs of retrievals and updates because in some 

applications, retrievals are more important than updates and therefore would 

have a higher cost (e.g. inventory system); while in other real time applications, 

updates may be more frequent and therefore more critical (e.g. airline reserva-

tion system). Let: 

n = number of nodes on the DCS; 

1 The conventions of the symbols used are as follows: i,j represent indexes for nodes; a,b 
represent indexes for relations; the superscripts represent the list of relations that the query must 
access before the query can be processed; the subscripts represent the nodes concerned and the tar-
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Figure 2.2 Retrieval and Update Rates on a 2-Relation DDB from Node i 
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f i.~ (J i,b) = per unit cost of stnring relation a(b) at node i. 

We define from the characteristics of the queries initiated from node i, the fol-

lowing symbols: 

(1) Single relation retrievals: 

af;~(a;~0 ) =fraction of relation a(b) that is put into the result relation due 

to the execution of a single relation retrieval on a(b ); 

(2) Multi-relation retrievals: 

0<;~;,_0 (a.f'J") =fraction of relation a(b) that is needed to process a multi-

relation retrieval on a and b; 

(3) Single relation updates: 

f3i~~ ({J;~ 0 ) = fraction of relation a(b) that will be updated by a single relation 

update; 

(4) Multi-relation updates: 

v,~;.0(vi~b0 ) = fraction of relation a(b) that is needed to process a multi-

relation update before the updates can be performed; 

{3;~;.0((3;~6°) =fraction of relation a(b) that will be updated by a multi-relation 

update after relations a and b have been accessed. 

In processing a multi-relation update, the relations a and b must be accessed 

first in order to determine what are the actual updates that have to be made. 

This is measured by the parameters v~.b and v~>,o. The fraction of relations a i.a 1.,o 

get list of relations for the query. 
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and b to be updated after they have been determined are measured by the 

parameters (J,~;,.• and fJ>~6°· 

The parameters defined above can be estimated from the characteristics of 

the different types of queries that can be made on the DDB and the probability 

distribution of the data stored in the relations. 

The control variables governing the file locations and the routing discipline 

are defined as follows: 

if relation a (b) does not exist at node i 
otherwise 

Xf.;(Xl;) =fraction of queries made at node i on relation a(b) that are 

routed to node j. 

It is true that ifX[.;>O, then YJ=l for r=a,b. 

The optimization problem of placing relations a and b on the DDB can be 

formulated in the following linear program: 

min (2.1) 

n n 
" " " qT aT 1 XT .sr. LJ LJ LJ t,r t.,r"'r ,,, t,J (2.1a) 

r=a..b i=l j;:;;l 

+ 
n n 

" " " q"·0 a"·0 l x• sr LJ LJ LJ i,a.,6 i,r r i,j i,j (2.1b) 
r=a,b i=l j=l 

n n 

+ 2:: L; L; uf.rfJ[.r'-rM[.;YJ (2.1c) 
r=a.,b i;;:l j=l 

+ " -1\ -1\ ,j>.b[ " v~··l x~ s~ LJ LJ LJ --"!.,?' LJ 'I.,S s 'l.,j 'l.,j 
r=a.,b i=l j=l s=a,b 

+ {3i~:/'l,.M[.,- YJ] 
(2.1d) 

n 

+ L; L; hr lr Y[ (2.1e) 
r=a.,b i=l 

subject to the following constraints: 

n 
L;Y[~l r=a,b (2.1f) 
i=l 
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,_ 
I; X[.; = 1, r=a,b, i=1,2, ... ,n (2.1g} 
i=l 

n 
ny:r ;;;,_ " X[ ;;;, 0 • LJ ,j-· r=a,b, j=l,2, ... n (2.1h) 

i=l 

Y[ = 0,1. r=a,b, i=1,2, ... ,n (2.1i) 

Eq. 2.1a represents the access cost for single relation retrievals; Eq. 2.1b 

represents the access cost for multi-relation retrievals; Eq. 2.1c represents the 

update cost for single relation updates; Eq. 2.1d represents the update cost for 

multi-relation updates and Eq. 2. le represents the storage cost of relations on 

the DDB. Condition 2.1f assures that at least one copy of the relation exists; 

condition 2. lg assures that all the queries are serviced; condition 2.1h assures 

that the relation must exist at a node if a route is defined to access it at that 

node and condition 2. li assures that the control variables Y[ are integral. 

LEMMA 2.1 

The above optimization problem can be partitioned into two independent optimi-

zation sub-problems, one for each relation: 

(a) min 

n n n n n. 
I; I; QfX,~4S;~; + I; I; UtMf.1 Yt + I; Ff"Y,~ 
i=l i=l i=l j=l i=l 

where 

Q" = (q;" a" + q;"·bb~"·b + •. ~.bv"·b + ... ~,bv"·b)' i ,m. ~.a. .a. ""1.,11 u.t,a. 'l,a. "'""'.,o t,a. "a. 

U!>: (.-." Rll + .,}1.bR!1•b)l 
'L --,.,a.,....i,a. -.,.,a ,...1.,a. a. 

Ft = f;.~l,. 
subfect to: 

n 
I: x,~4 = 1 
J=1 

i=l .... ,n 

(2.2) 
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n 
nY'f ~I; X;~;~ 0 j=l, ... ,n 

i=l 

Yf=O,l i=l, ... ,n 

(b) min (2.3) 

n. n n n n 
I; I; Q,bX;~;Sf_; + I; I; U./'Mf.;YJ + I; FfYf 
i=l j=l i=l i=l i=t 

where 

Fi.b = J i.b lb 

subject to: 

n 
I; Xl.; = 1 i=1,. .. ,n 
i=l 

n 
nYJ ~ I; X;b.; ~ 0 i=1, ... ,n 

i=l 

Proof 

We notice in optimization problem (2.1) that there are no cross product terms in 

the control variables of relations a and b. Therefore, the objective function of 

(2.1) can be written as a sum of objective functions of optimization problems 

(2.2) and (2. 3), and similarly, the constraints can be partitioned into two 

independent. sets. The solution to (2.2) will therefore be a constant in (2.1) 

which implies that (2.3) can be solved independently. Similarly, the solution to 

(2.3) will be a constant in (2.1) and this implies that (2.2) can be solved indepen-

dently. 

Q.E.D. 
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We conclude that the optimization problem 2.1 for relations a and b can be 

carried out as two optimization sub-problems for relations a and b indepen-

dently. 

A further simplification of the integer programs (2.2) and (2.3) is to first 

solve for X[1, r=a,b, and substitute it into the integer programs. It is shown in 

[ALC7B] that, 

xr.=!ol '·3 

if S[,i = min S;,k 
k.fi=t 

otherwise 

The detailed proof will not be shown here. 

A generalization of Lemma 2.1 is to allow any number of relations in the 

DDB. This is shown in the following theorem. 

THEOREM 2.1 

The general problem of optimizing the placements of multiple relations on a DDB 

can be decomposed into multiple sub-problems, one for the placement of each 

relation. 

The proof, which requires some symbols to be defined and can be done by 

obvious generalization of the proof of Lemma 2.1, will not be shown here. 

The importance of Theorem 2.1 is that the original optimization problem of 

placing multiple copies of m relations on the DDB, which has a complexity of the 

order of 0 (2nm ), is reduced to m simpler optimization sub-problems of placing 

multiple copies of each relation on the DDB, each of which has a complexity of 

the order of 0 (2"). There are many techniques developed to place multiple 

copies of a relation on a DDB, e.g. [CAS72, LEV74, MOR77]. Some of these tech­

niques are exhaustive and give optimal solutions, e.g. [CAS72, LEV74, MOR77]; 

others give sub-optimal solutions and have a polynomial running time, an exam-

ple of which is shown in Chapter 3 of this thesis. In the remainder of this 
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chapter, we discuss two techniques to minimize the operational costs on the 

DDB. The costs with and without the application of these techniques are com­

pared. 

2.3 COST REDUCTION ON THE PLACEMENTS OF RELATIONS ON A DDB BY UTIL­

IZING REDUNDANT INFORMATION 

In section 2.1, the technique of query decomposition is briefly described. In 

query decomposition, optimization is performed on the processing of a single 

query which originates at a node. The objective is to decompose a multi-relation 

query into as many single relation sub-queries as possible so that data (relation) 

movements from one node to another can be minimized. However, there exists 

non-decomposable queries which require all the relations that they access to be 

present at a common location. A large number of relation transfers may be 

needed if these relations are geographically distributed. In order to avoid these 

extra relation transfers, a technique utilizing redundant information is proposed 

here. Instead of decomposing queries that access multiple relations, it may be 

sufficient to provide redundant information in each relation so that multiple 

relations do not need to reside at a single location before the query can be pro­

cessed. For example, in processing the query: 

GET (S.sname): (S.s#=SP.s# AND SP.p#="P2") 

on two geographically separated relations, S and SP {Figure 2.1), it may be 

necessary to transfer relation S to the node where SP resides and then process 

the query there or vice versa. However, if the information (S.s#=SP.s#) is com­

piled beforehand into the two relations (Figure 2.3), then the above query can be 

decomposed into two single relation sub-queries: 

GET (S.s#, S.sname): (S.s#=SP.s#) and 

GET (SP.s#): (S.s#=SP.s# AND SP.p#="P2"). 

In this case, the processing can be done in parallel and the amount of 
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(a} Relation S 

s# S.s#= sname city inventory 
SP.s# 

1 1 _Supplier A New York 1500 
3 1 Supplier B San Francisco 700 
5 1 Supplier C Chical!o 2500 

(b) Relation SP 

SP s# S.s#= P# 
SP.s# 

1 1 A1 
2 Al 
3 1 A2 
4 A2 
5 1 P2 

Figure 2.3 Relations S and SP with {S.s#=SP.s#} 
information compiled into the relations 

information transfers is much smaller. 
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This technique poses several problems. First, it is necessary to take one 

extra bit for each tuple in order to compile this piece of information. If the 

amount of information to be added is large, {e.g. when the number of different 

predicates defined on a common domain of two relations is large), the size of the 

extra storage space may be significant. Second, when the common domain of 

one relation is modified, it is necessary to "multiple update" the redundant 

information in all the common domains of the other relations in the DDB. Refer-

ring to Figure 2.3, if an extra tuple with s#="2", sname="Supplier D", 

city="Boston" and inventory="3000" is added to relation S, then it is necessary 

to find out what are the changes that have been made on the redundant informa-
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tion (S.s#=SP.s#) in both relations S and SP, and to update these changes in 

addition to the original update. In this case, the (S.s#=SP.s#) information has to 

be changed in relations S and SP because relation SP contains a tuple with s#=2. 

If updating activities are frequent, the "multiple update" cost is large. The net 

effect of this technique is therefore to reduce the total retrieval cost and to 

increase the total update cost of the system. Further, the response time in 

reflecting an update on the DDB may be longer in this case because of the need 

to update the redundant information. Third, this technique requires that the DB 

designer be able to estimate the amount of additional information to be com­

piled into the relations. A possible way is to pre-analyze the type of predicates 

used in retrievals and updates and to determine what are the essential informa­

tion to be compiled into the relations. A compromize should be made between 

introducing extra information with additional storage space and higher cost in 

multiple updates, and reducing the amount of relation transfers. It would be 

advantageous for the more frequently used predicates and less advantageous for 

the others. 

In the remainder of this section, a model is developed for deciding how 

much redundant information is needed on the DDB in order for this technique to 

be cost effective. We first examine the strategies that have to be used for 

retrievals and updates. 

The strategies on retrievals of a geographically distributed relation is the 

sarne as the strategy when no redundant information is used. The necessary 

information to be used in processing a single relation query is first projected 

onto temporary files before they are sent to the originating node. In the case of 

a non-decomposable multi-relation query, all the required relations are sent to 

the originating node before the query is processed. On the other hand, the stra­

tegy on updates is different from the case of no redundant information because 

it is also necessary to check whether the redundant information is updated. 
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There are two variations of the update strategy: 

( 1} The updates are first sent to the multiple copies of the file to be updated; 

The necessary information on all the relations, which is needed to deter­

mine if the redundant information has to be updated, is sent to a com-

mon node; 

The updates to be made on the redundant information are determined 

there; 

The updates on the redundant information are sent out to all the 

affected relations. 

{2} The necessary information on all the relations, which is needed to deter­

mine if the redundant information has to be updated, is sent to node i 

where the update originates, (actually, it can be sent to any other node, 

but the control overhead in doing this would usually be greater}; 

The update to be made on the redundant information are determined at 

this node; 

The updates on the target relation as well as the updates on the redun­

dant information, are sent out to all the relations. 

The advantage of using strategy (1} is that the updates on the target rela­

tion are reflected on the DDB in a shorter time than strategy {2}. But strategy 

( 1} involves more control overhead and the response time in reflecting the 

updates on the redundant information is longer than strategy (2}. In general, 

strategy (2) will have a shorter overall response time. We assume that strategy 

(2) is used in our model. 

As before, the model for determining the use of redundant information is 

first developed for the special case of two relations and is generalized to the 

case of more than two relations later. 
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Consider two relations a and b, the retrieval and the update rates, using the 

notations defined earlier, are shown in Figure 2.4. There are two additional 

types of single relation retrievals which are decomposed from part of the multi-

relation retrievals due to the use of redundant information. In describing the 

model, the following symbols are defined: 

l'i~a~b = fraction of non-decomposable multi-relation retrievals on a and b 

from node i that remain non-decomposable even with the use of 

redundant information; 

= fraction of multi-relation-reduced-single-relation retrievals from 

node ion a(b) due to the use of redundant information; 

(1-n~a~b }q;~ab.b is the rate of multi-relation retrievals that is dec om-

posable with the use of redundant information; 

(1--yf}.b)q;~:.b(af;;}'+a;~bb) is the total rate of multi-relation-reduced-

single-relation retrievals to relations a and b after the decomposi-

tion; 

It is generally true that af;.b+afbb<?.1, that is, the total rate of addi-

tiona! single relation retrievals after the use of redundant informa-

tion, is greater than the reduction in multi-relation retrieval rate; 

The access rate of multi-relation-reduced-single-relation retrievals 

on relation r is (1--v!",bb)q"'·bba"'·b for r=a b· f't.,Cl., !.,Q., 'I.,T t I 

t:;~;.b(t:f;&b) = fraction of relation a(b) that is put into the result relation due 

to a multi-relation-reduced-single-relation retrieval on a(b}; 

o;~ab(o;~bb) = fraction of non-decomposable multi-relation updates on a(b) 

from node i that remain non-decomposable even with the use of 
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Figure 2.4 Retrieval And Update Rates On a 2-Relation DDB 
From Node i Using Additional Redundant Information 
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Accesses, 



46 

redundant information; 

TJ;~ ... b (TJt, 4 ,b) = fraction of updates on relation a(b) from node i that will 

update redundant information on relations a and b; 

U:a.(~t.b) =fraction of relation a(b) in which the redundant information has 

to be updated due to updates originating from node i; 

l'a.(l'0 ) =length of relation a(b) after the use of redundant information. 

In our model, although the amount of storage is greater after redundant infor­

mation is used, i.e. l'r>l.r (r=a,b), but the effect on communication is very small 

because the redundant information does not have to be transferred over the 

network in processing a query. 

The optimization problem of placing relations a and b on the DDB after the 

use of redundant information can be formulated in the following linear program: 

min (2.4) 

(2.4a) 

n n 
+ " " " (1-'Ya.,b )q"'·· a:"'·bea,bz· vr sr LJ LJ LJ fi.a.,b i,a.,b i,r i.r ~i.J i.j (2.4b) 

r=a.,b i=l .i=l 

+ 
n n 

" " " 'Y a.,b q a.,b "a..bz· xr sr LJ LJ LJ 1 i,a.,b i,a ,b i,r r i ,f i.f (2.4c) 
r=a.,b \=1 j=t 

+ (2.4d) 

n n [ + " " ",a..b 0 ... b " v4·0l' x~ -s•-LJ LJ LJ -'l.,T 'I.,T LJ t,S S 'l.,j i,j 
r=a.,b i=l .i=l s=a.,b (2.4e) 

+ fh~;.0l'rMf.i YT] 

(2.4f) 



subject to: 

n 
I; iT?; 1 
1.=1 

n 
"'Xr·=1 LJ '!.,, 
j=1 

n 
nYj ?; 2:; X[; ?; 0 

i=l 
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(2.4g) 

r=a,b 

r=a,b i=l, ... ,n 

r=a.,b j=l, ... ,n 

r=a,b i=1, .. .,n Y[ = 0,1 

Most of the terms in Eq. 2.4 are the same as in Eq. 2.1, except in this case 

Eq. 2.4b represents the access cost for multi-relation-reduced-single-relation 

retrievals using the redundant information; and Eq. 2.4f represents the update 

cost for the redundant information. The term ,.,r (,r +,.Jx.b) for r=a,b •ti,a,b ~.r ~.r 

represents the access rate of updates that may have effects on the redundant 

information. In determining whether the redundant information will be updated, 

it is necessary to perform a multi-relation retrieval on the relations concerned. 

In this case, since we know the updates to be made on relation r, we can fetch a 

copy of all other relations sfo and move the copies to node i. This cost is 

represented by the term 2:; cr.;~;.bl' 5 Xf.;Sf4 in Eq. 2.4f. After the updates on the 
s;6r 

redundant information have been determined, the actual updates, together with 

the updates on the redundant information are sent to all the nodes which have a 

copy of the relation. This cost is represented by the term 2:; tf.1l'1Mf.;Y} in Eq. 
t=a..a 

2.4f. 

A similar lemma and theorem can be proved for this problem. 

LEMMA 2.2 

Optimization problem 2.4 can be partitioned into two independent optimization 

sub-problems, one for each relation: 



(a) min 

where: 

ur>- [ r> (3" + ,, ... b,r>.b + r> (,r> + r>.b)'" " - 'U..i.a. i.,a. """'l,tl. ,...t,a. TJ'I.,a.,b "'""1.,0. 'Ul,a. c;t.a. 

+ b (,,b +,r>,b)'" ]l' 7/i,a.,b -i,b '"""i,o c;i,a. a. 

Ft = /; ... l'" 
subject to: 

" :E Yf?. 1 
i=1 

Yt = 0,1 

(b) min 

where: 

i=l .... ,n 

Q ~ _ [qb "'b + (1 7 a..b )qa..b a"•bea,b + 7 a..b q"·b oc"•b 
1. - i,b i,b - i,a,b i,a.,b i,o i,o i,a.,b i,a.,b i,o 

+ ,!>.bor>·bvr>,b + ,!> o"•bvr>,b + .,..,!1 ("" +,~f'·b)oc"bb]l' "'"'"1..,11 \,11 t,o """''.,b i,o t,o 'l'l.,a.,b """!.,a "'"'"!.,a. i. b 

u~- [,,b (3!> + ,!>.bar>bb + ,.,r> (,r> + f',b)t.b 
'1. - """''.,b t,b ""'"""· t-''1., 'lt,a,b ""'"!.,a. 'Ui,a. st,b 

+ b (,,b +" r>bb)' b ]l' 7Ji,a.,b --i.b ......;., <;;i,b b 

F;b = I i.b l'b 

subject to: 

Y;b = 0,1 

THEOREM2.2 

i=l, ... ,n 
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(2.5) 

(2.6) 

The general problem of optimizing the placements of multiple relations on a DDB 

using additional redundant information can be decomposed into multiple sub-

problems, one for the placement of each relation. 
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The proofs of Lemma 2.2 and Theorem 2.2 are very similar to that of Lemma 

2.1 and Theorem 2.1 and will not be illustrated here. 

We demonstrate the use of this technique in the next section with a simple 

example. 

2.4. A NUMERICAL EXAMPLE TO ILLUSTRATE THE USE OF REDUNDANT INFOR­

MATION ON A DDB 

In this section, we show by the use of a numerical example, the cost 

improvement when redundant information is introduced on the DDB. 

Consider a DCS of 3 nodes with two relations, S and SP, on the DDB. Let S 

has domains s#(1), sname(lO), city(5), inventory(2) and SP has domains s#(1), 

p#(1) 2• Assume that S has 500 tuples and SP has 10000 tuples. The following 

parameters are also assumed.: 

[Si.f] = [M;,f] = [~ 1~5 1:51 * 10-
3 

/;,s = /;,SP = 0 

ls = l's = 500*18 = 9000 (words) 3 

lsp = l'sp = 10000*2 = 20000 (words) 3 

Node Parameters 

i s 
q;,s uf.s uf.sSP SP q;,sp SP 

Uf.,SP ul~/' S~P q;, ,SP 

1 100 20 115 BO 120 4.0 100 
2 50 100 50 100 25 35 50 
3 75 15 35 50 15 10 75 

and for all ie ~ 1. 2, 3L 

afs = cx:.f.~p = v.f.~P = vf.U = 0.1 

2 The number in the parenthesis indicates the length in words in each domain. 
3 Note that l.,.=l~ (r=S,SP) because in this case, we do not consider the cost of storage on the 

DDB (/; ,r = 0, r =S ,.::>P) and the redundant information usually does not have to be sent over the 



ef.~P = r;f.~/' = 0.05 

rx!>,._SP = rxf>,..SPP = 0.3 
1.,~ 1.,.;). 

crf.fP = u{ff/' = 0. 6 

tf.s = tf.~P = o. 05 
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These parameters have been chosen based on some estimated distribution 

of the data stored in the relations and the characteristics of the queries made 

on these two relations. They have been set independent of the nodes and the 

relations for easy understanding. The fixed cost of storage on the system have 

all been neglected because the storage cost is usually very small as compared to 

the communication cost. It is intended to show by this example, the amount of 

redundant information needed in order for this technique to be cost effective. 

In Figures 2.5 and 2.6, two graphs are plotted to show the ratio of cost with 

redundancy and cost without redundancy against of.;8P 4 • In Figure 2.5, the 

graph is plotted for various values of 'li~~~P 4 
, with 7J[s.sP 4 fixed at 0.5. Simi-

larly, in Figure 2.6, the graph is plotted for various values of 7J[s.sp 4 , with 'l;~~~P 

4 fixed at 0.5. It is seen from these two graphs that whenever sufficient redun-

dant information is added to the DDB so that over hal.f of the non-decomposable 

queries or updates become decomposable, the resultant operational costs are 

less than the costs without the use of redundant information. Further, it is seen 

from Figure 2.6 that when the fraction of updates that will update the redundant 

information is less than 0.5, there is, in general, a cost improvement. 

The results we have shown in the example are for illustration. More detailed 

evaluations are necessary before any definite conclusions can be drawn. 

network in order to process a query. 
4 It is gs.gymed that r=S, SP; the variables Dl.;.8 P, 7Jl.s ,SP are independent of i and r and the 

variables '"Yi.~f;p are independent of r. 
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2.5 COST REDUCTION ON THE PLACEMENTS OF RELATIONS ON A DDB BY FILE 

PARTITIONING 

In section 2.3 we have shown a technique by which the total operational 

costs can be reduced by decreasing the total retrieval cost and increasing the 

total update cost. We study in this section, the dual of the previous technique, 

that is, a technique by which the total operational costs can be reduced by 

decreasing the total update cost and increasing the total retrieval cost. Before 

the technique is described, the characl.eristics of an update is first studied. 

An update on a relation can broadly be divided into two types. The first 

type updates only a small segment of the relation and the second type updates 

all the tuples in the relation. As an example, consider an employee relation. 

The first type can be an update which increases the salary of a particular 

employee and the second type can be an update which increases the salary of all 

the employees in the relation. If the first type is more prevalent, and there is a 

locality of the updates on the DDB, then the total update cost can reduced by 

partitioning the relation into segments and distributing the segments to the 

various nodes of the DDB instead of distributing multiples copies of the relation 

to the various nodes. On the other hand, the entire relation usually has to be 

accessed in a retrieval or in a multi-relation update in which the target informa­

tion to be updated must first be determined. The relation must be searched 

tuple by tuple in order to determine the set of tuples satisfying the predicate. If 

a relation is partitioned and distributed on the DDB, all the segments have to be 

assembled before the retrieval can be made. This cost is likely to be greater 

than the cost of accessing a copy of the entire relation on the DDB. The resul­

tant cost of file partitioning is therefore an increase in the total retrieval cost 

and a decrease in the total update cost. The use of file partitioning is further 

illustrated in Figure 2. 7. 
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1----:::"-----j sz 

(a) Multiple Copies of Relation S Without File Partitioning 

{b) Single Copy of Segments of Relation S With File Partitioning 

--~Updates 

---+Retrievals 

Figure 2.7 The Retrievals and Updates on a DDB 
(2 Nodes) With and Without File Partitioning 
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The problems that are related to file partitioning are two folds: how to parti-

tion the relations and after the relations are partitioned, how to distribute the 

segments on the DDB. The first problem can be solved by studying the charac-

teristics of the updates made at different nodes of the DCS and partitioning the 

relation according to these characteristics. There exist algorithms to solve this 

problem, e.g., by clustering [JAR71, BON64]. We are therefore more concerned 

with the problem of distributing the segments of the relations on the DDB after 

they have been partitioned. In this section, the case with no extra redundant 

information is first considered and the case with additional redundant informa-

tion is considered in section 2. 7. The model developed here is shown for the spe-

cia! case of two relations and is generalized later to the case of more than two 

relations. 

In addition to the symbols defined in section 2.2, we define the following 

symbols here. Let 

=number of segments that relation a (b) is partitioned into; 

= the j'th segment of relation a (b), j = 1, ... , P a (P0 ); 

p 

For single relation queries, 

fr(a1 I q;~a) [fr(b; I qf,o)] =fraction of retrievals accessing the j'th segment 

of relation a (b) given that the retrieval rate is q;~a (q;~b}; 

fu(a; lUi~~) [tu(b; luf.o)] =fraction of updates on the j'th segment of rela­

tion a (b) given that the update rate is u;~a (U;0,0 ); 

For multi-relation queries, 

f r(a I qa.b ) [tr(b I qa,b }] = fraction of multi-relation retrievals access-j i,a,b f i,a,b, 

ing the j'th segment of relation a(b} given that the retrieval rate is 

q a.b . 
i.a.b• 

fr(t; IU;~;,b) [tr(t1 lu;~b
0)] =fraction of multi-relation updates that have to 
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access the j'th segment of relation t (t = a, b) in order to determine 

the actual updates, given that the update rate is U;.~;.b(U;.~bb); 

fu(a; !U;.~f) [fu(b; !U;.~bb)] = fraction of multi-relation updates on the j'th 

segment of relation a (b) given that the update rate is U;.~;.b(U;.~bb); 

It is further assumed that the parameters ex, {J, -y, f are independent of the 

effects of partitioning. The optimization problem of placing P a segments of rela-

tion a and Pb segments of relation b on the DDB can be formulated in the follow-

ing linear program. 

min 

ps n 

+ L: L: L: fi.sls•y:• 
s=a,b k.=1 i=l 

subfect to 

n 
L: Yf;;;l 
i=l 

n 
L:Xf.; = 1 
j=l 

n 
nYJ' ;;; L: Xf.; ;;; 0 

i=t 

}{' = 0, 1 

P. 
1::> I; fr(s;lgt .• )::>Ps 

j=l 

(2.7} 

(2. 7a) 

(2.7b} 

(2.7c} 

(2.7d) 

(2.7e) 

(2.7f} 

(2. 7g} 

(2. 7h} 

(2.7i} 

(2. 7j) 



P, 
1,; I; fr(s; I q;~O.~b) ;;; P 5 

j=t 

P, 
1;;; I; fu(si lu.f .• );;; P 5 

j=t 

P, 
1;;; I; fr(s; I U;~!b);;; P 5 

j=t 

n 
1 ;;; I; fu(s1 I U;~5b);;; P 5 

j::::l 

where s,t E fa,bl, i.j E f1,2, ... ,n! andpEfa 1, ... , apJ (c7.J.fb 1, •.• , bp,! 
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(2.7k) 

(2. 71) 

(2.7m) 

(2.7n) 

Eq. 2. 7a to Eq. 2. 7i are similar to the corresponding equations in Eq. 2. Eq. 2. 7j 

to Eq. 2. 7n represent the conditions that one or more of the segments may have 

to be accessed when a relation is queried. A lemma and theorem similar to 

Lemma 2.1 and Theorem 2.1 can be proved for this problem. 

LEMMA2.3 

Optimization problem 2.7 can be partitioned into Pa+Pb independent optimiza-

tion sub-problems, one for each segment. The optimization sub-problem for seg-

ment sk where sEfa, b !. kEf1, ... , Psl is: 

where 

Q? = [qf.sfr(sk I qf,s)O<f.s + q;~a.b.bfr(sk I q;~a.b.b)O<;~;,b 

+ I; U;~lbfr(sk IUi.~lb)v;~s"]l•• 
t =a..o 

u~· = [,J fu(s I"~ )" 5 + •• ~.bfu(s l,f',b)Ri'·b]l t ......,..s k ""'!.,S 1-'t,s --z.,s k --z.,s tJ'l,s sk 

F •• -
i - /i,slsk 

subject to 

(2.8) 
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i=l, ... , n 

A generalization of Lemma 2.3 is to allow any number of relations in the 

DDB. This is shown in the following theorem. 

THEOREM 2.3 

The general problem of optimizing the placements of multiple relations on a DDB 

using file partitioning can be decomposed into multiple sub-problems, one for 

the placement of each partition independently. 

The proofs of Lemma 2.3 and Theorem 2.3 are very similar to those of 

Lemma 2.1 and Theorem 2.1 and will not be illustrated here. 

We demonstrate the use of this technique in the next section with the exam-

ple from section 2.4. 

2.6A NUMERICAL EXAMPLE TO ILLUSTRATE THE USE OF FILE PARTITIONING 

ONADDB 

Using the same example in Section 2.4, we assume that both relations Sand 

SP are partitionable into two segments each, with: 

Ps = Psp = 2 

ls, = ls 2 = 4500 

lsp 1 = lsp
2 
= 10000. 

We further assume that when a retrieval is made on a relation, all the segments 

of the relation must be accessed, that is, for s,t E!S, SP!. iEp, 2, 3j and 

fr(sJ I qf..) = 1 

fr(si I qf.f.~p) = 1 

fr (sJ I u,~£"P) = 1 
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We would like to see what is the effects of varying the fraction of updates that 

have to access multiple segments. ForiE!l,2,3l, let 

and 

fu 2 = fu(Stluf.s8P) = fu(S2iuf.tfP) = fu(SPtiuf.tfj') = fu(SP2iuf.t/jf) 

That is, the fraction of updates that will access a particular segment of the rela­

tion is independent of the relation, but is dependent on the type of the updates, 

namely, single relation updates or multi-relation updates. The relation between 

fu 1 and fu 2 is shown in Figure 2.8. It is seen that the total operational costs 

after partitioning is always less than the cost without partitioning. However, due 

to the fact that there is a higher overhead in maintaining a larger number of 

files on the DDB, all the curves in Figure 2.8 will shift upward. Depending on the 

additional cost in the overhead, a threshold in ju1 and fu 2 can be found, below 

which the scheme is cost-effective. 

2.7 COST REDUCTION ON THE PLACEMENT OF RELATIONS ON A DDB BY UTIL­

IZING REDUNDANT INFORMATION AND FILE PARTITIONING 

The technique described in Sections 2.3 and 2.5 can be combined together 

to give a further reduction in the operational costs. Extra redundant informa­

tion is first added to the relations in the DDB. These relations are then parti­

tioned before they are allocated. Using the symbols defined before, we first dis­

cuss the case of two relations, a and b, which are partitioned in P ~ and Pb seg­

ments. We assume that the multi-relation-reduced-single-relation queries 

behave in a similar fashion as the original multi-relation queries in accessing a 

segment of a relation, that is, the variables fr and f'J. defined for the multi­

relation queries are identical for the variables fr and fu defined for the multi­

relation-reduced-single-relation queries. Further, it is necessary to define for 
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the updating of redundant information, the following symbols: 

frrd(ti ju..;~,.) [frrd(ti lu..;\)] =fraction of updates on the redundant infor­

mation that have to retrieve the j'th segment of relation t (t=a,b) in 

order to determine the redundant information to be updated, given 

that the single relation update rate is uf.a (uf,.); 

furd(ti lUi~,.) [turd(ti I'Ui~b)] =fraction of updates on the redundant infor­

mation that have to update the j'th segment of relation t (t=a,b) 

given that the single relation update rate is 'Ui~ .. ( 'Ui~b ). 

frrd(t5 iu..;~;,b) [frrd(tj\'U.;~bb)] =fraction of updates on the redundant infor­

mation that have to retrieve the j'th segment of relation t (t=a,b) in 

order to determine the redundant information to be updated given 

that the multi-relation update rate is u..;~;,b (tt.;~bb). 

furd(ti IUi~a.") [furd(ti 1'-'i~bb)] =fraction of updates on the redundant infor­

mation that have to update the j'th segment of relation t (t=a,b) 

given that the multi~relation update rate is uf.a.b {uf.0•). 

l1~ =length of segment j (j=l, ... ,P1) of relation t (t=a,b) after the redun-

dant information has been added. 

The optimization problem of placing the segments on the DDB is: 

min (2.9) 

Ps n n 
+ "' "'"' "'(1 -va,b )qa,b fr(s jqa,b )oca·bea·bl'X

5•s• L; LJ LJ LJ -1 i,a.,b i.a,b k i,a.,b i,s i,s sk i,j i,j 
s=a,b 1:=1 i=l J=l 

Ps n n 
+ "' "' "' "' ....... g .... fr(s I g"·• )cx"·•z" x•• s• LJ LJ LJ LJ ti,a..b i,a,b k i,a.,b i,s sk i,j i,j 

s=a.b k=t i=l j=l 



P. n n [ P, t 
+ " " " " ,,J>.,b ii~"·b " " fr(t 1 .. -~.b)v!>.!blt' x-·-st. LJ LJ LJ LJ ~.S 'I.,S LJ L..J 9 """'l,S '1., 8 'I.,J 1.,J 

s=a..b k=t i=l j=l t=a,b e=l 

f ( I ~,b) ~ bl' M• y••] + U Sk Ui,s flt.S sk i,i j 

P. n 

+ I: I: I: t •.• l:.Y.· 
s=a.,b k =1 i=l 

subject to the constraints 2. 7f to 2. 7n with four additional constraints: 

p• 
1 ~ I; frrd. (s; I u.f.t) ~ Ps 

J=l 

p• 
1 ~ I; furd.(s; lu.f.t) ~ Ps 

i=l 

P, 
1 ~ I; frrd.(s,- luf.!b) ~ Ps 

;=1 
P, 

1 ~ I; furd. (s1 I Ut~!b) ~ Ps 
j=l 

s,tEfa,bl, iEf1, ... ,n! 

s,tEfa,b !. iEf1, ... ,n! 

s,tEfa,bl, iEf1, .... n! 

s,tEfa,b! iEp, ... ,n! 
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The explanation of each term of Eq. 2.9 is similar to the corresponding term of 

Eq. 2.7. 

A lemma and theorem similar to Lemma 2.1 and Theorem 2.1 can be proved 

for this problem. 

LEMMA2.4 

Optimization problem 2.9 can be partitioned into P~ +Pb independent optimiza-

tion sub-problems, one for each segment. The optimization sub-problem for seg-

ment sk where sEfa, b !. kEfl, ... , P.! is 



n s s n ..J!i sir; s sk ~ s sk 2:; Q; • min S;,J + 2:; LJ U; M;,; Y; + LJ F; Y; 
i=l i.Y;k=t i=l j=l i=l 

min 

where 

Q:• = [qf.sfr(sk I qf..)af.s + (1--y;~i:.b,b)qf;;,~bfr(sk I qf.;,.~b)a-f;;,bef'} 
+ ..,~.b q~·b fr(s I q~·b )a~·b + " "~lbo"lbfr(s l"~·"!b)vP.·b f \,a.,b 'I.,O.,b k \,a.,b 't,S LJ --z., i, k --,., t.,S 

t=a.,b 

+ 'TJ~ u"i-frrd(s lu"i-)a"·b + 'TJ$ •~-~l>frrd(s lu~~b)a~·b]z' 'l.,Q.,b 'L,S k 1.,S i,S i,a.,b -,,$ k 'I.,S 'l,S S,t 

ut• = {ut.du(sk lu.;:' .• )li'f.s + u.;:~;,bfu(sk lu.;:"})li't.sb 

+ 2:; TJf.a,buf.tfurd (sk I uf.t )U.s + 2:; 'TJf.a.b U;~!0furd (sk I U;~!0)U,.]z~. 
t =a. ,b t =a. .b 

F,•• f t' = i.s •• 

s= t E ~S.SPl andtyis 

subject to 

•• Y; = 0, 1 i=l. .... n 
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(2.10) 

A generalization of Lemma 2.4 is to allow any number of relations in the 

DDB. This is shown in the following theorem. 

THEOREM 2.4 

The general problem of optimizing the placements of multiple relations on a DDB 

using additional redundant information and file partitioning can be decomposed 

into multiple sub-problems, one for the placement of each partition. 

The proofs of Lemma 2.4 and Theorem 2.4 are very similar to those of 

Lemma 2.1 and Theorem 2.1 and will not be illustrated here. 

The next section demonstrates the use of the combined technique with the 

same example discussed in Section 2.4. 

2.6 A NUMERICAL EXAMPLE TO ILLUSTRATE THE USE OF ADDITIONAL REDUN-
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DANT INFORMATION AND FILE PARTITIONING ON A DDB 

Using the same values defined in Sections 2.4 and 2.6, we further assume 

for s, t E: !S ,SP l. i E! 1,2, 3! and j E! 1,2!, that 

frrd(tj I ul.s) = 1 

frrd ( t1 I U;.~;,b) = 1 

fu 1 = furd(s; I'U./'.s) = furd(s, lu.f.t) 

fu 2 = furd (s; 1 uf.,;SP) = furd (5; 1 uf.1SP) 

The evaluations of the combined technique are shown in Figures 2.9 to 2.12. 

Comparing Figures 2.9 and 2.10 with Figures 2.5 and 2.6 under the assumption of 

fu 1=fu2=0.75 (that is, 50% of the updates have to access the two segment 

together), it is seen that the combined technique gives a larger cost decrease 

than when redundancy is used alone. In fact, as seen from Figures 2.9 and 2.10, 

it is "almost" true that the combined technique is always more cost effective 

than the case when none of the techniques are used. On the other hand, the 

curves plotted in Figure 2.11 where 6=7]=')'=0.5, have a higher cost ratio than the 

curves plotted in Figure 2.8. This means that the use of the combined technique 

is worse than the case when partitioning is used alone. The explanation for this 

is because there is a large update cost for the additional redundant information 

and this is not offset by the cost decrease due to partitioning. However, if 

sufficient redundant information can be added to the system so that the 

retrieval cost can be further reduced, the total operational costs may drop. 

