A SYSTEMATIC APPRQACH TO THE MANAGEMENT OF DATA
CN DISTRIBUTED DATA BASES

Benjamin Wan-Sang Wah

Ph.D. Flectrical Engineering
and Computer Science

Sponsors: Ballistic Missile Defense
Army Research Office
National Science Foundation

C. V. Ramamecorthy
Chairman of Committee

ABSTRACT

Recent studies have revealed that the design of a distributed data base
management system is a major source of difficully in designing a distributed
computer systems. Research has involved an investigation of the data manage-
ment issues, examining in particular the gquery decomposition, the file place-
ment, the {ask scheduling, and the hardware support issues. The inherent rela-
tionships among these issues are analyzed and a unified approacﬁ is provided to

design data management strategies on distributed data bases.

One of the major problems in distributed computer systems is the minimi-
zation of communication overheads among nodes. This is the objective of the
study in query decomposition and file placement and migration. Two comple-
mentary techniques are developed in query decompositicn se that neon-
decomposable queries which require the use of multiple files can be decomposed
into multiple sub-queries which require the use of single file, The communica-
tion overheads are reduced because the queries do nat have to be processed at
a common location and can be distributed to the different nodes on the distri-
buted system. The study of query decosnposition has also shown that the place-
ments of multiple files can be decomposad inte the multiple sub-probiems, one

for seach file. An invesiigation is made on the file placement problem, with the

cbjective of minimizing the overall storage, migration, updating and operational
costs on the system. By showing that the file placement problem and the facility
location problem are isomorphic, many results derived in one problem can be
applied to solve the cther problem. Further, some results derived in one prob-
lem can be shown to be weaker than the corresponding results derived in ithe
other problem. The last two areas of study are related to the distributed
scheduling of tasks on distributed systems and the design of the necessary
hardware support for data management. The task scheduling problem for a dis-
tributed system is shown to be NP-complete. However, an optimal average algo-
rithmn is developed for a restricted class which minimizes the expected comple-
tion time for a set of random reguests. In the hardware support issue, the
design of an associative memory which is capable of equality, proximity, thres-
hold and extremum searches is investigated. The complexity of the design is 17
gates per cell. Its extensions to the design of associative sequential memories

and data base machines are developed.

ACKNOWLEDGEMENT

The author would like to express his sincere gratitude to a number of indivi-
duals for their help in the research and preparation of this dissertation. Special
thanks is due to Professor C. V. Ramamuoorthy who was his thesis supervisor and
the dissertation committee chairman. Throughout the years, Professor
Hamamoorthy has been a constant source of advice, guidance, support and
encouragement. He was and will be an ideal for the author to follow. Withou£ his

support, none of these would have been possible.

The author would also like to thank Professors D. Ferrari and 1. Adler for
reading the thesis, providing many helpful and valuable advice and encourage-
ment, and serving on the thesis committee. Special thanks are also due to Miss
Y. W. Ma, for reading and typing part of the draft and criticizing on the research.
She has also been a source of spiritual support and encouragement througout
these years. In addition, his colleagues, Messers F. Bastani, F. Ho, G. Ho, J.
Favaro, C. Jen, T. Krishnarao, F. Leung, R. Mok, C. Nam, H. H. Sc and K. Wu are
thanked for providing many helpful comments and a friendly environment for
research.

He also wants to thank the Ballistic Missile Defense, the Army Research
Office and the National Science Foundation for its support through contracts
DASG-60-77-C-0138, DAAG29-78-G-0188 and grants MCS-77-27293, MCS-77-28361.
Messers C. R. Vick and J. E. Scalf are also thanked for their many helpful discus-
sions.

Finally and most importantly, the author wishes to thank his parents in

Hong Kong for their unselfish and devoted support, both spiritually and finally.

This thesis was typed on a DEC VAX 11/780 computer supported by NSF

grant MCS57B-07291.

ii

TABLE OF CONTENTS

FAGE
Chapter 1 INTRODUCTION ..coririiiiiicreieracerceeriireirrsrasermrensnsrsrrnsnsrsrerassessrrnssrnerss 1
1.1 What is a Distributed Data Basecccciviiiiniivinainniinneins 1
1.2 Issues in Designing Data Base Systems ..o iiiiiiiciiiiiniien i, 3
1.2.1 Issues in Logical Organization.......cciiinevinmnsiersrnrenenne, 4
1.2.2 Issuesin Architecture.......oc.riiiiiiii . B

1.2.3 Issues in Operational Control.....ciicviiiiiniiiiiniiiiiincncninninnsnin 7

1.2.4 Issues in Evolublon i s e s e 9
1.3 Architecture of the System supporting a DDB . .ciiivvveriniiiiiioniieninenn, 18
1.4 Objectives and Contributions of the Research ..coovvvvieioricniencnenone 21

1.4.1 Problem StabeIment v iiciiiicrccicrsicienercnsnsnssisnsesnsssnsronssnses B0
I SRS ¥ oY o Y ol o Y- €3 DU U =
1.4.3 Contributions of this Research .o iiiiii i 26

Chapter 2 QUERY DECOMPOSITION ON A

DISTRIBUTED RELATIONAL DATA BASE e it iirrn s e encramerenerenn e snnaenes 28
2.1 Queries cn a Relational DB ... vviiiie e e cnrrsesn s aesece s aneransenes 28
2.2 The Placements of Relations on a BDB .. i e 32

2.3 Cost Reduction on the Placements of Relations on a DDB

by utilizing Redundant Information.....ccooviiiiiiniiiiiin i 40
2.4 A Numerical Example to illustrate the Use of Redundant

Information on a DDB ... e e e i e e 48
2.5 Cost Reduction on the Placements of Relations on a DDB

by File Partitioning .o st et e 53
2.6 A Numerical Example to Illustrate the Use of File

Partitioning ona DDB. ... s e 58

2.7

2.8

2.9

Cost Reduction on the Placement of Relations on a DDB by

utilizing Redundant Information and File Partitioningc....ccoeevvenes

A Numerical Example to illustrate the use of Additional

Redundant Information and File Partitioning on a DDB...............

00a T Led A1 =3 Lo 2 o I O P

Chapter 3 THE PLACEMENT AND MIGRATION OF MULTIPLE COFIES

OF A FILE ON A DCS

3.1
3.2
3.3
3.4

3.5

3.6

3.7

3.8

3.9

3.10 Conditions to reduce the Complexity of DFAP

3.11 Conclusion

Chapter 4 TASK SCHEDULING ON DISTRIBUTED COMPUTER SYSTEMS............

4.1

4.2

a5 oo 2a 8 Lo A3 o U

Definition of the Problem .ccvevevvieviniennes

Motivations for File Placement and Migration........ccocoovivvveinnnn e,

Previous Work on the File Allocation Problem vvvovevveeereveveennen. feeans

Previous Work on the Single Cornmodity Warehouse

Location Problem. . v ciiieicrieeneans

The [somorphism between File Allocation and Single

Commodity Warehouse Loeation ..o ive e rern e coniae s e s sees

Implications of the Iscmorphism between the FAP

=Y o Lo G« L= O Y 2 O R
A Heuristic for the FAP - Algorithm 3.1t e

DFAP - The Migration of Files on @ DCS. it

3.10.1 The Problem of selecting the Times for Migration

18 NP-Complete v e vt s e r s e v rare e e

3.10.2 Criteria for initiating a Migration....cc.cceoveviiiiivniinnniciinenn,

I T O L OTE cvivivei it e ire s snaiaansassnnsrasabasessmnnnnssasnnnnabansrnsentannnanne

A Model for the scheduling of Tasks on Distributed Systems.......

--

.............................

...

59

... BO

iv

4.2.1 The Model. .ot s e ast s s een s e nins 119
4.2.2 Assumptions which allow the Task Scheduling Problem
to be simplfied....cccoooiiiiiiii e 12D
4.3 NP-completeness of the Task Seheduling Problem ..c.covvveviivnveeinacnnns 128
4.4 The Restricted Model - An Optimal Algorithm for
scheduling Requests on an Interleaved Memory Systemoooveeniennnn . 137
4.4.1 Requirements for the Design of a Primary Memory 137
4.4.2 Characteristics of the Access Sequence of a
Pipelined ProCesSS0r...ov et b e e e 139
4.4.3 Previous work on the Study of Interleaved Memories............. 141

4.4.4 The Qrganizations of Primary Memory for a Pipelined

ProCESSOr (i et e e s 145
4.4.5 Optimality of the MWFMF Scheduling Algorithmcccecvevnee.. 157
4.4.86 Embedded Markov Chain Techniqueccucvviiviimiiiniiniiicnneenen, 172
4.4.7 Simulation Technique ... e 178

4.4.7.1 Simulation Resullsccovviveniiini 178

4.4.7.2 Application of Multiple Linear Regression

to obtain a Clesed Form Formula.....occivveiiiini i ciiiennne 182
4.4.8 Effects of separating the Instruction and the Data Area........ 193
4.4.8 Degradation in Performance due to Dependencies 198

4.4.9.1 The Model used to estimate the Performance due
to Dependencies ..oooveriniie e recsierisia s seseeees. 198
4.4.9.2 Computation of Degradation in Performanece........... 199
4.4.10 Some Final Remarks about the Design of
Interleaved MemoOries. ..ot e 208
4.5 A Heuristic for the scheduling of Tasks on the General Model........... 212

I 40 o Va3 LU= 1o o s 218

Chapter 5 HARDWARE SUPPORT FOR DATA MANAGEMENT ON DISTRIBUTED

COMPUTER SYSTEMS...o oo sscrnesr i s sa e ennnene R LD

5.1 Introduehion o e s e e e a e rrr s ramn e rsannnnrennrs B 1D

5.2 A Design of a Fast Cellular Associative Memory for Ordered

Retrieval. i s i e e e e e ees 220
5.2.1 Previous Work ... riiencie v s rerenrs e srr arem snra e RR0
5.2.2 Symbols used in the Design .cc.cociiciiniciniiiciireic s iner e 222
5.2.3 Basic Associative Memory Organization.......ccoccovmmviiiiieiinnes 224
5.2.4 Definition of Search Operations.....cccciviciieiiirnvircciie e e neass 226
5.2.5 Algorithms and Implementations of Basic Searches.............. 228

5.2.8.1 Mode A: Equality-Proximity-Threshold Search Mode. 229
5.2.5.2 Mode B: Least Value Search Modecc.cvvvieeniimnn. 233
5.2.5.3 Mode C: Greatest Value Search Mode........................ 240

5.2.8 Ordered Retrievalcoorviiiiiiiii i i n s 242
5.2.7 Some Speed-up Technigues.....cviiviiiiimiiimriicee e 244
5.2.8 Issues and Limitationsccocoriiiiiviiii i e 252
5.2.8.1 LSIImplementation.....c.ccoovieiiiiininiiiiinie e 2562
5.2.8.2 Manufacturing Defects.....ccooviiiiiiiiii e 253
5.2.8.3 Modular Expansion.......ccoivciiriiiiiscinvincinicrsereninsanen 254
5,2.8.4 Multiple Match Resolution......cooovvviveiiiiii, 258

5.2.9 Comparisons with other Methods of Ordered Retrieval 269
5.3 Data Base Machines ...ttt e e 283
5.3.1 Introduction...ciiien i e 263
5.3.2 Issues in the Design of Data Base Machines........coceevvveiennnnnen. 288
5.3.3 Classification of Data Base Machinesc..cocciveiiininiiiniieninne, 268

5.8.4 RExtension of the Associative Memory Design to

Sequential Memories ..o e

vi

5.4 ConCIUSION oivi i e e e e e aa s 280
Chapter 8 CONCLUSION ... e s e sess drare s nne e en sen s 282
Appendix A THE ISOMORFPHISM BETWEEN PROCESS ALLOCATION PROBLEM

AND THE SINGLE COMMODITY QUADRATIC ASSIGNMENT PROBLEM 285

Appendix B THE LINEAR PROGRAMMING LOWER BOUND OF A CANDIDATE

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.8
Figure 1.7
Figure 1.8
Figure 2.1
Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

LIST OF FIGURES

Classification of Issues in Distributed Data Base Systems........
Architecture of a DDB Systeml. e e v sisrrene e raere senaans
The Density Growth of Large Scale Integrated Circuits............

The Exponential Growth of CPU Speedcooviiiiviiiniviniinenn.

Availability of Memory Technologies................

Storage Hierarchy ..o e e snae e
Architecture of a Data Base Machineccoeeeeiiiiiinciiiiecvinniennn,
Relationships among Various Data Management Issues
Relations S and SP (not all domains are shOwWn)...cov..cveeenncennvnennens

Retrieval and Update Rate on a 2-Relation DB from Node i.........

Relations S and SP with (3.s#=8P.s#) information
compiled into the Relations.....ooovovvviieininnin

Retrieval and Update Rates on a 2-relations DDB from Node

i1 using Additional Redundant Information.....c.c..cccevenveremiivnneeens

A Plot of Cost Ratio w.r.t. ¥ for Various Values of &

under the use of REdUundancy...coo o iiiii i e e v

A Plot of Cost Ratio w.r.t. i for Various Values of 8

under the vse of Redundaney..cccivo i ciiiiic e e

The Retrievals and Updates on a DDB (2 nodes) with and

without File Partitioning....oc.ciiiineiiiirriin e v s vaesrsanennenen,

A Plot of Cost Ratio w.r.t. fu! for Various Values

of fu? under File Partitioningccceveeeeeirerieerierirrereees v e ee e e e
A Plot of Cost Ratio w.r.t. ¢ for Various Values of § under the

use of Redundancy and Partitioning {(ful=fu?=0.75) ...cc..corvrrren

oo 17

..... i8

..... 20

25

28

34

e 41

o2

80

85

viji

Figure 2.10 A Plot of Cost Ratio w.r.t. 7 for Various Values of § under the

use of Redundancy and Partitioning {fu'!=fu?*=0.758)c......... BB

Figure 2.11 A Plot of Cost Ratio w.r.t. ful for Various Values of fu? under

the use of Redundancy and Partitioning (d=#=y=0.5}cc.cvveerer.en 87

Figure 2.12 A Plot of Cost Ratio w.r.t. fu! for various values of fu® under

the use of Redundancy and Partitioning {§=n=y=0.4) ccc.cevrerrrre.... 68
Figure 3.1 File Assignment Algorithm - Algorithm 3.1 i, 83
Figure 3.2a Evaluation of Casey’'s 5 node Exarmple using MINLBcocciihn. 98
Figure 3.2b Evaluation of Casey’s b node Example using MINE a7
Figure 3.2¢ Evaluation of Casey’s b node Example using MAXDILB................... o8
Figure 3.2d Evaluation of Casey’s 5 node Example using MAXDE 99
Figure 4.1 Task Precedence Graph for the Processing of a Query

which reguires the Use of Geographically Distributed Files.......... 118
Figure 4.2 Model of an SIMD Computer Systemcoovviiiiiininccn o, 120
Figure 4.3 Conceptual Model of 2a DCS ..o ree s s eneenene. 121
Figure 4.4 An SIMD Model for Task Scheduling ona DCSoiiirniiiivnininnan, 123
Figure 4.5 Precedence Graph of Tasks for Request i which can be scheduled

on the SIMD Model ..o an e e 124
Figure 4.8 Proof of Theorermt 4.1 o iiiiriiiiiiir e e rea ssrsma s sesnsrnssssrsnsesessses 130
Figure 4.7 Timing Diagram for the Proof of Theorem 4.2.....cccoccvviiiiinninnen.. 132
Figure 4.8 Timing Diagram for the Proof of Theorem 4.5..ivicnrnviinivininenneenn. 136
Figure 4.9 Organization I - A Model of Interleaved Memories with a

Single Request QUets (.o asn e v e e 147

Figure 4.10 A Gantt Chart to illustrate the Operation of the

Interleaved Memories in Staggered Cycles (IM=4) ..ccccoerrerrnrirrncrnns 148

Figure 4.11 MWFMF Scheduling Algerithm - Algorithm 4.3oovriiiiieen s 151,2

Figure 4.12 Organization Il - A Model of Interleaved Memories with

ix

Multiple Request QUeUeS. ..o crrice s cvrrcra e e s e s e p e e n s aae 154
Figure 4,13 The Improvement of Average Memory Utilization with Buffer

Size for Org.] (INZ8)cciiiiiiieieeee s eeee s ere e e e st st restaesereseareean 188
Figure 4.14 The Increase of Average Waiting Cycles with Buffer Size

bileToli 0] o B I o ot <) T U 189
Figure 4.15 The Decrease of Average Memory Utilization w.r.t. Degrees

of Interleaving for Org. I with MWFMF Scheduling Algorithm......... 190
Figure 4.18 The Decrease of Waiting Cycles w.r.t. Degrees of Inter-

leaving for Org. 1 with MWFMF Scheduling Algorithm.....c.ccccveeeoet .. 191
Figure 4.17 The Average Buffer Utilization for Org. I} (m=8)......c.cccovrrnenrnnnnne 192
Figure 4.18 The Average Buffer Utilization vs. the Degrees of Inter-

leaving for Org. II with MWFMF Scheduling Algorithm {(m=8) 194
Figure 4.19 Model of CPFU-Memory used for Estimation of the Effects

of Dependency.r .. 198
Figure 4.20 Histogram showing the Statistics of Dependent Events

in Traces USed (..t i e st e s s e e 200
Figure 4.21 Graph showing the Cumulative Probability of Number of

Instructions executed between 2 Conditional Jumps......cocoivcviinins 201
Figure 4.22 The Variation of the Number of Requests in the Buffers.............. 202
Figure 4.23 Buffer Utilization under Dependency for Org. I with a

MWEFMF Algorithm (Trace Driven Simulations)........cccoovveeievcennernnnns 209
Figure 4.24 Simulation Results for Algorithm 4.4 using 1000 Samples

of ¥ Randomly Generated Jobs (=2, P=2) .cccvcviirincmnriinicrcineeiennn 215
Figure 5.1 Cellular Logic Associative Memory Block Diagram.......ccoveenveeemnnnns 225
Figure 5.2 Bit-cell with Equality, Greater-than, Less-than and

Proximity Capability for Mode A Operation........cocoiiiiiieiiinciinnnnn 232

Figure 5.3 Bit-cell with Least Value Search Logic for Mode B Operation........ 235

Figure 5.4 Bit-cell for Sirnultaneous Ascending Order Retrieval and Descending

Order Retrieval or Equality-Threshold-Proximity Searches.......... 241
Figure 5.5 Flow Chart for Ascending Order Retrievalccovvvviiiiniiiiniinnnans 243
Figure 5.8 Bit-cell] and j+1 of word i with Equality-Proximity Search

and Lookahead LOgiccocecvvvnmierininsienrnienanns e tvesrr e e arrn e 246
Figure 5.7 Meodular Extension for Proposed Associative Memory ..coceeevvecvenan.. 258
Figure 5.8 Flow Chart for Ascending Order Retrieval of m? words

in a 3-dimensional Associative Memory [see Fig. 5.7¢].....cccceveveen. 257

Figure 5.9 Comparison of Retrieval Speeds for a 5 bit Tag with

k Words Flagged. ..cccoiiiiini i e v ser s v mrasseeteee s me s asn s neeanens 204
Figure 5.10 Backend Systems using Conventional Mini-computers................. 269
Figure 5.11 Intelligent Controllers - Cellular Logic ..ocoooviiiiiiiiiinnieiiensier e 271
Figure 5.12 Intelligent Controllers - Associative Memoriesc.ocvvveveiiieenennnn. 274
Figure 5.13 Intelligent Controllers - MIMD Architecture.......covveeiiviinieenvinnnns 275
Figure 5.14 Associative Sequential MEIMOry ..ovoverii i e er e e e 278

Figure 5.15 Associative Logic for Associative Sequential Memory........cooveenee. 279

LIST OF TABLES

Table 1.1 Typical Ballistic Missile Defense Data Base Processing

Requirements in a Centralized Environment......c.cococeiiiciineninnnnn..

Table 1.2 Typical Values for L3I Semiconductor RAM's (1978) ...cvvvvciirnnnnnns

Table 3.1 Examples of Communication Costs on Telenet Data

Communication Network (July 1, 1378) ..cciiiiiiiiieivnin e ree erenennn

Table 3.2 A Summary of the Previous Work in File Placement /Migration...

Table 3.3 Mapping between the Defined Notations in this Thesis

and Casey’s Notations.....covrivoir i vicecii e v srr e s er e

Table 3.4 Mapping between the (D)FAP and the SC{D)WLP......ccovviiivvverennnns

Table 3.5 Summary of Conditions for Placernent and Non-Placement

of a file at Node £ S T
Table 3.6 % Deviations of File Allocation Heuristic from Optimal Solutions ...
Table 3.7 Execution Time of Heuristic in Seconds on the CDC 8400...............
Table 4. 1a Simulation Results for Org. ! with RR Algorithm....cocooveviieievenene.
Table 4.1b Simulation Results for Org. 1 with FFF Algorithm..........ovievvnneen.
Table 4.1c Simulation Results for Org. I with MWFMF Algorithmcoveuvns
Table 4.2a Simulation Results for Org. Il with RR Algorithmcocoviiiiniinins
Table 4,2b Simulation Results for Org. II with FFF Algorithm.........ccceevienenne.

Table 4.2¢ Simulation Results for Org. II with MWFMF Algorithmcccoveaane

Table 4.3 Coefficients of 3rd Order Polynomial Regression of

Organizations I and I under MWFMF Scheduling Algorithm

Table 4.4 Comparison between Merged and Separated Instruction-Data

Areas for Org. I - Trace Driven Simulations....cccooovvvciiicice i,

Table 4.5 Comparison between Merged and Separated Instruction-Data

xi

PAGE

101

102

.. 179

... 180

... 181

... 183

.. 184

185

... 186

195

Areas for Org. 11 - Trace Driven Simulations

....................................

Table 5.1 A Comparison Table for Ordered Retrieval Schemescc.covevivnnnan.

Table A-1 Mapping between Stone’s Process Allocation Problem and the

Single Commeodity Quadratic Assignment Problem......oovvrviiiieininnns

xi1

288

1. INTRODUCTION

The recent advances in large scale integrated logic and communication
technology, eoupled with the explosion in size and complexity of the application
areas, have led to the design of distributed architectures. Basically, a IMstri-
buted Computer Systern (DCS) is considered as an interconnection of digital sys-
tems called Processing Elements (PEs), each having eertain processing capabili-
ties and communicating with each other. This definition encormpasses a wide
range of configurations from an uniprocessor system with different functional
units to a multiplicity of general purpose computers (e.g. ARPANET). In general,
the notion of "distributed systems"” varies in character and scope with different
people [RAM78]. So far, there is no accepted definition and basis for classifying
these systems. In this thesis, we limit our discussion to a class of DCS's with an
interconnection of dedicated/shared, programmable, functional PEs and work-

ing on a set of jobs which may be related or unrelated.

1.1 WHAT IS A DISTRIBUTED DATA BASE

Due to the information explesion and the need for more stringent require-
ments, the design of efficient coordination schemes for the management of data
on a DCS is a very critical problem. Teo indicate the amount of data processed,
the typical data base processing requirements for a ballistic missile defense sys-
tem [DDP78], operating in a centralized environment are shown in Table 1.1. In
order to manage the data on a compuler system (centralized or distributed)
and satisfy all the reguirements, systematic technigques must be developed so

that the system can be realized in a cost-effective way.

Data on a DCS are managed through a Data Base {DB), which is a collection

of stored cperational data used by the application systems of some particular

enterprise [DAT7?7, FRY76]. A Disiributed Datu Base (DDB) can be thought of as

ovbjective of minimizing the overall storage, migration, updating and operational
costs on the system. By showing that the file placement problem and the facility
location problem are isomorphic, many results derived in one problem can be
applied to solve the other problem. Further, some results derived in one prob-
lem can be shown to be weaker than the corresponding results derived in the
other problem. The last two areas of study are related to the distributed
scheduling of tasks on distributed systems and the design of the necessary
hardware support for data management. The task scheduling problem for a dis-
tributed system is shown to be NP-complete. However, an optimal average algo-
rithm is developed for a restricted class which minimizes the expected comple-
tion time for a set of random requests. In the hardware support issue, the
design of an associative memory which is capable of equality, proximity, thres-
hold and extremum searches is investigated. The complexity of ithe design is 17
gates per cell. Its extensions to the design of associative seguential memories -

and data base machines are developed.

programs, together with the sub-schema, collectively form the Data Base
Management Systerﬁ [FRY78, BAC75]. The Data Base Managermnent System allows
data sharing among a community of users, while insuring the integrity of the
data over time, and providing security against unauthorized access. It also pro-
vides the transparency of the data, in order to allow the data to be stored in
different formats in different parts of the system. Finally, it provides an inter-

face between the users and the system.

The data base can be classified according to how these components are put
together. In [ASC74], two classifications are proposed, the first is based on the
number of Data Base Management Systems in the network and the second is
based on the centralization or decentralization of the file directory and the data.
In [BOO78], the DDB's are classified into two structures, partitioned data bases
and replicated data bases, A partitioned data base is one that has been decom-
posed into physically separate units, and distributed acress multiple nodes of a
DCS. The partitioning will normally be based on the distribution of access
requirements. In a replicated data base, all or part of the data base is repli-
cated at multiple processing nodes. The amount of partitioning and replication
depends on the architecture of the distributed system, the amount of traflic

anticipated and other requirements such as reliability, security, etc.

1.2 ISSUERS IN DESIGNING DISTRIBUTED DATA BASE SYSTEMS

The issues associated with the design of a DDB can be classified from an
user’'s viewpoint or from a system designér"s viewpoint. From an user's
viewpoint, the users are concerned with the type of organization and controils
which can give efficient and reliable operations and can satisfy their require-
ments. The users usually do not relate very elosely other factors such as tech-
nology and architecture in their censiderations. On the other hand, from a

designer's viewpoint, the designers are more concerned with the architecture of

the system and its dependency on technology. However, the issues considered
from both viewpocints are not independent and must be investigated jeointly in
the design of a DDB. We have therefore taken an integrated approach and have
classified these issues into four categories. The classification is shown in Figure

1.1.

1.2.1 Issues in Logical Organization

These issues are related to the user-system interface and can be classified

as:

(A) User Fnterface

The user interface may be defined as a boundary in the system below which
everything is invisible to the user [DAT77]. The function of this interface is to
provide the users with an eflficient and powerful query language and to help the
users to manipulate the data in the DB. The query language must be powerful
enough so thal an entire set can be manipulated as a single object, instead of
being restricted to one record at a time. The complexity of this interface
depends on the required ease with which users wish to access the data and it

directly governs the design of communication processors.

(B) Data Base Organization

A data base is generally organized in one cor more of the data models: rela-
tional, hierarchical or network medel, where a data model refers to a represen-
tation of the entire infermaticon content of the DB in a form that is somewhat
abstract in comparison with the way in which data is physically stored [DAT77].
There are other models like the binary association model and the external set
moedel which are not quite popular. Fach user views the data base through an
external model which may be one of the above data models. The data base

should therefore be able to support multiple data models for different users and

User Interface
Selection of Data Model
Design of Conceptual Level

Logical
rganization

/M

Mapping from Conceptual Level! to
Physical Level

Network Sys-‘=:::::T°P°109y Design
tem Design Selection of Channel

Nodal Sys- ‘=::::::Memory Hierarchy
tem Design Data Base Machine

rchitecture

/\

Query Decomposition
File Placement &

Directory Management

Data Migration
Issues Management Data Compression
1
of DOB's Task Scheduling
ggﬁzigional Concurrent Accesses & Updates

Security & Privacy
Reliability - Rollback & Recovery

Technology

Evolution Applications

A

Standardization

Figure 1.1 Classification of Issues in Distributed Data Bases

to provide users with transparent accesses. The efliciency of a DDB is very much
dependent on the type of organization since it affects the storage organization,
access mechanisms and the communication requirements. The criteria for
designing and selecting a model has not yet been well understood or established,
nor is it likely to be established in the near future. The designers of a BDB are
therefore confronted with two decisions: which data model to utilize and how to
structure the data for a chosen model [SIL78]. Further, there is the problem of

mapping the different external models onto the conceptual level.

{C) Design of the Conceptual Level

The conceptual level is a level of indirection between the external level
which consists of different data models and language interfaces and the internal
level which consists of the physically stored data. The conceptual level actually
maps the users’ views onto physical data and is intended to provide a solid and
enduring foundation for the total operation of the DDB. Its design depends on
how the data are stored, the physical storage media, the number of different
data models, the way that data are distributed on the DCS and other user
requirements. It is important to construct a conceptual schema at a suitable
level of abstraction in the design stage [DAT77]. Many of the techniques in

artifical intelligence have been applied successfully in this design.
1.2.2 Issues in Architectiure

{A) Network System Design

The DCS is made up of nodal processors interconnected together through
an interconnection network. There are many data base related issues associ-
ated with the design of network systems in addition to the design issues of
eflicient nodal systems. Among these are: the selection of network topology to

support DDB requests; the selection of the channel type; the design of network

control strategies; the design of communication processors, ete. Some of these

issues have been studied in [RAM76, RAM79b].

(B) Nodal System Design

The design of the nodal architecture to support a DDB is concerned with the
design of fast storage sub-system whose function is to provide the nedal proces-
sor sub-system and users with fast retrievalis and accesses to the stored data.
The storage sub-system usually consists of a memery hierarchy that is divided
into levels. These levels are made up of memory elements of varying speeds and
the fastest level is interfaced to the processor sub-system. Further, intelligence
have also been distributed toc the various levels of the hierarchy. One such
design is the data base machine [HSI77]. Issues like the selection of the number
of levels and the size of each level of the memory hierarchy; the design of virtual
memory for antomatic file management; the utilization of new memory techno-
logies; the hardware design for supporting data base operations in a data base
machine; the interconnection structure between memories and processors; ete,

must be considered in the design.

1.2.3 Issues in Operational Conirol

These issues are concerned with the eflicient, correct, reliable and secure

operations of the data base. They can be classified into:

{A) Resource Management of Data

These are issues related to the management of data and files as resources
of the system so that multiple users can share the files on the data base
efficiently [RAM79a]. The control of files as resources is not only applied at the
file level, where the files have to be placed at nodes easily accessible to users
and the data have toc be compressed for eflicient comrmunication and storages,

but it ranges from the users’ level to the physical level. On the users’ level, the

gqueries have to be processed so that the ameount of data movements is
minimum. On the physical level, the individual file requests have to be
sequenced so that maximum hardware parallelism can be achieved. Some of

these issues are the focus of study in this thesis.

(B) Concurrent Accesses and Updatas

In a DDB where users share the same data, there are several problems asso-
ciated with multiple accesses and updates. When users try to access the com-
mon data, there would be interference among the acecesses, and the communica-
tion protocol sheould be designed to minimize this interference. Another pfob—
lem related to consistency arises when data elernents with multiple copies at
different locations are to be updated. Simple locking mechanisms cause exces-
sive delays and may cause throughput degradation in the DCS. Efficient updat-
ing schemes are needed and the architectures would be very much influenced

by such schemes [ESW76].

(C) Directory Management

The directory is a special file in which the addresses for various files on the
system are provided. Lach access to a file must therefore pass through the
directory. Due to the high intensity of the accesses on the directory, special
attention must be paid to its design. In particular, the designer has to consider
the type of directory structure which is most suitable for his application and
whether the directory should be replicated or partitioned. In general, a combi-
nation of replication and partition is used. Further, reliability considerations

must be made in the design of the directory [ROT77].

(D) Security and Privacy

Another important issue in the design of a DDB is security and privacy.

Security refers to the protection of data against deliberate or accidental

destruction, unauthorized access or modification of data. On the other hand,
privacy refers to the right of an individual user to determine for himself what
personal information to share with others as well as what information to receive
from others. As the size of the data base increases, the threat to security and
privacy increases. In addition, it is inereasingly difficult to implement eflective
measures in a DDB. Additional techniques such as data encryption would affect
the transmission efficiency and the communication mechanisms [BAD78,

DOW?7].

{£) Reliability - Rollback and Kecovery

The determination of the necessary hardware for reliable operations, the
data redundancy and the reconfiguration strategies are another major issue in
the design of a DDB. Multiple copies of data base realm offer fast recovery;
checkpointing of realms, dumping and journal rollback and roli-forward offer a
slower but cheaper recovery. The effect of any recovery mechanism and
reconfiguration strategy on the response time and the associated overhead must

be weighed against the reliability requirements [KRI78].

1.2.4 Issues in Fvolution

In order for the system to be able to adapt to new application requirements
and technelogy advancements, evolutionary measures must be incorporated
into the system at the design stage. Three of the contradicting issues of evolu-

tion are:

(A) Technology Dependence

Technology is one of the most important driving force for the suceess of a
computer system. As seen in Figures 1.2 and 1.3, the number of components
per chip is approximately doubling each year, and the CPU speed is growing

exponentially each year. These faster and denser logic, together with a variety

COMPONENTS/CHIP

10

107 4
\\\\\\ o

10
107 -
10
~ Double Per Year

10 A~

10-1 \ 1) g k] L)
1960 1965 1970 1975 1980 1985
YEAR '

Figure 1.2 The Density Growth of Large Scale Integrated Circuits

2.0 -
1.8 .
1.6 .

CPU SPEED, MIPS
o
o
1

CPU SPEED

11

0.4~
0.2-
0 t i ! I
1965 1970 1975 1930
YEAR

Figure 1.3 The Exponential Growth of CPU Speed

12

of device manufacturing technologies [MOE78], offer a variety of semiconductor
memories with different access times and prices [THEY8, UPT78, FET78]. In
Table 1.2, the typical access time and power consumption for several semicon-
ductor memory types are shown. Given these diverse types of memories avail-
able on the market, the designer must therefore decide at the design stage the
rnost suitable memory to use, Mereover, magnetic device technologies have also
improved significantly. With the improvement of disks, drums and tapes, the
invention of the bubble memories [BOB71], and the Electron Beam Access
Memories (EBAMs)} [HUG75], it is now possible to provide inexpensive secondary

and archival storage to the computer system (see Figure 1.4).

With these evolving technologies, there are three significant impacts on the |
design of computers. First, new technologies add extra design alternatives to
the designers which allow the designers to design a system with improved per-
formance and decreased system complexity. An example is shown by the recent
developments of bubble memories, CCD memories and EBAMs which have

emerged to fill the "access gap” between the two traditional memory technolo-

Table 1.2 Typical values for LSI Semiconductor RAMs {1978) (Price is shown
for quantities of 100}

Memory r Access Power Con- Approx. Price

_Time (nsec) | sumption (mw) | (&/bit)
16K MOS dynamic 125-300 400-600 0.30
4K NMOS dynamic 150-350 480 0.33
4K ECL static 30 1000 - 0.85
4K I°L dynamic 120 450 0.59
4K TTL static 50-70 600-900 C.80-1.00
4K MOS statie 55-170 30-500 0.61-0.82
1K CMOS statie 150 4 1.02
1K TTL static 40-100 500-800 0.95
1K FCL static 35-60 500-800 1.30

COST {CENTS PER BIT)

13

|
10 - ! {
| _ CORE ;
i |
- x !
BIPOLAR | CCD MBM }
MOS | l
10"1 T : : FHD
| |
| |
1072 ' :
' t
i |
; |
-3 _
10 ! i MH
| i
i |
1074 - } }
ACCESS
e—— @ —> TAPE
5 l . ! Y
10 1 : | —— ! z
103 1002 10! 1 wr o162 w0 w0t 10 10°

ACCESS TIME {MICROSECONDS)

Figure 1.4 Availability of New Memory Technologies

14

gies (see Figure 1.4). The access gap is the region characterized by an access

6 3 sec. {fixed head magnetic

time between 10~ sec. {MOS memories) and 10"
disk}. Much time and effort is expended in finding efficient ways to accomplish
at minimum cost the necessary transfers of information across the access gap.
With the utilization of "gap-filler” techncelogies, improved performance and less
complex transfer algorithmns can be envisioned. Second, increasing logic on a
chip allows the designer to intorporate more logical capabilities into the sterage
sub-system in addition to the storage capabilities. These logical capabilities
inciude abilities to execute arithmetic operations like summation, averaging, as
well as logical operations like maximum/minimum searches, eqguality search,
ete. The designer has to decide on the necessary logical capabilities in the sys-
tem and how they should be designed. The last impact of changing technologies
on computer system design is the increasing speed mismatch among the ele-
ments of the computer system. With the development of high speed processors
such as the CRAY-1 and multi-processor system such as the C.mmp, there is an
increasing need of higher bandwidth from the supporting memeory sub-system.
In order to improve the bandwidths of memories, it is necessary to have intelli-
gent architectural designs and efficient aceess algorithms for supporting
retrieval operations in addition to the utilization of faster memory components.
Special emphases should therefore be placed on the utilization of new technolo-

gies, the design of new memory architectures and the study of efficient access

algorithms.

Evolving technology allows the users more freedom in specifying and
cperating the system. More stringent requirements can he specified and many
of the system's functions can be designed in hardware. However, the depen-
dence of the system on evolving technologies is usually a severe constraint on
the designer, and the evolutionary capabilities of a system depend very heavily

on how well the designer can predict the future technologies.

15

(B) Application Dependence

Because the size and the complexity of applications change with time, the
design of the system may have to be altered after the system has been
deployed. However, much teoo often, systems are designed without taking into
account the provision for future changes. When the system evolves, the changes
are incorporated into the system in a very disorganized manner. As a result,
the unstructureness of the system increases enormously [BEL77] and leads to a
regenerative, highly non-linear increase in the effort and cost of the system
maintenance [LEH78]. In addition to this, the reliability and the integrity of the
system are also jeopardized greatly. One provision is to have a systematic
design and development methodology which provides guidelines for the sys-
tematic design and construction of DDBs and allows the systern to evolve as the

application requirements and technology change [RAM78b, RAM79b].

{C) Standardization

One of the major inhibiting factors in the development and evelution of
DDBs is the lack of standardization in the areas of programming languages, user -
interface commands, data models, concurrency control mechanisms, hardware
components {e.g. disks, tapes), data formats, network protocols, ete. Standardi-
zation of hardware and software components allow modular expansion of the sys-
tem. On the other hand, with a highly evolving technology, standardization may

cause costly refitting later and may even hinder acceptance of new ideas.

We have outlined some of the issues in the design of a distributed system
supporting a DDB. These issues are by no means complete and other issues,
both design and operational, have to be considered. Alternative solutions to
these issues provide the options to be decided upon by the designers during the

design phase of the system.

16

1L.3ARCHITECTURE OF THE SYSTEM SUPFPORTING A DDB

The memeory system on a DCS is made up of nodal memories connected

together by a network and communicates via the connected processors (Fig.

1.5a). Bach node in the system, which consists of a set of processing elements

and the supporting storage sub-system, may be active or passive. If the node is

active, it acts as a reguesting source and can access the memories at other

nodes via the communication sub-system. Each of the aetive nodes in the sys-

tem has the following functions in addition to the local file accesses.

(1)

(@)

(3)

Remnote nccess control

This module detects all remote access requests originating from this
node and is responsible for processing them. When a remote request is
detected, this module looks up the network directory, and assesses the
file status. If the file exists on the neiwork and is accessible by the

request, this request will then by transmitted.

FLacal access control

This module is responsible for processing all remote requests received
from other ncdes in the network. It acts as a security filter and deter-
mines whether the file is accessible. If so, the loeal file is accessed and

the data will be transmitied.

Redundant file maintenance conirol

This module coordinates all the local and the remote updates at this
node and manages the multiple copies of files on the system. In ccordi-
nating updates, if the update originates from a remote node, the status
of the file is checked. In case that a conflict occurs and the data cannot
be updated, a status message is sent. On the other hand, if no conflict
occurs, the file is updated. If the updale originates at this node, this

module looks up the network directory and sends out all the requested

Communication Sub-system

, ‘ B

>torage
.| Control
Processor : Procassor . Processor
Storage , Storage Storage
Sub-system Sub-system Sub-system
Node 1 Node 2 Node n
Active Node Active Node Passive Node

(a) A DCS Memory System

Communication'Sub—system
. L !
Remote Local Redundant
File
Access Access Maintenance
Control Control Control
Remote Terminal ACTIVE
Operating System NODE
Local
Storage Applications
Sub-system

(b} Functional Design of an Active Node

Figure 1.5 Architecture of a DDB System

18

updates to every redundant copy on the system.

The relation of these modules to each other ih an active node is shown in
Fig. 1.5b. The logical issues in a DDB, such as security and privacy, concurrency

control, etc,, are resclved in these modules.

On the other hand, the physical storage system at a node comprises a
memory hierarchy that stores programs and data. It has been realized for a
long time that the conflicting requirements for high performance and lov} cost
storage sub-systermn at a node can be satisfied by a combination of expensive
high performance devices with inexpensive low performance devices which
results in a memory hierarchy. The spectrum of storage devices ranges from
bulk store and magnetic tape on one end, to the fast register storage and cache
memory in the CPU on the other hand (Figure 1.8). Many issues have to be con-
sidered when these different speed elements are put together. These include:
the selection of some physical parameters such as the number of levels in the
hierarchy and the size and the speed of each level [RAM70, WAR76]; the design of
the interconnection mechanism among levels [SMI78, POH75]; the design of
efficient scheduling algorithms and record/file distribution and migration algo-
rithms [MUN74, STRY7]; the provision of virtual memory support for an
automatic file management system [TUE76, POH75, DEN70, BAS70], ete. The last
issue is particularly important because the success of a DB is very much depen-
dent on the efficiency of the virtual memory. A file on a DB is likely to be large
and cannct reside entirely in the main memory. The use of virtual memory can
relieve the users from the laborious task of storage management. 1t is seen that

research is urgently needed in this area.

There is also an increasing tendeney to distribute the processing of the CPU
to the various levles of the storage sub-system. One successful implementation

of this is the DB rmachine {Figure 1.7} [ESI7?7]. The DB machine may be a

19

Year Year
1975 1985
([cPU 20 MIPS | 40 MIPS
) 3
CPU < [Registers 5008 10%8
L | cache 10%s 10%
CPU
Addres
Space 6 3
Main Memory 1078 1678
Bulk Store (using 9
Gap Filler Technology- 1985) o8 1078
X Disks 1078 101ts
~ File
Address
Space Mass Storage (Tape Cassettes 1011B 1013B
Loaded Automatically)

Figure 1.6 Storage Hierarchy (With Typical Sizes shown for 1975 and 1985)

Paging
Device

Host

Backend Controller

A
Processor Processor Processor * e Processor
Interconnection Switch
Memory Memory Memory s o0 Memory

Figure 1.7 Architecture of a Data Base Machine

bz

21

separate member of the storage sub-system or it may represent a level of the
memory hierarchy with additional intelligence. The use of a DB machine relieves
the processing load of the central processor and allows more parallelism in the
processing of DB requests. Further, processing on large file systems are often
1/0 bound and many of the file operations are gquite simple. A significant com-
munication overhead is incurred in transferring the file to a level of the memory
hierarchy where the processor can access it. By distributing the intelligence to
the different levels of the memory hierarchy, the DB machine can allow parallel

proecessing with very little communication overhead.

Although DB machines have been successfully designed or implemented,
e.g. Data Base Computer (DBC) [BAU78], Context Addressed Segment Sequential
Storage (CASSM) [LIF78], Relational Associative Processor (RAP) [0ZK77], Rotat-
ing Associative Memory for Relational Data Base Applications (RARES) [LIN78],
Datacomputer [MAR75], ete., the design of DB machines are still plagued by
many issues. Examples of these issues are; deciding on the kind and the degree
of parallelism; selecting the appropriate techniques for impiementing the
storage media; designing the hardware and the software interface; building the
storage structure and the backend primitives and designing the contrel algo-
rithms. These issues are very important because the storage sub-system is very
expensive and can he more than 50% of the total hardware system cost [SCH78].

Some of these issues are discussed in Chapter 5 of this thesis.

This section has described some of the necessary architectures in support-
ing DDB applications. Data base processing generally has some special charac-
teristics and these allow the architecture to be designed differently from con-
ventional architectures. In the next section, the issues on the resource manage-

ment of data on a DDB are discussed.

1.4 OBJECTIVES AND CONTRIBUTIONS OF THIS RESEARCH

22

1.4.1 Problemn Statement

The primary objectives of this research eflort are the development of a
realistic, comprehensive, analytical model for the management of data as
resources on a DDB. This design problem encompasses the issues of establishing
a systematic way of classification of the different levels of resource management
in a DDB, design of performance measures for each level and development of
procedures for the optimal solufion for certain problems in each level. We hope
to provide a strong framework for future research inio problems associated with
thege large scale systems as well as the solutions to some specific design prob-

lems.

1.4.2 Approach

In order to achieve the global objective, the resource management issues
are classified into four related levels, namely, the query level, the file level, the
task level and the hardware support level. The specific data management issues

investigated are:

(1) Query Decomposition on PDB's
A gquery is an access request made by a user or a program in which one
or more files have to be accessed. When multiple files are accessed by
the same query on a DDB, these files usually have to reside at a common
location before the query can be processed. Substantial communication
overhead may be involved if these files are geographically distributed
and a copy of each file has to be transferred to a common location. It is
therefore necessary to decompose the query inte sub-queries so that
each sub-query accesses a single file. These sub-queries may then be
processed in parallel at any lecation which has a copy of the required
file. The results after the processing are sent back to the requesting

location. It is generally true that the amount of communications needed

(2)

(3)

(9

23

to transmit the results is much smaller than the amount needed to
transmit the files. This appreach has been proposed in the design of the
centralized version of INGRES [WON76] and is extended to the design of
SDD-1 [WON77], and distributed INGRES [EPS78]. However, in some
cases, decomposition is impossible and some file transfers are still
necessary. Two techniques are proposed in Chapter 2 so that the overall

cperational costs of the system can be reduced.

File Placement and Migration

This issue relates to the distribution and migration of data base com-
ponents, namely, files and control programs, on the DDB with the objec-
tive of minimizing the overall storage, migration, updating and access
costs on the system. A file assignment algorithm is proposed in Chapter

3.

Task Scheduling

Requests on the DDB must be scheduled so that high parallelism and
overlap can be achieved. The reguest may be a single word feteh or it
may be a page or file access., This parallelism is important because in
order to attain high throughput, the parallel hardware and resources
must be efficiently utilized. The control of task scheduling can be distri-
buted or centralized. In distributed control, each node may act indepen-
dently and coordinate with each other. In centralized control, there is a
primary node in which all scheduling contrel are performed. The deci-
sion of which is the better control mechanism depends very heavily on
the interconnection structure and the communication overhead

involved. This issue is discussed in Chapter 4.

Hordware Support

In addition to studying the logical data management techniques, the

24

design of the necessary hardware support is also very important. This
hardware does not necessary implement a sclution to one of the data
managenent issues, e.g. file placement, but it provides auxillary support
to these sclutions so that they can be implemented efficiently. The par-
ticular hardware supports studied are the associative memory and the

data base machine, These are discussed in Chapter 5.

The relationships among the various data management issues are shown in
Figure 1.8 where a relation -» is said to exist between two design issues o, F, i.e.
a-+b if t;he solution of & is transparent to the solution of ¢. That is, the solution
of o is not affected by the solution to &, but not vice versa. The solution to ¢
can therefore be developed independent of &. In Figure 1.5, it is seen that gen-
erally, task scheduling is transparent to file placement and migration which in
turn could be transparent to query decomposition. Further, hardware support
is transparent to all these logical issues and are generally developed after the
algerithms for the logical issues have been designed. Due to the independency,
algorithms for query decomposition can be developed independently. In
developing algorithms for file placement and migration, the solutions for query
decomposition should be taken into account. However, in most cases, assump-
tions can be made about their solutions and the file placement and migration
problem can be solved independently. For example, it may be assumed that all
queries which access multiple files may be decomposed into sub-queries that
access single files. This assumption is only true in some eircumstances, an
examplie of which is shown in Chapter 2 of this thesis. The file placement and
migration problem for multiple files is therefore decomposed into many single
file optimization sub-problems. It must be noted that other operational contrel
requirements may also impose restrictions on the sclutions to the data manage-
ment issues. For instance, different reliability requirements may demand

different lower bounds on the number of copies of a file on the DDB; different

Query 2
Decomposition
File 3

Placement

and Migration

Task

VOV UVCW MAPETTNIBT

Scheduling

25

Query Level

File Lavel

Task Level

Figure 1.8 Relationships Among Various Data Management Issues (The
Number in Each Issue Indicates the Chapter in which it is

Discussed)

26

concurrency control mechanisms may have different costs on the file placement

problem; etc. Reasonable assumptions must therefore be made about these

techniques in order to determine their effects on the resocurce management

issues and to solve these issues independently.

1.4.3 Contributiens of this Research

Serme specific contributions of this research, arranged in the order of dis-

cussion, are listed below.

(A)

(B)

()

(D)

A model for query decomposition on relational data bases has been
developed. It is shown that the optimization of placements of multiple

relations can be done independently for each relation,

Two cost reduction models have been designed to reduce the operatiicnal
costs of a relational data base. The first model reduces the retrieval cost,
but increases the update cost. The second model reduces the update cost
but increases the retrieval cost. These two cost reduction models can be
combined to form a unified approach to reduce the operational costs of
the DDB’s. Farther, it is also shown that the optimization of placements of
multiple relations under the use of these techniques can be done indepen-

dently for each relation,

The isomorphism between the file placement problem and the single com-
modity warehouse location problem has been proved. Due to this isomor-
phism, it is also shown that some conditions and techniques developed in
computer science to solve the file placement problem are weaker than the
corresponding conditions and techniques developed in operations research
to solve the warehouse location problem, and vice versa. Further, the

technique developed in both problems are inter-changeable.

A file placement heuristic has been developed. While not necessarily vield-

ing optimal system design, this heuristic yields solutions of lower cost than

(E)

(F)

(@

(H)

27

those generated by other currently available heuristics.

A model for the scheduling of tasks on a distributed system has been
developed. This model assumes that global control is infeasible and all the
scheduling decisions have to be made locally at each node, It is shown that
the scheduling of tasks in this model when all the task processing times
are deterministic, is an NP-complete problem. A heuristic has been
developed and the performance of this heuristic has been verified using

simulations,

A more restricted model than the model developed for the scheduling of
tasks on a DCS has been proposed. By using the additional constraints, it
15 shown that the coptimal scheduling problem is polynomially solvable.
This model actually represents an organization of an interleaved memory
system. The performance of the scheduling algorithm has been verified
using simulations. Further, the degradation in performance due to depen-

dencies has been estimated.

An associative memory has been designed which is capable of searching
the maximum and the minimum in a tirne independent of the number of
words in the memory. It is also capable of doing equality search, threshold
searches and proximity search. The design is very eflicient and has a com-
plexity of 17 gates per cell. The design is asynchronous and utilizes a
word-parallel and bit-serial algorithm. The delay is 1 to 4 gate delays

across each bit slice.

The associative memory concept is extended to the design of data base
machines. The logic designed can be implemented on the same chip as the

memory elements.

28

2. QUERY DECOMPOSITION ON A DISTRIBUTED RELATIONAL DATA BASE

Ih this chapter, the problems of query decompesition and its association
with the optimal placements of relations on a distributed relational DB are stu-
died. Our objectives are to study techniques which allow query decomposition to
be done more efficiently and to investigate properties on the optimal place-
ments of multiple copies of relations or segments of relations on the DCS that
minimize the total operational cost of the system {(e.g. storage cost, multipie
update cost, retrieval cosi, query processing cosf.. file migration cost, etc.). The
theme of this chapter is to demonstrate that the placements of multiple rela-
tions on a distributed relational DB can be optimized for each relation indepen-
dently. It is assurned that a technique exists to find the optimal placements of
multiple copies of a single relatien on a DDB, an example for which is shown in
Chapter 3. In this chapter, two methods have been proposed to reduce the
operational costs of the system. The first method utilizes additional redundant
information on the DDB so as to reduce the total retrieval cost and increase the
total update cost. The second method uses file partitioning to reduce the total
update cost and increase the total retrieval cost. It is shown by an example DB,
that under certain conditions, either method, or a combination of both methods,
can reduce the total operational costs of the system. A relational data model is
chosen in this discussion because it is very popular and the results obtained
would be more specific. However, the technigues proposed in this chapler can

be generalized to any type of data model and file system.

