
A SYSTEMATIC APPROACH TO THE MANAGEMENT OF DATA
ON DISTRIBUTED DATA BASES

Benjamin Wan-Sang Wah

1

Ph.D. Electrical Engineering
and Computer Science

Sponsors: Ballistic Missile Defense
Army Research Office
National Science Foundation

ABSTRACT

C. V. Ramamoortby
Chairman of Committee

Recent studies have revealed that the design of a distributed data base

management system is a major source of difficulty in designing a distributed

computer systems. Research has involved an investigation of the data manage-

ment issues, examining in particular the query deco-mposition, the file place-

ment, the task scheduling, and the hardware support issues. The inherent rela-

tionships among these issues are analyzed and a unified approach is provided to

design data management strategies on distributed data bases.

One of the major problems in distributed computer systems is the rninimi-

zation of communication overheads among nodes. This is the objective of the

study in query decomposition and file placement and migration. Two compte-

mentary techniques are developed in query decomposition so that non-

decomposable queries which require the use of multiple files can be decomposed

into multiple sub-queries which require the use of single file. The communica-

tion overheads are reduced because the queries do n:>t have to be processed at

a common location and can be distributed to the different nodes on the distri-

buted system. The study of query decomposition has also shown that the place-

ments of multiple files can be decomposed intc the multiple sub-problems, one

for each file. An investigation is made en the file placernent problem, ·with the

2

objective of minimizing the overall storage, migration, updating and operational

costs on the system. By showing that the file placement problem and the facility

location problem are isomorphic, many results derived in one problem can be

applied to solve the other problem. Further, some results derived in one prob­

lem can be shown to be weaker than the corresponding results derived in the

other problem. The last two areas of study are related to the distributed

scheduling of tasks on distributed systems and the design of the necessary

hardware support for data management. The task scheduling problem for a dis­

tributed system is shown to be NP-complete. However, an optimal average algo­

rithm is developed for a restricted class which minimizes the expected comple­

tion time for a set of random requests. In the hardware support issue, the

design of an associative memory which is capable of equality, proximity, thres­

hold and extremum searches is investigated. The complexity of the design is 17

gates per cell. Its extensions to the design of associative sequential memories

and data base machines are developed.

i

ACKNOWLEDGEMENT

The author would like to express his sincere gratitude to a number of indivi­

duals for their help in the research and preparation of this dissertation. Special

thanks is due to Professor C. V. Ramamoorthy who was his thesis supervisor and

the dissertation committee chairman. Throughout the years, Professor

Ramamoorthy has been a constant source of advice, guidance, support and

encouragement. He was and will be an ideal for the author to follow. Without his

support, none of these would have been possible.

The author would also like to thank Professors D. Ferrari and I. Adler for

reading the thesis, providing many helpful and valuable advice and encourage­

ment, and serving on the thesis committee. Special thanks are also due to Miss

Y. W. Ma, for reading and typing part of the draft and criticizing on the research.

She has also been a source of spiritual support and encouragement througout

these years. In addition, his colleagues, Messers F. Bastani, F. Ho, G. Ho, J.

Favaro, C. Jen, T. Krishnarao, F. Leung, R. Mok, C. Nam, H. H. So and K. Wu are

thanked for providing many helpful comments and a friendly environment for

research.

He also wants to thank the Ballistic Missile Defense, the Army Research

Office and the National Science Foundation for its support through contracts

DASG-60-77-C-0138, DAAG29-78-G-0189 and grants MCS-77-27293, MCS-77-28361.

Messers C. R. Vick and J. E. Scalf are also thanked for their many helpful discus­

sions.

Finally and most importantly, the author wishes to thank his parents in

Hong Kong for their unselfish and devoted support, both spiritually and finally.

This thesis was typed on a DEC VAX 11/780 computer supported by NSF

grant MCS78-07291.