This is shown in Figure 2.12, where 6=7]=')' have been reduced to 0.4. The curves 

in Figure 2.12 indicate a smaller cost than the curves in Figure 2.8. 

We conclude that the combined technique is always better than the tech­

nique of using redundancy alone and is better than the partitioning technique 

only when 0, 7 and 7J are .,small enough". 
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2.9 CONCLUSION 

In this chapter, we have studied the problem of optimal relation placements 

on a distributed relational data base. The objective of the problem is to minim­

ize the total operational costs of the system and to allow query decomposition to 

be done more efficiently. The type of queries that can be made on a distributed 

relational data base are classified. It is seen that non-decomposable queries 

cause a lot of communication overhead on the system. Two techniques and a 

combination of these two techniques are analyzed in this chapter. By pre­

analyzing the type of queries made on the DDB and the probability distribution 

of the data in the relations, the first technique introduces additional redundant 

information on the DDB so that non-decomposable queries can be made decom­

posable. The result is a decrease in the total retrieval cost and an increase in 

the total update cost. The second technique partitions the relations on the DDB 

into smaller segments which results in a decrease in the total update cost and 

an increase in the total retrieval cost. The third technique combines the above 

two techniques together. The total operational costs are going to drop if the 

total cost increase is offset by the total cost decrease. It is proven in this 

chapter that the problem of optimal relation (or segments of relation) place­

ment on a DDB can be decomposed into multiple sub-problems, one for the 

placement of each relations (or segments). The result is a significant reduction 

in the complexity of the optimization problem. A simple example is used to 

illustrate some of the properties of these techniques. It must also be noted that 

a lot of generality is introduced in the development of these techniques and a lot 

of parameters are defined. However, most of these parameters are identical in 

general, and therefore, as illustrated in the examples, the number of parame­

ters to be estimated on the system is relatively smalL 

After decomposing the placements of multiple relations into the place­

ments of individual relations, it is necessary to study algorithms to perform the 
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placements. This is the topic of discussion in Chapter 3. 
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3. THE PLACEMENT AND MIGRATION OF MULTIPLE COPIES OF A FILE ON A 

DCS 

3.1 INTRODUCTION 

In the last chapter, we have studied the placement of multiple relations on 

a DCS and have decomposed the problem into multiple sub-problems of placing 

multiple copies of each relation independently. In this chapter, we develop the 

theory and the techniques to place and to migrate multiple copies of a single file 

on the DCS. This is done by first showing that the file allocation problem and the 

dynamic file allocation problem (or file migration problem), which have been 

studied extensively in Computer Science, are isomorphic to two equally well 

known problems in operations research, called the single commodity warehouse 

location problem and the single commodity dynamic warehouse location prob­

lem. Due to this isomorphism, it is found that many techniques which have been 

developed for one problem can be applied to solve the other problem. Further, 

it is found that some techniques developed for one problem match very closely 

with techniques developed for the other problem. The implications of such a 

proof of isomorphism are further shown in sections 3.6 and 3. 7. By combining 

some conditions devloped in both the file allocation problem and the warehouse 

location problem, we have developed a file placement heuristic which performs 

better than other heuristics proposed. The heuristic is tested on sample prob­

lems whose optimal solutions have been established previously in the literature. 

In studying the file migration problem, we have proved that it is NP-complete 

and have developed some conditions to indicate when file migration should be 

carried out. 

3.2 DEFINITION OF THE PROBLEM 
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On a DCS, one of the important problems is to distribute or place the files 

so that they can be accessed efficiently. Chu has studied the optimal file alloca­

tion problem which is defined as follows: given a number of computers that pro­

cess common information files, how can one allocate the files so that the alloca­

tion yields minimum overall operating costs [CHU69]. This problem is directed 

toward the optimal placement of multiple files on the DCS. Subsequently, many 

researchers have partitioned the problem of allocating multiple files to multiple 

problems of allocating individual files, e.g. [CAS72, LEV74, MOR77]. In Chapter 2 

of this thesis, we have shown the decomposition of the optimal placements of 

multiple relations into multiple sub-problems, one for the optimal placement of 

each relation in a distributed relational data base. This single file allocation 

problem has been coined by Eswaran as the File Allocation Proble-m (FAP) 

[ESW74] which can be defined as: given a number of computers that process 

common information files, and users on the system that access these files, how 

can one allocate multiple copies of a file so that the allocation yields minimum 

overall operating costs. This is a very simple formulation in which all the con­

straints on the system are transformed into a common unit of cost which may 

include file access cost, multiple update cost, file storage cost and file migration 

cost. Different constraints may be reflected in the form of different costs. For 

example, a prohibitive route in the network is represented by a high acces cost. 

A more general problem is the Dyna-mic File Allocation Proble-m (DFAP} or the 

File Migration Proble-m in which the files are allowed to migrate over time in 

order to adapt to changing access requirements. It is assumed that the period 

for migration is fixed ahead of time and is not determined dynamically. There 

are other people who have studied variations of the general process and file allo­

cation problem. Among them are Stone and Jenny, who have studied the alloca­

tions of processes on a multi-processor system [ST077a, ST07Ba, ST07Bb, JEN77, 

HOF7B]; Loomis and Popek, who have introduced additional parameters such as 
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the capability of a node on their model [10075, 10076]; Mahmoud and Riordan, 

who have considered the file placements and the capacity assignments for links 

jointly [MAH76}. We concentrate in this chapter on the FAP defined by Eswaran 

(multiple copies of single file allocation problem} and the DFAP (an extension of 

FAP in which the placements vary over time}. 

3.3MOTIVATIONS FOR FILE PLACEMENT AND MIGRATION 

The major reason that multiple copies of a file are allocated to certain parts 

of the system at certain times and it is not necessary to keep a copy of every file 

at every node all the time is because users have localities of access. At any par­

ticular time, a file may be used by a group of users, and it will continue to be 

used by the same group for a certain length of time. For a particular user, the 

file that he wants to access may be available locally, in which case, he can 

access the file with very little cost. If the file is not available locally, he would 

have to pay a cost in terms of delay in accessing the file and also additional 

traffic in the network before he can make the access. It is under this situation 

that we should consider moving a copy of the file to his node. Introducing a new 

copy would also increase the cost in terms of storage space and the extra over­

head in locking and concurrency control. Therefore, the decision of whether to 

introduce a new copy of a file involves a balance of the cost between the two 

cases. The costs, e.g. communication costs, storage costs, etc., are a function of 

the topology of the system, the storage sub-system at a node, the type of com­

munication protocols used, and most importantly, the extensiveness of usage at 

a particular node. Some examples of the tariff for the usage of Telenet Data 

Communication Network are shown in Table 3.1 [TE178}. For example, suppose 

the user uses a public dial-in service with local dial at 1200 bps, the cost that he 

has to pay (assuming 100% line utilization with 30% overhead} is $4.009 for 1 

Kbyte of data. On the other hand, the storage costs on the system, with the 
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Table 3. 1 E:r:a:m.ples of Cammunication Costs on Te!enet Data Cammunication 
Network (July 1, 1978} [TEL78] 

Type of Port Installatf~f Usage'S' co: . "'- .. ChRra" 
Dedicate 50-300 bps 400 300/month 
Access 1200 bps 500 340/month 
Facilities 9600 bos BOO 1100/month 
Public Local Dial 110-300 bps 0 3.25/hr' 
Dial-in Local Dial 1200 bps 0 3.25/hr' 
Service Jn-WATS 110-300 bps 0 15.00/hr 

ln-WATS 1200 bos 0 15.oo/hr 
Private 110-300 bps 320 180/month' 
Dial-in 1200 bps 340 215/month' 
Service TWX 300 210/month' 
Private 75-300 bps 420 300/month' 
Dial-out TWX 420 300/month' 
Service 

' Regular Service - $0.50 per thousand packets; each packet contains up to 128 
characters of user data. 

advances of low cost mass storage, are much smaller as compared with the com-

munication costs. As an example, it costs $1.00/month to store 24 Kbytes of 

data on the disk of the CDC 6400 at the University of California, Berkeley. There-

fore, the minimization of communication traffic on the DCS, in the expense of 

using additional storage by having multiple copies of the data, is a more impor-

tant problem. 

Before we show the proof of the isomorphism, we survey in the next two sec-

tions, some of the previous work on file allocation and warehouse location. 

3.4 PREVIOUS WORK ON THE FILE ALLOCATION PROBLEM 

Most of the previous work on file allocation is based on static distribution. 

that is, the allocation does not change with time. A typical method,in dynamic 
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distribution involves the application of a static algorithm whenever need arises. 

Levin has applied dynamic programming to migrate copies of a file over a multi-

period horizon [LEV74). He has also developed some conditions in order to 

reduce the number of solution vectors that have to be generated in each period. 

However, the static algorithms are usually very expensive to run in real time. 

Grapa and Belford remarked that a particular solution to this problem solved a 

thirty node problem in one hour on an IBM 360/91 computer [GRA77b]. The 

difficulty in optimization is also exemplified in [SIC77]. Moreover, the problem 

has been shown to be NP-complete [ESW74], i.e., a class of problems for which 

there is no known optimal algorithm with a computation time which increases 

polynomially with the size of the problem [KAR72). The computation times for 

all known optimal algorithms for this class of problem increase exponentially 

with the problem size, i.e., if n represents the size of the problem, then the com-

putation time goes up as kn where k>l. In order to achieve a polynomial execu-

tion time, heuristics are generally used which sacrifice optimality for efficiency. 

A summary of the previous work in file allocation is shown in Table 3.2. Some of 

these studies introduce additional constraints on the model (e.g. link capacity, 

node capability). Basically, the algorithms for statically allocating multiple 

copies of a single file can be divided into two types: (1) mathematical program-

ming and exhaustive searches and (2) heuristics. 

(1) Mathematica~ Programming and Exhaustive Searches 

This technique has been used by Chu [CHU69], Casey [CAS72], Levin and 

Morgan [LEV74, LEV75, MOR77), and Mahmoud and Riordon [MAH76). Using the 

notations defined in Chapter 2, and is repeated here in Table 3.3, the formula-

tion of the FAP is as follows 1: 

1 Since we are considering a single tile a, without ambiguity, all the subscripts and superscripts 
for a will be delected in the formulation. 
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Tabte 3. 2 A Summary of the Previous work in File Placement/Migration 

llathematJca.l Programm:lna & ExbaWJtive Searehe! Heuristic 
----------------------------------------------------- ------------------------
Chu (CHU69] Casey Levin 1t. Mora:an Ghosh 

(CAS72] (LEV7<. LEV?~. [GH076] 

ILOR77] ========== ========= =========== ======== 
Complete rela- All objects Only proare.m- All objects 

Uoru~ amana o~ independent de.ta relations independent. 

1ect.s; File access estst. between 

is poisson. objects. 

---------- --------- ---------- --------
Store.ae cost; Storqe cost; Comm.llll1caUon Data base 

Transtmssicn Query cost for query: with mu1Up1e 

cost.: FUe len,th: trani!llt\isston CommunicaUon araet sea~ 

Request rate cost; Update cost for update; ment types: 

between rues: transmission ~amc rate for Quertes with 

Update rate cost; Query query /update multiple tar~ 

between files; rate bet....-een from a node to a get seament 

YUim.um allow~ nodes; UP- tue vta a pro.. types. 

able access UJne: date rate gram; Inter-

Storaae o apaoi- etween period :me mier&--

ly. nodes. Uon cost. 

-------- ------- ----------- --------
Inteaer Proaram~ Path search Path search on Combinator\-

mlng oncost costaraph; al search 

graph dyne.rnic pro~ through pos-

&rMUnlntl sible solu-
Uons 

Algorithm very Algcr!t.bm Al&orilhm Maximize 

compln; Constd- efficient; In~ eft'lcient: Deflntte number of 

er dele.y from dependence access relations segments 

net work queue- of obiects among objects that query 

1n& approach. reduces allo- reduce the aDo- oan retrieve 

caUon of cation of mulU~ in paraUel 

multiple 1Ues ple files to single from 

into single file; Define condJ. difl'erent 

1Ue. tions to reduce nodes; Do not 

dynamic pro- model com. 

gramming munication 

search delays. 

Foster et. al. Loomis & Popek. Mahmoud &. Rlor-

[FOS77] [L007~. L0076] don [liAH76] 

=========== =========== =======-==== 
Star network: All Complete Proba- Inde-pendent ob-

objects tndepen... bllistlc relations ]eels; Query and 

denL amona: objects. return tra:mc di-

vtded equally 

&m.oJll: allocated 

nodes. 
----------- ----------- -----------
Queuetnc time & Inter-node CommunicaUon 
nrvloe time tor tr&I1Sinl"""' cost.: File stcraae 

transactions: cost.; Node capa~ cost; 

Stora;e cape.oi- blllty; File Query /update 

y: Averaee Ienat.h; Process- trt111c lt. 

number of mes- in& needs of trle; correspcndma 

sages in network: Probability of a return tramc for 
Average local request access- each 1Ue at each 

processina: Aver~ ina an object; no~e; A.va.Dabl.Hty 

aae ftle length: Probability that requirements. 
Access freq,uen~ a 

cr. Hardware, request/update 

software charac- ts incident on a 

terisUcs. node: Probabn.tty 

of 2 objects pro-

cessed in pareJ.. 

lel. ---------- ----------- ----------Queuelna net- Cluslerlna Add.<irop heurl!o-

work algorithm: Uc 

Inteaer program-

mlng 

Dynamic net- Obtain both Mhilirdze 

dltTerenoe from 

optimal branch~ 

work behavior ig~ capacity assig;n­

nored; M8%im.i2e ment for links &c 

ing probabiUUes; potential for 

Algorithm com- parallelism. 

plex. 

rue placements: 

Should consider 

query to be rout­

ed to nea.rest 

node &: not dis.. 

tributed equally 

amana: all nodes. 

---------- --------- ----------- --------~----------- ----------- ------------
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Ta.ble 3.3 Ma.pping between the Defined Nota.tions in this Thesis a.nd Ca.sey's No­
ta.tions [CAS72] 

Notations Casey's Explanation 
defined in notations 
this thesis 
1or ~file a 

I I = index set of nodes with a copy of the file; 
n n = number of nodes in the DCS; 
Us 'ifls = update load originating at node j per unit time; 
Qi A; = query load originating at node j per unit time; 

~.i rit,.k = cost of communication of one query unit from j to k; 

"At d;.J< = cost of communication of one update unit from j to k; 
cr. = stora11e cost of file at k per unit time. 

An optimal allocation for a given file is then defined as an index set I which 

minimizes the cost function. 

" C(I) = 2:; fL; U1M1,t + Q1 min Ss.J<] + 2:; Ft 
S=l lk£1 k£1 tEl 

By defining a control variable Y1 such that 

i ;t I 
jE/ 

The cost function can be written as: 

C(I) = f; If; U1M1,t Yt + Q; min S;.kl + f: Fk Yk 
i=l k=l ke.l. J:=l 

The optimization problem for file placements is: 

min 

" C(I) = 2:; Q; min Sp 
;=I kel 

subject to 

Yk = 0 or 1 (integer) k=l, ... ,n 

a.nd 

(3.1} 
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" Gk = Fk + :E U;M;;;c (3.2) 
j=l 

The quantity Gk has been introduced as Zk in [GRA77b]. Optimization problem 

(3.1) can be solved by using integer programming techniques [GE072]. Casey 

[CAS72] and Levin and Morgan [LEV74, MOR77] have used the hypercube tech-

nique to enumerate over a reduced set of possible solutions in order to find the 

optimum. However, the approach of using integer programming or exhaustive 

enumeration is only suitable when the problem size is small. Due to this 

difficulty, Grapa and Belford have done some pioneering work in developing 

three simple conditions to check whether a copy of a file should be placed at a 

node [GRA77b]. This reduces the complexity of the problem tremendously 

because many alternatives can be eliminated. 

(2) Heuristics 

Heuristics are "reasonable" search strategies which do not guarantee that 

the optimum solution can be found. Heuristics are usually interactive algo-

rithms. A feasible solution can be generated. Users or some decision algorithm 

then has to decide whether to improve the solution or not and how to improve it. 

The decision algorithm is usually an add-drop algorithm in which perturbation is 

induced on the existing solution to see if a better solution can be obtained. 

Three of the most commonly used heuristics are (1) hierarchical designs; (2) 

clustering algorithms; and (3) add-drop algorithms. 

(1) Hierarchical designs 

This is a heuristic procedure in which attention is first restricted to the 

more important features of a system. In a file allocation problem, attention can 

first be restricted to geographical regions. After analysis has been performed 

and the files have been distributed to different geographical regions, attention 

can be directed to the less important details such as allocating files within a 

geographical region. This stepwise refinement procedure can continue down 
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many levels. At each level of optimization, it is hoped that the effects on the 

optimization of the current level from the levels above and the levels below are 

very small. Nevertheless, iterations and design cycles may exist to refine the 

solution. 

(2) Clustering algorithms 

Clustering algorithms are horizontal design processes which have a simi­

lar objective as hierarchical algorithms, namely, to reduce the complexity of the 

analysis in a large system. In a DDB, clusters can be formed from geographical 

distribution of access frequencies. The files are then allocated to clusters. The 

file allocation within a cluster may further be refined as in hierarchical algo­

rithms [L0075, L0076]. 

(3) Add- drop algorithms 

In applying this algorithm, a feasible distribution of files is first found. 

The total cost of the system can be improved by successive addition or deletion 

of file copies. When a feasible solution with a lower cost is found, it is adopted as 

a new starting solution and the process continues. Eventually, a local optimum 

is reached in which addition or deletion does not reduce the cost. The whole 

procedure can be repeated with a different starting feasible solution and several 

local optima can be obtained. By taking the minimum of all the local minima 

obtained, it is hoped that we can get very close to the global optimum [MAH76]. 

The disadvantages of all these heuristics are that they usually find a local 

optimum instead of a global optimum and the validation is very difficult. The 

goodness of a heuristic is often measured by its computational complexity and 

by its average and worst case behavior. Because the average and the worst case 

are difficult to solve analytically, evaluations are generally done by simulations. 

Therefore it is possible that the heuristic performs satisfactorily for some exam­

ple problems, but it may perform unpredictably for some other problems. Using 
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the add-drop principle, a heuristic for the FAP is shown in Section 3.8. 

3.5 PREVIOUS WORK ON THE SINGLE COMMODITY WAREHOUSE LOCATION 

PROBLEM 

Although the development of DCS's is very recent, and the problem of file 

allocation in DCS's is rather new, a similar problem has been studied by many 

operations researchers a long time ago. As early as 1951, Dantzig used the sim­

plex method to solve the transportation problem [DAN51]. In 1958, Baumol 

described a problem called the warehouse location problem [BAU58]. The prob­

lem was then studied by many people. There are several variations of the prob­

lem and all of them consider a single type of commodity on the system. 

( 1) Si"mple plant location proble"m: 

Given a set of plants which can supply customers with goods and have no 

constraints on the amount shipped from any source, the problem is to deter­

mine the geographical pattern of plants' locations which will be most profitable 

to the company. The optimization is done by equating the marginal cost of 

warehouse operation with the transportation cost savings and incremental 

profits resulting from more rapid delivery. This problem has been studied in 

[MAN64, EFR66, SPI69, SNY71, ALC76]. Manne studied the use of "steepest 

ascent one point move algorithm" [MAN64]. Efroymson and Ray, Spielberg, 

Alcoufie and Muratet studied enumerative optimal algorithms [EFR66, SPI69, 

ALC76]. Snyder studied a special case of the plant location problem in which the 

paths connecting two plant locations lie on a rectangular grid [SNY71]. 

(2) Single Co"m·modity Warehouse location proble"m {SCWLP): 

Given a set of factories, a set of customers and a set of possible warehouse 

locations, the problem is to locate the warehouses so that the fixed and the 
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operational costs of the system is minimum. A special form of the problem is to 

neglect the transportation costs from the factories to the warehouses and to 

consider only the transportation costs from the warehouses to the custorners 

which then becomes the simple plant location problem. This problem has been 

studied in [KEU63, FEL66, KHU72]. Keuhn and Hamburger developed the add­

drop heuristic for the problem [KEU63]. Feldman and Ray extended Keuhn and 

Hamburger's work to include non-linear fixed costs [FEL66]. Khumawala further 

extended Efroymson and Ray's work [EFR66] and applied branch and bound 

algorithm to solve the problem [KHU72]. 

(3) Single Commodity Dynamic facility location problem (SCDWLP): 

This is a dynamic version of the simple plant location problem or the ware­

house location problem, except that the locations of plants or warehouses are 

allowed to change over a planning horizon of r periods so as to adapt to changing 

demands of the customers. This problem, first proposed by Francis [FRA63], has 

been studied in [WES73, ERL74, SWE76, RA077]. Wesolowsky and Erlenkotter stu­

died the single facility migration problem [WES72, ERL74]. Sweenly and Tatham 

applied dynamic programming to solve the multi-facility migration problem 

[SWE76]. Rao and Rutenberg studied a dynamic multi-location problem in which 

time is continuous and demand can change at different rates [RA077). 

( 4) Capacitated warehouse location problem: 

Consid!'r a set of warehouses with a finite and fixed capacity, the problem is 

to determine the warehouses' locations so that the customers' needs can be 

satisfied and the costs of the system is minimum. This problem has been stu­

died in [SA 69, GIG73, AK177]. Sa, Akinc and Khumawala solved the problem 

using branch and bound technique [SA 69, AKI77]. Giglio solved a special case of 

the SCDWLP in which capacity constraints are taken into account and demands 

are assumed to be growing at a decreasing rate. 



82 

(5) Quadratic assign-ment proMe-m: 

Given a set of plants in which certain fixed quantities of the single type of 

commodity are to be shipped between the plants, and a set of possible plant 

locations, the problem is to assign the plants to locations so that the total costs 

of the system is minimum. This problem appears in [K0057, GIL62, ARM63, 

LAW63, HIL66b, GRA70, RIT72]. Armour and Buffa have presented a heuristic 

which considered pairwise exchanges of work centers and locations [ARM63]. 

Gilmore and Lawler have developed optimal algorithms which are computation-

ally feasible for small problems [GIL62, LAW63]. Lawler's solution requires a 

large number of linear assignment problems to be solved. Hiller and Connors 

modified Gilmore and Lawler's algorithms and obtained a more efficient but 

sub-optimal algorithm [HIL66b ]. Graves and Whinston solved the problem using 

a probabilistic branch and bound algorithm [GRA70]. 

Some of the problems defined above are more general than the others. In 

fact, problem (1) is a subset of problem (2) which in turn is a subset of problem 

(3). Problem (4) also contains problems (1) and (2). We are concerned in this 

paper with problems (1), (2) and (3). The formulations of problems (1) and (2) 

are identical. Using the notations of Efroymson and Khumawala [EFR66, KHU72], 

the SCWLP, with m potential warehouses (with unlimited capacity) and n custo-

mers, can be formulated as a mixed integer program as follows. 

-mini1nize 

Z = 2:; D; t;.;X;.; + 2:; F; Y; 
i.j i 

subject to 

2:; xi.! = 1 j=1, ... ,n 
it.Ni 

0 <:: "' X· · <:: ~· Y· - LJ t.J - '"''. 't i=1, ... ,'1'Tt 

j€..Pi 



Y, = 0 or 1 (integer) 

where 

i=l, ... ,m 
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t,,; = the per unit cost which includes the FOB cost at the warehouse {i), 

the warehouse handling cost and the transportation cost from the 

warehouse to the customer {j); 

D; = the demand of customer j; 

X,,; = the portion of D; supplied from warehouse i; 

F, = the fixed cost associated with warehouse i; 

N; = set of warehouses which can supply customer j; 

P, = set of those customers that can be supplied by warehouse i; 

n. = number of elements in P,; 

if warehouse exists at site i 
otherwise 

We assume that m=n and that every warehouse can supply every customer. Let: 

I = index set of sites with a warehouse. 

It has been shown in [ALC76] for j=1, ... , n that: 

if t, ,. =min tk 3-, iEI 
. ktl . 

otherwise 

That is, the commodity will be shipped to a customer from a warehouse with the 

minimum transportation costs. The optimization problem can be rewritten as: 

TTLini7nize 

n 
Z = L: D; min tk.j 

j=! kef 
(3.3) 

subject to 

Y, = 0, 1 (integer) i=l, ... ,n 

In solving the warehouse location problem, many techniques have been 

developed. Substantial evaluation results can be found on some example ware-

house location problems in the literature. 
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3.6 THE ISOMORPHISM BETWEEN FILE ALLOCATION AND SINGLE COMMODITY 

WAREHOUSE LOCATION 

Mter defining the (D)FAP and the SC(D)WLP, we are ready to prove the fol­

lowing theorem. 

THEOREM 3.1 

The FAP and the SCWLP are isomorphic and the DFAP and the SCDWLP are iso­

morphic. 

Proof 

The theorem can be proved by associating the variables of the FAP with the vari­

ables of the SCWLP and similarly, the variables of the DFAP with the variables of 

the SCDWLP. This association is shown in Table 3.4. An alternative way to prove 

the theorem is to notice that Equations 3.1 and 3.3 are actually identical with 

only a change of variables. The mapping of the variables are also shown in Table 

3.4. 

Q.E.D. 

Using the isomorphism result, we have shown the equivalence of these two 

problems. Therefore all the results available to operations researchers are 

available to computer scientists and vice versa. The implications are further 

illustrated in the next section. 

3.7 IMPLICATIONS OF THE ISOMORPHISM BETWEEN THE (D)FAP AND THE 

SC(D)WLP 

Because the FAP and the SCWLP have been studied in different directions 

for a long time, techniques developed for one problem can be used to solve the 

other problem. The techniques developed for the general warehouse location 

problem can be used to solve the FAP and the DFAP. These include the add-drop 
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Table 3.4 Mapping between the (D)FAP and the SC(D)WLP 

FAP RCWLP 
Locations of computers n Possible warehouse sites n 
Locations of file I Locations of warehouse I 
Access for a file Commodity flow 
Amount of access at i (), Customer demand atj D· 
Per unit cost of communicat- si.k Per unit cost of shipping com- ti ,)< 

ing one query unit from j to k modity from plant to ware-
bouse j and from warehouse j 
to customer k 

File storage cost + multiple Ct Fixed cost of opening a ware- Ft 
update cost for file at node k house at site k 
File mi"ration Warehouse relocation 
Cost of migrating a copy of the Cost of relocating a warehouse 
file from i to k from site i to site k 

technique developed in [KEU63, ARM63, FEL66] which is a heuristic of complexity 

0 (n 4 ) and generates sub-optimal solutions; the branch and bound algorithms 

used in [EFR66, SA 69, KHU72, AKl77] which exhaustively enumerate over a 

reduced set of possible solutions in order to obtain the optimal allocations and 

the running time depends on the bounding and the branching criteria used; the 

probabilistic branch and bound algorithm used in [GRA70] which is similar to the 

branch and bound technique but it uses probabilistic estimation to generate a 

lower bound; the direct search or implicit enumeration algorithm used in 

[SPI69, ALC76]; the steepest ascent algorithm used in [MAN64} which is a sub-

optimal steepest ascent one point move algorithm; the dynamic programming 

method used in [SWE76] in which some conditions are developed to reduce the 

number of solution vectors searched; the heuristic developed in [HIL66b]; and 

the polynomial algorithms for some special cases, e.g. a plant location problem 

on a grid-like network is solved in [SNY71}. a one facility plant migration prob­

lem is solved in [WES73]. Similarly, there are techniques developed in the F.-\P 
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and the DFAP which can be used to solve the general warehouse location prob-

lem. These include the hypercube technique developed in [CAS72, LEV74, 

MOR77] which is essentially the same as Alcouffe and Muratet's optimal algo-

rithm [ALC76] and is an implicit enumeration with conditions to discontinue 

unnecessary searches; the clustering technique used in [L0075); the dynamic 

programming method used in [LEV74] to solve for the optimal migration 

sequence of copies of a file; and the max-flow-min-cut network flow technique 

developed in [ST077a, ST078a, ST078b], which can be used to solve a special 

case of the SCQAP2• 

Besides the fact that techniques developed for both problems are inter-

changeable, there are instances where techniques developed for one problem 

match very closely with techniques developed for the other problem. These are 

stated in the following three corollaries. 

COROLLARY 3.1 

Two of the three conditions derived by Grapa and Belford [GRA77b] for a file to 

be placed or not to be placed at a node are weaker than the conditions derived 

by Efroymson and Ray [EFR66] for a warehouse to be opened or closed. 

Proof 

Before the conditions can be stated, some additional symbols must be 

defined. Let: 

Ko = U: Y;=Dl; 

Kl = U: Y;=ll; 

K 2 = [j: Y;=unassignedl. 

In the FAP, K~o K 0 represent the set of nodes with and without a copy of the file, 

and K 2 represents the remaining nodes in the system. In the SCWLP, K 1o K 0 

z The proof of this is shown in Appendix A 
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represent the set of sites for which a warehouse is opened and closed and K 2 

represents the set of the remaining sites. 

Two of the three Grapa and Belford's conditions for a file to be placed or not 

to be placed at a node are 3 [GRA77b]: 

For iEK2: 

n 
Y:· = 0 if"' Q· max (S· .. -S· ·) < G· 

1. LJ :J ,. K K J,.... 1 ·' ' i=l ~<'e: lu 2 

where: 

{ 
f 

(! >+ = 0 
if t ;;;o 
iff <0 

(3.4) 

(3.5) 

Two of the three Efroymson and Ray's conditions for a warehouse to be opened 

or closed are4 [EFR66]: 

(3.6) 

(3.7) 

In order to show that condition (3.4) is weaker than condition (3.6) and con-

dition (3.5) is weaker than condition (3. 7), it is necessary to show: 

To prove 

n 

(a) L.H.S. = Qit{fli~ (Su-Si.i)+ + l: Q; tE"Wf~ (S1.k - S;,i)+ ____________________ L_JiL______ J =I 1 1'2 
k "' . "' k ,oiL 3 Equation (3.4) has been augmented 'bfthe term'Si,i on the R.H.S. because the original condi-

tion of Grapa and Belford is not correct when Si,i>O. 
4 The variables in the following two conditions have been transformed into the corresponding 

variables in the FAP with the use of Table 3.3. In the original Efroymson and Ray's conditions, jEPi 
which is the set of customers that can be supplied from plant (or warehouse) i. We have made the as­
sumptiOn that all the customers can be supplied from any plant and therefore j E f 1, . .. , n ~. Note 
that t;,k in the SCWLP corresponds to Sk,:J in the FAP. 



= R.H.S. 

(b) Comparing term by term, we would like to show that 

min(S1 k-S;;)+~ max (S1 k-Sj;) 
kEK1 ' ' kt.K 1vK2 ' ' 

There are two possibilities (note that iEK2 ): 

Therefore 

n n 
~ 
j=l 

Q· min (S· k-s. ·)+ ~ " Q· max (S· k-s. ·) 3 kt.K 3 • J.t LJ 3 k€}{ uK J, J;l 
1 j=l 1 2 
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This proves that the two Grapa and Belford's conditions are weaker than the 

corresponding Efroymson and Ray's conditions. It must be noted that the third 

condition derived by Grapa and Belford has no corresponding counterparts in 

the SCWLP and therefore may be useful in the SCWLP. The summary of these 

conditions are shown in Table 3.5. 

Q.E.D. 

By using the stronger Efroymson and Ray's conditions, a larger set of nodes 

can be pre-assigned to have or not to have a copy of the file than by using Grapa 

and Belford's conditions. This may save a lot of computation time in enumerat-

ing some possible assignments which cannot be pre-assigned using Grapa and 

Belford's conditions. 

COROLLARY 3.2 

The dynamic programming method for file migration used by Levin [LEV74) is 



Tab!e 3. 5 Summary of Conditions for P!acement and Non- placement of a file 
at node iEK2 
(The first three conditions are from [EFRSB]; the last condition is from 
[GRA77b].) 

Conr'if' Rule 

a .. 
Y;=l if I; Qi min (S;.<-Ss.<)+ > C; 

i==t Jc€K1uKz . :., 

b .. 
Y;=O if L; Q1 min (Ss k-S; .) .. < C; 

.;, k£}{ t • • 

c If 
r"£, (S;,k -S1,;) < 0 jE!l ..... nj, 

then n; is reduced bv 1 
d .. 

Y,=o if c,-c, > ,~, Q1(s1 .• -s1 . .> .. 
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similar to the dynamic programming method for dynamic warehouse location 

used by Sweenly and Tatham [SWE76]. 

Proof 

In [LEV74], Levin has developed a method of dynamically migrating copies 

of a file over a multi-period horizon. The technique uses the basic dynamic pro-

gramming procedure, but additional conditions on costs are defined in order to 

reduce the number of solution vectors that have to be generated in each period. 

The conditions are defined so that the reduced set of solution vectors always 

include the optimum. On the other hand, Sweenly and' Tatham also have used 

dynamic programming to solve the multi-period warehouse location problem. In 

order to reduce the number of solution vectors that have to be generated in 

each period, an upper bound is determined first. All solution vectors with values 

less than the upper bound are generated and ranked for each period. Dynamic 

programming is applied to find a new upper bound v'. If v~ is the sum of 
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optimum solutions for each period without the relocation costs and K=v·-v~. 

then it is proven that additional solution vectors have to be generated for 

periods where the difference between the best and the worst solutions is less 

than K. A solution vector in a period is obtained by solving an integer program. 

It is difficult to determine the number of solutions to be generated in each 

period. However. some fixed number may be selected ahead of time based on 

the previous knowledge obtained. Although both techniques do not give any per­

formance results on the number of solutions that have to be generated in each 

period, it seems that Levin's solution is easier to apply because it is not neces­

sary to solve an integer program in order to obtain a solution. However, a 

smaller number of solutions may be generated using Sweenly and Tatham's 

technique, but it may be necessary to go through several iterations before the 

optimum solution is contained in the solution vectors, whereas using Levin's 

technique, the reduced set of solutions vectors always contain the optimum. 

The solutions that these two techniques give may not be identical and the practi­

cal benefits between these two methods can only be distinguished when they are 

applied on realistic problems. More evaluations are necessary before any quan­

titative judgement can be made between the two techniques. 

Q.E.D. 

COROLLARY 3.3 

The hypercube technique developed by Casey [CAS72] and Levin and Morgan 

[LEV74, MOR77] and the condition used to discontinue the search, are identical 

to the algorithm and condition developed by Alcoufie and Muratet [ALC76]. 

Proof 

The hypercube technique was first introduced by Casey [CAS72] (a later ver­

sion was developed by Levin and Morgan [LEV74, MOR77]) to enumerate over all 

the possible combinations of allocations in order to find the optimal allocations. 



A condition is developed to discontinue the search whenever the objective func­

tion [CAS72] (the sum of the query and the storage costs [LEV74, MOR77]) does 

not decrease after a file copy is added to an arbitary assignment at a node. A 

similar condition is also developed by Alcoufie and Muratet [ALC76]. However, 

the algorithm used by Alcoufie and Muratet is slightly different. They started 

their search from an assignment in which every warehouse is opened. This 

corresponds to the case in which every node has a copy of the file. In Casey's or 

Levin's algorithm, the search is started with the assignment in which every node 

does not have a copy of the file. However, the basic underlying principle of these 

two algorithms are still identical. 

Q.E.D. 

In conclusion, as a result of the proof of isomorphism, we have found that 

many techniques developed for both problems are inter-changeable and that 

some techniques developed for one problem match very closely with techniques 

developed for the other problem. It is therefore possible to study these two 

problems in an integrated fashion in the future. In the next section, we will use 

the conditions in Table 3.5 to develop a heuristic for the F AP. 

3.8 A HEURISTIC FOR THE FAP- Algorithm 3.1 

In this section, we propose a heuristic to solve the FAP. The search for an 

optimal solution is sometimes too time-consuming or impossible. Many of the 

optimal search techniques in the SCWLP are of branch and bound type and they 

are applicable to problems of moderate size. One way to reduce the execution 

time of a branch and bound algorithm is to develop some criteria so that many 

of the branches in the branch and bound tree can be systematically eliminated 

although the result obtained may not be optimal. Jn the heuristic we are going 

to discuss, several alternative criteria have been investigated. Essentially, the 

heuristic is a greedy algorithm which starts with all the nodes unassigned. It 
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first applies the conditions of Table 3. 5 to see if any node can be assigned 

without any enumeration. After all these nodes have been assigned, it comes to 

a point at which it has to decide what node to extend the assignment and 

whether or not to assign a copy of the file there. It does this by extending the 

current assignment by one node. For each of these extended assignments, 

there are two possibilities, either to assign or not to assign a copy of the file 

there. Therefore, there are altogether 2*JK 2 1 possible assignments which results 

in 2*IK2l candidate problems. (The state of a candidate problem is made up of 

the states of allocation of the n different nodes on the DCS. In general, the n 

nodes of the DCS can be partitioned into three sets, K 0 , K 1 and K 2.) For each of 

the candidate problems, a representative value is calculated. The function of 

the representative value is to estimate the minimum of the candidate problem 

without actually enumerating over all the allocations for the unassigned nodes. 

Based on these 2*IK 21 representative values, the selection criterion selects the 

node and decide whether or not to assign a copy of the file there. After this 

assignment has been made, the algorithm comes to a point at which it is ready 

to check for the conditions of Table 3.5 again and therefore it repeats the steps 

described above until all the nodes have been assigned. The general steps of the 

algorithm are shown in Figure 3.1. We discuss each of these steps briefly here. 

M-1 This is to initialize the candidate problem - all nodes are unassigned at 

this point. The candidate list. which is a list of states, and is made up of 

the sets K 0 , K 1 , K 2 and its corresponding representative value, is 

assigned the empty set. 

M-2-5 These four steps essentially achieve the following: a node is selected 

from the un-assigned set, K 2, and is assigned a copy or not assigned a 

copy of the file. A representative value is calculated for each of the can­

didate problems. The computed representative value and the 

corresponding assignments are attached to the candidate list. These 



Initialize Candidate Problem 
K0=;, K

1 
=ill, ~={1,2, ••• ,n} 

K2+K , Candidate List+ 0 

Form Candidate Problem c1 where 

~.l+KO, :11_,i..-KlU{i}, ~,;+Kz-{i} 
Compute Representative Vaule of Ci 
Attach to Candidate List 

Form Candidate Problem Ci where 

~,i..-KOU{i}, :11_,;•Kl' ~,i+K2-{i} 
Compute Representative Value of c1 
Attach to Candidate List 

NO 

Use Selection Criterion to Select j 
From Candidate List; 
Set Ko~,j' Kl~,j' K2~,j For 
The Selected Candidate Problem; 
K2+K2; 
Candidate List + ~ 

NO 

Stop 

Figure 3.1 File Assignment Algorithm 
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steps are then repeated for each node in K 2 • 

M-6 This step selects, from the candidate list, the candidate problem and the 

corresponding assignment of nodes using the selection criterion, and 

uses it for the next iteration. Steps M-2 to M-6 therefore have selected a 

node and have decided whether a copy should be placed at that node. 