2.1 QUERIES ON A RELATIONAL DB

In a relational DB [COD70], data is viewed as relations of varying degree, the
degree being the number of distinet domains participating in the relation. Each

instance of a relation is known as a tuple, which has a value for each domain of

29

the relation. Thus a relation can simply be represented in tabular form with

columns as domains and rows as tuples.

A Query is an access request made by a user or a program, in which one or
more relations have to be accessed, A query on a relational DB consists of two
parts: the part specifying the domain{s) of the relation to be retrieved and the
part specifying the predicate which is a quantification representing the defining
properties of the set to be accessed. Let S be a relation of domains s# sname,
city, inventory; and SP be a relation of domains s#, p# (Figure 2.1). The queries

on a relational DB can be classified into the following categories [DAT?7]:

{1} Retrieval Operations
{a) Single Relation Retrieval: The predicate representing the defining pro-
perty of the set to be retrieved is defined on the same relation as the

set,

{a) Relation &
S i s# sname] city inventory
1 | Supplier A New York 1500
3 | Supplier B | San Franecisco 700
5 Supplier € Chicago 2500

(b) Relation SP

SP ' s# | p#
1 Al
2 Al
3 A2
4 A2
5 P2

Figure 2.1 Relations S and SF

E.g. GET (8.sname): {S.city="Paris" AND S.inventory>1000})
(b) Multiple Relation Retrieval: The predicate, as well as the set to be
retrieved, may be defined over multiple relations.
F.g. GET (S.sname): (S.s#=SP.s# AND SP.p#="FP,")
Relaticns S and SP must be available simultaneously before the

retrieval can be processed.

(2) Storage Operations
{a) Single Relation Update;
(b) Multiple Relation Update;
(e) Insertion;

{d) Deletion.

(3) Library Functions
These represent more complicated operations on the predicate than the
equality operations, e.g. counting the number of occurences, setecting the

maximum /minimum ete.

Single relaition gueries can be processed very easily on a distributed rela-
tional DB. When the relation is geographically distributed, the query can be sent
to a node that has a copy of the relation and be processed there. The results
after the processing can be sent back to the requesting node. It is generally
true that the amount of communications needed to transmit the results is much

smaller than the amount needed {o transmiit the relations.

On the other hand, the processing of a mult-relation query is more compli-
cated. When multiple relations are accessed by the same guery on a DDB, these
relations usually have to reside at a common location before the query can be
processed. Substantial communication overhead may be involved if these rela-
tions are gecgraphically distributed and a copy of sach relation has to be

transferred to a common location. It is therefore necessary to decompose the

31

query into sub-queries so that each sub-query accesses a single relation. This
technique has been proposed in the design of the centralized version of INGRES
[WON78), and is extended to the design of SDD-1 [WON77] and distributed INGRES
[EPS7B]. Specifically, the technique consists of two steps. The first step is to
select a site with the minimum amount of data movements to that site before
the query can be processed. This is used as a starting point for the second step
of the algorithm which determines the sequence of moves that results in a
minirmum cost. The algorithm used is a greedy algorithm and only local optima
can result from such an algorithm. Hevner and Yao [HEV79] have followed a
similar approeach and have developed two optimal algorithms for arranging data
transmissions and local data precessing with minimal response time and
minhmal tetal time, for a special class of queries. These optimal algorithms are
used as a basis to develop a general query processing algorithm for a general
query in which sach required relation may have any number of joining domains
and output domains and each node may have any number of required relations,
This general algorithm is a heuristic which uses an improved exhaustive search
to find eflicient query distribution strategies. Ghosh also proposed a model of
data distribution on a DB which facilitates gquery processing [GHO78).
Specifically, the model consists of a DB with multiple target segment types and
there are queries with multiple target segment types. The objective is to distri-_
bute the segments on the DB so as to maximize the number of segments that
the queries can retrieve in parallel from different nodes. The mode!l only looks
at the problem from a retrieval point of view and no cost is associated with

retrieving a segment from a node,

Most of the previous work addresses the problemn from two separate
viewpoints. The first one is concerned aboul the questions of what are the pro-
cessing sequence of the query and where it should be processed. The second

viewpoint is concerned about where the files should be placed so that they can

32

be accessed efficiently. These two viewpoints are not entirely independent and
should be investigated together. PFurther, there exists queries which are non-
decomposable. For example, the query:
GET (S.sname): {S.s#=SP.s# AND SP.p#="Fp")

is not decomposable into single relation retrievals because there is a logical
relation "=" which is defined over a cornmon domain s# of the relations S and SP.
These relations must be available simultaneously at a commen location before
the retrieval or update operations can be performed. Instead of solving the
problem of decomposing the queries, we study two techniques to reduce the pro-
cessing and communication costs for non-decomposable queries in this chapter.
It is shown later, by the introduction of some redundant infermation on the DB
and by the use of file partitioning, non-decomposable queries may be made
decomposable, {see also [RAM78a, RAM79c]). The basic assumption made over
here is that all the required relations are moved to the node at which the query
criginates, before the processing of the query begins. It is possible to consider a
sequence of moves which will minimize the total amount of data transferred.
However the problem will be very complicated and the intention of this chapter
is to demonstirate the usefulness of the techniques of using redundant informa-

ticn and file partitioning.

Before the technigques are discussed, the problem of placements of rela-

tions on a DDB is first fermulated.

2.2 THE PLACEMENTS OF RELATIONS ON A DDB

In this section, a model for the placements of multiple relations on a DDB is
formulated. The model is shown for the special case of two relations and is gen-~

eralized later to the case of more than two relations.

33

Consider two relations a and b, ths reirieval and the update rates at node i

are (see Figure 2.2)%:

gfe{gls) = rate of access at node i for a single relation retrieval accessing

relation a{b);

gfas = rate of access at node i for a multi-relation retrieval accessing both

relations a and b;

uls{ufy) = rate of update at node i for a single relation gquery updating

relation a(b);

ulP(ufe®) = rate of update at node i for a multi-relation query accessing

both relations a and b before updating relation a{b).

The costs for each unit of access are:

Sff,-(Sf’,j) = communication and processing cost per unit query of accessing

relation a(b) from node i to node j;

M{’,'j(Mf',J—) = communication and processing cost per unit update of multiple

updating relation a(b) from necde i to node j.

We differentiate between the cosis of retrievals and updates because in some
applications, retrievals are more important than updates and therefore would
have a higher cost {e.g. inventory system}); while in other real time applications,
updates may be more frequent and therefore more critical {e.g. airline reserva-

tion system). Let:

n = number of ncdes on the DCS;

! The conventions of the symbols used are as follows: i,j represent indexes for nodes; ab
represent indexes for relations; the superscripts represent the list of relations that the query must
access before the query can be processed; the subscripts represent the nodes concerned and the tar-

Relation a Relation b

{(a) Retrievals

Relation a Relatian b

(b) Updates

—— Single Relation Accesses
———» Multi-Relation Accesses

Figure 2.2 Retrieval and Update Rates on a 2-Relation DOB from Node i

34

35

I, {1y) = length of relation a(b);
fi.a{fip) = per unit cost of storing relation a(b) at node i.

We define from the characteristics of the queries initiated from node i, the fol-
lowing symbols:

(1} Single relation retrievals:

af,{a,) = fraction of relation a(b) that is put into the result relation due

to the execution of a single relation retrieval on a{b);
(2) Multi-relation retrievals:

alP{of?) = fraction of relation a(b) that is needed to process a multi-

relation retrieval on a and b:
(3) Single reiation updates:

g2.(B2y) = fraction of relation a{b) that will be updated by a single relation

update;
{4) Multi-relation updates:

vP2(v®?) = fraction of relation a{b) that is needed to process a multi-

relation update before the updates can be performed;

2:2(88P) = fraction of relation a(b) that will be updated by a multi-relation

update after relations a and b have been accessed.

In processing a multi-relation update, the relations a and b must be accessed
first in order to determine what are the actual updates that have to be made.

This is measured by the parameters v#y and vf®. The fraction of relations a

get list of relations for the query.

36

and b to be updated after they have been determined are measured by the
parameters £ and g2

The parameters defined above can be estimated from the characteristics of
the different types of queries that can be made on the DDB and the probability

distribution of the data stored in the relations.

The control variables governing the file locations and the routing discipline

are defined as follows:

0 if relation a(b) does not exist af node i

Y'?(Y‘?) = otherwise

X?;{X?;) = fraction of queries made at node i on relation a(b) that are
routed to node j.

It is true that if X[;>0, then Y/=1 for r=a,b.

The optimization problem of placing relations a and b on the DDB can be

formulated in the following linear program:

min (2.1)
n n
Z E q{.'r U"{.r er'{.jS'l{j (2- 1 a)
r=a.bi=1 j=1
n n
+ Z} 2 Rl L X (2.1b)
r=a.b {21 '=
n n
+ E Z U B r e M ;YT (R.1c)
r=a,b izl j=1

;} vl XS ;585 _
b _ (2.1d)

n n

+ Y3 firl YT (2.1e)

r=a,bi=1

subject to the following consiraints:

Mrl=z1 =00 {2.1f)

37

™
2 X-{,j =1, r=g,b,i1=1,2,....n (2.1g)
=1
T
nY}’; Z X'r_j = 0: T=a!bl j=112!"°'n’ (2'1h)
i=l
Yr=0,1, r=a,b,1=12,...n (2.11)

Eg. 2.1a represents the access cost for single relation retrievals; Eqg, 2.1b
represents the access cost for multi-relation retrievals; Eq. 2.1¢ represents the
update cost for single relation updates; Eqg. 2.1d represents the update cost for
multi-relation updates and Eq. 2.1e represents the storage cost of relations on
the DDB. Condition 2.1f assures that at least one copy of the relation exists;
condition 2.1g assures that all the queries are serviced; condition 2.1h assures
Jgha.t the relation must exist at a node if a route is defined to access it at that

node and condition 2. 11 assures that the control variables Y] are integral.

LEMMA 2.1
The above optimization problem can be partitioned into two independent optimi-

zation sub-problems, one for each relation:

{a) min (2.2)
5 A ux_n._sgz. + LR aMa. Ye + Faya.
121 121 ijveg v, X 21 L E
= = T= J=
where '

Q¢ = (q'é.u-at 2+ afa ba-z a.b + ufy th'a.b + Tbbvaﬁb)la
Uug= (W?aﬁﬁa + oy n.bﬁ-caa.b)l

Ff’:“” fi,aln.

subject tor

i)
IR R

i=1

38

kil
nYpz) XE, 20 j=1..7m
=1
Yr=0.1 i=1,...n
{b) min {2.3)

ki3 n T ki) B T
Z‘ 2 Q"?X‘EJ'S'EJ' + E UibM‘Rin + E FibY-ib
i=1 =1 i=1 7=t i=1

where
QF = (glaods + gfdlaolfs’ + uldvis’ + uldvidh
UP = (ubpBls + ulg’BE)

Fiw = Fipls
subject to:

n
S Yz
i=1
n
CXPy =1 i=1,,..n
il
T
nYfz 3 X200 j=l..m
i=1
Y?=0,1 i=1,....7
Proof

We notice in optimization problem (2.1) that there are no cross product terms in
the control variables of relations a and b. Therefore, the objective function of
(2.1) can be written as a sum of objective functions 6f cptimization problems
{2.2) and (2.3), and similarly, the constraints can be partitioned into two
independent sets. The solution to (2.2) will therefore be a constant in (2.1)
which implies that {2.3) can be solved independently. Similarly, the solution to
{2.3) will be a constant in (2.1) and this implies that (2.2) can be sclved indepen-

dently.
Q.E.D.

39

We conclude that the optimization problem 2.1 for relations a and b can be
carried out as two optimization sub-problems for relations a and b indepen-
dently.

A further simplification of the integer programs (2.2} and (2.3) is to first
solve for X7;, r=a,b, and substitute it into the integer programs. It is shown in
[ALC78] that,

it S7; = min S,

1 k,Y[=1

X{-f “lo otherwise

The detailed proof will not be shown here.
A generalization of Lemma 2.1 is to allow any number of relations in the

DDB. This is shown in the following theorem.

THEOREM 2.1
The general problem of optimizing the placements of multiple relations on a DDB
can be decomposed into maultiple sub-problems, one for the placement of each

relation.

The proof, which requires some symbols to be defined and can be done by

obvious generalization of the proof of Lemma 2.1, will not be shown here.

The importance of Theorem 2.1 is that the original optimization problem of
placing multiple copies of m relations on the DDB, which has a complexity of the
order of 0 (2™}, is reduced to m simpler optimization sub-preblems of placing
multiple copies of each relation on the DDB, each of which has a complexity of
the order of G(2"). There are many techniques developed to place multiple
copies of a relation on a DDB, e.g. [CAS72, LEV74, MOR77]. Some of these tech-
niques are exhaustive and give optimal solutions, e.g. [CASY2, LEV74, MOR77];
others give sub-optimal solutions and have a polynomial running time, an exam-

ple of which is shown in Chapter 3 of this thesis. In the remainder of this

40

chapter, we discuss two techniques to minimize the operational costs on the
DDB. The costs with and without the application of these techniques are com-

pared.

2.3 COST REDUCTION ON THE PLACEMENTS OF RELATIONS ON A DDB BY UTIL-
IZING REDUNDANT INFORMATION

In section 2.1, the technique of query decomposition is briefly described. In
gquery decomposition, optimizaltion is performed on the processing of a single
query which originates at a node. The objective is to decompose a multi-relation
query into as many single relation sub-queries as possible so that data (relation}
movements from one node to another can be minimized. However, there exists
non-decomposable queries which require all the relations that they access to be
present al a common location. A large number of relation transfers may be
needed if these relations are geopgraphically distributed. In order to avoid these
extra relation transfers, a technique utilizing redﬁndant information is proposed
here. Instead of decomposing queries that aceess multiple relations, it may be
sufficient to provide redundant information in each relation so that multiple
relations do not need to reside at a single location before the query can be pro-
cessed. For example, in processing the query:

GET (S.sname): (S.s#=SP.s# AND SP.p#="P,")
on two geographically separated relations, S and 3P (Figure 2.1}, it may be
necessary to transfer relation S to the node where SP resides and then process
the query there or vice versa. However, if the information (S.s#=SP.s#) is com-
piled beforehand into the two relations (Figure 2.3), then the above query can be
decomposed into twe single relation sub-queries:

GET (S.s#, S.sname): (S.s#=3P.s#) and

GET (SP.s#): (S.s#=SP.s# AND SP.p#="P,").

In this case, the processing can be done in parallel and the amount of

4]

{a) Relation S

S | s# | S.sf= sname city inventory
SP.s#
1 1 Supplier A New York 1500
3 1 Supplier B ; San Francisco 700
) 1 Supplier C Chicago 2500

{b) Relation SP

SP | s# | S.sf= | p#
SP.s#

1 1 Al

2 Al

3 1 A2

4 A2

5 1 P2

Figure 2.3 Relations S and SP with (S.s#=SP.s#)
information compiled into the relations

information transfers is much smaller.

This technique poses several problems. First, it is necessary to take cne
extra bit for each tuple in order to compile this piece of information. If the
amount of information te be added is large, {e.g. when the number of different
predicates defined on a common domain of two relations is large), the size of the
extra storage space may be significant. Second, when the common domain of
cne relation is modified, it is necessary tco "multiple update'” the redundant
inforrnation in all the common domains of the other relations in the DDB. Refer-
ring to Figure 2.3, if an extra tuple with s#="2", sname="Supplier I,
city="Boston" and inventory="3000" is added to relation S, then it is necessary

to find out what are the changes that have been made con the redundant informa-

42

tion {(S.s#=8SP.s#) in both relations 8 and SP, and to update these changes in
addition to the original update. In this case, the (S.s#=8SP.s#) information has to
be changed in relations S and SP because relation SP contains a tuple with s#=2.
If updating activities are frequent, the "muiltiple update’ cost is large. The net
effect of this technique is therefore to reduce the total retrieval cost and to
increase the total update cost of the system. Further, the respense time in
reflecting an update on the DDB may be longer in this case because of the need
io update the redundant information. Third, this technique requires that the DB
designer be able teo estimate the amount of additional information to be com-
piled into the relations. A possible way is to pre-analyze the type of predicates
used in retrievals and updates and to determine what are the essential informa-
tion to be compiled into the relations. A compromize should be made between
introducing extra information with additional storage space and higher cost in
multiple updates, and reducing the amount of relation trensfers. It would be
advantageous for the more frequently used predicates and less advantageous for

the others.

In the remainder of this section, a model is developed for deciding how
much redundant information is needed on the DDB in order for this technique to
be cost effective. We first exarnine the strategiés that have to be used for

retrievals and updates.

The strategies on retrievals of a geographically distributed relation is the
same as the strategy when no redundant information is used. The necessary
information te be used in processing a single relation guery is first projected
‘onto teraporary files before they are sent to the originating node. In the case of
a non-decomposable multi-relation query, all the required relations are sent to
the originating node before the query is processed. On the other hand, the stra-
tegy on updates is different from the case of no redundant information because

it is also necessary to check whether the redundant information is updated.

43

There are two variations of the update strategy:

(1)

(2)

The updates are first sent to the multiple copies of the file to be updated;
The necessary information on g1l the relations, which is needed to deter-
mine if the redundant information has to be updated, is sent to a com-
mon node;

The updates to be made on the redundant information are determined
there;

The updates on the redundant information are sent out to all the

affected relations.

The necessary information on all the relations, which is needed to deter-
mine if the redundant information has to be updated, is sent to node i
where the update originates, (actually, it can be sent to any other node,
but the control overhead in doing this would usually be greater);

The update to be made on the redundant information are determined at
this node;

The updates on the target relation as well as the updates on the redun-

dant information, are sent out {o all the relations.

The advantage of using strategy (1) is that the updates on the target rela-

tion are reflected on the DDB in a shorter time than strategy (2). But strategy

{1} involves more control overhead and the response time in reflecting the

updates on the redundant information is longer than strategy (2). In general,

strategy (2) will have a shorter overall response time. We assurne that strategy

(2) is used in our model.

As before, the model for determining the use of redundant information is

first developed for the special case of two relations and is generalized to the

case of more than two relations later.

44

Consider two relations a and b, the retrieval and the update rates, using the
notations defined earlier, are shown in Figure 2.4. There are {wo additional
types of single relation retrievals which are decomposed from part of the multi-
relation retrievals due to the use of redundant information. In describing the

model, the following symbols are defined:

y£:2y = fraction of non-decomposable multi-relation retrievals on a and b
from node i that remain non-decomposable even with the use of

redundant information;

U-."cf’ [op]
{ofd+afd) | (o8 + o8
= fraction of multi-relation-reduced-single-relation retrievals from
node i on a{b) due to the use of redundant information;
(1—')" ab)q #w» is the rate of multi-relation retrievals that is decom-
posable with the use of redundant information;
(17280)q82, (a8 +02y) is the total rate of multi-relation-reduced-
single-relation retrievals to relations a and b after the decomposi-
tion;
It is generally true that of+of?=1, that is, the total rate of addi-
tional single relation retrievals after the use of redundant informa-
tion, is greater than the reduction in multi-relation retrieval rate;
The access rate of multi-relation-reduced-single-relation retrievals

on relation r is {(1-7&2, g8y of;? for r=a,b;

ef2(ef?) = fraction of relation a{b) that is put into the result relation due

to a multi-relation-reduced-single-relation retrieval on a{b);

6.{’:;;’(6{{53’) = fraction of non-decomposable multi-relation updates on a(b)

from node i that remain non-decomposable even with the use of

45

a,b,, . 3,b
ci ’a(l Yi’ai

/- /
Relation a Relation b
Z %

A

{a) Retrievals

Relation a Relation b

NN

N

{(b) Updates

——> Single Relation Accesses

Multi-Relation Transformed Single Relation Accesses,
—*—? Due To The Use Of Redundant Information

w——a Multi-Relation Accesses

@ Redundant Information

Figure 2.4 Retrieval And Update Rates On a 2-Relation DDB
From Node i Using Additional Redundant Information

46

redundant information;

Neas(Mdep) = fraction of updates on relation a(b) from node i that will

update redundant information on relations a and b;

£8,(¢2,) = fraction of relation a{b) in which the redundant information has

to be updated due to updates originating from noede ji;
I'.{I's)} = length of relation a{b) after the use of redundant information.

In our model, although the amount of storage is greater after redundant infor-
mation is used, i.e. I',>L. (r=a,b), but the effect on communication is very small
becauge the redundant information does not have to be transferred over the

network in processing a query.

The optimization problem of placing relations a and b on the DDB after the

use of redundant information can be formulated in the following linear program:

min (2.4)
. T Ti
Y, efrod Ur XT;ST 4 (2.4a)
r=a,b i=1 j=1
n L b b
+ > 2 (A=rfdy)alals o8 e 80U XT 5 ST (2.4b)

n ki

+ 30 reRsafde ol X ;ST (2.4¢2)
T ki3

+ E Z u{rﬁ{rrrM{jY; (2.4(1)

Y iU XD ST
s=ab {(2.4e)

. ﬁ:-.,-mm.j 1]
= 2 b a,b s
+ 5 Ny n{u,a(w”.ﬁw‘f;}{z af?ls X557
r=a.bi=1 j=1 s
(2.41)

+ 3 sf.:wf.;i’}i
t=a,b

47

n

v, a et | | (2.4g)
r=onb i=1 .
subject to:
Tt
Y7zt r=a,b
i=1
kil
2 XL;=1 r=a,b i=1,...n
=1

nY}'%iilX{}- 20 7r=a,b j=l..n

Yf=o0,1 r=a,b i=1,...,7m
Most of the terms in Eq. 2.4 are the same as in Eq. 2.1, except in this case
Eq. 2.4b represents the access cost for multi-relation-reduced-single-relation
retrievals using the redundant information; and Eq. 2.4f represents the update
cost for the redundant information. The term n7,{ul, +u® for r=ab
represents the access rate of updates that may have eflecis on the redundant
information. In determining whether the redundant information will be updated,
it is necessary to perform a multi-relation retrieval on the relations concerned.
In this case, since we know the updates to be made on relation r, we can fetch a
copy of all other relations s/ and move the copies to node i. This cost is

represented by the term 3, ai‘fgbl'st_ijJ in Fa. 2.4f. After the updates on the
s

redundant information have been determined, the actual updates, together with
the updates on the redundant information are sent te all the nodes which have a

copy of the relation. This cost is represented by the term)} Ef,tl'th,jY} in Eqg.
t=o.b

2.41.

A similar lemma and theorem can be proved for this problem.

LEMMA 2.2
Optimization problem 2.4 can be partitioned into two independent optimization

sub-problems, one for each relation:

48

n
(a)min 3 Qf min 57 + 3} 3 URME Y] + 3 FeYE (2.5)
i=1 §.Yf=1 i=1 §=1 i=1
wheTte:
Qg = [q'tgu.afa. + (1_ 3 b)Q1abU'1a53ab + 71&5?1&&“1“0.&

bdt a V-f'a.b + uv. 61 b V'Laa.b + 7?1. a b(u'i. b+u‘l b)a’l'..;l]l'a.

U= ["-kg,ufggu + 'U‘iaﬁzuab + nita, b(uz atuls }Si o
+ g o (W Fuf)EL D,

Ff = fi,ui'n
subject to:
ki3
D rYEz1
i=1
Y& =101 i=1,...,n
T
() min E ek mm Szb: + 2 E UibMib,ij + 3 FPYE (2.8)
=1 i=1 j=1 i=l
where:

Q’P = [q'r, bazb + (1 '}'1.{2 6)91a6916b51.a6b + ’huqu abazb
+ ulLeEIv S + ulp 6P VEY + nlap(ulaulal 1l

UP = [ufu Bl + uf Bl + nap(ulatufd)eds
+ nas(uly +ulft)ed 1

FP= fipls
subject fo:

Yz

-,
Rl

Y? =0,1 i=1,..,7n

THEOREM 2.2
The general problem of optimizing the placements of multiple relations on a DDB
using additional redundant information can be decomposed into multiple sub-

problems, one for the placement of each relation.

49

The proofs of Lemma 2.2 and Theorem 2.2 are very similar to that of Lemma

2.1 and Theorem 2.1 and will not be illustrated here.

We demonstrate the use of this technique in the next section with a simple

example,.

2.4 A NUMERICAL EXAMPLE TO ILLUSTRATE THE USE OF REDUNDANT INFOR-
MATION GN A DDB

In this section, we show by the use of a numerical example, the cost

improvement when redundant information is introduced on the DDB.
Consgider a DCS of 3 nodes with two relations, S and SP, on the DDB. Let S
has domains s#{1), sname(10), city{5), inventory(2) and SP has domains s#(1),

p#(1)%. Assume that S has 500 tuples and SP has 10000 tuples. The following

parameters are also assumed:

01 2
[Sij]1=[Mi;]1=jt O 15|* 1072
2 1.5 0

Jig = fisp =0
is = I's = 500*18 = 9000 (words)®

Isp = U'sp = 10000*2 = 20000 {words)?

Node Parameters

- 5
i | ¢fs | uls | udsF | ¢kp | uihp | ulsF | ofhs

1 100, 201} 1156 BO | 120 40 100
2 50 | 100 50 100 25 35 50
3 75 15 a5 50 15 10 7S

and for all i£§1,2,3],
afls = alkp = V& = vid¥ = 0.1

? The number in the parenthesis indicates the length in words in each domain.

3 Note that [,.=1', (r=8,3P) because in this case, we do not consider the cost of storage on the
DDB (f;»=0, =5 ,5F) and the redundant information usually does not have to be sent over the

50

S.ES:SSP = 5;5_'35;}; = 0.05

SSP = oS8P = 0.3

aLE 1.5
BSs = B¥5p = BEST = BTsF = 0.25
o‘.fssp = éS,SSPP = 0.8

s = &kp = 0.05

These parameters have been chosen based on some estimated distribution
of the data stored in the relations and the eharacteristies of the gueries made
on these two relations. They have been set independent of the nedes and the
relations for easy understanding. The fixed cost of storage on the system have
all been neglected because the storage cost is usually very small as compared te
the communication cost. It is intended to show by this example, the amount of

redundant information needed in order for this technique to be cost effective.

In Figures 2.5 and 2.8, two graphs are plotted to show the ratio of cost with
redundancy and cost without redundancy against 65;°F 4. In Figure 2.5, the
graph is plotted for various values of 'y.f §§ 4, with nls sp * fixed at 0.5. Simi-
larly, in Figure 2.8, the graph is plotted for various values of {5 5p 4, with 755’??1:
4 fixed at 0.5. It is seen from these two graphs that whenever sufficient redun-
dant information is added to the DDB so that over haltf of the non-decomposable
gqueries or updates become decomposable, the resultant operational costs are
less than the costs without the use of redundant information. Further, it is seen
from Figure 2.6 that when the fraction of updates that will update the redundant

information is less than 0.5, there is, in general, a cost improvement.

The results we have shown in the example are for illustration. More detailed

evaluations are necessary before any definite conclusions can be drawn.

network in order to process a query.

4R is gsggmed that r=3, SP; the variables 65:5F, nl's sp are independent of i and r and the
variables 7’,;'5’? p are independent of r.

minimum cost with redundancy

51

1.5
1.4
By
g1.3
o
~
5
Tl.2 v=1.0
;9
g! vy=0.8
» l
5 v=0.6
= 4
=
':';1. o%.——_-—-—-——.———.——-—-—-—-—-_q& -n-----o—-»——.—-—-—-—-—-—m—--—-—n-—no
j=]
° 2
={.
§ . 3 Y -
'E Y=0'0
=
. 8
- with redundancy
T T withoyt redundancy
. B
s ' '] [H L] 1] 1 i
: . 1 2 .3 . 4 .5 .8 .7 8 9 1.9
§ (n=0.5)

Figure 2.5

A Plot gf Cost Ratip with respect tg

Y for varigys values

of § under the use of redundant information (it is assumed

that v, & and

N are independent of r=5, SP and i)

minimum cost with redundancy

minimum cost without redundanc

A4

-
.
~N

[)
L]
[

-
L
<

v
o

.
o

.
-l

52

i n=1.0
i n=0.8
L n=0.6
v-—-—»—*—-—a—m—na—————-—-—-—-—ﬁ#—-——— _:r-_——ﬂn_-_——h——w—-—'
i n=0.2
n=0~0
—— with redundancy
) ~~~=~~ without redundancy
0 'Jl llz .’ h* Os D7 ua .s }‘0
8 (y=0.5)
Figure 2.6 A Plot of Cost Ratio with réspect to n fopr various valyes
of & under tha use of redundant Informatign (It is assumed
that v, g and n are independent of r=§5, gp and 1

53

2.5 COST REDUCTION ON THE PLACEMENTS OF RELATIONS ON A DDB BY FILE

PARTITIONING

In section 2.3 we have shown a technique by which the total operational
costs can be reduced by decreasing the total retrieval cost and increasing the
total update cost. We study in this section, the dual of the previous technique,
that is, a technique by which the total operational costs can be reduced by
decreasing the total update cost and increasing the total retrieval cost. Before

the technique is described, the characteristics of an update is first studied.

An update on a relation can broadly be divided into itwo types. The first
type updales only a small segment of the relation and the second type updates
ail the tuples in the relation. As an example, consider an employee relation,
The first type can be an update which inecreases the salary of a particular
employee and the second type can be an update which increases the salary of all
the employees in the relation. If the first type is more prevalent, and there is a
locality of the updates on the DDB, then the total update cost can reduced by
partitioning the relation into segments and distributing the segments to the
various nodes of the DDB instead of distributing multiples copies of the relation
to the various nodes. On the other hand, the entire relation usually has to be
accessed in a retrieval or in a multi-relation update in which the target informa-
tion to be updated must first be determined. The relation must be searched
tuple by tuple in order to determine the set of tuples satisfying the predicate. If
a relation is partitioned and distributed on the DDB, all the segments have to be
assembled before the retrieval can be made. This cost is lHkely to be greater
than the cost of accessing a copy of the entire relation on the DDB. The resul-
tant cost of file partitioning is therefore an increase in the total retrieval cost
and a decrease in the total update cost. The use of file partitioning is further

illustrated in Figure 2.7.

54

i |
l |
| |
+ 4)
s S S 5
32 S,

(a} Multiple Copies of Relation S Without File Partitioning

(b} Single Copy of Segments of Relation S With File Partitioning

— {jpdates

———=» Retrievals

Figure 2.7 The Retrievals and Updates on a DDB
- (2 Nodes) With and Without File Partitioning

56

The problemns that are related to file partitioning are two felds: how to parti-
tion the relations and after the relations are partitioned, how to distribute the
segments on the DDB. The first problem can be splved by studying the charac-
teristics of the updates made at different nodes of the DCS and partitioning the
relation according to these characteristies. There exist algorithms to solvé this
problem, e.g., by clustering [JAR71, BON64]. We are therefore more concerned
with the problem of distributing the segments of the relations on the DDB after
they have been partitioned. In this section, the case with no extra redundant
information is first considered and the case with additicnal redundant informa-
tion is considered in section 2.7. The model developed here is shown for the spe-
cial case of two relations and is generalized later to the case of more than two

relations.

In addition to the symbols defined in section 2.2, we define the following

symbols here. let

P, (Py) = number of segments that relation a (b) is partitioned into;
a; (b;) = the j'th segment of relation a (b), j = 1, ..., Py (FPy)
P = {ay, ag ..., ap Julby bg ..., bp,J.

For single relation gueries,
Fri{a;1gfa) [fr{(b;|qfs)] = fraction of retrievals accessing the j'th segment
of relation a {b) given that the retrieval rate is gfs (gfs);
Fula;|ufa) [Fu{b;iwfs)] = fraction of updates on the j'th segment of rela-
tion a (b) given that the update rate is ul, (us):
For muilti-relation queries,
fria; |g2:2s) [F7(b; lafsty)] = fraction of multi-relation retrievals access-
ing the j'th segment of relation a(b) given that the retrieval rate is

a.b .
Qinbi

Frit; [ufd) [Fr (¢ |wfs’)] = fraction of multi-relation updates that have to

56

access the j'th segment of relation t (t = a,b) in order to determine
the actual updates, given that the update rate is uf2{uf);
Fula; |uld) [Fulb; |uff)] = fraction of multi-relation updates on the yth

segment of relation a (b) given that the update rate is w2 {(uf);

It is further assumed that the parameters a, 8, 7, f are independent of the
effects of partiticning. The optimization problem of placing P, segments of rela-
tion a and P, segments of relation b on the DDB can be formulated in the follow-

ing linear program.

min (2.7)
5 aon s s s Stos
Y 2 WeSTise|gis)alfsls Xi55SE; (R.7a)
s=a.b k=11i=1 j=1
Pa' T 7L B b s
+ 2 Lafas friselgfds)addls Xi%SE; (2.7b)
s=ab k=t i=1 5=1 .
Pﬂ T Tt &
+ Z: 2 u-i.s,s.fu(sk Iui.ss)lgf.s lskMiij ij (2.7¢)
s=ab k=t i=1 j=
Pa ™ n b Pt b " 3
+ 22 uwld| Y Y frite lulvitl XS
s=a,b k=1 1=1 j=1 =g,b e=xl (2.7(1)

]
+ fu(se | upd)BEbL ME Y] "]

Ps ki
+ X% Y fusl, Vi (2.7¢)
s=a,b k=11=1
subject to
T
Y rtzt (2.7f)
=
k3
Xt =1 (R.7g)
i=1
hiY
n¥Pz2 3 XP; 20 {2.7h)
i=1
YP=0,1 (2.71)
P&'
1=) fris;lels) = Fs (2.7})

i=1

57

Fy

153 fris;lafss) s Ps (2.7k)
i=1
PE

1= E fu(sjiu'is.s)éps (2.71)
i=t
P

153 frisy|uf®) s P, (2.7m)
i=1
T

12y fulsjlufd) s P (2.7n)
i=1

where s,t € {a,b}, L,j€ {1.2...n andpe€fay, ..., ap 3 (cufby, ..., bp}

Eq. 2.7a to Eq. 2.71 are similar to the correspending equations in Eq. 2. Eq. 2.7
to Eg. 2.7n represent the conditions that one or more of the segments may have
to be accessed when a relation is queried. A lemnma and theorem similar to

Lemma 2.1 and Theorem 2.1 can be proved for this problem.

LEMMA 2.3
Optimization problem 2.7 can be partitioned into P, +P, independent optimiza-
tion sub-problems, one for each segment. The optimization sub-problem for seg-

ment s; where s€fa, b}, k€fl, ..., Pl is:

T

min), 0;* min S + Z 2 Uf"M{’J Y3E 4+ E FEY ek (2.8)
i=1 Yi: 1 i=1 j=1

where

[Qt sfr(si: lg? s)azs + q'l.abfr{sk ;q't.) b)‘x

+ 3 ullfr(se [ufPedl,

i=a,b
.U:é [u't,sfu(sic ufs)Bfs + uf sbfu(sk |2 b)ﬁ'& s |ls,

F'ik = f'i.sls

subject to

> vk
i=t B

58

Yi*=0,1 i=1,..mn
A generalization of Lemma 2.3 is to allow any number of relations in the

DDB. This is shown in the following theorem.

THEOREM 2.3
The general problem of optimizing the placements of multiple relations on a DDB
using file partitioning can be decomposed into multiple sub-problems, one for

the placement of each partition independently.

The proofs of Lemma 2.3 and Theorem 2.3 are very similar to those of

Lemma 2.1 and Theorem 2.1 and will not be illustrated here.

We demonstrate the use of this technique in the next section with the exam-

ple from section 2.4,

2.8 A4 NUMERICAL FXAMPLE TO ILLUSTRATE THE USE OF FILE PARTITIONING

CN A DDR

Using the same example in Section 2.4, we assume that both relations S and

SP are partitionable into two segments each, with:

FPg=Pegp=2

s, = ls, = 4500

lsp, = Lsp, = 10000.
We further assume that when a retrieval is made on a relation, all the segments
of the relation must be accessed, that is, for s,t€{S, SP}, i€{1, 2, 3} and
jef1.z2l,

f"(sj | Q'is.s) =1

fris;laddbp) =1

Frisg|lulSP) =1

59

We would like to see what is the effects of varying the fraction of updates that
have to access multiple segments. For i€§1,2,3}, let

ful = fu(Si|ufs) = fulSelufs) = fu(SPy|uilp) = fu(SPaluikp)
and

Ful = fulS|ufsF) = fulSe|uls®) = fu(SP,|ufd) = fu(SPy|ufs)
That is, the fraction of updates that will access a particular segment of the rela-
tion is independent of the relation, but is dependent on the type of the updates,
narriely, single relation updates or multi-relation updates. The relation between
fu'! and fu® is shown in Figure 2.8. It is seen that the total operational costs
after partitioning is always less than the cost without partitioning. However, due
to the fact that there is a higher overhead in maintaining a larger number of
files on the DDB, all the curves in Figure 2.8 will shift upward. Depending on the
additional cost in the overhead, a threshold in fu! and fu? can be found, below

which the scheme is cost-effective.

2.7 COST REDUCTION ON THE PLACEMENT OF RELATIONS ON A DDB BY UTIL-
IZING REDUNDANT INFORMATION AND FILE PARTITIONING

The technique described in Sections 2.3 and 2.5 can be combined together
to give a further reduction in the operational costs. Extra redundant informa-
tion is first added to the relations in the DDB. These relations are then parti-
tioned before they are allocated. Using the symbols defined before, we first dis-~
cuss the case of two relations, a and b, which are partitioned in f, and F, seg-
ments. We assume that the multi-relation-reduced-single-relation gqueries
behave in a simnilar fashion as the original multi-relation gueries in accessing a
segment of a relation, that is, the variables fr and fu defined for the maulti-
relation queries are identical for the variables fr and fu defined for the multi-

relation-reduced-single-relation queries. Further, it is necessary to define for

minimum cost with partitioning

minimum cost without partitioning

[
*
=]

€0

with partitioning

1 - eeae- without
partitioning
. s L L N N] .] L L J
.50 .85 .60 .85 .70 .75, .80 . 85 .80 .85 1.00

fu
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
fraction of multi-relation updates that need to access all the segments

Figure 2.8 A Plot of Cost Ratio with respect to fl for various
values of f2 under File Partitioning
u

61

the updating of redundant information, the following symbols:

Frri(t; july) [Fr™ (¢;|uly)] = fraction of updates on the redundant infor-
mation that have to retrieve the j'th segment of relation t (t=a,b) in
order to determine the redundant information to be updated, given
that the single relation update rate is uf, (uf,):

Fum(t; |ul,) [Fur(t;|ufy)] = fraction of updates on the redundant infor-
mation that have to update the j'th segment of relation t {t=a,b)
given that the single relation update rate is ufs (ufs).

Frrt(ts luds®) [Fr72 (¢ 1uf®)] = fraction of updates on the redundant infor-
mation that have to retrieve the j’th segment of relation t (t=a,b) in
order to determine the redundant information to be updated given
that the muilti-relation update rate is u@g (uf).

Fum(t; |udd) [Fu(¢; | ufd)] = fraction of updates on the redundant infor-
mation that have to update the j'th segment of relation t {t=a,b)
given that the multi-relation update rate is ufd (ufd).

lt;_ = length of segment j (j=1,...,F;) of relation t (t=a,b) after the redun-
dant information has been added.

The optimization problem of placing the segments on the DDB is:

min (2.9)

n o n -
_}3 E q{s,sf'r(sk [qis,s)az's,slskxi,kjsf,j

P n = .
+ E Z 2 (1—7ffa",b) icfa’zb,bfT' (s | qﬁa”,b)tfa",.«:"Sﬁflsti,"ij.j
s=a.,b k=11i=1 j=1
R ab ,a.b a.b a,b;’ vk oS
+ Y 2 > vl fr(se lales)afdls X558 ;
s=a,b k=11i=1 j=1
Ps T L) 3];
+ z Z %{sfu'(sk I%{s)ﬁf.slskM'is,j YJ’

s=a.b k=1 1=t j=1

o
L]

g
gt

It
|
b

> ufd [5{’,‘5" 2 0 Frlte luldvill XSt
w.bk=1i=1 j=1 i=a.b e=1

r s
+ fu(se [uld)Bidl ME; ij]

+
=
Mz

i
) ¢
) n'is,a,buf,s L;ﬁs 2 f'rrd(te I'u'is,s)a'ﬂibliaxi,?s'f,j

e=1

»

]

2]

o

”.

i

-

S,
o

: :
+ Fum (¢, |u{s)E§.tlt,Mf.ij’]

e
]
R
o
L]
i
-

+
[ngtE
s

Py
v o1
0. ufd [,2, Y Fr(te |uld)addl X551,

e=1

[
i
=]
r
-
f
-
Lt
el
-

, ¢
+ 3 Fum(¢, izq‘f;b)f.f,tl;'M{ij']
1

....
(]
R
- 4
L
n

Py om
+ 2 E fi,si;kY:k

s=a,b k=1 i=1

subject to the constraints 2.7f to 2.7n with four additional constraints:

Pl’

153 frt(s;|uf,) s P s, t€fa,bl, i€fl,...n}
7=t
P!

1s Fum(s; |uly) £ P s.tefa. b}, iefl....,n}
i=1
‘PS

1s Fro(s; [uf®) £ P s, t€fa,bl, i€fl,..,n}
i=1

1<

P.'!
Y fut{(s; |uf®) £ P s, teta,b} i€fl,...,n}
i=1

62

The explanation of each term of Eq. 2.9 is similar to the eorresponding term of

Eq. 2.7,

A lernma and theorem similar to Lermma 2.1 and Theorem 2.1 can be proved

for this problem.

LEMMA 2.4

Optirization problem 2.9 can be partitioned into P, +P, independent optimiza-

tion sub-problems, one for each segment. The optimization sub-problem for seg-

ment s, where s€ta, b3, ki1, ..., Plis

63

n T

min 3 Q% min S+ Y, 5 URMEYE + 5 Fer (2.10)
i=1 . YJ‘ - i=1 j=1 =1

where

[q'n. ik (a’k] q: s)at s T (1_71 o b)qi . bf'r(sk | q'a. a b)afsbag,sb

+ Yo al B Friselaldn)ald + % wfPSEfr (s ludvie®

t=e.b
+ Miasuisf T (s [uEDal? + nla s uf L Frm (s, |ufd)ad]
5 .
Uk = [u'is.s.fu(sk |uis)Bis + 'u“?.ébfu(sk |uf) B

+ 3 mlaawdafu (selul el + 3 o ulltfum (s, |ui“!b)fz,s} st

t=a,b t=a.b

s .
Fik = f'é.slsk

T=te{S,SPlandt#s

subject to
7L
Y Yz

.S

Yi*=0,1 4=1,...n
A generalization of Lemma 2.4 is to allow any number of relations in the

DDB. This is shown in the following theorem.

THEOREM 2.4
The general problem of optimizing the placements of multiple relations on a DDB
using additional redundant information and file partitioning can be decomposed
into multiple sub-problems, one for the placement of each partition.

The proofs of Lemma 2.4 and Theorem 2.4 are very similar to those of
Lermmma 2.1 and Theorem 2.1 and will not be illustrated here,

The next section demonstrates the use of the combined technique with the

same example discussed in Section 2.4.

R.BA NUMERICAL EXAMPLE TO ILLUSTRATE THE USE OF ADDITIONAL REDUN-

64

DANT INFORMATION AND FILE PARTITIONING ON A DDB

Using the same values defined in Sections 2.4 and 2.6, we further assume

for s, €4S ,5P13,1€4§1,2,3} and j<{1,2}, that

Fr(t |udsy = 1

Frra(t ludd) =1

ful= fur(s;|ufs) = fum(s;|uf,)
fu? = fumd(s;|ufe) = fum (s | udSF)

The evaluations of the combined technigue are shown in Figures 2.9 to 2.12.
Comparing Figures 2.9 and 2.10 with Figures 2.5 and 2.6 under the assumption of
ful=fu?=0.75 (that is, 50% of the updates have to access the two segment
together), it is seen that the combined technique gives a larger cost decrease
than when redundancy is used alone. In fact, as seen from Figures 2.9 and 2.10,
it is "almost” true that the combined technique is always more cost effective
than the case when none of the techniques are used. On the other hand, the
curves plotted in Figure 2.11 where §=7=79=0.5, have a higher cost ratio than the
curves plotted in Figure 2.8. This means that the use of the combined technique
is worse than the case when partitioning is used alone. The explanation for this
is because there is a large updalte cost for the additional redundant information
and this is not offset by the cost decrease due to partitioning. However, if
sufficient redundant information can be added to the system so that the
retrieval cost can be further reduced, the total operational costs may drop.
This is shown in Figure 2.12, where d=#=7% have been reduced to 0.4, The curves

in Figure 2.12 indicate a smaller cost than the curves in Figure 2.8.

We conclude that the combined technigue is always better than the tech-
nique of using redundancy alone and is better than the partitioning technigue

only when 4§, » and 7 are "small enough'.

g

minimum cost with redundancy and partitionin

65

1.8
b=t
=
=14
S ——— with redundancy and partitioning
b ,
Bx , ~mw=- wWithout redundancy ang partitioning
; L3
[~H
e
Si.2¢
>y
[&]
=
81,14
| =~
praa |
Pt =1.0
s—l.o—-——-—-m-—-ﬁ—h———n—_u,_-u_ —y-‘g_'—l.o—s----«—-—w--—--—n-—s-—»ﬁu.-——--—-
+:; v=0(.8
.§ of ¥=0.6
= -
- v=0,4
S .ok v=0,2
g v=0.0
=
< o7
.
=]

-

s_ A N i L i 1 i L I 1

0 | .2 3 4 .5 . B .7 8 .8 1.6
¢ (n=0.5)

redundancy and Partitioning

minimum cost with

——.

66

°T
on
B3 GAY
s
8 —— With red iti
551 3 - o undancy and Partitioni

sl -~ out re fti
: { dundancy and part1t1oning
2
Si.2
o
ey
Hl.1p
~r
o
E n=1.0
El Q——-u—-—-—--—-—--—-o——- \
: =cm, T
E P —
»o.9r n=9.6
=
- n=0.4
3 .
(%]
c n=0.2
= .1fF
-
Py n:O,o

. 6k

. 501¥ 1 A 1

3 2 i '
. 3 '
+ .5 6 .3 } 3 '
. . 1
8 (y=0.5)

[
»
[

-
-

minimum cost with redundancy and partitioning
minimum cost without redundancy and partitioning

67

with redundancy and partitioning
without redundancy and partitioning

L 1 '} 1 H 1 L J

.65 .70 .75 .80 .85 .90 895 1.00

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

fraction of multi-relation updates that need to access all the segments

Figure 2.11 A Plot of Cost Ratio with respect to fﬁ for various values of

3 under the use of Redundancy and Partitioning (&=n=y=0.5)

minimum cost with redundancy and partitioning

d

minimum cost without redundancy and partitioning

]
w

68

with redundancy and partitioning
----- without redundancy and partitioning

£
1
|
1
l
|
!
|
|
!
|
|
I
|
I
|
!
|
|
|
|
|
|
|
l
|
|
|
|
|
|
1
|
|
|
|
l
|
|
!

s -y v, L [} 1 [(1 i L]

T .58 .60 .65 .70 » .75 .80 .85 .80 .95 1.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
fraction of multi-relation updates that need to access all the segments

Figure 2.12 A Plot of Cost Ratio with respect to fa for various values of
fg under the use of Redundancy and Partitioning (S=n=y=0.4)

69

2.9 CONCLUSION

In this chapter, we have studied the problem of optimal relation placements
on a distributed relational data base. The objective of the problem is to minim-
ize the total operational costs of the system and to allow query decomposition to
be done more efficiently. The type of queries that can be made on a distributed
relational data base are classified. It is seen that non-decomposable queries
cause a lot of communication overhead on the system. Two techniques and a
combination of these two techniques are analyzed in this chapter. By pre-
analyzing the type of queries made on the DDB and the probability distribution
of the data in the relations, the first technique introduces additicnal redundant
information on the DDB so that non-decomposable gueries can be made decom-
posable. The result is a decrecase in the total retrieval cost and an increase in
the total update cest. The second technique partitioﬁs the relations on the DDB
into smaller segments which results in a decrease in the total update cost and
an increase in the total retrieval cost. The third technigque combines the above
two techniques together. The total operational costs are going to drop if the
total cost increase is offset by the total cost decrease. It is proven in this
chapter that the problem of optimal relation (or segments of relation) place-
ment on a DDB can be decomposed into multiple sub-problems, one for the
placement of each relations {or segments). The result is a significant reduction
in the complexity of the optimization problem. A simple example is used to
illustrate some of the properties of these technigues. It must also be noted that
a lot of generality is introduced in the development of these technigues and a lot
of parameters are defined. However, most of these parameters are identical in
general, and therefore, as illustrated in the examples, the number of parame-

ters to be estimated on the system is relatively small.

After decomposing the placements of multiple relations into the place-

ments of individual relations, it is necessary to study algorithms to perform the

placements. This is the topic of discussion in Chapter 3.

70

71

3. THE PLACEMENT AND MIGRATION OF MULTIPLE COPIES OF A FILE ON A

nes

3.1 INTRODUCTION

In the last chaptef. we have studied the placement of multiple relations on
a DCS and have decomposed the problem into multiple sub-problems of placing
multipie copies of each relation independently. In this chapter, we develop the
theory and the techniques to place and to migrate multiple copies of a single file
on the DCS. This is done by first showing that the file allocation problem and the
dynamic file allocation problem {or file migration problem), which have been
studied extensively in Computer Science, are isomorphic to two equally well
known problems in operations research, called the single commodity warehouse
locatioﬁ preblem and the single commedity dynamic warehouse location prob-
lem. Due to this ispmorphism, it is found that many techniques which have been
developed for one problem can be applied to solve the other problem. Further,
it is found that some techniques developed for one problem match very closely
with techniques developed for the other problem, The implications of such a
proof of isomorphism are further shown in sections 3.6 and 3.7. By combining
some conditions devioped in both the file allocation problem and the warehouse
location problem, we have developed a file placement heuristic which performs
better than other heuristics proposed. The heuristic is tested on sample prob-
lems whose optirnal solutions have been established previously in the literature.
In studying the file migration problem, we have proved that it is NP-complete
and have developed some conditions to indicate when file migration should be

carried out.

3.2 DEFINITION OF THE PROBLEM

72

On a DCS, one of the important problems is to distribute or place the files
so that they can be accessed efficiently. Chu has studied the optimal file alloca-
tion problem which is defined as follows: given a number of computers that pro-
cess commen information files, how can one allecate the files so that the alloca-
tion yields minimum overall operating costs [CHUG9]. This problem is directed
toward the optimal placement of multiple files on the DCS. Subsequently, many
researchers have partitioned the problem of allocating multiple files to multiple
problems of allocating individual files, e.g. [CAS72, LEV74, MORY7]. In Chapter 2
of this thesis, we have shown the decomposition of the optimal placements of
multiple relations inte multiple sub-problems, one f01_' the optimal placement of
each relalion in a distributed relational data base. This single file allocation
problern has been coined by Eswaran as the File Allocation Problem (FAP)
[ESW74] which can be defined as: given a number of computers that process
common information files, and users on the system that access these files, how
can one allocate multiple copies of a file so that the allocation yields minimum
overall operating costs. This is a very simple formulation in which all the con-
straints on the system are transformed into a commeon unit of cost which may
include file access cost, multiple update cost, file storage cost and file migration
cost, Different constraints may be reflected in the form of different costs. For
example, a prohibitive reoute in the network is represented by a high acces cost.
A more general problem is the Dynamic File Allocation Problem (DFAP) or the
File Migration Problem in which the files are allowed to migrate over time in
order to adapt to changing access requirements. It is assumed that the period
for migration is fixed ahead of time and is not determined dynamically. There
are other people who have studied variations of the general process and file allo-
cation problem. Among them are Stone and Jenny, who have studied the allocca-
tions of processes on a multi-processor system [ST077a, ST078a, STO?8b, JEN77,

HOF78]; Loomis and Popek, who have introduced additional parameters such as

73

the capability of a node on their model [LOO75, LO0O76]; Mahmoud and Riordon,
who have considered the file placements and the capacity assignments for links
jointly [MAH78]. We concentrate in this chapter on the FAP defined by Eswaran
{multiple copies of single file allocation problem) and the DFAP {an extension of

FAP in which the placements vary over time).