i i

TABLE OF CONTENTS

PAGE

Chapter 1 INTRODUCTION 1

1.1 What is a Distributed Data Base 1

1.2 Issues in Designing Data Base Systems .. 3

1.2.1 Issues in Logical Organization ... 4.

1.2.2 Issues in Architecture ... 6

1.2.3 Issues in Operational Control.. .. 7

1.2.4 Issues in Evolution.. 9

1.3 Architecture of the System supporting a DDB 16

1.4. Objectives and Contributions of the Research 21

1.4..1 Problem Statement .. 22

1.4..2 Approach ... 22

1.4..3 Contributions of this Research ... 26

Chapter 2 QUERY DECOMPOSITION ON A

DISTRIBUTED RELATIONAL DATA BASE ... 28

2.1 Queries on a Relational DB ... 28

2.2 The Placements of Relations on a DDB ... 32

2.3 Cost Reduction on the Placements of Relations on a DDB

by utilizing Redundant Information ... 4.0

2.4 A Numerical Example to illustrate the Use of Redundant

Information on a DDB ... 4.9

2.5 Cost Reduction on tbe Placements of Relations on a DDB

by File Partitioning .. 53

2.6 A Numerical Example to Illustrate the Use of File

Partitioning on a DDB ... 58

iii

2. 7 Cost Reduction on the Placement of Relations on a DDB by

utilizing Redundant Information and File Partitioning 59

2.8 A Numerical Example to illustrate the use of Additional

Redundant Information and File Partitioning on a DDB 63

2.9 Conclusion .. 69

Chapter 3 THE PLACEMENT AND MIGRATION OF MULTIPLE COPIES

OF A FILE ON A DCS .. 71

3.1 Introduction ... 71

3.2 Definition of the Problem ... 71

3.3 Motivations for File Placement and Migration 73

3.4 Previous Work on the File Allocation Problem·······················'··········· 74

3.5 Previous Work on the Single Commodity Warehouse

Location Problem ... BO

3.6 The Isomorphism between File Allocation and Single

Commodity Warehouse Location .. 84

3. 7 Implications of the Isomorphism between the FAP

and the SCWLP ... 84

3.8 A Heuristic for the FAP- Algorithm 3.1 .. 91

3.9 DFAP- The Migration of Files on a DCS ... 103

3.10 Conditions to reduce the Complexity of DFAP 106

3.10.1 The Problem of selecting the Times for Migration

is NP-Complete ... 106

3.10.2 Criteria for initiating a Migration .. lOB

3.11 Conclusion ... 114

Chapter 4 TASK SCHEDULING ON DISTRIBUTED COMPUTER SYSTEMS 116

4.1 Introduction ... 116

4.2 A Model for the scheduling of Tasks on Distributed Systems 119

iv

4.2.1 The Model. ... 119

4.2.2 Assumptions which allow the Task Scheduling Problem

to be simplified ... 125

4.3 NP-completeness of the Task Scheduling Problem 128

4.4 The Restricted Model -An Optimal Algorithm for

scheduling Requests on an Interleaved Memory System 137

4.4.1 Requirements for the Design of a Primary Memory 137

4.4.2 Characteristics of the Access Sequence of a

Pipelined Processor .. 139

4.4.3 Previous work on the Study of Interleaved Memories 141

4.4.4 The Organizations of Primary Memory for a Pipelined

Processor ... 145

4.4.5 Optimality of the MWFMF Scheduling Algorithm 157

4.4.6 Embedded Markov Chain Technique 172

4.4. 7 Simulation Technique ... 178

4.4.7.1 Simulation Results .. 178

4.4.7.2 Application of Multiple Linear Regression

to obtain a Closed Form Formula 182

4.4.8 Effects of separating the Instruction and the Data Area 193

4.4.9 Degradation in Performance due to Dependencies 196

4.4.9.1 The Model used to estimate the Performance due

to Dependencies .. 196

4.4.9.2 Computation of Degradation in Performance 199

4.4.10 Some Final Remarks about the Design of

Interleaved Memories ... 208

4. 5 A Heuristic for the scheduling of Tasks on the General Model. 212

4.6 Conclusion .. 216

v

Chapter 5 HARDWARE SUPPORT FOR DATA MANAGEMENT ON DISTRIBUTED

COMPUTER SYSTEMS .. 218

5.1 Introduction ... 218

5.2 A Design of a Fast Cellular Associative Memory for Ordered

Retrieval.. ... 220

5.2.1 Previous Work ... 220

5.2.2 Symbols used in the Design .. 222

5.2.3 Basic Associative Memory Organization 224

5.2.4 Definition of Search Operations .. 226

5.2.5 Algorithms and Implementations of Basic Searches 228

5.2.5.1 Mode A: Equality-Proximity-Threshold Search Mode. 229

5.2.5.2 Mode B: Least Value Search Mode 233

5.2.5.3 Mode C: Greatest Value Search Mode 240

5.2.6 Ordered Retrieval ... 242

5.2. 7 Some Speed-up Techniques .. 244

5.2.8 Issues and Limitations .. 252

5.2.8.1 LSI Implementation ... 252

5.2.8.2 Manufacturing Defects .. 253

5.2.8.3 Modular Expansion .. 254

5. 2.8.4 Multiple Match Resolution ... 258

5.2.9 Comparisons with other Methods of Ordered Retrieval 259

5.3 Data Base Machines .. 263

5. 3.1 Introduction .. 263

5.3.2 Issues in the Design of Data Base Machines 266

5. 3.3 Classification of Data Base Machines 268

5.3.4 Extension of the Associative Memory Design to

Sequential Memories .. 276

vi

5.4 Conclusion .. 280

Chapter 6 CONCLUSION .. 282

Appendix A THE ISOMORPHISM BETWEEN PROCESS ALLOCATION PROBLEM

AND THE SINGLE COMMODITY QUADRATIC ASSIGNMENT PROBLEM 285

Appendix B THE LINEAR PROGRAMMING LOWER BOUND OF A CANDIDATE

PROBLEM ... 287

Appendix C THE EXPECTED VALUE OF A CANDIDATE PROBLEM 289

Appendix D BIBLIOGRAPHY ... 291

vii

LIST OF FIGURES

PAGE

Figure 1.1 Classification of Issues in Distributed Data Base Systems 5

Figure 1.2 Architecture of a DDB System ... 10

Figure 1.3 The Density Growth of Large Scale Integrated Circuits 11

Figure 1.4 The Exponential Growth of CPU Speed .. 13

Figure 1.5 Availability of Memory Technologies .. 17

Figure 1.6 Storage Hierarchy ... 19

Figure 1. 7 Architecture of a Data Base Machine .. 20

Figure 1.6 Relationships among Various Data Management Issues 25

Figure 2.1 Relations S and SP (not all domains are shown) 29

Figure 2.2 Retrieval and Update Rate on a 2-Relation DDB from Node i.. 34

Figure 2.3 Relations Sand SP with (S.s#=SP.s#) information

compiled into the Relations ... 41

Figure 2.4 Retrieval and Update Rates on a 2-relations DDB from Node

i using Additional Redundant Information 45

Figure 2.5 A Plot of Cost Ratio w.r.t. -y for Various Values of o

under the use of Redundancy .. 51

Figure 2.6 A Plot of Cost Ratio w.r.t. 7J for Various Values of o

under the use of Redundancy .. 52

Figure 2. 7 The Retrievals and Updates on a DDB (2 nodes) with and

without File Partitioning .. 54

Figure 2.6 A Plot of Cost Ratio w.r.t. ju 1 for Various Values

of fu 2 under File Partitioning ... 60

Figure 2.9 A Plot of Cost Ratio w.r.t. -y for Various Values of o under the

use of Redundancy and Partitioning (Ju 1=fu 2=0.75) 65

viii

Figure 2.10 A Plot of Cost Ratio w.r.t. TJ for Various Values of o under the

use of Redundancy and Partitioning (fu 1=ju2=0.75) 66

Figure 2.11 A Plot of Cost Ratio w.r.t. fu 1 for Various Values of fu 2 under

the use of Redundancy and Partitioning (o=Tj=-y=0.5) 67

Figure 2.12 A Plot of Cost Ratio w.r. t. fu 1 for various values of fu 2 under

the use of Redundancy and Partitioning (o=T]=-y=0.4) 68

Figure 3.1 File Assignment Algorithm - Algorithm 3.1 93

Figure 3.2a Evaluation of Casey's 5 node Example using MINLB 96

Figure 3.2b Evaluation of Casey's 5 node Example using MINE 97

Figure 3.2c Evaluation of Casey's 5 node Example using MAXDLB 98

Figure 3.2d Evaluation of Casey's 5 node Example using MAXDE 99

Figure 4.1 Task Precedence Graph for the Processing of a Query

which requires the Use of Geographically Distributed Files 118

Figure 4.2 Model of an SIMD Computer System .. 120

Figure 4.3 Conceptual Model of a DCS .. 121

Figure 4.4 An SIMD Model for Task Scheduling on a DCS 123

Figure 4.5 Precedence Graph of Tasks for Request i which can be scheduled

on the SIMD Model ... 124

Figure 4.6 Proof of Theorem 4.1 ... 130

Figure 4. 7 Timing Diagram for the Proof of Theorem 4.2 132

Figure 4.8 Timing Diagram for the Proof of Theorem 4.5 136

Figure 4.9 Organization 1- A Model of Interleaved Memories with a

Single Request Queue .. 147

Figure 4.10 A Gantt Chart to illustrate the Operation of the

Interleaved Memories in Staggered Cycles (m=4) 148

Figure 4.11 MWFMF Scheduling Algorithm -Algorithm 4.3 151,2

Figure 4.12 Organization II- A Model of Interleaved Memories with

ix

Multiple Request Queues .. 154

Figure 4.13 The Improvement of Average Memory Utilization with Buffer

Size for Org. I (m=8) .. 188

Figure 4.14 The Increase of Average Waiting Cycles with Buffer Size

for Org. I (m=8) ... 189

Figure 4.15 The Decrease of Average Memory Utilization w.r.t. Degrees

of Interleaving for Org. I with MWFMF Scheduling Algorithm 190

Figure 4.16 The Decrease of Waiting Cycles w.r. t. Degrees of Inter-

leaving for Org. I with MWFMF Scheduling Algorithm 191

Figure 4.17 The Average Buffer Utilization for Org. II (m=8) 192

Figure 4.18 The Average Buffer Utilization vs. the Degrees of Inter-

leaving for Or g. II with MWFMF Scheduling Algorithm (m=8) 194

Figure 4.19 Model of CPU-Memory used for Estimation of the Effects

of Dependency ... 198

Figure 4.20 Histogram showing the Statistics of Dependent Events

in Traces used ... 200

Figure 4.21 Graph showing the Cumulative Probability of Number of

Instructions executed between 2 Conditional Jumps 201

Figure 4.22 The Variation of the Number of Requests in the Buffers 202

Figure 4.23 Buffer Utilization under Dependency for Org. I with a

MWFMF Algorithm (Trace Driven Simulations) 209

Figure 4.24 Simulation Results for Algorithm 4.4 using 1000 Samples

of 7 Randomly Generated Jobs (m=2, p=2) 215

Figure 5.1 Cellular Logic Associative Memory Block Diagram 225

Figure 5.2 Bit-cell with Equality, Greater-than, Less-than and

Proximity Capability for Mode A Operation 232

Figure 5.3 Bit· cell with Least Value Search Logic for Mode B Operation 235

X

Figure 5.4 Bit-cell for Simultaneous Ascending Order Retrieval and Descending

Order Retrieval or Equality-Threshold-Proximity Searches 241

Figure 5.5 Flow Chart for Ascending Order Retrieval 243

Figure 5.6 Bit-cell j and j+1 of word i with Equality-Proximity Search

and Lookahead Logic ... 246

Figure 5. 7 Modular Extension for Proposed Associative Memory 256

Figure 5.8 Flow Chart for Ascending Order Retrieval of m. 2 words

in a 3-dimensional Associative Memory [see Fig. 5.7c] 257

Figure 5.9 Comparison of Retrieval Speeds for a 5 bit Tag with

k Words Flagged ... 264

Figure 5.10 Backend Systems using Conventional Mini-computers 269

Figure 5.11lntelligent Controllers -Cellular Logic ... 271

Figure 5.12 lntelligent Controllers -Associative Memories 274

Figure 5.13 lntelligent Controllers - MlMD Architecture 275

Figure 5.14 Associative Sequential Memory .. 278

Figure 5.15 Associative Logic for Associative Sequential Memory 279

xi

LIST OF TABLES

PAGE

Table 1.1 Typical Ballistic Missile Defense Data Base Processing

Requirements in a Centralized Environment 2

Table 1.2 Typical Values for LSI Semiconductor RAM's (1978) 12

Table 3.1 Examples of Communication Costs on Telenet Data

Communication Network (July 1, 1978) ... 74

Table 3.2 A Summary of the Previous Work in File Placement/Migration 76

Table 3.3 Mapping between the Defined Notations in this Thesis

and Casey's Notations .. 77

Table 3.4 Mapping between the (D)FAP and the SC(D)WLP .. : 85

Table 3.5 Summary of Conditions for Placement and Non-Placement

of a file at Node iEK2 .. 89

Table 3.6 %Deviations of File Allocation Heuristic from Optimal Solutions ... 101

Table 3. 7 Execution Time of Heuristic in Seconds on the CDC 6400 102

Table 4.1a Simulation Results for Org. I with RR Algorithm 179

Table 4.1b Simulation Results for Org. I with FFF Algorithm 180

Table 4.1c Simulation Results for Org. I with MWFMF Algorithm 181

Table 4.2a Simulation Results for Org. II with RR Algorithm 183

Table 4.2b Simulation Results for Org. II with FFF Algorithm 184

Table 4.2c Simulation Results for Org. II with MWFMF Algorithm 185

Table 4. 3 Coefficients of 3rd Order Polynomial Regression of

Organizations I and II under MWFMF Scheduling Algorithm 186

Table 4.4 Comparison between Merged and Separated Instruction-Data

Areas for Or g. I- Trace Driven Simulations 195

Table 4.5 Comparison between Merged and Separated Instruction-Data

xii

Areas for Org. II- Trace Driven Simulations 195

Table 5.1 A Comparison Table for Ordered Retrieval Schemes 262

Table A-1 Mapping between Stone's Process Allocation Problem and the

Single Commodity Quadratic Assignment Problem 266

1

1. INTRODUCTION

The recent advances in large scale integrated logic and communication

technology, coupled with the explosion in size and complexity of the application

areas, have led to the design of distributed architectures. Basically, a Distri­

buted Computer System (DCS) is considered as an interconnection of digital sys­

tems called Processing Ele=ents (PEs), each having certain processing capabili­

ties and communicating with each other. This definition encompasses a wide

range of configurations from an uniprocessor system with different functional

units to a multiplicity of general purpose computers (e.g. ARPANET). In general,

the notion of "distributed systems" varies in character and scope with different

people [RAM76]. So far, there is no accepted definition and basis for classifying

these systems. In this thesis, we limit our discussion to a class of DCS's with an

interconnection of dedicated/shared, programmable, functional PEs and work­

ing on a set of jobs which may be related or unrelated.

1.1 WHAT IS A DISTRIBUTED DATA BASE

Due to the information explosion and the need for more stringent require­

ments, the design of efficient coordination schemes for the management of data

on a DCS is a very critical problem. To indicate the amount of data processed,

the typical data base processing requirements for a ballistic missile defense sys­

tem [DDP7B], operating in a centralized environment are shown in Table 1.1. In

order to manage t,he data on a computer system (centralized or distributed)

and satisfy all the requirements, systematic techniques must be developed so

that the system can be realized in a cost-effective way.

Data on a DCS are managed through a Data Base (DB), which is a collection

of stored operational data used by the application systems of some particular

enterprise [DAT77, FRY76]. A Distributed Data Base (DDB) can be thought of as

' .