This node is removed from the K 2 list. 

M-7 The steps M-2 to M-6 are repeated until the K 2 list is empty. 

There are two basic parts of the algorithm, the selection criterion and the 

computation of the representative value, and they are discussed here. 

S 1 The setection criterion; 

S1a Select from the candidate list, the candidate problem with the minimum 

representative value; 

S1b Select from the candidate list, the two candidate problems for which 

node i is extended, that have the maximum difference between the 

representative values of Y<=O and Yi=L From these two candidate prob­

lems, select the candidate problem with the minimum representative 

value. 

Rl The co7nputation of the representative value; 

R1a A lower bound is computed by solving the linear program (Eq. 3.1) 

without the integrality constraints. (This has been derived earlier by 

Efroymson and Ray [EFR66]. See Appendix B for the derivation.); 

R1b The expected value of the candidate problem is computed by assuming 

that each of the remaining un-assigned nodes has equal probability of 

having or not having a copy of the file (see Appendix C for the deriva­

tion); 
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Using the two selection criteria and the two types of representative values, 

there are four different versions of the algorithm: 

1. MINLB -minimum lower bound (S1a, R1a); 

2. MINE- minimum expected value (S1a, R1b); 

3. MAXDLB - minimum lower bound for a node i with the maximum difference 

in lower bounds between Y,=o and Y,=1 (iEK2) (S1b, R1a); 

4. MAXDE - minimum expected value for a node i with the maximum 

difference in expected values between Y,=O and Y,=l (iEK2) (Slb, Rlb); 

To further illustrate the steps of the algorithm, it is applied on Casey's 5 

node example [CAS72]. 

Suppose the following matrix represents the query cost s,.; for a five-node 

system. 

Let 

and 

0 6 12 9 6 
6 0 6 12 9 

S= 12 6 0 6 12 
9 12 6 0 6 
6 9 12 6 0 

Q = [Q.] = [ 24 24 24 24 24] 

U = [U.] = [ 2 3 4 6 6] 

F = [F.] = [ 0 0 0 0 o] 

G = [G,] = [ 166 160 174 126 123]. 

By enumerating the 25-1 possible allocations, it is found that a copy of the 

file should be allocated to node 1, 4 and 5 giving a cost of 705. The steps for the 

four possible variations of the algorithm are shown in Figures 3.2a, 3.2b, 3,2c 

and 3,2d respectively. It is seen that two of these variations give the optimal 

solution. 



* condition a 

* condition a 

MINLB 

(O,U,0,1,1) 
597.0 

* condition b 1 
(0,1,0,1,1) 

717.0 

* see Table 3.5 

(U,U T" ,U) 

(U,U,U,l,U) 

1 
(U,U,U,1,1) 

(U,O,O,l,1) 
606.0 649.0 

sub-optimum 

(U,1,0,1,1) 
615.0 

Figure 3.2a Evaluation of Casey's 5 node Example using M!NLB 
(U indicates that the node is un-assigned) 
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* condition a 

* condition a 

MINE 

~ ---• :::> 
• :::> . 

0 
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~ ---• :::> 
• :::> --~ 

cu.ulu,u) 

(U,U,U,1,U) 

1 

~ -• -. :::> -0 
• :::> 
~ 

~ ~ ~ - - -- . • - - -. . 
:::> 0 -. . . - :::> :::> - . • :::> :::> :::> 
~ ~ ~ 

732.0 738.0 726.0 744.0 729.0 741.0 

MINE 

(O,O,U,1,1) 
732.0 

* condition b 

* see Table 3.5 

(1,0,U,l,1) 
720.0 

1 
(1,0,0,1,1) 

705.0 

(U,0,0,1,1) 

729.0 

optimum 

(U,O,l,1,1) 
723.0 

Figure 3.2b Evaluation of Casey's 5 node Example using 11INE 
(U indicates that the node is un-assigned) 
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* condition a 

* condition a 

MAXDLB 

~ -• .... . 
:::> . 
:::> 
• 

0 
~ 

481.5 

* condition b 

* condition b 

* see Table 3.5 

~ .... 
• .... . 

:::> 
• :::> . .... 
~ 

487.5 

(u.u

1
u.u1 

(U,U ll,U) 

(U,U,U,l,l) 

~ ~ - -. . .... -• . 
:::> :::> . • 
0 -. • :::> :::> 
~ ~ 

520.5 497.4 

1 
(O,l,U,l,l) 

1 
(0,1,0,1,1) 

717 .o 

~ ~ .... -. . .... -. . 
0 .... . . 
:::> :::> . . 
:::> :::> 
~ ~ 

480.0 492.6 

sub-optimum 

Figure 3.2c Evaluation of Casey's 5 node Example using ~lAXDLS 
(U indicates that the node is un-assigned) 
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* condition a 

MAX DE 

~ .... ---:::> 
• :::> 
• 

0 
~ 

732.0 

MAX DE 

~ .... ---:::> 
• :::> --~ 

(U,U,r,U) 

(U,U,r,U) 

(U,U,U,1,1) 

~ .... --. :::> . 
0 
• 

:::> 
~ 

738.0 726.0 

(O,O,U,1,1) 
732.0 

(1,0,U,1,1) 
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*see Table 3.5 

. (1,0,0,1,1) 

705.0 

~ ~ ~ .... .... -- - -- - -• - . 
:::> 0 -. . • - :::> :::> - - . 
:::> :::> :::> - - -744.0 729.0 741.0 

(U,0,0,1,1) (U,0,1,1,1) 
729.0 723.0 

optimum 

Figure 3.2d Evaluation of Casey's 5 node Example using 1-lAXDE 
(U indicates that the node is un-assigned) 
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The algorithm is evaluated by applying it on the published examples in the 

FAP and the SCWLP5• The optimal solutions for these examples have been esta-

blishe d in the literature. The deviation of the heuristic solutions from the 

optimal solutions can be used as an indication of the "goodness" of the heuristic. 

The heuristic is also compared against the add-drop algorithm of Keuhn and 

Hamburger [KEU63] 6. The evaluation results are shown in Table 3.6. The four 

proposed variations of the heuristic are all polynomial algorithms and each has 

a complexity of 0 (n4 ) (the same as the add-drop algorithm). The execution 

times on the CDC 6400 are shown in Table 3. 7. It is seen from Tables 3.6 and 3. 7 

that the algorithm MINLB gives the best results and has an execution time very 

small as compared with other algorithms. In fact, algorithm MINLB obtains the 

optimal solutions more often than the add-drop algorithm in general, but the 

worst case behavior seems to be worse than the add-drop algorithm and the exe-

cution times are longer because the algorithm is more complex. On the other 

hand, algorithm MAXDLB produces more optimal solutions than algorithm MINLB, 

but its worst case behavior seems to be worse. Algorithms MINE and MAXDE are 

much worse than algorithms MINLB and MAXDLB. Improvements can be obtained 

if we use the estimated lower bound (by estimating the mean and the standard 

deviation and making an assumption of normal distribution), but the complexity 

of the algorithm will become 0 (n 5 ) and it takes too long to produce a solution 

for any of these problems (> 600 seconds). However, we can still improve the 

heuristic solution by combining the results of the add-drop algorithm, the MINE 

algorithm and the MAXDLB algorithm. In this case, over 60% of the problems will 

have optimal assignments and the complexity of the combined algorithm is stilt 

5 The first six sets of problems are taken from [CAS72]. Problems 7 to 18 are taken from 
[KEU63] and problems 19 to 22 are taken from problem 7 of [SA 69. p. 1013]. 

6 Instead of directly using Keuhn. and Hamburger's add-drop algorithm. which selects only 5 
warehouse sites to be evaluated in each cycle, the add-drop algorithm used here allows for all the 
unassigned warehouse sites to be taken into consideration. 
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Tab!e 3.6 %Deviations of Fi!e AUocationHeuri.stic fro-m Optima! Solutions 

Optimum Add-
MAXDLB I MAXDE Pro b. Sol. Dron MINLB MINE Comments 

1 117596 0 0 0 6.43 0 a=0.1 Casey's 19 
2 188738 0.03 0.31 0.31 0.31 0.31 a=0.2 node file 
3 242581 0 0 0.66 0 0.66 a=0.3 allocation 
4 291790 0 1.39 0 1.39 0 a=0.4 problem 
5 431720 0 0 0 0 0 a=l.O fcAS72l 
6 705 0.85 1.70 0 1. 70 0 Casev's 5 no- de ex. rcAS721 
7 796648 0.11 0 0.78 0 0.78 Factory keuhn and 
8 854704 0.15 0.09 0.89 0 0.89 at lnd- Hamburger's 
9 893782 0.14 0 0.71 0 0.71 ianapolis 24 ware-

10 928942 0 0.61 0.94 1.49 0.99 houses, 50 
11 1092916 0.08 0 0.13 0.10 0.13 Factory customers 
12 1145923 0.13 0 0.22 0 0.22 at Jack- warehouse 
13 1188241 0.13 0 1.37 0 1.37 sonville location 
14 1244991 0.22 0.22 2.49 0 1.67 problem 
15 614548 0.14 0 0.90 0 0.90 Factory [KEU63] 
16 659983 0 0.12 0.80 0 0.80 at Balt-
17 690746 0.03 0 0.74 0 0.74 imore and 
18 724886 0 0 0.42 0 0.49 lnd'oolis 
19 806145 0 0 0.88 0 0.38 Factory at Problem 7 
20 870792 0.15 0 0.67 0 0.67 lnd'polis, of Sa 
21 919994 0.11 0 1.46 0 0.44 but not [SA 69] 
22 970446 0 0.42 1.73 1.36 0.67 warehouse 

mean 0.10 0.22 0.73 0.67 0.58 
std.dev. 0.18 0.46 0.62 1.83 0.44 
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Table 3. 7 Execution time of Heuristic in seconds on the CDC 6400 

Add-
Pro b. Dr on MINLB MINE MAXDLB MAXDE Comments 

1 0.57 11.45 22.79 11.42 103.71 a=0.1 Casey's 19 
2 0.43 11.59 23.57 11.66 105.57 a=0.2 node file 
3 0.43 11.77 23.60 11.76 105.50 a=0.3 allocation 
4 0.43 11.80 23.46 11.79 105.26 a=0.4 problem 
5 0.29 11.80 23.80 11.84 105.10 a=l.O fcAS72l 
6 0.04 0.08 0.09 0.06 0.24 Casev's 5 no- de ex. fCAS72l 
7 11.46 8.08 11.85 8.29 26.41 Factory keuhn and 
8 9.36 13.55 13.52 11.23 35.73 at lnd- Hamburger's 
9 5.34 20.89 13.91 20.99 ·37.61 ianapolis 24ware-

10 3.61 8.48 8.29 8.50 21.42 houses, 50 
11 12.08 6.40 9.13 6.39 17.74 Factory customers 
12 8.62 12.66 12.64 12.71 30.62 at Jack- warehouse 
13 7.82 22.16 21.26 22.83 62.03 sonville location 
14 7.02 40.18 33.47 40.33 112.93 problem 
15 9.75 5.48 12.44 5.50 25.35 Factory [KEU63] 
16 7.33 5.49 4.37 4.64 7.90 at Bait-
17 5.58 6.82 7.01 6.84 17.25 imore and 
18 3.79 2.66 3.75 2.68 7.26 lnd'oolis 
19 12.24 4.94 9.16 4.95 16.04 Factory at Problem 7 
20 9.02 13.63 13.81 11.29 34.39 lnd'polis, of Sa 
21 6.76 23.27 22.05 20.97 67.74 but not [SA 69] 
22 5.94 22.79 28.81 22.02 73.40 warehouse 

mean 5.81 12.54 15.58 12.21 50.87 
std.dev. 4.11 8.92 8.83 8.84 39.27 
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We have presented in this section a heuristic which can be used to obtain a 

file assignment with a value very close to the optimal solution. We show in the 

next section, that by including the migration cost into the cost function, the 

above heuristic is also applicable. Further, we prove some conditions for file 

migration on a DDB. 

3.9 DFAP- THE MICRA TION OF FILES ON A DCS 

The model that we have discussed so far assumes that the access and the 

update rates at each node do not vary with time. The query load ( Q;) and 

update load ( U;) defined in Table 3.3 are actually defined for a period of finite 

length. If they remain constant for every period, then the placements of files 

determined initially will remain static. However, it is generally true that the 

access and the update rates are time-varying. For example, a DCS which covers 

large geographic areas usually experiences different query and update rates at 

different parts of the system due to the different time zones in different geo­

graphic regions. It would be beneficial if the time varying characteristics of the 

query and the update rates are taken into account in the placements of files on 

the DCS. 

We assume in the following discussion that time is divided into periods and 

the file assignments remain static within the periods. The length of each period 

may not be identical. The shorter the period, the more adaptive the system 

would be to the time-varying retrieval and update rates, but the higher would be 

the costs of migration which include the relocation costs and the costs of exe­

cuting the file assignment algorithm. The selection of the period length is there­

fore very application dependent and is driven by the rate of change of the query 

rates and the costs of migration. It is also difficult to estimate the query rates 

precisely ahead of time. We therefore assume that the query rates are 

estimated dynamically at the beginning of each period. This may be done by 
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using some type of working set algorithm [DEN70] which estimates the query 

rates based on the rate of change of the query rates in the previous periods. 

With this assumption, it is possible to optimize the file allocations of each period 

independently and is not necessary to use dynamic programming to optimize 

the allocations for all the periods as done by Levin [LEV74] and Sweenly and Tat­

ham [SWE76]. 

There are two approaches to migrate files on a DCS: 

1. Apply stored decisions dynamically whenever restructuring is needed. 

In such an approach, the decisions of how to restructure the file system 

based on the dynamic state of the system is computed beforehand. At the 

beginning of each period, it involves only a search of the appropriate 

migrations to be taken. This type of stored decision approach is very 

efficient because it is essentially a table look-up. However, the abundance 

of states usually prohibit the application of such an approach. Further, in 

order to store the decisions, it is necessary to find a convex hull to an n­

dimensional region where n is the number of nodes in the system. The 

number of points on this convex hull is of the order k"' where k> 1. Present 

algorithms to find the equation of a convex hull in four dimensional regions 

have an expected behavior of 0 (m 2) where m is the number of points on 

the hull [BEN77] and algorithms for higher dimensions do not exist. There­

fore it is unlikely that a general stored decision algorithm can be found at 

this time for file migration. However, by utilizing some special structure of 

the problem, it may be possible to find a feasible solution. This approach 

has been taken in communication and control systems, e.g. [CHU76, 

RUD77] and can be a useful and efficient heuristic if optimality require­

rnents can be rel?-xed. 
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2. Apply static file assignment algorithm dynamically whenever restructur-

ing is needed. 

This is the approach taken by most people and is the approach taken here. 

The disadvantages about this approach is the complexity of the optimal 

algorithm. However, by using a good heuristic, close to optimal results can 

still be obtained. 

In the remainder of this section, we formulate the file migration problem 

for each period and show that the costs of file migration can be included into the 

fixed cost of the system. We define the following symbols in addition to the sym-

bois defined in Table 3. 3. 

T = current period of consideration; 

S J.k = cost of communication of one query unit from j to k in period T; 

MJ.k = cost of communication of one update unit from j to kin period T; 

NJ.k = cost of moving a copy of file a .from node j to node k in period T; 

F[ =storage cost of file at k per unit time in period T; 

Q[ = query load originating at node j in period T; 

UJ = update load originating at node j in period T; 

C:!;, = estimated cost of running the file placement heuristic in period T; 

Ir = index set of nodes with a copy of the file in period T; 

Ir_ 1 = index set of nodes with a copy of the file in period T-1. 

By defining the control variable Y; with respect to the period of consideration, 

we have: 

The access and the update costs are the same as in Equations 3.1 and 3.2 except 

that the costs per unit time are defined for period T specifically. Further, there 

is an additional component of the costs, the migration cost. 
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n 
File Migration cost = I; Y[ min NJ.k 

k:;:::l J€]T--1 

That is, if node k does not have a copy of the file in period T and it is necessary 

to migrate a copy of the file to node k, then a copy of the file is migrated from 

the nearest node in the assignments of period T-1. It is easily seen that optimi-

zation problem 3.1 can be written in the original form with only a change in the 

values of Gk (Eq. 3.2). 

'TTL in 

n 
+ I; G{Y[ 

k=l 

subject to 

Y[ = 0 or 1 (integer) k=l, ... , n 

and 

n 
G[= F[ +I; 

i=l 
UTMT · NT ; i.l< + _mm i.l< 

'€1r --I 

(3.8) 

(3.9) 

The importance of the above formulation is that the static file assignment 

algorithms developed in the literature and the file assignment heuristic 

described in section 3.8 are still applicable to solve the file assignment problem 

in each period although migration costs have been included in the formulation. 

Therefore, at the beginning of each period, it is only necessary to determine 

Q[, U J, and cJ for all jE p, ... ,nl and the static file assignment algorithm can then 

be applied. 

3.10 CONDITIONS TO REDUCE THE COMPLEXITY OF THE DFAP 

In this section, we want to establish some general theorems on the DFAP 

which will aid in simplifying the problem. Specifically, we want to show the NP-

completeness of the problem of selecting the migration points and to find an 

upper bound on the number of file migrations in period T. 

3.10.1 The Proble-m of Selecting the Ti-mes for Migration is NP- Co-mplete 
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Since Eswaran has shown that the FAP is NP-complete [ESW74], the DFAP, 

which is a general case of the FAP, is also NP-complete. However, we want to 

show that the problem of selecting the points of migration in a multi-period 

length of time is also NP-complete. This means that we have to exhaustively 

enumerate over all the possibilities before we can decide when to initiate a file 

migration. We achieve this by reducing the knapsack problem to the problem of 

selecting the points of migration. 

Knapsack Problem [KAR72] 

Input: (a 1, a 2 , ••. ,a,., b) E zn+!; Z =set of integers; 

Property: L;a;x;=b has a 0-1 solution for x;. 

Problem of selecting the migration points - feasibility form 

During a time period [D,t], at what points of time should migrations be initiated 

so that the total operating cost = B 

We assume that the query rates are changing with time and that migrations 

can only be initiated at fixed discrete times, t 1, te . ... , tk within the period [0, t]. 

The last assumption is made because computer operations are governed by a 

clock which is discrete. 

THEOREM 3.2 

The problem of selecting the migration points is NP-complete 

Proof 

First, we want to show that the problem E NP. A non-deterministic Turing 

machine can guess the set of times at which the files in the system are to be 

migrated and therefore lhe problem E NP. 

Second, we have to show that the satisfiability problem (SAT) is reducible to 

this problem {SAT "' the problem of selecting the migration points). We can do 
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this by showing that the knapsack problem « this problem because SAT « knap-

sack and by transitivity, SAT "' this problem. Given an instance of the knapsack 

problem, we can construct (in polynomial time), an instance of the problem of 

selecting the migration points as follows: 

Let 

if no "migration is initiated at t; 

otherwise 

a; = the costs of migration at time t;. (The costs are not the same at 

different t; 's because the costs may be discounted to time t 0 , or 

different costs may be associated with different times). 

B =b. 

There are no other costs associated with the operation of the system. 

The knapsack problem is therefore reducible to the problem of selecting 

the migration points. Since the knapsack problem is NP-complete, hence, we 

have proved the theorem. 

Q.E.D. 

After establishing that the problem of selecting the migration points is NP­

complete, we are left with two alternatives: ( 1) exhaustively check the 2k possi­

bilities of whether to migrate at the k discrete times within the period [0, t]; or 

(2) establish some criteria for migration. The first alternative has been taken by 

Levin [LEV74] and Sweenly and Tatham [SWE76]. We investigate the second 

alternative here. 

3.10.2 Criteria for Initiating a Migration 

We want to establish in this section some criteria under which migration 

should be carried out. First, we want to find the maximum number of necessary 

file movements in any migration. 

Le"m"ma 3.1 
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Given the allocations of the multiple copies of a particular file, the maximum 

number of file movements needed is n-1. 

Proof 

A file movement is needed for node i whenever Y, = 0 before the migration 

and Y, = 1 after the migration. Under no other cases should there be a file 

movement. It is also assumed that there is at least a copy of the file on the sys-

tern. Therefore, the maximum number of file movements occur when there are 

n-1 nodes without a copy before the migration and these n-1 nodes have copies 

after the migration. 

Q.E.D. 

Given an allocation in period T, we are interested in finding a lower bound 

and an upper bound on the costs of p file movements, p = 1, ... , n-1 in period 

T+l. 

Let 

Recall that: 

K'{; = U: YJ=Ol 

Kf = U: YJ=ll 

and assume that all the nodes have been assigned, i.e. K~ =rp. 

Cf(CrJ) = lower (upper) bound on the costs of p file movements, 

The following algorithm finds Cf, C{}. 

Algorithm 3.2 - To find the Lower and the Upper Bounds on the Costs of p file 

movements: 

1. Cf +- 0; C{} +- 0; 

K'{;.t 1 +- K'{;; 

KT+t ,... KT. o,u 0• 

K T+l .... KT. 
1.L 1 • 



2. Do Steps 3 and 4 p times; 

3. Cf <- Cf+ mip NJ.k; 
;tK,.L 
k€K'{;J.' 

K[11 <- Kf.!'u!k j. K'{;j, 1 
<- K'{;J;1

- !k !; 

4. Cl} <- Cl}+ max min NJ.k; 
k €K[tl j€Kf.u 

Note that Cf ~ Cf+1 because all the costs involved are positive. 
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Having established the lower and the upper bounds on the cost of p file 

movements, we want to compute the change in total system costs due to a per-

turbation in the access rate. When the change in total system cost is greater 

than a threshold, a file migration is necessary. The change in total system cost 

is given partially by the following theorem. 

THEOREM3.3 

Let 

R r- QT+ur. 
' - :J '. 

T T- QT/RT· 
3 - ' 1. 

RJ+I = R[+c,;J+I where c,;J+! is the perturbation in the total number of 

accesses in period T+l at node j and is proportionally divided 

between retrievals and updates; 

= Cost increase due to the perturbation. 

(a) If Vj, c,;J+ 1~o. then the upper bound of file movements that can be made 

on the system is p where 

p =min !p: Cl+CJ;,>CE!- 1 (3.1G) 

(b) If ::1 j, '-'f+ 1<0, then the lower bound of file movements that can be made on 

the system is 0. 
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yT = (Yf, Yt , , , , Y,;) be the original optimal state of allocation in period 

T; 

yr.> I = (Yf+ 1 , y~+l, "', Y,f+ 1) be the state of allocation after the perturba-

lion in period T+ 1; 

C(YT)[C(yT+I)] =cost of operation at state yT(yT+I). 

We want to show: 

(1) C~ is an upper bound in the cost increase due to OJ[ +I if Vi, OJJ+ 1;;;,o; 

(2) C~ is a lower bound in the cost saving due to OJJ+l if Vi, OJJ+1;;;.o; 

(3) if ::li,j s.t. OJ[+1>0, OJJ+ 1<0 and C~;£0, then C~ is a lower bound in the cost 

saving; 

(4) if ::1 i,j s.t. OJ[+1>0, OJJ+1<0 and C~>O, then the lower bound in the cost 

saving is 0. 

To prove: 

(1) We observe that :;1 yT+t s.t. 

C(YT) ;£ C(YT+!)-C~+I ;£ C(YT+I) ;£ C(YT)+C~ 

where 

The first inequality can be proved by contradiction. If 

C(YT) > c(yT+ 1)-c~+ 1 , this means that C(yT+I)-c~+t, which is the cost of 

operation at state yT+! without the cost of the perturbation, has a lower cost 

than state yT. This implies that state yT cannot be the optimal state of alloca-

lion which contradicts the original assumption. 

For the second inequality. c(yT+l);;;, c(yT+l)-c~+l, we observe that 

c[+' 60 if an ""T+t;;;,o. 
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The third inequality, C(Yl')+C~ ~ C(YT+I), can be proved by contradiction. 

If C(YT)+C~ < c(yl'+l), then it is not necessary to re-organize the data base to 

state yT+l where the cost of operation is higher than the cost involved without 

the re-organization. 

Therefore, 0;;; C(yT+l)-C(YT) ;i; C~ and C~ is the upper bound in the cost 

increase. 

(2) We observe that: 

C(yT+I)-C~+I ~ C(YT) ~ C(YT)+C~ ~ C(YT+I) 

The proof is exactly the same as part (1) with an inter-change of yT and yT+l. 

Therefore C(Yl')-C(YT+I) ~ -C~ and C~ represents a lower bound in the 

cost savings. 

(3) We observe a similar condition as part (2). 

c(yT+I)-c~+l ~ C(Yr) ~ c(YT)+c~ ~ c(yT+I) 

Therefore, C(YT)-c(yT+l) ~ -C~. 

(4) We can only establish a weaker condition in this case: 

C(YT);;; C(YT+I)-C~+I 

C (yT+I) ;i; C (YT)+C~ 

These two inequalities can be proved similarly as before. We cannot prove 

any relation between C(YT+I)-cE+t and c(yT+I) because c£+ 1 may be~ 0 or< 

0. 

In summary, we have proved for case 

(1) 0;;; C(YT)-C(YT+I)+C£ ;;; C£ 

(2).(3),(4) 0;;; C(YT)-C(YT+l)+C£. 

We can now prove the theorem. 
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(a) We observe that Cf+CJ;, is a lower bound on the costs of running the optim-

ization program and initiating p file movements, so in order for the 

reconfiguration to be cost-effective, we must have 

C~ <: C(YT)-C(YT+I)+C~ <: Cf+CJ;, 

The upper bound on the number of file movements is 

p =min !p: Cf+CJ;, > C~l-1 

(b) We note that the lower bound on the cost savings is ;1:; 0, so the lower bound 

on the number of file movements is ;1:; 0. 

Q.E.D. 

Although the above theorem does not provide us wi.th an upper bound on 

the number of file movements when some or all of the OJ[+ los are less than zero, 

we can still find an upper bound on the number of file movements if we can 

establish a lower bound on the costs of operation for the perturbated state of 

accesses. In these cases, i.e., when some OJ[+1<0, we can estinlate C (yT+I), the 

lower bound on the optimal cost of operation after the perturbation without tak-

ing into account the cost of migration. Then 

c'{; = c(Yr) + c~- c(yr+ 1);;: o 
is an upper bound on the cost savings due to migration. 

The maximum number of file movements is therefore 

p =min !p: Cf+C:f;, > C'{;l-1 
where 

c~ 
C (YT)+C~ -C (YT+l) 

if OJJ+1;;:;o Vj E! 1, ... ,n l 
if =:jjEp, ... ,nj s.t. OJJ+ 1<0 

(3.11) 

The problem that remains is to compute the lower bound c(yT+l). This can 

be done by solving the optimization problem (3.1) without the integrality con­

straints (see Appendix B). Theorem 3.3 therefore establishes the basis for the 
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initiation of a file migration on the DDB. It has also taken into account the cost 

of running the optimization program for the FAP. It indicates that when it is 

very expensive to run the optimization program for the FAP, it will not be cost 

effective to do file migration. 

3.11 CONCLUSION 

In this chapter, we have investigated some important properties and solu­

tion algorithms for the File Allocation Problem and the Dynamic File Allocation 

Problem. First, we have proved the isomorphism between the (dynamic) file 

allocation problem and the single commodity {dynamic) warehouse location 

problem. Based on this property, we have found that many techniques 

developed for both problems are inter-changeable. Among these are algorithms 

developed in the warehouse location problem, such as the add-drop algorithm, 

the branch and bound algorithms, the probabilistic branch and bound algorithm, 

the integer programming technique, the steepest ascent algorithm and the 

dynamic programming methods. These algorithms can be applied to solve the 

(dynamic) file allocation problem. On the other hand, there are algorithms 

developed in the file allocation problem which can be used to solve the ware­

house location problem. These include the hyper-cube technique, the clustering 

technique, the dynamic programming methods and the max-flow min-cut net­

work flow technique. Further, we have found that some techniques developed for 

one problem match very closely techniques developed for the other problem. 

This is shown by the fact that Grapa and Belford's conditions for locating a copy 

of the file at a node [GRA77b) are weaker than the conditions derived by Efroym­

son and Ray for opening or closing a warehouse [EFR66]. This implies that by 

using the stronger conditions of Efroymson and Ray, more nodes can be 

assigned initially to have or not to have a copy of the file. Another example is 

shown in the similarity in the dynamic programming technique applied by Levin 
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to solve the dynamic file allocation problem [LEV74] and by Sweenly and Tatham 

to solve the dynamic warehouse location problem [SWE76]. The last example is 

shown in the hypercube technique which has been developed at different times 

by Casey [CAS72], Levin and Morgan [LEV74, MOR77] and Alcouffe and Muratet 

[ALC76]. We conclude that these two problems can be studied in an integrated 

fashion in the future. 

Second, we have developed a heuristic to solve the file allocation problem. 

This heuristic uses the add-drop principle and different criteria on selection are 

compared. It is found that a combination of these criteria, together with the 

add-drop algorithm, is very promising and gives solutions very close to the 

optimum based on sample problems published in both the file allocation prob­

lem and the warehouse location problem. 

Lastly, we have studied some aspects of the file migration problem. It is 

shown that the problem of deciding when to migrate the files is NP-complete. 

This means that it is likely that an exhaustive enumeration is necessary before 

an optimal migration sequence can be found. We have also formulated the 

migration problem and have,shown that the migration costs can be incorporated 

into the fixed cost of the system. This implies that the file allocation heuristic 

developed in this chapter can be applied to solve the file migration problem 

without special considerations for the costs of migration. Finally, we have 

developed a threshold to indicate when migration should be carried out. 
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4 TASK SCHEDULING ON DISTRIBUTED COMPUTER SYSTEMS 

4.1 INTRODUCTION 

In the previous chapters, we have addressed the optimization problems of 

data management on the query and the file level. The operations to be per­

formed on the query and the file level is a conglomerate of tasks, each of which 

may require the use of a different resource for a different amount of time. In 

this chapter, we address the problem of the task scheduling on DCS's so that the 

hardware can be efficiently utilized and the requirements can be satisfied. 

Although one of the motivations for the development of DCS's is the declin­

ing hardware costs, and therefore efficient hardware utilization is not as impor­

tant a problem as in early computer systems, the problem of task scheduling is 

still an important topic of research because the parallel resources are more 

difficult to coordinate and there are other constraints on the system which must 

be satisfied. e.g. deadlines. response time. etc. Further. the advantages of using 

parallel hardware is lost if the improvement over a conventional uni-processor 

system is small. It is the goal of this chapter to study the problem of task 

scheduling on DCS's. 

A task is defined to be a simple request which uses a resource for a finite 

amount of time. A request is said to be simple if no other resource is needed 

during the processing of this request. A complex request can always be broken 

down into a sequence of simple requests. A resource on a DDB can be physical, 

such as a communication channel. a processor. etc .• or it can be logical. such as 

a file. The tasks are usually governed by a precedence graph so that a task can­

not be processed until its predecessor has finished processing. For example, in 

order to handle a file request on a data base, many processes, such as receive 

message. create transaction. assemble reply, file storage I/O. etc., have to be 

activated. Another example is shown in the processing of user queries. which 
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are directed to the difierent nodes on the DCS. Each of these queries may be 

partitioned into a set of tasks. The general precedence graph for the processing 

of a query which require the use of geographically distributed files are shown in 

Figure 4. 1. On a DCS, the communication overheads, which include time to set 

up the communication path and the queueing delay to transmit the messages, 

are usually much larger than the processing overhead for a query. Therefore, 

the time required to process a task at a node in Figure 4.1 is usually negligible 

when compared with the time to pass the results over the communication sub­

system. There are also other queries on the system, each of which has its own 

task precedence graph. There may also be precedence constraints among the 

precedence graphs of the different queries. The task scheduling problem that 

we are concerned with here, is to sequence the processing of tasks, subject to 

precedence constraints, so that some overall optimization criteria are satisfied. 

The criteria can be the maximum completion time of all the tasks if the objec­

tive is to maximize the throughput of the system; or it can be the sum of the 

completion times of all the tasks if the objective is to minimize the average 

response time; or it may be a combination of several optimization criteria. 

We first describe a model of the DCS and state some tradeofis which can be 

used to simplify the problem. We show that the problem of deterministic 

scheduling on this model is NP-complete. Since the problem is NP-complete, it 

is unlikely that a polynomial algorithm can be found. We proceed to study the 

problem by putting additional constraints on the model so that the problem is 

polynomially solvable. The resultant model we have obtained is the model for an 

interleaved memory. We study in detail the performance of an interleaved 

memory and show that the polynomial scheduling algorithm we have developed 

is an optimal average behavior algorithm. That is, the polynomial algorithm will 

have the best average performance as compared with any other polynomial algo­

rithms. Lastly, we return to the original model and show a heuristic for the 
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scheduling of tasks on the general model. Some simulation results for this 

heuristic are also shown. 

4.2A MODEL FOR THE SCHEDULING OF TASKS ON DISTRIBUTED SYSTEMS 

4. 2.1 The Model 

Flynn [FLY66] has classified methods of achieving parallel operations into 

four classes: the single instruction, single data stream (SISD), the single instruc­

tion, multiple data stream (SIMD), the multiple instruction, single data stream 

(MISD), and the multiple instruction, multiple data stream (MIMD). A basic 

model of a computer system on a DCS for the scheduling of tasks is the SIMD 

modeL This model is shown in Figure 4.2. The control unit may represent the 

CPU. The N arithmetic processors may represent the peripheral processors or 

the backend machines. An instruction may be a search for a particular item on 

the mass storage and the data streams are corning directly from the disks. 

Another example of a SIMD architecture is the Data Base Machine [HSI77]. On 

the DCS level, the DCS may be represented by a Job-Shop model in which the 

basic building block within the job-shop model is the S!MD model. A job-shop is a 

model which has been used in industrial engineering and deterministic task 

scheduling [GRA77a). The characteristic of the job-shop model is that a job or a 

request is made up of a set of tasks, each of which may be processed on a given 

machine or processor for a given amount of time. A conceptual model of a DCS 

is shown in Figure 4.3. The graph is actually a fully connected graph in which an 

arrow represents an instruction stream and the corresponding return data flow. 

This is a more restricted model than the general job-shop model be cause each 

job or request is made up of only a set of parallel tasks. The basic model at each 

node is the SIMD model. 
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The model we have discussed here can be more general. For example, each 

job or request may consist of a sequence of tasks to be scheduled on different 

nodes or computers instead of a set of parallel tasks to be scheduled on neigh­

boring nodes. However, this scheduling problem can be solved only when the 

status of all the nodes of the DCS is known. This is possible when the scheduling 

is done by a centralized control and all the status changes are reported 

instantly to the centralized controller. In a geographically distributed DCS, the 

collection of global information for scheduling is usually very difficult and expen­

sive if not impossible. Therefore the use of a more general model is usually not 

practical for a DCS. As a result, we have restricted to the case in which the 

scheduling of tasks is done by using the local information available (distributed 

control), that is, it is a SIMD model at each node. The restricted model to be 

studied is shown in the dotted box in Figure 4.4. The notations used in Figure 

4.4 are: 

N - number of tasks to be scheduled (it may or may not fit entirely in the 

buffers of M,. }; 

M._ -Distributor on the first stage; 

Mb.j -module or machine j on the second stage; 

P;(M;)- Processing time requirement of task ion machine M1; 

buff (M;) - Amount of buffers for M;. 

The task precedence graph for request i is shown in Figure 4.5. The precedence 

graph in Figure 4.1 falls in the class of precedence graphs we discuss here if the 

tasks of communicating to and from node i and the task of processing at a 

neighboring node are combined into a single task. We assume that the optimiza­

tion criterion is to minimize the finish time of all the tasks in the system. This is 

generally the assumption made when the objective is to maximize the 

throughput of the system. 
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It is also assumed that the amount of buffers on the second stage is finite 

and that the amount of buffers on the first stage may be infinite, that is, 

0;;; buff CMa) ;;; =; 

0;;; buff (M~.I) = buff (M~,2) = · · · = buff (Mb.m) < =. 
Further, it is assumed that there may exist precedence constraints among 

different requests and the tasks may not be available initially, that is, they have 

positive release dates. The analysis of this model is shown in Section 4.3. We 

now discuss some assumptions which would allow the problem to be simplified. 

4.2.2 Assumptions which allow the Task Scheduling Problem to be simplified 

Certain assumptions can be made so that the task scheduling problem can 

be simplified. 

(1) Processing Overheads are ignored 

The processing overheads are usually much smaller than the communi­

cation overheads and they are ignored. This assumption will eliminate 

many tasks in the precedence graph. 

(2) Static Algorithms are used 

Static algorithms schedule a set of tasks available at the time of schedul-

ing and a set of tasks that are known to arrive at fixed future times. The 

schedule does not change during the duration of the processing of these 

tasks. On the other hand, dynamic algorithms are more flexible and they 

re-schedule all the available tasks whenever a new task comes in. The 

advantage of dynamic algorithms is that they allow task initiations to be 

dynamic and do not restrict the schedule to the order determined ini­

tially, but they have the disadvantage of larger overheads. The choice 

between the use of static and dynamic algorithms is system dependent. 

If the arrivals of requests are indeterminate, then dynamic algorithms 
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are usually better. On the other hand, if the arrivals of requests can be 

determined precisely, then static algorithms should be used. In our 

model, we have assumed that static algorithms are used because it does 

not depend on the arrival process and is easier to optimize. The static 

algorithm developed can be used as a heuristic when the arrivals of 

requests are indeterminate. 

(3) Deterministic Processing Times are assumed 

The processing time for a task can be assumed to be deterministic or 

probabilistic. In the deterministic case, it is possible to determine the 

order which can best satisfy the optimization criterion. However, it is 

difficult to do so when the processing times of all the tasks are governed 

by a common distribution. Certain assumptions have to be made before 

an analytical evaluation is possible. The theory of scheduling developed 

now is mostly applicable to the deterministic case. It can be used to 

approximate the probabilistic case when the average or the worst case 

processing times are used. A lot of work has been done in flow shop and 

job shop scheduling, (see [GRA77a, LEN77) for a good survey) and the 

theory developed there can be applied to study the problem here. The 

algorithm developed in Section 4.5 is actually extended from Johnson's 

optimal polynomial algorithm for a two stage flow shop [JOH54]. On the 

other hand, when the processing time of a task is probabilistic, the 

model we have shown in Figure 4.4 is a "central server model", and a lot 

of work in queueing theory has been done to evaluate its performance. 

For example, Baskett et. al. have developed a closed form formula for 

the performance of a queueing network when certain conditions are 

satisfied [BAS75); Sauer and Chandy have developed approximate 

analysis techniques for central server models [SAU75); Chandy et. al. 

have studied approximate analysis techniques for general queueing 
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networks [CHA75]. Unfortunately, when a probabilistic assumption is 

made on the processing time of a job, it is usually difficult to determine 

the order of processing which can satisfy some optimization criteria. 