3.3 MOTIVATIONS FOR FILE PLACEMENT AND MICRATION

The major reason that multiple copies of a file are allocated to certain parts
of the system atl certain times and it is not necessary to keep a copy of every file
at every node all the time is because users have localities of access. At any par-
ticular time, a file may be used by a group of users, and it will continue to be
used by the same group for a certain iength of time. For a particular user, the
file that he wants to access may be available locally, in which case, he can
access the file with very little cost. If the file is not available locally, he would
have to pay a cost in terms of delay in accessing the file and also additional
traflic in the network before he can make the access. It is under this situation
that we should consider moving a copy of the file to his node. Introducing a new
copy would also increase the cost in terms of storage space and the extra over-
head in locking and concurrency control. Therefore, the decision of whether to
introduce a new copy of a file involves a balance of the cost between the two
cases. The costs, e.g. communication costs, storage costs, ete., are a function of
the topology of the system, the storage sub-system at a nede, the type of com-
munication protocols used, and most importantly, the extensiveness of usage at
a particular node. Some examples of the tariff for the usage of Telenet Data
Communication Network are shown in Table 3.1 [TEL78]. For example, suppose
the user uses a public dial-in service with local dial at 1200 bps, the cost that he
has to pay (assuming 100% line utilization with 30% overhead) is $4.009 for 1

Kbyte of data. On the other hand, the storage costs on the system, with the

74

Table 3.7 Ezemples o
Network (July 1, 1978) [TEL78]

Type of Port Installation Usage
Dedicate | 50-300 bps 400 300/month
Access 1200 bps 500 340/month
Facilities | 9800 bps 800 1100 /month
Public Local Dial 110-300 bps 0 3.25/hr’
Dial-in Local Dial 1200 bps 0 3.25/hr"
Service In-WATS 110-300 bps 0 15.00/hr

In-WATS 1200 bps 0 15.00/hr
Private 110-300 bps 320 180 /month*®
Dial-in 1200 bps 340 215/month’
Service TWX 300 210/month’
Private 75-300 bps 420 300/mnonth’
Dialout | TWX 420 300/month*
Service

characters of user data.

Commumnication Costs on Telenet Data Communication

Regular Service - $0.50 per thousand packets; each packet contains up to 128

advances of low cost mass storage, are much smaller as compared with the com-

munication costs. As an example, it costs $1.00/month to store 24 Kbytes of

data on the disk of the CDC 68400 at the University of California, Berkeley. There-

fore, the minimization of communication traffic on the DCS, in the expense of

using additional storage by having rmuitiple copies of the data, is a more impor-

tant problem.

Before we show the proof of the isomorphism, we survey in the next two sec-

tions, some of the previous work on file allocation and warehouse locaticon.

3.4 PREVIOUS WORK ON THE FILE ALLOCATION PROBLEM

Most of the previous work on file allocation is based on static distribution,

that is, the allocation does not change with time. A typical method ,in dynamic

75

distribution involves the application of a static algorithm whenever need arises,
Levin has applied dynamic programming to migrate copies of a file over a multi-
period horizon [LEV?74]. He has also developed some conditions in order to
reduce the number of solution vectors that have to be generated in each period.
However, the static algorithms are usually very expensive to run in real time,
Grapa and Belford remarked that a particular solution to this problem solved a
thirty node problem in one hour on an IBM 360/91 computer [GRA77b]. The
difficulty in optimization is also exempliﬁéd in [SIC77]. Moreover, the problem
has been shown to be NP-complete [ESW74], i.e., a class of problems for which
there is no known optimal algorithm with a computation time which increases
polynomially with the size of the problem [KAR72]. The computation times for
all knewn optimal algorithms for this class of problem increase exponentially
with the problem size, i.e., if n represents the size of the problem, then the com-
putation time goes up as k™ where k>1. In order to achieve a polynomial execu-
tion time, heuristics are generally used which sacrifice optimality for efficiency.
A summary of the previous work in file allocation is shown in Table 3.2. Some of
these studies introduce additional constraints on the model {(e.g. link capacity,
node capability). Basically, the algorithms for statically allocating multiple
copies of a single file can be divided into two types: (1) mathematical program-

ming and exhaustive searches and {2) heuristics.

{1) Mathematical Programming and Ezhaustive Searches

This technique has been used by Chu [CHUB%], Casey [CAS72], Levin and
Morgan [LEV74, LEV75, MOR77], and Mahmoud and Riordon [MAH78]. Using the

notations defined in Chapter 2, and is repeated here in Table 3.3, the formula-

tion of the FAP is as follows!:

! Since we are considering a single file a, without ambiguity, all the subseripts and superscripts
for a will be delected in the formulation,

76

Table 3.2 A Summary of the Previous work in File Placement/Migration

- ——

dynamie pro-
graruning
search

-

meodel com.
munication

delays.

Mathematjcal Programnring & Exhaustive Searches Heuristic
Chu {CHUBS] Casey Levin & Margan Ghash Foster st. al. | Loomis & Popek |Mahmoud & Rier-
[cAsv2] (LEV?4, LEV7S, [GHO76] [Fost?] [LoQ75, LOG78} |don [MAH78]
MOR77)

—t—3+ 3 e+ 4 44 - EEREESESESREEST === 3 —+ 5 3 - -+
Complete rela- |All objects Only program- |All objects Star network; All {Complets Proba- |Independent ob-
tions among ob- |independsnt |data relations independent. [objects iIndepen. [bilistic relations |jects; Query and
jects; File access exist between dent. among cbjects. |return traffie di-
is poisson. cbjscts. vided aqually

arnong allocated
nodes.
Storage cost; Storage cost; [Communication [Data base Queueing time & ({Inter-node Comrmunication

Tranmmission Query cost for query; |with multiple [service time tor (transmission cost; File storage
cost; File length: [transmission [Communication [target seg- [transactions: cost; Node capa- [cost:

Request rate cost; Update [cost for update; |ment iypes; [Storage capaci- [bility; File Query/updats
betweern filles: transmission {Traffic rate for [Queries with (ty; Average length; Process. |traflic &

Update rate cost: Query jquery/update multiple tar. number of mes- ling needs of fille; |corresponding
between files; rate betwesn (from a node Lo a [get segment jsagesin network; |Probability of a |return traffic for
Mayimum allow- jnodes; Up- iflle vie a pro- types. Average locel request access |each file at each
able acoess Lime; [dats rate gram; Inter- processing; Aver- [ing an ebleet; node; Availability
Storage capaci- [between period flle migra- age flle length; [Probability that |requirements.
ty. nodes. tion cost. Access frequen- |a

cy: Herdware, request /update
software charac- (is incidenton a
teristics. node; Probability
of 2 objects pro-
cessed In parel
L _ lel.
Integer Progrem- [Path search [Path search on Combinatort- [Queueing net- Clustering Add-drop heuris..
ming on cont coat graph; al search work algorithm; tic
graph dynamic pro- through pos- |Integer program-
gramming gible solu- ming
- - I G ——— e
Algorithm very {Algorithm Algorithm Maximize Minimize Dynamic net- Obtain both
complex; Consid- efficient; In- |eflicient; Definite |number of differsnoe from |work behavior ig- |capacity assign-
ar delay from dependence jaccesgrelations |segments optimal brench- nered: Maximize |ment for links &
network queve- iof objects among objects [that query |ing probebilitiex; |potential for flls placements;
ing appreoach. reduces allo- [reduce the alle- [cen retrieve lAlgorithm com- |parallelism. Should consider
calion of cation of multl- [in parallel plex. query to be rout-
multiple flles |ple files to single |from ed to nearest
into single file; Define condi- |diflerent node & not dis.
file, Lions to reduce |nodex: Donct tributed equally

among all nodes.

77

Table 3.3 Mapping between the Defined Notations in this Thesis and Casey’s No-
tations [CAS72]

Notations Casey’s Explanation
defined in notations :
this thesis
for {ile 3,
I I index set of nodes with a copy of the file;

n n = number of nodes in the DCS;
Uy vy = update load originating at node j per unit time;
Q; Ay = query load originating at node j per unit time;
Ssk dsx = cost of communication of cne query unit from j to k;
M"k ds i = cost of comnmunication of one update unit from j to k;
.Fi (01" = storage cost of file at k per unit time.

An optimal allocation for a given file is then defined as an index set 1 which

minimizes the cost function.

n
Ciy=% [;2 UMy + Q min SM} + Y F
i=1 el kel kel

By defining a control variable Y; such that
o jEI
Yy "'{ 1 jel

The cost function can be written as:

n

n n
CUY= Y (2 UMy Yy + @y min S| + 3 Fr Y
=1 (k=1 ' kEI_ k=1

The optimization problem for file placements is:

min
7 . T
c{l)= E Q,‘ min Sj.k + Z 7. Y (3.1}
i=1 kel k=1
subject to

Yy = 0or 1 {integer) k=1..m7
and

78

Gy = Fy + ,-,il UsMy 5 (3.2)
The quantity G, has been introduced as Z, in [GRA77b]. Optirnization problem
{3.1) can be solved by using integer programming techniques [GEQ72]. Casey
[CAS72]} and Levin and Morgan [LEV74, MOR77]| have used the hypercube tech-
nigue to enumerate over a reduced set of possible solutions in order to find the
optimum. However, the appreach of using integer programming or exhaustive
enumeration is only suitable when the problem size is small. Due to this
difficulty, Grapa and Belford have done some pioneering work in developing
three simple conditions to check whether a copy of a file should be placed at a
node [GRAY7b]. This reduces the complexity of the problem tremendously

because many alternatives can be eliminated.

(8) Heuristics

Beuristics are "reascnable" search strategies which do not guarantee that
the optimum solution can be found. Heuristics are usually interactive algo-
rithms. A feasible solution can be generated. Users or some decision algorithm
then.has to decide whether to improve the solution or not and how to improve it.
The decision algorithim is usually an add-drop algerithm in ﬁhich perturbation is
induced on the existing solution to see if a better solution can be obtained.
Three of the most commonty used heuristics are (1) hierarchical designs; (2)

clustering algorithms; angd (3) add-drop algorithms,

(1) Hierarchical designs

This 1s a heuristic proecedure in which attention is first restricted to the
more i.rnporténl: features of a system. In a file allocation problem, attention can
first be restricted to geographical regions. After analysis has been performed
and the files have been distributed to different geographical regions, attention
can be directed to the less important details such as allocating files within a

geographical region. This stepwise refinement procedure can continue down

79

many levels, Al each level of optimization, it is hoped that the effects on the
optimization of the current level from the levels above and the levels below are
very small. Nevertheless, iterations and design cycles may exist to refine the

solution.

(2) Clustering algorithms

Clustering algorithms are horizontal design processes which have a simi-
lar objective as hierarchical algorithms, namely, to reduce the complexity of the
analysis in a large system. In a DDB, clusters can be formed from geographical
distribution of access frequencies. The files are then allocated to clusters. The
file allocation within a cluster may further be refined as in hierarchical algo-

rithms [LOG75, LOO78].

(3) Add- drop algerithms

In applying this algorithm, a feasible distribution of files is first found.
The total cost of the system can be improved by successive addition or deletion
of file copies. When a feasible solution with a lower cost is found, it is adopted as
a new starting solution and the process continues. Eventually, a local optimnum
is reached in which addition or deletion does not reduce the cost. The whole
procedure can be repeated with a different starting feasible solution and several
local optima can be obtained. By taking the minimum ef al! the local minima

obtained, it is hoped that we can get very close to the global optimum [MAH76].

The disadvantages of all these heuristics are that they usually find a local
optimum instead of a global optimum and the validation is very difficult. The
goodness of a heuristic is often measured by its computational complexity and
by its average and worst case behavior. Because the average and the worst case
are difficult to solve analytically, evaluations are generally done by simulations.
Therefore it is possible that the heuristic performs satisfactorily for some exam-

ple problems, but it may perform unpredictably for some other problems. Using

80

the add-drop principle, a heuristic for the FAP is shown in Section 3.8.

3.5 PREVIOUS WORK ON THE SINCLE COMMODITY WAREHOUSE LOCATION

PROBLEM

Although the development of DCS's is very recent, and the problem of file
allocation in DCS's is rather new, a similar problem has been studied by many
operations researchers a long time ago. As early as 18561, Dantzig used the sim-
plex method to solve the transportation problem [DANS1]. In 1958, Baumol
described a problem called the warehouse location problem [BAUS8]. The prob-
lem was then studied by many people. There are several variations of the prob-

lem and all of them consider a single type of commodity on the system.

1) Simple plant location problem:
P P

Given a sei of plants which can supply customers with goods and have no
constraints on the amount shipped from any source, the problem is to deter-
mine the geographical pattern of plants’ locations which will be most profitable
to the company. The optimization is done by equating the marginal cost of
warehouse operation with the transportation cost savings and incremental
profits resulting from more rapid delivery. This problem has been studied in
[MANB4, EFR866, SPIg9, SNY71, ALC78]. Manne studied the use of "steepest
ascent one point move algorithm" [MANB4] Efroymson and Ray, Spielberg,
Alcouffe and Muratet studied enumerative optimal algerithms [EFR66, SPI69,
ALC76). Snyder studied a special case of the plant location problem in which the

paths connecting two plant locations lie on a rectangular grid [SNY71].

(2) Single Commodity Warehouse location problemn (SCWLP):

Given a set of factories, & set of customers and a set of possible warehouse

locations, the problem is to locate the warehouses so that the fixed and the

81

operational costs of the system is minimum. A special form of the problem is to
neglect the transportation costs from the factories to the warehcouses and to
consider only the transportation costs from the warehouses to the customers
which then becomes the simple plant location problem. This problem has been
studied in [KEU63, FEL66, KHU72]. Keuhn and Hamburger developed the add-
drop heuristic for the problem [KEUB3]. Feldman and Ray extended Keuhn and
Hamburger's work to include non-linear fixed costs [FEL88]. Khumawala further
extended Efroymson and Ray's work [EFRB6] and applied branch and bound

algorithm to solve the problem [KHU72].

{3) Single Commodity Dynamic facility location problem (SCDWLP):

This is a dynamic version of the simmple plant location problem or the ware-
house location problem, except that the locations of plar.zts or warehouses are
allowed to change over a planning horizen of r periods so as to adapt to changing
demands of the customers. This problem, first proposed by Francis [FRA83], has
been studied in [WES73, ERL74, SWE76, RAO77]. Wesolowsky and Erlenkotter stu-
died the single facility migration problem [WES72, ERL74). Sweenly and Tatham
applied dynamic programming to solve the multi-facility migration problem
[SWE78]. Rao and Rutenberg studied a dynamic multi-location problem in which

time is continuous and demand can change at different rates [RAQ77].

(4) Capacitated warehouse location problem:

Consider a set of warehouses with a finite and fixed capacity, the problem is
to determine the warehouses’ locations seo that the customers’ needs can be
satisfied and the costs of the system is minimum. This problem has been stu-
died in [SA 69, GIG73, AKI77]. Sa, Akinc and Khurnawala solved the problem
using branch and bound technique [SA 69, AKI77]. Giglio solved a special case of
the SCDWLP in which cépacity constraints are taken into account and demands

are assumed to be growing at a decreasing rate.

82

(5) Quadratic assignment problem:

Given a set of plants in which certain fixed quantities of the single type of
commuodity are to be shipped between the plants, and a set of possible plant
locations, the problem is to assign the plants to locations so that the total costs
of the system is minimum. This problem appears in [KO057, GIL6Z2, ARMB3,
LAWS3, HIL88b, GRAY0, RIT72]. Armour and Buffa have presented a heuristic
which considered pairwise exchanges of work centers and locations [ARMB3].
Gilmore and Lawler have developed optirﬁal algorithms which are computation-
ally feasible for small problems [GIL82, LAWB3). Lawler’s solution requires a
large number of linear assignment problems to be solved. Hiller and Connors
meodified Gilmore and Lawler's algorithms and obtained a more efficient but
sub-optimal algorithm [HIL66b]. Graves and Whinston solved the problem using

a probabilistic branch and bound algorithm [GRA70].

Some of the problems defined above are more general than the others. In
fact, problem (1) is a subset of problem (2) which in turn is a subset of problem
{(3). Problem {4) also contains problems (1) and {2). We are concerned in this
paper with problems (1), (2) and (3). The formulations of problems (1} and (2}
are identical. Using the notations of Efroymson and Khumawala [EFR88, KHU72],
the SCWLP, with m potential warehouses (with unlimited capacity) and n custo-
mers, can be formulated as a mixed integer program as follows.
minimize

Z =3, Diti ;X5 + X Fuly
2.l 1
subject to

Xy =1 j=l..m
ieNJ,-

jePy

i

83

Y; = 0or 1 {integer) 4i=1,...m
where

t;; = the per unit cost which includes the FOB cost at the warehouse (i},
the warehouse handling cost and the transportation cost from the

warehouse to the customer {j):

D; = the demand of customer j;
X, ; = the portion of D; supplied from warehouse i
F; = the fixed cost associated with warehouse i;
N; = set of warehouses which can supply customer j;
F; = set of those customers that can be supplied by warehouse i;
n; = number of elements in P;;
1 ifwarehouse exists at site 1
Yo =] 0 otherwise .

We assume that m=n and that every warehouse can supply every customer. Let:
1 = index set of sites with a warehouse.

It has been shown in [ALC78] for j=1, ..., n that:

if ti,j = I}}é? tk.,j' ief

1

Xyg = 0 otherwise

That is, the commeodity will be shipped to a customer from a warehouse with the

minimum transportation costs. The optimization problem can be rewritten as:

minimize
b3 n
Z = E DJ min tk.j + z F.,'_Y.i (3.3)
j=1 kel i=1
subject to

Y: =0, 1 {integer) i=1,...n

In solving the warehouse location problem, many techniques have been
developed. Substantial evaluation results can be found on some example ware-

house leocation problems in the literature.

84

3.8 THE ISOMORFPHISM BETWEEN FILE ALLOCATION AND SINGLE COMMODITY

WAREHOUSE LOCATION

After defining the {D)FAP and the SC(D)WLF, we are ready to prove the fol-

lowing theorem.

THEOREM 3.1
The FAP and the SCWLP are isomorphic and the DFAP and the SCOWLP are iso-

morphie.

FProof

The theorem can be proved by associating the variables of the FAP with the vari-
ables of the SCWLP and similarly, the variables of the DFAP with the variables of
the SCDWLP. This association is shown in Table 3.4. An alternative way to prove
the theorem is to notice that Equations 3.1 and 3.3 are actually identical with
only a change of variables. The mapping of the variables are alsp shown in Table

3.4.
Q.E.D.

Using the isomorphism result, we have shown the equivalence of these two
problems. Therefore all the results available to coperations researchers are
avallable to computer scientists and vice versa. The implications are further

illustrated in the next section.

3.7 IMPLICATIONS OF THE ISOMORPHISM BETWEEN THE (D)FAP AND THE
SC{(D)}WLP

Because the FAFP and the SCWLP have been studied in different directions
for a long time, techniques developed for one problem can be used to solve the

cther problem. The technigques developed for the general warehouse location

problem can be used to solve the FAP and the DFAP. These include the add-drop

85

Tabie 3.4 Mapping between the (D)FAP and the SC(D)WLP

. _ __FAP i SCWLF
Locations of computers n__| Possible warehouse sites n
Locations of file 1 Locations of warehouse 1
Access for a file Commodity flow
Amount of access at j By Customer dernand at i D;
Per unit cost of communicat- S;, | Per unit cost of shipping com-~ ¢;;
ing one query unit frem jto k modity from plant to ware-

house j and from warehouse j
to customer k

File storage cost + multiple Cy Fixed cost of opening a ware- F
update cost for file at node k house at site k _
File migration Warehouse relocation
Cost of migrating a copy of the Cost of relocating a warehouse
| file from [to k from site j to site k

technique developed in [KEUB3, ARM63, FEL68] which is a heuristic of complexity
O(n*) and generates sub-optimal solutions; the branch and bound algorithms
used in [EFR86, SA 69, KHU72, AKI?7] which exhaustively enumerate over a
reduced set of possible sclutions in order to obtain the optimal allocations and
the running time depends on the bounding and the branching eriteria used; the
probabilistic branch and bound algorithm used in [GRA70] which is similar to the
branch and bound technique but it uses probabilistic estimation to generate a
lower bound; the direct search or implicit enumeration algorithm used in
[SPI89, ALC76]; the steepest ascent algorithm used in [MANB4}] which is a sub-
optimal steepest ascent one point move algorithm; the djrnamic programming
method used in [SWE76] in which some conditions are developed to reduce the
number of solution vectors searched; the heuristic developed in [KIL86b]: and
the polynomial algorithms for some special cases, e.g. a plant location problem
on a grid-like network is soived in [SNY71], a one facility plant migration prob-

lem is solved in [WES73]. Similarly, there are techniques developed in the FAP

86

and the DFAP which can be used to seolve the general warehouse locafion prob-
lem. These include the hypercube technique developed in [CAS72, LEV74,
MOR77] which is essentially the same as Alcouffe and Muratet’s optimal algo-
rithm [ALC76] and is an implicit enumeration with conditions to discontinue
unnecessary searches; the clustering technique used in [LOOY5]; the dynamic
programming method used in [LEV74] to solve for the optimal migration
sequence of copies of a file; and the max-flow-min-cut network flow technique

developed in {ST077a, STO78a, STO78b], which can be used to solve a special

case of the SCQAPZ2.

Besides the fact that techniques developed for both problems are inter-
changeable, there are instances where techniques developed for one problem
matech very closely with techniques developed for the other problem. These are

stated in the following three corollaries.

COROLLARY 3.1
Two of the three conditions derived by Grapa and Belford [GRA77b] for a file to
be placed or not to be placed at a node are weaker than the conditions derived

by Efroymson and Ray [EFR66] for a warehouse to be opened or closed.

Proof
Before the conditions can be stated, some additicnal symbels must be

defined. Let:

Kg = E] Yj=0z;

Ko = {j: Y;=unassigned .
In the FAP, K, Kq represaent the set of nodes with and witheout a copy of the file,

and X, represents the remaining nodes in the system. In the SCWLP, Ay, Kp

2 The proof of this is shown in Appendix A

87

represent the set of sites for which a warehouse is opened and closed and Ky

represents the set of the remaining sites.
Two of the three Grapa and Belford’s cenditions for a file to be placed or not

to be placed at a node are® [GRA77b]:

For i€Kga
Yi=1if g ngnli\rlllfz {Si5—Sia)s > G; (3.4)
i
n
Y:; = 0if _121 & zg(?fxa(s’*ﬂsj"') < (5 (3.5)
where:
f iffz0

(F)+=10 itr<o

Two of the three Efroymson and Ray's conditions for a warehouse to be opened

or closed are* [EFR6B]:

V n
Y,;. = 1if El ij%l;:Jle(Sj'k“Sj’i).;. > Gi (3_6)
Ti
Y;=0if 3} Q; min (S;—55:)+ < G4 (3.7)
§=1 EXI

In order to show that condition (3.4) is weaker than condition {(3.8) and con-

dition (3.5) is weaker than condition (3.7), it is necessary to show:

7L
A i N5 B ; U
(a) j; Q’k&“f&z(sﬂ =S 2 Q‘jeI}{l:\?KS(S'i” Sii)e
k i

L3 L3
.] P— L. < . JR—— .,
(b) 2:31 B; min (Six—S;:)+ = j§=31 ijé}lﬁﬁfz(sg.k Sii)

To prove

n
a)LHS. =8&; min {S;:~5;). + ; min (S -5"1:)+
() Qikelq UIQL(itk 'i,'l.)-l' Z:l QEkEKl UICa(i.% 1,
Py o k
% Equation (3.4} I';xﬁas been augmented by%%e terxn;%i,i on the RH.S. because the original condi-
tion of Grapa and Belford is not correct when S; ; >0.

4 The variables in the following two conditions have been transformed into the corresponding
variables in the FAP with the use of Table 3.3. In the original Efroymson and Ray's conditions, §€F;
which is the sel of customers that can be supplied from plant (or warehouse) i. We have made the as-
sumption that all the customers can be supplied from any plant and therefore 7 ES 1,....m } Note
that ¢; 3 in the SCWLP corresponds to S ; in the FAP,

88

Z ; min {S; ;-84
QtJ'GZKlUKz(1,3 1,1)+
iR

= R.H.S.
{b) Comparing term by term, we would like to show that

in (S; ,~S;4)s < S e=Ssa
&%(Sm 14)+ kg}?\ﬁz(f.k 54

There are two possibilities (note that i€K,):

1f puin Six 254 then ?é}p; (Sje—Sjs)e = ine}rli (Sje—Si)

< N
kgﬁz(sj.k 14)

i ?é};’-} Sjx < S;s then mip (Sje=Ss4)a =0

< max {(S; .-,
kggl&z(ike—S54)

Therefore

:21 Q; };Ié}-}: (Sjx=Sji)e S 521 ijg}iﬁ,a(sj.k“‘sj,i)
This proves that the two Grapa and Belford's conditions are weaker than the
corresponding Efroymson and Ray's conditions. It must be noted that the third
condition derived by Grapa and Belford has no corresponding counterparts in
the SCWLP and therefore may be useful in the SCWLP. The summary of these

conditions are shown in Table 3.5,

Q.E.D.

By using the stronger Efroymson and Ray’s conditions, a larger set of nodes
can be pre-assigned to have or not to have a copy of the file than by using Grapa
and Belford's conditions. This may save a lot of computation time in enumerat-
ing some possible assignments which cannot be pre-assigned using Grapa and

Belford’s conditions.

COROLLARY 3.2

The dynamic programming method for file migration used by Levin [LEV74] is

89

Table 3.5 Summary of Conditions for Placement and Non- placemnent of a file
at node 1€Kp

{The first three conditions are from [EFR68]; the last condition is from
[GRA77B].)

LCondifion. | o Rule

L =

a 1 ; -5, .

Y=1if j§=‘ ij m:\l}xz(-gj.k Sii)s > Gy
: k

) n
b Y;=0if 2 Qj min (Sj'k"'Sj.i).p < (x
. gl keX

c If

i‘neﬁ:.;i (S;-8;4) <0 jell,...ni,

then 7y is reduced by 1
T

Yi=0if Ci—G > E, Q;(S;e~Si4)+
S

similar to the dynamic programming method for dynamic warehouse location

used by Sweenly and Tatham [SWE76].

FProof

In {LEV74], Levin has developed a method of dynamically migrating copies
of a file over a multi-period horizon. The technique uses the basic dynamic pro-
gramming procedure, but additional conditions on costs are defined in order to
reduce the number of solution vectors that have to be generated in each period.
The conditions are defined so that the reduced set of solution vectors always
include the optimum. On the other hand, Sweenly and Tatham also have used
dynamic programming to solve the multi-period warehouse location problem. In
order to reduce the number of solution vectors that have to be generated in
each pericd, an upper bound is determined first. All solution vectors with values
less than the upper bound are generated and ranked for each period. Dynamic

programming is applied to find a new upper bound v*. If v is the sum of

90

optimﬁm solutions for each period without the relocation costs and K=v'-v",
then it is proven that additional solution vectors have to be generated for
periods where the difference between the best and the worst sclutions is less
tharn K. A solution vector in a period is obtained by solving an integer program.
It is difficult to determine the number of solutions to be generated in each
period. However, some fixed number may be selected ahead of time based on
the previous knowledge cbtained. Although both techniques do not give any per-
formance results on the number of solutions that have to be generated in each
period, it seems that Levin’s solution is easier to apply because it is not neces-
sary to solve an integer program in order to obtain a sclution. However, a
smaller number of solutions may be generated using Sweenly and Tatham's
technique, but it may be necessary to go through several iterations before the
optimum sclution is contained in the solution vectors, whereas using Levin's
technique, the reduced set of solutions vectors always contain the optimum.
The solutions that these two techniques give may not be identical and the practi-
cal benefits between these two methods can only be distinguished when they are
applied on realistic problems. More evaluations are necessary before any guan-
titative judgement can be made between the two techniques.

Q.E.D.

COROLLARY 3.3
The hypercube technique developed by Casey [CAS72] and Levin and Morgan
[LEV74, MOR77] and the condition used to discontinue the search, are identical

to the algerithm and condition developed by Alcoufle and Muratet [ALC78].

Proof

The hypercube technique was first introduced by Casey [CAS72] (a later ver-
sion was developed by Levin and Morgan [LEV74, MOR77]) to enumerate over all

the possible combinations of allocations in order to find the optirnal aliccations.

91

A condition is developed to discontinue the search whenever the objective func-
tion [CAS72] {the sum of the query and the storage costs [LEV74, MOR77]} does
not decrease after a file copy is added to an arbitary assignment at a node. A
similar condition is also developed by Alcouffe and Muratet [ALC76]. However,
the algorithm used by Alecouffe and Muratet is slightly different. They started
their search from an assignment in which every warehouse is opened. This
corresponds to the case in which every node has a copy of the file. In Casey’s or
Levin's algorithm, the search is started with the assignment in which every node
does not have a copy of the file. However, the basic underlying principle of these
two algorithms are still identical.

Q.E.D.

In conclusion, as a result of the proof of isomorphism, we have found that
many technigues developed for both problems are inter-changeable and that
some techniques developed for one problem match very closely with technigues
developed for the other problem. It is therefore possible to study these two
problems in an integrated fashion in the future. In the next section, we will use

the conditions in Table 3.5 to develop a heuristic for the FAP.

3.84 HFURISTIC FOR THE FAP - Algorithm 3.1

In this section, we propose a heuristic to solve the FAP. The search for an
optirnal solution is sometimes too time-consuming or impossible. Many of the
optimal search techniques in the SCWLP are of branch and bound type and they
are applicable to problems of moderate size. One way to reduce the execution
time of a branch and bound algorithm is to develop some criteria so that many
of the branches in the branch and bound tree can be systematically eliminated
although the result obtained may not be optimal. In the heuristic we are going
to discuss, several alternative criteria have been investigated. Rssentially, the

heuristic is a greedy algorithm which starts with ali the nodes unassigned. It

92

first applies the conditions of Table 3.5 to see if any node can be assigned
without any enumeration. After all these nodes have been assigned, it comes to
a point at which it has to decide what node to extend the assignment and
whether or not {o assign a copy of the file there. It does this by extending the
current assignment by one node. For each of these extended assignments,
there are two possibilities, either to assign or not to assign a copy of the file
there. Therefore, there are altogether 2% K| possible assignments which results
in 2%Kp| candidate problems. (The state of a candidate problem is made up of
the states of allocation of the n different nodes on the DCS. In general, the n
nodes of the DCS can be partitioned into three sets, K, K, and K.} For each of
the candidate problems, a representative value is calculated. The function of
the representative value is to estimate the minimum of the candidate problem
without actually enumerating over all the allocations for the unassigned nodes.
Based on these 2* Kl representative values, the selection criterion selects the
node and decide whether or not to assign a copy of the file there. After this
assignment has been made, the algorithm comes to a peint at which it is ready
to check for the conditions of Table 3.5 again and therefore it repeats the steps
described above until all the nodes have been assigned. The general steps of the

algorithm are shown in Figure 3.1. We discuss each of these steps briefly here.

M-1 This is to initialize the candidate problem - all nodes are unassigned at
this point. The candidate list, which is a list of states, and is made up of
the sets Kg A4, Az and its corresponding representative wvalue, 1Iis

assigned the empty set.

M-2-5 These four steps essentially achieve the following: a node is selected
from the un-assigned set, K, and is assigned a copy or not assigned a
copy of the file. A representative value is calculated for each of the can-
didate problems. The computed representative value and the

corresponding assignments are attached to the candidate list. These

(start)

4

Initialize Candidate Problem
K0=¢l K1=¢! K2={1,2,.-.,n}

?é+K2. Candidate List « ¢ -

LN

Select 16X, K, «K,-{1}

Form Candidate Problem C1 where
. 1%0 3G, KV 3G K- (i)
Compute Representative Vaule of C1
Attach to Candidate List

2

Form Candidate Prob]ea_f} where
3,1KgU Y 30 4Ky, 3G j+Kp-1HY
Compute Representative Value of 4
Attach to Candidate List

NO s Kz

empty?

ES

Use Selection Criterion to Select j
From Candidate List;

Set K0+ﬁ5’j, K1+Jq’j, K2+m%,j For

The Selected Candidate Probliem;
K,+K,3

2 2

Candidate List « ¢

NO 3 Kz

Figure 3.1

o

empty?
YES

(stp)

File Assignment Algorithm

M-2

M-3

M-5

M-6

M-7

94

steps are then repeated for each node in &,

M-8 This step selects, from the candidate list, the candidate problem and the
corresponding assignment of nodes using the selection criterion, and
uses it for the next iteration. Steps M-2 to M-8 therefore have selected a
node and have decided whether a copy should be placed at that node.

This node is removed from the K list.
M-7 The steps M-2 to M-8 are repeated until the K, list is empty.

There are two basic parts of the algorithm, the selection criterion and the

cormnputation of the representative value, and they are discussed here.
51 The selection criterion,

Sta Select from the candidate list, the candidate problem with the minimum
representative value;

S1b Select from the candidate list, the two candidate problems for which
node i iz extended, that have the maximum difference between the
representative values of Y,;“—;O and Y;=1. From these two candidate prob-
lerns, seleet the candidate problem with the minimum representative
value.

R1 The compuiation of the representative value;

Rila A lower bound is computed by solving the linear program {Eq. 3.1}
without the integrality constraints. (This has been derived earlier by
Efroymson and Ray [EFR86]. See Appendix B for the derivation.);

R1b The expected value of the candidate problem is computed by assuming
that each of the remaining un-assigned nodes has equal probability of
having or not having a copy of the file {see Appendix C for the deriva-

tion);

95

Using the two selection criteria and the two types of representative values,

there are four different versions of the algorithm:
1. MINLB - minimum lower bound {S1a, Ria);
2. MINE - minimum expected value {S1a, R1b);

3. MAXDLE - minimum lower bound for a node i with the maximum difference

in lower bounds between Y;=0 and Y;=1 {i€K;) (S1b, Rla);

4. MAXDE - minimum expected value for a nede i with the maximum

difference in expected values between ¥;=0 and Y;=1 {(i€K,) (Sib, R1b);

To further illustrate the steps of the algorithm, it is applied on Casey’s 5

node example [CAS72].

Suppose the following matrix represents the query cost S; ; for a five-node

system.
O 8 12 9 B
6 ¢ 68 12 9
S=1]12 8 D B8 12
9 12 8 0O B
8 ¢ 12 6 ©
Let
Q@ = [q;] = [24 24 24 24 24]

U=[U;]1=[2348 8]
F=[f]=[00000]

and

G =[6;]=1[168180 174 126 123].

By enumerating the 28~1 poessible allocations, it is found that a copy of the
_ file should be allocated to node 1, 4 and 5 giving a cost of 705. The steps for the
four possible variations of the algorithm are shown in Figures 3.2a, 3.2b, 3,2c
and 3.2d respectively. It is seen that two of these variations give the optimal

splution.

(U’U!U’U!U)
*
condition a
]
(U,u,u,1,U0)
*
condition a
'
(U,U,U.lgl)
MINLB
- — - - — -
- — —{ iy ,{ —
= = = = S -
= = < - 2 =
S = = = = =
481,5 487 .8 520.5 497 .4 480.0 492.6
MINLB
(o,u,0,1,1) (1,v,0,1,1) (u,0,0,1,1) (U,1,0,1,1)
597.0 606.0 649.0 6£15.0
e
condition b
(0,1,0,1,1}

717.0 sub-optimum

* sep Table 3.5

Figure 3.22 Evaluation of Casey's 5 node Example using MINLB
(U indicates that the node is un-assigned)

96

97

(U!USU!UQU)

. *
condition a

(U,U,U,1,0)

o*
condition a

(U!U’ 31'1)

MINE
= F 3 3 3 %
: 3 3 3 3 3
= = S - = =
s = = = = =
732.0 738.0 726.0 744.0 729.0 741.0
MINE

(6,0,U,1,1) (1,0,u,1,1) (U,0,0,1,1) (U,0,1,1,1)
732.0 720.0 729.0 723.0

- [*
condition b

(1,0,0,1,1)
705.0 optimum

* gee Table 3.5

Figure 3.2b Evaluation of Casey's 5 node Example using MINE
(U indicates that the node is un-assigned)

(u,u,u,u,u)
*
condition a
]
(U,u,U,1,U)
*
condition a
]
(u,U,Y,1,1}
MAXDLB
- - — py — —
by iy - - —_ —
= = = = = oy
= = =3 — = =
s £ = = 2 Z
481.5 487.5 520.5 497.4 480.0 492.5
*
condition b
Y
(0,1,U,1,1)
&*
condition b
Y
(0,1,0,1,1})
717.0 sub-optimum

* spa Table 3.5

Figure 3.2¢ Evaluation of Casey's 5 node Example using MAXDLB
(U indicates that the node is un-assigned)

98

39

(U!U’U§U’U)
<
condition a
L]
(u,u,u,1,0)
*
condition a
'
(u,U,U,1,1)
MAXDE
oy - oy — — p—
< 4 4 4 4 4
= =2 =2 = = =
3 2 < - = =
g £ = 2 2 =
732.0 738.0 726.0 744 .0 729.0 741.0
MAXDE
(o,0,u,1,1) (1,0,u,1,1) (v,0,0,1,1) (U,0,1,1,1)
732.0 720.0 729.0 723.0
*
condition b
{1,0,0,1,1}

705.0 optimum

* see Table 3.5

Figure 3.2d Evaluation of Casey's 5 node Example using MAXCE
(U indicates that the node is un-assigned)

100

The algorithm is evaluated by applying it on the published examples in the

FAP and the SCWLP®. The optimal solutions for these examples have been esta-
blished in the literature. The deviation of the heuristie soluticns from the
optimal solutions can be used as an indication of the "goodness' of the heuristic.

The heuristic is also compared against the add-drop algorithm of Keuhn and

Hamburger [KEUB3]%. The evaluation results are shown in Table 3.6. The four
proposed variations of the heuristic are all polynomial algorithms and each has
a complexity of 0(n?) (the same as the add-drop algorithm). The execution
times on the CDC 8400 are shown in Table 3,7. It is seen from Tables 3.8 and 3.7
that the algorithm MINLB gives the best results and has an execution time very
small as compared with other algerithms. In fact, algorithm MINLB obtains the
optimal solutions more often than the add-drop algorithm in general, but the
worst case behavior seems fo be worse than the add-drop algorithm and the exe-
cution times are longer because the algorithin is more complex. On the other
hand, algorithm MAXDLB produces more optimal solutions than algorithm MINLB,
but its worst case behavior seems to be worse. Algorithms MINE and MAXDE are
much worse than algorithms MINLB and MAXDLB. Improvements can be obtained
if we use the estimated lower bound (by estimating the mean and the standard
deviation and making an assumption of normal distribution), but the complexity
of the algorithm will become 0{(n®} and it takes too long to produce a solution
for any of these problems (> 800 seconds). However, we can still improve the
heuristic solution by combining the results of the add-drep algorithm, the MINE
algorithm and the MAXDLB algorithm. In this case, over B0% of the problems will

have optimal assignments and the complexity of the combined algorithm is still

0 (n?).

5 The first six sets of problems are taken from [CAS72]. Problems 7 to 18 are taken from
{KEUBZ] and problems 19 to 22 are taken fromn problem 7 of [SA 69, p. 1013].

8 Instead of directly using Keuhn and Hamburger's add-drop algorithm, which selects only 5
warehouse sites to be evaluated in each cycle, the add-drop algorithm used here allows for all the
unassigned warehouse sites to be taken into consideration.

101

Table 3.8 % Deviations of File Allocation Heuristic from Optimal Solutions

0ptimum} Add- L
Prob. Sol. Drop | MINLB | MINE | MAXDLB MAXPE Comments
1 117588 | O 0 0 B.43 0 a=0.1 Casey's 19
2 188738 | 0.03 | 0.31 }0.31 0.31 0.31 |a=0.2 node file
3 242581 ;0 0 0.66 0 0.66 |a=0.3 allocation
4 291790 [0 1.38 |0 1.39 0 - |[a=0.4 problem
5 431720)0 0 0 0 0 a=1.0 [casyz]
8 705 |0.85 | 1.70 | 0O 1.70 0 Casey's 5 no- de ex. [CAS72]
7 796648 (0.11 | O 0.78 0 0.78 (Factory keuhn and
8 854704 j0.15 | 0.09 | 0.88 0 0.89 lat Ind- Hamburger's
9 893782 |0.14 : O 0.71 0 0.71 |ianapolis 24 ware-
10 928942 {0 0.61 0.94 1.49 0.89 houses, 50
11 1092816 0.08 | O 0.13 0.10 0.13 Factory customers
i2 1145823 (0.13 | O 0.22 0 0.22 |at Jack- warehouse
13 1188241 |0.13 | O 1.37 0 1.37 isonville location
14 1244991 10.22 | 0,22 |2.49 0 1.87 problem
15 814548 [0.14 | O 080 © 0.90 (Factory [KEUB3]
18 859883 | 0 .12 | 0.80 0 0.B0 jat Balt-
17 830746 [0.03 | O 0.74 0 0.74 jimore and
18 724886 |0 0 0.42 | O | 0.49 |Ind’polis
19 806145 [0 0 0.88 0 ! 0.38 Factory at Problem 7
20 B70792 j0.15 | © 0.67 0 0.87 ;Ind'polis, of Sa
21 919854 | 0.11 | O 1.48 0 0.44 |but not [SA 89]
22 970446 [O 0.42 i 1.73 1.36 0.67 warehouse
mean |0.10 | G.22 | 0.73 0.87 0.58
std.dev, | 0.18 | 0.46 } 0.62 1.83 0.44

102

Table 8.7 Ezecution time of Heuristic in seconds on the COC 6400

Add-

Prob., | Drop | MINLB | MINE | MAXDLEB | MAXDE Comments
1 0.57| 11.45 (22.79| 11.42 [103.71|a=0.1 Casey's 19
2 0.43111.58 :23.57| 11.86 |105.57|a=0.2 node file
3 0.43| 11.77 |23.60| 11.76 {105.50|a=0.3 allocation
4 0.43(11.80 |23.48} 11.79 |105.26|a=0.4 preblem
5 0.29!11.80 !23.80! 11.84 |105.10)/a=1, Icas72]
5] 0.04] D.0B8 | 0.09 0.08 0.24|Casey's 5 no- de ex. [CAS72]
7 11.46| B.08 ;11.85 8.29 28.41 Factory keuhn and
a8 9.36(13.85 |13.52 11.23 356.73 |at Ind- Hamburger's
9 5.84| 20.89 |13.91| 20.93 | 37.61|ianapolis 24 ware-
10 3.61] B.48 | 8.28 8.50 21.42 houses, 50
11 12.08| 6.40 | 9.13 6.39 17.74 |Pactory customers
12 B8.62| 12.66 :12.64| 12.71 30.62 iat Jack- warehouse
13 7.82| 22.16 {21.26| 22.83 62.03 |sonville location
14 7.02140.18 133.47| 40.33 (112.93 problem
15 9.75] 5.48 |12.44]! 5.50 25.35 |Factory [KEUB3]
18 7.33| 5.48 | 4.37| 4.84 7.890 |at Balt-
17 5.58| B.82 | 7.01 5.84 17.25 |imore and
18 3.79| 2.68 | 3.75 2.68 7.26 Ind'polis
19 12.24| 4.94 | 9.18 4.95 16.04 (Factory at Problem 7
20 9.02113.63 [13.817 11.29 34.39 |Ind'polis, of Sa
21 8.78| 23.27 |22.05| 20.97 67.74 {but not [SA 89]
22 5.94| 22.79 |28.81| B22.02 73.40 [warehouse

mean ! 5.81| 12.54 |15.58| 12.21 B50.87

gtd.dev.i 4.11| B8.82 | 8.83 8.84 35.27

103

We have presented in this section a heuristic which can be used to obtain a
file assignment with a value very close to the optimal solution. We show in the
next section, that by including the migration cost into the cost function, the
above hewristic is also applicable. Further, we prove some conditions for file

migration on a DDB.

3.9 DFAP - THE MIGRATION OF FILES ON A DCS

The model that we have discussed so far assumes that the access and the
update rates at each node do not vary with time. The query load {g;) and
update load (U;) defined in Table 3.3 are actually defined for a period of finite
length. If they remain constant for every period, then the placements of files
determined initially will remain static. However, it is generally true that the
access and the update rates are time-varying. For example, a DCS which covers
large geographic areas usually experiences different query and update rates at
different parts of the system due to the different time zones in different geo-
graphic regions. It would be beneficial if the time varying characteristics of the
query and the update rates are taken into account in the placements of files on

the DCS.

We assume in the following discussion that time is divided into periods and
the file assignments remain static within the periods. The length of each pericd
may not be identical. The shorter the period, the more adaptive the system
would be to the time-varying retrieval and update rates, but the higher would be
the costs of migration which include the relocation costs and the costs of exe-
cuting the file assignment algorithm. The selection of the period length is there-
fore very application dependent and is driven by the rate of change of the query
rates and the costs of migration., It is also difficult to estimate the gquery rates
precisely ailead of time. " We therefore assume that the guery rates are

estimated dynamically at the beginning of each period. This may be done by

104

using some type of working set algorithm [DEN70]} which estimates the query

rates based on the rate of change of the query rates in the previous periods,

With this assumption, it is possible to optimize the file allocations of each period

independently and is not necessary tc use dynamic programming to optimize

the allocations for all the pericds as done by Levin [LEV74] and Sweenly and Tat-

harn [SWE76].

i.

There are two approaches to migrate files on a DCS:

Apply stored decisions dynamically whenever restructuring is needed.

In such an approach, the decisions of how to restructure the file system
based on the dynamic state of the system is computed beforehand. At the
beginning of each period, it involves only a search of the appropriate
migrations to be taken. This type of stored decision approach is very
efficient because it is essentially a table lock-up. However, the abundance
of states usually prohibit the application of such an appreoach. Further, in
order to store the decisions, it is necessary to find a convex hull to an n-
dimensional region where n is the number of nodes in the system. The
nurmber of points on this convex hull is of the order ™ where k>1. Present
algorithms to find the equation of a convex hull in four dimensional regions
have an expected behavior of 0(m*) where m is the number of points on
the hull [BEN77] and algorithms for higher dimensions do not exist. There-
fore it is unlikely that a general stored decision algorithm can be found at
this time for file migration. However, by utilizing some special structure of
the problem, it may be possible to find a feasible solution. This approach
has been taken in communication and control systems, e.g. [CHU7S,
RUD77] and can be a useful and efficient heuristic if optimality require-

ments can be relaxed.

105

2. Apply static file assignment algorithm dynamically whenever restructur-
ing is needed.
This is the approach taken by most people and is the approach taken here,.
The disadvantages about this approach iz the complexity of the optimal
algorithm. However, by using a good heuristic, close to optimal results can

still be obtained.

In the remainder of this section, we formulate the file migration problem
for each pericd and show that the costs of file migration can be included into the
fixed cost of the systern. We define the following symbols in addition to the sym-
bols defined in Table 3.3.

T = current period of consideration;
S}:k = cost of cornmunication of one query unit from j to k in period T;
MJ?:,‘ = post of communication of one update unit from j to k in pericd T;

N}:k = gost of moving a copy of file a from node j to node k in pericd T;

FT = storage cost of file at k per unit time in period T;
J'*'" = query leoad originating at node j in pericd T;
U7 = update ioad originating at node j in period T;
C,,'I;, = estimated cost of running the file placement heuristic in period T;
Iy = index set of nodes with a copy of the file in period T;

I, = index set of nodes with a copy of the file in period T-1.
By defining the confrol variable Y; with respect to the period of consideration,
we have:

r 0 jEIy
Y7=11 jer
The access and the update costs are the same as in Equations 3.1 and 3.2 except
that the costs per unit time are defined for period T specifically, Further, there

is an additional component of the costs, the migration cost.

106

n
File Migration cost = Y}, Y{ min N{,
k=1 J€Ir,
That is, if node k does not have a copy of the file in peried T and it is necessary
to migrate a copy of the file to node k, then a copy of the file is migrated from
the nearest node in the assignments of peried T-1, 1t is easily seen that optimi-
zation problem 3.1 can be written in the original form with only a change in the

values of G (Fq. 3.2).

TV

T T
c{I) = jg}i ef min Sf + kZ_II civl (3.8)
subject to

YT = 0 or 1 (tnteger) k=1, .., n

and

¢I=Ff+ 3 UIMT, + min N[, (3.9)

i=1 jely 4

The importance of the above formulation is that the static file assignment
algorithms developed in the literature and the file assignment heuristic
described in section 3.8 are still applicable to solve the file assignment problem
in each period although migration costs have been included in the formulation.
Therefore, at the beginning of each period, it is only necessary to determine
QF, U}, and Gf for all je{1,...,n} and the static file assignment algorithm can then

be applied.

3.10 CONDITIONS TO REDUCE THE COMPLEXITY OF THE DFAP

In this section, we want to establish some general theorems on the DFAP
which will aid in simplifying the problem. Specifically, we want to show the NP-
completeness of the problem of selecting the migration peoints and to find an

upper bound on the number of file migrations in period T.

3.10.1 The Problemn of Selecting the Tirnes for Migration is NP- Complele

107

Since Eswaran has shown that the FAP is NP-complete [ESW74], the DFAP,
which is a general case of the FAP, is also NP-complete. However, we want to
shoﬁ that the problem of selecting the points of migration in a multi-period
length of time is also NP-complete. This means that we have to exhaustively
enumerate over all the possibilities before we can decide when to initiate a file
migration. We achieve this by reducing the knapsack problem to the problem of

selecting the points of migration.

Knapsack Problem [KAR72]
Input: {ai, ap, ..., @y, b) € Z**; Z = set of integers;

Property: Eaja:j“—*b has a 0-1 solution for z;.

Problem of selecting the migration points - feasibilify form
During a time period [0,t], at what points of time should migrations be initiated
so that the total operating cost = B

We assume that the query rates are changing with time and that migrations
can only be initiated at fixed discrete times, ¢4, £5, ..., {; within the pericd [0, t].
The last assumption is made because computer operations are governed by a

clock which is discrete.

THEOREM 3.2

The problem of selecting the migration points is NP-complete

Proof

First, we want to show that the problem € NP. A non-deterministic Turing
machine can guess the set of times at which the files in the system are to be

migrated and therefore the problem € NP.

Second, we have to show that the satisfiability problem (SAT) is reducible to

this problern (SAT = the problem of selecting the migration points). We can do

108

this by showing that the knapsack problem « this problem because SAT « knap-
sack and by transitivity, SAT « this problem. Given an instance of the knapsack
problem, we can construct {in polynomial time), an instance of the problem of
selecting the migration points as follows:

Let

0 if no migrolion is iniliated at i

Ti = | 1 otherwise

a; = the costs of migration at time #;. (The costs are not the same at
different {;’s because the costs may be discounted to time iy or
different costs may be associated with different times).