2

objective of minimizing the overall storage, migration, updating and operational

costs on the system. By showing that the file placement problem and the facility

location problem are isomorphic, many results derived in one problem can be

applied to solve the other problem. Further, some results derived in one prob­

lem can be shown to be weaker than the corresponding results derived in the

other problem. The last two areas of study are related to the distributed

scheduling of tasks on distributed systems and the design of the necessary

hardware support for data management. The task scheduling problem for a dis­

tributed system is shown to be NP-complete. However, an optimal average algo­

rithm is developed for a restricted class which minimizes the expected comple­

tion time for a set of random requests. In the hardware support issue, the

design of an associative memory which is capable of equality, proximity, thres­

hold and extremum searches is investigated. The complexity of the design is 17

gates per cell. Its extensions to the design of associative sequential memories ·

and data base machines are developed.

3

programs, together with the sub-schema, collectively form the Data Base

Management System [FRY76, BAC75]. The Data Base Management System allows

data sharing among a community of users, while insuring the integrity of the

data over time, and providing security against unauthorized access. It also pro­

vides the transparency of the data, in order to allow the data to be stored in

different formats in different parts of the system. Finally, it provides an inter­

face between the users and the system.

The data base can be classified according to how these components are put

together. In [ASC74], two classifications are proposed, the first is based on the

number of Data Base Management Systems in the network and the second is

based on the centralization or decentralization of the file directory and the data.

In [B0076], the DDB's are classified into two structures, partitioned data bases

and replicated data bases. A partitioned data base is one that has been decom­

posed into physically separate units, and distributed across multiple nodes of a

DCS. The partitioning will normally be based on the distribution of access

requirements. In a replicated data base, all or part of the data base is repli­

cated at multiple processing nodes. The amount of partitioning and replication

depends on the architecture of the distributed system, the amount of traffic

anticipated and other requirements such as reliability, security, etc.

1.2 ISSUES IN DESIGNING DISTRIBUTED DATA BASE SYSTEMS

The issues associated with the design of a DDB can be classified from an

user's viewpoint or from a system designer's viewpoint. From an user's

viewpoint, the users are concerned with the type of organization and controls

which can give efficient and reliable operations and can satisfy their require­

ments. The users usually do not relate very closely other factors such as tech­

nology and architecture in their considerations. On the other hand, from a

designer's viewpoint, the designers are more concerned with the architecture of

r

r'

4

the system and its dependency on technology. However, the issues considered

from both viewpoints are not independent and must be investigated jointly in

the design of a DDB. We have therefore taken an integrated approach and have

classified these issues into four categories. The classification is shown in Figure

1.1.

1. 2.1 Issues in Lagicat Organization

These issues are related to the user-system interface and can be classified

as:

(A) User Interface

The user interface may be defined as a boundary in the system below which

everything is invisible to the user [DAT77]. The function of this interface is to

provide the users with an efficient and powerful query language and to help the

users to manipulate the data in the DB. The query language must be powerful

enough so that an entire set can be manipulated as a single object, instead of

being restricted to one record at a time. The complexity of this interface

depends on the required ease with which users wish to access the data and it

directly governs the design of communication processors.

(B) Data Base Organization

A data base is generally organized in one or more of the data models: rela­

tional, hierarchical or network model, where a data model refers to a represen­

tation of the entire information content of the DB in a form that is somewhat

abstract in comparison with the way in which data is physically stored [DAT77].

There are other models like the binary association model and the external set

model which are not quite popular. Each user views the data base through an

external model which may be one of the above data models. The data base

should therefore be able to support multiple data models for different users and

User Interface

Logical Selection of Data Model
rganization Design of Conceptual Level

Mapping from Conceptual Level to
Physical Level

5

rchitecture

Network Sys-~Topology Design

<
tem Design Selection of Channel

Nodal Sys- ~Memory Hierarchy
tem DesignData Base Machine

Issues
of DDB's

Query Decomposition
Fi 1 e Placement &

Data Migration
Management Data Compression

Task Scheduling

~~---Concurrent Accesses & Updates
Directory Management
Security & Privacy
Reliability- Rollback & Recovery

~Technology

Evolution~Applications

Standardization

Figure 1.1 Classification of Issues in Distributed Data Bases

6

to provide users with transparent accesses. The efficiency of a DDB is very much

dependent on the type of organization since it affects the storage organization,

access mechanisms and the communication requirements. The criteria for

designing and selecting a model has not yet been well understood or established,

nor is it likely to be established in the near future. The designers of a DDB are

therefore confronted with two decisions: which data model to utilize and how to

structure the data for a chosen model [81176]. Further, there is the problem of

mapping the different external models onto the conceptual level.

(C) Design of the Conceptual Level

The conceptual level is a level of indirection between the external level

which consists of different data models and language interfaces and the internal

level which consists of the physically stored data. The conceptual level actually

maps the users' views onto physical data and is intended to provide a solid and

enduring foundation for the total operation of the DDB. Its design depends on

how the data are stored, the physical storage media, the number of different

data models, the way that data are distributed on the DCS and other user

requirements. It is important to construct a conceptual schema at a suitable

level of abstraction in the design stage [DAT77]. Many of the techniques in

artifical intelligence have been applied successfully in this design.

1.2.2 Issues inArchitedure

(A) Network System Design

The DCS is made up of nodal processors interconnected together through

an interconnection network. There are many data base related issues associ­

ated with the design of network systems in addition to the design issues of

efficient nodal systems. Among these are: the selection of network topology to

support DDB requests; the selection of the channel type; the design of network

7

control strategies; the design of communication processors. etc. Some of these

issues have been studied in [RAM76, RAM79b].

(B) Nodal Syste-m Design

The design of the nodal architecture to support a DDB is concerned with the

design of fast storage sub-system whose function is to provide the nodal proces­

sor sub-system and users with fast retrievals and accesses to the stored data.

The storage sub-system usually consists of a memory hierarchy that is divided

into levels. These levels are made up of memory elements of varying speeds and

the fastest level is interfaced to the processor sub-system. Further, intelligence

have also been distributed to the various levels of the hierarchy. One such

design is the data base machine [HSI77]. Issues like the selection of the number

of levels and the size of each level of the memory hierarchy; the design of virtual

memory for automatic file management; the utilization of new memory techno­

logies; the hardware design for supporting data base operations in a data base

machine; the interconnection structure between memories and processors; etc.

must be considered in the design.

1.2.3 Issues in Operational Control

These issues are concerned with the efficient, correct, reliable and secure

operations of the data base. They can be classified into:

(A) Resource Manage1nent of Data

These are issues related to the management of data and files as resources

of the system so that multiple users can share the files on the data base

efficiently [RAM79a]. The control of files as resources is not only applied at the

file level, where the files have to be placed at nodes easily accessible to users

and the data have to be compressed for efficient c~mmunication and storage,

but it ranges from the users' level to the physical level. On the users' level, the

8

queries have to be processed so that the amount of data movements is

minimum. On the physical level, the individual file requests have to be

sequenced so that maximum hardware parallelism can be achieved. Some of

these issues are the focus of study in this thesis.

(B) Cancurrent Accesses and Updates

In a DDB where users share the same data, there are several problems asso­

ciated with multiple accesses and updates. When users try to access the com­

mon data, there would be interference among the accesses, and the communica­

tion protocol should be designed to minimize this interference. Another prob­

lem related to consistency arises when data elements with multiple copies at

different locations are to be updated. Simple locking mechanisms cause exces­

sive delays and may cause throughput degradation in the DCS. Efficient updat­

ing schemes are needed and the architectures would be very much influenced

by such schemes [ESW76].

(C) Directory Manage-ment

The directory is a spe cia! file in which the addresses for various files on the

system are provided. Each access to a file must therefore pass through the

directory. Due to the high intensity of the accesses on the directory, special

attention must be paid to its design. In particular, the designer has to consider

the type of directory structure which is most suitable for his application and

whether the directory should be replicated or partitioned. In general, a combi­

nation of replication and partition is used. Further, reliability considerations

must be made in the design of the directory [ROT77].

(D) Security and Privacy

Another important issue in the design of a DDB is security and privacy.

Security refers to the protection of data against deliberate or accidental

9

destruction, unauthorized access or modification of data. On the other hand,

privacy refers to the right of an individual user to determine for himself what

personal information to share with others as well as what information to receive

from others. As the size of the data base increases, the threat to security and

privacy increases. In addition, it is increasingly difficult to implement effective

measures in a DDB. Additional techniques such as data encryption would affect

the transmission efficiency and the communication mechanisms [BAD78,

DOW77].

(E) Reliability- Rollback and Recovery

The determination of the necessary hardware for reliable operations, the

data redundancy and the reconfiguration strategies are another major issue in

the design of a DDB. Multiple copies of data base realm offer fast recovery;

checkpointing of realms, dumping and journal rollback and roll-forward offer a

slower but cheaper recovery. The effect of any recovery mechanism and

reconfiguration strategy on the response time and the associated overhead must

be weighed against the reliability requirements [KRI78].

1.2.4 Issues in Evolution

In order for the system to be able to adapt to new application requirements

and technology advancements, evolutionary measures must be incorporated

into the system at the design stage. Three of the contradicting issues of evolu­

tion are:

(A) Technology Dependence

Technology is one of the most important driving force for the success of a

computer system. As seen in Figures 1.2 and 1.3, the number of components

per chip is approximately doubling each year, and the CPU speed is growing

exponentially each year. These faster and denser logic, together with a variety

10

104

"--::c
'-'

103 -"' ..-
~Double Per Year z: ...

z:
0
"-

102 ::E:
0
'-'

101

1960 1965 1970 1975 1980 1985

YEAR

Figure 1.2 The Density Growth of Large Scale Integrated Circuits

11

2.0

1.8

1.6

1.4

1.2 .
V> 1.0
0.. -:E:

• 0.8 CPU SPEED
Q

0.6
0..
V>

::> 0.4
0..
'-'

0.2

0

1965 1970 1975 1980

YEAR

Figure 1.3 The Exponential Gr01vth of CPU Speed

12

of device manufacturing technologies [MOE78], offer a variety of semiconductor

memories with different access times and prices [THE78, UPT78, FET78]. In

Table 1.2, the typical access time and power consumption for several semicon-

ductor memory types are shown. Given these diverse types of memories avail-

able on the market, the designer must therefore decide at the design stage the

most suitable memory to use. Moreover, magnetic device technologies have also

improved significantly. With the improvement of disks, drums and tapes, the

invention of the bubble memories [BOB71], and the Electron Beam Access

Memories (EBAMs) [HUG75], it is now possible to provide inexpensive secondary

and archival storage to the computer system (see Figure 1.4).