Some work has been done in finding a service schedule which minimize 

expected costs [ME177, KONBB, KL174], however, a general theory for this 

is still lacking. Therefore, we see that it is easier analytically to make 

the deterministic assumption. One other advantages about the deter­

ministic assumption is that the difficulty of the scheduling problem can 

be assessed easily in most cases. NP-completeness of the problem can 

usually be shown or a polynomial algorithm can be found. The general 

task scheduling problem on DCS's using our model can be shown to be 

NP-complete. Under this situation, the designer has to look for good 

heuristics which can be executed within real time constraints. However, 

the evaluation of heuristics are generally difficult. Evaluation methods 

and techniques are typically of three kinds, analytical techniques, simu­

lations and approximate algorithms. In analytical techniques, some sim­

plifying assumptions about the system parameters have to be made in 

order for the solution to be tractable and the results obtained are usu­

ally not accurate. On the other hand, simulations are almost always 

expensive to run, and it is difficult to exhaust all the possible cases of the 

system. A third type of evaluation algorithms are approximate algo­

rithms [WE177]. There are two classes of these approximations, one 

guaranteeing a near-optimal solution always, and the other producing an 

optimal or a near-optimal solution "almost everywhere". These types of 

algorithms are still in the research stage and a unifying approach in 

designing algorithms of this type is still lacking. The future trend is in 

the direction of investigating good approximation algorithms for schedul­

ing tasks. 
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By making the assumptions in this section, we have sacrificed some gen­

erality for some mathematical tractability. We hope that the results we have 

obtained here are still applicable (to some extent) when these assumptions are 

relaxed. 

4.3 NP- COMPLETENESS OF THE TASK SCHEDULING PROBLEM 

We prove in this section, the NP-completeness of the task scheduling prob­

lem on the model of Figure 4.4. It is assumed that we have identical processing 

orders on all machines, that is, the best permutation schedule has to be deter­

mined; and the amount of buffer space in all the machines are infinite. It is 

further assumed that no preemption is allowed in the schedule. We only prove 

for the special case of two machines on the second stage (i.e. m=2). 

THEOREM4.1 

The problem of deterministic task scheduling on the SIMD model with the follow­

ing assumptions, is NP-cornplete: 

(1) m=2 (two machines on the second stage); 

(2) Each request has the following task precedence graph: 

o--o 
O<P;(Ma)<"' 

i=P.2l. iE!l •... ,Nj 

That is, each request only requires the service of one machine on the 

second stage. There are no precedence constraints among requests; 
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(3) The optimization criterion is to minimize C mru<• the maximum task corn-

pletion time. 

Proof 

Problem E NP because a non-deterministic Turing Machine can predict the 

sequence in polynomial time. 

The problem is reducible from the knapsack problern1. 

Let n=t+2 

ViET P;(Mb.2}=0; 'L;P;(Ma}=A; 'l:;P;(Mb.t)=B; 
itT iET 

Jobs are agreeable if 

= ~ I; P;(Ma) <a then 'l:;P;(Mb.t);:: b 
SeT SeT 

wherePi(Ma), P;(Mu) » 0 

P,_I(Ma)=l; P,_I(Mb.l)=a; P,_I(Mb.2}=0; 

P,(Ma )=b -A +a; P, {Mb.t}=O; P, (Mb.2)=B -b +A -a; 

y =B+a+l 

If knapsack has a solution, then there exists a schedule with 'l:;P;(M,.)=a and 
i€S 

C rou=Y as illustrated in Figure 4.6a. If Knapsack has no solution, then 

L;P,(M,.)-a=c;iO for each SeT and we have a processing order 
i£S 

c>O => Cmax = 1+ 2:;P,(Ma)+P,(Ma}+P,(Mb.2) =B+a+c+l > y 
i€S 

c <0 = > see Figure 4. 6b. 

If I; P; (Mb. 1)<b, then there exists overlap in between the operation 
itS 

of P1(Ma) and P1(Mb.l) for jET-S. The maximum finish time is: 

t 
1 The knapsack problem is: "Given positive integers a 1• ... , at. A =I! CJ.i, B, does there exist 

a subset SCT=!l ... .,t j such that I; a; =B. 
iES 

i=1 



M 
a 

n-1 s n 

n-1 

T-S 

s T-S 

n 

Mb,2 
~~----------~------~--------~------~time 

0 1 a+1 b-A+2a+1 a+b+1 B+a+1 

(a) Knapsack has a solution 

s n T-S 

n-1 s T-S 
f'///1/////)//////A 0 ~ 0 

n 

~-------------------------------------------time 

(b) Knapsack has no solution and c < 0 

Figure 4.6 Proof of Theorem 4.1 
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Cmax = 1+a+B+6 > y 

It follows that Knapsack has a solution iff this problem has a solution with 

C me.x;i;Y. Since the Knapsack problem is NP-complete, the problem we are con-

sidering is also NP-complete. 

Q.E.D. 

THEOREM4.2 

The problem of deterministic task scheduling on the SIMD model with 

assumptions similar to Theorem 4.1 except for assumption (2), is NP-complete. 

(2) Each request has the following task precedence graph: 

That is, each request requires the service of both machines on the 

second stage. There are no precedence constraints among requests. 

Proof 

Problem E NP because a non-deterministic Turing Machine can predict the 

sequence in polynomial time. 

Let 

The problem is reducible from the knapsack problem. 

n=t+l 

P,(Ma)=l; P;(Mb.!)=t*a;; P;(Mb.2)=1; (iET); 

Pn(M,.)=t*b; P,.(Mb.t)=l; Pn(Mb.2)=t(A-b)+1; 

y=t(A+l)+l; 

The timing diagram is shown in Figure 4. 7. 

If knapsack has a solution, the ::1 schedule with I; P; (Ma )=b and Cmax=Y. 
itS 
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s n T-S 

s T-S 

s n T-S 

~-r------------------~---------------r----------~---ti~e 
0 1 tb+ISI tA+IS 1+1 t(A+l)+l 

Figure 4.7 Timing Diagram for the Proof of Theorem 4.2 
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If knapsack has no solution, then I; Pi(Ma)-b =c,;iO for each S CT, and we have a 
iES 

processing order (!Ji:iESl; Jn; !Ji:iET-Sl) such that: 

c>O => Cmax> L;Pi(Ma)+Pn(Mb,2) = t(L;Pi(Ma))+t(A-b)+l 
iES i€.S 

= t(A+c)+l:;;; y 

c<O => Cmax > P,_(Ma)+Pn(Mb,t)+ I; Pi(Mb,l) 
it.T-S 

= t*b+l+t*A-tL;Pi(Ma) 
ir.i.S 

=t(A-c)+l;;;y 

It follows that Knapsack has a solution iff this problem has a solution with 

C m.,.;£y. Since the Knapsack is NP-cornplete, the problem we are considering is 

also NP-cornplete. 

Q.E.D. 

THEOREM4.3 

The problem of deterministic task scheduling on the SIMD model with the follow-

ing assumptions is NP-cornplete: 

(1) rn=2; 

(2) There exists precedence constraints among the requests; 

(3) The optimization criterion is to minimize C max: 

Proof 

Problem E NP because a non-deterministic Turing Machine can guess the 

sequence in polynomial time. 

The problem can be reduced from a conventional two stage flow shop prob-

!ern with a tree precedence graph and the optimization criterion is to minimize 

C maJ<· The reduction of the problem is obvious and will not be presented here. 

Since the two stage flow shop problem with a tree precedence graph is NP-

complete, this implies that the problem we are considering is NP-complete as 

well. 
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Q.E.D. 

THEOREM4.4 

The problem of deterministic task scheduling on the SIMD model with the follow­

ing assumptions is NP-complete: 

(1) m=2; 

(2) The release dates of jobs may be <:; 0, that is, not all jobs are available ini­

tially; 

(3) The optimization criterion is to minimize C max: 

Proof 

Problem E NP because a non-deterministic Turing Machine can guess the 

sequence in polynomial time. 

The problem can be reduced from a conventional two stage fiow shop prob­

lem with release dates <:; 0 and the optimization criterion is to minimize C max· 

The reduction is obvious. Since the two stage fiow shop problem with positive 

release dates is NP-complete, this implies that the problem we are considering 

is NP-complete. 

Q.E.D. 

THEOREM4.5 

The problem of deterministic task scheduling on the SIMD model with the follow­

ing assumptions is NP-complete: 

(1) m=2; 

(2) There are no buffers on the second stage, i.e. buff(Mb.t)=buff(Mb,a)=O. 

There will be no waiting of requests on the second stage; 

(3) The optimization criterion is to minimize C max· 



135 

Proof 

Problem E: NP because a non-deterministic Turing Machine can guess the 

sequence in polynomial time. 

The problem is reducible from the knapsack or the partition problem. 

Let: 

n=t+2; 

If A is even, then 

A 
Pn-t(M,.)=1; Pn-t(Mb.t)=2+1; Pn-t(Mb.2)=0; 

A 
P,.(M,)=l; P.,(Mb.1)=2+1; P,(Mb.2)=0; 

y=A+3; 

1f A is odd, then 

A+3 P,.-t(M,. )=2; Pn-t(Mb.!)=-
2
-; P,._t(Mb.2}=0; 

A+3 
P,(M,)=2; P,. (Mb.t)=-

2
-; P,. (Mb.2)=0; 

y=A +5. 

If knapsack (for A odd) or partition (for A even) has a solution, then there exists 

a schedule with L;P;(M,.)=~ and Cmex=Y as illustrated in Figure 4.6. 
i£5.8 

If knapsack (partition) has no solution. then I; a;-A_=c;iO for each SeT and we 
itS 2 

have a processing order (J,._ 1; iJ;:iES L J,.; iJ;:iET-S D such that for A even, 

c>O => Cmax = Pn-t(M,.)+ L;P;(M,.)+P,.(M,.)+P,.(Mb.t) 
i€S 

A A 
= 1+-+c+l+-+1 

2 2 

>y 
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S=A/2 n T-S=A/2 

n-1 n 

s T-S 

0 1~ 2~ 
2 2 A+2 A+3 

Figure 4.8 Timing Diagram for the Proof of Theorem 4.5 (A even) 



c<O => Cm= = P,._t(Ma)+P,._t(Mb,t)+ I; P,(Ma)+l 
itT-S 

= l+A+l+A+c+l 
2 2 

>y 
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Note that in this case, although the jobs in S have finished, job n cannot 

be started until time=l+~ because there is no buffer available inMb.t· 

It follows that knapsack has a solution iff this problem has a solution with 

C max~Y. Since the knapsack problem is NP-complete, the problem we are con-

sidering is also NP-complete. 

Q.E.D. 

We have therefore proved that the task scheduling problem on the SIMD 

model is NP-complete (with the assumptions stated in the theorems). An 

approach we can take now is to design a suitable heuristic for each of these 

problems. However, we delay this until Section 4.5. In the next section, we show 

by restricting the processing time on each machine that the task scheduling 

problem can be made polynomially solvable. The processing times of the tasks 

are restricted in a fashion such that Pi(Ma)=l and P,(Mb.;)=m (m=number of 

machines on the second stage) and each request needs the service of only one 

machine on the second stage. This particular model represents a model of an 

interleaved memory system. 

4.4 THE RESTRICTED MODEL - AN OPTIMAL ALGORITHM FOR SCHEDULING 

REQUESTS ON AN INTERLEAVED MEMORY SYSTEM 

4.4.1 Requirements for the Design of a Primary Memory 

In a top-down design, the requirements and the attributes must first be 

identified before the system can be designed. Requirements are the constraints 

which the system must satisfy and they reflect the environment as well as the 

objectives of the system. Attributes, on the other hand, specify either options 
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or evaluation criteria for qualitative comparisons of competitive systems that 

meet the system requirements. Attributes may be used to evaluate the 

tradeoffs in competing architectures and to obtain a feeling for the 'goodness' of 

the architecture in realizing the system. The requirements for the design of a 

primary memory are: 

( 1) B and7JJidth 

The bandwidth represents the average throughput of the memory system 

and is given in terms of bits returned/unit time. In a parallel memory 

system, the bandwidth is the sum of the bandwidths of all the modules 

(Bandwidth = I; (word length of module k)•(average utilization of 
module k 

module k}/(cycle time of module k) where the average utilization of a 

module is the average fraction of time the module is busy. For the case 

of identical modules, the bandwidth can be written as: 

Band71Jidth = 
ln.um.ber of]· r 71Jord ]· [ average l 
l m.odutes llength utilization 

(speed of m.odu[e) 

constant • [average num.ber of] 
B and71Jidth = -----,---'--b""u=sy~m.=.o'-'d:::u:::CC'e"s'---'­

(m.em.ory cycle tim.e) 
(4.1) 

where the constant in Eq. 4.1 has a unit of (bits • memory cycle / unit 

time). The model of interleaved memories presented here assumes that 

all the modules are identical and the word length of each module are 

kept constant. The objective of maximizing the bandwidth is therefore 

equivalent to maximizing the average utilization of the modules. 

(2) Response tim.e 

The response time is the delay between the time a request is accepted 

by the primary memory and the time the request is serviced, assuming 

that the datum resides in the primary memory. This is also called the 

waiting time of the requests. 
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(3) Size 

This is the required memory size or capacity. 

(4) Cost 

This is the maximum allowable cost of the resultant design which 

satisfies the above requirements. 

The design of the memory must satisfy the above requirements. Moreover, the 

performance of the final system can be evaluated by using these parameters as 

evaluation criteria. 

4.4.2 Characteristics of the Access Sequence of a Pipe lined Processor 

In this section, we describe the characteristics of the access sequence of a 

pipelined processor. A pipelined organization in the most general sense, instead 

of specially structured pipelined computers with different arithmetic units (e.g. 

CRAY I), applications (e.g. vector processing), additional memory support (e.g. 

cache) and interconnections (e.g. ILLIAC IV), is assumed. The processor is 

further assumed to be executing directly from the main memory. The schedul­

ing algorithms developed are general enough to be applicable to the interleaved 

memories of all the specially structured pipelined computers. However, the 

exact performance is not found for each type of machine. 

A memory access sequence generated by a pipelined processor has Class D 

dependencies as classified by Chang et. a!. [ CHA 77]. A dependency is a logical 

relationship between two addresses such that the second address cannot be 

accessed (written or read) until the first has been accessed. Class D depen­

dency is characterized by a machine with instruction level multiprogramming 

(from a large number of jobs), or a machine with sufficient lookahead or queue­

ing hardware to allow dependencies to be bypassed. However, there still exist 

cases where the effects of dependencies cannot be eliminated. Anderson et. a!. 
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have identified three main sources of concurrency limitations which tend to 

reduce the performance of the pipe [AND67). These are: 

{a) Register interlock - When the current instruction needs a register 

modified by a previous instruction, the current instruction cannot be 

decoded until the previous instruction has finished; 

(b) Branching -When a jump or a branch on condition instruction is encoun­

tered, further operations in the pipe cease until the target instruction 

has returned from the memory. Conditional branching poses an addi­

tional delay because the branch decision depends on the outcome of 

arithmetic operations in the execution units. 

(c) Interrupts - Wh"n an interrupt occurs in the pipe, it is necessary to 

sequentialize the execution of instructions in the pipe in order to deter­

mine the exact source of the interrupt. This sequentialism in execution 

would degrade the performance of the pipe. 

Various methods have been introduced to solve these dependency problems 

[TOM67]. For example, regiester interlocks can be solved by using forwarding; 

the sequentialism due to interrupts can be eliminated by using imprecise inter­

rupts as in IBM 360/91. The most predominant effect on the performance of the 

memory is due to branching. When a branch or a conditional branch instruction 

is encountered, request supply to the memory discontinues until the condition 

code has been set and the target instruction has returned from the memory. 

The utilization of the memory therefore decreases. The effects on the memory 

performance due to branching dependencies are studied in section 4.4.9. 

In addition to the effects due to address dependencies, the order in which 

instructions and data are requested also affects the memory performance. For 

a pipelined processor, the request stream is a sequence of instruction-operand 

fetch pairs. However, not every instruction involves an operand fetch and if the 
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bus is wide enough, two or more instructions can be fetched in one access. A 

notable characteristic in this access pattern is that instruction fetches are 

made in a sequence interlaced with operand accesses. The performance of the 

memory system may be improved by separating the memory modules into two 

sets, one for instructions and one for data. In section 4.4.8, the effects on 

memory performance due to separation and mergence of instruction and data 

modules are compared. 

4.4.3 Previous Work on the Study of Interleaved Memories 

One of the early successful implementation of interleaved memories is in 

the IBM 360/91 [BOL67]. ln this computer, the storage system is made up of an 

interleaved set of memory modules and the degree of interleaving equals the 

number of memory modules. The memory can service a string of sequential 

requests by starting, or selecting, a storage unit every cycle until all are busy. 

In effect, the storage cycles are all staggered (see Fig. 4.10). By using a set of 

buffers called the request stack, conflicting requests which access the same 

module can be resolved by allowing only one of these requests to access the 

module and storing the rest in the request stack to be issued in later cycles. 

Simulation results were shown for the average access time and the bandwidth 

with various degree of interleaving. 

The earliest attempt to model the performance of interleaved memories 

was done by Hellerman [HEL67]. By assuming a saturated request queue (a 

queue in which requests are never exhausted) with random requests, and no pro­

vision is made for the queueing of the requests on busy modules, the request 

queue is scanned until a repeated request is found. This constitutes a collision. 

Hellerman's results show that with m memory modules, the average number of 

requests scanned before a collision is approximately rn °·56 for m between 1 and 

45. This is taken to be an indication of bandwidth. Knuth and Rao [KNU75] show 
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an alternate exact way to calculate the bandwidth. However, both of these 

results are pessimistic because they do not allow the queueing of conflicting 

requests to the same module and the randomness assumption is not tenable in 

real programs. 

Burnett et. al. have developed a number of models on parallel memories. In 

two of these models, [BUR70, BUR73], they assume that the modules operate 

synchronously (all modules start and end their cycles simultaneously) and a 

scanner scans a saturated request queue and admits new requests to service 

until it attempts to assign a request to a busy module. In two other models, 

[COF71, BUR75), they further assume that a set of blockage buffers is present so 

that requests made to a busy module can be stored and issuued in later cycles. 

The scanner continues to scan the request queue until all the modules have been 

allocated or all the buffers are occupied. In effect, the maximum size of the 

request queue inspected by the scanner never exceeds b+m where b is the 

number of buffers and m is the number of memory modules. They have also stu­

died a request model similar to Strecker's model [STR70] by assuming a proba­

bility a for the succeeding request to request the next module in sequence and a 

probability of (1-a)/(m-1) to request any other module. They have developed 

two algorithms that modified the request pattern in order to increase the 

bandwidth. The first one is called the Instruction-Data Cycle Structure, which 

distinguish the request queues into two sub-queues, the instruction queue and 

the data queue. These two sub-queues are inspected in alternate memory 

cycles. They found that there are improvements from -4% to 12% in bandwidth 

(the number of modules varies from 8 to 16) over a model with four blockage 

buffers and a single queue [BUR75]. The second algorithm, the Group Request 

Structure, separates a memory cycle into two sub-cycles, the first sub-cycle is 

used for servicing the instruction queue, and the second sub-cycle is used for 

servicing the data queue. They found that there are 8% to 16% improvements 
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over the same Instruction-Data Cycle Structure algorithm. Terman [TER76] has 

made a trace driven simulation on the Instruction-Data Cycle Structure algo­

rithm and found that the theoretical predictions of Burnett and Coffman fit well 

with the simulation results for the fetching of instructions, but their predictions 

do not fit well with the simulation results for data requests which are more ran­

dom than instruction requests and are difficult to be modelled accurately. 

Many other researchers have studied models of parallel memories. These 

include Flores [FL064], Skinner and Asher [SKI69], Ravi [RAV72], Bhandarkar 

[BHA75], Sastry and Kain [SAS75], Baskett and Smith [BAS76], Briggs and David­

son [BRI77], Chang, Kuck and Lawrie [CHA77], Smith [SMI77] and Hoogendoorn 

[H0077]. These studies are directed toward multi-processor systems and we will 

not describe them here. 

In the remainder of this section, the deficiencies found in the previous 

models are summarized. 

(1) All the previous models assume that the memories operate synchro­

nously. As Burnett and Coffman pointed out, simultaneous memory 

operations offer more opportunity to take advantage of program 

behavior in a particular memory system [BUR75]. However, with syn­

chronous operations, there is the problem of returning the results of the 

accesses from the memory. Since the results from each module are 

available simultaneously, extra data paths or queues are needed to 

return these data to the processor. Further, a pipelined processor usu­

ally makes requests in sequence rather than in batches. Therefore it is 

desirable to study a model in which the memory modules operate out of 

phase. By out of phase, we mean either a) the initiations of the modules 

are asynchronous or b) the initiations of the modules are timed by a 

clock and during a clock interval, at most one module can be initiated. 
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Because the operations of asynchronous modules are much more 

difficult to control. only case (b) is considered in this design. 

(2) Very few studies have been made to minimize the waiting time of a 

request to the memory. Flores [FL064] has made a quantitative study 

relating the waiting time factor to the memory cycle time, the 

input/output time and the worst case execution time for different 

numbers of memory banks. However, his studies were directed toward 

the effect of interference from the input/output units and there was no 

queueing of requests. In other models, a saturated request queue is 

assumed, and the effects of waiting time are not considered. When the 

queue size is finite, it is possible to develop algorithms which optimize 

for the amount of waiting time in the queue, e.g. minimize the average 

waiting time of requests in the queue. In this section, the amount of 

queued requests is assumed to be finite so that the effects of waiting 

time can be studied. 

(3) None of the previous work considers the effects of dependencies on the 

memory performance. Request supply to the memory ceases when a 

dependent instruction is executed until the dependency has been 

resolved. The effects of dependencies are difficult to determine because 

they vary strongly with the configuration of the pipe and the strategies 

employed in the pipe to resolve them. Request rate to the memory may 

also decrease for other reasons. For example, in the IBM 360/91. there 

is a small amount of instruction buffers in the CPU which serve as 

another level of the memory hierarchy. When a small loop occurs such 

that all the instructions of the loop fit in the instruction buffers, instruc­

tion accesses to the memory stop until execution of the loop is finished. 

Other machines may have different approaches. However, the evaluation 

of memory performance for a specific machine is too restrictive. We 
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take an approach which first evaluates the performance for the general 

case of an interleaved memory with a saturated, non-dependent request 

stream. The degradation in performance due to dependencies· in the 

requests is then estimated subsequently. 

4.4.4 The Organizations of Primary Me-mory for a Pipelined Processor 

We present in this section two different implementation alternatives of 

interleaved memories (Organization 1 and Organization II). The two organiza­

tions differ in the configurations of the request buffers. In Organization I, a sin­

gle set of request buffers is assumed to be shared by all the modules and in 

Organization II, individual request buffers exist for each module. The general 

assumptions made are as follows: 

(1) The request rate from the processor is assumed to be high enough so 

that any empty buffer in the memory system is filled up by an incoming 

request immediately. Buffers are assumed to exist at the processor end 

so that any additional requests generated by the processor can be 

queued there. The requests that can be served by the modules are those 

that exist in the buffers only. This assumption is made because we want 

to get an upper bound on the performance of the memory. In a practical 

system, the memory is usually the bottleneck and our assumption is 

therefore valid. 

(2) Each request is assumed to be an integer from 0 to m-1, which is the 

module it requests, and is obtained as the residue of dividing the address 

bym. 

(3) The service time of each module (the read time or the write time) for a 

request is assumed to be constant. This is a good model for semi­

conductor memories. We also assume that a memory module, once ini­

tiated to start a memory cycle, is not available until the end of the cycle. 
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(4) A memory cycle time is the time it takes for a memory module to ser­

vice a request. Each memory cycle is assumed to consist of m equally 

spaced memory sub-cycles. It is further assumed that exactly one 

module can be initiated to service a request at the beginning of a 

memory sub-cycle and it takes m sub-cycles (1 memory cycle) to service 

the request for all the modules i.e., homogeneous service times. With 

this assumption, the problem of multiple data paths is resolved because 

at most one module finishes in each sub-cycle and the system is never 

confronted with returning results from more than one module simultane­

ously. The modules are therefore clocked by the memory sub-cycles. 

In Organization I (Fig. 4.9), there are m memory modules; a single set of 

b+1 associative buffers, Br. B 1, B 2 •...• Bb; and an intelligent scheduler which 

schedules a memory module to start a memory cycle. The modules operate out 

of phase in a fashion called staggered cycles. One example of a staggered cycle 

is shown in Fig. 4.10. The set of b+1 associative buffers are used to store incom­

ing requests. A request queued on a specific module can be retrieved in one 

associative search operation. Whenever a request is taken out from a buffer, all 

the requests behind it are pushed one location up so that Br is empty. The 

buffer Br has an additional function, namely, to receive requests from the bus. 

Due to our assumption of high request rate, Br is filled immediately whenever it 

is empty. The queueing discipline for the requests in the buffers directed 

towards the same module is essentially First-In-First-Out (FIFO). Other queueing 

disciplines are not studied because only uni-processor systems are considered 

in this design. 

The center of the control in the memory system is the intelligent scheduler. 

The scheduler, using a scheduling algorithm. decides at the beginning of each 

memory sub-cycle whether to initiate a memory module and if so which module 

to initiate. The selection of which module to initiate is determined by the 
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information about the requests in the associative buffers and by the knowledge 

about the status of the modules (free or busy). Three scheduling algorithms are 

investigated in this design. 

(1) A!gorith-m 4.1 Round- Robin (RR) 

All the modules are initiated in a round-robin fashion regardless of 

whether a request is queued on the module. The scheduler does not 

make use of any information about the status of the system. The imple­

mentation of this algorithm is very simple and the scheduler only has to 

konw the current module initiated. In Fig. 4.10, the Gantt Chart for the 

operation of a 4-way interleaved memory with RR scheduling algorithm is 

shown. This is the scheduling algorithm that is implemented in most 

interleaved memory systems today. 

(2) A!gorith-m 4.2 First- Free- First (FFF) 

In this algorithm, only the information about the status of the modules 

(free or busy) is utilized by the scheduler. There is a FIFO list of free 

modules. At the beginning of a memory sub-cycle, the scheduler puts a 

busy module to the end of the free list if this module finishes its cycle. It 

will then initiate the module at the head of the free list if there are any 

requests queued on it. otherwise the module at the head is appended to 

the tail of the free list and no other modules are checked in this cycle. 

The scheduler may also check all the subsequent modules in the free list, 

but the time for this is proportional to the number of modules and is not 

feasible when this number is large. 

(3) Algorith-m 4.3 Maxi-mu-m- Work- Free- Module- First (MWFMF) 

In this algorithm, both the information about the status of the modules 

and the requests in the buffers are utilized by the scheduler. There is a 

dynamic list of free modules. Conceptually, at the beginning of a 
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memory sub-cycle, the buffers are checked associatively to see if any 

requests are queued on the free modules. If there is none, no module is 

initiated. If at least one exists, an associative search is made on the 

buffers and the module with the maximum number of requests queued 

on it is initiated. In case of ties, only the first one is initiated (Fig. 

4.1la). The implementation of this algorithm can be done by using an 

additional associative memory of size m in the scheduler (Fig. 4.llb). 

Each word in this associative memory can function as a counter and is 

used to indicate the number of requests queued on the corresponding 

module. The corresponding word is incremented/decremented when a 

request enters/leaves the request buffers. The free module with the 

maximum number of requests can be obtained by performing a max­

imum search on those words in this associative memory corresponding 

to the free modules, e.g. [RAM7Ba] (see the associative memory design in 

Chapter 5). The maximum search algorithm shown in [RAM7Ba] is paral­

lel by word and serial by bit and the time to perform a maximum search 

is proportional to the number of bits in the memory. The speed of this 

algorithm is therefore proportional to [log2 b l. 

In addition to the overhead related to the execution of the scheduling algo­

rithm, there is also the overhead of selecting the request from the associative 

buffers and sending it to the memory module. This overhead consists of match­

ing the selected module number against all the requests in the buffers and 

selecting the first request if multiple responses occur in the match. Using a 

bit-serial word-parallel equality matching algorithm, e.g. [RAM7Ba], and a binary 

tree type multiple match resolution circuit, e.g. [FOSBB], this overhead is pro­

portional to [log2=l. In general, the overheads associated with the three 

scheduling algorithms are very small, and the selection of a module and the 

corresponding request to be initiated in the next sub-cycle can be overlapped 
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with the current sub-cycle. 

At the end of each memory sub-cycle, at most one request is serviced. The 

result is sent back to the processor. The necessary queue for storing these 

results is excluded from the memory model. 

The requests of the system come into the memory in a specific pattern. 

Two types of access patterns are considered in this design: 

(1) RandoTTL accesses with no address dependency- All the addresses have no 

correlation and are independent of each other. This can be used to 

model the request stream from computer systems with instruction level 

multiprogramming or multi-processor systems where the number of pro­

cessors is larger than the number of modules. 

(2) Accesses fro= the execution trace of a TnonoprogramTned pipelined com.­

puter - The addresses in the execution traces are correlated and they 

represent a similar addressing behavior when the actual program is exe­

cuted on a pipe!ined processor. We have used execution traces from a 

pipelined processor, representing large scientific applications, the CDC 

7600, in this study. 

Organization II is similar to Organization I except that separate sets of 

buffers exist for each module (Fig. 4.12). Requests from the processor are con­

tinuously moved into the buffers of each module via Br until a request in Br is 

directed toward a module whose buffers are already full. The request in Br is 

blocked, and as a result, further requests are blocked from entering the 

memory. When the module responsible for this blocking has finished servicing 

its current request, one request from its buffers is serviced which results in an 

empty buffer. The blocking request in Br is moved into this empty buffer. 

Because of the independent queues, one or more requests can then be accepted 

to the memory system until the previous blocking situation occurs with one of 
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the modules. When b=O, there is only one buffer, Br. in the system and this is 

exactly the same as Organization I with b=O. Therefore Organization II degen­

erates into Organization I when b=O. The buffers used in this organization is 

simpler than that of Organization I. Associative search capabilities are not 

necessary for these buffers. The implementation of the scheduler is similar to 

that of Organization I. The advantage with this system is that the request 

buffers are simple shift registers and therefore are cheaper. However, in order 

for this organization to operate at full capacity, more than one request may 

have to be moved across the bus into the memory in a memory sub-cycle. As we 

recall, we assume that a pipelined processor generates in the order of one 

request every memory sub-cycle, therefore, the blocking situation may not 

always occur and the buffers are under-utilized. Further, it is necessary to build 

a faster bus so that multiple requests can be moved across the bus in a memory 

sub-cycle. We can assume that sufficient requests are queued in the processor 

so that the need of moving more than one request into the memory system dur­

ing a sub-cycle can be satisfied. An alternative is to allow a maximum of one 

request to be accepted in every sub-cycle. This results in a degraded perfor­

mance for Organization II because the system is not operating with the max­

imum request rate. 

Since the two organizations discussed are operating in steady state and the 

systems discussed are balanced, the average arrival rate and the average wait­

ing time are related by Little's Formula. 

Let 

en = utilization of the buffers B" ... , Bb 

(=1 for Organization I) 

er = utilization of buffer Br 

(= 1 for both organizations) 

B = number of buffers in B 1, ... , Bb 



(=b for Organization I; =m*b for Organization ll) 

Um.b = expected utilization of the modules 

Wm.b = expected waiting cycles of the requests 

M = expected number in the system 

)\ = expected arrival rate 

W = expected waiting time of the requests 

Then 

M = (es •B + 1) + Um.b •m 

1\= Um.b 

W = m*Wm.b 

and they satisfy Little's Formula, 

M = 1\*W 
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(4.2) 

(4.3) 

(4.4) 

Eq (4.3) is true because in a balanced system, the expected arrival rate equals 

the expected service rate. The physical importance of Little's Formula lies in 

the fact that the average utilization and the average number of waiting cycles 

are related. Once one of them is obtained, the other can be calculated easily. 

Further, it also shows that Organizations I and TI are equivalent as far as the 

average behavior is concerned. The only difference lies in the buffer utilization 

which is less than 1 in Organization Jl whereas the buffers are fully utilized in 

Organization I. In the next section, we present our evaluations for Organization I 

only because the two organizations are equivalent and the results are directly 

applicable. It is shown that the MWFMF algorithm minimizes the average com­

pletion time of the requests. This result only demonstrates that the MWFMF 

algorithm is superior, but the exact throughput values of the system cannot be 

obtained analytically. The techniques that are used to evaluate the performance 

of these two organizations are embedded Markov analysis with random requests, 

and simulations with random requests and execution traces and they are shown 

in Sections 4.4.6 and 4.4.7. 
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4.4.5 Opti7nality of the MWFMF Scheduling Algorith"TTL 

In proving the optimality, it is assumed that the requests in the request 

queue are independent, randomly generated and of a finite size. The size of the 

associative buffers may be greater than, equal to, or less than the number of 

requests in the request queue. In a pipelined processor, memory requests can 

be generated continuously until a dependency occurs. At this point, the request 

stream is discontinued until the dependency has been resolved. Because of the 

high request rate assumption, the requests generated between two dependen-

cies can be assumed to exist in the request queue after the first dependency has 

been resolved. However, in a practical implementation, the pipelined processor 

is only able to look ahead a fixed amount of instructions and this is modelled by 

a fixed and finite amount of associative buffers in the system (which may be 

greater than, less than or equal to the size of the request queue). The intelligent 

scheduler is allowed to examine the associative buffers in making the scheduling 

decision. The objective of the scheduling algorithm is to complete the service of 

the requests in the request queue as fast as possible so that the throughput of 

the memory is maximized. The symbols used in the following theorems are: 

b = number of associative buffers - 1; 

m = number of memory modules; 

N = total number of requests that have to be serviced between two depen-

dencies; 

where 

(11 , i1 ) = state of module j; 

11 = number of requests queued on module j in the buffers; 

m 
2j 11 = b +l and l1 ;;; 0 j=l, 2, ... ,m 
j=l 

if Tnadule j is free 
O<n <= if module j is busy 
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In the case that module j is busy, n is the number of cycles 

that module j has serviced its current request. The number of 

cycles remaining before the completion of service for the 

current request is (m-n) mod m. 

k = variable used in the induction proof indicating the number of 

remaining requests to be serviced (not including those in the 

associative buffers); 

CmaxlCtto it), (l2, i2), ... , (lm, iml!k =maximum completion time for the 

state; 

ECmaxl<lt• i,), (l2, i2) .... , (lm. im)h =expected maximum completion time 

for the state. 

Before the main theorem can be stated, the following three lemmas must 

first be proved. Lemma 4.1 establishes the need for executing the MWFMF 

scheduling algorithm at the beginning of each sub-cycle. Lemma 4.2 establishes 

a basis for the induction proof of the main theorem and it also shows the 

optimality of the MWFMF algorithm when the buffer size is very large so that all 

the requests in the request queue reside in the buffers. Lemma 4.3 augments 

Lemma 4.2 by further showing that algorithm MWFMF minimizes the sum of com­

pletion times of all the requests. 

LEMMA 4.1 

(1) In a period of m sub-cycles, every module can be initiated at most once. 

(2) At the beginning of each sub-cycle, at least one free module is available 

for scheduling. 

Proof 

{ 1) Obvious, because each module takes a time of rn sub-cycles to service a 

request. 
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(2) Consider a time interval of m sub-cycles. Since at most one module can 

be scheduled in each sub-cycle, the total number of modules scheduled 

in m sub-cycles is less than or equal to m. At the beginning of its current 

sub-cycle, if a module is scheduled m sub-cycles ago, then it will finish its 

service at the current sub-cycle and is available for scheduling. If a 

module is not scheduled m sub-cycles ago, then the total number of 

modules scheduled in the last m sub-cycles is less than rn. Therefore, at 

least one module is available for scheduling at the beginning of a sub­

cycle. 

Q.E.D. 

LEMMA 4.2 

If all the requests in the request queue reside in the associative buffers (that is, 

the buffers are large enough to accompany all these requests), then algorithm 

MWFMF minimizes the maximum completion time for independent, random 

requests in Organization I. 

Proof 

The maximum completion time is governed by the longest queue in the system. 

Assume without loss of generality: 

t 1 > l 2 > · · · > lm 

Case 1: i 1 = 0, 

MWFMF schedules module 1 first. 
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initiate module 1 

--~----~------------------------------------------time 
1<--->1 

All modules will be initiated at most once in here due to lemma 4.1 
(if number queued on it is non-zero) and all requests queued every 
module except 1 can be initiated before the last request queued on 
module 1 is initiated. 

C max = l 1*m sub-cycles (initiate module 1 first) 

If any other module, say module j, is initiated, then module 1 can only be 

initiated in the next sub-cycle after module j has been initiated. 

min C max = l 1 •m + 1 sub-cycles (initiate module j ~ 1 first) 

Case 2:i 1 > 0 

Let module j be the module such that 

i; = 0 and i 1 > 0, i 2 > 0, ... , i 1 _ 1 > 0. 

That is, module j is the free module with the largest amount of queued 

requests. This will be the module scheduled by the algorithm MWFMF. In 

fact, the module scheduled at this point is unimportant because the max-

imum completion time is governed by module 1. 

Cmax = l 1*m + (m-i 1) sub-cycles 

Therefore: 

min Cmax = l 1*m + (m-i 1) mod m sub-cycles 

Optimum algorithm: MWFMF 

On the other hand, if l 1=l2> ... >lm and i 1, i 2 = 0, then the C max's are identical 

whether module 1 or 2 is scheduled first. A similar proof holds for the case 

Q.E.D. 
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LEMMA 4.3 

If all the requests in the request queue resides in the associative buffers, then 

algorithm MWFMF minimizes I;Cf for independent, random requests in Organiza­

tion I where Cj is the completion time for the j'th request. 

Proof 

Assume without loss of generality: 

lt > l2 > . . . > lm 

Consider two modules a, b, such that ia=O, ib=O and la>lb. Let Ca,b(Cb.a) be the 

sum of completion times of scheduling a before b (b before a} for modules a and 

b only. If b is scheduled before a, then 

Cb,a = Cb+Ca = ';[Cla+l)la + (lb+l)lb] + la 

Comparing this with the case of scheduling a first, it is found that: 

Ca.b = Ca+Cb = ';[Cla+l)la + (lb+l}lb] + lb 

Since la>lb => Ca,b<Cb,a• this implies that scheduling the module with a larger 

amount of queued requests can reduce L;Cf. By adjacent pairwise interchange, 

it is therefore better to schedule the module with the maximum amount of 

queued requests if it is free. If the module is not available, scheduling the free 

module with the maximum amount of queued requests is also optimum. 