B =b.

There are no other costs associated with the operation of the system.

The knapsack problem is therefore reducible to the problem of selecting

the migration peints. Since the knapsack problem is NP-complete, hence, we

have proved the theorem.

Q.E.D.
After establishing that the problem of selecting the migration points is NP-
complete, we are left with two alternatives: {1) exhaustively check the 2k possi-
bilities of whether to migrate at the k discrete times within the period [0, t}; or
{2) establish some criteria for migration. The first alternative has been taken by
Levin [LEV74] and Sweenly and Tatham [SWE768]. We investigate the second

alternative here.

3.10.2 Criteria for Initiceting a Migration

We want to establish in this section some criteria under which migration
should be carried cut. First, we want to find the maximum number of necessary

file movements in any migration.

Lemma 3.1

109

Given the allocations of the multiple copies of a particular file, the maximum

number of file movements needed is n-1.

Proof

A file movement is needed for node i whenever ¥; = 0 before the migration
and Y; = 1 after the migration. Under no other cases should there be a file
movement. [t is also assumed that there is at least a copy of the file on the sys-
tem. Therefore, the maximum number of file movements cccur when there are
n-1 nodes without a copy before the migration and these n-1 nodes have copies

after the migration.

q.E.D.

Given an allocation in period T, we are interested in finding a lower bound
and an upper bound con the costs of p file movements, p = 1, ..., n-1 in period

T+1.

Recall that:
K§ = {5: v[=0}
KT =t7:v]=13
and assume that all the nodes have been assigned, i.e. K§'=q5.
Let
CP(CB) = lower (upper} bound on the costs of p file movements,

lépén—]f(l[.

The following algorithm finds Cf, C§.

Algorithm 3.2 - To find the-Lowe'r and the Upper Bounds on the Costs of p file
moverments:
1.CP <0, CF «0;

kI3« kL KUt~ KT

Kg:*g‘r‘ « K%, KTH « KT,

110

2. Do Steps 3 and 4 p times;
3. CP « CP+ rnln N”,
EKl,L
kek(T
KT+1 - K{'”Uf l KT+1 T+1_ik;

4. Cf « CH+ max rnmN
ekl jek]y

KTP « KTB'0ik}, KEE « Kot~ 1k}

Note that CP £ CP*! because all the costs involved are positive.

Having established the lower and the upper bounds on the cost of p file
movements, we want to compute the change in total system costs due to a per-
turbation in the access rate. When the change in total system cost is grealer
than a threshold, a file migration is necessary. The change in total system cost

is given partially by the following theorem.

THEOREM 8.3
Let
R =qf+uf;
T = Q] /R];
R_.,-T"'l = RjT+GJjT+1 where w:,-T“ iz the perturbation in the total number of
accesses in period T+1 at nede j and is proportionally divided

between retrievals and updates;

ETT T"'linlnS'Tk + Z\l—TT}mT“MT YT
Ip
= Cost increase due to the perturbation.

(a) 1If\~5, m_.,T"'IEO. then the upper bound of file movements that ean be made
on the system is where

P = min {p: CP+CE>CII - 1 (2.10)

(b) IfZij T"'1<0 then the lower bound of file movemnents that can be made on

the system is 0.

111

Proof
Let
YT =(r],v%,..., YD) be the original optimal state of allocation in period
T
YT+ = (yT+1, vI+t, ., Y7*!) be the state of allocation after the perturba-

tien in period T+1;

C{¥TYC{YyT*Y)] = cost of operation at state YT(YT+1),

We want to show:

(1) €% is an upper bound in the cost increase due to of *1 if \5, o/ *!20;

(2) CT is a lower bound in the cost saving due to of *1if \/5, wf*'<0;

(3) if 21, s.t. wf *1>0, ca,T+1<0 and CT =0, then €7 is a lower bound in the cost
saving;

(4) if 2li,j s.t. of >0, QJT+1<0 and CI>0, then the lower bound in the cost

saving is 0.

To prove:

1) We observe that S1YT*1 s t.
(1)

cYDYy sc(y™hHY-cI Mt sc (™Y s c(YT)+CE

where

cT+t = E ‘r‘fm},”krgin SJ?:;C + E (1—?57)&1_,T+1M;:k)’gr+1

7 T¥l ik

The first inequality can be proved by contradiction. If
C(rTy > c(¥™YH—CcI*', this means that C{(¥Y7*1)~C7T*+! which is the cost of
operation at state ¥Y7*! without the cost of the perturbation, has a lower cost
than state Y7. This implies that state YT cannot be the optimal state of alloca-
tion which contradicts the original assumption.

For the second inequality, C{YT*) 2 c(yT+1)-cI*!, we observe that

cI+1z0if all of *t20.

112

The third inequality, C(YT)+C1 2 C{¥T*!), can be proved by contradiction.
1t C(YTy+CL < €(¥YT+!), then it is not necessary to re-organize the data base to
state Y7*! where the cost of operation is higher than the cost involved without
the re-organization.

Therefore, 0 £ C{(¥YT*)—C(¥T) 2 €T and CI is the upper bound in the cost

increase.

{2) We observe that:

CYTy—cItt 2 c(yTYyz c(YTYy+C] z C(YT+1)

The proof is exactly the same as part (1)} with an inter-change of Y7 and Y7+,

Therefore C(¥YT)-C(¥T*!) 2 ~CT and €T represents a lower bound in the

cost savings.

{3) We observe a similar condition as part {2).

(YT y~¢cTH 20(yD 2z c(YT)+CT z C(YT*Y)
Therefore, C{(YT)-C{y"*1) =z 7.

{4) We can only establish a weaker condition in this case:

C(YT) < C(YT”)-CE;"'i

c(yr™hY s c(yrH+ol

These two inegqualities can be proved similarly as before. We cannot prove
any relation between C(Y7+)-CI+! and C(¥7+!) because CI*! may be 2 O or <

0.

In summary, we have proved for case
(1Yos c(yN)-Cc(yT*acl = ¢f

(2).3).(1)osc(yNy-c(y™H+cl.

We can now prove the thecrem.

113

(a} We observe that Cf-i—C‘ng, ig a lower bound on the costs of running the optim-
ization program and initiating p file movements, so in order for the
reconfiguration to be cost-eflective, we must have

el zc(yTy-c(r™YH+cl z cp+Cl,
The upper bound on the number of file movements is
P = min {p: CP+CEL > CEI-1
{(b) We note that the lower bound on the cost savings is =z 0, so the lower bound

on the number of file movements is = 0.

Q.E.D.

Although the above theorem does not provide us with an upper bound on
the numnber of file movements when some or all of the of *!’s are less than zero,
we can still find an upper bound on the number of file movements if we can
astablish a lower bound on the costs of operation for the perturbated state of
accesses. In these cases, i.e., when some cc.;T“<0. we can estimate E(YT*I). the
lower bound on the optimal cost of operation after the perturbation without tak-
ing into account the cost of migration. Then

cl=cyTYy+cl -C(y™hzo

is an upper bound on the cost savings due to migration.

The maximurn number of file movements is therefore

o = min §p: CP+CE > Chi-1 {3.11)
where
, cr if of*120 \Aef,...,n}
CQ =

c(¥Ty+cI-T(r™Yy ifZfefl,...n} st of 10

The problem that remains is to compute the lower bound C(¥7*!). This can
be done by solving the optimization problem (3.1) without the integrality con-

straints {see Appendix B). Theorem 3.3 therefore establishes the basis for the

114

initiation of a file migration on the DDB. It has also taken into account the cost
of running the cptimization program for the FAP. It indicates that when it is
very expensive to run the optimizétion program for the FAP, it will not be cost

effective to do file migration.

3.11 CONCLUSION

In this chapter, we have investigated some important properties and solu-
tion algorithms for the File Allocation Problem and the Dynamic File Allocation
Problem. First, we have proved the isomorphism between the (dynamic) file
allocation problem and the single commodity {dynamic) warehouse location
problem. Based on this property, we have found that many techniques
developed for both problems are inter-changeable. Among these are algorithms
developed in the warehouse localion problem, such as the add-drop algorithm,
the branch and bound algorithms, the probabilistic branch and bound algorithm,
the integer prograrnming technique, the steepest ascent algorithm and the
dynamic programming methods. These algorithms can be applied to solve the
{(dynamic) file allocation problem. On the other hand, there are algorithms
developed in the file allocation problemm which can be used te solve the ware-
house location pro_blem. These include the hyper-cube technique, the clustering
technique, the dynamic programming methods and the max-flow min-cut net-
work flow technique. Purther, we have found that some technigues developed for
one problem match very closely techniques developed for the other problem.
This is shown by the fact that Grapa and Belford’s conditions for locating a copy
of the file at a node [GRA77b] are weaker than the conditions derived by Efroym-
son and Ray for opening or closing a warehouse [EFR66]. This implies that by
using the stronger conditions of Efroymson and Ray, more nodes can be
assigned initlally to have or not to have a copy of the file. Another example is

shown in the similarity in the dynamic programming technique applied by Levin

i15

to solve the dynamic file allocation problem [LEV74] and by Sweenly and Tatham
to solve the dynamiec warehouse location problem [SWE?76]. The last example is
shown in the hypercube technique whicﬁ has been developed at different times
by Casey [CAS72], Levin and Morgan [LEV74, MOR77] and Alcouffe and Muratet
[ALC78]. We conclude that these two problems can be studied in an integrated

fashion in the future.

Second, we have developed a heuristic to solve the file allocatien problem.
This heuristic uses the add-drop principle and different criteria on selection are
compared. It is found that a combination of these criteria, together with the
add-drop algorithm, is very promising and gives solutions very close to the
optimum based on sample problems published in both the file allocation prob-

lem and the warehouse location problem.

Lastly, we have studied some aspects of the file migration problem. It is
shown that the problem of deciding when to migrate the files is NP-complete.
This means that it is likely that an exhaustive enumeration is necessary before
an optimal migration sequence can be found. We have also formulated the
migration problem and have shown that the migration costs can be incorporated
into the fixed cost of the system. This implies that the file allocation heuristie
developed in this chapter can be applied to solve the file rmigration problem
without special considerations for the costs of migration. Finally, we have

developed a thresheld to indicate when migration should be carried out.

116

4 TASK SCHEDULING ON DISTRIBUTED COMPUTER SYSTEMS

4.1 INTRODUCTION

In the previous chapters, we have addressed the optimization problems of
data managemeni on the guery and the file level. The operations to be per-
formed on the query and the file level is a conglomerate of tasks, each of which
may require the use of a diflerent resource for a different amount of time. In
this chapter, we address the problem of the task scheduling on DC3's so that the

hardware can be efficiently utilized and the requirements can be satisfied.

Altbough one of the motivations for the development of DCS's is the declin-
ing hardware vosts, and therefore efficient hardware utilization is not as impor-
tant a problem as in early computer systems, the problem of task scheduling is
still an important topic of research because the parallel resources are more
difficult to coordinate and there are other constraints on the system which must
be satisfied, e.g. deadlines, response time, etc. Further, the advantages of using
parallel hardware is lost if the improvement over a conventional uni-processor
system is small. It is the goal of this chapier to study the problem of task

scheduling on DCS's.

A task is defined to be a simple request which uses a resource for a finite
amount of time. A reguest is said to be simple if no other resource is needed
during the processing of this request. A complex request can always be broken
down into a sequence of simple requests. A resource cn a DDB can be physical,
stich as & communication channel, a processor, etc., or it can be logical, such as
a file. The tasks are usually governed by a precedence graph so that a task can-
not be processed until its predecessor has finished processing. For example, in
order to handle a file request on a data base, many processes, such as receive
message, create transaction, assemble reply, file storage 1/0, etc., have to be

activated. Another example is shown in the processing of user gueries, which

117

are directed to the different nodes on the DCS. Each of these queries may be
partitioned into a set of tasks. The general precedence graph for the processing
of a query which require the use of geographically distributed files are shown in
Figure 4.1. On a DCS3, the cormnunication cverheads, which include time to set
up the communication path and the queueing delay to transmit the messages,
are usually much larger than the processing overhead for a query. Therefore,
the time required to process a task at a node in Figure 4.1 is usually negligible
when compared with the time to pass the results over the communication sub-
system. There are also other gqueries on the system, each of which has its own
task precedence graph. There may also be precedence constraints among the
precedence graphs of the different queries. The task scheduling problem that
we are concerned with here, is to sequence the processing of tasks, subject to
precedence constraints, so that some overall optimization eriteria are satisfied.
The criteria can be the maximum completion time of all the tasks if the objec-
tive is to maximize the throughput of the system; or it can be the sum of the
completion times of all the tasks if the objective is to minimize the average

response time; or it may be a combination of several optimization criteria.

We first describe a model of the DCS and state some tradeoffs which can be
used to simplify the problem. We show that the problem of deterministic
scheduling on this model is NP-complete. Since the problem is NP-complete, it
is unlikely that a polynomial algorithm can be found. We proceed to study the
problem by putting additional constraints on the model so that the problem is
polynomially sclvable. The resultant model we have obtained is the model for an
interleaved memory. We study in detail the performance of an interleaved
memory and show that the polynomial scheduling algorithm we have developed
is an optimal average behavior algerithm. That is, the polynomial algorithrm will
have the best average ﬁerformance as compared with any other polynomial algo-

rithms. Lastly, we return to the original model and show a heuristic for the

Communication 'Neighboring Communication : |
< Node 1 Sub-system - Nodes 3 Sub-system Node i

Task of Task of Task of
communicating a |_Jprocessing | _jcommunicating the
request to a the request result to node 1
neighboring node j at node j from node j
Task of Task of Task of
communicating a _jprocessing communicating the
request to a the request result to node i
neighboring node k at node k | from node k
Task of Task of
decomposing & processing the
processing) . query at node i
query at node i . .
. . .
[] [] L]
Task of Task of . Task of
communicating a __4 processing] communicating the
request to a the request result to node i
neighboring node m at node m from node m

Figure 4.1 Task Precedence Graph for the Processing of a Query
which requires the use of Geographically Distributed Files

811

119

scheduling of tasks on the general model. Some simulation results for this

heuristic are also shown.

4.2 A MODEL FOR THE SCHEDULING OF TASKS ON DISTRIBUTED SYSTEMS

4.2.1 The Model

Flynn [FLY66] has classified methods of achieving parallel operations into
four classes: the single instruction, single data stream {SISD), the single instruc-
tion, multiple data stream (SIMD), the multiple instruction, single data stream
(MISD}, and the rmultiple instruction, multiple data stream (MIMD). A basic
model of a computer system on a DCS for the scheduling of tasks is the SIMD
model. This model is shown in Figure 4.2, The control unit may represent the
CPU. The N arithmetic processors may represent the peripheral processors or
the backend machines. An instruction may be a search for a particular item on
the mass storage and the data streams are coming directly from the disks.
Another example of a SIMD architecture is the Data Base Machine [HSI77]. On
the DCS level, the DCS may be represented by a Job-Shop model in which the
basic building bloeck within the job-shop model is the SIMD model. A job-shopisa
model which has been used in industrial engineering and deterministic task
scheduling [GRA77a). The characteristic of the job-shop model is that a job or a
request, is made up of a set of tasks, each of which may be processed on a given
machine or processor for a given amount of time. A conceptual model of a DCS
is shown in Figure 4.3. The graph is actually a fully connected graph in which an
arrow represents an instruction stream and the corresponding return data flow.
This is a more restricted model than the general job-shop model because each
job or request is made up of only a set of parallel tasks. The basic model at each

node is the SIMD model.

i2¢

Arithmetic
Processor 1 Data Stream 1
Arithmetic
. Processor 2 ¢ Data Stream 2
Control I@struct1on
Unit Stream
Arithmetic
e Nata Stream N

I Processor N

Figure 4.2 Model of an SIMD Computer System [STC75]

121

Figure 4.3 Conceptual Model of a DCS (The direction of an arrcw
represents the flow of an instruction stream and the
corresponding return data flow)

122

The model we have discussed here can be more general. For example, each
job or request may consist of a sequence of tasks to be scheduled on different
nodes or computers instead of a set of parallel tasks to be scheduled on neigh-
boring nodes. However, this scheduling problem can be solved conly when the
status of all the nodes of the DCS iz known. This is possible when the scheduling
is done by a centralized control and all the status changes are reported
instantly to the centralized controller. In a geographically distributed DCS, the
collection of global information for scheduling is usually very difficult and expen-
sive if not impossible., Therefore the use of a more general model is usually not
practical for a DCS. As a result, we have restricted to the case in which the
scheduling of tasks is done by using the local information available {distributed
control), that is, it is a SIMD model at sach node. The restricted model to be
studied is shown in the dotted box in Figure 4.4. The notations used in Figure
4.4 are:

N - number of tasks to be scheduled (it may or may not fit entirely in the
buffers of My);

M, - Distributor on the first stage:

My ; - module or machine j on the second stage;

P;(M;) - Processing time requirement of task i on machine M;;

buf f {M;) - Amount of buffers for M;.
The task precedence graph for request i is shown in Figure 4.5. The precedence
graph in Figure 4.1 falls in the class of precedence graphs we discuss here if the
tasks of communicating to and from node i and the task of processing at a
neighboring node are combined into a single task. We assume that the optimiza-
tion criterion is to minimize the finish time of all the tasks in the system. This is
generally the assumption made when the objective is to maximize the

throughput of the system.

A i N S WD g EEm SR s M g . AN T SRR A TS b GHE EE S mn . S S e AR AR

Py(My 1)

bym=-1

buffers module or machine

{DI]‘—' CPU's or
Requesting sources

Set of memory
requests not in

Serviced

requests

buffers

Figure 4.4 An SIMD Model for Task Scheduling on a DCS

—{ [Tle—

123

124

0 < P'i(Mb,m) < @

Figure 4.5 Precedence Graph of Tasks for Request i
which can be scheduled on the SIMD Model

125

It is also assumed that the amount of buffers on the second stage is finite

and that the amount of buffers on the first stage may be infinite, that is,

0 buff(My) = =

DS buff(My)=buff(Myp)= - =buff(Mym,) <.

Further, it is assumed that there may exist precedence constrainis among

different requests and the tasks may not be available initially, that is, they have

positive release dates. The analysis of this model is shown in Section 4.3. We

now discuss some assumptions which would allow the problem to be simplified.

4.2.2 Assumptions which allow the Task Scheduling FProblem to be simplified

Certain assumplions can be made so that the task scheduling problem can

be simplified.

(1)

(2)

Processing Overheads are ignored
The processing overheads are usually much smalier than the comrmuni-
cation overheads and they are ignored. This assumption will eliminate

many tasks in the precedence graph.

Static Algorithms are used

Static algorithms schedule a set of tasks available at the time of schedul-
ing and a set of tasks that are known to arrive at fixed future times. The
schedule does not change during the duration of the processing of these
tasks. On the other hand, dynamic algorithms are more flexible and they
re-schedule all the available tasks whenever a new task comes in. The
advantage of dynamic algorithms is that they allow task initiations to be

dynamic and do not restrict the schedule to the order determined ini-

" tially, but they have the disadvantage of larger overheads. The choice

between the use of static and dynamic algorithms is systern dependent.

If the arrivals of requests are indeterminate, then dynamic algorithms

(3}

126

are usually better. On the other hand, if the arrivals of requests can be
determined precisely, then static algorithms should be used. In our
model, we have assumed that static algorithms are used because it deoes
not depend on the arrival process and 1s easier to optimize. The static
algorithm developed can be used as a heuristic when the arrivals of

reguests are indeterminate.

Beterministic Processing Times are assumed

The processing time for a task can be assumed to be deterministic or
probabilistic. In the deterministie case, it is possible to determine the
order which can best satisfy the optimization criterion. However, it is
difficult to do so when the processing times of all the tasks are governed
by a common distribution. Certain assumptions have to be made before
an analytical evaluation is possible. The theory of scheduling developed
now is rnostly applicable to the deterministic case. It can be used to
approximate the probabilistic case when the average or the worst case
processing times are used. A lot of work has been done in flow shop and
job shop scheduling, (see [GRA77a, LEN77] for a good survey) and the
theory developed there can be applied to study the probiem here. The
algorithm developed in Section 4.5 1s actually extended from Johnson’s
optimal polynomial algorithm for a two stage flow shop [JOH54]. On the
other hand, when the processing time of a task is probabilistic, the
model we have shown in Figure 4.4 is a "central server model”, and a lot
of work in gqueueing theory has been done to evaluate its performance.
For example, Baskett et. al. have developed a closed form formula for
the performance of a gqueueing network when certain conditions are
satisfied [BAS75]; Sauer and Chandy have developed approximate
analysis techniques for central server models [SAU75]; Chandy et. al.

have studied approximate analysis techniques for general gueueing

127

networks [CHA75]. Unfortunately, when a probabilistic assumption is
made on the processing time of a job, it is usually difficult to determine
the order of processing which can satisfy some optimization criteria.
Some work has been done in finding a service schedule which minimize
expected costs [MEI77, KONB8, KL174], however, a general theory for this
is still lacking. Therefore, we see that it is easier analytically to make
the deterministic assumption. One other advantages about the deter-
ministic assumption is that the difficulty of the scheduling problem can
be assessed easily in most cases. NP-completeness of the problem can
usually be shown or a polynomial algorithm can be found. The general
task scheduling problem on DCS’s using our model can be shown to be
NP-complete. Under this situation, the designer has to loock for good
heuristics which can be executed within real time constraints. However,
the evaluation of heuristics are generally difficult, Evaluation methods
and techniques afe typlcally of three kinds, analytical technigues, simu-
iations and approximate algorithms. In analytical techniques, some sim-
plifying assumptions about the system parameters have to be made in
order for the solution to be tractable and the resulis obtained are usu-
ally not accurate. On the other hand, simulations are almost always
expensive to run, and it i1s difficult te exhaust all the possible cases of the
system. A third type of evaluation algorithms are approximate algo-
rithms [WEI77]. There are two classes of these approximations, one
guaraﬁteeing a near-optimal solution always, and the other producing an

optimal or a near-optimal solution "almost everywhere”. These types of
algorithms are still in the research stage and a unifying approach in
designing algorithms of this type is still lacking. The future irend is in

the direction of investigating good approximation algorithms for schedul-

ing tasks.

128

By making the assumptions in this section, we have sacrificed some gen-
erality for some mathematical tractability. We hope that the results we have
obtained here are still applicable {(to some extent) when these assumptions are

relaxed.

4.3 NP- COMPLETENESS OF THE TASK SCHEDULING PROBLEM

We prove in this section, the NP-completeness of the task scheduling prob-
lem on the mode!l of Figure 4.4. It is assurned that we have identical processing
orders on all machines, that is, the best permutation schedule has to be deter-
mined; and the amount of buffer space in all the machines are infinite. It is
further assumed that no preemption is allowed in the schedule. We only prove

for the special case of two machines on the second stage (i.e. m=2).

THEOREM 4.1
The problem of deterministic task schedtﬂing on the SIMD mode!l with the follow-

ing assumptions, is NP~complete:
{1) m=2 (two machines on the second stage);

(2) Each request has the following task precedence graph:

O O

J=f{1,2}, i€f1,....N}

That is, each reqguest only requires the service of one machine on the

second stage. There are no precedence constraints among requests;

129

(3) The optirnization criterion is to minimize C ;. the maximum task com-

pletion time.
Proof

Problem € NP because a non-deterministic Turing Machine can predict the

sequence in polynomial time.

The problem is reducible from the knapsack problem!.

Let n=t+2

VEAET Pi{My)=0; .ZTPi(MmFA: ETPi(Mb,I)::B:
1€ i€

Jobs are agreeable if

= =
2 Pi(My) C athen 3 Pi(My)2 b
ScT scT

where P'i{Mtx.), P’i (MO,I) > 0

P y(Ma)=1; Ph{My)=a; P,_(M,2)=0:;
PR(MG)’—'(J'—A"E'(I: Pn(Mb_i):(); P,,(Mb,g)':-B—b+A-a;

y =8B+a+1
If knapsack has a solution, then there exists a schedule with) P;(#,)=a and

ies
Cmax=y as illustrated in Figure 4.8a. I Knapsack has no solution, then

M FPi(My)-a=c#0 for each ScT and we have a processing order
ies

(Jn-1; Wi €8 Iy §J5:i€T ~SY) such that:
>0 => Crax = 1+ 0 Pi(M 4P, (M)+ P, (My2) =B+a+e+1>y
ie8
e<0 => see Figure 4.65,

If 3P, (My 1)<b, then there exists overlap in between the operation
ies

of P;{M,) and P;{M, ;) for j€T—S. The maximum finish time is:

i
I The knapsack problem is: "Given positive integers @y, ..., C, A = 2 ag, 5, does there exist
i=1 .
asubset SCT=41,..., £1 such that 2@123.
i€8

n-1 5

n T-5
77| V27777 =
n-1 S T T-8
v, | 7 . B
n
L UIT/ A I
') _ - T 1 — time
01 a+l b-A+2a+l a+h+1 B+a+l
(a) Knapsack has a solution
n-1 S ' n T-$
M, L Lz]
n=1 S T-5
n. | I T sz
n
My, 2 Y/ L

(b} Knapsack has no solution and ¢ < O

Figure 4.6 Proof of Theorem 4.1

time

130

131

Crag = 1+a+B+0 >y

It follows that Knapsack has a solution iff this problem has a solution with
Cmex®y. SBince the Knapsack problem is NP-complete, the problem we are con-
sidering is also NP-complete.

Q.E.D.

THEOREM 4.2

The problem of deterministic task scheduling on the SIMD model with

assumptions similar to Theorem 4.1 except for assumption (2}, is NP-complete.

(2) Fach request has the foliowing task precedence graph:

D < -P‘!'.(Mb,l) < oo
0< Pi{M,) <o

0 < Pi(My 2) <

That is, each req_uest requires the service of both machines on the

second stage. There are no precedence constraints among requests.
Proof

Problem € NP because a non-deterministic Turing Machine can predict the

sequence in polynomizl time.

The problem is reducible from the knapsack problem.
Let
n=t+1
Pi{My)y=1 Pi(M,)=t*ay; Pi(Myo)=1; (i€T)
PpMa)=t*b; Po{My)= Pa(My2)=t{(4-5)+1L;
y=t{A+1)+1;
The timing diagram is shown in Figure 4.7,

If knapsack has a solution, the Zlschedule with) P; (M,)=b and Crae=y -

ies

S n T-5

M, P72 1
S .n T-5

My1| C] 7 I

S n ‘ T=-5
My 21 L 1 7777772]
i 1 !
0 1 £b+]s] EAH[S|41 t(A+1)41

Figure 4.7 Timing Diagram for the Proof ¢f Theorem 4.2

132

133
If knapsack has no solution, then Y, P;{M,)—b&=c#0 for each SCT, and we have a
165

processing order ({J;:i€eS 1 Jp: {J:1€T -5 1) sueh that:

e>0 => Crax > 2, PilMa 4P (My2) = t{D Pi{M,)+t (A-b)+1
ie& tes
=t{d+c)+izy
c<0 => Cmax > Pn(Mu.)"'Pn(Mb.l)-". ;SP{(Mb,l)
rEL -

=+ 1+t Aty Pi(My)
ies

=t{Ad-c)+lzy

It follows that Knapsack has a solution iff this preblem has a solution with
C mex=Yy. Since the Knapsack is NP-complete, the problem we are considering is

also NP-complete.

Q.E.D.

THEOREM 4.3

The problem of deterministic task scheduling on the SIMD model with the follow-
ing assumptions is NP-complete:

{1) m=2;

{2) There exists precedence constraints among the requests;

(3) The optimization criterion is to minimize Cay;

Proof

Problem € NP because a non-deterministic Turing Machine can guess the

sequence in polynomial time.

The problem can be reduced from a conventional two stage flow shop prob-
lem with a tree precedence graph and the optimization eriterion is to minimize
C max- The reduction of the problem is obvious and will npt be presented here.
Since the two stage flow shop problem with a tree precedence graph is NP-
complete, this implies that the problem we are considering iz NP-complete as

well.

134

Q.E.D.

THEOREM 4.4
The problem of deterministic task scheduling on the SIMD model with the follow-

ing assumptions is NP-complete:

(1) m=2;

{2) The release dates of jobs may be 2 0, that is, not all jobs are available ini-
Lially;

(3) The optimization criterion is to minimize C,g;

Proof

Problem € NP because a nen-deterministic Turing Machine can guess the
sequence in polynomial time.

The problem can be reduced from a conventional two stage flow shop prob-
lem with release dates = 0 and the optimization criterion is to minimize Cnay.
The reduction is obvicus. Since the two stage flow shop problem with positive
release dates is NP-complete, this implies that the problem we are considering

is NP-complete.

Q.E.D.

THEOREM 4.5

The problem of deterministic task scheduling on the SIMD model with the follow-

ing assumptions is NP-complete:
(1) m=g;

() There are no buffers on the second stage, i.e. buff (M, 1y=buf f (M 2)=0.

There will be no waiting of requests on the second stage;

&) The optimization criterion is to minimize € pn,y.

135

Proof
Problem € NP because a non-deterministic Turing Machine can guess the
sequence in polynomial time.
The problem is reducible from the knapsack or the partition problem.
Let:
n=t+2;
VAET; Fi(Mg)=ai Pi(My)=0; Py(My2)=1: ;21
If Ais even, then

A
Pp_y(My)=1; Pn—1(Mb.1)=§+ i Pp_y{My 2)=0;

A
Pn(Ma.)=1; Pn(Mb.i)::E"'l-' -Pn.(Mb,E):O;

y=A+3;
~ If Ais odd, then

A+3
Pro1(My)=2; PpoilMy)= 5 Pr_(My 2)=0;

A+3

Pp{Mya)=2;, P, (Mb,l):‘z—: Py (M, 2)=0;

y=A+5.
If knapsack (for A odd) or partition {(for A even) has a soluticn, then there exists

A

> and C.,,,=% as illustrated in Figure 4.8.

a schedule with), P;(M,)=
1S

If knapsack (partition) has no soluticn, then >, a,;-*-%'—-c,fo for each $C? and we
ites

have a processing order {J,.y; {/;:2€S Y /s $5:i€T~S)) such that for A even,

e>0 => Cmax = Pn—I(Ma)+ Zpi(Ma)+Pn{Mu)+Pn(Mb,l)
ies
Y 5 A
= 1+ 5 +e+ 1+ > +1

>y

136

n-1 S=A/2 n T-$=A/2
n, v J
My 1
s T-5
My, 2 i] l ']
0 ‘A LA o
14 245 A+2 A+3

Figure 4.8 Timing Diagram for the Proof of Theorem 4.5 (A even)

137

c<0 => cmax - n—l(Mu.)u n—-l(Mb.i)! E: j’i(lum)| 1
ieT-5
A A
- 24 £ 3
= 1-1-2 1+—=—+c+1

>y
Note that in this case, although the jobs in S have finished, job n cannot

be started until time=1+‘—2~ because there is no buffer available in M) 1.

It follows that knapsack has a solution iff this problem has a solution with
CimaxSY. Sinece the knapsack problem is NP-complete, the problem we are con-

sidering is also NP-complete.

Q.E.D.

We have therefore proved that the task scheduling problem on the SIMD
model is NP-complete {(with the assumptions stated in the theorems). An
approach we can take now is to design a suitable heuristic for each of these
problems. However, we delay this until Section 4.5. In the next section, we show
by restricting the processing time on each machine that the task scheduling
problem can be made polynomially solvable. The processing times of the tasks
are restricted in a fashion such that P;(M,)=1 and P;{#M; ;)=m (m=number of
machines on the second stage) and each request needs the service of only one
machine on the second stage. This particular model represents a moedel of an

interleaved memory system.

4.4 THE RESTRICTED MODEL - AN OPTIMAL ALGORITHM FOR SCHEDULING

REQUESTS ON AN INTERLEAVED MEMORY SYSTEM

4.4.1 Regquirements for the Design of a Primary Memory

In a top-down design, the requirements and the atiributes must first be
identified before the system can be designed. Requirements are the constraints
which the system must satisfy and they reflect the environment as well as the

objectives of the systerm. Attributes, on the other hand, specify either options

138

or evaluation criteria for qualitative comparisons of competitive systems that

meet the system requirements. Atiributes may be used to evaluate the

tradeofis in competing architectures and to ohtain a feeling for the *goodness’ of

the architecture in realizing the system. The requirements for the design of a

primary mermmory are.

(1)

{2)

Bandwidth =

Bandwidth =

Bandwidth

The bandwidth represents the average throughput of the memory system
and is given in terms of bits returned/unit time. In a parallel memory
system, the bandwidth is the surn of the bandwidths of all the modules

(Bandwidth = ») (word length of module k)*(average utilization of

module &
module k}/{cycle time of module k) where the average utilization of a
module is the average fraction of time the module is busy. For the case
of identical modules, the bandwidth can be written as:
[n.umbe?' of] » Lwo-rd = | averuage]
modules engith utilization
{speed of module)

average number of}
busy modules

{(memory cycle time)

constant * [

{4.1)

where the constant in Eq. 4.1 has a unit of {bits * memory cycle / unit
time). The model of interleaved memories presented here assumes that
all the modules are identical and the word length of each module are
kept constant. The objective of maximizing the bandwidth is therefore

equivalent to maximizing the average utilization of the modules.

Response time

The response time is the delay between the time a request is aceepted
by the primary memory and the time the reguest is serviced, assuming
that the datum rgsides in the primary memory. This is alse called the

waiting time of the requests.

139

{3) Size
This is the required memory size or capacity.
(4) Cost
This is the maximum zallowable cost of the resultant design which

satisfies the above requirements,

The design of the memory must satisfy the above requirermnents. Moreover, the
performance of the final system can be evaluated by using these parameters as

evaluation criteria.

4.4.2 Characieristics of the Access Sequence of a Pipelined Processor

In this section, we describe the characteristics of the access sequence of a
pipelined processor. A pipelined o'rganization in the most general sense, instead
of specially structured pipelined computers with different arithmetic units (e.g.
CRAY 1), applications {e.g. vector processing), additional memory support {e.g.
cache) and interconnections {e.g. ILLIAC IV}, is assumed. The processor is
further assumed to be executing directly from the main memory. The schedul-
ing algorithms developed are general enough to be applicable to the interleaved
memories of all the specially structured pipelined computers. However, the

exact performance is not found for each type of machine.

A memory access sequence generated by a pipelined processor has Class D
dependencies as classified by Chang et. al. [CHA77]. A dependency is a logical
relationship between two addresses such that the second address cannot be
accessed (written or read) until the first has been accessed. Class D depen-
dency is characterized by a machine with instruction level multiprogramming
{(from a large number of jobs), or a machine with sufficient lookahead or gueue-
ing hardware to allow dependencies to be bypassed. However, there still exist

cases where the effects of dependencies cannot be eliminated. Anderson et. al.

140

have identified three main sources of concurrency limitations which tend to

reduce the performance of the pipe [AND87]. These are:

{a) Register interlock - When the current instruction needs a register
modified by a previous instruction, the current instruction cannot be

decoded until the previous instruction has finished;

{b) Branching - When a jump or a branch on condition instruction is encoun-
tered, further operations in the pipe cease until the target instruction
has returned from the memory. Conditional branching poses an addi-
tional delay because the branch decision depends on the ocuteome of

arithmetic operations in the execution units.

{c) Interrupts - When an interrupt ecccurs in the pipe, it is necessary to
segquentialize the execution of instructions in the pipe in order to deter-
mine the exact source of the interrupt. This sequentialism in execution

would degrade the performance of the pipe.

Various methods have been introduced to solve these dependency problems
[TOM87]. For example, regiester interlocks can be solved by using forwarding;
the sequentialisrn due to interrupts can be eliminated by using imprecise inter-
rupts as in 1BM 380/91. The most predominant effect on the performance of the
memory is due to branching. When a branch or a conditional branch instruction
is encountered, request supply to the memory discontinues until the condition
code has been set and the target instruction has returned from the memory.
The utilization of the memory therefore decreases. The effects on the memory

performance due to branching dependencies are studied in section 4.4.9.

In addition to the effects due to address dependencies, the order in which
instructions and data are requested also affects the memory performance. For
a pipelined processor, the reguest stream is a sequence of instruction-operand

feteh pairs. However, not every instruction invelves an operand feteh and if the

141

bus is wide enough, twe or more instructions ean be fetched in one access. A
notable characteristic in this access pattern is that instruction fetches are
made in a sequence interlaced with operand accesses. The performance of the
memory system may be improved by separating the memory modules into two
sets, one for instructions and one for data. In section 4.4.8, the effects on
memory performance due to separation and mergence of instruction and data

modules are compared.

4.4.3 Previous Work on the Study of Interleaved Memories

One of the early successful implementation of interleaved memories is in
the IBM 380/91 [BOL87]. In this computer, the storage system is made up of an
interleaved set of memory modules and the degree of interleaving equals the
number of memory modules. The memory can service a string of sequential
requests by starting, or setecting, a storage unit every cycle until all are busy.
In effect, the storage cycles are all staggered {see Fig. 4.10). By using a set of
buflers called the request stack, conflicting requests which access the same
module can be resolved by allowing only one of these reguests to access the
module and storing the rest in the request stack to be issued in later cycles.
Simulation results were shown for the average access time and the bandwidth

with various degree of interleaving.

The earliest attempl! to model the performance of interleaved memories
was done by Hellerman [HELB87]. By assuming a saturated request queue {(a
queue in which requests are never exhausted) with random requests, and no pro-
vision is made for the gueueing of the requests on busy modules, the request
gueue is scanned until a repeated reguest is found. This constitutes a collision.
Hellerman's results show that with m memory modules, the average number of
requests scanned before a collision is approximately m%% for m between 1 and

45, This is taken to be an indication of bandwidth. Knuth and Rao [KNU75] show

142

an alternate exact way fo calculate the bandwidth. However, both of these
results are pessimistic because they do not allow the queueing of conflicting
requests to the same module and the randomness assumption is not tenable in

real programs.

Burnett et. al. have developed a number of models on parallel memories. In
two of these models, [BUR70, BUR73]}, they assume that the modules operate
synchronously (all modules start and end their cycles simultaneously) and a
scanner scans a saturated request queue and admits new requests to service
until it attempts to assign a request to a busy module. In two other models,
[COF71, BUR?5], they further assume that a set of blockage buffers is present so
that requests made to a busy module can be stored and issuued in later cycles.
The scanner continues to scan the request queue until all the modules have been
allocated or all the buffers are occupied. In effect, the maximum size of the
request gueue inspected by the scanner never exceeds b+m where b is the
number of buffers and m is the number of memory modules. They have also stu-
died a request model similar to Strecker's model [STR70] by assuming a proba-
bility o« for the succeeding request to request the next module in seguence and a
probability of {(1-a),/{m —1) to request any other module. They have developed
two algorithms that modified the request pattern in order to increase the
bandwidth., The first one is called the Instruction-Data Cycle Structure, which
distinguish the request queues into two sub-gueues, the instruction queue and
the data queue. These two sub-gueues are inspected in alternate memory
cycles. They found that there are improvements from -4% to 12% in bandwidth
(the number of modules varies from 8 to 16) over a model with four blockage
buffers and a single queue [BUR75]. The second algorithm, the Group Request
Structure, separates a memory cycle into two sub-cyeles, the first sub-cycle is
used for servicing the instruction queue, and the second sub-cycle is used for

servicing the data queue. They found that there are 8% to 16% improvements

143

over the same Instruction-Data Cycle Structure aigorithm. Terman [TER76] has
made a trace driven simulation on the Instruction-Data Cycle Structure algo-
rithm and found that the theoretical predictions of Burnett and Cofiman fit well
with the simulation results for the fetching of instructions, but their predictions
do not fit well with the simulation results for data requests which are more ran-

dom than instruction requests and are difficult to be modelled accurately.

Many other researchers have studied models of parallel memories. These
include Flores [FLOB4], Skinner and Asher [SKI69], Ravi [RAV72], Bhandarkar
[BHA75], Sastry and Kain [SAS75], Baskett and Smith [BAS78], Briggs and David-
son [BRI77], Chang, Kuck and Lawrie [CHA77], Smith [SMI77] and Hoogendoorn
[HOO77]. These studies are directed toward multi-processor systems and we will

not deseribe them here.

In the remainder of this section, the deficiencies found in the previous

models are summarized.

(1) All the previcus models assume that the memories operate synchro-
nously. As Burnett and Coffman pointed out, simultaneous memory
operations offer more opportunity to take advantage of program
behavior in a particular memory system [BUR75). However, with syn-
chronous operations, there is the problem of returning the resulits of the
accesses from the memory. Since the results from each module are
available simultaneously, extra data paths or queues are needed to
return these data to the processor, Further, a pipelined processor usu-
ally makes requests in sequence rather than in batches. Therefore it is
desirable to study a model in which the memory modules operate out of
phase. By out of phase, we mean either a) the initiations of the modules
are asynchronous or b) the initiations of the modules are timed by a

clock and during a clock interval, at most one module can be initiated.

(2

(3)

144

Because the operations of asynchronous modules are much more

difficult to control, only case {b) is considered in this design.

Very few studies have been made tc minimize the waiting time of a
request to the memory. Flores [FLO64] has made a gquantitative study
relating the waiting time factor to the memory cycle time, the
input/output time and the worst case execution time for different
numbers of memory banks. However, his studies were directed toward
the effect of interference from the input/ocutput units and there was no
queueing of requests. In other models, a saturated request gueue is
assumed, and the effects of waiting time are not considered. When the
gqueue size is finite, it is possible to develop algorithms which optimize
for the amount of waiting time in the queue, e.g. minimize the average
waiting time of reguests in the gqueue. In this section, the amount of
queued requests is assumed to be finite so that the effects of waiting

time can be studied.

None of the previous work considers the effects of dependencies on the
memory performance. Reguest supply to the memory ceases when a
dependent instruction is executed until the dependency has been
resolved. The effects of dependencies are difficult to determine because
they vary strongly with the configuration of the pipe and the strategies
employed in the pipe to resclve them. Request rate to the memory may
also decrease for other reasons. For example, in the IBM 360/91, there
is a small amount of instruction buffers in the CPU which serve as
another level of the memory hierarchy. When a small loop occurs such
that all the instructions of the loop fit in the instruction buffers, instrue-
tion accesses to the memory stop until execution of the locop is finished.
Other machines may have different appreoaches. However, the evaluation

of memory performance for a specific machine is too restrictive. We

145

take an approach which first evaluates the performance for the general
case of an interleaved memory with a saturated, non-dependent request
stream. The degradation in performance due to dependencies in the

reguests is then estimated subsequently.

4.4.4 The Organizations of Primary Memory for o Pipelined Processor

We present in this section two different implementation alternatives of

interleaved mermories {Organization 1 and Organization 1I). The two organiza-

tions differ in the configurations of the request buffers. In Organization 1, a sin-

gle set of request buffers is assumed to he shared by all the modules and in

Organization I, individual request buffers exist for each module. The general

assumptions made are as follows:

(1

(=)

(3)

The request rate from the processor is assumed to be high enough so
that any empty buffer in the memeory system is filled up by an incoming
request immediately. Buffers are assurned to exist at the processor end
so that any additional requests generated by the processor can be
gqueued there. The requests that can be served by the modules are those
that exist in the buffers only. This assumption is made because we want
to get an upper bound on the performanece of the memory, In a practical
gystem, the memory is usually the bottleneck and our assurnption is

therefore valid.

Each request is assurned to be an integer from 0 to m-1, which is the
module it requests, and is obtalned as the residue of dividing the address
by m.

The service time of each module (the read time or the write time) for a
reguest is assumed to be constant. This is a good model for serni-
conductor memories. We also assume that a memory module, once ini-

tiated to start a memory cycle, is not available until the end of the cycle.

146

{4) A memory cycle time is the time it takes for a memory module to ser-
vice a request. Kach memeory cycle is assumed to consist of m equally
spaced memory sub-cycles. It is further assumed that exactly one
module can be initiated to service a request at the beginning of a
mermory sub-cycle and it takes m sub-cycles {1 memory cycle) to service
the reguest for all the modules i.e., homogeneous service times. With
this assumption, the problem of mulliple data paths is resolved because
at most one module finishes in each sub-cycle and the system is never
confronted with returning results from more than one module simultane-

ously. The modules are therefore clocked by the memory sub-cycles.

In Organization I (Fig. 4.9), there are m memory modules; a single set of
b+1 associative buffers, Ay, By, Bz By and an intelligent scheduler which
schedules a memory module to start a memory cycle. The modules operate out
of phase in a fashion called staggered cycles. One example of a staggered cycle
is shown in Fig. 4,10, The set of b+1 associative buffers are used to store incom-
ing requests. A request gqueued on a specific module can be retrieved in one
assoclative search operation. Whenever a request is taken out from a buffer, all
the requests behind it are pushed one lpcation up so that By is empty. The
buffer By has an additional function, namely, to receive requests from the bus.
Pue to our assumption of high request rate, A is filled immediately whenever it
is empty. The queueing discipline for the requests in the buffers directed
towards the same module is essentially First-In-First-Out (FIF0). Other queueing
disciplines are not studied because only uni-processor systems are considered

in this design.

The center of the control in the memory system is the intelligent scheduler.
The scheduler, using a scheduling algorithm, decides at the beginning of each
menory sub-cycle whether to initiate a memory moedule and if so which module

to initiate. The selection of which module to initiate is determined by the

147

WA E G R GESL NN e N St AR e i AL FEV e D U s el i e el S — . — d——

' i
I !
; Module O I
| !
|
| I
1]
: Module 1 %
{ i
requests N ut;uts
{ ;! .
DN : |
! b+l associative intelligent) |
: buffers scheduler . :
I i
i i
! INTERLEAVED Module m- ;
, PRIMARY PJ
A i MEMORY i 3
e e e e e e e e e ——— e J

Je___ma Pipelined processor " “

set of requests serviced
not sent to the requests
memory because

buffers are full

Figure 4,9 0rg. I - A Model of Interleaved Memories
with a Single Reguest Queue

time during which
moduyle 3 is busy

148

K% »
3_‘ . ; _1
2 - —— '
&
2 14 [} t
=
=4
<
S0 . .
g T
T 1 H 1 1 L) T L \ 11]-T
0 1 2 3 4 5 b 7 8 9 10 11

7 e
memory sub-cycle

¥

memory cycle

Figure 4.10 A Gantt Chart to illustrate the QOperations of the
Interleaved Memories in Staggered Cycles {(m=4)

148

information about the regquests in the associative buffers and by the knowledge

about the status of the modules (free or busy). Three scheduling algorithms are

investigated in this design.

(1)

(2)

(3)

Algorithmn 4.1 Round- Robin (RR)

All the modules are initiated in a round-robin fashion regardless of
whether a request is gqueued on the module. The scheduler does not
make use of any information about the status of the system. The imple-
mentation of this algorithm is very simple and the scheduler only has to
konw the current module initiated. In Fig. 4.10, the Gantt Chart for the
operation of a 4-way interleaved memory with RR scheduling algorithm is
shown. This is the scheduling algorithm that is implemented in most

interleaved memory systems today.

Algorithm 4.2 First- Free- First (FFF)

In this algorithm, only the information about the status of the modules
{free or busy) is utilized by the scheduler. There is a FIFQ list of free
modules. At the beginning of a memory sub-cycle, the scheduler puts a
busy module to. the end of the free list if this module finishes its cycle. It
will then initiate the module at the head of the free list if there are any
requests gueued on it, otherwise the module at the head is appended to
the tail of the free list and ne other modules are checked in this cycle.
The scheduler may also check all the subsegquent modules in the free list,
but the time for this is proportional to the number of module.s and is not

feasible when this number is large.

Algerithm 4.3 Mazitnum- Work- Free- Module- First (MWFMF)
In this algerithm, both the information about the status of the modules
and the requests in the buffers are utilized by the scheduler. There is a

dynarnic list of free modules. Conceptually, at the beginning of a

150

mermory sub-cycle, the buffers are checked associatively to see if any
requests are queued on the free modules. If there is none, no module is
initiated. If at least one exists, a'n associative search is made on the
buflers and the module with the maximum number of requests queued
on it is initiated. In case of ties, only the first one is initiated (Fig.
4.11a). The implementation of this algorithm can be done by using an
additional associative memory of size m in the secheduler {Fig, 4.11b).
Each word in this associalive memory can function as a counter and is
used to indicate the number of requests gqueued on the corresponding
module. The corresponding word is incremented/decremented when a
request enters/leaves the request buffers. The free module with the
maximum number of reguests can be obtained by performing a max-
imurn search on those words in this associative memory corresponding
to the free modules, e.g. [RAM78a] (see the associative memory design in
Chapter 5). The maximurn search algorithm shown in [RAM78a] is paral-
le]l by word and serial by bit and the time to perform a maximum search
is proportional to the number of bits in the memory. The speed of this

algorithm is therefore proportional to loggbl.

In addition to the overhead related to the execution of the scheduling algo-
rithm, there is also the overhead of selecting the request from the associative
buffers and sending it to the memory module. This overhead consists of match-
ing the selected module number against all the requests in the buffers and
selecting the first reguest if rmultiple responses occur in the match. Using a
bit-serial word-parallel equality matching algorithm, e.g. [RAM78a], and a binary
tree type multiple match resolution circuit, e.g. [FOS88], this overhead is pro-
portional to flloggml. In general, the overheads associated with the three
scheduling algorithms are very small, and the selection of a module and the

corresponding request to be initiated in the next sub-cycle can be overlapped

151

attach module that
finishes its cycle
to free list

any request
queted on free
modules?

inttiate first
module with maximum
number of queued
requests

remove module
from free 1ist

stop

Figure 4.11a Algorithm 4.3 - MWFMF Scheduling Algorithm

152

pointer to busy-free amount of
modules status queued requests
0 0 '
1 1
2 1
ASSOCTATIVE
MEMORY
m-1 1
f b f h!
10g2m 1 1ogzb

Figure 4.11b Impiementation of the MWFMF Scheduling
Algorithm using Associative Memory

153

with the current sub-cycle.

At the end of each memory sub-cycle, at most one request is serviced. The
result is sent back to the processor. The necessary queue for storing these

resulis is excluded from the memory model.

The requests of the system come into the memery in a specific pattern.

Two types of access patterns are considered in this design:

(1) Random accesses with no address dependency - All the addresses have no
correlation and are independent of sach other. This can be used to
model the request strearn from computer systems with instruction level
multiprogramming or multi-processor systems where the number of pro-

cessors is larger than the number of modules.

{(2) Accesses from the execution trace of @ monoprogrammed pipelined com.-
puter - The addresses in the execulion traces are correlated and they
represent a similar addressing behavior when the actual program is exe-
cuted on a pipelined processor. We have used execution traces from a
pipelined processor, reprelsenting large scientific applications, the CDC

7600, in this study.