With these evolving technologies, there are three significant impacts on the

design of computers. First, new technologies add extra design alternatives to

the designers which allow the designers to design a system with improved per-

formance and decreased system complexity. An example is shown by the recent

developments of bubble memories, CCD memories and EBAMs which have

emerged to fill the "access gap" between the two traditional memory technolo-

Ta:ble 1.2 Typica:l va:lues for LSI Semiconductor RAMs (1978) (Price is shown
for quantities of 100)

Memory Acc1~~s 'l'vn" '!'imP ,.,,..\
Power Cf

1

n-
''inn lmw\

Appf,ox. ~rice
¢/hit

16K MOS dynamic 125-300 400-600 0.30
4K NMOS dynamic 150-350 460 0.33
4K ~L static 30 1000 0.85
4K I L dynamic 120 450 0.59
4K TTL static 50-70 500-900 0.80-1.00
4K MOS static 55-170 30-500 0.51-0.92
1K CMOS static 150 4 1.02
1K TTL static 40-100 500-800 0.95
1K ECL static 35-50 ' 500-800 1.30

13

10 I
I

1 BIQ cl"" ceo MBM

MOS : b 10-1 I FHD
I

.0 I
~ I

10-2 - I
"' c:: I iq I 0.

"'
I

10-3 I z: I u I ~ I I I
"' I I 0

10-4 u I I ACCESS
re GAP ::;!II

TAY I

I I
10-5 I

10-3 10-2 10-1 1 101 102 10 3 104 105 106

ACCESS TIHE (MICROSECONDS)

Figure 1.4 Availability of New Memory Technologies

14

gies (see Figure 1.4). The access gap is the region characterized by an access

time between 10-6 sec. (MOS memories) and 10-3 sec. (fixed head magnetic

disk). Much time and effort is expended in finding efficient ways to accomplish

at minimum cost the necessary transfers of information across the access gap.

With the utilization of "gap-filler" technologies, improved performance and less

complex transfer algorithms can be envisioned. Second, increasing logic on a

chip allows the designer to incorporate more logical capabilities into the storage

sub-system in addition to the storage capabilities. These logical capabilities

include abilities to execute arithmetic operations like summation, averaging, as

well as logical operations like maximum/minimum searches, equality search,

etc. The designer has to decide on the necessary logical capabilities in the sys­

tem and how they should be designed. The last impact of changing technologies

on computer system design is the increasing speed mismatch among the ele­

ments of the computer system. With the development of high speed processors

such as the CRAY-1 and multi-processor system such as the C.mmp, there is an

increasing need of higher bandwidth from the supporting memory sub-system.

In order to improve the bandwidths of memories, it is necessary to have intelli­

gent architectural designs and efficient access algorithms for supporting

retrieval operations in addition to the utilization of faster memory components.

Special emphases should therefore be placed on the utilization of new technolo­

gies, the design of new memory architectures and the study of efficient access

algorithms.

Evolving technology allows the users more freedom in specifying and

operating the system. More stringent requirements can be specified and many

of the system's functions can be designed in hardware. However, the depen­

dence of the system on evolving technologies is usually a severe constraint on

the designer, and the evolutionary capabilities of a system depend very heavily

on how well the designer can predict the future technologies.

15

(B) Application Dependence

Because the size and the complexity of applications change with time, the

design of the system may have to be altered after the system has been

deployed. However, much too often, systems are designed without taking into

account the provision for future changes. When the system evolves, the changes

are incorporated into the system in a very disorganized manner. As a result,

the unstructureness of the system increases enormously [BEL77] and leads to a

regenerative, highly non-linear increase in the effort and cost of the system

maintenance [LEH76]. In addition to this, the reliability and the integrity of the

system are also jeopardized greatly. One provision is to have a systematic

design and development methodology which provides guidelines for the sys­

tematic design and construction of DDBs and allows the system to evolve as the

application requirements and technology change [RAM78b, RAM79b].

(C) Standardization

One of the major inhibiting factors in the development and evolution of

DDBs is the lack of standardization in the areas of programming languages, user

interface commands, data models, concurrency control mechanisms, hardware

components (e.g. disks, tapes), data formats, network protocols, etc. Standardi­

zation of hardware and software components allow modular expansion of the sys­

tem. On the other hand, with a highly evolving technology, standardization may

cause costly refitting later and may even hinder acceptance of new ideas.

We have outlined some of the issues in the design of a distributed system

supporting a DDB. These issues are by no means complete and other issues,

both design and operational, have to be considered. Alternative solutions to

these issues provide the options to be decided upon by the designers during the

design phase of the system.

16

1.3ARCHITECTURE OF THE SYSTEM SUPPORTING A DDB

The memory system on a DCS is made up of nodal memories connected

together by a network and communicates via the connected processors (Fig.

1.5a). Each node in the system, which consists of a set of processing elements

and the supporting storage sub-system, may be active or passive. If the node is

active, it acts as a requesting source and can access the memories at other

nodes via the communication sub-system. Each of the active nodes in the sys­

tem has the following functions in addition to the local file accesses.

(1) Remote access control

This module detects all remote access requests originating from this

node and is responsible for processing them. When a remote request is

detected, this module looks up the network directory, and assesses the

file status. If the file exists on the network and is accessible by the

request, this request will then by transmitted.

(2) Local access control

This module is responsible for processing all remote requests received

from other nodes in the network. It acts as a security filter and deter­

mines whether the file is accessible. If so, the local .file is accessed and

the data will be transmitted.

(3) Redundant jUe maintenance control

This module coordinates all the local and the remote updates at this

node and manages the multiple copies of files on the system. In coordi­

nating updates, if the update originates from a remote node, the status

of the file is checked. In case that a conflict occurs and the data cannot

be updated, a status message is sent. On the other hand, if no conflict

occurs, the file is updated. If the update originates at this node, this

module looks up the network directory and sends out all the requested

...

17

Communication Sub-system

;,torage
Control

Processor Processor Processor

1 I
•••

1
Storage Storage Storage
Sub-system Sub-system Sub-system
Node 1 Node 2 Node n

Active Node Active Node Passive Node

(a) A DCS Memory System

Communication Sub-system

Remote Local Redundant
Access Access File

Maintenance
Control Control Control

~
Remote Terminal ACTIVE

Operating System NODE

/ ~
Local

Storage Applications
Sub-system

(b) Functional Design of an Active Node

Figure 1.5 Architecture of a 008 System

18

updates to every redundant copy on the system.

The relation of these modules to each other in an active node is shown in

Fig. 1.5b. The logical issues in a DDB, such as security and privacy, concurrency

control. etc., are resolved in these modules.

On the other hand, the physical storage system at a node comprises a

memory hierarchy that stores programs and data. It has been realized for a

long time that the conflicting requirements for high performance and low cost

storage sub-system at a node can be satisfied by a combination of expensive

high performance devices with inexpensive low performance devices which

results in a memory hierarchy. The spectrum of storage devices ranges from

bulk store and magnetic tape on one end, to the fast register storage and cache

memory in the CPU on the other hand {Figure 1.6). Many issues have to be con­

sidered when these different speed elements are put together. These include:

the selection of some physical parameters such as the number of levels in the

hierarchy and the size and the speed of each level [RAM70, WAR76]; the design of

the interconnection mechanism among levels [SMI76, POH75]; the design of

efficient scheduling algorithms and record/tile distribution and migration algo­

rithms [MUN74, STR77]; the provision of virtual memory support for an

automatic file management system [TUE76, POH75, DEN70, BAS70], etc. The last

issue is particularly important because the success of a DB is very much depen­

dent on the efficiency of the virtual memory. A file on a DB is likely to be large

and cannot reside entirely in the main memory. The use of virtual memory can

relieve the users from the laborious task of storage management. It is seen that

research is urgently needed in this area.

There is also an increasing tendency to distribute the processing of the CPU

to the various levies of the storage sub-system. One successful implementation

of this is the DB machine {Figure 1.7)· [HS177]. The DB machine may be a
._,

CPU
Add res
Space

File
Address
Space

CPU

Bulk Store (using
Gap Filler Technology- 1985)

Mass Storage (Tape Cassettes
Loaded Automatically)

19

Year Year
1975 1985

20 MIPS 40 MIPS

5008

OB

Figure 1.6 Storage Hierarchy (With Typical Sizes shown for 1975 and 1985)

Paging
Device

I Host

{ Backend Contro 11 er I

Processor 11 Processor 11 Processor .I • • •

Interconnection Switch

I Memory I r Memory l l Memory I

Figure 1.7 Architecture of a Data Base Machine

I Processor

fMemory I

N
0

21

separate member of the storage sub-system or it may represent a level of the

memory hierarchy with additional intelligence. The use of a DB machine relieves

the processing load of the central processor and allows more parallelism in the

processing of DB requests. Further, processing on large file systems are often

1/0 bound and many of the file operations are quite simple. A significant com­

munication overhead is incurred in transferring the file to a level of the memory

hierarchy where the processor can access it. By distributing the intelligence to

the different levels of the memory hierarchy, the DB machine can allow parallel

processing with very little communication overhead.