Q.E.D. 

From the proofs of Lemmas 4.2 and 4.3, it is seen by using the MWFMF algo­

rithm that, 

(1) The throughput of the memory is at a maximum because the maximum 

time to complete a set of jobs is minimized (Lemma 4.2). 

(2) The average waiting time is minimized. This is because C;, the comple­

tion time for the j'th job equals the waiting time for the j'th job, 
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W1=C1-o, (all the jobs are available at t=O). As a result, average waiting 

time = I; W1/M is also minimized (Lemma 4.3). 

THEOREM4.6 

If all the requests in the request queue do not reside in the associative buffers, 

(that is, the buffers are not large enough to accompany all the requests in the 

request queue), then algorithm MWFMF minimizes the expected maximum com-

pletion time for independent, random requests in Organization!. 

Proof 

In order to prove this theorem, the following two parts must be proven and the 

theorem follows from the result of part (a). 

(a) Algorithm MWFMF minimizes the expected maximum completion time for 

independent, random requests. 

(b) Let states 

S, = ~ ... , (l,i, ia), (lb1• ib), h 

S2 = ~ ... , (la2• ia), (ll. ib), lk 

where " " indicates that the remaining states are identical for S 1 and 

Since the states of other modules are identical, and we assume that: 

and 

l 2 > l 1
• a a• 

l 1 >l 2· b b• 

-m ~ ia > ib > 0 or -m )- ib > ia > 0 with equal probability. 

If l;}>lb1, thenECmax(St)k ;£ECmax(Sz)k; 

If la2=lb1, then ECmax(Sth = ECmAx(Sz)k. 

These two parts can be proved by induction. The truth is first established for 

k=O, i.e. when all the requests reside in the buffers. These parts are then 
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assumed to be true for any positive integer k and the proof is complete by 

proving the case of k+ 1. 

(I) k=O 

(a) MWFMF is optimal. This is established by Lemma 4.2. 

(b) If there exists module z such that z.>l;}, and since z,f-;;;zb1>lb2 and l,f>l,}, 

then the maximum completion time for both S 1 and S 2 depends on z. 

and are identical. Therefore, 

EC rnax(S 1lo = EC max(S a)o 

If there does not exist module z such that z. >l,f, then the maximum com­

pletion time of Sa depends on module a. Let there be two modules, x in 

S 1 andy in S 2 such that l,f>l,,}>l.1, lb1>lJ>lt and i..,=iy=O. The following 

three cases can be identified. 

____________________________________________ time 

Sa !X] [8 ~ 
Starting Sequence Ending Sequence 

C max(S 1lo = EC max(S 1lo < C max(S a)o = EC max(S a)o 

(2) l,f>lb1, ia=O, ib<= 
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------------------------------------------tir.ne 

8 rB ... 
Starting Sequence Ending Sequence 

Cm.,.(St)o = ECmax(S,)o < Cm.,.(S2)o = ECm.,.(Se)o 

(3) t:f=tb1• ib =0, i~ <m 

__________________________________________ time 

Starting Sequence Ending Sequence 

__________________________________________ tir.ne 

0 ~ ... 
Starting Sequence Ending Sequence 

Since l;}=lb1, this ir.nplies that l.]=l(f, therefore the states S 1 and S2 are 

syr.nr.netric in the states of the modules a and b and the probability that 

ib = 0, ia <m is equally likely as the probability that ~ =0, ib <m.. 

EC max(S t)o = C max(S tf ib =0, ia <m )o•Pr (ib =0, ia <m) 

+ Cm.,.(S 2 [ i~=o, ib<-m)0*Pr(~=O, i,<-m) 

= EC max(S 2)o 
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(II) Induction hypothesis: 

Assume that the theorem is true for a positive integer k, that is, 

(a) MWFMF algorithm minimizes the expected maximum completion time for 

independent, random requests when the number of remaining requests 

in the request queue is k. 

(b) If l!>lo', thenECmax(S,). ~ ECmaxCSa)k; 

Ifl!=lb1, thenECmax(S,h =ECmax(Sz)k. 

(III) When the number of remaining inputs is k+1, 

(a) Without loss cf generality, let modules 1, 2, ... , j be the set of free 

modules. Choose any two modules, say 1 and 2, so that l 1>lz and there 

does not exist pE f1,2, ... ,il such that l 1>lp >1 2• We want to compare the 

difference between scheduling module 1 and module 2. 

(1) Schedule module 1 in this sub-cycle, 

1(1,,0), (lz,O), ... , (lm.i.m)lk+t 

=> w,-1,1). (12.o) .... , Clm.Cim+1) -mod =Hk+t 

A new input now enters the buffers, this input can be a request directed 

to any module in the set with equal probability 1/m (due to the assump­

tion of independent, random requests). 

New states after scheduling module 1: 

1 enters: s' = w,. 1). (1 2, o), .... (1m, (i.m+1) -mod =Hk 

2 enters: S 2 = w,-1, 1), (1a+1, 0), ... , (lm. (i,+1) -mod -m)J. 

m enters: sm = 1(1 1-1, 1), (1 2, 0), ... , (lm+l, (i,+1) -mod -m)lk 

(2) Schedule module 2 in this sub-cycle. 

f(l,,o), (Za.O), .... (Zm.im>lk+t 

=> W 1,0), (1 2-1, 1), ... , Um ,(i, +1) -mod -m )lk+l 

New states after scheduling module 2: 



It is 

1 enters: S 1 = !(11 +1, 0), (1 2-1, 1), ... , (l,, (i.,+1) mad m)~. 

2 enters: SZ = !(1 1, 0), (l 2, 1), ... , (1,, (i,+1) mod m)!k 

m enters: S"' = !(1 1, 0), (1 2-1, 1), ... , (l,. + 1, (i, + 1) mod m lk 

seen 
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and 

ECmax(Si)<ECmu(S1) for i;£1,2. In proving ECmu(S 1)<ECmax(SZ), we can 

use the induction hypothesis Il(b) and let i,.=O, i 0 =l, lcl=l 2, l0
1=lto lf=1 1 

10
2=1 2 • The other parts can similarly be proved. Since the expected Cmu 

is a weighted sum of the expected C max of all the corresponding states, it 

is therefore better to schedule module 1, the module with a longer 

queue, first. By using the adjacent pairwise interchange argument, the 

free module with the maximum number of queued requests should be 

scheduled first. 

(b) In proving this theorem, the following parts are identified. 

(1) lf > l~; Both modules a and bare not scheduled in the current sub-cycle. 

This can be due to (1) ia>O and i 0 >0, i.e. both modules are busy; or (2) 

there exists a free module z such that 1. is greater than 1f if 

ia =0 or 10
1 if i 0 =0. Since it is assumed in the induction hypothesis ll(a) 

that free modules with a longer queue should be scheduled, therefore 

module z will be scheduled in this case. 

After module z is scheduled, a new input enters the buffers. 

a enters: 

S~ = ! ... , (lJ+l, (ia+l) mod m), (l~. (i0 +l) mod m), · · · h 

b enters: 

sy = ! ... , (lJ, (ia+l) mod m), (l;1+1, (i;+l) mod m), · · · l• 

j, j ;£ a,b enters: 

S{ = !,.., (lJ, (ia+l) mod m), (l;1• (i;+l) -mod -m), · · · l• 



a enters: 

b enters: 

j, j ;rf. a,b enters: 

By the induction hypothesis, 

ECmax(snk < ECmax(S~h 

ECm.,.(S~h < ECm.,.(S~h 

ECmax(St)k = ECmax(S~h 

ECmax(S{h < ECmax(S~h 

Therefore 

if l.i=l~+ 1 

V j;rf.a,b 

(2) l.i > l0
1 and there exists a module x such that iz = 0 and 

l.i > l, > l,} if ia;=O or 

Let us look at the first case: 

s 1 = ! .... (la;1.0), (lo1.io) . ... , (lz,O), lk+l 

S 2 = ! .... (l.i.o). (l.2.i.) ..... <zz.o). lk+1 
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According to the MWFMF algorithm, module x should be scheduled in S 1 

and module a should be scheduled in S 2 . It is necessary to compare the 

expected Cmax after these have been scheduled. Suppose module xis not 

scheduled in both states, from part III(b}(l), it is seen that 

ECmax(Stl a scheduled)k < ECmax(S21 a scheduled}k. However, due to 

the induction hypothesis, II( a}, scheduling x in state S 1 would be better 

than scheduling a because lz>l,}. 

ECmax(S 1! x scheduled}k < ECmax(S tl a scheduled}k 
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Therefore: 

and 

ECmu(Sih+l < ECma:x.(S2h+t· 

The other case, i.e. lb1>lz >lb2 and ib =0 can be similarly proved. For the 

remainder of the proof of this theorem, it is assumed that l(f?;, lb1>lz, for 

all x_;>! a,b and iz=O. 

(3) l(f > lb1, 0 < i,. < m, ib =0 

Due to the induction hypothesis, module b should be scheduled in 

S 1 and S2. 

For state S 1, schedule module bin this sub-cycle, 

{ ... , (l,.1,i,.), (l~,O), • • • !HI 

=> f ... , l~. (i,.+1) mod m), (lb1-1,1), ···!HI 

New input enters the buffer: 

a enters: S~ =f ... , (l~+1, (i,.+1) mod m), (L~-1,1), h 

b enters: SY =f ... ,(~. (i,.+1) mod m), (l,}, 1), · · · !k 

j, j _.;>!a, b enters: S{ = f ... , (L~. (i" + 1) mod m ), {lb1-1, 1), · · · !k 

For state S 2, schedule module bin this sub-cycle: 

f ...• (t:f,i"). (lb2.o). · · · !k+l 

=> f ... , (l.;',(i" +1) mod m.), u:-1.1), ... jk+l· 

New input enters the buffer: 

a enters: S~ =f ... , (L.:'+1, (i,.+1) mod m.), (lb2-1, 1), · · · !k 

b enters: s~ =f ... , (l:f, (i,. +1) m.od m.), (lb2• 1), ... !k 

j, j _.;>!a, b enters: S~ = f ... , (l.:'. (i11 + 1) m.od m. ), (lb2-1, 1), · · · !k 

By the induction hypothesis: 

EC max(S~ )t < EC rnax(S~ h 

EC mu(SY )k < EC m ... (s~ h 

EC rnax(S{ )k < EC max(S{ )k Vj_r!a,b 
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Therefore: 

ECmaxCSt)k+t < ECm.,.(Sz)k+t 

(4) t:f > lb1• ia. = 0, 0 < ib < 7n 

Due to the induction hypothesis, module a should be scheduled in 

Stand S2. 

For state S 1, schedule module a in this sub-cycle, 

1 ... , (lJ.o), (lo1.io). · · · lk+t 

=> f ... , (l,i-1,1), (lo1,(ib+1) 7nOd 7n), "". lk+t 

New input enters the buffer: 

a enters: S~ =f ... , (l.}, 1), (10
1

, (i0 +1) 1nod 1n), · · · lk 

b enters: Si =f ... , (lJ-1, 1), (10
1+1, (i0 +1) mod rn), · · · lk 

j, j ,;£ a,b enters: S{ = f ... , {l.}-1, 1), (10
1 , (i0 + 1) 1nod m ), · · · lk 

For state S 2 , schedule module a in this sub-cycle, 

f ... , (l:f,o). (z?.io) .. ..!k+t 

=> f ... , (l:f-1, 1), (l0
2 ,(i0 +1) mod m.), ... lk+t· 

New input enters the buffer: 

a enters: S~ = f ... , (l:f, 1), (10
2

, (i0 + 1) mod m. ), · · · lk 

b enters: S~ =f ... , (1(1-1, 1), (10
2+1, (i0 +1) mod m}, · · · lk 

j, j ,;£ a,b enters: S~ =f ... , (l:f-1, 1), (l02, (ib+1) mod m), · · · !k 

By the induction hypothesis: 

ECmaxCsn;:;; ECmax{S~}; 

ECm.,.(sn;:;; ECmax(S~}; 

ECmax(S{);:;; ECmax(S~) 

Therefore: 

Vj,;£a,b 

(5) z._2 = l0
1 Both modules are not scheduled in the current sub-cycle. 

With the similar reasons as in III{b)(1), there exists a module z which is 

scheduled in the current sub-cycle. Because of the symmetry between 



the states of modules a and b, by the induction hypothesis II{b), 

EC max(S ~ h = EC max(S ~ )k 

ECm.,.(SYh = ECmax(S~). and 

ECm.,.(S{h = ECmax(S~)k jfo,b 

Therefore: 

EC mu(S th+t = ECmax(Sa)k+t· 
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(6) l:f = lb1 There exists a module x such that i,=O and 

(7) 

laa>l.,>la1 ifia=Oor 

lb1 > l., > lba if~ =0. 

For the first case, 

s, = !.,.. (l,}, 0), (lb'· ib), .... (l,., 0), ... lk+t; 

Sa=~ .... (laa• 0), (l:. ib), ... , (l,., O), ... h:+t· 

With a similar argument as in III(b)(2), suppose module x is not 

scheduled in both states and module a is scheduled. Due to the sym­

metry between the states of module a and b, and by the induction 

hypothesis IJ(b), 

EC max(S tl a scheduled )k = EC max(S al a scheduled).. 

However, due to the induction hypothesis, II(a), scheduling x in state S 1 

would be better than scheduling a because l,.>la1. 

ECmaxCStl x scheduledh < ECmax(StJ a scheduled). 

< ECmax(SaJ a scheduledh 

Therefore: 

ECmax(S,)k+t < ECmax(Sa)k+t· 

The other case, i.e., lb1>l,. >lba and ib =0 can be similarly proved. 

The proof is very similar to III(b)(3) and III(b)(4), except in this case, 

l:f=lb1 and l,l=lb2 • Therefore, the states S 1 and Sa are symmetric in the 

states of the modules a and b. By the same argument as in the proof of 
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I(b)(3), the probability that ib =0, ia <rn is equals the probability that 

ia =0, ib <rn. This implies: 

ECmax(S,).+t = ECmaxCS2)k+t 

From the above seven cases, it is seen that in all cases, 

ECmu(S t)k+t ::> ECmax(S2h+t· 

Therefore, by induction, part (b) of the theorem is proved. Because part (a) of 

the theorem utilizes the result of part (b) of the theorem, part (a) of the 

theorem is proved. 

Q.E.D. 

The above theorem has demonstrated that algorithm MWFMF is optimal in 

the sense that it minimizes the average completion time for a fixed set of ran­

dom requests. Intuitively, algorithm MWFMF is better because it tries to keep all 

the modules as busy as possible. Suppose that some of the modules are 

requested more often than others. The requests to these more frequently 

requested modules became a bottleneck to the system whatever scheduling 

algorithms are used. However, a better scheduling algorithm should make use 

of the free cycles to schedule some requests for the less popular modules so 

that these requests would not accumulate after the processing of the more 

popular requests. This is the deficiency that occurs in other algorithms and is 

overcome by the MWFMF algorithm. 

In addition to proving that the MWFMF algorithm has the best average case 

behavior, it may be necessary to show that the algorithm also possess the best 

best-case behavior and the best worst-case behavior. However, in this case, the 

best-case and the worst-case behavior are identical for all algorithms. The 

best-case behavior occurs when all the requests are made in a sequentiai order, 

that is, 0, 1, ... , m-1, 0, 1, ... , m-1. etc. No contention would occur and the 

throughput of the memory is maximized, that is, 1 request serviced every sub-
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cycle. On the other hand, the worst case behavior occurs when all the requests 

are directed to a single module. In this case, the bottleneck is at this module 

and the throughput of the memory is 1 request serviced every m sub-cycles. 

Algorithm MWFMF is better than other algorithms because it has a better aver­

age case behavior even though its best- and worst- case behavior are identical to 

the other algorithms. 

Although the expected maximum completion time of the algorithm is 

minimized, it is not possible to make a similar conclusion as in Lemma 4.2 that 

the expected throughput of the memory is maximized because in this case, 

there is no relation between the expected maximum completion time and the 

expected throughput of the system. Furthermore, it is not useful to prove a 

similar theorem for the I;C; case as in Lemma 4.3 because it is unclear that the 

objective of minimizing I;E (C;) will be of any meaningful value. 

Although Theorem 1 establishes the fact that the MWFMF algorithm is 

optimal, no throughput values are obtained analytically. In the next two sec­

tions, the throughput of the system is evaluated by using two techniques, 

embedded Markov Chains and simulations. 

4.4.6 Embedded Markov Chain Technique 

By assuming a saturated request rate, with inter-arrival time a constant 

multiple of the memory sub-cycle and a request queue with random requests, 

the two organizations can be analyzed by embedded Markov Chain technique 

[FEL50]. With a RR scheduling algorithm, a state of the system for Organization 

I is defined as fSr. S to S 2 , ... , Sb. S,. j. 1;;;Sr.S ~oS 2, ..•• Sb ,S,. ;;;m where 

Sr.S 1.S 2, .•.• Sb are the states of the b+1 buffers and S,. is the memory 

module that is being initiated in the current memory sub-cycle. The state of a 

buffer is the module number that the request in it wants to access. The number 
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of states is therefore finite. A similar state can be defined for Organization II. It 

is obvious that the conditional probability of any future event, given the past 

event and the present state, is independent of the past event, that is, it satisfies 

the Markovian property. 

where n = 0, 1, 2, ... 

X, = state of the system at the n-th transition 

It is noticed that the Markovian property possessed by the two organiza-

tions is independent of n. Such a Markov chain is stationary. Let: 

Pi.;= PlXn+t='4.+t I X,.=i,.l 

Further, the time between successive transitions is constant and equals to the 

duration of the memory sub-cycle. This is called an embedded Markov Chain. 

The analysis of embedded Markov Chains is similar to that of Markov chains. 

For an irreducible, ergodic Markov chain [ROS76], there exists a unique sta­

tionary probability distribution rr = lrri• j=1,2,. .. ,nl such that: 

and 

n 
rri = I; rriPi.i 

i=l 

" I; 1Ti = 1 
i=l 

Using the matrix notation, it becomes 

rr = rrP 

where: 

rr = lrr~o 1T2, .. · • Trn l 
P = fPi.j l. the transition matrix 

n = the number of states in the system 

(4.1) 
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The Markov Chain used to model the interleaved memory system is irredu-

cible and positive recurrent because the chain is finite and all states communi-

cate with each other. However, this chain is not ergodic because the period of 

the chain equals m. In this case, some of the conditions of the ergodic Markov 

Chains are weakened, but vector 7T still represents the unique fixed probability 

vector of P [KEM65]. Since the evaluation of the throughput only requires the 

use of the vector 7T, the technique for evaluating 7T in ergodic Markov Chains can 

still be applied here. This technique is illustrated in the following two examples. 

Exa-mple 1 

Consider Organization I with the following attributes: 

m= 2 

b = 1 

scheduling algorithm- RR 

access pattern- random 

A state of the system is defined as lSr. S~o Sml where Sr is the state of Br. S1 is 

the state of B 1 and Sm is the current module that the system is initiating. The 

number of states can be reduced in half by considering only states in which 

S1::>Sr and treating states in which Sr < S 1 the same as states in which 

S1 ::>Sr. The transition matrix is defined as 

p,1,1l p,1,2l U.2,2l f1,2.1! f2,2,1l f2,2,2l 
0 0.5 0.5 0 0 0 f1,1,ll 
1 0 0 0 0 0 f1,1,2l 
0.5 0 0 0.5 0 0 f1,2,2l 

P= 0 0 0.5 0 0 0.5 f 1.2.1l 
0 0 0 0 0 1 f2,2,1l 
0 0 0 0.5 0.5 0 f2,2,2l 
0 0 0 0.5 0.5 0 f2,2,2l 

On the first row, only the transitions from state f 1,1,1j to states f 1,1,2j and 

f1,2,2j have non-zero probabilities. The state f 1,1,1l means that currently 

module 1 is initiated and the requests in both buffers Br and B 1 are requesting 
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module 1. Therefore, the request in B 1 can be satisfied. The content of Br is 

moved into B 1, and a new address is accepted into the memory. Since the 

access pattern is random, this new request can be directed to either module 1 

or 2 which results in states i1.1,2l or i1,2,2l. Note that Sm has changed from 1 

to 2 because during the next memory sub-cycle, module 2 will be initiated. The 

other rows of the transition matrix can be interpreted similarly. 

able 

Solving the equation rr = rrP, we get: 

1T = i0.2, 0.1. 0.2, 0.2, 0.1, 0.2l 

The utilization of the memory can be found by defining a new random vari-

Sr=Sm or S 1=Sm or bath 

otherwise 

e1s s ~ 1 equals 1 whenever during state 'Sr,S~oSml. one request is T• l~m ( 

satisfied because there is a request in the buffers which requests a currently ini-

tiated module. For our example, the transpose of e is: 

The utilization of the memory is rr.e = 4/5 = O.B. The bandwidth of the memory 

system is O.B * 2 = 1.6 words/memory cycle. 

Exarnple 2 

Consider again Organization I with the following attributes: 

m= 2 

b = 1 

Scheduling algorithm - MWFMF 

Access pattern - random 

The state space in this case is larger than the state space of the corresponding 

model with a RR scheduling algorithm because the next module to be initiated is 

determined dynamically and therefore the states of all modules must be known 
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at all times. The objective of introducing a more complex algorithm like MWFMF 

is to initiate any free module with queued requests without constrains on the 

order of initiation. However, in this case, with m=2, improvement cannot be 

accomplished. Let us assume that module 1 is initiated during the current 

memory sub-cycle. In the next sub-cycle, module 1 cannot be initiated again 

because it has not finished its cycle. The only possibility is to initiate module 2. 

If all the requests in the buffers are requesting module 1, then no module is ini­

tiated in this sub-cycle and in the next sub-cycle, module 1 will be initiated 

again. The resulting sequence of initiation is the same as a model with an RR 

scheduling algorithm. Therefore the utilization of the model is the same for 

both algorithms when m=2. This happens because the maximum number of free 

modules is one in this special case. For m:<;2, the utilization for an MWFMF algo­

rithm is higher because the maximum number of free modules is greater than 

one and the order of initiation is not necessary the same as the RR algorithm. 

Let us complete this example by setting up the state space of the model. 

We must know at the beginning of each memory sub-cycle which modules are in 

service and what are the remaining service times that these modules need. We 

must also know the contents of the buffers. A state of the system is defined as 

!M0 , M1, B 1, BTl· M0 is the module number of a module that is initiated 2 cycles 

ago and has finished its service at this time. M1 is the module number of a 

module that is initiated 1 cycle ago and still needs 1 more cycle to finish its ser­

vice. A value of 0 for M0 or M1 indicates that no module was initiated. B 1 and BT 

are the states of the buffers and as in the last example, we consider only states 

with B 1 ~Br. We have the following ranges of values, 

0 ~ M 0 , M 1 ~ 2; 1 ~ B 1o B r ~ 2. The total number of states is 3*3*2*2 = 36. How­

ever, not all states are possible. For example, state !2. 2,X,Xj is not possible 

because it indicates that module 2 was initiated twice and simultaneously in the 

last two cycles. Another example of impossible state is !2,0,1,Xj. This state 
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indicates that no module was initiated in the last cycle (M1 =0), and the current 

contents of the buffers have a request for module 1. Since no new request was 

accepted in the last cycle, this request for module 1 must have existed in the 

previous cycle and therefore should have been initiated. By eliminating all these 

impossible states, we get a state space of 12 states: f0,1,1,1j, f0,1,1,2l, f1,0,1,1j, 

f1,2,1,1j, f1,2,1,2j, f1,2,2,2j, f0,2,2,2j, f0,2,1,2j, f2,0,2,2j, f2,1,2,2j, f2,1,1,2j and 

f2,1,1,1j. Solving the equation rr=rrP, we get 

1 1 1 1 3 1 1 1 1 1 3 1 
rr=! 20' 20' 10' 10' 20' 20' 20' 20' 10' 10' 20' 20j 

By defining eT as 

eT = f 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1l 

The utilization of the modules is rr.e = 0.8 

The transition matrices P used in Eq. 4.1 are large sparse matrices. The 

memory space required to store P is therefore substantially less. However, one 

big disadvantage about this approach is that the number of states is large. 

Although they can be reduced by eliminating duplicate or impossible states, the 

memory size and the computer time required for solution is still beyond the 

present computers' capability. For example, with 16 degrees of interleaving and 

b=2 (3 request buffers), the number of states for Organization I with an RR 

scheduling algorithm is 13056. This was calculated by treating permutations of 

the three buffers as equivalent states. With an RR scheduling algorithm, the 

module that the system currently initiates is sufficient to determine the next 

module to be initiated. With other scheduling algorithms, the number of states 

is more because the next module to be initiated is determined dynamically, and 

therefore the states of all the modules (whether they are busy or free) must be 

known at all times. However, regardless of the scheduling algorithm, the 

number of equivalent states can be reduced by a factor of m by noting that if a 

constant is added (modulo m) to each state variable, then the new state 
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obtained must have the same stationary probability, and that the corresponding 

transition probability must also be the same. For the RR example given above, 

the 13056 states would be reduced to 816. Although the number of states is 

reduced, a solution using embedded Markov chains is still not practical. Since 

none of the states in the matrix are equivalent and therefore cannot be com­

bined together, approximation techniques can be employed to reduce the 

number of states further. In [WAH76], an approximate embedded Markov chain 

solution for Organization I with RR scheduling algorithm is presented. The 

approximation is done by combining some states of the transition matrix into a 

single state when their transition probabilities into another state are "approxi­

mately" equal for all the states in the group. However, the difference between 

the approximate and the exact solutions are sometimes large. Moreover, the 

time it takes to generate the approximate matrix is still exponential because 

the transition probabilities of a state must be generated first before it can be 

determined whether the state can be combined with another state. The analyti­

cal solution using embedded Markov Chains is therefore not practical. In the 

next section, the solution using simulations is presented. 

4.4. 7 Simulation Technique 

4.4. 7.1 Simulation Results 

Due to the difficulties mentioned in the last section, our evaluations are 

based on simulations. The simulations are run on a CDC 6400 computer. The 

simulation program was written in Fortran and the total time to generate all the 

results took over 12 hours on the CDC 6400. 

Table 4.1 shows the results of simulation runs on Organization I for the 

memory utilization and the average waiting cycles where a waiting cycle is 

defined similar to Flores [FL064] as the ratio of the waiting time and the 
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memory cycle time. Two types of request sequences are considered, one in 

which the requests are generated randomly, and one in which the requests are 

derived directly from the execution trace of a program. The traces used have a 

size of 500,000 and were obtained by running a scientific Fortran program 

derived from BMD applications on a CDC 7600 and and they personify program 

characteristics of scientific applications. They have the following characteris-

tics. 

Table 4.1 a Simulation Results for Organization I with RR Scheduling Algo­
rithm (95'7. confidence interval shown assuming normal distribution) 

Random Reouest Model Trace Driven Model 
E(Memory E(Waiting E(Memory E(Waiting 

m b Utilizatio~) Cvcles ). Utilizatio,.;) Cvcles). 

2 0 0.668±0.0 1. 75±0.0 0. 727±0.003 1.69±0.0 
1 0.801±0.017 2.25±0.04 0.882±0.003 2.13±0.01 
2 0.858±0.001 2.75±0.0 0.928±0.003 2.62±0.33 
3 0.690±0.004 3.25±0.02 0.960±0.004 3.06±0.52 

4 0 0.401±0.004 1.62±0.01 0.4 72± 0. 026 1.53±0.02 
1 0.565±0.015 1.69±0.02 0.636±0.043 1.79±0.07 
2 0.667±0.009 2.12±0.02 0. 732± 0. 050 2.03±0.14 
3 0. 726±0.007 2.36±0.02 0.625±0.059 2.21±0.23 

8 0 0.222±0.002 1.56±0.0 0.276±0.026 1.45±0.06 
1 0.363±0.006 1.69±0.01 0.432±0.041 1.58±0.07 
2 0.461±0.005 1.61±0.01 0. 525± 0. 049 1.72±0.10 
3 0.534±0.006 1.94±0.01 0.610±0.060 1.62±0.13 

12 0 0.154±0.003 1.54±0.0 0.166±0.026 1.45±0.05 
1 0.266±0.005 1.63±0.01 0.306±0.042 1.55±0.10 
2 0.354±0.005 1.71±0.01 0.406±0.056 1.61±0.11 
3 0.423±0.006 1.79±0.01 0.464±0.070 1.69±0.10 

16 0 0.117±0.002 1.53±0.01 0.157±0.015 1.40±0.05 
1 0.209±0.003 1.60±0.01 0.254±0.024 1.49±0.05 
2 0.265±0.003 1.66±0.01 0.345±0.033 1.54±0.06 
3 0.350±0.004 1. 71±0.01 0.412±0.039 1.61±0.09 
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Table 4.1 b Simulation Results for Organization I with FFF Scheduling Algo­
rithm (95% canfidence interval shown assuming normal distribution) 

Random Request Model TrAce Driven Model 
• E(Memory E(Wait~g E(Memory E(Waiting 

m b Utilizatio~) Cvcles Utilization) Cvcles). 

2 0 0.501±0.0 2.00±0.0 0.571±0.002 1.88±0.0 
1 0.668±0.014 2.50±0.05 0. 789±0.003 2.27±0.11 
2 0.750±0.001 3.00±0.0 0.865±0.003 2.73±0.34 
3 0.802±0.003 3.50±0.02 0.924±0.003 3.17±0.53 

4 0 0.289±0.003 1.86±0.01 0.316±0.018 1.79±0.04 
1 0.407±0.011 2.23±0.04 0.476±0.027 2.05±0.12 
2 0.489±0.007 2.53±0.04 0.600±0.041 2.25±0.25 
3 0. 544± 0. 008 2.84±0.08 0.878±0.048 2.48±0.42 

8 0 0.173±0.002 "" 1.72±0.01 0.184±0.017 1.68±0.06 
1 0.264±0.004 1.95±0.02 0.304±0.029 1.82±0.12 
2 0.330±0.005 2.14±0.03 0.379±0.037 1.99±0.16 
3 0.378±0.003 2.32±0.03 0.441±0.043 2.13±0.20 

12 0 0.126± 0. 002 1.66±0.01 0.147±0.023 1.57±0.06 
1 0.201±0.003 1.83±0.01 0.235±0.033 1.71±0.11 
2 0.258±0.002 1.97±0.02 0.305±0.042 1.82±0.13 
3 0.303±0.004 2.10±0.03 0.365±0.051 1.91±0.17 

16 0 0.100±0.001 1.63±0.01 0.106±0.010 1.59±0.05 
1 0.163±0.002 1.77±0.01 0.167±0.0 17 1.67±0.06 
2 0.211±0.003 1.69±0.01 0.256±0.024 1. 73±0.10 
3 0.252±0.003 1.99±0.02 0.314±0.030 1.60±0.13 
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Table 4.1 c Simulatirm. Results for Organization I with MWFMF Scheduling Algo­
rithm (95% crm.fidence interval shown assuming normal distribution) 

Random Reauest Model Trace Driven Model 
E(Memory E(Walting E(Me.mory 

m b Utilization) Cvcles). Utilization) 

2 0 0.667±0.008 1.75±0.01 0. 727±0.003 
1 0.800±0.0 2.25±0.0 0.882±0.003 
2 0.859±0.003 2. 75±0.03 0.928±0.003 
3 0.888±0.001 3.25±0.02 0.980±0.003 

4 0 0.4 79±0.003 1.52±0.0 0.515±0.029 
1 0.612±0.003 1.82±0.01 0.673±0.043 
2 0.691±0.004 2.09±0.02 0. 776±0.053 
3 0.740±0.004 2.35±0.04 0.831±0.059 

8 0 0.355±0.002 1.35±0.01 0.385±0.038 
1 0.466±0.002 1.54±0.01 0.533±0.052 
2 0.544±0.004 1.69±0.01 0.612±0.058 
3 0.597±0.005 1.84±0.02 0.686±0.068 

12 0 0.295±0.002 1.28±0.0 0.330±0.052 
1 0.399±0.003 1.42±0.01 0.472±0.066 
2 0.475±0.003 1.53±0.01 0.533±0.079 
3 0.524±0.002 1.64±0.01 0.614±0.088 

16 0 0.259±0.001 1.24±0.0 0.300±0.028 
1 0.357±0.003 1.35±0.01 0.416±0.040 
2 0.424±0.002 1.44±0.01 0.511±0.049 
3 0.4 76±0.002 1.53±0.01 0.570±0.055 

fraction of instruction word fetches 

fraction of data word fetches 

fraction of data word stores 

average number of accesses per inst. executed 

number of instructions per instruction word 

fraction of instructions that need data 

fraction of instructions that are 

unconditional jumps 

E(Waiting 
Cvcles)" 

1.69±0.0 
2.13±0.11 
2.62±0.33 
3.08±0.04 

1.49±0.02 
1.74±0.08 
1.97±0.18 
2.20±0.28 

1.33±0.06 
1.47±0.08 
1.61±0.11 
1.73±0.16 

1.23±0.05 
1.35±0.08 
1.45±0.10 
1.54±0.12 

1.21±0.05 
1.30±0.07 
1.37±0.08 
1.44±0.10 

0.597 

0.336 

0.067 

0.600 

2.787 

0.242 

0.044 



successful conditional jumps 

unsuccessful conditional jumps 

number of instructions executed between 

conditional jumps 

unconditional jumps 

successful conditional jumps 

all dependent events 

(cond. + uncond. jumps) 

mean 

0.030 

0.015 

22.3 

st'd dev. 10.3 

mean 22.8 

st'd dev. 24.7 

mean 33.9 

st'd dev. 19.2 

mean 11.4 

st'd dev. 10.1 
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In Table 4.2, the simulation results for Organization II are shown. Since the 

existence of multiple sets of buffers allows a request at Br to be blocked by a set 

of full buffers in a module while buffers of other modules may be empty, a 

column has been included in Table 4.2 to show the buffer utilization (this 

excludes the buffer Br ). The queue utilization results shown in Table 4.2 are 

normalized with respect to the buffer size b. 

4.4. 7.2 Application of Multiple Linear Regression to Obtain a Closed Form For­

mula 

Using the results of the simulations and the assumption that the utilization 

is approximately 1 when b>>m (e.g. b=100, m=4), multiple linear regression is 

applied to fit a curve to the results [DRA66]. Based on the tail area of the partial 

F-value for testing the null hypothesis that a regression coefficient is zero, some 

of the terms in the polynomial have been eliminated. In Table 4.3, the 

coefficients for the regression analysis on the utilization and the waiting cycles 

of the two organizations under MWFMF scheduling algorithm are shown. The 

errors in the estimation can be shown to be less than 4% in most cases except 
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Tctble 4. 2ct Simulcttion ReStJ.lts for Orgctnizcttion II with RR scheduling Algo­
rithm (95% confidence intervctl shown ctsStJ.ming normctl distribution) 

Random Reo11est Model Trace Driven Model 
E(Memory E(Waiting E(Butfer E(.Memory E(Waiting E(Buffer 

mb U tilizatior'i) Cvcles)" Utilization) Utilization\ Cvcles). Utilization) 

2 0 0.667±0.0 1.75±0.0 - 0. 727±0.003 1.69±0.0 -
1 0.801±0.004 2.50±0.02 0. 700± 0. 006 0.882±0.003 2.4.3±0.16 0. 760±0.049 
2 0.857±0.002 3.25±0.02 0.715±0.003 0.928±0.003 3.18±0.44 0.761±0.102 
3 0.890±0.003 4.00±0.01 0. 732± 0. 004 0.960±0.003 3.92±0.61 0. 768±0.142 

40 0.401±0.004 1.62±0.01 - 0.472±0.026 1.53±0.02 -
1 0.629±0.004 2.18±0.01 0.492±0.005 0. 737±0.052 2.09±0.17 0.554±0.085 
2 0.731±0.005 2.75±0.03 0.515±0.009 0.84 7±0.058 2. 70±0.36 0.597±0.136 
3 0. 792±0.004 3.33±0.02 0.531±0.008 0.903±0.064 3.34±0.50 0. 621±0.158 

8 0 0.222±0.002 1.56±0. 0 - 0.278±0.026 1.45±0.06 -
1 0.487±0.006 1.97±0.01 0.347±0.006 0.586±0.055 1.87±0.11 0.384±0.083 
2 0.628±0.006 2.41±0.02 0.379±0.008 0. 793±0.078 2.40±0.25 0.494±0.113 
3 0. 705±0.004 2.88±0.04 0.397±0.006 0.882±0.085 2.95±0.45 0.518±0.148 

12 0 0.154±0.003 1.54±0.0 - 0.186±0.026 1.45±0.05 -
1 0.417±0.005 1.88±0.01 0.283±0.005 0.599±0.083 1. 73±0.10 0.354±0.070 
2 0.569±0.007 2.26±0.02 0.318±0.007 0. 733±0.105 2.22±0.26 0.404±0.125 
3 0.661±0.005 2.66±0.02 0.338±0.006 0.753±0.109 2.63±0.47 0.381±0.151 

16 0 0.117±0.002 1.53±0.01 - 0.157±0.015 1.40±0.05 -
1 0.379±0.005 1.82±0.01 0.249±0.004 0.502±0.048 l. 73±0.09 0.303±0.049 
2 0.534±0.008 2.18±0.02 0.283±0.008 0.692±0.066 2.05±0.17 0.333±0.075 
3 0.626±0.004 2.54±0.08 0.300±0.005 0. 745±0.072 2.23±0.32 0.284±0.094 



184 

Ta.ble 4.2b Simula.tion Resul.ts fo'T' 07'ga.niza.tion II with FFF Scheduling Alg~ 
'T'ithm. (95% confidence interua.l shown a.sS't.Lming n07'ma.L distribution) 

Random Reauest Madel Trace Driven Model 
E(Memory E(Waiting E(Buffer E(Memory E(Waiti~g E(Butrer 

mb Utilizatio~) Cycles)" Utilization) Utilizatio~) Cycles Utilization) 

2 0 0.501±0.0 2.00±0.0 - 0.571±0.002 1.88±0.0 -
1 0.870±0.004. 2. 74.±0.0 0.669±0.004 0. 789±0.003 2.56±0.16 0. 732± 0. 04.5 
2 0. 751±0.003 3.50±0.02 0.688±0.010 0.865±0.003 3.30±0.4.8 o. 74.3±0.097 
3 0. 789±0.002 4..27±0.01 0.699±0.004. 0.924.±0.003 4..00±0.62 0. 758±0.138 

4. 0 0.289±0.003 1.86±0.01 - 0.316±0.018 1. 79±0.04. -
1 0.4.58± 0. 005 2.54.±0.01 0.4.54.±0.007 0.557±0.04.2 2.38±0.22 0.519±0.095 
2 0.556±0.004 3.19±0.03 0.4.83±0.009 0. 702±0.04.8 2.95±0.4.8 0.558±0.14.9 
3 0.628±0.003 3.80±0.04. 0.503±0.007 0.801±0.057 3.54.±0. 72 0.596±0.184. 