Organization II is similar to Organization 1 except that separate sets of
buffers exist for each module {Fig. 4.12). Requests from the processor are con-
tinuously moved into the buffers of each module via By until a request in By is
directed toward a module whose buffers are already full. The request in By is
blocked, and as a resull, further regquests are blocked from entering the
mernory. When the module responsible for this blocking has finished servicing
its current request, one request from its buffers is serviced which results in an
empty buffer. The blocking request in By is moved into this emply buffer.
Because of the independent gueues, one or more requests can then be accepted

to the memory system until the previcous blocking situation ocecurs with one of

154

-
I
: I
{ ".[] Module 0 {
I i
I
; B By !
f l
! i
| Module 1 :
i
f By By i
reques utduts
l . |
! I
{ * i
{ ihtelligent . |
: scheduler i
r :
: n-[] Module m- :
| INTERLEAVED 3 : |
J PRIMARY 1 b LY
L MEMORY request buffers memory module _,
< Pipelined Processor [<
set of requests ' serviced
not sent to the requests

memory because
buffers are full

Figure 4.12 Org. II - A Model of Interleaved Memories
with Multiple Request Queues

155

the modules. When b=0, there is oniy one bufier, Fy, in the syster: and this is
exactly the same as Organization 1 with b=0. Therefore Organization 1l degen-
erates into Organization I when b=0. The buffers used in this organization is
simpler than that of Organization 1. Associative search capabilities are not
necessary for these buffers. The implementation of the scheduler is similar to
that of Organization I. The advantage with this system is that the reguest
buffers are simple shift registers and therefore are cheaper. However, in order
for this organization to operate at full capacity, more than one request may
have to be moved across the bus into the memeory in a memory sub-cycle. As we
recall, we assume that a pipelined processor generates in the order of one
request every memory sub-cycle, therefore, the blocking situation may not
always occur and the buffers are under-utilized. Further, it is necessary to build
a faster bus so that multiple requests can be moved across the bus in a memory
sub-cycle. We can assume that sufficient requests are queued in the processor
so that the need of moving more than one request into the memeory system dur-
ing a sub-cycle can be satisfied. An alternative is to allow a maximum of one
request to be accepted in every sub-cycle. This resulls in a degraded perfor-
mance for Organization Il because the system is not operating with the max-

imum request rate.

Since the two organizations discussed are operating in steady state and the
systems discussed are balanced, the average arrival rate and the average wait-

ing time are related by Little's Formula.

Let
ep = utilization of the buffers B4, ..., B,
{=1 for Organization I)
er = utilization of buffer By

{=1 for both organizations)

B = number of buffersin B4, ..., By

156

{=b for Organization I; =m*b for Organization II}
Um,p, = expected utilizalion of the modules
W, p = expected waiting cyecles of the requests
M = expected number in the sysiem
A = expected arrival rate

W = expected waiting time of the requests

Then
M= (GB *B+1) + U p P17 (42)
Az Um ., b (43}
W = m*wmp (4.4)

and they satisfy Little’s Formula,
M = MW

Eq (4.3) is true because in a balanced system, the expected arrival rate equals
the expected service rate. The physical importance cof Little’s Formula lies in
the fact that the average utilization and the average number of waiting cycles
are related. Once cne of them is obtained, the other can be calculated easily.
Further, it also shows that Organizations I and II are equivalent as far as the
average behavior is concerned. The only difference lies in the buffer utilization
which is less than 1 in Organization Il whereas the buffers are fully utilized in
Organization I. In the next section, we present our evaluations for Crganization I
only because the two organizations are equivalent and the results are directly
applicable. It is shown that the MWFMF algorithm minimizes the average com-
pletion time of the requests. This result only demonstrates that the MWFMF
algerithm is superior, but the exact throughput values of the system cannot be
obtained analytically. The techniques that are used to evaluate the performance
of these two organizations are embedded Markov analysis with random requests,
and simulations with random requests and execution traces and they ar.e shown

in Sections 4.4.8 and 4.4.7.

157

4.4.5 Optimality of the MWFMF Scheduling Algorithm

In proving the optimality, it is assumed that the reguests in the request
queue are independent, randomly generated and of a finite size. The size of the
associative buflers may be greater than, equal to, or less than the number of
requests in the request queue. In a pipelined processor, memory requests can
be generated continuously until a dependency occurs. At this point, the request
stream is discontinued until the dependency has been resclved. Because of the
high request rate assumption, the reqﬁest.s generated between two dependen-
cies can be assumed to exist in the request queue after the first dependency has
been resolved. However, in a practical implementation, the pipelined processor
is only able to look ahead a fixed amount of instructions and this is modelled by
a fixed and finite amount of associative buffers in the system (which may be
| greater than, less than or equal to the size of the request queue). The intelligent
scheduler is allowed to examine the associative buffers in making the scheduling
decision. The objective of the scheduling algorithm is to cornplete the service of
the requests in the request queue as fast as possible so that the throughput of
the memory is maximized. The symbols used in the fellowing theorems are:

b = number of associative buffers - 1;

m = number of memory modules;

N = total number of requests that have to be serviced between two depen-

dencies;

Ty, 1y)s (o 2a), oos (L, im)i = state of the memory system,

where

(15, ;) = state of module j;

{; = number of requests queued on medule } in the buffers;

13

lj=0+1 and ;20 j=1,2,....m
1

J

o if module j is free
g

iy = O<n <m if rnodule j is busy

158

In the case that module j is busy, n is the number of cycles
that module j has serviced its current request. The number of
cycles remaining before the completion of service for the
current request is {m-n) mod m.

k = variable used in the induction proof indicating the number of
remaining requests to be serviced {not including those in the

associative buffers);

Cmeaxi{l1, 1), (L2 i2)s ..., (Im. im)}z = maximum completion time for the
state;
EC ax{ly, 11), {Las 12)s vy (I, 2)3k = expected maximum completion time

for the state.

Before the main theorem can be stated, the following three lemmas must
first be proved. Lemma 4.1 establishes the need for executing the MWFMF
scheduling algorithm at the beginning of each sub-cycle. Lemina 4.2 establishes
a basis for the induction proof of the main theorem and it also shows the
optimality of the MWFMF algorithm when the buffer size is very large so that all
the requests in the request queue reside in the buffers. Lemma 4.3 augments
Lemma 4.2 by further showing that algorithm MWFMF minimizes the surm of com-

pletion times of all the requests.

LEMMA 4.1
(1) In a period of mn sub-cycles, every module can be initiated at most once.
(2} At the beginning of each sub-cycle, at least one free module is available

for scheduling.

FProof

(1) Obvious, because each module takes a time of m sub-cycles to service a

request.

159

{2) Consider a time interval of m sub-cycles. Since at most one module can
ke scheduled in each sub-cycle, the teotal number of modules scheduled
in m sub-cycles is less than or equal to m. At the beginning of its current
sub-cycle, if a module is scheduled m sub-cycles ago, then it will finish its
service at the current sub-cycle and is available for scheduling. If a
module is not scheduled m sub-cycles ago, then the total number of
modules scheduled in the last m sub-cycles is tess than m. Therefore, at
least one module is available for scheduling at the beginning of a sub-

cycle.

Q.E.D.

LEMMA 4.2

If all the requests in the request queue reside in the associative buffers (that is,
the buffers are large enough to accompany all these reguests), then algorithm
MWFMF minimizes the maximum cormpletion time for independent, random

requests in Organization 1.

Proof
The maximum completion time is governed by the longest queue in the system.
Assume without loss of generality:
Ly >lg> >l'm.
Case 1: 14 =0,

MWFMP schedules module 1 first.

160

initiate module 1

! 1 i i A8 L 4 L i
time

|<-=->]
All modules will be initiated at most once in here due to lemma 4.1
{(if number queued on it is non-zero) and all requests gqueued every
module except 1 can be initiated before the last request queued on
module 1 is initiated.

Cmax = I1*m sub-cycles (initiate module 1 first)
If any other module, say module }, is initiated, then module 1 can only be
initiated in the next sub-cycle after modute j has been initiated.
min €.y = L1*m+1 sub-cycles {initiate module j # 1 first)
Case 2:1, >0
Let moduile j be the module such that
iy =0andd; > 0,13 >0, ..., 34y > 0.
That is, module j is the free module with the largest amount of queued
requests. This will be the module scheduled by the algorithm MWFMF. In
fact, the module scheduled at this point i1s unimportant because the max-
imum completion time is governed by module 1.
Crex = L1*m + (m —1i,) sub-cycles
Therefore:
min Coay = L1*m + {m—1i,) nod m sub-cycles
Optimum algerithm: MWFMF
On the other hand, if {;=iz>...>l,, and 4, iz = 0, then the C,.;'s are identical
whether module 1 or 2 is scheduled first. A similar proof holds for the case
Li2igz ++ 2hy.

Q.E.D.

lel

LEMMA 4.3
If all the requests in the request queue resides in the associative buffers, then
algorithm MWFMF minimizes },C; for independent, random requests in Organiza-

tion I where {; is the completion time for the j'th request.

Proof
Assume without loss of generality:
Ly >Lag> 0 >,
Consider two modules a, by, such that i, =0, 4, =0 and I, >1,. Let Cy3{Cy) be the
sum of completion times of scheduling a before b {b before a) for modules a and

b only. If b is scheduled before a, then
m
Coa = Co+Cy = —2—[(lu+1)l,, + (I + 1)] + 1,
Comparing this with the case of scheduling a first, it is found that:
mn
Ca.b = Ca+cb = ?[(lrx*"l)za. + (z’b"'l)lb] + 1
Since Ia>8y => Cgp»<Cp .. this implies that scheduling the module with a larger
amount of queued requests can reduce EC‘J-. By adjacent pairwise interchange,
it is therefore better to schedule the module with the maximum amount of

gueued requests if it is free. If the module is not available, scheduling the free

module with the maximum amount of queued requests is also optimum.

Q.E.D.

From the proofs of Lemmas 4.2 and 4.3, it is seen by using the MWFMF algo-

rithm that,

{1) The throughput of the memory is at a maximum because the maximum

time to complete a set of jobs is minimized (Lemrna 4.2).

(2) The average waiting time 1s minimized. This is because C;, the comple-

tion time for the j'th job eguals the waiting time for the }'th job,

162

W;=C;—0, (all the jobs are available at t=0). As a result, average waiting

time = }}W, /M is also minimized (Lemma 4.3).

THEOREM 1.6

If all the requests in the request queue do not reside in the associative buffers,

(that is, the buffers are not large enough to accompany all the requests in the

request queue), then algorithm MWFMF minimizes the expected maximum com-

pletion time for independent, random requests in Organization L

Proof

In order to prove this theorem, the following twe parts must be proven and the

theorem follows from the result of part (a).

(a)

(b)

Algorithm MWFMF minimizes the expected maximum complstion time for

independent, random requests.

Let states

Sr=fo, (L i) Gl dn) o

Sg=fo, (I i) @& iv) -
where "..." indicates that the remaining states are identical for S, and
S's.

Since the states of other modules are identical, and we assume that:
12> 1
> id
I+l = 12+13
and
M PR, > >0 61‘ ™m @i, > i, > 0 with equal probability.
If 12>, then £C mar(S 1)k S ECmax(S2)e:

If la?:zbl- then ECumax(S1)i = £Cmax(S2)k-

These two parts can be proved by induction. The truth is first established for

k=0, i.e. when all the requests reside in the buffers. These parts are then

163

assumed to be true for any positive integer k and the proof is complete by

proving the case of k+1.

M
(a)
(b)

(1)

(2)

k=0
MWIFMF is optimal. This is established by Lemma 4.2.
If there exists module z such that I,>12, and since {22{}>If and t2>1},

then the maximum ecompletion time for both &, and S; depends on I,

and are identical. Therefore,

ECmae(S1)e = Ecmu(se)o

If there does not exist module z such that {,>L2, then the maximum com-
pletion time of S'p depends on module a. Let there be two modules, x in
Sy and y in Sz such that I£>5'>1d, i) >17>1# and 4, =i,=0. The following

three cases can be identified.

Ly, 15=0, ig<m

s ol B BRI -] [

time

s.: FIE & - B I 2]

Starting Sequence Ending Sequence

Cmax(s 1)0 = Ecmax(sl)(} < Cmax(SE)ﬂ = Ecmax(SE)Q

LE>1), ia=0, i, <m

164

ssEBE - B E R

time

-5'2[-2_-[El E’] E‘]

Starting Sequence Ending Sequence

Cmu(sl)o = Ecmax(sl)ﬁ < Cmax(sz)ﬂ = Ecmax(SB)O

(3) LE=1!, 4, =0, i.<m

s o] Rl - k]
Se f] Bl B~ [[B

Starting Seguence Ending Sequence

12=1), i,=0, iy<m

sv b B Bl Bl OKE [o]

time

s: Bl BB - B} [[

Starting Sequence Ending Sequence

Since I£=ly, this implies that [)=12, therefore the states S; and S are
symmetric in the states of the rmodules a and » and the probability that
i =0, iy < is equally likely as the probability that 4, =0, 1, <m.
EC Lax(S1)a = Crmax{S 1] ip =0, g <)o*Pr (i, =0, ip<m)
+ Craxl{S2| 1a=0, iy <m)" Pr (i, =0, iy <)

= EC max(S2)o

(1m

(a)

(b)

(1)
(a)

(1

(2)

165

Induction hypothesis:

Assume that the theorem is true for a positive integer k, that is,

MWFMF algorithm minimizes the expected maximum completion time for
independent, random requests when the number of remaining reguests

in the reguest queue is k.

If 1250}, then BC (S e 2 BC pnax(Sa)ii

If 12=1), then ECmax{S 1)k = FC max{S2)k.
When the number of remaining inputs is k+1,

Without loss of generality, let modules 1, 2, ...,] be the set of free
modules. Choose any two modules, say 1 and 2, so that [;>Iz and there
does not exist p€{1,2,...,j} such that [;>l,>1;. We want to compare the

difference between scheduling module 1 and module 2.

Schedule module 1 in this sub-cycle,

#(11,0), 2,0), ..., (tm vim) ks

=> (11— 1,1), (12.0), ..., (I (im +1) mod m M4y

A new input now enters the buffers, this input can be a request directed
to any module in the set with egual probability 1/m {due to the assump-
tion of independent, random requests).
New states after scheduling moedule 1:

1 enters: S = {{Iq, 1), {Iz 0}, ..., {lm. {im+1) mod m)}

2 enters: S% = {{I;—1, 1), {Iz+1, 0), ..., (I, {in+1) mod m)i

m enters: S™ = {{I;—1, 1), {Iz, 0), ..., (im+1, (in+1) mod m)

Schedule module 2 in this sub-cycle.
#11.0), (2.0}, ...\ {bn B)31
=> §{0,,0), {Io—1,1), ..., (I, (in+1) mod m)i 4

New states after scheduling module 2:

(b}
(1)

166

1 enters: S' = §{I,+1, 0), (Iz—1, 1), ..., (bn, (G +1) R0d ™M,

2enters: S° = {11, 0), (L2 1), ..., {lyn» (3 +1) od ™),

m enters: 5™ = (I, 0), {p=1, 1), ..., (I +1, (i +1) mod mi,
It is seen that FCpu(SN<ECpx(S?): ECma(SB<EC (ST and
EC max(S7)<ECmax(S?) for j#1,2. In proving ECmaex(S V<EC max{S?), we can
use the induction hypothesis II(b) and let i, =0, i, =1, ti=lg, 1=l I2=1,
l£=Iz. The other parts can similarly be proved. Since the expected Cmax
is a weighted sum of the expected ',,¢ of all the corresponding states, it
is therefore better to schedule module 1, the module with a longer
queue, first. By using the adjacent pairwise interchange argument, the
free module with the maximum number of queued requests should be
scheduled first.

In proving this theorem, the following parts are identified.

12> l; Both modules a and b are not scheduled in the current sub-cycle.
This ean be due to (1) i,>0 and 4, >0, i.e. both modules are busy; or (2)
there exists a free module z such that [, is greater than [2 if
ia =0 o7 Il if i =0. Since it is assumed in the induction hypothesis 1I{(a)
that free modules with a longer queue should be scheduled, therefore
module z will be scheduled in this case.

After module z is scheduled, a new input enters the buffers.

For state S, §... (T 4). (G), 0 Jewt
a enters:
S% = f.., (L1+1, (i, +1) mod m), (I, (iz+1) mod m), - - I
b enters:
St = .., @ (ia+1) mod m), (B'+1, (ip+1) mod m), -+

j» i #ab enters:

S{ = ... (Id, (ig+1) mod m), (I, (ix+1) mod m), L

(2)

167

For state Sy §..., (0& o), (82 %)+ * Lkt
a enters:
Sg = .., (I2+1, (ig+1) nod m), (I& (iy+1) med m), - L
b enters:
S% =14, (12 (ig+1) mod m), (If+1, (iy+1y med m), - i

js j Z#a,b enters:
St =4, (12 (Ga+1)Y mod m), (I8 (ip+1) mod m), -+ L

By the induction hypothesis,

ECmex(St)h < ECmex(S%)e

EC1max{S1)i < ECpmax(S8) if IZ>01+1

ECmax(St)e = ECmex(S8) i IE=li+1

ECmax(S{)k < ECmax(St) Vijia,b
Therefore

EC nax{S a1 € EC pnax(S2)e+1

12 > 1! and there exists a module x such that i, = 0 and

2>, >tl ifig=0or

Ll >t >1f ifi,=0
Let us look at the first case:

Si= 4o, (040), (i) s (82.0), < ¢ fead

Sz =t (12,0), (lban'ib)n NURE (5 0) R
According to the MWFMF algorithm, medule x should be scheduled in 5y
and module a should be scheduled in &5, It is necessary to compare the
expected O, after these have been scheduled. Suppose module x is not
scheduled in both states, from part IIKb){1), it is seen that
ECmex{S1| a scheduled)y < ECny.x{Sz! o scheduled);. However, due to
the induction hypothesis, II{a), seheduling x in state S; would be better
than scheduling a because L.>i .

EC max(S1| = scheduled)y < ECpax{S 1] a scheduled)i

168

Therefore:

EC max(S 11 2 scheduled)y < EC .x{Ss| a scheduled),
and |

EC maelS 1Jr 41 < EC el S2)k+1-
The other case, i.e. §!>l, > and 4, =0 can be similarly proved. For the
remainder of the proof of this theorem, it is assumed that L2zt i>1,, for
all x #a,b and 1, =0.

{3) 2>, 0<ip <m, dp=0

Due to the induction hypothesis, module L should be scheduled in
St and S,
For state 54, schedule module b in this sub-cycle,

foon (Laiia)s (LO), v Lpur

=> L., bdy (B +1) mod m), (LI-1,1), - Jesy

New input enters the bufler:

a enters: 8¢ = {..., (ig+1, (i, +1) mod m), {Ii-1,1}, - - &
b enters: S§ = {..., (I, (ip+1) mod m.), (I, 1), - -
j i Zabenters: S{ = §.., (id, (i +1) mod m), {1, 1), - L

For state S5, schedule module b in this sub-cycle:

fory (U830), (BE0). - Y
=> f.., (18 G,+1) mod m), GF-1.1),... 0k +1-

New input enters the buffer:

a enters: S§ = ..., (I2+1, (i, +1) mod m), {If-1. 1), - - 1
b enters: S§ =§..., (2 (i, +1) mod m), {7 1), -
i, jZabenters: S§ = L., (L2 (i,+1) mod m), (I2-1, 1), - -

By the induction hypothesis:
Ecmax('s?)k < Ecmax(S%)J:
ECmax(S3 e < BCmax(SE N

Ecmax(s‘}l e < Ecmax(s{)k \/j){a N

169

Therefore:

EC max(S)i+t < EC max(S2le+1

(4) IZ> 14, i, =0, 0<iy <m

Due to the induction hypothesis, module a sheuld be scheduled in
Sy and S
For state 54, schedule module a in this sub-cycle,

fons (22,00, (Whin) < deas

=> §.., (12~-1.1), .l +) mod m), © ¢ lpar

New input enters the buffer:

a enters: St = {..., (& 1), (!, (e +1) mad m), + I

b enters: S§ = ..., (I1-1, 1), ({l+1, (G, +1) od m.), - i

j, 1 Zab enters: S{ = L., {I1-1, 1), (I, (i3 +1) mod m), - - -
For state &5, schedule module a in this sub-cycle,

£ (L& 0Y, (RRy, Jk+r

=> f.., {(I2—1, 1), (IE (i +1) mod m).... 41

New input enters the buffer:

a enters: S = {..., (12 1), (I& (e +1)y mod m), - - I

b enters: S8 = {..., (I2-1, 1), (If+1, (iy+1) mod m), - &

i»i Zabenters: $% = §.., (12-1, 1), (& (Gp+1) mod m), - L
By the induction hypothesis:

EC ax{St) S ECraxfSE):

EC nax{S%) 5 BC..(S8);

FC 1rax(S{) £ ECppx(SE) Vi#a.b
Therefore:

Ecmax(s 1)k+1 = Ecmax(sz)k +i-

{5) 12 = I! Both modules are not scheduled in the current sub-eycle.
With the similar reasons as in HI{b)(1), there exists a module z which is

scheduled in the current sub-cycle. Because of the symmetry between

(8)

(7

170

the states of modules a and b, by the induection hypothesis TI{b),
EC max(S %)k = EC max(SE e
EC10ax{S9)k = ECmax(SE) and
ECmax(Sih = BCrmax(Sih i#a.b

Therefore:

EC max{S 1)k +1 = ECmax(S 2}k +1-

2 = 1! There exists a module x such that i,=0 and

lZ> 1y >3 ifi,=0or

W>i, > ifd=0
For the first case,

Sy=fen @G 0Y (O dg) o (2, O) - deaps

Sg= ., (02 0), (B8 4)ve (Los O Jpean-
With a similar argument as in III(b}{2), suppose module x is not
scheduled in both states and module a is scheduled. Due to the sym-
metry between the states of module a and b, and by ;c.he induction
hypothesis II{b},

ECmax(S1] a scheduled)y = ECmax(S2l o scheduled).
However, due to the induction hypothesis, II{a), scheduling x in state S,
would be hetter than scheduling a because 1>l

FCx(S 1} = scheduled)y < ECx(S1| o scheduled).

< BC:x{S32] @ scheduled),

Therefore:

ECmax(S 1+t < ECmax{S2lr+1-

The other case, i.e., 15>, >I? and i, =0 can be similarly proved,

If =L, 0=, <iy<m or 0=, <ip<m

The proof is very similar to III{b}{3) and NKb){4), except in this case,
i2=1! and tl=12. Therefore, the states S, and Sy are symmetric in the

states of the modules a and b. By the same argument as in the proof of

171

I{b)}{3), the probability that 7,=0, i,<m is equals the probability that
i, =0, iy <7n. This implies:

EC maxlS 1)e+1 = EC max(S2)i +1

From the above seven cases, it is seen that in all cases,

ECnex{S1)x+1 £ ECmax(Se)k+1-
Therefore, by induction, part {b) of the theorem is proved. Because part {(a) of
the theorem utilizes the result of part (b) of the theorem, part (a) of the

theorem is proved.

Q.E.D.

The above theorem has demonstrated that algorithm MWFMF is optimal in
the sense that it minimizes the average completion time for a fixed set of ran-
dom requests. Intuitively, algorithm MWFMF is better because it tries to keep all
the modules as busy as possible. Buppose that some of the modules are
requested more eoften than others. The requests tc these more frequently
requested modules become a bottleneck to the system whatever scheduling
algorithms are used. However, a better scheduling algorithm should make use
of the free cycles to schedule some requests for the less popular modules so
that these requests would not aceurmulate after the processing of the more
popular requests. This is the deficiency that occurs in other algorithms and is

overcome by the MWFMF algorithm.

In addition to proving that the MWFMF algorithim has the best average case
behavior, it may be necessary to show that the algorithm also possess the best
best-case behavior and the best worst-case behavior. However, in this case, the
best-case and the worst-case behavior are identical for all algorithms. The
best-case behavior cccurs when all the requests are made in a sequential order,
that is, 0, 1, ..., m-1, 0, 1, ..., m~1, etc. No contention would occur and the

throughput of the memory is maximized, that is, 1 request serviced every sub-

172

cycle. On the other hand, the worst case behavior occurs when all the requests
are directed to a single module, In this case, the bottleneck is at this medule
and the throughput of the memory is 1 request serviced every m sub-cycles.
Algorithm MWFMF is better than other algorithms because it has a better aver-
age case behavior even though its best- and worst- case behavior are identical to

the other algorithms.

Although the expected maximum completion time of the algorithm is
minimized, it is not possible to make a similar conclusion as in Lemma 4.2 that
the expected throughput of the memory is maximized because in this case,
there is no relation between the expected maximum completion time and the
expected throughput of the system. Furthermore, it is not useful to prove a

similar theorem for the EC,— case as in Lemma 4.3 because it is unclear that the

objective of minimizing ,E {(C;) will be of any meaningful value.

Although Theorem 1 establishes the fact that the MWFMF algorithm is
optimal, no throughput values are obtained analytically. In the next two sec-
tions, the throughput of the system is evaluated by using two techniqgues,

embedded Markov Chains and simulations.

4.4.8 Embedded Markov Chain Techwigue

By assuming a saturated request rate, with inter-arrival time a constant
multiple of the memory sub-cycle and a reguest queue with random requestis,
the two organizations can be analyzed by embedded Markov Chain technique
[FEL50]. With a RR scheduling algorithm, a state of the system for Organization
1 is defined as {8y, Sy, Sz ... Sp, Smi, 1587,81.8z355.5m=m where
S5r.51,825, are the states of the b+1 buffers and S,, is the memory
module that is being initiated in the current memory sub-cycle. The state of a

bufler is the module number that the request in it wants to access. The number

173

of states is therefore finite. A similar state can be defined for Organization II. It
is obvious that the conditional probability of any future event, given the past
event and the present state, is independent of the past event, that is, it satisfies

the Markovian property.

P X ns1=in+1| Xo=t0, X171, ooy Xpo1Tlnwt, Xn=in 3
=P {Xn 317 41| X =in
wheren =0, 1, 2,...
X, = state of the system at the n-th transition
It is noticed that the Markovian property possessed by the two organiza-
tions is independent of n. Such a Markov chain is stationary. Let:
P = PlXn1=in 41 | X‘n:in;
Further, the time between successive transitions is constant and equals to the
duration of the memory sub-cyele. This is called an embedded Markov Chain.

The analysis of embedded Markov Chains is similar to that of Markov chains.
For an irreducible, ergodic Markov chain [ROS78], there exists a unigue sta-
tionary probability distribution n = {n;, 7=1,2,...,n} such that:

n

w5 =), miPiy

i=1

and
ki3
Z w =1
i=1
Using the matrix notation, it becomes

m=nP | {4.1)

where:
7= § oy, TR, ., i)

P = {P; ;1, the transition matrix

n = the number of states in the system

174

The Markov Chain used to moedel the interleaved mermory system is irredu-
cible and positive recurrent because the chain is finite and all states comrmmuni-
cate with each other. However, this chain is not ergodic because the period of
the chain eguals m. In this case, some of the conditions of the ergodic Markov
Chains are weakened, but vector m still represents the unique fixed probability
vector of P [KEMB5]. Since the evaluation of the throughput only requires the
use of the vector n, the technique for evaluating 7 in ergodic Markov Chains can

still be applied here. This technique is illustrated in the following two examples.

Example 1
Consider Organization I with the following attributes:

m=2

b=1

scheduling algorithm - RR

access pattern - random
A state of the system is defined as {Sy, 51, Sn{ where Sy is the state of By, 51 is
the state of #; and 5, is the current module that the system is initiating. The
number of states can be reduced in half by considering only states in which
St £ Sy and treating states in which Sy < 8 the same as states in which

Sy £ 8y, The transition matrix is defined as

§1,1,1) §1,1,2] {1,220 $1,21] 2,21 (22,2 _

0 0.5 0.5 0 0 0 £1,1,13
1 0 0 0 0 0 £1,1,2
0.5 0 0 0.5 0 0 £1,2,2)
P= 0 0 0.5 0 0 0.5 | {1.2.1}
0 0 0 0 0 1 £2,2,13
0 0 0 0.5 0.5 0 {2,221
0 0 0 0.5 0.5 o {222}

On the first row, only the transitions from state {1,1,1} to states {1,1,2} and
{1,2,2} have non-zero probabilities. The state §1,1,1} means that currently

module 1 is initiated and the requests in both buffers By and B, are requesting

175

module 1. Therefore, the request in &, can be satisfied. The content of By is
moved into 5,, and a new address is accepted into the memory. Since the
access pattern is random, this new request can be directed to either module 1
or 2 which results in states {1,1,2] or {1,2,2}. Note that S,, has changed from 1
to 2 because during the next memory sub-cycle, module 2 will be initiated. The

other rows of the transition matrix can be interpreted similarly.

Solving the eguation 7 = nFP, we get:

w = {0.2, 0.1, 0.2, 0.2, 0.1, 0.2}

The utilization of the memory can be found by defining a new random vari-
able
1 Sp=8,, or §:=S,, or both
€157.51.5m) = | 0 otherwise
€57.5,5,] ©quals 1 whenever during state {Sr.51,Sm]. one request is
satisfied because there is a request in the buffers which requests a currently ini-
tiated module. For sur example, the transpose of e is:
e’ =f101101}
The utilization of the memory is n.e = 4/5 = 0.8. The bandwidth of the memory

system is 0.8 * 2 = 1.6 words/memory cycle.

Ezample 2
Ceonsider again Organization I with the following attributes:

m=2

b=1

Scheduling algorithm - MWFMF

| Access pattern - random

The state space in this case is larger than the state space of the corresponding
model with a RR scheduling algorithm because the next module to be initiated isz'

determined dynamically and therefore the states of all modules must be known

176

at all times. The objective of introducing a more complex algorithm like MWFMF
is to initiate any free module with queued requests without constrains on the
order of initiation. However, in this case, with m=2, improvement cannot be
accomplished. Let us assume that module 1 is initiated during the current
memory sub-cycle. In the next sub-cycle, module 1 cannot be initiated again
because it has not finished its cycle. The only possibility is to initiate module 2.
If all the requests in the buflfers are reguesting module 1, then no module is ini-
tiated in this sub-cycle and in the next sub-cycle, module 1 will be initiated
again. The resulting sequence of initiation is the same as a model with an RR
scheduling algorithm. Therefore the utilization of the model is the same for
both algorithms when m=2. This happens because the maximum number of free
modules is ene in this special case. For m 22, the utilization for an MWFMF algo-
rithm is higher because the maximum number of free modules is greater than

one and the order of initiation is not necessary the same as the RR algorithm.

Let us complete this example by setting up the state space of the model
We must know at the beginning of each memory sub-cycle which modules are in
service and what are the remaining service times that these modules need. We
must alsoc know the contents of the buffers. A state of the system is defined as
{Mg. My, By, Bpl. Mjis the module number of a module that is initiated 2 cycles
ago and has finished its service at this time, M1 is the module number of a
module that is initiated 1 cycle ago and still needs 1 more cyele to finish its ser-
vice. A value of O for M or M, indicates that no module was initiated. B1 and BT
are the states of the buffers and as in the last example, we consider only states
with B8y, We have the following ranges of values,
0 Mg M52 1=28,, Bp £2 The total number of states is 3*3*2*2 = 36. How-
ever, not all states are possible. For example, state {2,2,X,X} is not possible
because it Indicates that module 2 was initiated twice and simultaneously in the

last two cycles. Another example of impossible state is §2,0,1,X]}. This state

177

indicates that no module was initiated in the last cycle (Mlzo), and the current
contents of the buffers have a request for module 1. Since no new request was
accepted in the last cycle, this request for module 1 must have existed in the
previous cycle and therefore should have been initiated. By eliminating all these
impossible states, we get a state space of 12 states: §0,1,1,1}, §0,1,1,2}, {1,0,1,13,
£1,2,1,13, §1,2,1,2}, {1,2,2,21, {0,2,2,21, {0,2,1,21, §2,0,2,2}, §2,1,2,2], {2,1,1,2} and

§2,1,1,1}. Solving the equation n=nF, we get

g 1 1 1 1 3 1 1 1 1 1 3 1
=t A2 L L L L L5 1y

By defining e’ as
el =§{0,0 1,1,1,1,0,0,1,1, 1, 1}

The atilization of the modules is w.e = 0.8

The transition matrices P used in Eq. 4.1 are large sparse matrices., The
memory space required to store P is therefore substantially less. However, one
big disadvantage about this approach is that the number of states is large.
Although they can be reduced by eliminating duplicate or impossible states, the
memory size and the computer time required for solution is still beyond the
present computers’ capability. For example, with 16 degrees of interleaving and
b=2 (3 request buffers), the number of states for Organization 1 with an RR
scheduling algorithm is 13056. This was calculated by treating permutations of
the three buffers as equivalent states. With an RR scheduling algorithm, the
moduie that the system currently initiates is sufficient to determine the next
module to be initiated. With other scheduling algorithms, the number of states
is more because the next module to be initiated is determined dynamically, and
therefore the states of all the modules (whether they are busy or free) must be
known at all times. However, regardless of the scheduling algorithm, the
number of equivalent states can be reduced by a factor of m by noting that if a

constant is added {module m) to each state variable, then the new state

178

obtained must have the sarne stationary probability, and that the corresponding
transition probability must also be the same. For the RK example given above,
the 13056 states would be reduced to 816, Although the nurmmber of states is
reduced, a selution using embedded Markov chains is still not practical. Since
none of the states in the matrix are equivalent and therefore cannot be com-
bined together, approximation technigues can be employed te reduce the
number of states further. In [WAH78], an approximate embedded Markov chain
solution for Organization 1 with RR scheduling algorithm is presented. The
approximation is done by combining some states of the transition matrix into a
gingle state when their transition probabilities into another state are "approxi-
mately'" equal for all the states in the group, However, the difference between
the approximate and the exact solutions are sometimes large. Moreover, the
time it takes to generate the approximate matrix is still exponential because
the transition probabilities of a state must be generated first before it can be
determined whether the state can be combined with another state. The analyti-
cal solution using embedded Markov Chains is therefore not practical. In the

next section, the solution using simulations is presented,

4.4.7 Simulation Technique

4.4.7.1 Stmulation Results

Due to the difficulties mentioned in the last section, cur evaluations are
based on simulations. The simulations are run on a CDC 8400 computer. The
simulation program was written in Foriran and the total time to generate all the
results took over 12 hours on the CDC 8400.

Table 4.1 shows the results of simulation runs on Organization 1 for the

memory utilization and the average wailting cycles where a waifing cycle is

defined similar to Flores [FLO84] as the ratio of the waiting time and the

179

memory cycle time. Two types of request segquences are considered, one in
which the requests are generated randomly, and one in which the requests are
derived directly from the execution trace of a program. The traces used have a
size of 500,000 and were obtained by running a scientific Fortran program
derived from BMD applications on a CDC 76800 and and they personify program

characteristics of scientific applications. They have the following characteris-

ties.

Table 4.7a Simulation Results for Organization [with RR Scheduling Algo-
rithm (95% confidence interval shoun assuming normal distribution)

Random Reguest Model Trace Driven Model
E(Memory | E(Waiting | E(Memory | E(Waiting
m b | Utilization) Cycles) Utilization) Cycles)
2 0 | 6.688x0.0 1.75+£0.0 0.727+0.003 | 1.89+0.0
1} 0.801+£0.017 | 2.25+£0.04 | 0.882+0.003 | 2.13+0.01
2 | 0.858+0.001 | 2.75+0.0 0.928+0.003 | 2.62+0.,33
3 | 0.850£0.004 | 3.25+0.02 | 0.960+0.004 | 3.08+0.52
4 0| 0.401+£0.004 | 1.82£0.01 { 0.472x0.0268 | 1.53x0.02
1} 0.565+0.015 | 1.89+£0.02 | 0.836x0.043 | 1.79+0,07
2 | 0.687+0.009 | 2.12+0.02 | 0.732+0.050 ; 2.03+0.14
3 | 0.726x0.007 ; 2.38+0.02 | 0.825+0.059 | 2.21+£0.23
8 0§ 0.222+0.002 | 1.56+0.0 0.276+0.026 | 1.45+0.086
1 | 0.363+£0.008 | 1.69£0.01 | 0.432+0.041 1.58+0.07
2 | 0.461+0.005 | 1.B81+0.01 | 0.525+0.049] 1.72+0.10
3 | 0.534+0.006 | 1.94+0.01 { 0.610+0.080 | 1.82+0.13
12 0 | 0.154+0.003 | 1.54+0.0 0.186+0.026 | 1.45+0.05
1 | 0.286+0.C005 | 1.63+0.01 | 0.306+0.042 | 1.55+0.10
2 | 0.354x0.005 | 1.71+0.01 ; 0.408x0.058 | 1.81+£0.11
3 | 0.423+£0.008 | 1.79+0.01 | 0.484+0.070 | 1.89+0.10
16 ©O | 0.117+0.002 | 1.53+0.01 | 0.157+0.015 | 1.40+0.05
1 | 0.208+£0.003 | 1.60+£0.01 | 0.254+0.024 | 1.49+0.05
2 | 0.285x0.003 | 1.68+0.01 | 0.345+0.033 | 1.54+0.06
3 1.0.350+£0.004 [1.71+40,01 | 0.412+0.039 | 1.61+0.09

180

Table 4.1b Simulation Results for Organization [with FFF Scheduling Algo-
rithm (95% confidence interval shoun assuming normal distribution)

Random Request Model

Trace Driven Model

E{Memory | E{(Waiting | E{Memory | E(Waiting

m__ b | Utilization) | Cycles) Utilization) Cycles)
2 0| 0.501+£0.0 2.00£0.0 0.571+x0.002 | 1.88+0.0
1| 0.668+0.014 { 2.50£0.05 | 0.789+£0.003 § 2.27+0.11

2 | 0.750+£0.001 | 3.00+0.0 0.885+£0.003 | 2.73+0.34

3 | 0.802+0.003 | 3.50+£0.02 | 0.924+0.003 | 3.17+0.53

4 0| 0.289+0.003 | 1.88+0.01 j 0,318+0.018 | 1.79+0.04

1 | 0.407+£0.011 | 2.23+0.04 | 0.476+0.027 | 2.05£0.12

2 | 0,489+0.007 | 2.53+0.04 | 0.600+0.041 | 2.25x0.25

3 | 0.544+0.008 | 2.841+0.08 | 0.678+0.048 | 2.4810.42

8 0 0.173+0.002 1.72:1:0.01’! 0.184+0.017 | 1.88+0.08

1 | 0.264+0.004 | 1.95+0.02 { 0.304+0.029 | 1.82+0.12

2 1 0.330£0.,005 | 2.14£0.03 | 0.379%0.037 | 1.99+0,18

3 | 0.378x0.003 | 2.32+0.03 | 0.441+0.043 | 2.13x0.20

12 0] 0.128+£0.002 | 1.88+0.01 | 0.147+0.023 | 1.57+0.08

1 | 0.201+£0.003 | 1.83+0.01 | 0.235£0.033 | 1.71+0.11

2 | 0.258£0.002 | 1.897+0.02 | 0,305+0.042 | 1.82+0.13

3 | 0.303+£0.004 | 2.10+0.03 | 0.365£0.061 | 1.91x+0.17

16 0 | 0.100£0.001 | 1.83+0.01 | 0.106£0.010 | 1.59+0.05

1| 0.183x0.002 | 1.77+£0.01 | 0.187+0.017 | 1.67+D.08

2 | 0.211+0.003 | 1.89+0.01 | 0.256+0.024 | 1.73+0.10

3 [0.252+0.003 ; 1.99+0.02 | 0.314+0.030 | 1.80+0.13

181

Table 4.7¢c Simulation Results for Organization [with MWFMF Scheduling Algo-
rithm (95% confidence interval shoun assuming normal distribution)

Random Reguest Model Trace Driven Model
; E(Memory | E(Waiting i E{(Memory | E(Waiting
m __ b i Utilization) Cyeles) Utilization) Cycles)
2 0] 0.887x0.008 | 1.75+0.01 | 0.727+0.003 | 1.89+0.0
1} 0.800x0.0 2.25+0.0 0.882+0.003 | 2.13+0.11
2 | 0.859+0.003 | 2.75+0.03 | 0.928+0.003 | 2.82+0.33
3 | 0.888+0.001 | 3.25x0.02 | 0.960+0.003 | 3.08+0.04
4 0| 0.479+0.003 | 1.52+0.0 0.515+0.029 | 1.48+0.02
1| 0.812+£0.003 | 1.82+0.01 | 0.6873+0.043 | 1.74+0.08
2 | 0.691+0.004 ; 2.09+0.02 | 0.776+£0.0563 | 1.97+0.18
3 | 0.740+0.004 | 2.35+0.04 | 0.B31+0.058 | 2.20+0.28
8 0 | 0.3556+0.002 | 1.35+£0.01 | 0.385+0.038 | 1.33+0.08
1 | 0.468+0,002 | 1.54+0.01 | 0.533+0.052 | 1.47+0.08
2 | 0.544+0.004 | 1.82+0.01 ; 0.,812+0.058 | 1.6811+0.11
3 | 0.597+0.005 | 1.84+0.02 | 0.686+0.068 | 1.73+0.18
12 0} 0.285+0.002 | 1.28+x0.0 0.330+£0.062 | 1.23+0.05
1 | 0.389x0.003 | 1.42+0.01 | 0.4¥2+0.068 | 1.35x0.08
2 | 0.475+£0.003 | 1.53+0.01 | 0.533+0.079 | 1.45x+0.10
3 | 0.524+0.002 | 1.84+0.01 | 0.614+0.088 | 1.54+0.12
18 0 | 0.258+0.001 | 1.24+0.0 0.300+0.,028 | 1.21+0.05
1] 0.357+0.003 | 1.35+0.01 | 0.416+0.040 | 1.30x0.07
2 | 0.424+0.002 | 1.44+0.01 | 0.511+0.048 | 1.37+0.08
31 0476+0.002 | 1.53+001 | 0.570+0.055 | 1.4440.10
fraction of instruction word fetches 0.597
fraction of data word fetches 0.338
fraction of data word stores 0.087
average number of accesses per inst. executed 0.800
number of instructions per instruction word 2.787
fracticon of instructions that need data 0.242
fraction of instructions that are
unconditional jumps 0.044

182

successful conditicnal jumps 0.030
unsuccessful conditional jumps 0.015
number of instructions executed between

conditional jumps mean 22.3
st’d dev. 10.3

unconditional jumps mean 22.8
st’'d dev. 24.7

suceessful conditional jumps mean 33.9
st'd dev. 18.2

all dependent events mean 11.4

{cond. + uncond. jumps) st’d dev. 10.1

Inn Table 4.2, the simulation results for Organization II are shown. Since the
existence of multiple sets of buffers allows a reguest at B¢ to be blocked by a set
of full buffers in a module while buffers of other modules may be sempty, a
column has been included in Table 4.2 to show the buffer utilization (this
excludes the buffer Br). The queue utilization results shown in Table 4.2 are

normalized with respect te the buffer size b.

4.4.7.2 Application of Mulliple Linear Regression o Obtain a Closed Form For-

mula

Using the results of the simulations and the assumption that the utilization
is approximately 1 when b>>m {e.g. b=100, m=4), multiple linear regression is
applied to fit a curve to the results [DRAB6]. Based on the tail area of the partial
F-value for testing the null hypothesis that a regressicon cceflicient is zero, some
of the terms in the polynomial have been eliminated. In Table 4.3, the
coefficients for the regression analysis on the utilization and the waiting cycles
of the two organizations under MWFMF scheduling algorithm are shown. The

errors in the estimation can be shown to be less than 4% in most cases except

183

Tadle 4.2a Simulation Results for Organization [T with RR scheduling Algo-
rithm (95% confidence interval shown assuming normal distribution)

Rando

m Request Model

Trace Driven Model

r

E{Memory
Utilization)

BE(Waiting
Cyvecles)

E{Buffer
Utilization)

E(Memory
Utilization)

E(Waiting
Cycles)

E(Buffer
Utilization)

12

18

WO LW Q LN O (AR OE N -] LI~

0.887+0.0

0.801+0.004
0.857+0.002
0.880+0.003

0.401+0.004
0.828+0.004
0.731+0.005
0.792£0.004

0.222+0.002
0.487+0.0086
0.6268+0.006
0.705+£0.004

0.154+0.003
0.417+0.005
0.589+0.007
0.8681+0.005

0.117+0.002
0.379+0.005
0.534+0.008

1.754£0.0

2.50+£0.02
3.25+0.02
4.00+0.01

1.62+0.01
2.18+0.01
2.75+£0.03
3.331£0.02

1.56+0.0

1.97+0.01
2.41:0.02
2.86+0.04

1.54+0.0

1.88+0.01
2.26+0.02
2.66+0.02

1.53+0.01
1.82+0.01
2.18+0.02

0.6268+0.004

2.04+0.08

0.700+0.008
0.715+0.003
0.732+0.004

0.452+0.005
0.515+0.009
0.531+0.008

0.347+0.008
0.379+0.008
0.397+0.008

G.283+0.005
0.318x0.007
0.338+0.008

0.249+0.004
0.283+0.008
0.300+0.005

0.727+0.003
0.882+0.003
0.928+0.003
0.8680+0.003

0.472+0.028
0.737+0.052
0.847+0.058
0.903+0.084

0.276+0.026
0.586+0.055
0.793+0.078
0.862+0.085

0,186+0.026
0.589+0.083
0.733+0.105
0.753+0.109

0.157+£0.015
0.502+:0.048
0.692+0.088
0.745+0.072

1.89+£0.0

2,43+0.18
3.18+0.44
3.92+0.81

1.53+£0.02
2.08+0.17
2.70+0.38
3.34+0.50

1.45x0.08
1.87+0.11
2.40+0.25
2.85+0.45

1.45+0.05
1.73+0.10
2.22+0.268
2.83+0.47

1.40+0.05
1.73x0.09
2.056+0.17
2.23+0.32

0.780+£0.049
0.7681+0.102
0.768+0.142

0.554+0.085
0.587+0.138
0.621+0.158

0.384+0.083
0.494+0.113
0.518+0.148

0.354+0.070
0.404+0.125
0.381+0.151

0.303zx0.049
0.333+0.075
0.284+0.094

184

Table 4.2b Simulation Resulis for UOrganization If with FFF Scheduling Algo-
rithm (35% confidence interval shown assuming normal distribution)

Randorn Reguest Model

Trace Driven Model

E{Memory

Utilization)

2]

12

16

o

WO WO W= QO LN Q W Qo

BE(Waiting
Cycles)

E(Buffer
Utilization)

E{(Memory
Utilizatibn)

E(Waiting
Cycles)

E{Buffer
Utilization)

0.501+0.0

0.670+0.004
0.751+0.003
0.789+0.002

0.288+0.003
0.458x0.005
0.556+0.004
0.628+0.003

0.173:£0.002
0.329+0.005
0.436+0.002
0.498+0.004

0.126+0.002
0.278x0.004
0.383+0.005
0.457+0.004

0.100+£0.001
0.252+0.003
0.349+0.003
0.424+0.004

2.00=0.0
2.74+0.0
3.50+0.02
4,.27£0.01

1.86+0.01
2.54+0.01
3.19+£0.03
3.80+0.04

1.72+0.01
2.32+0.03
2.88+0.02
3.4410.07

1.66+6.01
2,20+0.03
2.71x0.05
3.22+£0.05

1.63+0.01
2.11£0.02
2.61+0.03
3.09+0.05

0.689+0.004
0.888x0.010
0.699+0.004

0.454+0.007
0.483+0.009
0.503x0.007

0.311+0.010
0.348+0.004
0.363+0.011

0.250+0.007
0.285+0.010
0.310+0.009

0.217+0.005
0.250+0.005
0.141+0,008

0.571x0.002
0.789+0.003
0.865+0.003
0.924+0.003

0.316+0.018
0.557+0.042
0.702+0.048
0.801+0.057

0.184+0.017
0.408+0.040
0.604+0.080
0.671+0.087

0.147+0.023
0.396+0.055
0.510x0.073
0.529+0.085

0.108+0.010
0.345+0.032
0.478+0.048
0.527+0.050

1.88+£0.0

2.56+0.18
3.30+0.48
4.00+0.62

1.79+£0.04
2.38+0.22
2.85+0.48
3.54+0.72

1.868+0.086
2.20+0.18
2.73+0.38
3.38x+0.65

1.57x0.08
2.03+0.18
2.64+0.43
3.19+£0.55

1.58+0.05
1.88+0.14
2.33+0.30
2,6240.48

0,732+0.045
0.743+0.087
0.758+0.138

0.518+0.095
0.558+0.149
0.596+0.184

0.280+0.089
0.461+0.121
0.482+0.1682

0.325+0.080
0.378x+0.137
0.358+0,752

0.267+£0.050
0.286+0.082
0.262+0.092

185

Table 4.2¢ Simulation Resulis for Organdization [T uith MWFMF Scheduling Al-
gorithm (95% confidence interval shown assuming normal distribution)

Random Reguest Model

Trace Driven Model

E{Memory
Utilization)

E(Waiting
Cycles)

BE(Buffer
Utilization)

E(Memory
Utilization)

E{Waiting
Cvcles)

E(Buffer
Utilization)

m
2

12

18

LN+ C WNR,D WUN~C WO WhoRolo

0.667+0.008
0.799+0.003
0.856+0.005
0.890+0.020

0.419+0.003
0.648+0.001
0.743+0.003
0.795+0.002

0.355+0.002
0.534+0.005
0.651+0.003
0.717+0.003

0.2956+0.002
0.472x0.005
0.802+0.004
0.683+0.008

0.259+0.001
0.439+0.008
0.564+0.007
0.847+0.003

1.75+0.01
2.50+0.01
3.26+0.01
4.00x0.02

1.52+0.0

2.13+0.01
2.72+0.01
3.31£0.02

1.35+0.01
1.850.01
2.33x0.01
2.81+0.02

1.28x0.0

1.72x0.01
2.16x0.01
2.58+0.03

1.24£0.0

1.84+0.01
2.05x0.02
2.44+0.02

0.700£0.005
0.714+0.007
0.724+0.008

0.482+0.002
0.515+0.005
0.528+0.003

-

0.328+0.007
0.371+0.003
0.381+0.004

0.258+0.005
0.368+0.004
0.332+0.008

0.217+0.007
0.284+0.007
0.290+0.004

0.727+0.003
0.882x0.003
0.628+0.003
0.980+0.003

0.515+0.029
0.738+0.052
0.838+0.059
0.902+0.032

0.385+0.038
0.624+0.062
0.798+0.079
0.849+0.083

0.385+0.052
0.824+0.08%9
0.735+0.108
0.756+0.108

0.300+0.028
0.565+0.054
0.692+0.086
0.745+0.072

1.69+0.0

2.43+0.18
3.18+0.44
3.82+0.61

1.48+0.02
2.07+£0.18
2.70+0.38
3.35x£0.53

1.33+0.06
1.B4+0.13
2.40+0.28
2.85+0.44

1.23+0.05
1.68+£0.14
2.1820.29
2.61+0.48

1.21+0.05
1.62+0.10
1.87+0.21
2.17+0.34

0.760+0.048
0.761+0.102
0.768+0.142

0.538+0.090
0.568B8+0.135
0.625+0.157

0.398+0.077
0.498+0.118
0.510+0.144

0.343+0.095
0.395+0.135
0.377+0.154

0.289+0.061
0.306+0.083
0.271+0.086

186

Table 4.3 - Coefficients of 3rd Order Polynoemial Regression of
Organization I and IT under MWFMF Scheduling Algorithm
{RRM - Random Request Model; TDM - Trace Driven Model)
Note: All other coefficients are set to zero.

Utilization
b 1.3 b 12

Model —m? m 1/m pl? V2 piss

const.

m m
REM-I 0.00050 -0.02011 0.58124 1.80178 -0.32495 -1.37185 0.27855 -0.21970 0.41273
TDM-1 0.00085 -0.02312 0.82805 2.29106 -0.45177 -1.68628 0,18115 -0.18268 0.45447
RRM-II -0.00009 -0.00283 0.79465 3.04B62 -0.64641 -2.17849 -0.22013 0.00856 0.28880
TDM-1I1 -0.00012 -0.00301 0.80883 2.723R27 -0.61968 -1.80155 -0.44504 0.11118 0.33023

Waiting Cycles

2 m2h m b mb const.