Although DB machines have been successfully designed or implemented,

e.g. Data Base Computer (DEC) [BAU76], Context Addressed Segment Sequential

Storage (CASSM) [LIP7B], Relational Associative Processor (RAP) [OZK77], Rotat­

ing Associative Memory for Relational Data Base Applications (RARES} [LlN76],

Datacomputer [MAR75], etc., the design of DB machines are still plagued by

many issues. Examples of these issues are: deciding on the kind and the degree

of parallelism; selecting the appropriate techniques for implementing the

storage media; designing the hardware and the software interface; building the

storage structure and the backend primitives and designing the control algo­

rithms. These issues are very important because the storage sub-system is very

expensive and can be more than 50% of the total hardware system cost [SCH7B].

Some of these issues are discussed in Chapter 5 of this thesis.

This section has described some of the necessary architectures in support­

ing DDB applications. Data base processing generally has some special charac­

teristics and these allow the architecture to be designed differently from con­

ventional architectures. In the next section, the issues on the resource manage­

ment of data on a DDB are discussed.

1.4 OBJECTIVES AND CONTRIBUTIONS OF THIS RESEARCH

22

1. 4.1 Problem Statement

The primary objectives of this research effort are the development of a

realistic, comprehensive, analytical model for the management of data as

resources on a DDB. This design problem encompasses the issues of establishing

a systematic way of classification of the different levels of resource management

in a DDB, design of performance measures for each level and development of

procedures for the optimal solution for certain problems in each level. We hope

to provide a strong framework for future research into problems associated with

these large scale systems as well as the solutions to some specific design prob­

lems.

1.4.2 Approach

In order to achieve the global objective, the resource management issues

are classified into four related levels, namely, the query level, the file level, the

task level and the hardware support level. The specific data management issues

investigated are:

(1) Query Decomposition on DDB's

A query is an access request made by a user or a program in which one

or more files have to be accessed. When multiple files are accessed by

the same query on a DDB, these files usually have to reside at a common

location before the query can be processed. Substantial communication

overhead may be involved if these files are geographically distributed

and a copy of each file has to be transferred to a common location. It is

therefore necessary to decompose the query into sub-queries so that

each sub-query accesses a single file. These sub-queries may then be

processed in parallel at any location which has a copy of the required

file. The results after the processing are sent back to the requesting

location. It is generally true that the amount of communications needed

23

to transmit the results is much smaller than the amount needed to

transmit the files. This approach has been proposed in the design of the

centralized version of INGRES [WON76] and is extended to the design of

SDD-1 [WON77], and distributed INGRES [EPS78]. However, in some

cases, decomposition is impossible and some file transfers are still

necessary. Two techniques are proposed in Chapter 2 so that the overall

operational costs of the system can be reduced.

(2) File Place-ment and Migration

This issue relates to the distribution and migration of data base com­

ponents, namely, files and control programs, on the DDB with the objec­

tive of minimizing the overall storage, migration, updating and access

costs on the system. A file assignment algorithm is proposed in Chapter

3.

(3) Task Scheduling

Requests on the DDB must be scheduled so that high parallelism and

overlap can be achieved. The request may be a single word fetch or it

may be a page or file access. This parallelism is important because in

order to attain high throughput, the parallel hardware and resources

must be efficiently utilized. The control of task scheduling can be distri­

buted or centralized. In distributed control, each node may act indepen­

dently and coordinate with each other. In centralized control, there is a

primary node in which all scheduling control are performed. The deci­

sion of which is the better control mechanism depends very heavily on

the interconnection structure and the communication overhead

involved. This issue is discussed in Chapter 4.

(4) Hardware Support

In addition to studying the logical data management techniques, the

24

design of the necessary hardware support is also very important. This

hardware does not necessary implement a solution to one of the data

management issues, e.g. file placement, but it provides auxillary support

to these solutions so that they can be implemented efficiently. The par­

ticular hardware supports studied are the associative memory and the

data base machine. These are discussed in Chapter 5.

The relationships among the various data management issues are shown in

Figure l.B where a relation-> is said to exist between two design issues a;, o, i.e.

a;->o if the solution of o is transparent to the solution of"'· That is, the solution

of a; is not affected by the solution to o, but not vice versa. The solution to "'

can therefore be developed independent of o. In Figure 1.5, it is seen that gen­

erally, task scheduling is transparent to file placement and migration which in

turn could be transparent to query decomposition. Further, hardware support

is transparent to all these logical issues and are generally developed after the

algorithms for the logical issues have been designed. Due to the independency,

algorithms for query decomposition can be developed independently. In

developing algorithms for file placement and migration, the solutions for query

decomposition should be taken into account. However, in most cases, assump­

tions can be made about their solutions and the file placement and migration

problem can be solved independently. For example, it may be assumed that all

queries which access multiple files may be decomposed into sub-queries that

access single files. This assumption is only true in some circumstances. an

example of which is shown in Chapter 2 of this thesis. The file placement and

migration problem for multiple files is therefore decomposed into many single

file optimization sub-problems. It must be noted that other operational control

requirements may also impose restrictions on the solutions to the data manage­

ment issues. For instance, different reliability requirements may demand

different lower bounds on the number of copies of a file on the DDB; different

~-:

Query l 2 L:_ Query Level
Decomposition H

A
R
D
w

File I 3
A

Placement
R

and Hi grati on
E

File Level

s
u
p
p

l 4
0

Task R
T

Task Level
Scheduling

Figure 1.8 Relationships Among Various Data Management Issues (The

Number in Each Issue Indicates the Chapter in which it is

Discussed)

25

26

concurrency control mechanisms may have different costs on the file placement

problem; etc. Reasonable assumptions must therefore be made about these

techniques in order to determine their effects on the resource management

issues and to solve these issues independently.

1.4.3 Contributions of this Research

Some specific contributions of this research, arranged in the order of dis­

cussion. are listed below.

(A) A model for query decomposition on relational data bases has been

developed. It is shown that the optimization of placements of multiple

relations can be done independently for each relation.

(B) Two cost reduction models have been designed to reduce the operational

costs of a relational data base. The first model reduces the retrieval cost,

but increases the update cost. The second model reduces the update cost

but increases the retrieval cost. These two cost reduction models can be

combined to form a unified approach to reduce the operational costs of

the DDB's. Further, it is also shown that the optimization of placements of

multiple relations under the use of these techniques can be done indepen­

dently for each relation.

(C) The isomorphism between the file placement problem and the single com­

modity warehouse location problem has been proved. Due to this isomor­

phism, it is also shown that some conditions and techniques developed in

computer science to solve the file placement problem are weaker than the

corresponding conditions and techniques developed in operations research

to solve the warehouse location problem. and vice versa. Further, the

technique developed in both problems are inter-changeable.

(D) A file placement heuristic has been developed. While not necessarily yield­

ing optimal system design. this heuristic yields solutions of lower cost than

27

those generated by other currently available heuristics.

(E) A model for the scheduling of tasks on a distributed system has been

developed. This model assumes that global control is infeasible and all the

scheduling decisions have to be made locally at each node. It is shown that

the scheduling of tasks in this model when all the task processing times

are deterministic, is an NP-complete problem. A heuristic has been

developed and the performance of this heuristic has been verified using

simulations.

(F) A more restricted model than the model developed for the scheduling of

tasks on a DCS has been proposed. By using the additional constraints, it

is shown that the optimal scheduling problem is polynomially solvable.

This model actually represents an organization of an interleaved memory

system. The performance of the scheduling algorithm has been verified

using simulations. Further, the degradation in performance due to depen­

dencies has been estimated.

(G) An associ~tive memory has been designed which is capable of searching

the maximum and the minimum in a time independent of the number of

words in the memory. It is also capable of doing equality search, threshold

searches and proximity search. The design is very efficient and has a com­

plexity of 17 gates per cell. The design is asynchronous and utilizes a

word-parallel and bit-serial algorithm. The delay is 1 to 4 gate delays

across each bit slice.

(H) The associative memory concept is extended to the design of data base

machines. The logic designed can be implemented on the same chip as the

memory elements.

28

2. QUERY DECOMPOSITION ON A DISTRIBUTED RELATIONAL DATA BASE

In this chapter, the problems of query decomposition and its association

with the optimal placements of relations on a distributed relational DB are stu­

died. Our objectives are to study techniques which allow query decomposition to

be done more efficiently and to investigate properties on the optimal place­

ments of multiple copies of relations or segments of relations on the DCS that

minimize the total operational cost of the system (e.g. storage cost, multiple

update cost, retrieval cost, query processing cost, file migration cost, etc.). The

theme of this chapter is to demonstrate that the placements of multiple rela­

tions on a distributed relational DB can be optimized for each relation indepen­

dently. It is assumed that a technique exists to find the optimal placements of

multiple copies of a single relation on a DDB, an example for which is shown in

Chapter 3. In this chapter, two methods have been proposed to reduce the

operational costs of the system. The first method utilizes additional redundant

information on the DDB so as to reduce the total retrieval cost and increase the

total update cost. The second method uses file partitioning to reduce the total

update cost and increase the total retrieval cost. It is shown by an example DB,

that under certain conditions, either method, or a combination of both methods,

can reduce the total operational costs of the system. A relational data model is

chosen in this discussion because it is very popular and the results obtained

would be more specific. However, the techniques proposed in this chapter can

be generalized to any type of data model and file system.

2.1 QUERIES ON A RELATIONAL DB

In a relational DB [COD70], data is viewed as relations of varying degree, the

degree being the number of distinct domains participating in the relation. Each

instance of a relation is known as a tuple, which has a value for each domain of

29

the relation. Thus a relation can simply be represented in tabular form with

columns as domains and rows as tuples.

A Query is an access request made by a user or a program, in which one or

more relations have to be accessed. A query on a relational DB consists of two

parts: the part specifying the domain{s) of the relation to be retrieved and the

part specifying the predicate which is a quantification representing the defining

properties of the set to be accessed. Let S be a relation of domains sf!, sname,

city, inventory; and SF be a relation of domains sf!, p# (Figure 2.1). The queries

on a relational DB can be classified into the following categories [DAT77]:

(1) Retrieval Operations

(a) Single Relation Retrieval: The predicate representing the defining pro-

perty of the set to be retrieved is defined on the same relation as the

set.