8 0 0.173±0.002 1.72±0.01 - 0.184.±0.017 1.68±0.06 -
1 0.329±0.005 2.32±0.03 0.311±0.010 0.406±0.04.0 2.20±0.19 0.360±0.089 
2 0.4.36±0.002 2.88±0.02 0.34.8±0. 004. 0.604.±0.060 2.73±0.36 0.4.61±0.121 
3 0.4.98±0.004. 3.4.4±0.07 0.363±0.011 0.671±0.067 3.36±0.65 0.4.92±0.162 

12 0 0.126±0.002 1.66±0.01 - 0.14.7±0.023 1.57±0.06 -
1 0.278±0.004. 2.20±0.03 0.250±0.007 0.396±0.055 2.03±0.18 0.325±0.080 
2 0.383±0.005 2.71±0.05 0.285±0.010 0.510±0.073 2.64.±0.4.3 0.376±0.137 
3 0.4.57±0.004. 3.22±0.05 0.310±0.009 0.529±0.085 3.19±0.55 0.358±0. 752 

16 0 0.100±0.001 1.63±0.01 - 0.106±0.010 1.59±0.05 -
1 0.252±0.003 2.11±0.02 0.217±0.005 0.34.5±0.032 1.96±0.14. 0.267±0.050 
2 0.34.9±0.003 2.61±0.03 0.250±0.005 0.4.78±0.04.6 2.33±0.30 0.286±0.082 
3 0.4.24.±0.004. 3.09±0.05 0.14.1± 0. 008 0.527±0.050 2.62±0.46 0.262±0.092 
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TabLe 4.2c SimuLation ResuUs for Organization II with MWFMF ScheduLing Al­
gorithm (95% confidence inte-MJal shown assuming normaL distribution) 

Random Reauest Madel Trace Driven Model 
E(Memory E(Waiti~g E(Buffer E(Memory E(Wait~g E(Buffer 

mb Utilizatio~) Cvcles Utilization) Utilizatio~) Cycles Utilization)_ 
2 0 0.667±0.008 1.75±0.01 - 0. 727±0.003 1.69±0.0 -

1 0.799±0.003 2.50±0.01 0. 700±0.005 0.882±0.003 2.43±0.16 0. 760±0.049 
2 0.856±0.005 3.25±0.01 0.714±0.007 0.928±0.003 3.18±0.44 0.761±0.102 
3 0.890±0.020 4.00±0.02 0. 724±0.006 0. 960±0.003 3.92±0.61 0. 768±0.142 

4 0 0.419±0.003 1.52±0.0 - 0.515±0.029 1.49±0.02 -
1 0.648±0.001 2.13±0.01 0.482±0.002 0. 738±0.052 2.07±0.18 0.539±0.090 
2 0.743±0.003 2.72±0.01 0.515±0.005 0.838±0.059 2.70±0.36 0.588±0.135 
3 0.795±0.002 3.31±0.02 0.528±0.003 0.902±0.032 3.35±0.53 0.625±0.157 

8 0 0.355±0.002 1.35±0.01 - 0.385±0.038 1.33±0.06 -
1 0.534±0.005 1.85±0.01 0.328±0.007 0.624±0.062 1.84±0.13 0.398±0.077 
2 0.651±0.003 2.33±0.01 0.371±0.003 0. 799±0.079 2.40±0.26 0.498±0.118 
3 0.717±0.003 2.81±0.02 0.391±0.004 D. 849±0.083 2.95±0.44 0.510±0.144 

12 0 0.295±0. 002 1.28±0.0 - 0.365±0.052 1.23±0.05 -
1 0.472±0.005 1. 72±0.01 0.256±0.005 0.624±0.089 1.68±0.14 0.343±0.095 
2 0.602±0.004 2.16±0.01 0.308±0.004 0. 735±0.106 2.19±0.29 0.395±0.135 
3 0.683±0.006 2.58±0.03 0.332±0.009 0. 756±0.109 2.61±0.49 0.377±0.154 

16 0 0.259±0.001 1.24±0.0 - 0.300±0.028 1.21±0.05 -
1 0.439±0.006 1.64±0.01 0.217±0.007 0.565±0.054 1.62±0.10 0.289±0.061 
2 0.564±0.007 2.05±0.02 0.264±0.007 0.692±0.066 1.97±0.21 0.306±0.063 
3 0.647±0.003 2.44±0.02 0.290±0.004 0. 745±0.072 2.17±0.34 0.271±0.096 



Table 4.3 - Coefficients of 3rd Order Polynomial Regression of 
Organization I and II under MWFMF Scheduling Algorithm 
(RRM -Random Request Model; TDM -Trace Driven Model) 
Note: AU other coefficients are set to zero. 

Utilization 

Model m 2 m 1/m b 1/3 b 1/2 bl/4 
m m 

186 

const. 

RRM-1 0.00050 -0.02011 0.56124 1.80176-0.32495 -1.37165 0.27655-0.21970 0.41273 
TDM-1 0.00065 -0.02312 0.62605 2.29106 -0.45177 -1.69626 0.18115 -0.18268 0.4544 7 
RRM-11-0.00009 -0.00283 o. 79465 3.04862-0.64641 -2.17849-0.22013 0.00866 0.26680 
TDM-11-0.00012 -0.00301 0.60663 2.72327-0.61966 -1.60155-0.44904 0.11118 0.33023 

Waiting Cycles 

Model m b mb con st. 

RRM-1 -0.00109 0.03312 0.00314 -0.31779 0.61021 -0.08138 2.30046 
TDM-1 -0.00100 0.03038 0.00306-0.29262 0.56690-0.07661 2.19725 
RRM-11-0.00082 0.02570 0.00219-0.26252 0.64230 -0.06200 2.19663 
TDM-11-0.00075 0.02432 0.00016 -0.25363 0.77708 0.03024 2.12700 

for a few cases with b=O, where the error gets to around 10%. From the polyno-

miai equation we have obtained, we can extrapolate our results beyond b=3. The 

errors in extrapolating the values of utilization is small because the asymptotic 

value of utilization when b is large is known. However, the errors may be large 

when extrapolating the values of waiting cycle because its asymptotic values are 

not known. With Organization 1, en=l, and therefore the values of waiting cycles 

can be derived from the values of utilization by applying Little's Formula. With 

Organization II, en <1, and the values of Um.b and Wm,b must be known in order to 

estimate e0 • Since asymptotic values of Wm.b and e0 do not exist, the errors 

may be large in this case. 

In Figures 4.13 to 4.18, the performance of Organizations I and II are shown. 

The actual simulation results are used forb ;>;3 while extrapolations are made for 
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b>3. In Fig. 4.13, a plot of the improvement in memory utilization with buffer 

size for Organization I with m = B is shown. It is seen that the improvement in 

memory utilization approaches a constant rate as the buffer size is increased. 

Further, the MWFMF algorithm gives the best performance. In Fig. 4.14, a plot of 

the expected waiting cycles for different buffer sizes of Organization I is shown 

for m = B. It is seen that the increase of waiting cycles is much slower than the 

increase of buffer sizes and the increase is almost linear. The trace driven simu­

lation results show a higher improvements in memory utilization and a smaller 

number of waiting cycles than the random request model. This is because there 

is a higher correlation between consecutive requests and the requests are likely 

to be made in a consecutive order. As a result, there is less contention in the 

system. The curves showing the estimated results due to dependencies are dis­

cussed in the following sections. The above observations are also true for other 

values of m. Further, the MWFMF algorithm has the minimum amount of waiting 

time among the three algorithms studied. In Figures 4.15 and 4.16, the 

decrease in memory utilization and waiting cycles for increasing degrees of 

interleaving of Organization I with a MWFMF algorithm are plotted. The rate of 

decrease in memory utilization is more pronounced and the utilization is higher 

when the degree of interleaving is small. Also, the effects on waiting cycles due 

to buffer size is very small when the ratio of buffer size to degrees of interleav­

ing is small. Other schsduling algorithms also possess the same properties. The 

effects on the memory utilization and the waiting cycles for various buffer sizes 

of Mode II are similar to those of Organization I. In Fig. 4.17, the effects on 

buffer utilization are shown for various buffer sizes of Organization II. It is seen 

that the buffers are less utilized as the size is increased. This also accounts for 

the diminishing increase in memory utilization as the buffer size is increased. 

The difference in buffer utilization among the three scheduling algorithms is 

very small. However, extrapolations for values of b beyond 3 are not accurate 
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for Organization II for reasons noted before. In Fig 4.18, a plot of buffer utiliza­

tion versus different degrees of interleaving is shown. The buffer utilization 

drops as the number of modules is increased. However, it is seen in both Fig­

ures 4.17 and 4.18 that the buffer utilization is not sensitive to buffer size 

changes. The decrease in buffer utilization is due to the fact that there is a 

higher probability that Br is blocked when the number of modules is increased. 

4.4.8 Effects of separating the instruction and the data area 

The previous results have been obtained from simulations using a merged 

instruction and data area. Since an instruction access results in some data 

accesses, it is desirable to place the data accessed in modules not conflicting 

with the next instruction accessed. This motivates us to investigate the separa­

tion of instruction and data area into different modules in the main memory. 

Sastry et. at. [SAS75} and Nutt [NUT77} have made some pioneering studies on 

the separation of instruction and data areas, but they have assumed a non­

pipelined multi-processor system. We study the effects with respect to a pipe­

lined processor here. In this section, an organization with separate instruction 

and data modules is compared against an organization with merged instruction 

and data modules using the traces available. Consecutive instruction words are 

put in consecutive instruction memories and consecutive data locations are put 

in consecutive data memories. 

The characteristics of the traces reveal that 60% of the accesses are 

instructions and the rest are data accesses, therefore the modules should be 

divided according to this ratio approximately. Since it is desirable to have the 

number of instruction modules and the number of data modules an integral 

power of 2 for ease of address decoding, the modules are divided into a 4-2 parti­

tion so that four of the modules are instruction modules and the two are data 

modules. It is not possible to designate ·exactly 60% of the modules as 
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instruction modules and to satisfy the requirement that the number be an 

integral power of 2. Since there are 6 modules in the 4-2 partition, it is neces­

sary to compare the performance of the 4-2 partition against a hypothetical 6 

way interleaved system with merged instruction and data modules. The results 

are shown in Tables 4.4 and 4.5. It is seen that the ~fferences between the two 

alternatives are minimal. In fact in some cases, the merged model seems to 

Table 4. 4 Camparison between Merged and Separa.ted Instruction- Data AT!Ia.s 
jOT Organization I - Trace Driven Simulation. 

RR FFF MWFMF 
m b Memory Waiting Memory Waiting Memory Waiting 

uti!. cvcles uti!. cvcles uti!. cvcles 
Merged 6 0 0.336 1.49 0.243 1.69 0.459 1.36 

In st.-Data 1 0.501 1.65 0.403 1.63 0.624 1.53 
Areas 2 0.657 1.76 0.479 2.04 0.695 1.72 
(m-6) 3 0.726 1.92 0.543 2.23 0.752 1.69 

Separate 16 0 0.336 1.50 0.270 1.62 0.466 1.34 
Inst.-Data I 1 0.517 1.64 0.394 1.65 0.619 1.54 

Areas 2 0.616 1.61 0.464 2.03 0.692 1.72 
(4-2 wavs) 3 0.696 1.96 0.540 2.24 0.730 1.91 

Table4.5 Comparison between Merged and Separated Instruction- Data Area.s 
jOT Organization II - Trace Driven Simulations 

RR FFF MWFMF 
m b Mem. Wait. Buf. Mem. Wait. Buf. Mem. Wait. Buf. 

Uti!. Cvcle Uti!. Uti!. Cy_cle Uti!. Uti!. Cycle Uti!. 
Merged 6 0 0.34 1.49 - 0.24 1.69 - 0.46 1.36 -

Inst.-Data 1 0.69 1.95 0.49 0.50 2.23 0.44 0.69 1.94 0.48 
Areas 2 0.60 2.46 0.50 0.61 2.83 0.47 0.79 2.49 0.50 
(m-6) 3 0.61 2.86 0.45 0.63 3.27 0.42 ·o.61 2.87 0.45 

Sep. 16 0 0.34 1.50 - 0.27 1.62 - 0.49 1.34 -
Inst.-Data 1 0.65 1.98 0.47 0.49 2.16 0.40 0.67 1.90 0.43 

Areas 2 0.75 2.42 0.45 0.57 2.74 0.41 0.76 2.41 0.45 
(4-2 Wavsl' 3 0.77 2.96 0.45 0.59 3.29 0.40 0.77 2.95 0.45 
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perform a little better. This is due to the unequal utilization and waiting cycles 

of the modules in the separated case. From the simulation results on the utili­

zation of the individual modules (not shown), the instruction modules are found 

to be under utilized while the data modules are found to be over utilized. One 

way to improve the performance of the system is to design the system with a 

good instruction-data access ratio so that the utilization of the instruction and 

the data modules are approximately equal and the number of instruction and 

data modules are integral powers of 2. However, this ratio is highly program 

dependent and is impossible to fix at the design stage. We conclude that the 

improvement due to separation is minimal for this architecture, the CDC 7600, 

and the specific class of programs. 

4.4. 9 Degradation in Performance Due to Dependencies 

In the previous sections, we have simulated the organizations under the 

assumption that there is a high request rate from the pipe so that any empty 

buffers can be replenished until they are full or a blockage occurs. However, 

this assumption is not totally valid in a pipelined uni-processor. As mentioned 

earlier, there are three sources of interferences which result in emptying the 

pipe and reloading a new instruction stream. In the process of emptying the 

pipe, new memory requests are not generated and the memory becomes idle 

after all the pending requests are serviced. The utilization of the memory is 

therefore lower than our simulated results. One solution is to simulate a pipe 

together with the memory. However, different computers handle dependencies 

differently, and the simulation of a particular machine is too limited in scope. 

We therefore choose to estimate the resulting utilization with a general model. 

4.4. 9.1 The Model Used to Estimate the Performance Due to Dependencies 
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Without loss of generality, all dependencies can be represented as a suc­

cessful (the jump is taken) or an unsuccessful conditional jump. In a conditional 

jump instruction, the condition code is set earlier by an instruction which may 

still be in the pipe. Until that instruction finishes and sets the condition code, 

the jump instruction cannot proceed. It is assumed that the pipe prefetches but 

does not decode the target instruction. If it is an unsuccessful jump, the pipe 

can proceed after the condition code has been set. If it is a successful jump, the 

pipe has to wait until both the condition code is set and the target instruction is 

fetched from the memory. An unconditional jump can be modelled as a success­

ful conditional jump in which the condition code is available immediately. A 

register interlock is the same as an unsuccessful conditional jump instruction 

and an interrupt is the same as a successful conditional jump in which the entire 

pipe has to be emptied. 

The model used in the estimation is shown in Fig. 4.19. A linear pipe is con­

sidered. The instruction prefetch unit has to fetch instructions ahead of the 

instruction decode unit so that the decode unit never has to wait for instruction 

fetches. Let 

L = number of stages of the pipe; 

T = time needed to pass through one a stage of the pipe; 

f = the number of instruction words prefetched. 

The memory is assumed to be a single server with a constant service time of 

rate Um,b, and a finite buffer space of length M-u.,,b •m (Eq. 4.2, 4.3). The service 

discipline in the buffers is FIFO and the waiting time for a request is W (Eq. 4.4). 

Since we are interested in getting an expected value of the performance, the 

model is a sufficient approximation of the actual model. It is also assumed that 

the occurences of successive dependent requests are separated far enough and 

have no effect on each other. By "far enough", it is meant that after a depen­

dency is resolved, sufficient time elapses so that all the buffers are filled up 



instruction 
pre fetch 
segment 

U PIPE 

T= time needed 
to pass through 
1 stage of pipe 

instruction 
decode 
segment 

L 

operand 
access 
segment 

+ 

198 

execution -
••• unit 

t 
.-L-

return 
buffers 

I-,.-CP 

MAI 
(ap 

---- -----------------------------------
N MEMOR 
proxima e model) 

memory modules 

request buffers 

~: I IU ~ um,b 
I 

- * 

w b = delay time in passing 
m, through the memory 

Figure 4.19 Model of CPU-Memory used for Estimation of the 
Effects of Dependency 



199 

before the occurence of another dependent request. The maximum time needed 

is Um.b *M, (Fig. 4.22). This assumption is necessary because the effect due to 

each dependent request can be found separately and the overall effect due to all 

the dependent requests is the sum of the individual effects. From the statistics 

of the traces which are shown in Figures 4.20 and Fig. 4.21, it is found that suc­

cessive dependent requests are separated by an average of 12 instructions. Suc­

cessive dependent requests may therefore have effects on each other and our 

analysis slightly under-estimates the actual performance. 

4.4.9.2 Computation of Degradation in Performance 

The effect of dependencies is measured in terms of an idle period. An idte 

period of the memory is defined to be a time interval during which requests to 

the memory stop. The idle period is measured in terms of the number of 

memory sub-cycles. At the beginning of an idle period, the number of requests 

drops gradually to zero (Fig. 4.22). The resulting utilization of the module is 

lower as is evident from a similar model with a smaller buffer size. When the 

pipe starts requesting again, the number of requests in the buffers gradually 

builds up to the maximum amount. The idle period is defined this way because 

it represents an average length of the time during which the buffers are not fully 

utilized. Let 

d = distance in terms of the number of pipe segments between the instruc­

tion setting the condition code and the conditional jump instruction 

at the decode segment; 

r= average number of requests generated per instruction executed; 

i = number of instructions per instruction word; 

XtJ = fraction of instructions executed that are successful conditional 

jumps; 

XtJ = fraction of instructions executed that are unsuccessful conditional 
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jumps. 

In the trace driven simulation results in Section 4.4.8.1, the instructions 

and its corresponding operands are assumed to be accessed one after the other. 

In the current model, the instructions are fetched much earlier than the 

corresponding operands. We have ignored these effects on the memory perfor-

mance because there is very little correlation between the instruction address 

and its corresponding operand address (except in some cases, e.g. an architec-

ture which implements the immediate mode, but the frequency of executing 

these instructions is small). 

Since it is desired to find the maximum performance of the memory, the 

pipe must be designed in a way such that it is fast enough and long enough so 

that it is always able to fill up all the empty buffers in the memory within a 

memory sub-cycle. This design follows from our high request rate assumption. 

In this model, the pipe is essentially executing at the speed of the memory, that 

is, at rate Um.b/r. The assumptions made are: 

(1) There is a large amount of return buffers in the pipe for serviced requests. 

This assumption is necessary so that serviced requests can always be 

returned to the CPU without delaying the initiation of requests in the 

memory. 

(2) Each segment in the pipe is very fast. This means that T is so small that if 

sufficient instructions are available to the decode unit, the pipe can gen-

erate enough requests to fill up all the memory buffers in one memory 

sub-cycle. This means: 

T*M ;;;; r 

Um,b 

That is 
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T = T 
u.,,b*M 

(4.5) 

(3) Since it takes a time W (= Wm.b "m) to fetch an instruction. the pipe would 

have executed i*f instructions in this time interval at a rate of U.,,b if no 
T 

dependency occurs. Therefore 

i*f _;:_.,__,_ > Wm,b •m 
U.,,b/r 

we set 

f -- r Wm,b *.U.,.b *Tn 
t*r 

(4.6) 

where fy] is the smallest integer larger than y. The value off is chosen to 

be the smallest possible because when a conditional branch is encoun-

tered, one of the two paths is not traversed and therefore the instruction 

fetches for that path are wasted. The value of f is kept small in order to 

reduce the effects due to this waste. 

(4) After an operand request is generated, the operand will be serviced after 

an average time W. In the meantime, the corresponding instruction passes 

through L-2 stages of the pipe in order to get to the execution unit. The 

time for this instruction to pass through the pipe must be longer than the 

waiting time for its operand so that the pipe is not blocked by this instruc-

tion waiting for its operand. We have 

r• (L -2) 
U.,,b 

We set 

w .'J)_ •m.. 1.. = r m.b --m,b 1 + 2 
T 

(4.7) 

The value of L set in Eq. 4. 7 is the minimum pipe length required for a max-

imum memory performance. For a longer pipe, the memory performance is 

lower because it takes a longer time for a dependent request to pass through 
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the pipe. For a shorter pipe, the pipe is not able to generate requests fast 

enough because the last stage of the pipe is frequently blocked by unfinished 

operand requests. The value of L chosen is therefore a compromise between 

these two effects. These additional constraints can assure that the maximum 

performance of the memory is achieved. 

When a conditional jump instruction is encountered and the condition code 

is set at a distance d stages away, the execution of the conditional jump is 

stopped until the instruction setting the condition code passes through L-d seg-

ments at a rate of Um.b/r, if the conditional jump is unsuccessful. However, if it 

is successful, then the pipe is blocked until both the condition code is set and 

the target instruction has been fetched from the memory. If t:/f is set to be 

the time interval between the recognition of a successful/unsuccessful condi-

tiona! jump and the time when the pipe can start execution again, then 

t: =max! (L-d)*-r-, Wm.b•m.j 
Um.b 

t/ = (L-d)*.I._ 
171. 

(4.Ba) 

(4.Bb) 

After the jump has been determined, it takes a small amount of time T/r to gen-

erate the operand request. It is not assumed that the decoding is done before-

hand as in some machines. Let t:/f be the time interval from the recognition of 

a successful/unsuccessful conditional jump to the time when the pipe starts 

making requests. Then 

tV'= t:/' + L 
r 

(4.9) 

After a dependent instruction has been encountered, there are still f 

instruction prefetch requests in the pipe. The idle period begins after these 

requests have been made to the memory. Let tb be the time to make these 

remaining requests. 
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(4.10) 

The length of the idle period (ips/!) is therefore the difference between tr and 

(4.11) 

The above analysis is true for a particular value of d. Let D be the random 

variable denoting the distance, and D has the following distribution 

{ 
Pd 

Pr(D=d) = 0 

d = 1, 2, ... , L 
otherwise 

(4.12) 

This distribution is shown for the traces in Figure 4.21. Then combining Equa-

tions 4.8-4.12, we have 

+ I: Lti.(L-d)*r]] + ~- tb I , . ..,. . ., r u, .b 
d<L --~~--...l.---

r 

{ 
L (L -d) T } 

ipf =max 0, L::Pd +-- tb 
d=! Um.b r 

(4.13a) 

(4.13b) 

Consider a time interval!, the number of accesses made during 1 is Um,b •I 

and the number of instructions executed in this interval is Um.b •I. The average 
r 

amount of idle period due to successful and unsuccessful conditional jumps are 

,L. •I u, •I 
xb*ip 5 * --m.b + xtJ*ipl • ,b . The resultant utilization is 

r r 

Um.b •I 

=-----Um~.b~----
(4.14) 
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As a result of the degradation in memory utilization, there is a degradation 

in the buffer utilization. During an idle period, requests to the memory stop. At 

the end of the idle period, requests to the memory begin again. In Fig. 4.22, the 

decrease and the increase in the number of requests in the buffers are shown. 

Since M may not be an integer in our model (effective buffer length in Organiza­

tion II), a linear approximation is used in the original function. In terms of the 

idle period, the time interval during which the buffers are not full is y = 

ip•/J + (M -M.)*Um.b where M 8 is the effective number in the system. In fact, 

the shaded blocks in Fig. 4. 22 can be rearranged so that the effective buffer uti!-

ization can be calculated. M., during an idle period in the two cases, is 

j M-

M. = 0 
ifip•/J <M*u,,b 

if ip • /! <:.M*u, ,b 
(4.15) 

Let M:/J be the effective number of requests in the system due to 

successful/unsuccessful conditional jumps and let M' be the resulting effective 

number in the system. For the time interval I, 

[
total ef fectivel 
buffer length = 
time product 

MJ + M • s tl..m.bi. s + Mf t Um,bi. 1 eXCJ tp eXCJ tp 

That is 

M'= 
M +~(M;x~J+M{ xtJipf) 

1 + Um.b (x~JiP 5 +xtJipf) 
r 

r r 

(4.16) 

Using Little's Formula, the resulting number of waiting cycles w;,.,b in the 

system can be calculated. 

M' w,. .b = 1 + --;cc.--
U,,bm 

(4.17) 

As a by-product of our estimation, it is not difficult to estimate the throughput 

of a memory bounded pipe. This will not be demonstrated here. 
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Using the statistics from the trace program, the results of the estimated 

utilization are plotted together with the simulation results in Figures 4.13 and 

4.15. The degradation is quite significant and drops to about 50% of the original 

value in some cases. As seen in Fig. 4.13, the module utilization levels off much 

more rapidly with increasing buffer size than the original results with no depen­

dencies. The curves plotted are not smooth because of the integrality require­

ment in the pipe length and the number of prefetched instructions . It is 

further seen that increasing buffer sizes do not improve the performance due to 

the effects of dependency. The difference in memory utilization for b=3 and 

b= 10 is very small as seen in Fig. 4.15. The estimations for waiting cycles are 

not plotted in Figures 4.14 and 4.16 because they coincide almost exactly with 

the simulation results. In Fig. 4.23, the buffer utilization for Organization I with 

an MWFMF algorithm is plotted. It is seen that the buffer utilization is almost 

constant for large values of m. It is also interesting to note that the buffer utili­

zation is lower for larger values of b. The explanation for this is because for a 

large value of b, the waiting time in the memory is longer and the memory utili­

zation is higher. This implies that a longer pipe must be used (Eq. 4. 7). A longer 

pipe means that it takes longer to resolve a dependent request and this causes 

degradation in the buffer utilization. 

The above estimations only give an average value for the performance. In 

fact, if the memory can be utilized in some other way (e.g. for peripheral pro­

cessing) when a dependency occurs, the degradation may not be so significant. 

The above analysis also reveals the fact that when the occurrences of dependent 

requests are frequent, it is not beneficial to use a pipelined computer in a batch 

mode. High degree of program interleaving using multiprogramming would help 

in reducing the degradation due to dependencies. 

4.4.10 Some final Remarks about the Design of Interleaved Memories 
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We have presented in this section two organizations of an interleaved 

memory system which utilizes a finite buffer space for the storage of requests. 

We have designed a scheduling algorithm which allows a finite set of requests to 

be processed in the minimum expected time. However, the performance of our 

system is obviously less than the performance of systems with an infinite 

saturated request queue which is an unrealistic assumption. In Fig. 4.15, we 

have shown the performance of Hellerman's model [HEL67] together with our 

simulation results. Although Hellerman's model is a simple model and allows no 

queueing of requests, it is useful as a lower bound for the performance of other 

systems. It is seen that with a random request queue, Hellerman's model is 

better than our Organization I with b = 0, but is worse for b > 0. Note that the 

performance curves all have the same shape. Since Organization II degenerates 

into Organization I for b = 0, it is worse than Hellerman's model for b = 0, but 

better for b > 0. The comparison with other models in the current literature is 

not meaningful because they differ significantly. 

We can improve our model slightly by considering the following. The 

rationale behind the constraint that only one module may be initiated in any 

sub-cycle is because the return bus can return at most one piece of datum in 

any sub-cycle. But since reads generate return data while writes do not, we can 

initiate two or more modules in a sub-cycle provided that exactly one of the 

requests is a read. The improvement in utilization due to this is only about 2%. 

The improvement is not significant because the fraction of writes in our trace is 

Jess than 7% of all the accesses and its applicability is also limited by memory 

interference. 

The questions that still remain to be resolved are how can one select 

between Organization I and Organization II and how does one choose the parame­

ters of the system in order to satisfy all the requirements. In the hardware 

requirements, Organization I needs associative search capabilities in the buffers 
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while Organization II does not. However, the availability of fast associative 

memory, (see chapter 5 of this thesis), can help in this regard. The perfor­

mance of Organization II predicted may be worse because it may require the 

transfer of more than one request into the memory system during a memory 

sub-cycle and it sometimes is not possible in a pipelined system. Organization II 

gives a slightly worse performance than Organization I when a maximum of one 

request is allowed to be generated in each sub-cycle and the effective buffer 

sizes in both organizations are identical. Tradeoff in cost and performance must 

be made in the selection of the organization. In order to answer the second 

question we have raised, we need to design a cost model of the system. The cost 

of individual component is highly technology dependent and will not be dis­

cussed here. However, the designer can find a configuration with the minimum 

cost based on the bandwidth and the response time requirements. Assuming 

that the bus width is determined and fixed, he can use the average utilization (a 

function of the degrees of interleaving) as an alternate measure of bandwidth. 

The response time can also be normalized with respect to the speed of the 

memory to give the waiting cycle. In the above calculations, the effects of 

dependency are not considered, otherwise, Equations 4.14 and 4. 17 can be used 

to find the values of utilization and waiting cycle with dependency. Using Little's 

Formula, the average number of requests in the memory, or the average 

number in the request buffers can be obtained. The designer can then substi­

tute the values for the average utilization and the buffer size into the formula 

obtained by regression (Table 4.3) to get a polynomial equation as a function of 

the degrees of interleaving and the memory speed. By evaluating the speed for 

different possible degrees of interleaving, the cost of the memory can be 

estimated. The final configuration selected will be the one with the minimum 

cost. 
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The MWFMF scheduling algorithm we have studied in this section is optimal 

in the sense that it minimizes the expected finish time for a finite sequence of 

random, independent requests. Although there exists restrictions and the per­

formance of specially structured computers, e.g. CRAY I, ILLIAC IV, etc are not 

found, our scheduling algorithm is applicable to machines which support 

vector-oriented computing, e.g. TIASC, and array type processors like ILLIAC IV. 

The organizations we have presented in this section can be extended to 

other levels of the memory hierarchy in which the modules can be disks and the 

requests can be disk requests instead of memory addresses. The service time 

distribution of a disk .is not constant as in the case of a memory module. How­

ever, some approximation can be made on the distribution (e.g. by an exponen­

tial distribution) and analysis techniques in queueing theory can be applied to 

the model [BAS75]. In the next section, we return to the original task schedul­

ing problem on the general model. We show a heuristic to schedule tasks and 

the heuristic is evaluated by simulations. 

4.5 A HEUURISTIC FOR THE SCHEDULING OF TASKS ON THE GENERAL MODEL 

We have presented in detail in the last section the design of an interleaved 

memory which is a restriction of the general model we have described in Section 

4.2. Although the task scheduling problem on the general model is NP-complete, 

we see that an optimal average behavior algorithm can be designed when the 

model is sufficiently restricted. 

We would like to return to the original task scheduling problem on the gen­

eral model. Since the problem is NP-complete, a heuristic should be designed if 

it is not feasible to enumerate over all the possibilities in order to find the 

optimal sequence. We present in this section a heuristic for the task scheduling 

problem on the general model. This heuristic is extended from Johnson's 
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optimal two stage flow shop algorithm [JOH54]. and the performance of the 

heuristic is seen to perform reasonably well in a limited number of simulations. 

The heuristic is designed for tasks with the following characteristics: 

(1) Each request has the following precedence graph: 

O<P;(M,)<= 
iEfl, ... ,Nj 

O<P; (Mb.i )<= 

jEfl, ... ,ml 

(2) There are no precedence constraints among requests. 

(3) No preemption is allowed. 

(4) buff(M,) ==and r; = 0 (iE fl, ... , Nl). 

This says that the release times of jobs are 0 and the buffer size of Ma. is 

very large, that is, all the requests are available initially for scheduling. 

(5) O<buff(Mb.l)= ··· =buff(Mb.m.)<= 

That is, all the modules in the second stage have finite, non-zero amount 

of buffers. 

(6) Permutation schedule is desired. 

The heuristic for scheduling this class of jobs is: 

Algorithm 4.4: Heuristic to Schedule Tasks on the General Model 

1. Order jobs that require the service of Mb.j (j = l, ... ,m) in increasing ratios 

of: 

2. Merge the job sequences for different Mb.;'s into one stream using the 

MWFMF scheduling algorithm (Algorithm 4.3). 



214 

3. In the schedule obtained, for any continuous sequence of jobs that require 

the same module on the second stage, reorder using Johnson's Algorithm 

such that x should be scheduled before y if 

min !P,(M,.), Py(Mb,J)l;;;; min !P,(Mb,;). Py(M,.)l 

In step 1 of the algorithm, p is a constant to be selected. The rationale 

behind why the jobs have to be ordered in this fashion is because it is better to 

schedule jobs with smaller processing requirements on Ma first. By doing this, 

the processing on the second stage can be started earlier than if a job with a 

large processing requirement is started on M,. first. Even if two sequences finish 

at the save time, there is more leverage for adjustment in a sequence which 

starts the processing on the second stage earlier. This step only orders jobs for 

each module on the second stage. Step 2 of the algorithm merges these 

sequences together. Since the MWFMF algorithm (Algorithm 4.3) is found to per­

form very well, it is also applied here. Lastly, the sequence obtained can still be 

improved if any two consecutive jobs in the sequence which require the service 

of the same module on the second stage are rearranged using Johnson's algo­

rithm [JOH54]. The reason is because Johnson's algorithm minimizes the finish 

time of a sequence on a two stage flow shop and we are treating Ma and one of 

the Mbj's as a two stage flow shop in this consideration. Some simulations were 

done to determine the performance of this heuristic. This is shown in Figure 

4.24. The results are plotted for 1000 samples of 7 randomly generated jobs. It 

is assumed that ==2, p =2 and four of these jobs require the service of 'mb,l and 

three require the service of Mb,a· Although the amount of simulations is limited, 

it is seen that the performance of the heuristic is very good. Approximately 67% 

of the simulations have no deviation from the optimal performance and only 

about 1% of the simulation deviate by 28% from the optimal performance. The 

exact worst case and average case performance are difficult to be derived 

analytically. 
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4.6 CONCLUSION 

In this chapter, we have studied the task scheduling problem on a DCS. This 

problem is related to the scheduling of tasks after the query has been decom­

posed and the files have been placed on the DCS, and is more related to the 

hardware architecture of the system. Because it is difficult to collect global 

information on the DCS, most of the scheduling decisions have to be made 

locally. We have therefore restricted the general task scheduling problem to the 

problem of scheduling tasks at each node independently. The model for such a 

system is the SIMD model proposed by Flynn [FLYBB]. 

The contributions that we have made in this chapter are: 

(1) We have proved the NP-completeness of the task scheduling problem on 

the SIMD model. These include the cases when the jobs have positive 

release dates, precedence constraints or no waiting space in the second 

stage. Therefore it is unlikely that an optimal sequence can be obtained 

without exhaustive enumeration. 

(2) We have put additional constraints on the model so that the problem 

becomes polynomially solvable. We restrict the processing times of jobs 

so that they are constant and the ratio of processing times of the second 

stage to the first stage is m (where m is the number of modules on the 

second stage). We further assume that each job requires the service of 

one of the modules on the second stage. The resulting model is a model 

of an interleaved memory system for a pipelined processor. We have 

evaluated several alternative scheduling algorithms and have proven that 

one of these algorithms minimizes the expected completion time for a 

finite set of random requests. This algorithm is therefore an optimal 

average behavior algorithm. We have also evaluated the degradation in 

performance due to dependencies in the access stream. 
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(3) We have designed a heuristic for task scheduling on the general model. 

This heuristic is extended from Johnson's two stage flow shop algorithm 

[JOH54]. Although the algorithm is evaluated with a limited number of 

simulations, the performance is seen to be very good. 

In the next chapter, we study some hardware support aspects for data 

management on a DCS. One particular hardware necessary is the associative 

memory which we have used in the design of interleaved memories {Section 4.4). 

This associative memory must be capable of performing equality, and maximum 

searches. There are other hardware designs which are needed to support data 

base operations such as simple retrievals and updates, threshold, proximity and 

minimum searches. We make use of the current LSI technologies to design some 

supporting hardware for data management. 

,. 
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5. HARDWARE SUPPORT FOR DATA MANAGEMENT ON DISTRIBUTED COM­

PUTER SYSTEMS 

5.1 INTRODUCTION 

In the past three chapters, we have discussed some logical solutions to data 

management on a DCS. Some of these solutions do not require specialized 

hardware support, e.g. query decomposition, file placement and migration, 

while some others require dedicated hardware, e.g. the associative memory used 

in request scheduling on an interleaved memory. In general, there is a tendency 

for increasing hardware support for data management functions on a DCS. The 

motivations for this tendency of functional distribution are: 

{ 1) Parallelism 

As the size of information processing grows, it becomes increasingly 

difficult to use a uni-processor to achieve the system's requirements. 

One alternative is to exploit the possibility of using multiple, less expen­

sive and less powerful processors to form a conglomerate of parallel pro­

cessors which can usually achieve the system's requirements in a more 

cost-effective way. 

{2) Crnn7nunicatian overhead 

Processing on large file systems are often I/0 bound. Many of the file 

operations are quite simple and a significant communication overhead is 

incurred in transferring the file to a level of the memory hierarchy 

where the processor can process it. By distributing the intelligence to 

the different levels of the memory hierarchy, parallel processing can be 

performed with very little communication overhead. 

(3) Hardware or fiT77Lware realization of data base functions 

The complexity of data base system software is largely due to the 
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processing of memory mapping operations. Memory mapping operations 

convert the file accesses by a query into actual memory addresses and 

must be highly optimized if they are to perform well. These operations 

often utilize complex data structures to achieve efficiency. On the other 

hand, data base software are divided into modules which perform 

specific tasks. For example, modules may exist for query parsing, direc­

tory access, directory processing, data retrieval and update, and data 

security. These modules usually have diverse capabilities, and 

bottlenecks exist if these modules are executed on the same processor. 

The system performance is consequently degraded. Specialized data 

base hardware solves the above two problems by eliminating the complex 

address mapping operations and utilizing hardware/firmware to replace 

the software. The query is transferred directly from the processor to the 

specialized hardware without address mapping. Then 

hardware/firmware will process the query and realize the data base 

functions. 

As a result, there are many haredware designs proposed to speed up data 

base processing. One of the earliest design is the associative memory [SLA56] in 

which logic is distributed into each cell of the memory so that search operations 

can be performed associatively. Such a design is rather expensive because logic 

is duplicated for each bit in the memory. A more recent design is the data base 

machine [HSI77] which is a remedy to the costly associative memory by sharing 

one piece of the associative logic among a set of physically related data. A set of 

physically related data may be a track on a disk in which case the design is a 

logic per track disk; it may be a set of memory modules, in which case the 

design is an SIMD computer model [FLY66]. Since the designer has the freedom 

of designing the degree and the amount of parallelism, there are a lot of issues 

related to the data base machine design. Some of these issues will be addressed 
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in Section 5. 3. 