Model m? ™m
RRM-I -0.00109 0.03312 0.00314 -0.3177¢ 0.61021 -0.08138 2.30046
TDM-1 -0.00100 0.03038 0.00308 -0.29282 0.588%0 -0.07881 2.19725
RRM-II -0.00082 0.02570 0.00219 -0.26252 0.84230 -0.06200 2.18883
TOM-11 -0.00075 0.02432 0.00016 -0,25383 0.77708 0.03024 2.12700

for a few cases with. b=0, where the error gets to around 10%. From the poclyno-
mial equation we have obtained, we can extrapolate our results beyond b=3. The
errors in extrapolating the values of utiﬁzation is small because the asymptotic
value of utilization when b is large is known. However, the errors may be large
when extrapolating the values of waiting cycle because its asymptotic values are
not known. With Organization I, eg=1, and therefere the values of waiting cycles
can be derived from the values of utilization by applying Littie's Formula. With
Organization II, ep <1, and the values of v, , and wy, ; must be known in order to
estimate ep. Since asymptotic values of w,,; and ez do not exist, the errors

may be large in this case.

In Figures 4.13 to 4,18, the performance of Organizations I and II are shown.

The actual simulation results are used for b =3 while extrapolations are made for

187

b>3. In Fig. 4.13, a plot of the improvement in memory utilization with buffer
size for Organization 1 with m = 8 is shown. Tt is seen that the improvement in
memery utilization approaches a constant rate as the buffer size is increased.
Further, the MWFMF algorithm gives the best performance. In Fig. 4.14, a plot of
the expected waiting cycles for different buffer sizes of Organization I is shown
for m = B. It is seen that the increase of waiting eycles is much slower than the
increase of buffer sizes and the increase is almost linear. The trace driven simu-
lation results show a higher improvements in memory utilization and a smaller
number of waiting cycles than the random request model. This is because there
is a higher correlation between consecutive requests and the requests are likely
to be made in a conseculive order. As a result, there is less contention in the
system. The curves showing the estimated results due to dependencies are dis-
cussed in the following sections. The above observations are also true for other
values of m. Further, the MWFMF algorithm has the minimum amount of waiting
time among the three algorithms studied. In Figures 4.15 and 4.18, the
decrease in memory utilization and waiting cyecles for inecreasing degrees of
interleaving of Organization I with a MWFMF algorithm are plotted. The rate of
decrease in memory utilization is more pronounced and the utilization is higher
when the degree of interleaving is small. Also, the effects on waiting cycles due
to buffer size is very small when the ratio of buffer size to degrees of interleav-
ing is small. Other schaduling algorithms also possess the same properties. The
effects on the memory utilization and the waiting cycles for varicus buffer sizes
of Mode H are similar to those of Organization 1. In Fig. 4.17, the effects on
buffer utilization are shown for various buffer sizes of Organization II. It is seen
that the buffers are less utilized as the size is increased. This also accounts for
the diminishing increase in memory utilization as the buffer size is increased.
The difference in bgﬁ'er utilization among the three scheduling algorithms is

very small. However, extrapolations for values of b beyond 3 are not accurate

MENORY UTILIZIATION

188

1.00p
random request model
sob T trace driven model]
) X without dependency effects MWFMF X
£ with dependency effects . Lt
.80F '*_.—-‘x RR —-x
=" _...--)é-"‘"xMNFMF
70} e - RR
. — -
: sl = F
PR = FFV
.60} /;9‘ e e
/X s =X WFME
sor [Y Setot e AL, -
o — = g ~ o238
.4ap” o= f o
J —"
/’ -~ -
30E/ /X ’e/
// l
L /
2dgp s
D
10
07 L L 1 L L L L Il Y J
0 1 2 3 4 5 6 7 8 ? 10
BUFFER SIZE - B

Figure 4.13 The Improvement of Average Memory Utilization with
Buffer Size for Org. I (Degrees of Interleaving = 8)

WAITING CYCLES

189

4.0
3.85p
random request model
----- trace driven model ~X
3.0 -
/’/
- 4
= BE x
2.s}p 3 seal &~ XE”
2 e = e
/X’, » "#.-X -
- . = f’—_
z.0f X X
_ -
> x
~ /’ - g~ “X
- —
-
. "",.‘”,,Jf’
//
1.0% A A i i L Il X L 4
o 1 2 3 4 s 6 7 8 10

BUFFER SI12E - B

Figure 4.14 The Increase of Average Waiting Cycles with Buffer
Size for Org. I (Degrees of Interleaving = 8)

MEMORY UTILIXZATION

190

1.00p
.90}
.80}
10
.80
sof
.40}
L3I0
random request model ——
.20fF —---- trace driven model
X without dependency
ok ¢{ with dependency
o 1 '} L ' L 4 1 J
0 2 4 6 [10 12 14 16

DEGREES OF INTERLEAVING - M

Figure 4.15 The Decrease of Average Memory Utilization
with respect to Degrees of Interieaving for
Org. I with MWFMF Scheduling Algorithm

e

i
i
é e

191

6.5 b=10
b=10
3.0"
random request model
s.5F N emaaa trace driven model
S.0F
b=6
4.5pF b=6
L]
w40t
W
p
(%]
3;5-
= b=3
Ea.of D3
< b=2
= b=2
2.5
b=1
b=1
2.0p
b=0
b=0
1.5p
: oo 2 8 8 10 12 14 16

DEGREES OF INTERLEAVING - M

Figure 4.16 The Decrease of Waiting Cycles with
respect to Degrees of Interleaving for
Org. I with MWFMF Scheduling Algorithm

BUFFER UTILIZIATION

192

g FETTTHT X

random request model
----- trace driven model

-
b

L L L Il i L [

1 2 3 4 s 6 7 a 9 1¢

BUFFER ST2€ - B

Figure 4.17 The Average Buffer Utilization for Org. II
(Degrees of Interleaving = 8)

193

for Organization Il for reasons noted before. In Fig 4.18, a plot of buffer utiliza-
tion versus different degrees of interleaving is shown. The buffer utilization
drops as the number of modules is increased. However, it is seen in both Fig-
ures 4.17 and 4.18 that the buffer utilization is not sensitive to buffer size
changes. The decrease in bufler utilization is due to the fact that there is a

higher probability that By is blocked when the number of modules is increased.

4.4.8 Effects of separating the instruction and the data area

The previous results have been obtained from simulations using a merged
instruction and data area. Since an instruction access results in seme data
accesses, it is desirable to place the data accessed in modules not conflicting
with the next instruction accessed. This motivates us to investigate the separa-
tion of instruction and data area into different modules in the main memory.
Sastry et. al. [SAS75] and Nutt [NUT?7] have made some pioneering studies on
the separation of instruction and data areas, but they have assumed a non-
pipelined multi-processor system. We study the effecis with respect to a pipe-
lined processor here. In this section, an organization with séparate instruction
and data modules is compared against an organization with merged instruction
and data modules using the traces available. Consecutive instruction words are
put in consecutive instruction memories and consecutive data locations are put

in consecutive data memories.

The characteristics of the traces reveal that B80% of the accesses are
instructions and the rest are data accesses, therefore the modules should be
divided according to this ratio approximately. Since it is desirable to have the
number of instruction modules and the number of data modules an integral
power of 2 for ease of address decoding, the modules are divided into a 4-2 parti-
tion so that four of the modules are instruction modules and the two are data

modules. It is not possible to designate "exactly 60% of the modules as

BUFFER UTJLIZATION

194

1.00

}

- BOF

« 708

.80F

.S50p

«.40pF

30

«20p

random request model

L1000 mmmmm trace driven model

L L i 1L L J
8] 10 12 14 ie
DEGREES OF INTERLEAVING - M

[~
N
-}

Figure 4.18 The Average Buffer Utilization versus the
Degrees of Interleaving for Org. II with
MWFMF Scheduling Algorithm {m=8)

195

instruetion modules and to satisfy the requirement that the number be an

integral power of 2. Since there are 8 modules in the 4-2 partition, it is neces-

sary to compare the performance of the 4-2 partition against a hypotheticai 8

way interleaved system with merged instruction and data modules. The results

' are shown in Tables 4.4 and 4.5. It is seen that the differences between the two

alternaetives are minimal.

In fact in some cases, the merged model seems to

Table 4.4 Comparison between Merged and Separated Instruction- Data Areas
Jor Organization I - Trace Driven Simulation.

RR FFF MWEMFE

m |b|Memory|Waiting | Memory | Waiting | Mermory | Waiting

util, cycles | util, |cyeles| util cycles
Merged |6|0| 0.338 1.45 0.243 1.69 0.459 1.36
Inst.-Data 1| 0.501 1.85 0.403 1.83 0.624 1.53
Areas 2| 0.857 1.78 0.479 2.04 0.895 1.72
{m=8) 3| 0.728 1,92 0.543 2,23 0.752 1.88
Separate | 6 (0| 0.338 1.50 0.270 1.62 0.486 1.34
Inst.-Data 1| 0.517 1.64 0.394 1.85 0.619 1.54
Areas 2| 0.818 1.81 0.484 2.03 0.682 1.72
(4-2 ways) 3| 0.898 1.98 0.540 2.24 0.730 1.91

Table4.5 Comparison between Merged and Separaled Instruction- Data Areas
Sor Organization IT - Trace Driven Simulations

RR FFF MWEMF

m|bjMem.| Wait. | Buf. |Mem. | Wait. | Buf. {Mem. | Wait. | Buf.

Util. |Cvele|Util. | Util. {Cyele|Util.| Util. |CyclelUtil.

Merged {6|0{0.34 | 1.49| - | 024|169 - | 0461} 1.36| -
Inst.-Data 1 0.69 | 1.95 [0.49] 0.50 | 2.23 /0.44{ 0.89 | 1.94 |0.48
Areas 2! 0.80 | 2.48 |{0.50| 0.81 | 2.83 |0.47| 0.79 | 2.40 |0.50
{m=56) 3/ 0.81] 2.88 |0.45| 0.83 | 3.27 10.42| 0.81 { 2.87 | 0.45
Sep. |B8|0|/0.34 15850 - (027|162 - |0.49)134| -
Inst.-Data] [1| 0.85] 1.98 !0.47| 0.49 | 2.18 [0.40! 0.87 | 1.90 {0.43
Areas | (2] 0.75| 2.42 |0.45| 0.57 | 2.74 |0.41: 0.76 | 2.41 ;0.45
{4-2 Ways)' 131 0.77 | 2.96 (0.45! 0.59 | 3.29 |0.40} 0.77 | 2.95 |0.45

196

perform a little better. This is due to the unequal utilization and waiting cycles
of the modules in the separated case. From the simulation results on the utili-
zation of the individual modules {not shown), the instruction modules are found
to be under utilized while the data modules are found to be over utiiized. One
way to improve the performance of the system is to design the system with a
good instruction-data access ratio so that the utilization of the instruction and
the data modules are approximately equal and the number of instruction and
data modules are integral powers of 2. However, this ratio is highly program
dependent and is impossible to fix at the design stage. We conclude that the
improvement due to separation is minimal {or this architecture, the CDC 7800,

and the specific class of programs.

4.4.9 Degradation in Performance Due {o Dependencies

In the previous sections, we have simulated the organizations under the
assumption that there is a high request rate from the pipe seo that any empty
buffers can be replenished until they are full or a blockage oceurs. However,
this assumption is not totally valid in a pipelined uni-processor. As mentioned
earlier, there are three sources of interferences which result in emptying the
pipe and reloading a new instruction stream. In the process of emplying the
pipe, new memery requests are not generated and the memory becomes idle
after all the pending requests are serviced. The utilization of the memory is
therefore lower than our simulated resuits. One solution is to simulate a pipe
together with the memory. However, different computers handle dependencies
differently, and the simulation of a particular machine is too limited in scope.

We therefore choose to estimate the resulting utilization with a general model.

4.4.9.1 The Model Used to Estimaie the Performance Due {o Dependencies

197

Without loss of generality, all dependencies can be represented as a suc-
cessful (the jump is taken) or an unsucecessful conditional jump. In a conditional
jump instruction, the condilion code is set earlier by an instruction which may
still be in the pipe. Until that instruction finishes and sets the condition code,
the jump instruction cannot proceed. 1t is assumed that the pipe prefetches but
does neot decode the target instruction. If it is an unsuccessful jump, the pipe
can proceed after the condition code has been set. If it is & successful jump, the
pipe has to wait until both the condition code is set and the target instruction is
fetched from the memory. An unconditional jump can be modelled as a success-
ful conditional jurnp in which the condition code is available immediately. A
register interlock is the same as an unsuccessful conditional jump instruction
and an interrupt is the same as a successful conditional jump in which the entire

pipe has to be emptied. i

The model used in the estimation is shown in Fig. 4.19. A linear pipe is con-
sidered. The instruction prefetch unit has to fetch instructions ahead of the
instruction decode unit so that the decode unit never has to wait for instruction
fetches. lLet

I, = number of stages of the pipe;

T = time needed to pass through one a stage of the pipe;

f = the number of instruction words prefetched..
The memory is assumed to be a single server with a constant service tims of
rate u,, ». and a finite buffer space of length M-u,, , *m (Eq. 4.2, 4.3). The service
discipline in the buflers is FIFQ and the waiting time for a request is W (Eq. 4.4).
Since we are interested in getting an expected value of the performance, the
model is a sufficient approximation of the actual medel. R is alse assumed that
the occurences of successive dependent requests are separated far enough and
have no eflect on each other. By "far encugh”, it is meant that after a depen-

dency is resolved, sufficient time elapses so that all the buffers are filled up

T= time needed
to pass through
1 stage of pipe

198

- L N
instruction instruction operand execution
prefetch decode access s en unit
segment sagment segment

'

CPU PIPE ¥

MAIN MEMORY

return

buffers

D i avee S A L R S e W M ML WY R e S S s S S o iy S s vy w— a— "

(approximate model)

memory modules

request buffers

Figure 4.19

N ‘ Un.b
*,
M‘um,b m
¥ = delay time in passiﬁg

through the memory

Model of CPU-Memory used for Estimation of the
Effects of Dependency

199

before the cccurence of another dependent request. The maximum time needed
is Upy p*M, (Fig. 4.22). This assumption is necessary because the effect due to
each dependent request can be found separately and the overall effect due to all
the dependent requests is the sum of the individual effects. From the statistics
of the traces which are shown in Figures 4.20 and Fig, 4.21, it is found that suc-
cessive dependent requests are separated by an average of 12 instructions. Suc-
cessive dependent requests may therefore have effects on each other and our

analysis slightly under-estimates the actual performance.

4.4.9.2 Computation of Degradation in Performance

The effect of dependencies is measured in terms of an idle period. An idle
period of the memory is defined to be a time interval during which requests to
the memory stop. The idle period is measured in terrns of the number of
memory sub-cycles. At the beginning of an idle period, thé number of requests
drops gradually to zero (Fig. 4.22). The resulting utilization of the module is
lower as is evident from a similar model with a smaller buffer size. When the
pipe starts requesting again, the number of requests in the buflers gradually
builds up to the maximum amount. The idle period is defined this way because
it represents an average length of the time during whiech the buffers are not fully
utilized. Let

d = distance in terms of the number of pipe segments between the instrue-

tion setting the condition code and the conditional jurmnp instruction
at the decode segment;

"r'= average number of requests generated per instruction executed;

i = number of instructions per instruction word;

zfr = fraction of instructions executed that are successful conditional

jumps;

;r:EJ = fraction of instructions executed that are unsuccessful conditional

200

8 2499
v
m. - N
SR N | 195
¢ \
s = VS6Y £
- . g,
e g a3 o
o 3 -1 TES
= U
N\
L ou
o E
‘ @ L O

//////////
/////////////////////////////////A

e | 1 L T
oooooooooooooooo
OOOOOOOOOOOOO
0000000000000
1111111

el

@
v v
U 3
-
4+
v @
- Q7
o
oS
+
(%]
@ -
=
P
[o4]
£«

togram showi
of Dependent Events in

His

Figure 4.20

201

cumulative
probability

1.0

0.94

0.8
0.7 4
OlG-
0.5+
0.44
0.34
0.2 1

0.1+

0 L i T LI r L 1) ¥ 1 1 1 { 1 i ¥ i v T T 1
0 1 2 3 4 5 6 7 8 9101112 13 14 15 16 17 18 18 >20

number of instructions executed
between two conditional jumps

Figure 4.21 Graph showing Cumulative Probability of Number
of Instructions executed between two Conditional Jumps

202

number of
requests in
the memaory
Tinear approx. with
slope -llum’b
M = T
. -4 linear approx. with
| g stope Vu o
M, : i
< time
idle period
(2) Time during which buffers are not full 3_M*um b
; |

number of
requests in
the memory

linear approx. with
siope ~1/u
m,b

—— A —— —

linear approx. with
€ slope 1/um b

(b) Time during which buffers are not full < M*y

1
idle period time

m,b

Figure 4.22 The Variation of the Number of Requests in the Buffers

203

jumps,

In the trace driven simulation results in Secticn 4.4.8.1, the instructions
and its corresponding cperands are assumed to be accessed one after the other.
In the current model, the instructions are fetched much earlier than the
corresponding operands. We have ignored these effects on the memeory perfor-
mance because there is very little correlation between the instruction address
and its corresponding operand address (except in some cases, e.g. an architec-
ture which implements the immediate mode, but the frequency of executing

these instructicns is small).

Since it is desired to find the maximum performance of the memory, the
pipe must be designed in a way such that it is fast enough and long enough sc
that it is always able to fill up all the empty buffers in the memory within a
memory sub-cycle., This design follows from our high request rate assumption.
In this model, the pipe is essentially executing at the speed of the memory, that

is, at rate u,, /r. The assumptions made are:

(1) There is alarge amount of return buffers in the pipe for serviced requests.
This assumption is necessary so that serviced requests can always be
returned to the CPU without delaying the initiation of requests in the

memory.

(2) Fach segment in the pipe is very fast. This means that T is so small that if
sufficient instructions are available to the decode unit, the pipe can gen-
erate enough requests to fill up all the memory buffers in one memory

sub-eycle. This means:

204

- T
T = um,b"M

(3) Since it takes a time W (= w,, , #n) to fetch an instruction, the pipe would

(4.5)

U b

have executed i*f instructions in this time interval at a rate of if no

dependency occurs. Therefore

f = [wm,b e b P (4.6)

where [yl is the smallest integer larger than y. The value of f is éhosen to
be the smallest possible because when a conditional branch is encoun-
tered, one of the two paths is not traversed and therefore the instruction
fetches for that path are wasted. The value of f is kept small in order to

reduce the effects due to this waste.

{4) After an operand request is generated, the operand will be serviced after
an average time W. In the meantime, the corresponding instruction passes
through L-2 stages of the pipe in crder to get to the execution unit. The
time for this instruction to pass through the pipe must be longer than the
waiting time for its operand so that the pipe is not blocked by this instruc-

tion waiting for its operand. We have

T*(L:__E_)_ >
Um b N
We set

W b *M2

»)
Wi o "Wy p "7 T+ 2 (4.7}
T

L =]
The value of L set in Kq. 4.7 is the minimum pipe length required for a max-

imum memory performance. For a longer pipe, the memory performance is

lower because it takes a longer time for a dependent reguest to pass through

205

the pipe. For a shorter pipe, the pipe is not able to generate requests fast
enough because the last stage of the pipe is frequently blocked by unﬁnishgd
operand requests. The value of L chosen is therefore a compromise between
these two eflects. These additional constraints can assure that the maximum

performance of the memory is achieved.

When a conditicnal jump instruction is encountered and the condition code
iz set at a distance d stages away, the execution of the conditicnal jump is
stopped until the instruction setting the condition code passes through L-d zeg-
ments at a rate of u,, ; /7, if the conditional jump is unsuccessful. However, if it
is successful, then the pipe is blecked until both the condition code is set and
the target instruction has been fetched from the memory. If tg'/f is set to be
the time interval between the recognition of a suceessful /unsuccessful condi-

ticnal jump and the time when the pipe can start execution again, then

£5 = max{ (L -d)*—L
§ = maxf (L-d)r—

+ Wi b *M] {4.8a)

tf = (L—d)*ﬁ— {4.8b)
After the jump has been determined, it takes a small arnount of time T/r to gen-
erate the operand reguest. It is not assumed thai the decoding is done before-
hand as in some machines. Let £577 be the time interval from the recognition of
a successful/unsucecessful conditional jump to the time when the pipe starts

making requests. Then

t377 = 57 + % {4.9)

After a dependent instruction has been encountered, there are still f
instruction prefetch requests in the pipe. The idle period begins after these
requests have been made to the memory. Let £, be the time to make these

remaining requests.

206

1
Um.b
The length of the idle period (ip*77) is therefore the difference between ¢, and

ty =F * (4.10)
t5 .
ip®77 = max{ 0, £377-¢,] (4.11)
The above analysis is true for a particular value of d. Let D) be the random
variable denoting the distance, and I} has the following distribution

Pu d=12..,L (4.12)

PT(D:d) = otherwise

This distribution is shown for the traces in Figure 4.21. Then combining Equa-

tions 4.8-4.12, we have

ips = max 0, E (Pn'. *wm,b *m)

a2l __‘_".”33_-!’__'3;.&5_"_"_ {4,13a)

*
N Lﬂ JL—d)*r d) | R
d<l— mb"‘mb"’“

: L L-d) | T
ip/ = max 0, Zpa;l Ao ta} (4.13b)

d=1 Um b T

Consider a time interval I, the number of accesses made during Iis w,, ;*/

*y
and the number of instructions executed in this interval is i:uw. The average

amount of idle period due to successful and unsuccessful conditional jumps are

*f *J
zip*ipsS* Ym.b + af;*ip? *h;b——". The resultant utilization is
, Um b w/
et = * */

I+ :ré.;z‘pS———u'": + zdyip’ Wu’“f

Upn b
- Um b]] {4.14)
——(zdrip® + zdyipT)

207

As a result of the degradation in memory utilization, there is a degradation
in the bufler utilization. During an idle period, requests to the memory stop. At
the end of the idle pericd, requests to the memory begin again. In Fig. 4.22, the
decrease and the increase in the number of reguests in the buffers are shown.
Since M may not be an integer in our model (effective buffer length in Organiza-
tion II), a linear approximation is used in the original function. In terms of the
idle pericd, the time interval during which the buffers are not full is y =
ips”7 + (M —M,)*u,, » where M, is the effective number in the system. In fact,
the shaded blocks in Fig. 4.22 can be rearranged so that the effective buffer util-

ization can be calculated. M,, during an idle period in the two cases, is

i’ E-ES/J’
_ U b if ips Y <M*up, 5 (4.15)
Me=| ¢ if i 2 M, 4

Let M;”7 be the effective number of reguests in the system due to
successful /unsuccessful conditional jumps and let M' be the resulting effective

number in the system. For the time interval],

[f;;%zz{:;?f;} VR SR P <1
time product r T
That is
M 2md (MEzgs+MIzdrip?)
M = T : (4.18)
1+ (o8 rip® +2dyip!)

Using Little's Formula, the resulting number of waiting cycles ‘w;n,b in the

system can be calculated.

M+ U 3T =y g ¥ Wiy ¥
' M
W = 1+ ——— (4.17)
Upy 110

As a by-produect of our estimation, it is not difficult to estirnate the throughput

cof a memory bounded pipe. This will not be demonstrated here.

208

Using the statistics from the trace program, the results of the estimated
utilization are plotied together with the simulation results in Figures 4.13 and
4.15. The degradation is quite significant and drops to about 50% of the original
value in some cases, As seen in Fig. 4.13, the module utilization levels off much
more rapidly with increasing buffer size than the original results with no depen-
dencies. The curves plotted are not smooth because cof the integrality require-
ment in the pipe length and the number of prefetched instructions . It is
further seen that increasing buffer sizes do not improve the performance due to
the eflects of dependency. The difference in memory utilization for b=3 and
b=10 is very small as seen in Fig. 4.15. The esiimations for waiting cycles are
not plotted in Figures 4.14 and 4.16 because they coincide almost exactly with
the simulation results. In Fig. 4.23, the buffer utilization for Organization 1 with
an MWFMF algorithm is plotted. It is seen that the buffer utilization is almost
constant for large values of m. It is also interesting to note that the buffer wutili-
zation is lower for larger values of b. The explanation for this is because for a
large value of b, the waiting time in the memory is longer and the memory utili-
zation is higher. This implies that a longer pipe must be used (£q. 4.7). A longer
pipe means that it takes longer to resolve a dependent request and this causes

degradation in the buffer utilization.

The above estimations only give an average value for the performance. In
fact, if the memory can be utilized in some other way {e.g. for peripheral pro-
cessing; when a dependency occurs, the degradation may not be so significant.
The above analysis also reveals the fact that when the cccurrences of dependent
requests are frequent, it is not beneficial to use a pipelined computer in a batch
inode. High degree of program interleaving using multiprogramming would help

in reducing the degradation due to dependencies.

4.4.10 Some final Remarks about the Design of Interleaved Merories

FRACTIONAL PERFORMANCE 1IN BUFFER UTILIZATION

209

. 80P

+» 70

.60

-S50F

.40

L30F

.20

-10pF

1 'l]

o L - - 1
4

-
6 a 10 12 14
DEGREES OF INTERLEAVING - M

Figure 4.23 Buffer Utilization under Dependency for Org. I
with an MWFMF Scheduling Algorithm (Trace Driven Simulations)

16

210

We have presented in this section two organizations of an interleaved
mermory systermn which utilizes a finite buffer space for the storage of requests.
We have designed a scheduling algbrithm which allows a finite set of requests to
be processed in the minimum expected time. However, the performance of our
system 1s obviously less than the performance of systems with an infinite
saturated request queue which is an unrealistic assumption. In Fig. 4.15, we
have shown the performance of Hellerman's model [HELB7] together with our
simulation results. Although Hellerman's model is a simple model and allows no
gueueing of requests, it is useful as a lower bound for the performance of other
systems., It is seen that with a random request gqueue, Hellerman's medel is
better than our Organization I with b = 0, but is worse for b > 0. Note that the
performance curves all have the same shape. Since Organization 11 degenerates
into Organization I for b = 0, it is worse than Hellerman's mode! for b = 0, but
better for b > 0. The comparison with other models in the current literature is

not meaningful because they differ significantly.

We can improve our model slightly by considering the following. The
rationale behind the eonstraint that only one module may be initiated in any
sub-cycle is because the return bus can return at most one piece of datum in
any sub-cycle. But since reads generate return data while writes do not, we can
initiate two or more modules in a sub-cyele provided that exactly one of the
requests is & read. The improvement in utilization due to this is only about 2%.
The improvement is not significant because the fraction of writes in our trace is
less than 7% of all the accesses and its applicability is also limited by memory

interference.

The guestions that still remain to be resolved are how can one select
between Organization I and Organization II and how does one choose the parame-
ters of the system in order to satisfy all the requirements. In the hardware

requirements, Organization I needs associative search capabilities in the bufiers

211

while Organization II does not. However, the availability of fast associative
memory, {see chapter 5 of this thesis), can help in this regard. The perfor-
mance of Organization Il predicted may be worse because it may require the
transfer of more than one request intc the memory system during a memory
sub-cycle and it sometimes is not possible in a pipelined system. Organization II
gives a slightly worse performance than Organization | when a maximum of one
request is allowed to be generated in each sub-gycle and the effective bufler
sizes in both organizations are identical. Tradeoff in cost and performance must
be made in the seleection of the organization. In order to answer the second
guestion we have raised, we need to design a cost model of the system. The cost
of individual component is highly technology dependent and will not be dis-
cussed here. However, the designer can find a configuration with the minimum
cost based on the bandwidth and the response time requirements. Assuming
that the bus width is determined and fixed, he can use the average utilization (a
function of the degrees of interleaving) as an alternate measure of bandwidth.
The response time can also be normalized with respect to the speed of the
memory to give the waiting cycele. In the above calculations, the effects of
dependency are not considered, otherwise, Equations 4.14 and 4.17 can be used
to find the values of utilization and waiting cycle with dependency. Using Little’s
Formula, the average number of requests in the memory, or the average
number in the request buffers can be obtained. The designer can then substi-
tute the values for the average utilization and the buffer size into the forrmula
obtained by regression {Table 4.3) to get a polynomial equation as a function of
the degrees of interleaving and the memory speed. By evaluating the speed for
different possible degrees of interleaving, the cost of the memory can be
estimated. The final configuration selected will be the one with the minimum

cost.

212

The MWI'MF scheduling algorithm we have studied in this section is optimal
in the sense that it minimizes the expected finish time for a finite sequence of
random, independent reguests. Although there exists restrictions and the per-
formance of specially structured computers, e.g. CRAY I, ILLIAC IV, etc are not
found, our scheduling algorithm is applicable to machines which support

vector-criented computing, e.g. TIASC, and array type processors like ILLIAC IV.

The crganizations we have presented in this section can be extended to
other levels of the memory hierarchy in which the modules can be disks and the
requests can be disk requests instead of memory addresses. The service time
distribution of a disk is not constant as in the case of a memory module. How-
ever, some approximation can be made on the distribution {e.g. by an exponen-
tial distribution)} and analysis techniques in queueing theory can be applied to
the model [BAS75]. In the next section, we return to the original task schedul-
ing problem on the general model. We show a heuristic to schedule tasks and

the heuristic is evaluated by simulations.

4.5 A HEUURISTIC FOR THE SCHEDULING OF TASKS ON THE GENERAL MODEL

We have presented in detail in the last section the design of an interleaved
memory which is a restriction of the general model we have desecribed in Section
4.2. Although the task scheduling problem on the general model is NP-complete,
we see that an optimal average behavior algorithmn can be designed when the

model is sufficiently restricted.

We would like to return to the original task scheduling problem on the gen-
eral model. Since the preoblem is NP-complete, a heuristic should be designed if
it is not feasible to enumerate over all the possibilities In order to find the
optimal sequence. We present in this section a heuristic for the task scheduling

problem on the general model. This heuristic is extended from Jeohnsen's

213

optimal two stage flow shop algorithm [JOH54], and the performance of the

heuristic is seen to perform reasonably well in a limited number of simulations.
The heuristic is designed for tasks with the following characteristics:

(1) Each request has the following precedence graph:

O -O

O<P1-,(Ma)<°° 0<P1(M5_j)<m
i€f1, ..., N}
jedl, ... mi
(2) There are no precedence constraints among requests.
(3 No preemption is allowed.

(4) buff (M) = = and r; = 0 (ic {1, ..., N}).
This says that the release times of jobs are 0 and the buffer size of M, is

very large, that is, all the requests are available initially for scheduling.

{5} O<bduffMpr)= - = buff{Mym<
That is, all the modules in the second stage have finite, non-zero amount

of buffers,
(8) Permutation schedule is desired.

The heuristic for scheduling this class of jobs is:

Algorithm 4.4: Heuristic to Schedule Tasks on the Ceneral Model
1. Order jobs that require the service of M, ; (=1,...,m) in increasing ratios
of:
P-i(Mi.J)"P'Pi(Ma)
2. Merge the job sequences for different M, ;'s into one stream using the

MWFMF scheduling algorithm (Algorithm 4.3).

214

3. In the schedule obtained, for any continuous sequence of jobs that require
the same module on the second stage, reorder using Johnson's Algorithm
such that x should be scheduled before y if

min {P{Mg), Py (M ;)] £ min §P,(My ;) Py(My)}

In step 1 of the algerithm, p is a constant to be selected. The rationale
behind why the jobs have to be ordered in this fashion is because it is better to
schedule jobs with smaller processing requirements on M, first. By doing this,
the processing on the second stage can be started earlier than if a job with a
large processing requirement is started on M, first. Even if two sequences finish
at the save time, there is more leverage for adjustment in a sequence which
starts the processing on the second stage earlier. This step only orders jobs for
each module on the second stage. Step 2 of the algorithm merges these
sequences together. Since the MWFMF algorithm {Algorithm 4.3) is found to per-
form very well, it is also applied here. Lastly, the sequence obtained can still be
improved if any two consecutive jobs in the sequence which require the service
of the same module on the second stage are rearranged using Johnson's algo-
rithm [JOH54]. The reason is because Johnson's algorithm minimizes the finish
time of a sequence on a two stage flow shop and we are treating M, and one of
the M, §'s as a two stage flow shop in this consideration. Some simulations were
done to determine the performance of this heuristic. This is shown in Figure
4.24. The results are plotted for 1000 samples of 7 randomly generated jobs. It
is assumed that m =2, p =2 and four of these jobs require the service of m,; ; and
three require the service of M, 5. Although the amount of simulations is limited,
it is'seen that the performance of the heuristic is very good. Approximately 877%
of the simulations have no deviation from the optimal performance and only
about 1% of the simulation deviate by 28% from the optimal performance. The
exact worst case and average case performance are difficult to be derived

analytically.

% of total
gccurences
70 -

60 4

50 —

40 _

30 |

20 _

10+

T

215

N
AN\

'77

7
[=a)
1
[

% deviation from optima1 solution

Figure 4.24 Simulation Results for Algorithm 4.4 using 1000
Samples of 7 Randomly Generated Jobs (m=2, p=2)

o arara) v s e e v s
=] L=} (8] - o [ve] < o < o co
1 4 L) — —i —t od od od o od
1 1 [} 1 1 1 i i 1 [s
[=)] i ™) wy P (=] — ™ ud =

216

4.6 CONCLUSION

In this chapter, we have studied the task scheduling problem on a DCS. This
problem is related to the scheduling of tasks after the query has been decom-
posed and the files have been placed con the DCS, and is more related to the
hardware architecture of the system. Because it is difficult to collect global
information on the DCS, most of the scheduling decisions have to be made
locally. We have therefore restricted the general task scheduling problem to the
problem of scheduling tasks at each node independently. The model for such a

system is the SIMD model proposed by Flynn [FLY86].
The contributions that we have made in this chapter are:

(1) We have proved the NP-completeness of the task scheduling problem on
the SIMD model. These include the cases when the jobs have positive
release dates, precedence constraints or no waiting space in the second
stage. Therefore it is unlikely that an optimal sequence can be obtained

without exhaustive enumeration.

) We have put additional constraints on the model so that the problem
becomes polynomially solvable. We restrict the processing times of jobs
so that they are constant and the ratio of processing times of the second
stage to the first stage is m (where m is the number of modules on the
second stage). We further assume that each job requires the service of
one of the modules on the second stage. The resulting model is a moedel
of an interleaved memory systemn for a pipelined processor. We have
evaluated several alternative scheduling algorithms and have proven that
one of these algorithms minimizes the expected completion time for a
finite set of random requests. This algorithm is therefore an optimal
average behavior algorithm. We have also evaluated the degradation in

performance due Lo dependencies in the access stream.

217

(3) We have designed a heuristic for task scheduling on the general model.
This heuristic is extended from Johnson's two stage flow shop algorithm
[JOH54]. Although the algorithm is evaluated with a limited number of

simulations, the performance is seen to be very good.

In the next chapter, we study some hardware support aspects for data
management on a DCS. One particular hardware necessary is the associative
memory which we have used in the design of interleaved memories (Section 4.4).
This associative memory must be capable of performing equality, and maximum
searches. There are other hardware designs which are needed to support data
base operations such as simple retrievals and updates, threshold, proximity and
minimurm searches. We make use of the current LS] technologies to design some

supporting hardware for data management.

218

5. HARDWARE SUPPORT FOR DATA MANAGEMENT ON DISTRIBUTED COM-

PUTER SYSTEMS

S.1INTRODUCTION

In the past three chapters, we have discussed some logical solutions to data

management on a DCS. Some of these solutions do not require specialized

hardware supporti, e.g. query decomposition, file placement and migration,

while some others require dedicated hardware, e.g. the associative memory used

in request scheduling on an interleaved memory. In general, there is a tendency

for increasing hardware support for data management functions on a DCS. The

moetivations for this tendency of functional distribution are:

(1)

(2)

(3)

Parallelism

As the size of information processing grows, it becomes inereasingly
difficult to use a uni-processor to ach_ieve the system’s requirements.
One alternative is to exploit the possibility of using multiple, less expen-
sive and less powerful processors to form a conglomerate of parallel pro-
cessors which can usually achieve the system’s requirements in a more

cost-efTective way.

Communicotion ocverhead

Processing on large file systems are often 1/0 bound. Many of the file
operations are guite simple and a significant communication overhead is
incurred in transferring the file to a level of the memory hierarchy

where the processor can process it. By distributing the intelligence to

the different levels of the memory hierarchy, parallel processing can be

performed with very little communication overhead.

Haordware or firmware realization of data base functions

The complexity of data base system software is largely due to the

219

processing of memory mapping cperations. Memory mapping operations
convert the file accesses by a query into actual memory addresses and
must be highly optimized if they are to perform well. These operations
often utilize complex data structures to achieve efficiency. On the other
hand, data base software are divided into modules whichk perform
specific tasks. For example, modules may exist for query parsing, direc-
tory aceess, directory processing, data retrieval and update, and data
security. These modules usually have diverse capabilities, and
bottlenecks exist if these modules are executed on the same processor.
The systerm performance is consequently degraded. Specialized data
base hardware solves the above two problems by eliminating the complex
address mapping operations and utilizing hardware /firmware to replace
the software. The query is transferred directly from the processor to the
specialized hardware without address mapping. Then
hardware/firmware will process the query and realize the data base

functions.

As a resuit, there are many haredware designs proposed to speed up data
base processing. One of the earliest design is the associative memory [SLA58] in
which logie is distributed into each cell of the memory so that search operaticns
can be performed associatively, Such a design is rather expensive because logic
is duplicated for each kit in the memory. A more recent design is the data base
machine [HSI77] which is a remedy to the costly associative memory by sharing
one piece of the associative logic among a set of physically related data. A set of
physically related data may be a track on a disk in which case the design is a
logic per track disk; it may be a set of memory modules, in which case the
design is an SIMD computer model [FLYB8]. Since the designer has the freedom
of designing the degree and the amount of parallelism, there are a lot of issues

related to the data base machine design. Some of these issues will be addressed

220

in Section 5.3.

In this chapter, we present a design of an associative memory for ordered
retrieval in Section 5.2 and extend the design to a simple data base machine in
Section 8.3, In the associative memory design, we present some simple schemes
for a variety of searches, each of which may be performed in one complete
mernory cycle using bit-memory logic primarily. The searches we study include
the basic equality search, the threshold searches {both greater than and less
than searches), the proximity search, and most importantly, the greatest value
and the least value searches. For each kind of search, we present both the algo-
rithm suitable for cur needs and the logic circuit of the memory cell required by
the algorithm. Based on the basic search schemes, an algorithm for ordered
retrieval is developed. A comparison for ordered reirieval schemes is then made
between the proposed scheme and the previous algorithms. It is found that this
algorithm outperforms all the other algorithms compared, particularly in the
resolution of multiple responses. Finally, issues relating to L3I implementation,
manufacturing defects, and modular expansions are discussed.

In the data base machine design, we investigate some problems that exist
with the design and show that the design should be made as a combination of
SIMD and MIMD computer medels [FLYB88]. Lastly, we show the extension of the

associative memory to the design of a simple data base machine.

5.2 A DESICN OF A FAST CELLULAR ASSOQCIATIVE MEMORY FQOR ORDERED

RETRIEVAL

5.2.1 Previous work

Content-addressable memories {CAM's), alternatively known as associative
memories (AM's), have received much attention in the literature since they were

first described in 1956 [SLAS8]. The distinguishing feature of such memories is

221

that stored words are accessed by matching some portion of their contents to a
search word and selecting the first one that matches rather than accessing the
data using its physical location in the memory as in standard random access
memories (RAM's). It can be readily seen that CAM’s must depend upon a high
degree of parallelism in their searech schemes in order to compete in memory
access times with RAM's. Large speed improvements can be gained from this
parallelism and this makes CAM’s attractive to a wide variely of applications. A
good survey of the current technology in CAM’s can be found in [PAR73, FOS78,

HANBE].

With the advent of large scale integration (LSI) technology, it becomes
feasible to economically implement fast search algorithms in CAM's by incor-
porating much of the control logic into the memory plane. Several search algo-
rithms for CAM's have been developed in the past two decades [FEN74, FRESB1,
SEES2, LEW62]. Some algorithms, such as [SEE82] and [YAN86] have been based
upon distributed logic design, but few have incorporated a high percentage of
their search logic in the memory cell. An exception teo this is found in a design
by Kautz [KAUB9] for a special purpose sorting array. His design is oriented
towards ordering, rather than searching, of the memory, but does include asso-

ciative capabilities as a byproduct.

The trend in associative memory design is toward distributed logic. Previ-
ous designs have placed control logic outside the storage logic. These control
logic include comparison logic, propagation logic, multiple response resoclution
logic, arithmetic logic, ete. In a distributed logic design, the control logic and
the storage logic are designed together. The controls are brought into the cells
as part of the storage itself. The cells become more complex and have more
control functions associated with them, but it also results in more homogeneous
and modular design. In this section, we propose the basic design of such a

memory and present some searching and sorting schemes and the

222

implementation of some basic searches using distributed cellular logic which is

considerably faster than any of the previcus sorting methods. The capabilities

of the cells are actually a subset of the capabilities of Kautz’'s augmented CAM

array [KAU71). Further, the concept and the design of some of the searches

have been investigated earlier [TUR72, RAM78a]. The searches that we examine

inelude the basic equality search, the threshold searches {both greater than and

less than searches), the proximity search, and most importantly, the greatest

value search and the least value search.

5.2.2 Symbols used in the Design

The following conventions are used throughout the design:

Ei.n+1

F‘l,j

F'i,n+1

The value of the i'th word of memory;

the value of the j'th bit of the i"th word of memory;

a priority circuit which is used to sequence response in Wg, W, Wy or Wg;
a circuit used to detect responses in Wy, Wa, W, or We;

the equality state signal for the j'th bit of the i'th word in the equality
match between H; ; and R;;

the equality enable signal for the j’th bit of the i’th word in the eqguality-
inequality search mode and the least value search mode;

signal which can be gated to set (or reset) any one of the word control

registers Wo, Wg, Waor Ws

_the enable signal for the j'th bit of the i'th woerd in the greatest value

search;

signal which can be gated to set {or reset) any one of the word control

registers Wy, Wgq, Wi or Ws

LSB

S

MSB

MZ

Q;

223

the associative memory search mode command {equality-inequality-

proximity mode or the least value mode);

an index for a word in the memory, 1=ism;

the value of the j’th bit of the input/output register I;

an index for a bit in the word, 1=j=2n;

a variable index, 1Sk sn;

the less than state signal for the i’'th word of memory; a signal which can
be gated to set {or reset) any one of the word control registers
Wa, Wa, Wyor Ws

Least Significant Bit;

the number of words in the CAM;

the value of the j’th bit of the mask register M, {(used in the least value
search, the equality search, the threshold searches and the proximity

search);

the value of the j'th bit of the mask register M* (used in the greatest

value search);

Most Significant Bit;

the set of all bit positions with M;=0;
the number of bits in a word of the CAM;

the synchronization bus signal for the jpth bit-slice in the least value

search;

 the default-detection bus signal for the j'th bit-slice in the least value

search;

an index in the word control logic, 157 55;

224

R; the signal for ithe j'th bit-slice shared by the equality-inequality search,

the proximity search and the least value search;

S the value of the search register S;
Sy the value of the j’th bil of the search register S;
T the search-default feedback bus signal for the j'th bit-slice in the

greatest value search;

U; the synchrenization bus signal for the j'th bit-slice in the greatest value
search;

V; the default-detection bus signal for the j'th bit-slice in the greatest value
search;

Wy the i'th flip-flop of the word control register W,;
Wi the word flags register with m flip-flops;
Wy — Wy result steres or temporary stores in the word control logic;

Xi g the proximity state signal for the i’th word of the memory in the proxim-

ity search;

Xin+1 a signal which can be gated to set {or reset) any of the word control
regisers Wpa, Wga, W4 or He;

U abbreviation for logical OR operation;

€ abbreviation for "an element of';

N abbreviation for "for all";

=1 abbreviation for "there exists".

5.2.3 Basic Associative Mermory Organization

The associative memory organization shown in ¥ig. 5.1 is used to implement
the search schemes to be presented. A bit- slice is a vertical slice through the

memory as arranged in Fig. 5.1. The j°th bit-slice is made up of the j'th bit of

3 4

225

input-output register I

R
Mask register = M __P—“
Search register S }——* memory
b cantrol
It store
Mask register = M P"*
. e dbdd
Bit-slice control logic =
y F § L 4 i —————————— 1 ———————————— -
'] 1 {
bit 1t b1t] !
word} cell r—!{—geﬂ s ¢ ¢ cell ™ =" = = 3"’1 :
1 14 1,2 1.0] | !
)])] S o & R
! 3 3 3 | |Priority
i3 J =1 12 12 o =2 Circuit :
1 1t I on o o o c
word| cellje— cell le— .. : E b et ut ot 1
2 Wall 12 et 1el (8] 18] |3 i
g S = 3 S !
N B prs o I pes 1
I wy L -
. . P D7 ThT Ix™T TS s I
: : : ‘ FE - .pE P -Pﬂé ‘T = -~ P : - Match l
: -] 3 :?:_ §_ Detector| |
| | (50 (5] 15l E [8 Py
bPit it 1 ,' = S :;:- “3 i
word] cell cell Jom o cell je = = = = I
m | ml m,2 m,n_| : a @ 2 i !
bit bit bit | = = = |
slice 1 slice 2 slice B - m e e e e -

Word Control Logic

Figure 5.1 Cellular Logic Associative Memory Block Diagram

226

every werd in the memery. The search operations are parallel by word and
serial by bit-slive. A minor cycle refers to the time needed to perform an opera-
tion on a single bit-slice and a major cycle refers to the time needed to com-
plete an operation on all bit-slices of the memory. Hence, a mmajor cycle for the
present AM organization is composed of n minor cyecles where n is the number of
bits in a word. It is shown later that some searches will require a longer minor
cycle than others, thereby lengthening the major eycle as well. A "basic” opera-

tion is an operation which may be performed in a single major cycle.

5.2.4 Definition of Search UOperations

In each of the following search definitions, the set of words involved in the
search are those where w; ;=1 and i€{1, 2, ..., m}. The result of the search par-
titions this set of words into two ssts, the set that satisfies the search condition
and the set that does not. Let B; be the content of the i'th word in the memory,
S be the content of the search register, and M be the content of the mask regis-
tar. That is,

n

B'i = E 2""5 ' B‘i,j'
i=1

n -
§=Yeri-s;
7=t

and

n Iy
M= 5 2ni. M,

i=1

The. search is performed only on that part of the search word which is not
masked. In other words, only those S; bits for which the corresponding M; bits
are 0's are included in the matching {comparison) process. Let MZ be this set of
bit positions. Other bit positions with M;=1 are bypassed. (Note that j=1 for

MSB and j = n for LSB.) We define the various searches as follows:

227

A. Equivalence Searches
1) Fguality Search:
B;;=8;, %€, 2,...,n)
R} Inequality Search: Sk € MZ such that B; 3 #S.
3) Similarity Search (Masked Equality Search): B; ;=S; \v5 € MZ,

4} Prozimily Search: There is exactly one k € MZ such that B; ; #5;.

Note: The similarity search is also known as masked-equality search. It
differs from the equality search in that the mask is effectively not used in the
latter while it is used in the former search. In most cases, this distinetion is so
insignificant that the "equality search"” is used to mean both the equality and the
masked-equality searches. Unless specified otherwise, we will assume that all

searches are masked.

B. Threshold Searches
1) Greater- Than Search: B;>S.
2) Less- Than Search: B;<5.
3) Creater- Than- or- Equal- To Search: B;25.

4) Less- Than- or- Fqual- To Search: B; <5,

C. Double- Limits Searches
1.) Between- Limits Searches: L.et X and Y be the limits such that X > Y.
Then B; is
a) < X and > Y,
b)<Xand 2,
c) S Xand>Y,
dY =X and 2 Y.
2) Outside~ Limits Searches: Let X and Y be the limits such that X < Y.
Then B; is '

a)<Xof>Y,

228

by<Xorz2Y,
e} = Xor>Y,

dysXor2Y.

D. Ertremum Searches
1) Least Vaiue Search: B;<H;, 'k Ziand k € {1, 2, ..., m}.

2) Greatest Value Search: By28,, \Vk Ziandk € {1, 2, ..., ml.

E. Adjacency Searches
1) Nearest- Above Search: ZIk € {1, 2, ..., m} such that 8;>5;>S.

2) Nearest- Below Search: Z{k € {1, 2, ..., m} such that B;<B, <S.

There are other non-search operations that can be performed in associative
memories. These include word addition, field addition, summation, counting,
shifting, complementing, logical sum, logical produuct, ete. Devices that incor-
porate non-search operations may be referred to as associative processors
[FOS78]. We will not investigate further on non-search operations in this

chapter.

5.2.5 Algorithms and I'mplemeniations of Basic Searches

We define a basic search as one which can be completed in exactly one
major cycle, assuming multiple response resolution as an operation separate
from search operations. This definition applies only to the configuration of the
CAM in Fig. 5.1. A mulliple response is a situation when more than one word
satisfies the given search condition. The multiple response resolution resoles
this situation by means of a priority circuit [FFOS68] or other schemes, e.g.,
[LAN7YY, HIL86a, WEIB3], and outputs all the responders one at a time. Among
the searches listed in the previous section, not all of them can be economically
implemented as basic searches. Therefore, we choose to implement those

searches which are most frequently used as basic searches while the rest can be

229

performed in a series of the basic searches. As an example, the between-the-
limits search {Y =B,;<X) can be generated by performing a less-than search (<X)
followed by a greater-than-and-equal-to search {(2ZY) on the reponders of the
first search. In the implementation to be presented, the basic searches are the
equality search, the similarity (masked equality) search, the proximity search,
the four threshold searches, and the two extremum searches. Each of these
basic searches can be performed alone or a few combinations of them can be
performed simultaneously. These searches are grouped into three groups called

Mode A, Mode B, and Mode C operations. The Mede groupings are as follows.

Mode A: The equality search, the similarity search, the proximity search and

the four threshold searches.
Mode B: The least value search.

Mode C: The greatest value search.
Searches in Mode A can be performed simultaneously. Furthermore, Mode A or
Mode B operations can be performed simultaneously with Mode C operations. We
will assume that positive logic is used throughout our designsg. It should be
noted that not all of these searches are required in a specific application. They

are presented here for completeness.

5.2.5.1 Mode A: Egquality- Threshold- Prozimity Search Mode

In the equality-threshold search, the CAM is partitioned according tc the
magnitude of the search word S inte three sets, namely, Words which are equal
to S, words which are less than S, and words which are greater than S. The
result ‘of this search mode is stored in two of the word control registers, #» and
Wa, and the interpretation is given in the algorithm to tollow. Further, in the
proximity search mode, the CAM is partitioned into two sets, words which are
near to S, and words which are not. The results of this are gated into #,. Note

that if it is not necessary to preform the proximity search together with the

230

threshold searches, then register W5 can be eliminated from the design. This
search mode is characterized by the signal &£ =0, which gates the contents of the
search register S to the search bus. That is, R; = S'_,-\/j €ft, 2, ..., n!. The basic
searches performed in this mode are the equality search, the four threshold
searches (narmely, >S, <8, 25, and £S5}, and the proximity search. M;=0 means

that 8y is not masked while M;=1 means S; is masked.

The three query states are shown in the following table.

M; S; Query State
0 0 o
0 1 1
1 0 d
1 1 d

d = don't care

Algorithm 5.1 - Mode A Search Operation

1) Vi€l 2, ..., m}
a) nitialization:
3 + Search word, M « Mask, G=0,j=0,
wyy = 1, wipe =0, wyg = 0, wy4=0.
b) Data Path Setting:
Gate X pi1t0 Wi, Eqpar to wys, Li to wyg, wyy to By, Wiqto Xy
These data paths and the control signal G are held until the completion of
the major cycle.
2) Letj«j+ 1.
3) Compute\A€{l, 2, ..., m!{ simultaneously
a) e, ; = (M; + Byy Ry + By 4 Ry)
b) Eyje1=Eije4;,

— N 1
c) diy = Ey ;0 By,

t d; ; will be sensitive to E‘i,,— and only to the first bit mismatch between B; and 8. A simpler

231

d}

L'l.' = k':i d‘ k(wu'ed OR)

e} Xije1 = Xiyesy + fi,j'ai,j'Ei,j
4) Isj=mn?

a) Yes - Proceed to step 5).

b) No - Proceed to step 2).