(a) RelationS

s sll sname citv inventorv
1 Supplier A New York 1500
3 Supplier B San Francisco 700
5 Suoolier C Chica"o 2500

(b) Relation SP

SF sll oil
1 A1
2 A1
3 A2
4 A2
5 F2

Figure 2. 1 Relations S and SP

E.g. GET (S.sname): (S.city="Paris" AND S.inventory>lOOO)

(b) Multiple Relation Retrieval: The predicate, as well as the set to be

retrieved, may be defined over multiple relations.

E.g. GET (S.sname): (S.s#=SP.s# AND SP.p#="P 2")

Relations S and SP must be available simultaneously before the

retrieval can be processed.

(2) Storage Operations

(a) Single Relation Update;

(b) Multiple Relation Update;

(c) Insertion;

(d) Deletion.

(3) Library Functions

These represent more complicated operations on the predicate than the

equality operations, e.g. counting the number of occurences, selecting the

maximum/minimum etc.

Single relation queries can be processed very easily on a distributed rela­

tional DB. When the relation is geographically distributed, the query can be sent

to a node that has a copy of the relation and be processed there. The results

after the processing can be sent back to the requesting node. It is generally

true that the amount of communications needed to transmit the results is much

smaller than the amount needed to transmit the relations.

On the other hand, the processing of a mult-relation query is more compli­

cated. When multiple relations are accessed by the same query on a DDB, these

relations usually have to reside at a common location before the query can be

processed. Substantial communication overhead may be involved if these rela­

tions are geographically distributed and a copy of each relation has to be

transferred to a common location. It is therefore necessary to decompose the

30

31

query into sub-queries so that each sub-query accesses a single relation. This

technique has been proposed in the design of the centralized version of INGRES

[WON76], and is extended to the design of SDD-1 [WON77) and distributed INGRES

[EPS7B]. Specifically, the technique consists of two steps. The first step is to

select a site with the minimum amount of data movements to that site before

the query can be processed. This is used as a starting point for the second step

of the algorithm which determines the sequence of moves that results in a

minimum cost. The algorithm used is a greedy algorithm and only local optima

can result from such an algorithm. Hevner and Yao [HEV79] have followed a

similar approach and have developed two optimal algorithms for arranging data

transmissions and local data processing with minimal response time and

minimal total time, for a special class of queries. These optimal algorithms are

used as a basis to develop a general query processing algorithm for a general

query in which each required relation may have any number of joining domains

and output domains and each node may have any number of required relations.

This general algorithm is a heuristic which uses an improved exhaustive search

to find efficient query distribution strategies. Ghosh also proposed a model of

data distribution on a DB which facilitates query processing [GH076].

Specifically, the model consists of a DB with multiple target segment types and

there are queries with multiple target segment types. The objective is to distri­

bute the segments on the DB so as to maximize the number of segments that

the queries can retrieve in parallel from different nodes. The model only looks

at the problem from a retrieval point of view and no cost is associated with

retrieving a segment from a node.

Most of the previous work addresses the problem from two separate

viewpoints. The first one is concerned about the questions of what are the pro­

cessing sequence of the query and where it should be processed. The second

viewpoint is concerned about where the files should be placed so that they can

32

be accessed efficiently. These two viewpoints are not entirely independent and

should be investigated together. Further, there exists queries which are non­

decomposable. For example, the query:

GET (S.sname): (S.s#=SP.s# AND SP.p#="P 2")

is not decomposable into single relation retrievals because there is a logical

relation "="which is defined over a common domains# of the relations S and SP.

These relations must be available simultaneously at a common location before

the retrieval or update operations can be performed. Instead of solving the

problem of decomposing the queries, we study two techniques to reduce the pro­

cessing and communication costs for non-decomposable queries in this chapter.

It is shown later, by the introduction of some redundant information on the DB

and by the use of file partitioning, non-decomposable queries may be made

decomposable, (see also [RAM79a, RAM79c]}. The basic assumption made over

here is that all the required relations are moved to the node at which the query

originates, before the processing of the query begins. It is possible to consider a

sequence of moves which will minimize the total amount of data transferred.

However the problem will be very complicated and the intention of this chapter

is to demonstrate the usefulness of the techniques of using redundant informa­

tion and file partitioning.

Before the techniques are discussed, the problem of placements of rela­

tions on a DDB is first formulated.

2.2 THE PLACEMENTS OF RELATIONS ON A DDB

In this section, a model for the placements of multiple relations on a DDB is

formulated. The model is shown for the special case of two relations and is gen­

eralized later to the case of more than two relations.

33

Consider two relations a and b, the retrieval and the update rates at node i

are (see Figure 2. 2) 1:

q;~a.(qf,b) =rate of access at node i for a single relation retrieval accessing

relation a(b);

q p. ,bb = rate of access at node i for a multi-relation retrieval accessing both '1. .a..

relations a and b;

'Uj~11 (uJ'.b) = rate of update at node i for a single relation query updating

relation a(b);

u.[';;.b('Uj~bb) = rate of update at node i for a multi-relation query accessing

both relations a and b before updating relation a(b).

The costs for each unit of access are:

S;~;(Sf,1) =communication and processing cost per unit query of accessing

relation a(b) from node ito node j;

Mf:;(Mf.;) = communication and processing cost per unit update of multiple

updating relation a(b) from node ito node j.

We differentiate between the costs of retrievals and updates because in some

applications, retrievals are more important than updates and therefore would

have a higher cost (e.g. inventory system); while in other real time applications,

updates may be more frequent and therefore more critical (e.g. airline reserva-

tion system). Let:

n = number of nodes on the DCS;

1 The conventions of the symbols used are as follows: i,j represent indexes for nodes; a,b
represent indexes for relations; the superscripts represent the list of relations that the query must
access before the query can be processed; the subscripts represent the nodes concerned and the tar-

Relation a

(a) Retrievals

Relation a

(b) Updates

/
/

/
/

/ a,b
// U; ,a

/

Single Relation Accesses

---• Multi-Relation Accesses

Relation b

' ' ' ' a,b '
U; b ' . '

b
u. b

1 •

' '
Relation b

Figure 2.2 Retrieval and Update Rates on a 2-Relation DDB from Node i

34

35

f i.~ (J i,b) = per unit cost of stnring relation a(b) at node i.

We define from the characteristics of the queries initiated from node i, the fol-

lowing symbols:

(1) Single relation retrievals:

af;~(a;~0) =fraction of relation a(b) that is put into the result relation due

to the execution of a single relation retrieval on a(b);

(2) Multi-relation retrievals:

0<;~;,_0 (a.f'J") =fraction of relation a(b) that is needed to process a multi-

relation retrieval on a and b;

(3) Single relation updates:

f3i~~ ({J;~ 0) = fraction of relation a(b) that will be updated by a single relation

update;

(4) Multi-relation updates:

v,~;.0(vi~b0) = fraction of relation a(b) that is needed to process a multi-

relation update before the updates can be performed;

{3;~;.0((3;~6°) =fraction of relation a(b) that will be updated by a multi-relation

update after relations a and b have been accessed.

In processing a multi-relation update, the relations a and b must be accessed

first in order to determine what are the actual updates that have to be made.

This is measured by the parameters v~.b and v~>,o. The fraction of relations a i.a 1.,o

get list of relations for the query.

36

and b to be updated after they have been determined are measured by the

parameters (J,~;,.• and fJ>~6°·

The parameters defined above can be estimated from the characteristics of

the different types of queries that can be made on the DDB and the probability

distribution of the data stored in the relations.

The control variables governing the file locations and the routing discipline

are defined as follows:

if relation a (b) does not exist at node i
otherwise

Xf.;(Xl;) =fraction of queries made at node i on relation a(b) that are

routed to node j.

It is true that ifX[.;>O, then YJ=l for r=a,b.

The optimization problem of placing relations a and b on the DDB can be

formulated in the following linear program:

min (2.1)

n n
" " " qT aT 1 XT .sr. LJ LJ LJ t,r t.,r"'r ,,, t,J (2.1a)

r=a..b i=l j;:;;l

+
n n

" " " q"·0 a"·0 l x• sr LJ LJ LJ i,a.,6 i,r r i,j i,j (2.1b)
r=a,b i=l j=l

n n

+ 2:: L; L; uf.rfJ[.r'-rM[.;YJ (2.1c)
r=a.,b i;;:l j=l

+ " -1\ -1\ ,j>.b[" v~··l x~ s~ LJ LJ LJ --"!.,?' LJ 'I.,S s 'l.,j 'l.,j
r=a.,b i=l j=l s=a,b

+ {3i~:/'l,.M[.,- YJ]
(2.1d)

n

+ L; L; hr lr Y[(2.1e)
r=a.,b i=l

subject to the following constraints:

n
L;Y[~l r=a,b (2.1f)
i=l

37

,_
I; X[.; = 1, r=a,b, i=1,2, ... ,n (2.1g}
i=l

n
ny:r ;;;,_ " X[;;;, 0 • LJ ,j-· r=a,b, j=l,2, ... n (2.1h)

i=l

Y[= 0,1. r=a,b, i=1,2, ... ,n (2.1i)

Eq. 2.1a represents the access cost for single relation retrievals; Eq. 2.1b

represents the access cost for multi-relation retrievals; Eq. 2.1c represents the

update cost for single relation updates; Eq. 2.1d represents the update cost for

multi-relation updates and Eq. 2. le represents the storage cost of relations on

the DDB. Condition 2.1f assures that at least one copy of the relation exists;

condition 2. lg assures that all the queries are serviced; condition 2.1h assures

that the relation must exist at a node if a route is defined to access it at that

node and condition 2. li assures that the control variables Y[are integral.

LEMMA 2.1

The above optimization problem can be partitioned into two independent optimi-

zation sub-problems, one for each relation:

(a) min

n n n n n.
I; I; QfX,~4S;~; + I; I; UtMf.1 Yt + I; Ff"Y,~
i=l i=l i=l j=l i=l

where

Q" = (q;" a" + q;"·bb~"·b + •. ~.bv"·b + ... ~,bv"·b)' i ,m. ~.a. .a. ""1.,11 u.t,a. 'l,a. "'""'.,o t,a. "a.