In this chapter, we present a design of an associative memory for ordered 

retrieval in Section 5.2 and extend the design to a simple data base machine in 

Section 5.3. In the associative memory design, we present some simple schemes 

for a variety of searches, each of which may be performed in one complete 

memory cycle using bit-memory logic primarily. The searches we study include 

the basic equality search, the threshold searches (both greater than and less 

than searches), the proximity search, and most importantly, the greatest value 

and the least value searches. For each kind of search, we present both the algo­

rithm suitable for our needs and the logic circuit of the memory cell required by 

the algorithm. Based on the basic search schemes, an algorithm for ordered 

retrieval is developed. A comparison for ordered retrieval schemes is then made 

between the proposed scheme and the previous algorithms. It is found that this 

algorithm outperforms all the other algorithms compared, particularly in the 

resolution of multiple responses. Finally, issues relating to LSI implementation, 

manufacturing defects, and modular expansions are discussed. 

In the data base machine design, we investigate some problems that exist 

with the design and show that the design should be made as a combination of 

SIMD and MIMD computer models [FLY66]. Lastly, we show the extension of the 

associative memory to the design of a simple data base machine. 

5.2 A DESIGN OF A FAST CELLULAR ASSOCIATIVE MEMORY FOR ORDERED 

RETRIEVAL 

5.2.1 Previous work 

Content-addressable memories (CAM's), alternatively known as associative 

memories {AM's), have received much attention in the literature since they were 

first described in 1956 [SLA56). The distinguishing feature of such memories is 
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that stored words are accessed by matching some portion of their contents to a 

search word and selecting the first one that matches rather than accessing the 

data using its physical location in the memory as in standard random access 

memories (RAM's). It can be readily seen that CAM's must depend upon a high 

degree of parallelism in their search schemes in order to compete in memory 

access times with RAM's. Large speed improvements can be gained from this 

parallelism and this makes CAM's attractive to a wide variety of applications. A 

good survey of the current technology in CAM's can be found in [PAR73, FOS76, 

HAN66]. 

With the advent of large scale integration (LSI) technology, it becomes 

feasible to economically implement fast search algorithms in CAM's by incor­

porating much of the control logic into the memory plane. Several search algo­

rithms for CAM's have been developed in the past two decades [FEN74, FRE61, 

SEE62, LEW62]. Some algorithms, such as [SEE62] and [YAN66] have been based 

upon distributed logic design, but few have incorporated a high percentage of 

their search logic in the memory cell. An exception to this is found in a design 

by Kautz [KAU69] for a special purpose sorting array. His design is oriented 

towards ordering, rather than searching, of the memory, but does include asso­

ciative capabilities as a byproduct. 

The trend in associative memory design is toward distributed logic. Previ­

ous designs have placed control logic outside the storage logic. These control 

logic include comparison logic, propagation logic, multiple response resolution 

logic, arithmetic logic, etc. In a distributed logic design, the control logic and 

the storage logic are designed together. The controls are brought into the cells 

as part of the storage itself. The cells become more complex and have more 

control functions associated with them, but it also results in more homogeneous 

and modular design. In this section, we propose the basic design of such a 

memory and present some searching and sorting schemes and the 
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implementation of some basic searches using distributed cellular logic which is 

considerably faster than any of the previous sorting methods. The capabilities 

of the cells are actually a subset of the capabilities of Kautz's augmented CAM 

array [KAU71]. Further, the concept and the design of some of the searches 

hav<e been investigated earlier [TUR72, RAM7Ba]. The searches that we examine 

include the basic equality search, the threshold searches (both greater than and 

less than searches), the proximity search, and most importantly, the greatest 

value search and the least value search. 

5.2.2 Symbots used in the Design 

The following conventions are used throughout the design: 

B, The value of the i'th word of memory; 

B,.1 the value of the j'th bit of the i'th word of memory; 

C a priority circuit which is used to sequence response in W 2, W3 , W 4 or W 5; 

D a circuit used to detect responses in W 2 , W 3, W 4 or W 5; 

"•.; the equality state signal for the j'th bit of the i'th word in the equality 

match between Bi.j and R;; 

E,,1 the equality enable signal for the j'th bit of the i'th word in the equality­

inequality search mode and the least value search mode; 

Ei,n+l signal which can be gated to set (or reset) any one of the word control 

registers W z, W 3• W 4 or W 5; 

F,,1 . the enable signal for the j'th bit of the i'th word in the greatest value 

search; 

Fi,n+l signal which can be gated to set (or reset) any one of the word control 

registers W 2 , W g, W 4 or W 5 : 



223 

G the associative memory search mode command (equality-inequality­

proximity mode or the least value mode); 

i an index for a word in the memory, 1~i~m; 

I; the value of the j'th bit of the input/output register I; 

j an index for a bit in the word, 1;£j ;>n; 

k a variable index, 1;£k ;£n; 

L; the less than state signal for the i'th word of memory; a signal which can 

be gated to set (or reset) any one of the word control registers 

W2, Wa. W4 or W5; 

LSB Least Significant Bit; 

m. the number of words in the CAM; 

M; the value of the j'th bit of the mask register M, (used in the least value 

search, the equality search, the threshold searches and the proximity 

search); 

Mj the value of the j'th bit of the mask register M• (used in the greatest 

value search); 

MSB 

MZ 

n 

P; 

Most Significant Bit; 

the set of all bit positions with M; = 0; 

the number of bits in a word of the CAM; 

the synchronization bus signal for the j'th bit-slice in the least value 

search; 

Q; the default-detection bus signal for the j'th bit-slice in the least value 

search; 

r an index in the word control logic, 1;£r ;£5; 
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Ri the signal for the j'th bit-slice shared by the equality-inequality search, 

the proximity search and the least value search; 

S the value of the search register S; 

Si the value of the j'th bit of the search registerS; 

Ti the search-default feedback bus signal for the j'th bit-slice in the 

greatest value search; 

uj the synchronization bus signal for the j'th bit-slice in the greatest value 

search; 

vj the default-detection bus signal for the j'th bit-slice in the greatest value 

search; 

wi.r the i'th flip-flop of the word control register Wr; 

W 1 the word flags register with m flip-flops; 

W 2 - W 5 result stores or temporary stores in the word control logic; 

X;,j the proximity state signal for the i'th word of the memory in the proxim­

ity search; 

Xi,n+l a signal which can be gated to set (or reset) any of the word control 

regisers W 2• W a. W 4 or W 5; 

u abbreviation for logical OR operation; 

E abbreviation for 11 an element of11
; 

V abbreviation for "for all"; 

:=1 abbreviation for "there exists". 

5.2.3 Basic Associative Me7nory Organization 

The associative memory organization shown in Fig. 5.1 is used to implement 

the search schemes to be presented. A bit- slice is a vertical slice through the 

memory as arranged in Fig. 5.1. The j'th bit-slice is made up of the j'th bit of 
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every word in the memory. The search operations are parallel by word and 

serial by bit-slice. A minor cycle refers to the time needed to perform an opera-

tion on a single bit-slice and a major cycle refers to the time needed to com-

plete an operation on all bit-slices of the memory. Hence, a major cycle for the 

present AM organization is composed of n minor cycles where n is the number of 

bits in a word. It is shown later that some searches will require a longer minor 

cycle than others, thereby lengthening the major cycle as well. A "basic" opera-

tion is an operation which may be performed in a single major cycle. 

5.2.4 Definition of Search Operations 

In each of the following search definitions, the set of words involved in the 

search are those where wu=l and iEU, 2, ... , mj. The result of the search par-

titions this set of words into two sets, the set that satisfies the search condition 

and the set that does not. Let B; be the content of the i'th word in the memory, 

S be the content of the search register, and M be the content of the mask regis-

ter. That is, 

" B; = "'2"-i · B· · LJ t,j• 
j=1 

" S = I; 2"-i · S; 
j=1 

and 

" M = I; 2"-; · M;. 
:i=1 

The. search is performed only on that part of the search word which is not 

masked. In other words, only those S; bits for which the corresponding M; bits 

are O's are included in the matching (comparison) process. Let MZ be this set of 

bit positions. Other bit positions with M;= 1 are bypassed. {Note that j= 1 for 

MSB and j = n for LSB.) We define the various searches as follows: 



A. Equivalence Searches 

1) Equality Search: 

B;.;=S;. VjEfl, 2, ... , nj. 

2) Inequality Search: ::1 k E MZ such that Bu;iSk. 

3) Si7nilarity Search (Masked Equality Search): B;.;=S; Vj E MZ. 

4} Proxi7nity Search: There is exactly one k E MZ such that B;.k;iSk. 
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Note: The similarity search is also known as masked-equality search. It 

differs from the equality search in that the mask is effectively not used in the 

latter while it is used in the former search. In most cases, this distinction is so 

insignificant that the "equality search" is used to mean both the equality and the 

masked-equality searches. Unless specified otherwise, we will assume that all 

searches are masked. 

B. Threshold Searches 

1) Greater- Than Search: B;>S. 

2) Less- Than Search: B; <S. 

3) Greater- Than- or- Equal- To Search: Bi~S. 

4) Less- Than- or- Equal- To Search: B;;i,S. 

C. Double- Li7nits Searches 

1) Between- Limits Searches: Let X and Y be the limits such that X > Y. 

Then B; is 

a)< X and> Y, 

b) < X and ;;; Y, 

c) ;i, X and> Y, 

d) ;;,x and ;;; Y. 

2) Outside- LiTnits Searches: Let X and Y be the limits such that X < Y. 

Then B; is 

a)< X of> Y, 



b) <X or;;; Y, 

c);:> X or> Y, 

d) ;:> X or ;;; Y. 

D. Extremum Searches 

1) Least Value Search: Bi;:>Bto Vk;ii and k E fl, 2, .... m!. 

2) Greatest Value Search: Bi<;Bko Vk;ii and k E fl, 2, ... , m!. 

E. Adjacency Searches 

1) Nearest- Above Search: if k E fl, 2, ... , m! such that B,>Bk>S. 

2) Nearest- Below Search: if k E f 1, 2, ... , m! such that B, <Bk <S. 
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There are other non-search operations that can be performed in associative 

memories. These include word addition, field addition, summation, counting, 

shifting, complementing, logical sum, logical produuct, etc. Devices that incor­

porate non-search operations may be referred to as associative processors 

[FOS76]. We will not investigate further on non-search operations in this 

chapter. 

5.2.5 Algorithms and Implementations of Basic Searches 

We define a basic search as one which can be completed in exactly one 

major cycle, assuming multiple response resolution as an operation separate 

from search operations. This definition applies only to the configuration of the 

CAM in Fig. 5.1. A multiple response is a situation when more than one word 

satisfies the given search condition. The multiple response resolution resoles 

this situation by means of a priority circuit [FOSBB] or other schemes, e.g., 

[LAN77, HIL66a, WEI63], and outputs all the responders one at a time. Among 

the searches listed in the previous section, not all of them can be economically 

implemented as basic searches. Therefore, we choose to implement those 

searches which are most frequently used as basic searches while the rest can be 
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performed in a series of the basic searches. As an example, the between-the­

limits search (Y :!i.B,<X) can be generated by performing a less-than search {<X) 

followed by a greater-than-and-equal-to search (<;Y) on the reponders of the 

first search. In the implementation to be presented, the basic searches are the 

equality search, the similarity {masked equality) search, the proximity search, 

the four threshold searches, and the two extremum searches. Each of these 

basic searches can be performed alone or a few combinations of them can be 

performed simultaneously. These searches are grouped into three groups called 

Mode A, Mode B, and Mode C operations. The Mode groupings are as follows. 

Mode A: The equality search, the similarity search, the proximity search and 

the four threshold searches. 

Mode B: The least value search. 

Mode C: The greatest value search. 

Searches in Mode A can be performed simultaneously. Furthermore, Mode A or 

Mode B operations can be performed simultaneously with Mode C operations. We 

will assume that positive logic is used throughout our designs. It should be 

noted that not all of these searches are required in a specific application. They 

are presented here for completeness. 

5.2.5.1 Mode A: Equaluy- Threshold- Proxi"Tnity Search Mode 

In the equality-threshold search, the CAM is partitioned according to the 

magnitude of the search word S into three sets, namely, words which are equal 

to S, words which are less than S, and words which are greater than S. The 

result ·of this search mode is stored in two of the word control registers, W 2 and 

W 3, and the interpretation is given in the algorithm to follow. Further, in the 

proximity search mode, the CAM is partitioned into two sets, words which are 

near to S, and words which are not. The results of this are gated into W4 . Note 

that if it is not necessary to preform the proximity search together with the 
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threshold searches, then register W 5 can be eliminated from the design. This 

search mode is characterized by the signal G=O, which gates the contents of the 

search registerS to the search bus. That is, R1 = S1VjEf1, 2, ... , nj. The basic 

searches performed in this mode are the equality search, the four threshold 

searches (namely, >S, <S, ~S, and ~S ). and the proximity search. M1=0 means 

that SJ is not masked while Mt=1 means s1 is masked. 

The three query states are shown in the following table. 

Query State 
0 
0 
1 
1 

0 
1 
0 
1 

() 

1 
d 
d 

d = don't care 

Algorith'Tn 5. 1 - Mode A Search Operation 

1) ViEf1,2,, ... ,7rL! 

a) Initialization: 

S +- Search word, M +- Mask, G = 0, j = 0, 

b) Data Path Setting: 

These data paths and the control signal G are held until the completion of 

the major cycle. 

2) Let j +- j + 1. 

3) Co7npute ViE! 1, 2, ... , 7n! simultaneously 

b) E· '+I= E· ··e· · 'I.,J 1.,J 'I.,J. 

c) d· · = E· ··B· ··i'- . 1 
~.J ~.J '&.,:J 'I.,J. 

1 di,j will be sensitive to Bi,j and only to tbe first bit mismatch between Bi and S. A simpler 
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d) 

j 
L,· = u d; k (wired-OR), 

k=t • 

4) Isj=n? 

a) Yes - Proceed to step 5 ). 

b) No- Proceed to step 2). 

5) Result Interpretation: 

For those words i with Wu=l, 

W· o( L·) W· o( E- ") Inter ion (Eaualitv-Threshold search) 
0 0 B; is greater than search word. 
0 1 B; matches search word 
1 0 B; is less than search word 
1 1 r does not occur l 

w,L( )(, ·') w,. ( K u) ,,.. ••inn imH.v ~· ,) 

0 0 B; is not near to search word 
0 1 B; matches search word 
1 0 B; is near to search word 
1 1 r does not occur l 

In this search algorithm, the minor cycle is composed of step 3) alone while 

the major cycle is composed of steps 2)-4). The result of this search mode is 

handled by the match detector D in the word control logic. Any multiple 

responses is resolved by the priority circuit C. The bit-cell logic needed to 

implement this equality-threshold-proximity search mode is shown in Fig. 5.2. 

The delay in each minor cycle is one gate delay for the equality-threshold 

searches and three gate delays for the proximity search. The following example 

shows the state of L,, Ei.j+t and Xi.J+t for a Mode A search of 6 words, each 5 bits 
~-------------------------:;;;_------:::.;;:.. 

design using d;.,j=E·.i+l'Bi.:j can be used. In this case, r4.; will be sensitive to all mismatches 
between Bi and S. Since _i;i is obtained by wired-ORing d;.,j 's. the final output voltage of tlle wired-
OR will depend on the number of mismatches. It will be more appropriate to eliminate this depen­
dence by only taking the first mismatch as what is done here. We must confess that the exact design 
is highly technology-dependent. 
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long. 

Example 5. 1: "Mode A" Search Operation 

Search Word-S 10110, 

Mask Word- M 00100, 

Effective Search Word-S' 10d10 (d = don't care). 

i B; State of (L;, E;,J+I. Xi.J+I) lines 
at the end of the minor cvcle 

j,.-0 1 2 3 4 5 
1 10111 010 010 010 010 010 001 
2 11000 010 010 001 001 000 000 

memory 3 10010 010 010 010 010 010 010 
words 4 10110 010 010 010 010 010 010 

5 10101 010 010 010 010 101 100 
6 01101 010 101 100 100 101 100 

For interpretation of L;. E;.6• X;,a see step 5) of Algorithm 5.1 for Mode A search 

operations. 

5.2.5.2 Mode B: Least Value Search Mode 

In this mode, the search register is no longer needed because no search 

word is used. However, the minor cycle is more complicated than that in Mode 

A. It now consists of a comparison phase and a default phase. Consider the j'th 

minor cycle. In the comparison phase, one of the three conditions is to be 

detected: 

1) that the bit-slice is masked, 

2) that the bit-slice is not masked and at least one enabled bit-cell contains a 

"0", and 

3) that the bit-slice is not masked and all enabled bit-cells contain "1"s. 

In the first case, all the enable signals to this bit-slice are passed on to the next 

bit-slice on the right. In the second case, those enabled bit-cells containing "O"s 

pass its enable signal to the next bit-cells on the right. In both cases, the minor 



234 

cycle is complete. The third case, however, is called the default case and the 

default phase is entered. The default condition is detected in the default­

detection bus and the default signal Q1 is fed back to the bit-slice via R1. R 1 is 

connected to the default feedback circuitry (R1 = Pr Qj" G) when this search 

mode is activated by setting G = 1. P1 is a synchronization signal and it also 

serves as the search signal in the comparison phase. After the default phase, all 

the enabled bit-cells pass their enable signals to the next bit-cells on the right, 

thus completing the minor cycle. The result of Mode B can be stored in one of 

the result/temporary store registers because Mode A does not operate simul­

taneously with Mode B. 

The implementation of the Mode B search in bit-cell (i,j) is shown in Fig. 5.3. 

Note that this implementation shares much of the circuitry with that for Mode A 

and that at the beginning of the j'th minor cycle, R1 = 0. 

Atgorith7n 5.2- Mode B Search Operation- The Least Value SearchAtgorith7n 

1) ViEf1,2, ... ,7TLl 

a) Initialization: 

G = 1, j = 0, w;,1 = 1, w;.z = 0, 

b) Data Path Setting: 

Gate Ei.n+l to w;.z, w;.l to Ei.l. 

The data paths and the control signal G are held until the completion of 

the major cycle. 

2) Let j <- j + 1. 

3) Minor Cycle: 

a) Co7nparisonPhase: Compute ViEf1, 2, ... , 7nl simultaneously. 
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i) E· "+I = E· ·· e· ·. 1.,j 'I.,:J 1.,:J 

ii)p;,;(t) = E;,;(t - 2) (delay element used to synchronize the feedback of 

Q; via Rn. 

iii) 

q;,; = 1 means that B;,; is enabled and equals 0. 

iv) 

m 
P- = up· - (wired-OR). 

J i=l 't.,:J 

m 
v) Q;=i<;,

1
q;,; (wired-OR), 

Q; = 1 means at least one enabled bit in the j'th column is 0. 

vi) 

b) IsR; = 1? 

i) Yes -Default detected, proceed to step 3c). 

ii) No -Default inhibited, proceed to step 4). 

c) Default Phase: Compute E;,;+t = E;.;· 

4) Is j = n? 

a) Yes- Proceed to step 5). 

b) No- Proceed to step 2). 

5) Read out the words that are indicated by w;,2 = 1. 

Example 5.2 shows an example search of Mode B operation on 5 words, each 

10 bits long. 

Exam.ple 5.2 "Mode B" Search Operation 

a) WORDS in which the least value is to be retrieved: 
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Word Bit Positions Order 
Number 1 2 3 4 5 6 7 B 9 10 of 

{i) (j) Retrieval 
1 0 0 1 1 0 0 1 0 0 1 3 
2 0 0 1 0 1 0 0 1 0 1 1 
3 1 0 0 1 1 0 0 0 0 1 5 
4 0 0 1 0 1 0 1 0 1 1 2 
5 0 0 1 1 0 0 1 0 1 1 4 

b) STATES of all enable lines (Ei,f+l) at the end of the major cycle: 

Word 
Number 0 1 2 3 4 5 6 7 B 9 

i 
1 1 1 1 1 0 0 0 0 0 0 
2 1 1 1 1 1 1 1 1 1 1 
3 1 0 0 0 0 0 0 0 0 0 
4 1 1 1 1 1 1 1 0 0 0 
5 1 1 1 1 0 0 0 0 0 0 

Note: Minor cycles 3, 5, 8 and 10 go through the default phase. 
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c) Timing diagram for bit-slice 3 in the major cycle: 

\ ' G~1 Time in gate delay units 

·----------- 0 1 2 ••• 

~ R3 p ...... 
3 - -

p3 Q3 
- ·------------

E .... .- 61,3 
= 1 q1. 

1,4 

3 

P1,3 

' 
E 

.,. 62,3 
~ 1 q2, 

2,4 

3 

P2,3 
E 

,.,. 63,3 
3,4 

= 0 q3, 3 

P3,3 
E 

' 84,3 ,_, 
= 1 q4, 

4,4 

3 -
P4,3 

E 
85,3 
= 1 q5, 

5 4 Note: 
• 

3 

Signals for bit-cells (2,3), 
(4,3) and (5,3) are the same 
as those for bit-cell (1,3). 

P5,3 
Bit-slice 3 

t
0

: Starting of minor cycle for bit-slice 3; 

t 5: Default condition detected; 
t
8

: End of minor cycle for bit-slice 3; 
FROM t

0 
TO t

5
: Comparison phase of minor cycle; 

FROM t 5 TO t 8: Default phase of minor cycle. 



239 

(d) Timing Diagram for Bit-slice 4 in the Major Cycle 
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t 3: Bit-slice control logic in stable state. 
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5.2.5.3 Mode C: Greatest Value Search Mode 

In the implementation of the least value search scheme, the speed for 

searching is traded for less hardware in each bit-cell by sharing much of the 

logic with the equality-inequality search. Had it not been required for the latter 

search, the comparison time for the least value search could be shortened by 

looking only at the content of the bit-cell, and the default time could be shor-

tened by looking at the feedback signal. Since the least value and the greatest 

value searches are analogous to each other, we shall demonstrate the speed-up 

design for the greatest value search. The implementation of the new design is 

illustrated in Fig. 5.4 which shows the complete design for each bit-cell. With 

this implementation, Mode C operations can be executed simultaneously with 

either Mode A or Mode B operations. Note that Ti = 0 at the beginning of the j'th 

minor cycle. 

Algorith-m 5.3- Mode C Search Operation- The Greatest Value Search Algorith-m 

1) ViEf1,2 ..... -mj 

a) Initialization: j = 0, w;.1 = 1, w;,5 = 0, 

b) Data Path Setting: Gate F;.n+l to w;.4 • and wu to F;,1• 

The data paths are held until the completion of the major cycle. 

2) Let j <- j + 1. 

3) Minor Cycle: 

a) Co-mparison Phase: Compute ViEf1, 2, ... , -mj simultaneously. 

i) F- '+I= F· ··(M~· + B· · + T-) 
'l.,j 'I.,J J t.J ' 

ii) U;,j(t) = F;,j(t - 1) (delay element used to synchronize the feedback of 
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iii) 

v;,j = 1 means that B;,j is enabled and equals 1. 

iv) 

m 

Ui = ;;', U;,f (wired-OR). 

m 
v) vi = i;'l Vi,j (wired-OR). 

V1 =1 means at least one enabled bit in the j'th column is 1. 

vi) 

Ti = Ui V1 (wired-AND). 

i) Yes- Default detected, proceed to step 3c). 

ii) No -Default inhibited, proceed to step 4). 

c) Default Phase: Compute Fi,JH = F;,j. 

4) /s j = n? 

a) Yes- Proceed to step 5). 

b) No- Proceed to step 2). 

5) Read out the words that are indicated by w;,5 = 1. 

5.2.6. Ordered Retrieval 

A. Ascending Order Retrieval 

The ascending order retrieval of a set of data can be achieved by perform-

ing the least value search repeatedly until all the data are retrieved. With the 

CAM organization that we have presented, a microprogram in the Memory Con-

trol Store provides an economical and efficient implementation of such a 

retrieval algorithm. A flow chart for an ascending order retrieval algorithm is 

shown in Fig. 5.5. 



Set flags of 
a 11 words to 
be retrieved 

Execute Mode B 
search op. 
on flagged 

words in AM 

Obtain one 
selected word 

,--.....; from Word 

yes 

(Multiple 
responses) 

Control Logic 

Reset flag of 
selected word 

yes 

Figure 5.5 Flow Chart for Ascending Order Retrieval 
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B. Descending Order Retrieval 

The algorithm described for ascending order retrieval can be modified for 

descending order retrieval by substituting the greatest value search for the 

least value search. That is, Mode C search operation is executed in the CAM 

instead of Mode B search operation. Hence, the algorithm for descending order 

retrieval is to perform the greatest value search repeatedly until all the data 

are retrieved. 

5.2.7 Some Speed- up Techniques 

The design shown here have 1 to 3 gate delays per minor cycle in each of 

the Mode A search operations.2 The delay in Mode B operations ranges from 3 to 

B gate delays per minor cycle, 3 while for Mode C operations, it ranges from 1 to 4 

gate delays per minor cycle. We now consider several techniques that can be 

used to reduce the search times. The four areas that bear investigation are too-

kahead techniques, external examination of retrieval process, implementation 

of additional basic operations, and modifications to the scheme involving greater 

parallelism in the search. 

In the first area, lookahead logic can be added to each word in the memory. 

The algorithms we have described previously are all bit-serial and word-parallel 

in nature. This means that the enable signals for each word propagate from bit 

to bit and operations for each word are performed in parallel. The speed of a 

search operation is therefore proportional to n where n is the number of bits in 

2 Assuming that all the ei, · signals are available before the search begins, there is one gate de­
lay per minor cycle in the equ~ity-threshold search while there are 2 to 3 gate delays per minor cy­
cle for the propagation of the xi,j signal. 

3 In the case of the least value search, the maximum and the minimum delays are actually 
shorter. The ei J signal of each bit-slice can be assumed to be settled before the major cycle starts 
(see Fig. 5.4). Thls means that the Mi lines are enabled ahead long enough for the ei,j signal to set­
tle. In this case, the minimum time to pass through each bit-slice is 1 gate delay. The maximum 
time to pass through each bit-slice is also shorter than 8 (the maximum gate delay count). When de­
fault occurs, Bi.j = 1 for all enabled words. Therefore, output from gate 7 is 0 and the feeddback 
through R1 never has to go through gate 4. Hence, the maximum delay through a bit-slice is 7 gate 
delays. 
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each word. We can increase the speed by adding some lookahead logic to each 

word. Each word is segmented into contiguous groups of bits of equal size k, and 

a lookahead circuit is added to each group (assuming k is a factor of n ). Each 

lookahead circuit operates on all the bits in its group in parallel and passes the 

result onto the next group when it has finished. The speed of an equality-

proximity search operation using this lookahead circuit will be proportional to 

n k' but for extremum searches, no improvement is found. This type of looka-

head is essentially single-leveled or cascaded. This means that the signals still 

have to propagate from group to group instead of from bit to bit, and the looka-

head circuits exist in a single level above the storage circuits of each word. The 

cellular property of the design is preserved because a group, instead of a bit in a 

word, can now be regarded as a cell. We will not investigate other types of loQka-

head circuits, e.g., tree-lookahead circuits, because they do not preserve the 

cellular property. We now illustrate the construction of these lookahead circuits 

for the equality-proximity and the Mode B and Mode C searches. 

An examination of the equality-proximity search operation shows that each 

of the E;,;+l signals propagates from bit slice j to bit slice j + 1 in one gate delay 

where j ranges from 1 to n. Similarly, the X;,; signal propagates from bit-slice j 

to bit-slice j+ 1 in 2 to 3 gate delays. Improvement can be achieved by grouping 

bits in each word and performing the comparisons in parallel. An example is 

shown in Fig. 5.6 where the necessary lookahead logic for grouping bits j and j + 

1 of word i is shown. In the equality search, comparisons in each group are done 

in parallel. The results of comparison, e;.j+l and e;,;+2 , are ANDed together with 

E;,f to form E;,;+2 • The propagation time for these two bits is 1 gate delay 

instead of 2 in the usual bit serial operation. The speed of the equality search 

will therefore be proportional to ~ gate delays. The number of gates for the 

propagation of E;.; signal is also reduced from 2 to 1 for bit-slices j and j+ 1. 
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Similarly, in the proximity search, gates A and B of Figure 5.6 detect the condi-

tion when only one mismatch occurs in the group slice and gate C detects the 

condition when there is no mismatch in the group slice. The logic equation for 

xi.j+2 is: 

Xt.J+2 = X;.1·(ei.J+fe>.J+2) + X;.J·E;.j·(e;.j+!oei.J+Z + ei.J+l""t.j+2) 

which is similar to the Xt.j+t equation in Algorithm 4.1. However, in this case, 

the propagation delay has been reduced to 3 instead of 6. The number of gates 

required is also reduced by a constant factor. 

For Mode B and Mode C operations, lookahead requires more hardware. The 

existence of default cases have caused the increased complexity. Previously, 

without lookahead, default is detected for a bit-slice when certain conditions 

exist on all enabled words in that bit-slice. These conditions include 1) all 

enabled words have 1's in this bit-slice for the least value search and 2) all 

enabled words have O's in this bit-slice for the greatest value search. The 

number of default feedback lines is 1 for each search mode. When a lookahead 

circuit is added to each word for a group of k bit-slices, the number of default 

feedback lines will be 2"". These 2k lines can be shared by both the least value 

search and the greatest value search. Consider a particular group; the following 

operations are to be carried out: a) The bits of each word in this group are 

decoded into 2k lines. b) The corresponding lines from each word of this group 

are wired-ORed together to form default feedback lines 0 to 2k - 1; a particular 

feedback line p will be 1 when there exists an enabled word in this group whose 

decoded value equals p. c) In the group-slice control logic, if it is a Mode B 

operation, it will scan from feedback lines 0 to 2k - 1 until the first line with a 1 

is found; similarly if it is a Mode C operation, it will scan from feedback lines 

2• - 1 to 0; this line will represent the minimum/maximum of all these enabled 

words in this group. d) This line is encoded into k search bus signals to be fed 

back to each word in this group. e) In a particular word, the enabled line for the 
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next group is enabled if the current group of this word is enabled and the value 

of this part of the word equals the search bus signal, i.e., it equals the 

minimum/maximum value found by the group slice control logic. However, 

there are some disadvantages of using lookahead on Mode B and Mode C opera­

tions. The extensive amount of decoding requires an order of 2k gates of fan-in 

k for each group in each word. For each group-slice, thez;e are 2k default feed­

back buses running across all the words and this can cause difficulty in 

integrated circuit implementation. The biggest difficulty, however, lies in the 

implementation of the scanning algorithm in the group-slice control logic. The 

algorithm of scanning across a set of lines until the first 1 is found is essentially 

a multiple match resolution problem. If a tree-type multiple match resolution 

circuit is used, e.g., [FOS6B], a maximum delay of log22k = k will be observed. 

That is, the overall speed of a group of bit slices, with or without lookahead, is of 

the order of k. Unless a faster multiple match resolution circuit is used, and 

the cost of hardware is sufficiently low, lookahead for Mode B and Mode C 

searches is not cost-effective. 

An examination of the example illustrated in the previous section points out 

another possible source of improvement, this time in the algorithm itself. In 

many cases the number of words still enabled at the end of a minor cycle 

rapidly drops to one within a few minor cycles. At this point the completion of 

the major cycle is a formality since the greatest( or the least) valued word must 

be the only remaining enabled word. Unfortunately the detection of this condi­

tion, the only-one-respondant-left condition, is too complex to be performed at 

the end of every minor cycle, and would require extensive external wiring and 

logic. 

We have implemented some of the search operations defined in Section 

5.2.4 as basic operations. Some other useful searches may be performed by 

combining two or more basic searches and possibly some nonsearch operations. 
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An example is the between-the-limits searches, which is generated by perform­

ing a less-than search followed by a greater-than search on words selected by 

the first search. In fact, all the searches described in Section 5.2.4, can be per­

formed as a basic search or a combination of basic searches designed in this 

section. Speed improvements can of course be gained by implementing all of 

these search operations as basic searches, but the amount of logic circuits may 

be extensive. In most other cases, the more complicated searches, such as the 

case of ordered retrieval, are implemented as a combination of simple searches. 

One modification to our ordered retrieval technique that yields positive 

results without compromising our cellular logic approach is to increase the 

parallelism of the algorithm itself. This can be done by simultaneously perform­

ing the greatest value search and the least value search on the same set of 

enabled words. The associative sort is complete when both searches select the 

same word, an easily detectable condition, or when no words are still enabled at 

the beginning of a major cycle, also an easily detectable condition. A small addi­

tional amount of external manipulation of the sorted file block is required by the 

non-associative processor controlling the sort to concatenate the two halves of 

the sorted block since one will be in the reverse of the desired order, but it is 

felt that this is a small price to pay for a speed-up factor of greater than 2. This 

technique is shown in Example 5.3 that follows. 

The speed-up involved in this approach is greater than a factor of 2. To 

understand why it is greater than a factor of 2 instead of exactly equal to 2, we 

must consider the properties of the fields to be searched. Assuming an even dis­

tribution, there is on the average one more bit with the value "1" in the higher 

valued half of a sorted file than in the lower valued half of the same file. This can 

be verified in Example 5.3a). The greatest value search has a shorter minor 

cycle time for bit positions with a value of "1" in the word with the greatest value 

than for bit positions with a "0" in the word with the greatest value. Likewise, 
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the least value search has a shorter minor cycle time for bit positions with a 

value of "0" in the word with the least value than for bit positions with a "1" in 

the word with the least value. This provides for an average major cycle time five 

gate delays shorter than if all words were to be selected in an ordered retrieval 

by either search alone (assuming the delay for each minor cycle of both Mode B 

and Mode C search operations ranges from 3 to 7 gate delays). The design for 

this technique has been indicated in Fig. 5.4. 

Example 5.3: "Mode B" and "Mode C" Parallel Operation. 

a) WORDS to be retrieved: 
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A= Number Ascending 
Word Bit Positions of 1's Order of 

Number 1 2 3 4 5 6 7 8 9 10 2er Word Retrieval 
1 0 0 1 0 1 0 1 1 0 1 5 12 
2 1 1 0 0 1 0 0 1 0 0 4 20 
3 0 0 0 0 1 1 1 1 0 1 5 6 
4 1 1 1 1 1 1 0 0 0 0 6 30 
5 0 0 1 0 0 0 0 0 0 0 1 11 
6 1 1 1 0 0 0 0 1 0 0 4 23 
7 0 0 0 0 0 0 0 0 0 0 0 1 
8 0 1 0 1 1 1 1 1 0 1 7 14 
9 1 1 0 1 0 1 0 0 1 0 5 21 
10 1 1 1 1 0 0 1 1 0 0 6 28 
11 1 1 0 1 1 1 1 1 1 1 9 22 
12 0 0 0 1 1 1 1 0 1 1 6 10 
13 0 0 0 0 0 1 1 1 1 1 5 4 
14 0 1 1 0 1 0 1 1 1 1 7 15 
15 1 1 1 1 1 1 0 1 1 0 8 31 
16 1 1 1 0 1 0 0 0 0 0 4 26 
17 1 1 1 1 1 0 0 0 0 0 5 29 
18 1 1 1 0 0 0 1 0 0 1 5 24 
19 0 0 0 0 0 0 1 0 0 1 2 2 
20 1 0 1 0 0 0 0 0 1 0 3 19 
21 0 0 1 1 0 1 1 0 1 1 6 13 
22 0 0 0 1 0 1 1 1 1 1 6 7 
23 1 1 1 1 1 1 1 1 1 1 10 32 
24 0 0 0 0 0 0 1 1 1 1 4 33 
25 0 1 1 1 1 1 0 1 1 0 7 16 
26 0 0 0 1 1 0 1 0 1 1 5 8 
27 1 1 1 0 0 1 0 1 0 0 5 25 
28 0 0 0 1 1 1 0 1 1 0 5 9 
29 1 1 1 1 0 0 0 0 1 0 5 27 
30 1 0 0 1 0 1 0 0 0 0 3 18 
31 0 0 0 0 1 1 0 0 1 1 4 5 
32 1 0 0 0 0 0 1 0 0 1 3 17 

Number of 1's in memory: 160 

Number of bits in memory: 320 

Number of l's per word in the smaller half of the ordered list= 4.69. 

Number of l's per word in the larger half of the ordered list = 5.31. 

b) ORDER of retrieval in parallel operation: 

Let Ln and Lc be the lists of words retrieved by Mode B and Mode C search 

operations, respectively. Both lists are ordered with respect to time. in Gate 

Delay Units. at which they are retrieved," and neglecting overhead time between 

major cycles. Assume that for the least value search, the gate delays for each 



252 

minor cycle range from 1 to 7 and that for the greatest value search, they range 

from 1 to 4. 

L, Time 11 Lr. LH Time« Lr. Ln Time 11 Lr. 
Start 0 Start - 173 27 5 368 -

7 10 23 3 180 - - 385 32 
- 26 15 - 198 18 - 404 25 

19 32 - 22 226 6 1 408 -
- 48 4 - 239 11 - 423 14 

24 66 - - 264 9 - 442 8 
- 73 17 26 266 - 21 454 -
- 95 10 - 292 2 End of Retrieval 

13 106 - 28 306 -
- 120 29 - 323 20 

31 140 - 12 352 -
- 148 16 - 354 30 

"' Time in Gate Delay Units 

Throughput = 454 gate delays (32 * 10) bits = 1.42 gate delays/bit. 

5.2.8 Issues and Limitations 

We have presented a design of an associative memory that can be used for 

fast ordered retrieval. From Example 5.3, neglecting the overhead in loading 

and unloading the memory, the sorting speed is 1.42 gate delays per bit. This 

design is therefore very attractive and can be used in many places where fast 

searching and sorting is required. However, there exists many issues that need 

to be carefully considered and resolved before successful operations can result. 

We discuss four of these issues here, namely, LSI implementation, manufactur-

ing defects, modular expansion, and multiple match resolution. We do not con-

tend that they exhaust all the issues in this design. New issues may come up 

during the implementation phase and will have to be resolved by the designer. 

5.2.8.1. LSI Implementation 

In Fig. 5.4, a complete design has been shown. Each bit cell requires 17 

gates. There are extra logic associated with the registers and the controls. 
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Consider a 32-bit word and a 32-word memory. This design needs over 17,000 

gates for the logic in the bit-cells only, excluding all other registers, memory 

cells and control logic. Therefore, the memory size that can be effectively 

implemented on an LSI chip is very limited. One solution is to reduce the 

number of functions in a cell when the application does not call for it. However, 

this is very much application dependent. Furthermore, the number of pins on 

the LSI package also limits the word size. In order to maintain fast response and 

high throughput, parallel reading and writing of bits of a word in the memory is 

necessary. The major portion of the pins of an LSI package is usually taken up 

for parallel reading and writing. For a 32-bit word memory, the pin requirement 

is 32 plus a few controls and selections. On the other hand, the pin limitation 

will put a maximum word size that can be implemented. It becomes obvious 

that modular expansion is necessary in order for this design to be practical. 

The issue of modular expansion is discussed later. 