5) Result Interpretation:

For those words i with W#; ;=1,

wiol(=LY | w. (=K ..) | Inter ion {(Fguality-Threshold search
B, is greater than search word.

B; matches search word

B; is less than search word

[does not occur]

-0 O

B; is not near to search word
B; matches search word

H; is near to search word
[does not ocecur]

(E NN -]

0

0

1

1

ml‘(:_aé&.u) W;q(=Ein;1)

0
0
1
1

In this search algorithm, the minor cycle is composed of step 3) alone while
the major cycle is composed of steps 2)-4). The result of this search mode is
handled by the match detector D in the word contreol logic. Any multiple
responses is resolved by the priority circuit C. The bit-cell logic needed to
implement this eguality-threshold-proximity search mode is shown in Fig. 5.2.
The delay in each minor cycle is one gate delay for the egquality-threshold
searches and three gate delays for the proximity search. The following example

shows the state of L;, F; ;,1 and X ;4 for a Mode A search of 6 words, each 5 bits

design using d., g+l B., . can be used. In this case, d.,-,j will be sensitive to all mismatches
between H; and S. Sfhee Z.L is obtained by wired-ORing d; ;'s, the final output voltage of the wired-

OR will depend on the number of mismatches, 1t will be more appropriate to eliminate this depen-
dence by only taking the first mismateh as what iz done here. We must confess that the exact design

is highly technology-dependent.

232

Bit-slice control logic

. e B
| I‘...\ 1 E. .
) i i, i+l
g) [OD———i,
! 18 |
]
| B4,j |
! v ! 1
t 1,3 |
* 1
. i
X1,j > + D: ! .
! i,j+1
% ' 1
1]
| 1
| |
: (open "
I - collector) |
_ e & 451 ___ 1
Ly~ - > Ly
wired-0R
\L%
M. R,
J d

Figure 5.2 Bit-cell with Equality, Greater-than, Less-than
and Proximity Capability for Mode A QOperation

233

leng.

Erample 5.1: "Mode A" Search Uperation
Search Word - S 10110,
Mask Word-M #0100,

Effective Search Word - 8’ 10d10 (d = don’t care).

i B; State of (L;, By j41, X5,541) lines
at the end of the minor cvele
i=0 1 2 3 4 5

10101 { 010 | 010 | 010 | 010 | 101 | 100
01101 | 010 | 10t ;| 100 | 100 | 101 | 100

1| 10111 ¢ 010 | 010 { D10 | 010 | 010 | CC1
2 | 11000 | 010 | 010 | CO1 | OO1 | OO0 | OO0
memory | 3 | 10010 | 016 { 010 | 01C | 010 | 010 | D10
words 4 | 10116 | 010 | 010 | 01G | 010 § 010 | 010
5
6

For interpretation of L; E; g X; g see step 5) of Algorithm 5.1 for Mode A search

operations.

5.2.5.2 Mode B:; Least Value Search Mode

In this moede, the search register is no longer needed because no search
word is used. However, the minor cycle is more complicated than that in Mode
A. It now consists of a comparison phase and a default phase. Consider the j'th

minor cycle. In the comparison phase, one of the three conditions is to be

detected:

1) that the bit-slice is masked,

2) that the bit-slice is not masked and at least one enabled bit-cell contains a
"0Q", and

3} | t].;lat the bit-slice is not masked and all enabled bit-cells contain *'1"s.

In the first case, all the enable signals to this bit-slice are passed on to the next

bit-slice on the right. In the second case, those enabled bit-cells containing "0"s

pass its enable sigrnial to the next bit-cells on the right. In both cases, the minor

234

cycle is complete. The third case, however, is called the default case and the
default phase is entered. The default condition is detected in the default-
detection bus and the default éignal €; is fed back to the bit-slice via R;. R; is
connected to the default feedback circuitry (Rj = Pj-TQ-;--G) when this search
mode is activated by setting G = 1. P, is a synchronization signal and it also
serves as the search signal in the comparison phase. After the default phase, all
the enabled bit-cells pass their enable signals to the next bit-cells on the right,
thus completing the minor cycle. The result of Mode B can be stored in one of
the result/temporary store registers because Mode A does not operate. simul-

taneously with Mode B.

The implementation of the Mode B search in bit-cell (i,j) is shown in Fig. 5.3.
Note that this immplementation shares much of the circuitry with that for Mode A

and that at the beginning of the j'th minor cycle, k; = 0.

Algorithm 5.2 - Mode B Search Uperation - The Least Vailue Search Algorithm
1) Wi€fl, 2,..., m}
a) Initialization:
G=1,j=0, w1 =1, w3 =0,

b} Data Path Setting:
Gate By n+1 to wyp, wy,y to By g,
The data paths and the control signal G are held until the completion of

the major cycle.
2) Letj<«j+ 1.
3) Minor Cycle:

a) Comparison Phase: Compute V4 €{1, 2, ..., m] simultaneously.

235

M.
J
v
? G
— =
1 3<1
«s1d P 7 q.
_ | Blt-siice Control Logic 'y = Py 113
e : Delay A
T Element TT
e e e e s e e e e g
: Bit-cell Logic
E1,3>:f ' . . l
; I.E;:b—:VL- ; E; j+1
i “ I = 1ad
|] |
: 1sd : L_ l
| -] -] |
: B‘sj ‘§§:>: ia} ;
L _________________ __.l s
Default
Sync- detection
vy L } bus
M. R, 2
3 Py QJ-

Figure 5.3 Bit-~cell with Least Value Search Logic for Made 8 Qperatiaon

236

1) Eijer = Eqjen;.

i) ps.(¢) = E; ;(t — 2) (delay element used to synchronize the feedback of
QJ wia Rj),

iii)
Qi; = &5 Bs 4.

g;; = 1 means that H; ; is enabled and equals 0.

iv)
™
P; = Y Pij {wired-0OR)}.
i=

m
v) @;= U, qi.s (wired-OR),

§; = 1 means at least one enabled bit in the j'th column is O
vi)
R; = P;Q;C.
b) IsR; = 1?

i} Yes - Default detected, proceed to step 3c)

ii) No - Default inhibited, proceed to step 4).
c) Default Phase: Compute E; ;.4 = Ey ;.

4) Isj=n?
a) Yes - Proceed to step 5).
b) No - Proceed to step 2).

5) Read out the words that are indicated by w; o = 1.

Example 5.2 shows an example search of Mode B operation on 5 words, each
10 bits long.

FErample 5.2 "Mede B" Search Operation

a) WORDS in which the least value is to be retrieved:

Word Bit Positions Qrder
Number 1 2 3 4 5 B T 8 9 10 of
(i} {1) Retrieval
1 0 0o 1 1 ¢© 0 1 0 O 1 3
2 0O o 1 0 1 8] g 1 0 1 1
3 1 O 0 1 1 C 0 0 O 1 5
4 c o 1 0 1 0 1 0 1 1 2
5 D 0 1 1 0 0 1 0 1 1 4

b} STATES of all enable lines (£} ;+1) at the end of the major cycle:

Word
Number 0 1 2 3 4 5 B 7 B8 B9
{i) §))
1 1 1 1 1 0O 0 0 0 O ©
2 11 1 1 1 1 1 1 1 1
3 i 0 0 0o O 0 c 0o O 0O
4 i1 1 1 1 1 1 0 0 0
5 1 1 1 1 0] 0 0 0 0

Note: Minor eycles 3, 5, 8 and 10 go through the default phase.

237

¢) Timing diagram for bit-slice 3 in the major cycle:

238

M3=0
Y G=1 Time in gate delay units
—— e ——— e | e . 00 1. % 032 .5 6- 7. ? 90
.l | ! |
—d:J_—C UG o= ! ! I
3 7, |a . I
3 3 R el ! i I i
- T T 3V T ,
I
E El 31 . 1 !
E, .~ a 1,4 ’ -]
1,3 ®1,3 - % o B I R !
= 1 1,3 Ldgly 11 [—
p— - + I I
P13 PL3 gL l
Esa 7 S S —" ‘
2,3>— 82’3 bl q1’3 bl— ’[: : I %
= l
Ll T
|
£ 2,3 E3 s E3,3 %[| : | i |
» T T 1 T T
313\ 83,3 —_ E3g4 él | | | !
= 0 93,3 - 11 i |
5 P3,3 ol]]
3,3 - 10— i l !
E, as. Ey,a 93,3 0l L ‘
4.3/ 84‘3 “- !
p ’ t t t
p4'3 0] 5 8
E Note: Signals for bit-cells (2,3),
E5,3“‘ 35,3 _*"5’4 (4,3) and (5,3) are the same
=1 g 3 as those for bit-cell (1,3).
P5,3
Bit-slice 3
to: Starting of minor cycle for bit-slice 3;
tS: Default condition detected;
t8: End of minor cycle for bit-slice 3;
FROM t. TO t.: Comparison phase of minor cycle;

0 5

FROM ts T0 ta: Default phase of minor cycle.

239

(d) Timing Diagram for Bit-slice 4 in the Major Cycle

M,=0
Y G=1
i Time in Gate Delay Units
— e e — ——
01 23 45 6
- . ® » » L [} L 3 L]
ﬂ = 1ol
R 4 y é'—!_{ :
= p
R4 él i N
E E L
1,4 >~ - 135 1, L
T B, ,=1 3 B, oL
1.4 q1’4 E 1 i i | I
- (I)
p —1,5 0] I : T
HE E, ¢ 9141m_
E2i4> e 2’5 a". ?‘! E ILJ_
Bz’4=0 q2’4 1,4 0r= | : :
P E, , 1 ! |y
£ ’ Ea,5 4ol 1
-~ =~ ' E, o L | =t
3!4 83’431 q3’4 _2’5 g‘_r__{ I i
P ZXT i R—
’ 2,4 gL
£4,4 > 4,5 b
4,470 9.4 Eaj 1 0 0!
Pa,4 £ 1,1y T
Es.4~ €55 N
s - = 2 Pygl B
By 41 % .4 3,4 ?F! T
Ps 4 300 v V7!
Bit-slice 4 T ! }
ty t1=t, to

Note: Signals for bit-cells(4,4) and (5,4) are the same as those for
bit-cells (2,4) and (1,4) respectively.

o
+

W N - O

;: Starting of minor cyclie for bit-slice 4;
: End of minor cycle for bit-slice 4;

o or

Default-inhibit signal becomes stabie;

ot

: Bit-slice control logic in stable state.

240

5.2.5.83 Mode C: Greatest Value Search Mode

In the implementation of the least value search scheme, the speed for
searching is traded for less hardware in each bit-cell by sharing much of the
logic with the equality-inequality search. Had it not been required for the latter
search, the comparison time for the least value search could be shortened by
looking only at the content of the bit-cell, and the default time could be shor-
tened by looking at the feedback signal. Since the least value and the greatest
value searches are analogous to each other, we shall demonstrate the speed-up
design for the greatest value search. The implementation of the new design is
illustrated in Fig. 5.4 which shows the complete design for each bit-cell. With
this implementation, Mode C operations can be executed simultaneously with
either Mode A or Mode B operations. Note that T'; = 0 at the beginning of the j'th

minor cycle.

Algorithm 5.3 - Mode C Search Operation - The Greatest Value Search Algorithm
1) Vief1, 2,.... m}
a) fnitialization: j =0, w1 = 1, wy; 5= 0,

b) Data Path Setting: Gate Fy ,41 to wy 4, and w; 4 to Fy g,

The data paths are held until the completion of the major cyele.
2) Letj«<j+ 1
3) Minor Cycle:
a) Comperison Phase: Compute \i€(l, 2, ..., 1 simultaneously.
D) Fijar=Fp (M) + By g+ Ty)

i) uy ;(f) = F; ;(¢ —~ 1) (delay element used to synchronize the feedback of

Vg wia Tj)’

* " S N 241
M. j i ¥
YY Y '
G > G
—_—t e e | R P
Rj - i {;g l. Resistors
G 5: 4
= _ i
: . <%,
j d i o
wired-OR Y5
Bit-slice U @r T
Control Logic J i
AR St WS PR RS GRS S R MR S S GAED AN AR AR A Gl N S TS Sl TR S — .y ‘!r - r— —
e T A Ay el o A
- p. e e
[e e ——— —— e e e s et : -l
IBit-cell Logic 14 Ys
Fooonm ! E::F 1.4
1,07 P T i
| [0 ’br
|
| 2 1 ‘ Fo s
1 =1 > ;r - 1,341
E ' Pi
Tajom + i
+ |
{ . -£1,541
{ |
| !
| C
1
! .
i |
xi . | 1
!J - }_ } vxi ,j+1
{ — |
1 |
g -
i d. |
| Coated
_ e o e e e o e —_=
L. . L.
1> Wired-0R l. =1
~ ..JL o e JL— s
M. M.R.T. .;[;[]:1;
J 333 UjVijQj

Figure 5.4 Bit-cell for Simultaneous Ascending Retrieval and Descen-
ding Retrieval or Equality-Threshold-Proximity Searches

242

vig = Fy 58,

v;; = 1 means that B, ; is enabled and equals 1.

¥;=1 means at least one enabled bit in the j'th column is 1.
vi)
T; = U;V; (wired-AND).
b) IsT; =1°?
i} Yes - Default detected, proceed to step 3e).
ii) No - Default inhibited, proceed to step 4).
¢} Default Phase: Compute Fy ;.4 = Fy
4) Isj=n?
a) Yes - Proceed to step 5).
b) No - Proceed to step 2).
5) Read out the words that are indicated by w; 5 = 1.

5.2.8. Ordered Retrieval
A, Ascending Order Retrieval

The ascending order retrieval of a set of data can be achieved by perform-
ing the least value search repeatedly until all the data are retrievéd, With the
CAM organization that we have presented, a microprogram in the Memory Con-
trol Store provides an economical and eflficient implementation of such a

retrieval algorithm. A flow chart for an ascending order retrieval algorithm is

shown in Fig. 5.5.

243

C Begin)

Set flags of
all words to
be retrieved

A

Execute Mode B
search op.
on flagged

words in AM

Obtain one
selected word
from Word
Control Logic

¥

Reset flag of
selected word

yes

(Multiple
responses)

Figure 5.5 Flow Chart for Ascending Order Retrieval

244

B. Descending Order Retrieval

The algorithm described for ascending order retrieval can be modified for
descending order retrieval by substituting the greatest value search for the
least value search. That is, Mode C search operation is executed in the CAM
instead of Mode B search operation. Hence, the algorithm for descending order
retrieval is to perform the greatest value search repeatedly until all the data

are retrieved.

5.2.7 Sorne Speed- up Technigues

The design shown here have 1 to 3 gale delays per minor cycle in each of
the Mode A search operations.? The delay in Mode B operations ranges from 3 to
8 gate delays per minor cyele,? while for Mode C operations, it ranges from 1 to 4
- gate delays per minor cycle. We now consider several techniques that can be
used to reduce the search times. The four areas that bear investigation are loo-
kahead techniques, external examination of retrieval process, implementation
of additional basic operations, and modifications to the scheme involving greater

parallelism in the search.

In the first area, lookahead logic can be added to each word in the memory.
The algorithms we have described previcusly are all bit-serial and word-parallel
in nature. This means that the enable signals for each word propagate from bit
to bit and operations for each word are performed in parallel, The speed of a

search operation is therefore proportional to n where n is the number of bits in

2 Assuming that all the g; ; signals are available before the search begins, there is one gate de-
lay per minor cycle in the equality-threshold search while there are 2 to 3 gate delays per minor cy-
cle for the propagation of the Xi_j signal.

3 In the case of the least value search, the maximum and the minimum delays are actually
shorter. The e; ; signal of each bit-slice can be assurned to be setiled before the major cycle starts
{zee Fig. 5.4). This means that the MJ- lines are enabled ahead long enough for the e; ; signal to set-
tle. In this case, the minimum time to pass through each bit-slice iz 1 gate delay. The maximum
time to pass through each bit-slice is also shorter than B (the maximum gate delay count). When de-
fault occurs, Bi,jzl for all enabled words. Therefore, output from gate 7 is 0 and the feeddback
through Rj never has to go through gate 4. Hence, the maximurn delay through a bit-slice is 7 gate
delays.

245

each word. We can increase the speed by adding some lockahead logic to each
word. Each word is segmented into contiguous groups of bits of equal size &, and
a lookahead eircuit is added to each group (assuming k is a factor of n }. Each
lookahead circuit operates on all the bits in its group in parallel and passes the
result onto the next group when it has finished. The speed of an eguality-

proximity search operation using this lockahead circuit will be proportional to

%. but for extremurn searches, no improvement is found. This type of looka-

head is essentially single-leveled or cascaded. This means that the signals still
have to propagate from group to group instead of from bit to bit, and the looka-
head circuits exist in a single level above the storage circuits of each word. The
cellular property of the design is preserved because a group. instead of abitina
word, can now be regarded as a cell. We will not investigate other types of lonka-
head circuits, e.g., tree-lookahead circuits, because they do not preserve the
cellular property. We now illustrate the construction of these lookahead cirecuits

for the equality-proximity and the Mode B and Mode C searches.

An examination of the equality-proximity search operation shows that each
of the £; ;41 signals propagates from bit slice j to bit slice j + 1 in one gate delay
where j ranges from 1 to n. Similarly, the X; ; signal propagates from bit-slice j
to bit-slice j+1 in 2 to 3 gate delays. Improvement can be achieved by grouping
bits in each word and performing the comparisons in parallel. An example is
shown in Fig. 5.6 where the necessary lookahead logic for grouping bits j and j +
1 of word i is shown. ln the equality search, comparisons in each group are done
in parallel. The results of comparison, €; ;43 and e; j4+2, are ANDed together with
E;; to form K, ;.e. The propagation time for these two bits is 1 gate delay

instead of 2 in the usual kit serial operation. The speed of the eguality search

will therefore be proportional to -% gate delays. The number of gates for the

propagation of £ ; signal is also reduced from 2 to 1 for bit-slices j and j+1.

246

Figure 5.6 Bit-cells (i,j) and (i,j+1) of Word i with equality-
proximity search logic and Look-ahead Logic

My R, Mis1 Rys
Y Y Y1
Feroximity foT:E'-EEé’a’d“":
I Logic for Bit-cells |
{ (1,3) and (i,3+1) I
| }
!
Ll A }
M E—
I
1,5 > aEaniEaa 2
1
e eI :
| Equality Look-ahead |
:Logic for {i,3) & (i,JflP
Ei,i > r D) i Fi, 542
e |
oot ot ot e o = ———— =
: 1 |
! T I
i ' !
| : LD'h_T i
| i
1 :
i i | 84,541)
! IR 1
Bit-cell Logic (bit j} 'Bit-cell Logic (bit j+1))
IR
iR M Ryn

247

Similarly, in the preximity search, gates A and B of Figure 5.8 detect the condi-
tion when only one mismatch occurs in the group slice and gate € detects the
condition when there is no mismatch in the group slice. The logic equation for
X jez ist

Xijez = Xy g (e jaresji2) + ZIJ'Ei,j'(ei.j+1-Ei,j+z + € j41 €1 542)
which is similar to the X ;,, equation in Algorithm 4.1. However, in this case,
the propagation delay has been reduced to 3 instead of 8. The number of gates

required is also reduced by a constant factor.

For Mode B and Mode C operaticns, lookahead requires more hardware. The
existence of default cases have caused the increased complexity. Previously,
without lookahead, default is detected for a bit-slice when certain conditions
exist on all enabled words in that bit-slice. These conditions include 1)} all
enabled words have 1’s in this bit-slice for the least value search and 2} all
enabled words have 0's in this bit-slice for the greatest value search. The
nurnber of default feedback lines is 1 for each search mode. When a lookahead
circuit is added to each word for a group of k bit-slices, the number of default
feedback lines will be 2. These 2% lines can be shared by both the least value
search and the greatest value search. Consider a particular group; the following
pperations are to be carried out: a) The bits of each word in this group are
decoded into 2% lines. b) The corresponding lines from each word of this group
are wired-ORed together to form default feedback lines D to 2% — 1; a particular
feedback line p will be 1 when there exists an enabled word in this group whose
decoded value equals p. c) Iln the group-slice control logic, if it is a Mode B
operation, it will scan from feedback lines 0 to 2% — 1 until the first line with a 1
is found; similarly if it is a Mode C operaticon, it will scan from feedbkack lines
2% — 1 to 0; this line will represent the minimum /maximum of all these enabled
words in this group. d) This line is encoded into k search bus signals to be fed

back to each word in this group. e) In a particular word, the enabled line for the

248

next group is enabled if the current group of this word is enabled and the value
of this part of the word equals the search bus signal, ie., it equals the
minimum/maximum value found by the group slice control legic. However,
there are some disadvantages of using lookahead on Mode B and Mode C opera-
tions. The extensive amount of decoding requires an order of 2% gates of fan-in
k for each group in each word. For each group-slice, there are 2¢ default feed-
back buses running across all the words and this can cause difficulty in
integrated circuit implementation. The biggest difficulty, however, lies in the
implementation of the scanning algorithm in the group-slice control logie. The
algorithm of scanning across a set of lines until the first 1 is found is essentially
a mulitiple match resoclution problem. If a tree-type muitiple match resolution
circuit is used, e.g., [FOS68], a maximum delay of log,2* = k& will be observed.
That is, the overall speed of a group of bit slices, with or without lookahead, is of
the order of k£. Unless a faster multiple mateh resolution circuit is used, and
the cost of hardware is sufficiently low, lookahead for Mode B and Mode C

searches is not cost-effective.

An examination of the example illustrated in the previous section points out
another possible source of improvement, this time in the algorithm itself, In
many cases the number of words still enabled at the end of a minor cycle
rapidly drops to one within a few minor cycles. At this point the completion of
the major cyele is a formality since the greatest{or the least) valued word must
be the conly remaining enabled word. Unfortunately the detection of this condi-
tion, the only-one-respondant-left condition, is too complex to be performed at
the end of every minor cycle, and would require extensive external wiring and
logic.

We have irnplemnented some of the search operations defined in Section

5.2.4 as basic operations. Some other useful searches may be performed by

combining two or more basic searches and possibly some nonsearch operations.

249

An example is the between-the-limits searches, which is generated by perform-
ing a less-than search followed by a greater-than search on words selected by
the first search. In fact, all the searches described in Section 5.2.4, can be per-
formed as a basic search or a combination of basic searches designed in this
section. Speed improvements can of course be gained by implementing all of
these search operations as basic searches, but the amount of logic circuits may
be extensive. In most other cases, the more complicated searches, such as the

case of ordered retrieval, are implemented as a combination of simple searches.

One meodification to our ordered retrieval technique that yields positive
results without compromising our cellular logic approach is to increase the
parallelism of the algorithm itself. This can be done by simultaneously perform-
ing the greatest value search and the least value search on the same set of
enabled words. The asscciative sort is complete when both searches select the
same word, an easily detectable condition, or when no words are still enabled at
the beginning of a major cycle, also an easily detectable condition. A small addi-
tional amount of external manipulation of the sorted file block is required by the
non-associative processor controlling the sort to concatenate the two halves of
the sorted block since one will be in the reverse of the desired order, but it is
felt that this is a small price to pay for a speed-up factor of greater than 2. This

technique is shown in Example 5.3 that follows.

The speed-up involved in this approach is greater than a factor of 2. To
understand why it is greater than a factor of 2 instead of exacily equal to 2, we
must consider the properties of the fields to be searched. Assuming an even dis-
tribution, there is on the average one more bit with the value "1" in the higher
valued half of a sorted file than in the lower valued half of the same file. This can
be verified in Example 5.3a). The greatest value search has a shorter minor
cycle time for .bit positions with a value of "1" in the word with the greatest value

than for bit positions with a "0" in the word with the greatest value. Likewise,

250

the least value search has a shorter minor cycle time for bit positions with a
value of "0" in the word with the least value than for bit pesitions with a "1" in
the word Wit;h the least value. This provides for an average major cycle time five
gate delays shorter than if all words were to be selected in an ordered retrieval
by either search alone (assuming the delay for each minor cycle of both Mode B
and Mode C search operations ranges from 3 to 7 gate delays). The design for

this technique has been indicated in Fig. 5.4.

Example 5.3: "Mode B” and "Mode C" Parallel Operation.

a) WORDS to be retrieved:

251

A = Number Ascending

Word Bit Positions of 's Order of
Number 1 2 3 4 5 6 7 8 9 10 per Word Retrieval
1 c 0O 1 0 1 0 1 1 0 1 5 i2
2 1 1 0 0 1 0 0 1 0O C 4 20
3] 0 G o] 1 1 1 1 0] 1 S 5]
4 1 1 1 1 1 1 0 O 0 0 6 30
5 C 0O i1 0O 0 0 O © O G 1 11
8 1 1 i o 0 0 0O 1 0O 0 4 23
7 c ¢ o o 0o 0o O © 0 0) 1
8 G 1 O 1 1 1 1 10 1 7 14
S 1 1 © 1 c 1 0o 0 1 8] 5 21
10 1 1 1 1 0 0 1 1 0 0 6 28
11 1 1 0 1 1 1 1 1 1 1 9 22
12 0 0 0 1 1 1 i 0 1 1 B 10
13 0 0 3] O 0] 1 1 1 1 1 5 4
14 C 1 1 0 1 0 1 1 1 1 7 15
15 1 1 1 1 1 1 (§) 1 1 D 8 31
18 1 1 1 0 1 0 O ¢ 0 0 4 26
17 1 1 1 1 1 0 o 0 0) 5 29
18 1 1 1 0 0 3] 1 0 o 1 5] 24
19 O ¢ o ¢ 0 ©O 1 0 0 1 2 2
20 1 §] 1 0 o o ¢ 0 1 W) 3 19
21 0 O 1 1 0 i 1 0 1 i B 13
22 60 o 0 1 O 1 1 1 1 1 B 7
23 1 1 1 1 1 1 1 1 1 1 10 32
24 o oo ¢ o 0O o 1 1 1 1 4 33
25 6] 1 1 1 1 1 0 1 1 o T 16
26 c 0o 0o 1 1 0 1 0 1 1 5 8
27 1 1 1 0 DO 1 0 1 0 0 5 25
28 c 0o 0©0 1 1 1 0 1 1 0 S 9
29 1 1 1 1 & ¢ 0O 0 1 0O 5 27
30 1 0 0 1 © 1 o 0 0 0 3 18
31 0 0 0 0 1 1 0 0 1 1 4 5
32 1 0 0 O 0 0 1 o 0O 1 3 17

Number of 1's In memery: 160
Number of bits in memory: 320
Number of 1's per word in the smaller half of the ordered list = 4.89.
Number of 1's per word in the larger half of the ordered list = 5.31.

b) ORDER of retrieval in parallel operation:

Let Ly and Ly be the lists of words retrieved by Mode B and Mode C search
operations, respectively. Both lists are ordered with respect to time, in Gate
Delay Units, at which they are retrieved, and neglecting overhead time between

major cycles. Assume that for the least value search, the gate delays for each

252

riinor cycle range from 1 to 7 and that for the greatest value search, they range

from 1 to 4.

Ln Time® Lo Ly Time® L~ | Ly Time® Lp
Start 0 Start - 173 27 5 368 -
7 10 23 3 180 - - 385 32
- 28 15 - 198 18 - 404 25
1% 32 - 22 226 B 1 408 -
- 48 4 - 239 11 - 423 14
24 86 - - 264 9 - 442 8
- 73 17 26 266 - 21 454 -
- 95 10 - 292 2 End of Retrieva
13 108 - 28 308 -
- 120 29 - 323 20
31 140 - 12 352 -
- 148 16 - 354 30

% Time in Gate Delay Units

Throughput = 454 gate delays (32 * 10) bits = 1.42 gate delays,/bit.

5.2.8 Issues and Limitations

We have presented a design of an associative memory that can be used for
fast ordered retrieval. From Example 5.3, neglecting the overhead in loading
and unloading the memory, the sorting speed is 1.42 gate delays per bit. This
design is therefore very attractive and can be used in many places where fast
searching and scrting is required. However, there exists many issues that need
to be carefully considered and resolved before successful operations can result.
We discuss four of these issues here, namely, LSI implementation, manufactur-
ing defects, modular expansion, and multiple mateh resolution. We do not con-
tend that they exhaust all the issues in this design. New issues may come up

during the implementation phase and will have to be resolved by the designer.

5.2.8.1. LST Implementation

In Tig. 5.4, a complete design has been shown. FEach bit cell requires 17

gates. There are extra logic associated with the registers and the controls.

253

Consider a 32-bit word and a 32-word memory. This design needs over 17,000
gates for the logic in the bit-cells only, execluding all other registers, memory
cells and control logic. Therefore, the memory size that can be effectively
implemented on an L3I chip is very limited. One solution is to reduce the
number of functions in a cell when the application does not call for it. However,
this is very much application dependent. Furthermore, the number of pins on
the L.3] package also limits the word size. In order to maintain fast response and
high throughput, paralle! reading and writing of bits of a word in the memory is
necessary. The major portion of the pins of an L3! package is usually taken up
for parallel reading and writing. For a 32-bit word memory, the pin requirement
is 32 plus a few controls and selections. On the other hand, the pin Hmitation
will put a maximum word size that can be implemented. 1t becomes obviocus
that modular expansion is necessary in order for this design toc be practical.

The issue of modular expansion is discussed later.

5.2.8.2. Manufacturing Defects

After the LSI chip has been manufactured, tests are made to determine
whether any cells are faulty. A faully cell can be determined by injecting cer-
tain test patterns inte the memory. If the number of defects are small and their
locations can be determined up to the locality of certain gates in the cell, then
these faults can be bypassed by utilizing some spare bit-slices designed into the
memory. The difficulty in recovering an error in a faulty cell of the CAM is that
the error may not only affect the word itself, but it may also affect other words
because the value of the faulty bit is available to other words via the feedback
circﬁitfy. Therefore, it may be necessary to remove the current bit-slice or the
current and all bit-slices to the right from operation when an error occurs in a
cell. We have assumed that only stuck-at faults ean occur in the gates of

memery cells and bit-slice control legic. PFaults oecurring in registers and con-

254

trol store are not considered since the logic there is only a smal! fraction of all
the logic on the chip. By assuming that the j'th bit of the i'th word is faulty, we
can identify three types of faults, one in which the j'th bit-slice has to be
removed from operation, one in which the i'th word has to be removed from
operation and one in which all the remaining bit-slices are rendered useless.
Referring to Fig. 5.4, for faults that occur in gates 14-17 and the bit-slice control
logie, they only affect the feedback values but they do not affect the enable lines
so long as the mask bit is 1, that is, the bit-slice is masked off. This can be done
by setting a 1 permanently in the j’th bit of the mask registers and shifting the
external pin connection to the chip by 1 bit. For faults (stuck at 0 or stuck at 1}
that ccecur at gates 2, 4-13 and the storage cell 18, and for stuck at O faults at
gates 1 and 3, they do not affect the remaining words so long as the enable sig-
nals are set to 0, that is, the i'th word is disabled. This can be done by setting a
0 permanently in the i'th position of the word flag register W, and the
result/temporary registers Wy — Ws. For stuck at 1 faults that occur at gates 1
and 3, they affect the enable lines for the next bit-slice. If an enable line has a
faulty value of 1, that is, the remaining bits of this word are enabled regardless
of whether the current word or bit-slice are masked off, it may cause a faulty
feedback to other bit-slices on the right. So unless all the remaining bit-slice
are masked off, the fault that occurs in cell (i,j} will propagate to these bit-
slices. A finer recovery procedure can be developed if we can identify the

corresponding words to be disabled for a particular search operation.

From the above discussion, we see that recovery from manufacturing

defects are easy and most of the faulls are recoverable.

5.2.8.3. Modular Fzpansion

Qur philosophy of the associative memory design is that we want to distri-

bute the logic into the storage cells. In order for all the distributed logic to per-

255

form coherently, extra communication lines are needed to transfer enable and
feedback signals from bit to bit. The number of these communication lines are
usually large and this will eliminate the possibility of modular expansion which is
easy in the case of RAM's. Consider our design in Fig, 5.4, each cell has 4 enable
lines to communicate with the cell on its right; and each bit-slice has 8 lines
which are used for feedback, synchronization and mask. These lines run across
all words in the bit-slice {these exclude lines needed to read and write data into
each bit}). Suppose a memory chip of m words by n bits is available. To extend
the word size of this memory, we can put 2 memory chips together side by side
as shown in Fig. 5.7(a). However, this design needs 4m lines to pass the enable
signals from the chip on the left to the one on the right. This is not feasible even
for a small m. To extend the memory size, we can put 2 chips one over the other
as shown in Fig. 5.7(b}. This design needs Bn feedback lines to pass the feed-
back, synchronization and mask signals between the two chips. Even for a small
value of n, the number of interconnections is very large. In order for our design
to be practical, some other schemes of modular expansion are necessary. In
Fig. 5.7(c), we show a scheme that allows us to extend the memory size by
increasing the dimensions of the memory, A batch of in memory chips are put
together in parallel. There is an exira dimension and is composed of a single
memory chip running across the m parallel chips. A flow chart for an ascending
order retrieval algorithm of m® words is shown in Fig. 5.8. The titne needed to

2

orderly retrieve m? words is m?+ m units of load time {time to store a word

into the memory) and m? + m units of search time {a search time includes the
time to execute a Mede C operation and to read it out into the 1/0 register). The
amount of search time can be reduced to m*+1 units of search time when the

Mode C searches in chips 1, ..., m are performed in parallel with the Mode C

2

searches in chip 0. In a single memory chip which can accomodate m* words,

2

the time needed for this memory system is m? units of load and m? units of

4m enable lines 256

L 1

- m words

“+-=n bhits——»

A"y

-
PR
»

{a} Word Size Extension

- n bits -
a bit m words
slice ‘
[YYY3 — J &n feedback,
- synchronization

and mask lines

{b}) Memory Size Extension

-— T WOrds ———c——
’///’ 0 ////’
n biti’,/’r

m words

m chips

(c) 3-dimensional Associative Memory for Memory Size Extension

Figure 5.7 Modular Extension for Proposed Associative Memory

257

(Begin)

Load chips 1.2m in
parallel with m~ words
(m units of load time)

Perform Mode C searches
on chip 1..m in parallel

and read ocut in parallel

{1 unit of search time)

Load m maxima into
chip 0 sequentially
(m units of load time)

) J

Perform Mode C searches
on chip 0 in parallel
and read out
(m units of search time)

repeat m-1 times

End.

Figure 5.8 Flow Chart for Ascending Order Retrieval of m’ words in a
Three-dimensional Associative Memory (see Figure 5.7c¢)

258

search time. Therefore the degradation in performance is minimal when m is

2

large. For a memory size larger than m* words, extra dimensions are needed.

We conclude that our scheme on memery expansion has minimal degrada-
tion on performance. The difficulty still exists in word size expansion. The limi-
tation is due to the pin requirements. However, we can trade performance for a
smaller amount of external pin conneetions by loading bits of a word in groups
iﬁstead of all in parallel. However, the degradation in performance due to this

icading scheme is more pronounced than cur memory size expansion scheme.

5.2.8.4, Multiple Match Resolution

One of the most useful applications in our design is in the multiple response

resolution. A tag field can be included in each word. Each tag is a distinguish-
able number. The size of each tag must be at least [loggml for a memeory size m.

When there are multiple responses, each tag serves as a number for the ordered
retrieval scheme. The words used in the ordered retrieval are those that
respond. Only the bit-slices containing the tag are used in the search. The first
cycle can retrieve 2 words, the one with the maximum tag, and the cne with the

minimurm tag. Subsequent searches give 2 responses each time. The speed of

this resolution scheme is -%— memory cycle per word and is independent of the

memory size.

There are two disadvantages in using tags for multiple match resolution.
First, there are irregularities in implementation. Because each tag has a distin-
guishable value and if each tag is hardwired into the memory, it will involve a
diﬂ'erentv désign for each word and it will also be difficult to overcome the prob-
lem of manufacturing defects when a cell in the tag is bad. This problem can be |
solved by loading the tags from a PROM when the memory is first used. Second,

when a cell in the tag becomes bad during operation, e.g., stuck at 0, then two of

259

the words in the memory have identical tags and it is impossible to distinguish
them.

We can also perform the multiple mateh resolutien without using special
fields as tags. This can be done by treating the contents of each word or part of
the word as a tag itself. It requires all words under consideration in the memory

to be different in order for unique responses to result.

5.2.8 Comparisons with Other Methods of Ordered Relrieval

We have presented in this section several of the search schemes, namely,
the equality search, the threshold searches, the proximity search, and the
extremum searches. The other searches defined in Section 5.2.4, can be imple~
mented as a combination of basic searches. Using the implementation in this

section, we compute the maximum and the minimum search times for each

search.

260

Search Type Minimum Number Maximum Number
of Gate Delays of Gate Delays
Equality Search n+5 n+5
inequality Search 7 n+b5s
Similarity Search n+5 n+5
Greater-than Search n+5 n+5
Less-than Search 7 n+5
Greater-than-or-equal-to Search n+95 n+5
Less-than-or-equal-tc Search n+5 n+5

Double-limit Search
Between-limit Search, X > Y

<X&>Y n+ 12 2n + 10
<X&2Y n+ 12 2n + 10
=EX&>Y 2n + 10 2n + 10
sX &=2Y 2n + 10 Z2n + 10
Outside-limit Search, X <Y
<X&>Y 7 2n + 10
<Xé&=2Y 7 2n + 10
=X &>Y n+5 2n + 10
=X &=zY n+b5 2n + 10
Proximity Search 2n+4 3n+56
Extremum Search
1) Least-Value Search n 7n
2) Greatest-Value Search n 4n
Adjacency Search
1} Nearest-above Search 2n+ 5 8n+5
2) Nearest-below Search n+ 7 5n + 5

We see that the delay times in all these searches are propoertional to n, the
number of bits in a word and 1s independent of the number of words in the

IMemory.

Several methods of ordered retrieval and multiple response resolution have
been proposed in the past. It would be of great value to evaluate the method of
ordered retrieval presented in this section in terms of these octher schemes. In
particular, we compare this new algorithm with those of Frei and Goldberg
[FREB1]., Seeber and Lindquist [SEE82], Lewin [LEW8B2], Miiller [MII64], and
Foster [FOS76]. In order to evaluate these various schemes, it is necessary to
determine the significant characteristics that we wish to examine and to deter-

mine the comparable features of these diverse methods.

In order to facilitate these comparisons, the methods mentioned will be

classified into two types, those with an algorithm to order the retrieval

261

according to the contents of the stored words and those which use an external
priority scheme, usually some form of priority tree, to order the retrieval
according to the physical location in memery. Among schemes of the first type
are those of Frei and Goldberg, Seeber and Lindquist, Miiller and Lewin. Miiller's
scheme uses the contents of the responding words to resclve multiple response
conflicts but it does not necessarily order the selsctions in ascending or des-
cending order. Among those schemes that use an external priority circuit to
resolve conflicts are those of Weinstein [WEIB3] and Foster. These schemes are
not strictly comparable to the proposed algorithm since they cannot be used for
gsorting. Likewise, Miiller scheme is not absolutely comparable to cur proposed

scheme but is similar enough that we will include it in the comparison.

The tweo main considerations for comparison are obviously the speed with
which a method retrieves stored data and the cost in terms of amount of logic
required. Rather than attemnpting an exhaustive analysis of the implementation
cost for each of the various schemes, we shall look at the more readily available
information as to the rate of cost increase for increasing memory size. In par-

ticular we are interested in the memory cost as a function of memory size.

We shall limit our discussion of speed comparisons to the number of search
cyecles required to retrieve each stored word. For several of the schemes under
consideration, a significant parameter is the density of the flagged words, that
is, the ratio of the number of words to be retrieved to the number of words
addressable with the given tag field size. We will assume that the number of

words addressable by the tag field is the same as the length of the memeory.

The chart of Table 5.1 shows as direct a comparison as possible between the
aforementioned searches and the search scheme propoesed. The headings
include relative speed {in terms of the number of cycles needed to retrieve each

flagged word), comments upon dependencies of logic complexities to memory

Scheme Speed - R (n k) (Cycles per Re-
trieval of an n Bit Tag)
=========$J======================
Frel and Forn=5
Goldberg Best Case (k =28) R =2k
IS Worst Case (k=1): R =7k
Seeber and t =2
Lindquist Rin k):is(t+k—1)+
-.-.G...._IE. (k(t 2i)k“l +
a*(c —z*)‘";
e
Lewin Be=1 poet
k
Miller Best case : k;-l
Worst case %1
k
'-_-— - ———— —— -
Fosater 1 cycle per retrieval
Proposed 5 eycle per retrieval

———— i —— —— " —

Mernory Size
Dependency

———

262

S 1 235 1

Length of tag
field (n} only

e 0t it o = i e e o s ey s

Length of tag
fleld (n) only

Independent

i e S e 8 it

Independent

External log-
ie uges

a(em 1)-1
gates for 2™
words of

T e

Increases as
loggm * tor
m words of

Dampluiupgat I AU ——

Relative Com- Best Claxs
plexity of of Problem
Hardware Re-
Basic CAM High densi-
ty of
____________ _|.Tesponders
Complex cryo- Density
genic logic at dependent
each bit {18
gates)
A registera plus Indepen-
9 gates per bit dent
| slice
Basic CAM plus Multiple
some additional response
control and resolution
| storage _____.|lowy
Tree Circuit Multiple
external to CAM responae
resolution
only
e] S
~ 17 gates per Indepen-
bit cell dent

logzm. is the size of a tag that must be used to uniquely identify each word for a memeory size of m.
Thia differs from the other schemes which do not use a specialized tag for ordered retrieval.

Table 5.1 A Comparison Table for Grdered Retrieval Schemes

263

size, relative complexities of the hardware needed for implementation, and com-
ments upon class of problems handled. Fig. 5.9 shows a plot of words fo be
retrieved for a memory with a five bit tag field in each word, corresponding to a
memory size bf 32 words. It is seen thal our proposed scheme is equal to or
better than all of the presented schemes in terms of speed, and in terms of the
number of cycles needed to retrieve a word from memory. In terms of the abso-~
lute speed, the Foster method is somewhat faster in terms of gate delays per
reirieval since it uses an external priority logic tree. The Foster scheme, how-
ever, is not useful as a tool for ordered retrieval, but only for muitiple response
resolution. At two retrievals per memory cycle, our proposed scheme is by far
the fastest ordered retrieval scheme, even faster than the Miiller scheme which
does not even produce ordering, only resolution. As far as the complexity of the
hardware goes, our scheme is well within the realizable realm of L3I technology
and in fact is no more complex than that used by Seeber and Lindquist or Yang
and Yau [YAN66] in their implementation of Lewin’s algorithm. We conclude that
such a design as we have proposed here may be a useful and realizable tool for
associatibe processing in any applications where ordered retrieval is important.
One of the applications is to use it as a multiple match resoclver as we have
described in section 5.2.8. Another application is to use it as a file processor in
data base applications. In the next section, we look at sormne of the requirements
for offloading the processing onto a data base machine and see how the associa-

tive memory proposed in this section can be extended to sequential memories.
5.3 DATA BASE MACHINES

5.8.1 Introduction

A Dato Base Machine (DBM) is defined as an architectural approach which

raises the level of the interface from the CPU to the storage subsystem, and

8...
74 key
1 -~ Frei and Goldberg
. 2 - Seeber and Lindquist
= e 3 - Lewin
> 4 - Miiller (Best case)
- 5 - Foster
+ 6 - Proposed
- 5
|
[+}]
jo R
wn
@
5 Y
L
.E
- 3
"o
=
‘OJ
g2
5 .
[V H]
o
o 4
s
: T
b
0 5 10 15 20 25 30 35 40

k (number of words to be retrieved}
Figure 5.9 Comparison of Retrieval Speeds for a 5 bit Tag with k Hords Flagged

v92

265

distributes processing power closer to the devices on which data are stored
[LAN79]. There have been many DBM designs, among them are Data Base Com-
puter (BBC) [BAUY8, KER79, BAN79], Context Addressed Segment Sequential
Storage (CASSM) [LIP78, SU 78], Relational Associative Processor (RAP) [OZK77,
SCH79], Rotating Associative Memory for Relational Data Base Applications
(RARES) [LIN78], Datacomputer [MAR75], List Merging Network [HOL79], etc.
Although most of these designs are directed towards a specific application, e.g.
text processing, relational data bases, ete., the trend in the future is to utilize
the available L3I technologies to design a more general purpose DBM. There
have been many factors, both in the past and in the future, that pertain to the
growth of DBM’s. Apart from the growth of semi-conductor technologies and the
rising need for larger data bases (Figures 1.2, 1.3, 1.4, Table 1.1), the most
important factor that leads to the increasing hardware implementation of data
base funections is the growth in complexity and size of data base management
software. Because it is necessary to provide a high level view of the data to the
users, it is essential to provide a complex translation from the physical data
structure to the logical data view and vice versa. Conventionally, this has been
done by the data base management software. Depending on how complex the
translation mechanism is, the amount of software to be developed and the
amount of execution time needed is also different. As an example, the INGRES
data base takes 350,000 machine instructions to process a simple transaction
which can be a retrieval or an update of a simple record of data. Out of these
350,000 instructions, only 25,000 instructions are real work that performs the
actual function of the query. The other part of the work (325,000 instructions) is
purely overhead which includes 25,000 instructions for parsing, 75,000 instrue-
tions for validity checks, 125,000 instructions for task switches and pipes and
100,000 instructions to interface with the users. Some of these overheads can

be made smaller, e.g. the amount of validity checks can be reduced if the main

266

memory is large enough and the system catalog can be put there; the user
interface can be made less complex; the query can be parsed at compile time in
crder to eliminate the run time interpretor overhead, etc. The execution of a
simple transaction is therefore CPU bound. On the cther hand, in order to pro-
cess a complex transaction in INGRES, which retrieves or updates multiple
records, it takes about 25,000 machine instructiens to process a 512 byte page
and 20 msec. to fetch a page from the secondary storage. Out of these 25,000
instructions, only 6,008 are real work, the other part are overheads. However,
the processing of a complex transaction can be speeded up by (i) compiling the
query before execution; (ii) enlarging page size and/or adding drives; (iii)
developing better decomposition strategies and (iv) building a one process real
time system. As a result of these overheads, it is seen that the use of a DBM,
which executes the query outside the CPU, reduces the execution overhead of

the CPU and the 1/0 overhead in transferring data into the main memory.

5.3.2 Issues in the Design of DBM =

Traditionally, the design of DBM’s are plagued by many issues. Among them

are:

{1) Parallelism - Kind and Degree
The designer has to decide on the kind of functions that can be pro-
cessed in parallel and in what degree. These functions include address
mapping operators and the DB functions as well. As an example, the
query processing in INGRES can be divided into four levels, {a) query
‘modification which parses the query and reduces it to a useable form; {b)
guery dececmposition which decomposes a query that accesses multiple
files into multiple sub-queries that access single files; {c¢) one variable
query processing which processes these s';ubvqueries'_that access single

files and (d) access method which translates the requests into physical

()

(3)

267

disk accesses. We can have four different ways to cut the software into
two sets so that one set resides in the CPU and the other set resides in
the DBM. The analysis reduces to the allocation of processes in a two
processor system and the max-flow min-cut network flow technique
developed by Stone [STO77a] can be applied here. The parameters that
the designers must consider include the speed of the DBM and the
degree of parallelism needed, Further, they must consider the eflicient

scheduling of tasks on these processors.

Technology dependence

The designer of the DBM must take into aceount the available technology.
Further, the design must be able to evolve as new technologies are made
available, Using disk technologies, there is a large overhead in translat-
ing the signals available from a disk head to a useable form by the DBM.
With the availability of bubble and CCD memories, very little signal trans-
laticn is necessary and the logic and the rhemory cells can be imple-

mented together on the same chip.

Interfoce, where and in what form:

The problem is to design a good interface between the DBM and the host
processor. This interface may be implemented in hardware/firmware or
software or a combinations of both., This interface translates queries
from the host processor to DB functions processable by the DBM. Impor-
tant questions like where to put this interface and how much capabilities
it should have, must be answered. Should it be a part of the host, or
should it be a part of the DBM? Should the interface be able to access
the memory hierarchy? How should the interconnection network be
between the DBM and the storage sub-system? What type of language
primitives should be used? These questions have to be considered care-

fully by the designer.

268

{4) Storage structure
The kind of storage structure is very important. If keyed accesses, that
is, acecessing data via a key, are allowed, then additional hardware capa-
bilities like associative memory or extra pointers are necessary to sup-
port it, Further, questions like whether the storage structure is dynamic
should alsp be considered.

(5) Backend primnitives
The designer has to trade the availability of backend primitives {which
include functions like sorting, file merging, etc.) with the cost and the
difficulty of implementing it.

(8) Control algorithms
Because the memories of a DBM are usually slow {of the crder of 100
usec access time), much overlap and parallelism are necessary in order
to achieve a high throughput. Control algorithms like scheduling and file

placement and migration algorithms are therefore very important.

The designer of a DBM must consider all these issues together and make a

judicious tradecf! in the design.

5.3.3 Classification of DEM’s

The DBM proposed so far can be divided into two types, (1) backend systems
using conventional mini-computers and {2) intelligent controllers which include
cellular logie, assoclative memory and MIMD architecture. We describe each of

them briefly here.

(1) Backend systems using conventional mini- computers {(Figure 5.10)

In this design, backend systems are added to a generally large CPU in order
to enhance its DB processing capabilities. The functions of the backend system

can include access validation, storage management, concurrency control and

269

i
1
(

Processor

Backend

Disk

— e A S e —— .-.————.....—-—‘

L....-.—-—-— W — v m—

-
|
1
|
i
|
|
i
|

Figure 5.10 Backend Systems Using Conventional Mini-computers

270

I/C control. The advantages of such a system are that it allows concurrent shar-
ing of a single data base and it provides better security, integrity and recovery
measures because the backend machines provide a single gateway to the physi-
cal data base. In such a system, network protocols are designed so that the CPU
can offload the processing onto the backend machines. As an example, in an IBM
system, the CPU can be an IBM 370/168, and the network protocol is the SNA
network prétocol. In this case, it takes 10,000 to 30,000 machine instructions te
execute the protoeol and to offload the processing. However, if an INGRES data
base is immplemented on the system. and the system can only offlcad a fraction
of the processing workload, e.g. validity checks cannot be offloaded, the speed
improvement is only minimal. Further, there is an upper bound on the number
of backend processors so that enough work can be offloaded onto these
machines. Other disadvantages include costly software development and low

reliability. The use of backend machines is therefore a temporary method to

extend the processing power of a large CPU,

(2) Intelligent controllers

The use of intelligent controllers is an extension on the concept of backend
machines. In the case of the backend machines, gach cne of them can control a
set of disks and can perform high level data manipulations on the stored data.
In the case of the intelligent controllers, the logic is partitioned further down
onto the stored data. The characteristies of this design are that simpler, less
costly designs are used and each of the controllers is dedicated to a smaller
block of data. There may be a higher level controller which controls the intelli-
gent'; éontrollers collectively. This design therefore approaches a multi-level

control scheme. Basically, this design can be divided inte three categories:

(a) Cellular Logic (Figure 5.11)

In this design, the processors are duplicated across each of the memory

271

1/0 Control

-
— PI Ml
p M
Host Controller |1 2 2
. L
9 L]
[]

|]

L Pn M

Figure 5.11 Intelligent Controllers - Cellular Logic

- 272

elements which may be a track of a disk. They provide associative search
for data in the memory and they access data directly by value. Most of the
conventional designs follow this principle, e.g. TapeDRUM [HOLS58],
Slotnick’s Logic per Track Disk [SLO70], RAPID [PAR72], CASSM [LIP78,
SU '79], RAP [OZK77, SCH79], RARES [LINY8], DBC [BAU78, KER79, BAN79],
Chang's Major/Minor Loop Machine [CHA78], etc. Because the logics are
distributed across the data, this design provides very fast searches and it
reduces the software overhead by performing content addressing.
Further, the architecture is very suitable for a relational data model which
is a two dimensional data model. A relation can be placed so that all the
tuples pass out in a bit-serial fashion to the cellular logic simultaneousty.
Other data models can be modified to fit the architecture by adding addi-
tional data structures, e.g. CASSM. However, there exists many disadvan-
tages with this design: (i) Because of the large degrees of replication, the
logic are bound tc be simple. Usually, only simple functions like squality
matech, maximum search; ete., are Implemented and the designs are
directed towards specialized applications. (ii) The data base workload
must be large (>40%) in order to keep the parallel resources utilized. (iii)
In a large data base, the degree of replication may be large and the cost
may be prohibitive. (iv) Because of the way that data is placed in the
architecture, data types are lirnited to character strings and integers.
More complex data structures would require more complicated externat
control. (v) If the DBM is built on a disk, the processors must be extremely
fast because very fast signal translations are needed in order to process
the disk data in real time. (vi) Lastly, 1/0 is usually the bottleneck.
Although the processing can be done in paralle], 1/0 is usually done seri-
ally. However, it is hoped that the pre-processing using the DBM's has

eliminated a significant portion of the data transfer.