U!>: (.-." Rll + .,}1.bR!1•b)l
'L --,.,a.,....i,a. -.,.,a ,...1.,a. a.

Ft = f;.~l,.
subfect to:

n
I: x,~4 = 1
J=1

i=l ,n

(2.2)

38

n
nY'f ~I; X;~;~ 0 j=l, ... ,n

i=l

Yf=O,l i=l, ... ,n

(b) min (2.3)

n. n n n n
I; I; Q,bX;~;Sf_; + I; I; U./'Mf.;YJ + I; FfYf
i=l j=l i=l i=l i=t

where

Fi.b = J i.b lb

subject to:

n
I; Xl.; = 1 i=1,. .. ,n
i=l

n
nYJ ~ I; X;b.; ~ 0 i=1, ... ,n

i=l

Proof

We notice in optimization problem (2.1) that there are no cross product terms in

the control variables of relations a and b. Therefore, the objective function of

(2.1) can be written as a sum of objective functions of optimization problems

(2.2) and (2. 3), and similarly, the constraints can be partitioned into two

independent. sets. The solution to (2.2) will therefore be a constant in (2.1)

which implies that (2.3) can be solved independently. Similarly, the solution to

(2.3) will be a constant in (2.1) and this implies that (2.2) can be solved indepen-

dently.

Q.E.D.

39

We conclude that the optimization problem 2.1 for relations a and b can be

carried out as two optimization sub-problems for relations a and b indepen-

dently.

A further simplification of the integer programs (2.2) and (2.3) is to first

solve for X[1, r=a,b, and substitute it into the integer programs. It is shown in

[ALC7B] that,

xr.=!ol '·3

if S[,i = min S;,k
k.fi=t

otherwise

The detailed proof will not be shown here.

A generalization of Lemma 2.1 is to allow any number of relations in the

DDB. This is shown in the following theorem.

THEOREM 2.1

The general problem of optimizing the placements of multiple relations on a DDB

can be decomposed into multiple sub-problems, one for the placement of each

relation.

The proof, which requires some symbols to be defined and can be done by

obvious generalization of the proof of Lemma 2.1, will not be shown here.

The importance of Theorem 2.1 is that the original optimization problem of

placing multiple copies of m relations on the DDB, which has a complexity of the

order of 0 (2nm), is reduced to m simpler optimization sub-problems of placing

multiple copies of each relation on the DDB, each of which has a complexity of

the order of 0 (2"). There are many techniques developed to place multiple

copies of a relation on a DDB, e.g. [CAS72, LEV74, MOR77]. Some of these tech­

niques are exhaustive and give optimal solutions, e.g. [CAS72, LEV74, MOR77];

others give sub-optimal solutions and have a polynomial running time, an exam-

ple of which is shown in Chapter 3 of this thesis. In the remainder of this

40

chapter, we discuss two techniques to minimize the operational costs on the

DDB. The costs with and without the application of these techniques are com­

pared.

2.3 COST REDUCTION ON THE PLACEMENTS OF RELATIONS ON A DDB BY UTIL­

IZING REDUNDANT INFORMATION

In section 2.1, the technique of query decomposition is briefly described. In

query decomposition, optimization is performed on the processing of a single

query which originates at a node. The objective is to decompose a multi-relation

query into as many single relation sub-queries as possible so that data (relation)

movements from one node to another can be minimized. However, there exists

non-decomposable queries which require all the relations that they access to be

present at a common location. A large number of relation transfers may be

needed if these relations are geographically distributed. In order to avoid these

extra relation transfers, a technique utilizing redundant information is proposed

here. Instead of decomposing queries that access multiple relations, it may be

sufficient to provide redundant information in each relation so that multiple

relations do not need to reside at a single location before the query can be pro­

cessed. For example, in processing the query:

GET (S.sname): (S.s#=SP.s# AND SP.p#="P2")

on two geographically separated relations, S and SP {Figure 2.1), it may be

necessary to transfer relation S to the node where SP resides and then process

the query there or vice versa. However, if the information (S.s#=SP.s#) is com­

piled beforehand into the two relations (Figure 2.3), then the above query can be

decomposed into two single relation sub-queries:

GET (S.s#, S.sname): (S.s#=SP.s#) and

GET (SP.s#): (S.s#=SP.s# AND SP.p#="P2").

In this case, the processing can be done in parallel and the amount of

s

(a} Relation S

s# S.s#= sname city inventory
SP.s#

1 1 _Supplier A New York 1500
3 1 Supplier B San Francisco 700
5 1 Supplier C Chical!o 2500

(b) Relation SP

SP s# S.s#= P#
SP.s#

1 1 A1
2 Al
3 1 A2
4 A2
5 1 P2

Figure 2.3 Relations S and SP with {S.s#=SP.s#}
information compiled into the relations

information transfers is much smaller.

41

This technique poses several problems. First, it is necessary to take one

extra bit for each tuple in order to compile this piece of information. If the

amount of information to be added is large, {e.g. when the number of different

predicates defined on a common domain of two relations is large), the size of the

extra storage space may be significant. Second, when the common domain of

one relation is modified, it is necessary to "multiple update" the redundant

information in all the common domains of the other relations in the DDB. Refer-

ring to Figure 2.3, if an extra tuple with s#="2", sname="Supplier D",

city="Boston" and inventory="3000" is added to relation S, then it is necessary

to find out what are the changes that have been made on the redundant informa-

42

tion (S.s#=SP.s#) in both relations S and SP, and to update these changes in

addition to the original update. In this case, the (S.s#=SP.s#) information has to

be changed in relations S and SP because relation SP contains a tuple with s#=2.

If updating activities are frequent, the "multiple update" cost is large. The net

effect of this technique is therefore to reduce the total retrieval cost and to

increase the total update cost of the system. Further, the response time in

reflecting an update on the DDB may be longer in this case because of the need

to update the redundant information. Third, this technique requires that the DB

designer be able to estimate the amount of additional information to be com­

piled into the relations. A possible way is to pre-analyze the type of predicates

used in retrievals and updates and to determine what are the essential informa­

tion to be compiled into the relations. A compromize should be made between

introducing extra information with additional storage space and higher cost in

multiple updates, and reducing the amount of relation transfers. It would be

advantageous for the more frequently used predicates and less advantageous for

the others.

In the remainder of this section, a model is developed for deciding how

much redundant information is needed on the DDB in order for this technique to

be cost effective. We first examine the strategies that have to be used for

retrievals and updates.

The strategies on retrievals of a geographically distributed relation is the

sarne as the strategy when no redundant information is used. The necessary

information to be used in processing a single relation query is first projected

onto temporary files before they are sent to the originating node. In the case of

a non-decomposable multi-relation query, all the required relations are sent to

the originating node before the query is processed. On the other hand, the stra­

tegy on updates is different from the case of no redundant information because

it is also necessary to check whether the redundant information is updated.

43

There are two variations of the update strategy:

(1} The updates are first sent to the multiple copies of the file to be updated;

The necessary information on all the relations, which is needed to deter­

mine if the redundant information has to be updated, is sent to a com-

mon node;

The updates to be made on the redundant information are determined

there;

The updates on the redundant information are sent out to all the

affected relations.

{2} The necessary information on all the relations, which is needed to deter­

mine if the redundant information has to be updated, is sent to node i

where the update originates, (actually, it can be sent to any other node,

but the control overhead in doing this would usually be greater};

The update to be made on the redundant information are determined at

this node;

The updates on the target relation as well as the updates on the redun­

dant information, are sent out to all the relations.

The advantage of using strategy (1} is that the updates on the target rela­

tion are reflected on the DDB in a shorter time than strategy {2}. But strategy

(1} involves more control overhead and the response time in reflecting the

updates on the redundant information is longer than strategy (2}. In general,

strategy (2) will have a shorter overall response time. We assume that strategy

(2) is used in our model.

As before, the model for determining the use of redundant information is

first developed for the special case of two relations and is generalized to the

case of more than two relations later.

44

Consider two relations a and b, the retrieval and the update rates, using the

notations defined earlier, are shown in Figure 2.4. There are two additional

types of single relation retrievals which are decomposed from part of the multi-

relation retrievals due to the use of redundant information. In describing the

model, the following symbols are defined:

l'i~a~b = fraction of non-decomposable multi-relation retrievals on a and b

from node i that remain non-decomposable even with the use of

redundant information;

= fraction of multi-relation-reduced-single-relation retrievals from

node ion a(b) due to the use of redundant information;

(1-n~a~b }q;~ab.b is the rate of multi-relation retrievals that is dec om-

posable with the use of redundant information;

(1--yf}.b)q;~:.b(af;;}'+a;~bb) is the total rate of multi-relation-reduced-

single-relation retrievals to relations a and b after the decomposi-

tion;

It is generally true that af;.b+afbb<?.1, that is, the total rate of addi-

tiona! single relation retrievals after the use of redundant informa-

tion, is greater than the reduction in multi-relation retrieval rate;

The access rate of multi-relation-reduced-single-relation retrievals

on relation r is (1--v!",bb)q"'·bba"'·b for r=a b· f't.,Cl., !.,Q., 'I.,T t I

t:;~;.b(t:f;&b) = fraction of relation a(b) that is put into the result relation due

to a multi-relation-reduced-single-relation retrieval on a(b};

o;~ab(o;~bb) = fraction of non-decomposable multi-relation updates on a(b)

from node i that remain non-decomposable even with the use of

a,b(l a,b) a,b
0 i,a -Yi,a,b qi,a,b

(a) Retrievals

(b) Updates

' b ', ·, qi,b
/ / '.,

/ . / ' .
/ b b ' ' /y~· q~· ' .

q~

/ 1,a,b 1,a,b ' •

/ ' ' /
,.

/
a /

Ui / . /
/ a,b

/ ui a
/ .