5.2.8.2. Manufacturing Defects 

After the LSI chip has been manufactured, tests are made to determine 

whether any cells are faulty. A faulty cell can be determined by injecting cer­

tain test patterns into the memory. If the number of defects are small and their 

locations can be determined up to the locality of certain gates in the cell, then 

these faults can be bypassed by utilizing some spare bit-slices designed into the 

memory. The difficulty in recovering an error in a faulty cell of the CAM is that 

the error may not only affect the word itself, but it may also affect other words 

because the value of the faulty bit is available to other words via the feedback 

circuitry. Therefore, it may be necessary to remove the current bit-slice or the 

current and all bit-slices to the right from operation when an error occurs in a 

cell. We have assumed that only stuck-at faults can occur in the gates of 

memory cells and bit-slice control logic. Faults occurring in registers and con-
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trol store are not considered since the logic there is only a small fraction of all 

the logic on the chip. By assuming that the j'th bit of the i'th word is faulty, we 

can identify three types of faults, one in which the j'th bit-slice has to be 

removed from operation, one in which the i'th word has to be removed from 

operation and one in which all the remaining bit-slices are rendered useless. 

Referring to Fig. 5.4, for faults that occur in gates 14-17 and the bit-slice control 

logic, they only affect the feedback values but they do not affect the enable lines 

so long as the mask bit is 1, that is, the bit-slice is masked off. This can be done 

by setting a 1 permanently in the j'th bit of the mask registers and shifting the 

external pin connection to the chip by 1 bit. For faults {stuck at 0 or stuck at 1) 

that occur at gates 2. 4-13 and the storage cell lB. and for stuck at 0 faults at 

gates 1 and 3, they do not affect the remaining words so long as the enable sig­

nals are set to 0, that is, the i'th word is disabled. This can be done by setting a 

0 permanently in the i'th position of the word flag register W 1 and the 

result/temporary registers W 2 - W 5. For stuck at 1 faults that occur at gates 1 

and 3, they affect the enable lines for the next bit-slice. If an enable line has a 

faulty value of 1. that is, the remaining bits of this word are enabled regardless 

of whether the current word or bit-slice are masked off, it may cause a faulty 

feedback to other bit-slices on the right. So unless all the remaining bit-slice 

are masked off, the fault that occurs in cell {i,j) will propagate to these bit­

slices. A finer recovery procedure can be developed if we can identify the 

corresponding words to be disabled for a particular search operation. 

From the above discussion. we see that recovery from manufacturing 

defects are easy and most of the faults are recoverable. 

5.2.6.3. Modular Expansion 

Our philosophy of the associative memory design is that we want to distri­

bute the logic into the storage cells. In order for all the distributed logic to per-
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form coherently, extra communication lines are needed to transfer enable and 

feedback signals from bit to bit. The number of these communication lines are 

usually large and this will eliminate the possibility of modular expansion which is 

easy in the case of RAM's. Consider our design in Fig. 5.4, each cell has 4 enable 

lines to communicate with the cell on its right; and each bit-slice has B lines 

which are used for feedback, synchronization and mask. These lines run across 

all words in the bit-slice (these exclude lines needed to read and write data into 

each bit). Suppose a memory chip of m words by n bits is available. To extend 

the word size of this memory, we can put 2 memory chips together side by side 

as shown in Fig. 5.7(a). However, this design needs 4m lines to pass the enable 

signals from the chip on the left to the one on the right. This is not feasible even 

for a small m. To extend the memory size, we can put 2 chips one over the other 

as shown in Fig. 5. 7(b). This design needs Bn feedback lines to pass the feed­

back, synchronization and mask signals between the two chips. Even for a small 

value of n, the number of interconnections is very large. In order for our design 

to be practical, some other schemes of modular expansion are necessary. In 

Fig. 5.7(c), we show a scheme that allows us to extend the memory size by 

increasing the dimensions of the memory. A batch of m memory chips are put 

together in parallel. There is an extra dimension and is composed of a single 

memory chip running across the m parallel chips. A flow chart for an ascending 

order retrieval algorithm of m 2 words is shown in Fig. 5.8. The time needed to 

orderly retrieve m 2 words is m 2 + m units of load time (time to store a word 

into the memory) and m 2 + m units of search time (a search time includes the 

time to execute a Mode C operation and to read it out into the 1/0 register). The 

amount of search time can be reduced to m 2 + 1 units of search time when the 

Mode C searches in chips 1, ... , m are performed in parallel with the Mode C 

searches in chip 0. In a single memory chip which can accomodate rn 2 words, 

the time needed for this memory system is 771
2 units of load and m 2 units of 
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search time. Therefore the degradation in performance is minimal when m is 

large. For a memory size larger than 1n
2 words, extra dimensions are needed. 

We conclude that our scheme on memory expansion has minimal degrada­

tion on performance. The difficulty still exists in word size expansion. The limi­

tation is due to the pin requirements. However, we can trade performance for a 

smaller amount of external pin connections by loading bits of a word in groups 

instead of all in parallel. However, the degradation in performance due to this 

loading scheme is more pronounced than our memory size expansion scheme. 

5.2.8.4. Multiple Match Resolution 

One of the most useful applications in our design is in the multiple response 

resolution. A tag field can be included in each word. Each tag is a distinguish­

able number. The size of each tag must be at least flog2Tnj for a memory size m. 

When there are multiple responses, each tag serves as a number for the ordered 

retrieval scheme. The words used in the ordered retrieval are those that 

respond. Only the bit-slices containing the tag are used in the search. The first 

cycle can retrieve 2 words, the one with the maximum tag, and the one with the 

minimum tag. Subsequent searches give 2 responses each time. The speed of 

this resolution scheme is ! memory cycle per word and is independent of the 

memory size. 

There are two disadvantages in using tags for multiple match resolution. 

First, there are irregularities in implementation. Because each tag has a distin­

guishable value and if each tag is hardwired into the memory, it will involve a 

different design for each word and it will also be difficult to overcome the prob­

lem of manufacturing defects when a cell in the tag is bad. This problem can be 

solved by loading the tags from a PROM when the memory is first used. Second, 

when a cell in the tag becomes bad during operation, e.g., stuck at 0, then two of 
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the words in the memory have identical tags and it is impossible to distinguish 

them. 

We can also perform the multiple match resolution without using special 

fields as tags. This can be done by treating the contents of each word or part of 

the word as a tag itself. It requires all words under consideration in the memory 

to be different in order for unique responses to result. 

5.2.9 Co7npr:trisons with Other Methods of Ordered Retrieva~ 

We have presented in this section several of the search schemes, namely, 

the equality search, the threshold searches, the proximity search, and the 

extremum searches. The other searches defined in Section 5.2.4, can be imple­

mented as a combination of basic searches. Using the implementation in this 

section, we compute the maximum and the minimum search times for each 

search. 



Search Type 

Equality Search 
Inequality Search 
Similarity Search 
Greater-than Search 
Less"than Search 
Greater-than-or-equal-to Search 
Less-than-or-equal-to Search 
Double-limit Search 

Between-limit Search, X> Y 
<X&>Y 
<X&<1;Y 
;i;X&>Y 
;;;x & ;;,; y 

Outside-limit Search, X < Y 
<X&>Y 
<X&<1;Y 
;i;X&>Y 
;;;x & ;;,; Y 

Proximity Search 
Extremum Search 

1) Least-Value Search 
2) Greatest-Value Search 

Adjacency Search 
1) Nearest-above Search 
2) Nearest-below Search 

Minimum Number 
of Gate Delays 

n+5 
7 

n+5 
n+5 

7 
n+5 
n+5 

n + 12 
n + 12 
2n + 10 
2n + 10 

7 
7 

n+5 
n+5 
2n+4 

n 
n 

2n + 5 
n+7 
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Maximum Number 
of Gate Delays 

n+5 
n+5 
n+5 
n+5 
n+5 
n+5 
n+5 

2n + 10 
2n + 10 
2n + 10 
2n + 10 

2n + 10 
2n + 10 
2n + 10 
2n + 10 

3n+6 

7n 
4n 

Bn + 5 
5n + 5 

We see that the delay times in all these searches are proportional to n, the 

number of bits in a word and is independent of the number of words in the 

memory. 

Several methods of ordered retrieval and multiple response resolution have 

been proposed in the past. It would be of great value to evaluate the method of 

ordered retrieval presented in this section in terms of these other schemes. In 

particular, we compare this new algorithm with those of Frei and Goldberg 

[FRE61], Seeber and Lindquist [SEE62], Lewin [LEW62], Miilter [MII64], and 

Foster [FOS76]. In order to evaluate these various schemes, it is necessary to 

determine the significant characteristics that we wish to examine and to deter-

mine the comparable features of these diverse methods. 

In order to facilitate these comparisons, the methods mentioned will be 

classified into two types, those with an algorithm to order the retrieval 
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according to the contents of the stored words and those which use an external 

priority scheme, usually some form of priority tree, to order the retrieval 

according to the physical location in memory. Among schemes of the first type 

are those of Frei and Goldberg, Seeber and Lindquist, Miiller and Lewin. Miil!er's 

scheme uses the contents of the responding words to resolve multiple response 

conflicts but it does not necessarily order the selections in ascending or des­

cending order. Among those schemes that use an external priority circuit to 

resolve conflicts are those of Weinstein [WEI63] and Foster. These schemes are 

not strictly comparable to the proposed algorithm since they cannot be used for 

sorting. Likewise, Miiller scheme is not absolutely comparable to our proposed 

scheme but is similar enough that we will include it in the comparison. 

The two main considerations for comparison are obviously the speed with 

which a method retrieves stored data and the cost in terms of amount of logic 

required. Rather than attempting an exhaustive analysis of the implementation 

cost for each of the various schemes, we shall look at the more readily available 

information as to the rate of cost increase for increasing memory size. In par­

ticular we are interested in the memory cost as a function of memory size. 

We shall limit our discussion of speed comparisons to the number of search 

cycles required to retrieve each stored word. For several of the schemes under 

consideration, a significant parameter is the density of the flagged words, that 

is, the ratio of the number of words to be retrieved to the number of words 

addressable with the given tag field size. We will assume that the number of 

words addressable by the tag field is the same as the length of the memory. 

The chart of Table 5.1 shows as direct a comparison as possible between the 

aforementioned searches and the search scheme proposed. The headings 

include relative speed (in terms of the number of cycles needed to retrieve each 

flagged word), comments upon dependencies of logic complexities to memory 
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-----------------------------------------------------------------
Scheme Speed- R (n,k) (Cycles per Re- Memory Size Relative Com- Best Class 

trleval of ann Bit Tag) Dependency plenty of of Problem 
Hardware Re-

=a======== ===================== ========= -~~~======= ========= 
Fret and For n = 5 Length of tag Basic CAM High dens!-
Goldberg Best Cace (k = 2"): R =2k tleld (n) only ty of 

--------- !~~~~~:-~=~t~-=2~---- --------- ------------ _l!!_P~~'=~-
Seeber and t = 2" Length of tag Complex cryo- Density 
Lindquist R(n,l:) = ti(t+l:-1) + tleld (n) only genic logic at dependent 

t(t-lt 2tn 
each bit {18 

-. }::(l:(t-2')•-• + gates) 
t• t , .. 

--------- _2_:_C!:~~~l_------------ --------- ----------- ---------LeWin 2k-1 Independent A registers plus lndepen--k-Eza.ct 
9 gates per bit dent 
slice --------- --------------------- --------- ----------- ---------lo{Uler Best ca.se k+l Independent Basic CAM plWI Multiple 

:~ 
some additiooal response 

Worst case : 2k-1 
contrcland resolution k 

--------- --------------------- --------- ~_r~o:_ ______ -~_]'_ _____ 
Foster 1 cycle per retrieval External log'- Tree Circuit Multiple 

io uses external to CAM response 
3(2"'·-•l-1 resoluUon 
gates for 2"' only 
words of 

--------- ------------~--------
~!!!12l'_Y ____ ----------- ---------

Proposed i cycle per retrieval Increases as ,.,. 17 gates per lndepen-
log2m • for bit cell dent 
m words of 

--------- --------------------- ~~~2ry____ ----------- ---------
•togam is the size of a lag that must be used to uniquely identify each word for a memory size of m. 

'l'bia differs from the other schemes which do not use a specialized tag for ordered retrieval. 

Table 5, 1 A Comparison Table for Ordrrred Retrieval Schemes 
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size, relative complexities of the hardware needed for implementation, and com­

ments upon class of problems handled. Fig. 5.9 shows a plot of words to be 

retrieved for a memory with a five bit tag field in each word, corresponding to a 

memory size of 32 words. It is seen that our proposed scheme is equal to or 

better than all of the presented schemes in terms of speed. and in terms of the 

number of cycles needed to retrieve a word from memory. In terms of the abso­

lute speed, the Foster method is somewhat faster in terms of gate delays per 

retrieval since it uses an external priority logic tree. The Foster scheme, how­

ever, is not useful as a tool for ordered retrieval, but only for multiple response 

resolution. At two retrievals per memory cycle, our proposed scheme is by far 

the fastest ordered retrieval scheme, even faster than the Miiller scheme which 

does not even produce ordering, only resolution. As far as the complexity of the 

hardware goes, our scheme is well within the realizable realm of LSI technology 

and in fact is no more complex than that used by Seeber and Lindquist or Yang 

and Yau [YAN66] in their implementation of Lewin's algorithm. We conclude that 

such a design as we have proposed here may be a useful and realizable tool for 

associatibe processing in any applications where ordered retrieval is important. 

One of the applications is to use it as a multiple match resolver as we have 

described in section 5.2.B. Another application is to use it as a file processor in 

data base applications. In the next section, we look at some of the requirements 

for offloading the processing onto a data base machine and see how the associa­

tive memory proposed in this section can be extended to sequential memories. 

5.3 DATA BASE MACHINES 

5. 3.1 Introduction 

A Data Base Machine (DBM} is defined as an architectural approach which 

raises the level of the interface from the CPU to the storage subsystem, and 
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distributes processing power closer to the devices on which data are stored 

[LAN79]. There have been many DBM designs, among them are Data Base Com­

puter (DBC) [BAU76, KER79, BAN79], Context Addressed Segment Sequential 

Storage (CASSM) [LIP7B, SU 79], Relational Associative Processor (RAP) [OZK77, 

SCH79], Rotating Associative Memory for Relational Data Base Applications 

(RARES) [LIN76], Da.tacomputer [MAR75], List Merging Network [HOL79], etc. 

Although most of these designs are directed towards a specific application, e.g. 

text processing, relational data bases, etc., the trend in the future is to utilize 

the available LSI technologies to design a more general purpose DBM. There 

have been many factors, both in the past and in the future, that pertain to the 

growth of DBM's. Apart from the growth of semi-conductor technologies and the 

rising need for larger data bases (Figures 1.2, 1.3, 1.4, Table 1.1), the most 

important factor that leads to the increasing hardware implementation of data 

base functions is the growth in complexity and size of data base management 

software. Because it is necessary to provide a high level view of the data to the 

users, it is essential to provide a complex translatwn from the physical data 

structure to the logical data view and vice versa. Conventionally, this has been 

done by the data base management software. Depending on how complex the 

translation mechanism is, the amount of software to be developed and the 

amount of execution time needed is also different. As an example, the INGRES 

data base takes 350,000 machine instructions to process a simple transaction 

which can be a retrieval or an update of a simple record of data. Out of these 

350,000 instructions, only 25,000 instructions are real work that performs the 

actual function of the query. The other part of the work (325,000 instructions) is 

purely overhead which includes 25,000 instructions for parsing, 75,000 instruc­

tions for validity checks, 125,000 instructions for task switches and pipes and 

100,000 instructions to ·interface with the users. Some of these overheads can 

be made smaller, e.g. the amount of validity checks can be reduced if the main 
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memory is large enough and the system catalog can be put there; the user 

interface can be made less complex; the query can be parsed at compile time in 

order to eliminate the run time interpreter overhead, etc. The execution of a 

simple transaction is therefore CPU bound. On the other hand, in order to pro­

cess a complex transaction in INGRES, which retrieves or updates multiple 

records, it takes about 25,000 machine instructions to process a 512 byte page 

and 20 msec. to fetch a page from the secondary storage. Out of these 25,000 

instructions, only 6,000 are real work, the other part are overheads. However, 

the processing of a complex transaction can be speeded up by (i) compiling the 

query before execution; (ii) enlarging page size and/or adding drives; (iii) 

developing better decomposition strategies and (iv) building a one process real 

time system. As a result of these overheads, it is seen that the use of a DBM, 

which executes the query outside the CPU, reduces the execution overhead of 

the CPU and the 1/0 overhead in transferring data into the main memory. 

5.3.2 Issues in the Design of DBM's 

Traditionally, the design of DBM's are plagued by many issues. Among them 

are: 

( 1) Parallelis'm- Kind and Degree 

The designer has to decide on the kind of functions that can be pro­

cessed in parallel and in what degree. These functions include address 

mapping operators and the DB functions as well. As an example, the 

query processing in INGRES can be divided into four levels, (a) query 

·modification which parses the query and reduces it to a useable form; (b) 

query decomposition which decomposes a query that accesses multiple 

files into multiple sub-queries that access single files; (c) one variable 

query processing which processes these sub-queries: that access single 

files and (d) access method which translates the requests into physical 
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disk accesses. We can have four different ways to cut the software into 

two sets so that one set resides in the CPU and the other set resides in 

the DBM. The analysis reduces to the allocation of processes in a two 

processor system and the max-flow min-cut network flow technique 

developed by Stone [ST077a] can be applied here. The parameters that 

the designers must consider include the speed of the DBM and the 

degree of parallelism needed. Further, they must consider the efficient 

scheduling of tasks on these processors. 

(2) Technology dependence 

The designer of the DBM must take into account the available technology. 

Further, the design must be able to evolve as new technologies are made 

available. Using disk technologies, there is a large overhead in translat­

ing the signals available from a disk head to a useable form by the DBM. 

With the availability of bubble and CCD memories, very little signal trans­

lation is necessary and the logic and the memory cells can be imple­

mented together on the same chip. 

(3) Interface, where and in what farm: 

The problem is to design a good interface between the DBM and the host 

processor. This interface may be implemented in hardware/firmware or 

software or a combinations of both. This interface translates queries 

from the host processor to DB functions processable by the DBM. Impor­

tant questions like where to put this interface and how much capabilities 

it should have, must be answered. Should it be a part of the host, or 

should it be a part of the DBM? Should the interface be able to access 

the memory hierarchy? How should the interconnection network be 

between the DBM and the storage sub-system? What type of language 

primitives should be used? These questions have to be considered care­

fully by the designer. 
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{4) Storage structure 

The kind of storage structure is very important. If keyed accesses, that 

is, accessing data via a key, are allowed, then additional hardware capa­

bilities like associative memory or extra pointers are necessary to sup­

port it. Further, questions like whether the storage structure is dynamic 

should also be considered. 

{5) Backend pri=itives 

The designer has to trade the availability of backend primitives (which 

include functions like sorting, file merging, etc.) with the cost and the 

difficulty of implementing it. 

(6) Control algorithTTLS 

Because the memories of a DBM are usually slow (of the crder of 100 

fLSec access time). much overlap and parallelism are necessary in order 

to achieve a high throughput. Control algorithms like scheduling and file 

placement and migration algorithms are therefore very important. 

The designer of a DBM must consider all these issues together and make a 

judicious tradeoff in the design. 

5.3.3 Classification of DBM's 

The DBM proposed so far can be divided into two types, {1) backend systems 

using conventional mini-computers and (2) intelligent controllers which include 

cellular logic, associative memory and MIMD architecture. We describe each of 

them briefly here. 

(1) Backend syste=s using conventionalTTLini- coTTLputers (Figure 5.10) 

In this design, backend systems are added to a generally large CPU in order 

to enhance its DB processing capabilities. The functions of the backend system 

can include access validation, storage management, concurrency control and 
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I/0 control. The advantages of such a system are that it allows concurrent shar­

ing of a single data base and it provides better security, integrity and recovery 

measures because the backend machines provide a single gateway to the physi­

cal data base. In such a system, network protocols are designed so that the CPU 

can offload the processing onto the backend machines. As an example, in an IBM 

system, the CPU can be an IBM 370/168, and the network protocol is the SNA 

network protocol. In this case, it takes 10,000 to 30,000 machine instructions to 

execute the protocol and to offload the processing. However, if an INGRES data 

base is implemented on the system. and the system can only offload a fraction 

of the processing workload, e.g. validity checks cannot be offloaded, the speed 

improvement is only minimal. Further, there is an upper bound on the number 

of backend processors so that enough work can be offloaded onto these 

machines. Other disadvantages include costly software development and low 

reliability. The use of backend machines is therefore a temporary method to 

extend the processing power of a large CPU. 

(2) Intelligent controllers 

The use of intelligent controllers is an extension on the concept of backend 

machines. In the case of the backend machines, each one of them can control a 

set of disks and can perform high level data manipulations on the stored data. 

In the case of the intelligent controllers, the logic is partitioned further down 

onto the stored data. The characteristics of this design are that simpler, less 

costly designs are used and each of the controllers is dedicated to a smaller 

block of data. There may be a higher level controller which controls the intelli­

gent controllers collectively. This design therefore approaches a multi-level 

control scheme. Basically, this design can be divided into three categories: 

(a) Cellular Logic (Figure 5.11) 

In this design, the processors are duplicated across each of the memory 
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elements which may be a track of a disk. They provide associative search 

for data in the memory and they access data directly by value. Most of the 

conventional designs follow this principle, e.g. TapeDRUM [HOL56], 

Slotnick's Logic per Track Disk [SL070], RAPID (PAR72], CASSM [LIP78, 

SU 79], RAP [OZK77, SCH79], RARES [LIN76], DBC [BAU76, KER79, BAN79], 

Chang's Major/Minor Loop Machine [CHA78], etc. Because the logics are 

distributed across the data, this design provides very fast searches and it 

reduces the software overhead by performing content addressing. 

Further, the architecture is very suitable for a relational data model which 

is a two dimensional data model. A relation can be placed so that all the 

tuples pass out in a bit-serial fashion to the cellular logic simultaneously. 

Other data models can be modified to fit the architecture by adding addi­

tional data structures, e.g. CASSM. However, there exists many disadvan­

tages with this design: (i) Because of the large degrees of replication, the 

logic are bound to be simple. Usually, only simple functions like equality 

match, maximum. search, etc., are implemented and the designs are 

directed towards specialized applications. {ii) The data base workload 

must be large {>40%) in order to keep the parallel resources utilized. {iii) 

In a large data base, the degree of replication may be large and the cost 

may be prohibitive. {iv) Because of the way that data is placed in the 

architecture, data types are limited to character strings and integers. 

More complex data structures would require more complicated external 

control. (v) If the DBM is built on a disk, the processors must be extremely 

fast because very fast signal translations are needed in order to process 

the disk data in real time. {vi) Lastly, 1/0 is usually the bottleneck. 

Although the processing can be done in parallel, 1/0 is usually done seri­

ally. However, it is hoped that the pre-processing using the DBM's has 

eliminated a significant portion of the data transfer. 
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(2) Associative Memories (Figure 5.12) 

In this design, an associative memory, such as STARAN [G0075] or the pro­

posed design in Section 5.2 of this thesis, is used to provide associative 

search capabilities. The model in Figure 5.12 resembles a conventional 

memory hierarchy in which the fastest memory (the associative memory) 

is small and is interfaced to the slow mass storage through an intermedi­

ate buffer memory. The advantages of this design are rapid search for 

array resident data and its suitability for the relational data model. How­

ever, associative memories are still relatively expensive and large associa­

tive memories are not feasible. This design therefore experiences the 

usual problems of a memory hierarchy, namely, the swapping of the data 

across various levels of the hierarchy. It is still unknown whether the 

locality of data accesses in data bases is better than the locality of 

accesses in caches and virtual memory and is highly dependent on applica­

tions. Further, the technique is not effective for non-resident data and a 

high bandwidth bus is necessary to transfer data between the associative 

memory and the mass storage. In one such design [BER79] in which 

STARAN is used as the associative memory, it requires 1024 I/0 lines with 

300 to 450 nsec transfer time per bit slice to interconnect the associative 

memory with the buffer memory in order for the technique to be effective. 

This technique is ther-efore unduly expensive in the associative memory 

and the I/0 bus. 

(c) Multiple- Instruction- Multiple- Data- Stream (MIMD) Architecture (Figure 

5.13) 

In the MIMD architecture, the cellular logic have been pushed out of the 

memory elements and are interconnected with the memory elements 

through an interconnection network. This design offers more flexibility and 

better load balancing and allows the processors to be shared among the 
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memory elements. Because of the fact that each processor can access 

multiple memory elements simultaneously, it is easier to perform data base 

operations which require multiple files to be coupled, e.g. a multi-relation 

join. Further, expansion is easy and modular. However, this design suffers 

from the same disadvantages as the associative memory when the size of 

the memory is not large enough in which case excessive swapping will 

occur. Nonetheless, by using memory modules which are sufficiently large, 

it is possible that the amount of swapping can be limited to a tolerable 

amount. This design is exemplified by the DIRECT system [DEW79]. 

Since the DBM is a very special purpose hardware and requires a large 

degree of replication, it is important that unessential software are not placed in 

the DBM. In particular, software for protection, file system management, code 

swapping, task switches, pipes or system calls should be eliminated from the 

DBM. These software modules can be shared at a higher level with no adverse 

effects on the system performance. On the other hand, the DBM should have a 

thin collection of utilities, the run time DB management system and a self­

managed buffer pool. The management of buffers is relatively easy here 

because the accesses are usually made in a sequential order. 

In the next section, we present the design of a simple data base processor 

which is extended from the design of the associative memory presented earlier. 

Our design is totally hardware oriented and follows the same principle as the cel­

lular logic approach. However, our design differs from the other designs in 

several features, (i) it is completely hardware controlled and therefore is very 

fast, (ii) the logic is very simple and therefore can be replicated easily and 

implemented on the same chip as the memory elements. The design is capable 

of equality, threshold, proximity and extremum searches. 

5.3.4 Extension of the Associative Memory Design to Sequential Memories 

,. 
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Our design presented in Section 5.2 can be extended to the design of associ­

ative sequential memories which is made up of multiple loops of circulating bits 

shifting in synchronism. There is a read/write head for each loop so that one bit 

from each loop can be read or modified in one clock period. This can be 

extended to include multiple heads for each loop. Examples of such sequential 

memories include charge-coupled device memory, bubble memory and fixed 

head disk. 

Since only one bit is available from each loop at any time, we can design the 

associative logic outside the sequential memory as shown in Figure 5.14. In this 

design, m words are stored in the memory, with one word occupying each loop. 

During a clock period, a bit-slice of these m words is shifted out of the memory. 

This bit-slice is then processed by the associative logic and the enable signals 

are stored in temporary fiip flops. Note that in the design presented earlier, the 

enable signals propagate from the MSB to the LSB and the data are stored in 

flip-flops. In the case of a sequential memory, the enable signals are stored in 

temporary flip flops. As the bit-slice is shifted out, MSB first, the bit-slice, 

together with the stored enable signals, generate a new set of enable signals 

which are stored back into the flip-flops. The exact design is shown in Figure 

5.15. 

There are two advantages with this design. First, the additional logic for 

each word is very small and therefore the cost increase is minimal. Second, 

when the memory size is extended, only 8 lines due to the associative logic are 

needed to be connected between adjacent modules. Therefore, the memory size 

can be modularly expanded. Moreover, the amount of bit-slice control logic is 

small, so we can design a memory with n modules, each with its own associative 

and bit-slice control logic. During normal operations, each module can perform 

independent associative search operations. When it is necessary to perform 

associative search operations on 2 or more adjacent modules, all except one of 
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the bit-slice control logic for these modules are switched out of the system and 

the feedback lines are connected together to form a large block of associative 

memory. This dynamic reconfiguration capability is useful in applications where 

the nature and the size requirements may change dynamically. However, there 

are two limitations with this design. First, the words must be organized as 

described here because our design can only process one bit-slice at a time. 

Second, it is limited to memory types in which these logic can be easily imple­

mented in LSI technology, e.g. CCD memory and bubble memory. In disk tech­

nology, the associative logic have to be implemented on a separate chip and the 

amount of interconnections between the memory and the associative logic may 

become prohibitively large. In a feasible implementation, e.g. CCD memory, this 

design can be used as the lowest level of a DBM. Higher level control may be 

designed to include more complicated functions. 

5.4 CONCLUSION 

We have presented in this chapter two hardware features to support data 

management on a distributed data base. The first design is an associative 

memory which is capable of equality, threshold, proximity and extremum 

searches. The design is completely asynchronous and is bit-serial and word­

parallel, that is, the enable signals propagate from bit-slice to bit-slice, but all 

the processing within a bit slice is done in parallel. The propagation time across 

a bit-slice is 1 to 7 gate delays and each ceil has a complexity of 17 gates. This 

design is by far the fastest in the literature. Although memory expansion 

presents a slight problem, but by extending the dimensions of the memory, the 

memory can be expanded with only a slight degradation in performance. 

The second hardware design presented is an extension of the associative 

memory to data base machines. It is shown that the concept of the bit-serial 

associative memory can be extended to associative sequential memory. The 
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design is useful in upgrading the capabilities of the mass storage and reducing 

the amount of data transfers across different levels of the memory hierarchy. 
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'· CONCLUSION 

In this thesis, the issues on the resource management of data on a distri­

buted data base (DDB) system are studied. These issues are concerned with the 

management of data and files as resources so that they can be shared efficiently 

by the users. The major issues studied are: 

(1) Query DecoTnposition on DDB's 

A query is an access request made by a user or a program in which one or 

more files have to be accessed. When multiple files are accessed by the same 

query on a DDB, these files usually have to reside at a single location before the 

query can be processed. Substantial communication overhead may be involved 

if these files are geographically distributed. It is therefore necessary to decom­

pose the query into sub-queries so that each sub-query accesses a single file. 

These sub-queries may then be processed in parallel at any location which has a 

copy of the required file. The results after the processing are sent back to the 

requesting location. It is generally true that the amount of communications 

needed to transmit the results is much smaller than the amount needed to 

transfer the files. This approach has been proposed in the design of the central­

ized version of INGRES and is extended to the design of SDD-1, a distributed data 

base. However, in some cases, decomposition is impossible and some file 

transfers are still necessary. In order to avoid these extra transfers, two cost 

reduction models have been designed to reduce the operational costs of a rela­

tional data base. The first model reduces the retrieval cost but increases the 

update cost by adding redundant information to each domain of a relational 

data base so that relational operations such as joins and aggregate functions can 

be performed without any file transfers. The second model reduces the update 

cost but increases the retrieval cost by partitioning the relations into segments 

so that they can be updated more readily. These two cost reduction models can 
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be combined to form a unified approach to reduce the operational costs of 

DDB's. Further, it is shown that the optimization of placements of multiple rela­

tions under the use of these techniques can be done independently for each 

relation. 

(2) File Placement and Migration 

This issue relates to the distribution and migration of data base com­

ponents, namely, schema, data and control programs on the DDB with the objec­

tive of minimizing the overall storage, migration, updating and operational costs 

on the system. In this thesis, the problem of file placements and the problem of 

selecting the times for migration under changing access frequencies have been 

proved to be NP-complete. Further, the isomorphism between the tile place­

ment problem and the facility location problem are shown. The implications of 

the last result are two folds. First, many results which have been derived in one 

problem can now be applied to solve the other problem. Second, some results 

obtained earlier for one problem can be shown to be weaker than the 

corresponding results derived for the other problem. A tile placement heuristic 

is developed. While not necessary yielding optimal design, the heuristic yields 

solutions of lower cost than those generated by other currently available heuris­

tics. 

(3) Task Scheduling 

In task scheduling, the requests on the nodal computer system and the dis­

tributed computer system are sequenced so that high parallelism and overlap 

can be achieved. The requests may be a single word fetch or it may be a page or 

file access. A model for the scheduling of tasks on a distributed system has 

been developed. This model assumes that global control is infeasible and all the 

scheduling decisions have to be made locally at each node. It is shown that the 

scheduling of tasks in this model, when all the task processing times are 



284 

deterministic, is NP-complete. A heuristic has been developed and the perfor­

mance of this heuristic has been verified using simulations. A more restricted 

model, which represents an organization of an interleaved memory system, is 

a.lso proposed. By using the additional constraints, it is proved that the optimal 

scheduling problem is polynomially solvable. The performance of the scheduling 

algorithm has been verified using simulations. Further, the degradation in per­

formance due to dependencies has also been estimated. 

(4) Hardware support 

Beyond the problem of resource management studied, the hardware sup­

port for the data base systems has also been investigated. In particular, an 

associative memory which is capable of equality, threshold and extremum 

searches in a time independent of the number of words in the memory has been 

designed. The complexity of the design is 17 gates/cell. The design is asynchro­

nous and utilizes a word-parallel and bit-serial algorithm. The delay is 1 to 4 

gate delays across each bit-slice. This design can be applied to the resolution of 

multiple responses. Further, such a design is not restricted to associative 

memories and can be applied to the design of associative sequential memories 

and data base machines. 
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APPENDIX A THE ISOMORPHISM BETWEEN STONE'S PROCESS ALLOCATION 

PROBLEM AND THE SINGLE COMMODITY QUADRATIC ASSIGNMENT PROBLEM 

Stone's process allocation problem studies the allocation of processes to 

computers [ST077a, ST077b, ST07Ba, ST07Bb, ST079]. The amount of communi­

cations between two processes are defined and this in turn defines the cost to be 

incurred if these two processes run on different computers. There is also a cost 

of executing a process on a computer. The problem is to place the processes so 

that the total cost of the system is minimum. 

On the other hand, the single commodity quadratic assignment problem 

studies the allocation of plants to plant sites. There are certain fixed quantities 

of the single type of commodity that are to be shipped between the plants and 

these define an overhead cost to the system if these plants are located in 

different plant sites. There are also fixed costs of locating a plant at a plant site. 

The problem is to locate the plants so that the total cost is minimum. 

We can now prove the following theorem. 

THEOREM A- 1 

Stone's process allocation problem is isomorphic to the single commodity qua­

dratic assignment problem. 

Proof 

The theorem can be proved by associating the variables of Stone's problem with 

the variables of the single commodity quadratic assignment problem. This asso­

ciation is shown in Table A-1. 
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Table A- 1 Mapping between Stone's Process Allocation Problem and the Single 
Commodity Quadratic Assign-ment Proble-m 

Stone's Process Allocation Problem Single Commodity Quadratic Assign-
ment 

Locations of computers Possible pJant sites 
Process Plant 
Communications between two Commodity to be shipped between 
processes two~plants 

Cost of communication between two Cost to ship commodity between two 
comouters olant sites 
Fixed cost of executing a process on Fixed cost of locating a plant at a 
a com outer olant site 

Q.E.D. 
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APPENDIX B THE LINEAR PROGRAMMING LOWER BOUND OF A CANDIDATE 

PROBLEM [EFR66] 

Efroymson and Ray's formulation of the linear programming lower bound is 

n 
based on the optimization problem of Eq. 3.1, with an exception that L,X;.kSJ.k 

k=l 

is not evaluated to be min s,. k where X,· k is the fraction of Q,· that is directed 
kEf ' ' 

towards node k. The optimization problem that Efroymson and Ray considered 

is (using the notations defined in this thesis): 

min C (I) = L, Q1S 1 .•X;.• + L, c. Y• 
j,k k 

such that 

n 
1 = 2:, X;.k (j=1, ... , n) 

k=l 

(i,j=1, .... n) 

yk = 0, 1 

By defining the following notations, 

N,- = set of indexes of those nodes that can be accessed by user j; 

Pk = set of indexes of those users that can access node k; 

nk = number of elements in Pk. 

The objective function can be rewritten as: 

min 

such that 

0 :> L, X,- .Jc :> n, Yk 
jtPk 

Y• = 0, 1 

Recall that. 

(j=1, ... , n) 

(k=l, ... ,n) 

(B-1) 

(B-2) 
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The linear programming solution to the above optimization problem, neglecting 

the integrality constraint of Yt, is, 

.f s g• . [s gz j 1 i.k+- = mm j.z+-
nk ~fi.K1uK2 nl 

otherwise 

where 

{ 
c. 

gk = 0 

This is the optimal solution because for kEK2, 

L; X;.t :> n• Yt 
i €.Pic 

which implies that in the optimal solution, the equality sign will hold, i.e., 

or 

1 L; X;.> = Y• 
nk j£:.P~c 

(B-3) 

(B-4) 

Substituting this value for Yt. kEK2 into the objective function, the linear pro-

gram becomes, 

min C(I) = L; c. 
ktK1 

such that, 

1 = L; X;.t 
ktNi 

{j=l, ... , n) 

This lead to the optimal solution. 



APPENDIX C THE EXPECTED VALUE OF A CANDIDATE PROBLEM 

Recall that, 

K 0 = !i: Y1=0! 

K 1 = !i: Y1=1! 

K 2 = !i: Yi =unassigned ! 
We can rewrite the objective function (Eq. 3.1) on condition on K 0 and K 1• 

C(J) = I; G, 
<«K, 

+ "Q·* min S· · LJ ' .€] 'I.,J 
i€Ko 3 

+ I; Q, • min s,.1 + I; G,Y, 
i€.K2 J€.! i£.K2 

C(I) = " G, + " Q·* min S· · + " G,Y, LJ LJ ' .€.] ,., LJ 
i~ 1 i€.}(0vK 2 3 i£.K 2 

where G; is defined in Eq. 3.2. 

Let 

So 

Z 1 = I; Q, • n:>in s,.1 
i€}{ 

0
uK 

2 
3£1 

C (I) = I; G; + Z 1 + Z 2 
iEK1 
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(C-1) 

(C-2) 

(C-3) 

(C-4) 

Assuming that each of the combinations of Y1 for j EK 2 can be assigned uni­

formly, we would like to find the expected value of C(I). We first define some 

notations: 

For each row i of matrix S, we define a mapping 1-4. such that 

j ,k E f 1, ...• n j such that S,,,.,··1(k) ;f; Si.~J<--1(k+l) 

The mapping 1-4. maps the original set of nodes onto a new set such that the 

costs of access from node i in the mapped matrix are in increasing order. 



t €K 1 is the node which has the minimum cost of access from node i. 

IK2I = IKo u K 1 1 (cardinaltiy of K2) 

if IK,I = 0 

if IKd > 0 

K2iq = !x: xEK2 and J.Li(x)<;;J.Li(q)j 

Now 

E(Z) = L; G; + E(Z,) + E(Z2) 
iEK1 

E ('}'-J:p S;J) = C (K) 

E(Z 2) = E( L; G;Y;) 
jEK2 

= L; G;E(Y;) 
i €.}{ 2 

2
(n-IK;;HJ 

E(Y;} = C(K) 

E(Z) = L; G; 
i€K1 
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(C-5) 
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