(2)

(c)

273

Associative Memories (Figure 5.12)

In this design, an associative memory, such as STARAN [GOO75] or the pro-
posed design in Section 5.2 of this thesis, is used to provide associative
search capabilities. The model in Figure 5.12 resembles a conventional
memory hierarchy in which the fastest memory {the associative memory)
is small and is interfaced to the slow mass storage through an intermedi-
ate buffer memory. The advantages of this design are rapid search for
array resident data and its suitability for the relational data model. How-
ever, associalive memories are still relatively expensive and large associa-
tive memories are not feasible. This design therefore experiences the
usual problems of a memory hierarchy, namely, the swapping of the data
across various levels of the hierarchy. It is still unknown .Whether the
locality of data accesses in data bases is better than the locality of
accesses in caches and virtual memory and is highly dependent on applica-
tions. Further, the technigue is not effective for non-resident data and a
high bandwidth bus is necessary to transfer data between the assoclative
memory and the mass storage. In one such design [BER79] in which
STARAN is used as the associative memory, it requires 1024 1/0 lines with
300 to 450 nsec transfer time per bit slice to interconnect the associative
memory with the bufier memory in order for the technique to be effective.
This technique is therefore unduly expensive in the associative memory

and the 1/0 bus.

Multiple- Instruction- Multiple- Data- Stream (MIMD) Architecture (Figure
5.13)

In the MIMD architecture, the cellular logic have been pushed oul of the
memory elemeunts and are interconnectsd with the memory elements
through an interconnection network. This design offers more flexibility and

better load balancing and allows the processors to be shared among the

Figure 5.12

274

Associative Processor
(e.g. STARAN)

Intelligent Controlliers - Associative Memories

= T = = e——— -1
I Control :
|

. !
* |
' |
| |
{ Bit-slice :
: Associative)
i Memories :
: |
| |
e e e e e e e 2

Fast
Buffer
Memory

Mass
Storage

Master

/\

Slave

Slave

Interconnection Network

cco

E.g. DIRECT

cco

Figure 5.13 Intelligent Controllers - MIMD Architecture

275

276

memory elements. Because of the fact that each processor can access
multiple memory elements simultaneously, it is easier to perform data base
operations which require multiple files to be coupled, e.g. a multi-relation
join. Further, expansion is easy and modular. However, this design sufifers
from the same disadvantages as the associative memory when the size of
the memory is not large enough in which case excessive swapping will
occur. Nonetheless, by using memory modules which are sufficiently large,
it is possible that the amount of swapping can be limited to a tolerable

amount. This design is exemplified by the DIRECT system [DEW79].

Since the DBM is a very special purpose hardware and reguires a large
degree of replicaticn, it is important that unessential software are not placed in
the DBM. In particular, software for protection, file system management, code
swapping, task switches, pipes or system calls should be eliminated from the
DBM. These software modules can be shared at a higher level with no adverse
effects on the sysiem performance. On the other hand, the DBM should have a
thin ecollection of utilities, the run time DB management system and a self-
managed buffer pool. The management of buffers is relatively easy here

because the accesses are usually made in a sequential order.

In the next section, we present the design of a simple data base processor
which is extended from the design of the associative memory presented earlier.
Our design is totally hardware oriented and follows the same prineiple as the cel-
lular logic approach. However, our design ldiﬂ'ers from the other designs in
several features, (i} it is completely hardware controlled and therefore is very
fast, (ii) the logic iz very simple and therefore can be replicated easily and
implemented on the same chip as the memory elements. The design is capable

of equality, threshold, proximity and extremum searches,

5.3.4 Frtension of the Associative Memory Design to Sequential Mermories

277

Qur design presented in Section 5.2 can be extended to the design of associ-
ative sequential memories which is made up of multiple loops of circulating bits
shifting in synchronism. There is a read/write head for each loop so that one bit
fromm each loop ean be read or modified in one clock peried. This can be
extended to include multiple heads for each loop. Examples of such sequential
mermories include charge-coupled device memory, bubble memory and fixed

head disk.

Since only one bit is available from each loop at any time, we can design the
associative logic outside the sequential memory as shown in Figure 5.14. In this
design, m words are stored in the memory, with one word occupying each loop.
During a clock period, a bit-slice of these m words is shifted out of the memory.
This bit-slice iz then processed by the associative logic and the enable signals
are stored in temporary flip flops. Note that in the design presented earlier, the
enable signals propogate from the MSB to the L3B and the data are stored in
flip-lops. In the case of a sequential memory, the enable signals are stored in
temporary flip flops. As the bit-slice is shifted out, MSB first, the bit-slice,
together with the stored enable signals, generate a new set of enable signals
which are stored back into the flip-flops. The exact design is shown in Figure

5.15,

There are two advantages with this design. Firsi, the additional logic for
each word is very small and therefore the cost increase is minimal. Second,
when the memory size is extended, only B lines due to the asscciative logic are
needed to be connected between adjacent modules. Therefore, the memory size
can be modularly expanded. Moreover, the amount of bit-slice control logic is
small, so we can design a memeory with n modules, each with its own associative
and bit-slice control logic. During normal operations, each module can perform
independent associative search operations. When it is necessary to perform

associative search operations on 2 or more adjacent modules, all except one of

i

Bit-slice
Control
Logic

278

Associative
Logic

Word 1 o] R/M

i

|

Associative
Logic

Word m=-1 1 R/W

——e e e e

Sequential
Memory

Figure 5.14 Associative Sequential Memory

Associative
Logic

Associative
Search
Logic

279

Clock

]
F
D Dg}:y 1s§ Fi, 541

—w{D Delay E
T 541 F—

-0 Delay |%§ ;

FIE = SR Eanne
> i
] I
L e ‘
D Delay L—-—,——' 12 :
I i
| a
| — e e e =

From output of;
Sequential Memory

Figure 5.15 Associative Logic for Associative Sequential Memeory

280

the bit-slice control logic for these modules are switched out of the system and
the feedback lines are connected together to form a large block of associative
memory. This dynamic reconfiguration capability is useful in applications where
the nature and the size requirements may change dynamically. However, there
are two limitations with this design. First, the words must be organized as
desecribed here because our design can only process one bit-slice at a time.
Second, it is limited to memory types in which these logic can be easily imple-
mented in L3I technology, e.g. CCD memeory and bubble memory. In disk tech-
nolegy, the associative logic have to be implemented on a separate chip and the
amount of interconnections between the memory and the associative logic may
become prohibitively large. In a feasible implementation, e.g. CCD memory, this
desgign can be used as the lowest level of a DBM. Higher level control may be

designed to include more complicated functions.

5.4 CONCLUSION

We have presented in this chapter two hardware features to support data
management on a distributed data base. The first design is an associative
memory which is capable of equality, threshold, proximity and extremum
searches. The design is completely asynchronous and is bit-serial and word-
parallel, that is, the enable signals propogate from bit-slice to bit-slice, but all
the processing within a bit slice is done in parallel. The propogation time across
a bit-slice is 1 to 7 gate delays and each ceil has a complexity of 17 gates. This
design is by far the fastest in the literature. Although memory expansion
presents a slight problem, but by extending the dimensions of the memory, the

memory can be expanded with only a slight degradation in performance.

The second hardware design presented is an extension of the associative
memory to data base machines. It is shown that the concept of the bit-serial

associative memory can be extended to associative sequential memory. The

281

design is useful in upgrading the capabilities of the mass sterage and reducing

the amount of data transfers across different levels of the memory hierarchy.

282

6. CONCLUSION

In this thesis, the issues on the resource management of data on a distri-
buted data base {DDB) system are studied. These issues are concerned with the
management of data and files as resources so that they can be shared efficiently

by the users. The major issues studied are:

(1) Query Decomposition on DDB’s

A gquery is an access request made by a user or a program in which one or
more files have to be accessed. When multiple files are accessed by the same
query on a DDB, these files usually have to reside at a single location before the
gquery can be processed. Substantial communication overhead may be involved
if these files are geographically distributed. It is therefore necessary to decom-
pose the guery into sub-queries so that each sub-guery accesses a single file.
These sub-queries may then be processed in parallel at any location which has a
copy of the required file. The results after the precessing are sent back to the
requesting location. It is generally true that the amouni of communications
needed to transmit the results is much srnaller than the amount needed to
transfer the files. This approach has been propoesed in the design of the central-
ized version of INGRES and is extended to the design of SDD-1, a distributed data
base. However, in some cases, decomposition is impossible and sore file
transfers are still necessary. In order to avoid these extra transfers, two cost
reduction models have been designed to reduce the operational costs of a rela-
tional data base. The first model reduces the retrieval cost but increases the
update cost by adding redundant information to each domain of a relational
data base so that relational operations such as joins and aggregate functions can
be performed without any file transfers. The second model reduces the update
cost but increases the retrieval cost by partitioning the relations into segments

so that they can be updated more readily. These two cost reduction models can

283

be combined to form a unified approach to reduce the operational costs of
DDB’'s. Further, it is shown that the optimization of placements of multiple rela-
tions under the use of these techniques can be done independently for each

relation.

{2) File Placement and Migration

This issue relates to the distribution and migration of data base com-
ponents, narmely, schema, data and control programs on the DDB with the objec-
tive of minimizing the overall storage, migration, updating and operatiocnal costs
on the system. In this thesis, the problem of file placements and the problem of
selecting the times for migration under changing access frequencies have been
proved to be NP-complete. Further, the isomorphism between the file place-
ment problem and the facility location problem are shown. The implications of
the last result are two folds. First, many results which have been derived in one
problem can now be applied to solve the other problem. Second, some results
obtained earlier for one problem can be shown to be weaker than the
corresponding results derived for the other problem. A file placement heuristic
is developed. While not necessary yielding optimal design, the heuristic yields
solutions of lower cost than those generated by other currently available heuris-

tics.

(3) Task Scheduling

In task scheduling, the requests on the nodal computer system and the dis-
tributed computer system are sequenced so that high parallelism and overlap
can be achieved, The requests may be a single word fetch or it may be a page or
file access. A model for the scheduling of tasks on a distributed system has
been developed. This model assurnes that global control is infeasible and all the
scheduling decisions have to be made locally at each node. It iz shown that the

scheduling of tasks in this model, when all the task processing iimes are

284

deterministic, is NP-complete. A heuristic has been developed and the perfor-
mance of this heuristic has been verified using simulations. A more restricted
model, which represents an organization of an interleaved memory system, is
dlso proposed. By using the additional eonstraints, it is proved that the optimal
scheduling problem is polynomially solvable. The performance of the scheduling
algorithm has been verified using simulations. Further, the degradation in per-

formance due to dependencies has also been estimated.

(4} Hardware support

Beyond the problem of resource management studied, the hardware sup-
port for the data base systems has also been investigated. In particular, an
associative memory which is capable of equality, threshold and extremum
searches in a time independent of the number of words in the memeory has been
designed. The complexity of the design is 17 gates/cell. The design is asynchro-
nous and utilizes a word-parallel and bit-serial algorithm. The delay is 1 to 4
gate delays across each bit-slice. This design can be applied to the resolution of
multiple responses. Further, such a design is not restricted to associative
memories and ean be applied to the design of associative sequential memories

and data base machines.

285

APPENDIX A THE ISOMORPHISM BETWEEN STONE'S PROCESS ALLOCATION

PROBLEM AND THE SINGLE COMMODITY QUADRATIC ASSIGNMENT PROBLEM

Stone’s process allocation problem studies the allocation of processes to
computers [STO77a, STO7?b, STO78a, STO78b, STO78]. The armount of communi-
catlons between two processes are defined and this in turn defines the cost to be
incurred if these two processes run on different computers. There is also a cost
of executing a process on a computer. The problem is to place the processes so

that the total cost of the system is minimum.

On the other hand, the single commodity quadratic assignrment problem
studies the allocalion of plants to plant sites. There are certain fixed quantities
of the single type of commodity that are to be shipped between the plants and
these define an overhead cost to the system if these plants are located in
different plant sites. There are also fixed costs of localting a plant at a plant site.

The problem is to locate the plants se that the total cost is minimum.

We can now prove the following theorem.

THECGREM A- 1
Stone’s process allocation problem is isomorphic to the single commodity gua-

dratic assignment problem.

Proaf
The theorem can ke proved by associating the variables of SBtone's problem with
the variables of the single commodity quadratic assignment problem. This asso-

ciation is shown in Table A-1.

10

\SE

nt

etk

nin

sucl

Rec

286

Table A- 1 Mepping between Stone's Process Allocation Problem and ihe Single
Commodity Quadratic Assignment Problem

Stone's Process Allocation Problem

Single Commedity Quadratic Assign-

Locations of computers

Possible plant sites

Process Plant :
Comrnunications between two Comimnodity to be shipped hetween
| processes twe plants
Cost of communication between two Cost to ship commeodity between two
computers plant sites

Fixed cost of executing a process on
a computer

Fixed cost of locating a plant at a
plant site

Q.E.D.

287

APPENDIX B THE LINEAR PROGRAMMING LOWER BOUND OF A CANDIDATE

PROBLEM [EFR66]

Efroymson and Ray's formulation of the linear programming lower bound is

k1
based on the optimization problem of Eq. 3.1, with an exception that EXNC Sk
k=1

is not evaluated to be rixcn}'l S;e where X;; is the fraction of §; that is directed
€

towards node k. The optimization problem that Efroymson and Ray considered

is {using the notations defined in this thesis}):

min C(I) - 2 Qij‘ka’k + E Gk Yk (B"l)
i.k k
such that
n 3
1= Z Xj,k (]31.....71.)
k=1
DéXJ,k §Yk§1 ('L.le,.ﬂ.)
Yk = O, 1

By defining the following notations,
N; = set of indexes of those nodes that can be accessed by user j;
P, = set of indexes of those users that can access node k;
nge = number of elements in P.

The cobjective function can be rewritten as:

min
C) =2, 9iSiuXsu + 2 Ce Y (B-2)
J.k k
such that
1= 3 X (F=1,....n)
keNj
0= ZXjJC é'nkYk (IC:]., ,TL)
jeP,
Yk = 0. 1

Recall that,

Ko = tk: Y =0};

288

Ky = UC! Yk=1;;
Ky = {k: Y, =unassigned].
The linear programming solution to the above optimization problem, neglecting

the integrality constraint of ¥y, is,

. Ik . 2}
i — = Sz
St == Jin St (B-3)
Xiae = 0 otherwise
1
Y. = |[— x.
k nk j§k i.k (B_4)
where
&9 keK gy
9 = 0 kEKl

This is the optimal solution because for k€f g,

2 XJ'.k = nkYk
jebP:

which implies that in the optimal sclution, the equality sign will hold, i.e.,
2 Xix =Y
jep,

or

1
- X'.;C:Yk
Ty j;’k ’

Substituting this value for Y, k€K into the objective function, the linear pro-

gram becomes,

) . Gy
min C(I) = Z Gp + min E stj.ka.k + 2 QJ‘SJ'JC‘!"'—'—“ Xj_jc
kel ke keKy g
such that,
1= E Xj.k (j=1,...,7?,)
kz—:Nj

This lead to the optirmal solution.

289

APPENDIX C THE EXPECTED VALUE OF A CANDIDATE PROBLEM
Recall that,

Ko={j: Y;=08

K1 - f}: Yj=1;

Kg = {j: Y;=unassigned}
We can rewrite the objective function {Eg. 3.1) on condition on K and X;.

c{J)= E Gy
icK,

+ 3 I?Jﬂé]n S

ieky

+ Y 1'1.11}1 Sig + 3, GYy
ie

ieky ek,
C{l}= Gy + &:* min S;; + Gy Y
) ~;§r1 ' ieféufrz Yoger Y iez.:Kz v (c-1
where (; is defined in Eq. 3.2,
Let
= . * in S, :
“1 ieKzn:uKZQI e S (C-2)
ZE = G Y,
igf:{z s (C-3)
So
c{l)= Ci +Z1+ Zp
~;§r1 ' (C-4)

Assuming that each of the combinations of Y; for j€K, can be assigned uni-
formly, we would like to find the expected value of C{I). We first define some
notations:

For each row i of matrix S, we define a mapping f; such that

witj ok j.k €1§1,.., nl such that S'l,p,i"l(k) < S‘l'..ui"I(k-l-l)
The mapping t; maps the original set of nodes onto a new set such that the

costs of access from node iin the mapped matrix are in increasing order.

Sy = min S,
1, jek, i,

t €K, is the node which has the minimum cost of access from node i.
| K| = [Ko U K,y| {(cardinaltiy of Kp)

K = KOUKIUKE

neiRel_q if {Kq] =0
CEY=] 1Kl if |K,] >0

Kaig = {z: €K and (7)2u(g)3

E(Z)"—' E G,,'l'E(Zl)"!'E(Zg)

icky

E{(Z)=E(Y, &* minS;;)
teKpuK jel

eKpukp
= > QuE(min Sy 5)
teKyuk, JE

E Si’qzﬂffaq[—l) +Si,t2IK2“[

geky
Plrai _ le)as(t)
(mip Su5) = C)
E(Z)=E() G;Y¥;)
jek,
= 3 C;£(Y;)
jeks
. o =1851-1)
M) ="Tmy
E(Z)= 3 G
'I:GK‘_

+ 1 Z Qi M E Si,q 2{“{3,‘1'-1) + Si,t 2”(21”
C(K)ie}{ouj{z qeky
(g)<y lt)
(n—|Kgl-1)

2

290

(C-5)

291

APPENDIX D BIELIOGRAPHY

[AKI77] Akine, U., and Khumawala, B., "An Efficient Branch and Bound Algo-
rithm for the Capacitated Warehouse Location Problem', Manage-
ment Science, Vol. 23, No. 6, Feb. 1977, pp. 585-594.

[ALC78] Alcouffe, A, and Muratet, G., "Optimum Location of Plants"”,
Management Science, Yol. 23, No. 3, Nov. 1978, pp. 2B7-274.

[ANDB7] Anderson, D.W., Sparacio, F.J. and Tomasule, R.M., "The IBM System
360 Model 31: Machine Philosophy and Instruction Handling"”, 7/BM J.
of Research and Develop., Jan. 19687, pp.B-24,

[AND75] Anderson, G. A. and Jensen, E. D., "Computer Interconnection
Structures: Taxonomy, Characteristics and Examples”, Computing
Surveys, Vol. 7, No, 4, December, 1975.

[ARMB3] Armour, G. C., and Buffa, E. S., "A Heuristic Algorithm and Simula-
tion Approach to Relative Location of Facilities”, Management Sci-
ence, Vol. 8, No. 2, Jan 1963, pp. 204-308,

[ASC74] Aschim, F., "Data-Base Networks - An Overview", Management Infor-
mation, Vol. 3, No. 1, 1974,
[BAC75] Bachman, C., "Trends in Data Base Management", Proc. of AFIPS

National Computer Conference, 7975, Vol 44, AFIPS Press,
Montvale, NJ, 1975, pp. 569-576.

[BAD78] Badal, D. Z., "Data Baze System Integrity", Digest of Papers, Comp-
con Sp. 78, pp. 356-359.
[BAN79] Banerjee, 1., Hsiao, D. K., and Kannon, K., "DBC - A Data Base Com-

puter for Very Large Data Bases", IEEFE Trans. on Cormputers, Vol
C-28, No. 8, June 1978, pp. 414-428.

[BAS70] Baskett, F., Browne, J. C., and Raike, W. M., "The Management of a
Multi-tevel Non-paged Memory System", Spring Joint Compuier
Conference, 1970, pp. 458-485,

[BAS7?5] Baskett, F., Chandy, K. M., Muntz, R. R., and Palacios, F. G., "Open,
Closed, and Mixed Networks of Queues with Different Classes of Cus-
tomers"”, JACM, Vol. 22, No. 2, April, 1975, pp. 248-260.

[BAS'?B] Baskett, F., and Smith, A. J., "Interference in Multiprocessor Com-
puter Systems with Interleaved Memory", CACM, Vol 19, No. 6, June
1976, pp. 327 - 334.

[BAUSB] Baumol, W. J., and Wolfe, P., "A Warehouse Location Problem",
Operations Research, Vol. 6, March-April, 1958, pp. 252-263.

[BAU7B] Baum, R. 1., Hsiao, D. K., "Data Base Computers - A Step Towards
Data Utilities", IEFFE Trans, on Comp., Vol. C-25, No. 12, Dec. 1976.

[BEL77] Belady, L. A., and Lehman, M. M., The Characteristics of Large Sys-

terns, IBM Research Report, RC8785, Sept. 1977.

[BEN77] Bentley, J. L., and Shamos, M. 1., Divide and Conguer for Linear
Ezpected Time, Dept. of Computer Science and Mathematics
Report, Carnegie-Mellon University, 1877.

[BER79] Berra, P. B., and Qliver, K., "The Role of Associative Array Proces-
sors in Data Base Machine Architecture', {EEF Computer, March
1979, pp. 53-61.

[BHA75] Bhandarkar, D. P., "Analysis of interference in Multiprocessors",
IEEE Trans. on Computers, Vol. C-24, No. 9, Sept. 19275, pp. 897 -
208

[BOB71]

[BOLB7]

[BONB4]
[BOO78]
[BRA78]

[BRI?7]

[BUR70]

[BUR73]

[BUR75]

[cAS72]

[CHA75]

[CHA77]

[CHAT8]

[CHUBY]
[CHU78]
[con7o]

[coF71]

[DAN51]

[DAT77]

292

Bobeck, A. H., and Scovil, H. E. D., "Magnetic Bubbles”, Scientific
American, Vol, 224, No. B, pp. 78-90, June 1971,

Boland, L. J., Granito, G.D., Marcotte, A. V., Messina, B. V., and
Smith, J. W., "The IBM System 1360 Model 91 : Storage Systems”,
IBM J. of Res. and Dev., Jan. 1987, pp. 54 - 68,

Bonner, R. E., "On sorme Clustering Techniques", /BM J. of Research
and Development, Vol. 8, No. 1, Jan. 1964, pp. 22-32.

Booth, G. M., "Distributed Data Bases - Their Structure and Use",
Infotech State of the Art Report on Distributed Systems, 1978.

Bray, O. H., "Distributed Data Base Design Considerations", Trends
and Applications, Computer Networks, 1876.

Briggs, F. A, and Davidson, E. 5. "Organization of Semiconductor
Memories for Parallel - Pipelined Processors”, [EEE Trans. on
Comp., Vol. C-28, No. 2, Feb. 1977, pp. 162 - 169,

Burnett, G. J., and Coffman, Jr. C. G., "A Study of Interleaved
Memory Systems", Proc. AFIPS 1870 SJCC, Vol 38, pp. 467 -474,
AFIPS Press, Montvale, N.J.

Burnett, G. J., and Coffman, Jr. E. G., "A Combinational Preblem
Related t{o Interleaved Memory Systerns"”, JACM, 20, 1, Jan. 1973,
pp. 39 - 45.

Burnett, G. J., and Coffman, Jr. E. G., "Analysis of Interleaved
Memory Systems Using Bolckage Buflers", CACM,
Vol. 18, No. 2, Feb. 1975, pp- 91 - 95.

Casey, R. G., "Allocation of Copies of a File in an Information Net-
work", AFIPS, SJCC, 1872, pp. 817-625.

Chandy, K. M. and Herzog, U., and Woo, L., "Approximate Analysis of
General Queeuning Networks", /BM J. of Research and Development,
Jan 1975, pp. 43-49.

Chang, D. Y., Kuck, D. J., and Lawrie D. H., "On the Effective
Bandwidth of Parallel Memories"”, JEEE Trans. on {omp., May 1977,
pPp. 480 - 490.

Chang, H., "On Bubble Memories and Relational Data Base", 4th Int’l
Conf. on Very Large Data Bases, Berlin, Sept. 13-15, 1878, pp. 207-
229,

Chu, W. W., "Multiple File Allpcaticon in a Multiple Computer System",
IEFE Trans. on Comp., Vol. C-18, No. 10, Oct. 1969, pp. 885-889.

Chu, K. C., Decentralized Dynamic Allocation Scheme for Large
Congested Networks, IBM Research Report, RC6337, 19786.

Codd, E. F., "A Relational Model of Data for Large Shared Data
Bases", CACM, Voi. 13, No. 8, June 1970.

Coffrnan, JIr.,E. G., Burnett, G. J., and Snowdon, R. A., "On the Per-
formance of Interleaved Memories with Multiple Word Bandwidths",
[EEE Trans. Comput., C-20, 12, Dee. 1971, pp. 1570 - 1373.

Dantzig, G. B., "Application of the Simplex Methed to a Transporta-
tien Problem”, Ch. 23 of Activity Analysis of Production and Alloca-
tion, T. C. Koopmans Ed., Cowles Commission Monograph, No. 13,
John Wiley and Sons, 1951.

Date, C. 1., An Introduction to Data Hase Systems, 2nd Edition,
Addison-Wesley, 1977.

[DDP78]
[DEN70]

[DEW79]

[DOW77]

[DRA66]
[EFR86]

[EPS78]

[ERL74]

[ESW74]

[ESW76]

[FEL50]

[FELS6]

[FEN74]

[FET76]
[FLO64]
[FLY88]
[FOS88]
[FOS78]

[FOST?7]

- 293

Distributed Data Processing Workshop, Stanford University, Feb.
15-17, 1978.

Denning, P. J., "Virtual Memory", Computing Surveys, Vol. 2, No. 3,
Sept. 1970, pp. 62-97.

DeWitt, D. J., "DIRECT - A Multi-processor Organization for Support-
ing Relational Data Base Management Systems", JEEE Trans. on
Computers, Vol. C-28, No. 6, June 1879, pp. 385-4086.

Downs, D., and Popek, G. J., "A Kernel Design for a Secure Data Base
Management System", Proc. Very Large Data Base, Oct. 1977, pp.
507-514.

Draper, N. R. and Smith H., Applied Regression Analysis, John Wiley
and Sons, New York, 1966,

Efroymsoen, M. A., and Ray, T. C., "A Branch and Bound Algorithm for
Plant Location", Operations Research, May-June 19886, pp. 361-36B.

Epstein, et. al., Distributed Query Processing in o Relational Data
Bse System, Report No. UCB/ERL M78/18, Electronics Research
Laboratory, University of California, Berkeley, 1978.

Erlenkotter, D., "Dynamic Facility Location and Simple Network
Models" Maonagement Svience Notes, Vol. 26, No. 9, May 1874, pp.
1131.

Eswaran, K. P., "Placement of Records in a File and File Allocation
in a Computer Network", Information Processing, 74, IFIPS, North
Holland Publishing Co., 1974,

Eswaran, K. P. et, al, "The Notions of Consistency and Predicate
Locks in a Data Base System", CACM, Vol. 19, No. 11, Nov. 1978, PP
B24-633.

Feller, W. An Iniroduction to Probability Theory and its Appl'i,ca-
tions, Vol.], John Wiley & Son Inc. 3rd Ed. 1850,

Feldman, E., Lehner, . A, and Ray, T. L., "Warehoude Location
under Continuous Feonomies of Scale", Management Science, Vol
12, No. 8, May 1966, pp. 870-884.

Feng, T.. "Data manipulating functions in parailel processor and
their implementations”, IEEFE Trans. Comput., Vol. C-23, pp. 309-
318, Mar. 1974,

Feth, G. C., "Memuories: Smaller, Faster, and Cheaper", [EEE Spec—
trum, June, 1976, pp. 36-43.

Flores, 1., "Derivation of a Waiting-Time Factor for a Multiple Bank
Memory", JACM, Vol. 11, No. 3, July 1964, pp. 265 - 282.

Flynn, M. J., "Very High Speed Computing Systems", Proc. of the
IFEE, Vol. 54, pp. 1801-19089

Foster, C. C., "Determination of priority in asscciative memories”,
IEFE Trans. Eleciron. Comput., Vol. EC-17, pp. 788-789, Aug. 1988.

Foster, C. C., Content Addressuable Parrallel Processors, New York:
Van Nostrand Reinhold, 1976.

Foster, D. V., Dowdy, L. W., Ames, J. E. IV, "File Assignrent in Star
Network", Proc. of the 1977 Sigmelrics/CMG VIII Conf. on Comp
Perf.: Modelling, Measurement and Management, Washington, D.C.,
Nov. 1977, pp. 247-254.

[FRAB3]

[FRE61]

[FRY76]
[GIG73]

[GEO72]

[GHO78]

[GIL70]

[G0075]

[GRA70]

[GRA77a]

[GRAT7D]

[HANG6]

[HEL67]

[HEV79]

[HILEBa]

[HIL&6b]

[HOF78]

[HOL58]

294

Franecis, R. L., "A Note on the Optimum Location of New Machines in
existing Plant Layouts", The Journal of Industrial Engineering,
Jan-Feb 1963.

Frei, Bi. H. and Goldberg, J., "A method for resolving multiple
responses in a parallel search file", {RF Trans. Eleciron. Compudt.,
Vol. EC-10, p.718, Dec. 1561.

Fry, J. P. and Sibley, E. H., "Evolution of Data Base Management
Systems', Computing Surveys, Vol. 8, No. 1, March 1978, pp. 7-42.

Giglio, R. J., "A Note on the Deterministic Capacity Problem",
Management Science Notes, Vol. 18, No. 12, Aug, 73, pp. 1086-1098.

Gecoflrien, A. M. and Marsten, R. E., "Integer Programming: A Frame-
work and State-of-the-Art Survey", Maenagement Science, Vol. 18,
No. 9, May, 1972, pp. 485-491.

Ghosh, S. P., "Distributing A Data Base with Logical Associations on
a Computer Network for Parallel Searching"”, /EEE Trans. on
Seoftware Engr., Vol. SE-2, No. 2, June, 19786, pp. 106-113.

Gilmore, P. C., "Optimal and Sub-optimal Algorithms for the Qua-
dratic Assignment Problem", Journal of the Society for Industrial
and Applied Mathematics, Vol. 10, No. 2, June, 1962, pp. 305-313.

Goodyear Aerospace Corporation, STARAN Reference Manual, Revi-
sion 2, GER-156368, Akron, Ohio, June 1975,

Graves, G. W., and Whinston, A. B., "An Algorithm for the Quadratic
Assignment Problem", Management Science, Vol. 18, No. 7, March
1870, pp. 453-471.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H.
G., "Optimization and Approximation in Deterministic Sequencing
and Scheduling: A Survey", Proc. of Discrete Optimization, 1977,
Vancouver, Canada, Aug. 8-12, 1877,

Grapa, E., Beliord, G, G., "Some Theorems Lo Aid in Solving the File
Allocation Problem", CACM, Vol. 20, No. 11, Nov. 1977, pp. 878-882.

Hanlon, A. G., "Content-addressable and asscciative memory sys-
tems: A survey", [EEE Trans. Electron. Computi., Vol. EC-15, pp.
509-521, Aug. 19686.

Hellerman, H., Digital System Principles, MeGraw Hill, New York,
1867, pp. 228 - 229.

Hevner, A. R, and Yao, 3. B., "Query Processing in Distributed Data
Bases', IEEE Trans. on Software Engineering, Vol. SE-5, No. 3, May
1979, pp. 177-187.

Hilberg, W., '"Simultanseous multiple response in associative
memories and readout of the detector matrix", JEEFE Trans. Elec-
tron. Comput., Vol. EC-15, pp. 117-118, Feh. 1566.

Hiller, F. 8., and Connors, M. M., "Quadratic Assignment Problem
Algorithms and the Location of Indivisible Facilities", Management
Science, Vol. 13, No. 1, Sept. 1866, pp. 42-57.

Hofri, M., and Jenny, C. 1., On the Allocation of Processes in Distri-
buted Computer Systems, IBM Research Report, RZ505, 1978.
Hollander, G. L., "Quasi-Random Access Memory Systems”, AFIFPS
Conf. Proc. £JCC, 1956, pp. 128-135.

295

[HOL79] Hollar, L. A., "A Design for a List Merging Network”, JEEE Trans. on
Computers, Vol. C-28, No. 6, June 1979, pp. 406-413.

[HOO77] Hoogendoorn, C.H., "A General Model for Memory Inlerference in
Multi-processors"”, [EEE Trans. on Comp., Vol. C-26, No. 10, Oct.
1977, pp.998-1005.

[H8i77] Hsiae, D. K., and Madnick, S. E., "Database Machine Architecture in
the Context of Information Technology Evolution”, Proc, Very Large
Data Base, Oct. 1977, pp. 63-84.

[HUG75] Hughes, W. C., et. al., "A Semiconductor Nonvolatile Electron Beam
Accessed Mass Memory", Proc. fEEE, Vol. 63, No. B, Aug. 1975, pp.
1230-1240.

[JAR71] Jardine, N. and Van Rijsbergen, C. J., "The Use of Hierarchical Clus-
tering In Information Retrieval', Infermation Storage and
Retrieval, Vol. 7, 1971, pp. 225-238.

[JENT7] Jenny, C. J., Process Partitioning in Distribuied Systefﬁs, IBM
Research Report, RZ2873, 1977.
[JOH54] Johnsen, S. M., "Optimal Two- and Three Stage Production Schedule

with Setup Times included", Neveael Research Logistics Quarterly,
Vol. 1, pp. 61-88.

[KAR72] Karp, R. M., "Reducibility among Combinatorial Problems”, Com-

plerity of Computer Computations, R. E. Miller and J. W. Thatcher
eds., Plenum Press, New York, 1972, pp. 85-104.

[KAUSBS] Kautz, W. H., "Cellular logic in memeory arrays", IEEE Trans. Elec-
tron. Comput., Vol. EC-18, pp. 7189-727, Aug. 19689.

[(XAU71] Kautz, W. H., "An augmented context-addressed memory array for
implementation with large-scale integration", JACM, Vol. 18, pp.
19-33, Jan. 1971.

[KEMSB5] Kemeny, J. G. and Snell, J. L., finite Markov Chains, D. Van Nos-
trand Company, Inc, 1965.

[KER79] Kerr, D. 8., "Data Base Machine with Large Content-Addressable
Biocks and Structural Information Processes", Computer, Vol. 12,
No. 3, March 1979, pp. 684-79.

[KHU72] Khumawala, B. M., "An Efficient Branch and Bound Algorithm for the
Warehouse Location Problem", Management Science, Vol. 18, No.
12, Aug. 1972, pp. B718-B731.

[KLI74] Klimov, G. F., "Time Sharing Service Systems I", Th,eo'ry of Probabil-
ity and its Applications, Vol. 19, 1974, pp. 532-551.

[KNU75] Knuth, D. E., and Rao, G. S., "Activity in an Interleaved Memory",
IEEE Trans. On Comp., Vol. C-24, No. 9, Sept. 1975, pp. 943 - 944,

[K0057] Koopmans, T. C. and Beckmann, M., "Assignment Problems and the
Location of Economic Activities", Feonometrica, Vol. 25, No. 1, Jan.
1957, pp. 53-78.

[KONB8] Kongeim, A. G., "A Note on Time Sharing with Preferred Custo-
mers", Z. Warsch, Verw, Geb. 9, 1968, pp. 112-130.

[KRI78]} Krishnarao, T., 4 Systematic Design and Analysis of Reconfigurable
Digtribuled Compuler Sysfems, Ph.D. Dissertation, University of
California, Berkeley, June 1978.

[KUEB3] Kuehn, A. A., and Hamburger, M. J., "A Heuristic Program for Locat-
ing Warehouses", Management Science, Vol. 9, No. 4, July 1963, pp.

[LAN77]

[LAN79]

- [LAWSS]

[LEH78]
[LEN77]

[LEV74]
[LEV75]
[LEWs2]

[LIN78]
[LIP78]
[LO075]
[LOO76]
[MAH78]
[MAN64]

[MAR75]

[MEI77]
[M1164]

[MOE78]

296

843-668,

Landis, D., "Multiples-response resolution in associative systems",
IEEE Trans. Comput., Vol. C-28, pp. 230-235, Mar. 1977.

Langdon, Jr., G. G., "Data Base Machine, An Introduction', /EEF
Transactions on Computers, Vol. C-28, No. 8, June 1979, pp. 381-
383.

Lawler, E. L., "The Quadratic Assignment Problem", Management
Science, Vol. 9, No. 4, July 1983, pp. 586-589.

Lehman, M. M., and Parr, F. N,, "Program Evolution and its Impact
on Software Engineering’, Pruoe. of the 2nd fniernational Confer-
ence in Software Angineering, Oct. 1876,

Lenstra, 4. K., Rinnooy Kan, A. H. G. and Brucker, P., "Complexity of
Machine Scheduling Problems", Annals of Discrete Mathemauatics,
Vol. 1, North Holland Publishing Co., 1977, pp. 343-362.

Levin, K. B., Urganizing Distributed Data Bases in Compuier Net-
works, Ph.D. Dissertation, University of Pennsylvania, 1974.

Levin, X. 1., Morgan, H. L., "Optimizing Distributed Data Bases-A
Framework for Research", Proc. NCC, 1975, pp. 473-478.

Lewin, M. H., "Retrieval of ordered lists from a content-addressed
memory'”’, #CA Rev., Vol. 23, pp. 215-229, June 1962.

Lin, C. 8., et. al., "The Design of a Rotating Associative Memory for
Relational Data Base Applications", ACHM Trons. on Date Base Sys-
terns, Vol. 1, No. 1, March, 1976,

Lipovski, G. J., "Architectural Features of CASSM: A Contexi
Addressed Segment Sequential Memory", Proc. 5ih Ann. Symp. on
Comp. Arch., ACM-SIGARCH, pp. 31-38.

Loomis, M. E. 8., Dafa Base Design: 0Object Distribution and
Resource Constrained Task Scheduling, Ph.D. Dissertation, Comp.
Sei. Dept., UCLA, 1975.

Loomis, M. E. 8., and Popek, G. J., "A Model for Data Base Distribu-
tion", Comp. Networks: Trends ond Applications, 1976, IEEE, pp.
162-189.

Mahmoud, 3., Riordon, J. S., "Optimal Allocation of Resources in Dis-
tributed Information Networks", ACM Trans. on Data Base Systems,
Vol. 1, No. 1, March 1976, pp. 66-78.

Manne, A. 8., "Plant Location Under Economies of Scale Decentrali-
zation and Computation"”, Managemeni Science, Vol. 11, No. 2, Nov.
1564, pp. 213-235.

Marill, T., and Stern, D., "The Datacomputer - A Network Data Util-
ity", AFIPS Conference Proceedings, 44, 1975, pp. 389-355.

Meilijson, 1., and Weiss, G., "Muliiple Feedback at a Single Server
Station", Stochastic Processes and their Applications, North Hol-
land Publishing Co., Vol. 5, 1877, pp. 185-205.

Miiller, H. 8., "Resolving multiple responses in an associative
memory", IFEE Trans. Electron. Compuf. Vol. EC-13, Short Notes,
pp. 614-616, Oct. 1964.

Moeller, A., ”Fabricationr Technology and Physical Fundamentals of
Components used for Semiconductor Memories", Digital Memory
and Storage, W. E. Proebster Ed., Braunschweig: Vieweg, 197B.

297

[MOR77] Morgan, H. L., and Levin, K. D., "Optimal Program and Data Loca-
tions in Computer Networks", CACM, Vol. 20, No. 5, May, 1977, pp.
315-322.

[MUN74] Muntz, R. R., et. al., "Stack Replacement Algorithms for Two Level

Directly Addressable Paged Memories", STAM J. on Compultling, Vol
3. No. 1, March, 1974, pp. 11-22.

[NUT77] Nutt G. J., "Memory and Bus Conflict in an Array Processor", IEEE
Trans. on Comp., Vol. C-26, No. 8, June 1977, pp. 514 - 521

[0ZK77] Qzkarahan, E. A., et. al., "Performance Evaluation of a Relational
Associative Processor”, ACM Trans. on Data Base Systerns, Vol. 2,
No. 2, June 1977, pp. 175-135.

LPAR72] Parhami, B., "A Highly Parallel Computing System for Information
Retrieval", AFIPS Conf. Proc., 1872, FJCC, Vol. 41, Part 1l, pp. 681-
B850.

[PAR?3] Parhami, B., "Associative memories and processors: An overview
and selected bibliography", Proc. IEEFE, Vol. 81, pp. 722-730, June
1973.

[POHT?5] Pohm, A. V., "Cost/Performance Perspectives of Paging with Elec-
tronic and Electro-mechanical Backing Stores”, Proc. of the IEEE,
Vol. 63, No. B, Aug. 1975, pp. 1123-1128.

[RAM70] Ramamoorthy, C. V., and Chandy, K. M., "Optimization of Memory
Hierarchies in Multi-programmed Systems”, JACM, Vol. 17, No. 3,
July, 1970, pp. 426-445.

[RAM76] Ramamoorthy, C. V., and Krishnarao, T., "The Design Issues in Dis-
tributed Computer Systems'", Inffotech State of the Art Report on
Distributed Systems, 1976, pp. 375-400.

[RAM78a] Ramamoorthy, C. V., Turner, J. C., and Wah, B. W., "A Design of a
Cellular Associative Memory for Ordered Retrieval”, JEEE Trans. on
Comp., Vol. C-27, No. 9, Sept. 1878.

[RAM78b] Ramamoorthy C. V. and Ho, G. S., "A Design Methodology for User
Oriented Computer Systems", Proc. National Computer Conference,
AFIPS Press, 1978, pp. 953-966.

[RAM79a] Ramamoorthy, C. V., and Wah, B. W., "Data Management in Distri-
buted Data Bases", Proc. National Computler Conference, AFIPS
Press, 19'?9, pp. 667-879.

[RAM79L] Ramamoorthy, C. V., Ho, G. 8., and Wah, B. W., "Distributed Com-
puter Systems - A Design Methodology and its Applications to the
Design of Distributed Data Base Systems', to appear nfotech State
of the Art Repori on Disltributed Systems, 1979.

[RAM79c] Ramamoorthy, C. V., and Wah, B. W., "File Placements of Relations
in a Distributed Relatiocnal Data Base", Proc. First Internationail
Conference on Distributed Computer Systems, Huntsville, Alabama,

Oct. 1979,

[RAO77] Rao, R. C., and Rutenberg, . P., "Multi-location Plant Sizing and
Timing"”, Moenagement Science, Vol. 23, No. 11, July 1977, pp. 1187-
1198.

fravv2] Ravi, C. V., "On the Bandwidth and Interference in Interleaved

Memory Systems”, JEEE Trans. on Comp. Vol. C-21, No. 8, Short
Notes, Aug. 1972, pp. 899 - 501.

[RIT72]

[ROS78]

[ROT77]
[RUD77]
[SA 69]

[SAS75]
[SAU7Ss]
[SCH78]
[SCH79]
{S1C77]

[SEE82]

[SIL786]

[SKI69]
[SLA5B]
[SLO70]

[SMI78]

[SM177]
[SNY71]

[SPI69]

298

Ritzman, L. P., "The Efficiency of Computer Algorithms for Plant
Layout”, Management Science, Vol. 18, No. 5, Jan. 1972, Part], pp.
240-248.

Ross, Sheldon M., Infreduciion to Probebility Models. Academic
Press, 1976.

Rothnie, J. B., and Goodman, N., "A Survey of Research and Develop-
ment in Distributed Data Base Management" Third Inf'l Conf. on
Very Large Data Hases, 1977, pp. 48-62.

Rudin, H., "On Alternate Routing in Circuit Switched Data Net-
works', Information Processing 77, IFIPS, North Holland Publishing
Co., 1977, pp. 321-326.

Sa, G., "Branch and Bound and Approximate Solutions to the Capa-
citated Plant Location Problem", Operations Research, Vol. 17, No.
8, Nov-Deec 1989, pp. 1005-1018.

Sastry, K. V. and Kain, R. Y., "On the Performance of Certain Mul-
tiprocessor Computer Organizations", JEEE Trans. on Comp. Vol
c-24. Nov. 1975, pp. 1086 - 1074,

Sauer, C. H. and Chandy, K. M., "Approximate Analysis of Central
Server Models", IBM J. of Research and Development, May, 1975,
pp. 301-313.

Schuneniann, C., and Spruth, W. G., "Storage Hierarchy Technology
and Organization", Digital Memory and Storage, W. E. Proebster
ed., Braunschweig: Vieweg, 1978,

Schuster, S. A., et. al.,, "RAP.2 - An Associative Processor for Data
Base and its Applications", JEEFE Trans. on Computers, Vol. C-28,
No. 8, June 18979, pp. 446-458.

Sickle, L. V., and Chandy, K. M., "Computational Complexity of Net-
work Design Algorithms", information Processing 77, IFIPS, North
Holland Publishing Co., 1977.

Seeber, R. R. and Lindquist, A. B., "Associative memory with
ordered retrieval”, /BM J. Ees. Develop., Vol. B, p. 126. Jan. 1962.

Siler, K. F'., "A Stochastic Evaluation Model for Data Base Organiza-
tion in Data Retrieval Systems", CACM, Vol. 19, No. 2, Feb. 1976, pp.
B84-95,

Skinner, C. E., and Asher, J. R., "Effects of Storage Contention on
System Performance', JBM Sys. J., No. 4, 1969, pp. 319 - 333.

Slade, A. E. and McMahon, H. 0., "A cryotron catalog memory sys-
tem", Proc. Fastern Joint Comput. Conf.,, Dec. 19586, pp. 115-119.

Stotnick, D. IL., "Logic Per Track Devices”, Advances in Compufers,
Academic Press, 1970, pp. 291-286.

Smith, A. 4., Characterizing the Storage Process and ifs Effects on
the Update of Main Memory by Write- Through, Research Report,
University of California, Berkeley, 1978.

Smith, A.J., "Multi-processor Memory Organization and Memory
Interference”, CACHM, Vol. 20, No. 10, Oct., 1977, pp.754-761.

Snyder, K. D., "A Nokte on the Location of Depots”, Management Sci-
ence, Vol. 18, No. 1, Sept. 1871, pp. 97.

Spielberg, K., "An Algorithm for the Simple Plant Location Problem
with some Side Conditions", Operations Research, Vol. 17, Jan-Feb

[STO75]

[STO772a]
[STO77b]
[STO78a]

[STO78b]

[STR70]
[STR77]
[SU 78]
[SWE76]
[TEL78]
[TER78]
[THE78]
[TOMB7]

[TUE76]

[TUR72]
[UPT78]
{WAH78]

[WAR7S]

299

1969, pp. 85-115.

Stone, H. 8., "Parallel Computers”, Chapter 8, Introduction to Com-~
puter Archifecture, H, 8. Stone ed., SRA Inc., 1875.

Stene, H. 8., "Multi-processor Scheduling with the Aid of Network
Flows", IEFE Trans. on Soft. Fngr., Vol. SE-3, No. 1, Jan. 1977, pp.
85-93.

Stone, H. 8., Program Assignment in Three- Processor Systems and
Tricut Partitioning on Graphs, Report No. ECE-CS-77-7, University
of Massachusetts, Armherst, Mass., 1977.

Stone, H. 8., "Critical Load Factors in Two Processor Distributed
Systems", IEEE Trans. on Software Fngineering, Vol. SE-4, No. 3,
May 1978, pp. 254-258.

Stone, H. 3., and Bekhari, S. H., "Control of Distributed Processes",
Cornputer, July 1978, pp. 87-1086.

Strecker, W. D., Analysis of the Instruction Fzecution Rate in Cer-
tain Computer Structures, Ph.D. Th., Carnegie Mellon U., Pitts-
burgh, Pa., 1970.

Stritter, E., File Migration, Stanford Linear Accelerator Center
Report, SLAC-200, Jan. 1977.

Su, 3. Y. W., Nguyen, L. H., Emam, A., and Lipovski, G. 1., "The Archi-
tectural Features and Implementation Techniques of the Multi-cell
CASSM", IEEFE Trans. on Computers, Vol. C-28, No. 8, June 1979, pp.
430-445.

Sweenly, D. §., and Tatharmn, R L., "An Improved Long Run Model for
Multiple Warehouse Location", Management Science, Vol. 22, No. 7,
March 1976, pp. 74B-758.

Telenet Data Communication Network Rate Schedule, Abstract of
Telenet Tariff, FCC No. 1, Effective July 1, 1978.

Terman, ¥F. W., A Study of Interleaved Memory Systems by Trace
Driven Simaulation, Technical Note No. 94., Digital Systems Lab.,
Stanford Electronics Lab., Stanford University, Stanford, CA. 94305,
Sept. 1976.

Theis, D. J., "An Overview of Memory Technologies", Datamation,
Jan. 1978, pp. 113-131.

Toemasule, R.M., "An Eflicient Algorithm for Exploiting Multiple
Arithmetic Units", IBM J. of Research and Develop., Jan 195867,
pR.25-33.

Tuel, W. G., "An Analysis of Buffer Paging in Virtual Storage Sys-
tems", I1BM J. of Research and Development, Sept. 1976, pp. 518~
520.

Turner, d. L., 4 design for a fast soerting associalive memory, Mas-
ter of Science Thesis, University of Texas at Austin, Aug. 1972.

Upton, M., "Price/Performance Game Rules Change", Computer
World, Jan. 23, 1978, p. 61,

Wah, H. W. Analysis of Buffering in Memory [nterieaving, M. S.
Report, University of Calif., Berkeley, Dec. 1976.

Warren, H. 3. Jr., Static Main Storage Puacking Problems, 1BM
Research Report, RC-6302, Nov. 1278.

[WEIB3]

[WEI77]

[WES73]

[WON76]

[WON77]

[YAN66]

360

Weinstein, H., "Proposals for ordered sequential detection of simul-
taneous multiple responses", [EEE Trans. FElectron. Comput.,
{Corresp.), Vol. EC-12, pp. 564-587, Oct. 1963.

Weide, B., "A Survey of Analysis Techniques for Discrete Algo-
rithms", ACM Computing Surveys, Vol. 8, No. 4, December 1977, pp.
281-314.

Wesolowsky, G. 0., "Dynamic Facility Location", Management Sci-
ence, Vol. 19, No. 11, July, 1973, pp. 1241-1248.

Wong, F., and Youssefi, X., "Decomposition - A Sirategy for Query
Processing", ACM Trans. on Data Base Systems, Vol. 1, No. 3, Sept.
1978, pp. 223-241.

Wong, E., Restructuring Dispersed Data from SDD- 1: A System for
Distributed Dotag Bases, Comp. Corp. of America, Tech. Rep. CCA-
77-03, 1977, '

Yang, C. C. and Yau, 8. 8., "Cutpoint cellular associative memory",
IEEFE Trans. Electron. Comput., Vol. EC-15, pp. 522-528, Aug. 19686.