''·
Relation b

b

Relation b

Single Relation Accesses

-·-·+
Multi-Relation Transformed Single Relation
Due To The Use Of Redundant Information

---7 Multi -Relation Accesses

~ Redundant Information

Figure 2.4 Retrieval And Update Rates On a 2-Relation DDB
From Node i Using Additional Redundant Information

45

Accesses,

46

redundant information;

TJ;~ ... b (TJt, 4 ,b) = fraction of updates on relation a(b) from node i that will

update redundant information on relations a and b;

U:a.(~t.b) =fraction of relation a(b) in which the redundant information has

to be updated due to updates originating from node i;

l'a.(l'0) =length of relation a(b) after the use of redundant information.

In our model, although the amount of storage is greater after redundant infor­

mation is used, i.e. l'r>l.r (r=a,b), but the effect on communication is very small

because the redundant information does not have to be transferred over the

network in processing a query.

The optimization problem of placing relations a and b on the DDB after the

use of redundant information can be formulated in the following linear program:

min (2.4)

(2.4a)

n n
+ " " " (1-'Ya.,b)q"'·· a:"'·bea,bz· vr sr LJ LJ LJ fi.a.,b i,a.,b i,r i.r ~i.J i.j (2.4b)

r=a.,b i=l .i=l

+
n n

" " " 'Y a.,b q a.,b "a..bz· xr sr LJ LJ LJ 1 i,a.,b i,a ,b i,r r i ,f i.f (2.4c)
r=a.,b \=1 j=t

+ (2.4d)

n n [+ " " ",a..b 0 ... b " v4·0l' x~ -s•-LJ LJ LJ -'l.,T 'I.,T LJ t,S S 'l.,j i,j
r=a.,b i=l .i=l s=a.,b (2.4e)

+ fh~;.0l'rMf.i YT]

(2.4f)

subject to:

n
I; iT?; 1
1.=1

n
"'Xr·=1 LJ '!.,,
j=1

n
nYj ?; 2:; X[; ?; 0

i=l

47

(2.4g)

r=a,b

r=a,b i=l, ... ,n

r=a.,b j=l, ... ,n

r=a,b i=1, .. .,n Y[= 0,1

Most of the terms in Eq. 2.4 are the same as in Eq. 2.1, except in this case

Eq. 2.4b represents the access cost for multi-relation-reduced-single-relation

retrievals using the redundant information; and Eq. 2.4f represents the update

cost for the redundant information. The term ,.,r (,r +,.Jx.b) for r=a,b •ti,a,b ~.r ~.r

represents the access rate of updates that may have effects on the redundant

information. In determining whether the redundant information will be updated,

it is necessary to perform a multi-relation retrieval on the relations concerned.

In this case, since we know the updates to be made on relation r, we can fetch a

copy of all other relations sfo and move the copies to node i. This cost is

represented by the term 2:; cr.;~;.bl' 5 Xf.;Sf4 in Eq. 2.4f. After the updates on the
s;6r

redundant information have been determined, the actual updates, together with

the updates on the redundant information are sent to all the nodes which have a

copy of the relation. This cost is represented by the term 2:; tf.1l'1Mf.;Y} in Eq.
t=a..a

2.4f.

A similar lemma and theorem can be proved for this problem.

LEMMA 2.2

Optimization problem 2.4 can be partitioned into two independent optimization

sub-problems, one for each relation:

(a) min

where:

ur>- [r> (3" + ,, ... b,r>.b + r> (,r> + r>.b)'" " - 'U..i.a. i.,a. """'l,tl. ,...t,a. TJ'I.,a.,b "'""1.,0. 'Ul,a. c;t.a.

+ b (,,b +,r>,b)'"]l' 7/i,a.,b -i,b '"""i,o c;i,a. a.

Ft = /; ... l'"
subject to:

" :E Yf?. 1
i=1

Yt = 0,1

(b) min

where:

i=l ,n

Q ~ _ [qb "'b + (1 7 a..b)qa..b a"•bea,b + 7 a..b q"·b oc"•b
1. - i,b i,b - i,a,b i,a.,b i,o i,o i,a.,b i,a.,b i,o

+ ,!>.bor>·bvr>,b + ,!> o"•bvr>,b + .,..,!1 ("" +,~f'·b)oc"bb]l' "'"'"1..,11 \,11 t,o """''.,b i,o t,o 'l'l.,a.,b """!.,a "'"'"!.,a. i. b

u~- [,,b (3!> + ,!>.bar>bb + ,.,r> (,r> + f',b)t.b
'1. - """''.,b t,b ""'"""· t-''1., 'lt,a,b ""'"!.,a. 'Ui,a. st,b

+ b (,,b +" r>bb)' b]l' 7Ji,a.,b --i.b;., <;;i,b b

F;b = I i.b l'b

subject to:

Y;b = 0,1

THEOREM2.2

i=l, ... ,n

48

(2.5)

(2.6)

The general problem of optimizing the placements of multiple relations on a DDB

using additional redundant information can be decomposed into multiple sub-

problems, one for the placement of each relation.

49

The proofs of Lemma 2.2 and Theorem 2.2 are very similar to that of Lemma

2.1 and Theorem 2.1 and will not be illustrated here.

We demonstrate the use of this technique in the next section with a simple

example.

2.4. A NUMERICAL EXAMPLE TO ILLUSTRATE THE USE OF REDUNDANT INFOR­

MATION ON A DDB

In this section, we show by the use of a numerical example, the cost

improvement when redundant information is introduced on the DDB.

Consider a DCS of 3 nodes with two relations, S and SP, on the DDB. Let S

has domains s#(1), sname(lO), city(5), inventory(2) and SP has domains s#(1),

p#(1) 2• Assume that S has 500 tuples and SP has 10000 tuples. The following

parameters are also assumed.:

[Si.f] = [M;,f] = [~ 1~5 1:51 * 10-
3

/;,s = /;,SP = 0

ls = l's = 500*18 = 9000 (words) 3

lsp = l'sp = 10000*2 = 20000 (words) 3

Node Parameters

i s
q;,s uf.s uf.sSP SP q;,sp SP

Uf.,SP ul~/' S~P q;, ,SP

1 100 20 115 BO 120 4.0 100
2 50 100 50 100 25 35 50
3 75 15 35 50 15 10 75

and for all ie ~ 1. 2, 3L

afs = cx:.f.~p = v.f.~P = vf.U = 0.1

2 The number in the parenthesis indicates the length in words in each domain.
3 Note that l.,.=l~ (r=S,SP) because in this case, we do not consider the cost of storage on the

DDB (/; ,r = 0, r =S ,.::>P) and the redundant information usually does not have to be sent over the

ef.~P = r;f.~/' = 0.05

rx!>,._SP = rxf>,..SPP = 0.3
1.,~ 1.,.;).

crf.fP = u{ff/' = 0. 6

tf.s = tf.~P = o. 05

50

These parameters have been chosen based on some estimated distribution

of the data stored in the relations and the characteristics of the queries made

on these two relations. They have been set independent of the nodes and the

relations for easy understanding. The fixed cost of storage on the system have

all been neglected because the storage cost is usually very small as compared to

the communication cost. It is intended to show by this example, the amount of

redundant information needed in order for this technique to be cost effective.

In Figures 2.5 and 2.6, two graphs are plotted to show the ratio of cost with

redundancy and cost without redundancy against of.;8P 4 • In Figure 2.5, the

graph is plotted for various values of 'li~~~P 4
, with 7J[s.sP 4 fixed at 0.5. Simi-

larly, in Figure 2.6, the graph is plotted for various values of 7J[s.sp 4 , with 'l;~~~P

4 fixed at 0.5. It is seen from these two graphs that whenever sufficient redun-

dant information is added to the DDB so that over hal.f of the non-decomposable

queries or updates become decomposable, the resultant operational costs are

less than the costs without the use of redundant information. Further, it is seen

from Figure 2.6 that when the fraction of updates that will update the redundant

information is less than 0.5, there is, in general, a cost improvement.

The results we have shown in the example are for illustration. More detailed

evaluations are necessary before any definite conclusions can be drawn.

network in order to process a query.
4 It is gs.gymed that r=S, SP; the variables Dl.;.8 P, 7Jl.s ,SP are independent of i and r and the

variables '"Yi.~f;p are independent of r.

~
<: .,

"0
<:
::r
a:
'­

.c::,
"i
....,
"' 0
\,)

E
@ ·-

1. s

E
:::> ·'r E -c:: ·-E

• 8

• 1

• 6

. s 0
• 1

Figure 2.5

------ ---- - --·

y=O.O

.... 2 . , • "I . s
o (n=O.S)

• 6

with redundancy

without redundancy

• 1
• 9
....

• 8

A Plot of Cost Ratio with respect to y for various values
of o under the use of redundant information {it is assumed
that y, 6 and n are independent of r=S, SP and i)

-
-

....
1.0

51

-E

1.5

~ L
1.,, _____________________________ 2n~=~l~.o:_ ________________________ ~

1J 1. 2[r ___________________________________ nn=:o~.s~--------------------------~~

~~. tlr~------------~-------------------ln~=~o~.~6~----------------~~~~~~~
iE 1. or--------------------_,.,..Q.-4--.., -;;: ..,
V)

0
<..>

e;

~
·~
<:
·~ e

------. a

n=0.2
• 8

• 7 n=O.O

• 6 !-
with redundancy

. s without redundancy
0 • I

-< -< ..L ..L
...L

• l • 3 • 1 . s . 6 • 7 • 8 • 9 0 (y=O.S)

Figure 2.6 A Plot of Cost Ratio with respect to 11 for various values
of o under the use of redundant information (It is assumed
that y, o and n are independent of r=S, SP and i)

-

..J

I • 0

52

53

2.5 COST REDUCTION ON THE PLACEMENTS OF RELATIONS ON A DDB BY FILE

PARTITIONING

In section 2.3 we have shown a technique by which the total operational

costs can be reduced by decreasing the total retrieval cost and increasing the

total update cost. We study in this section, the dual of the previous technique,

that is, a technique by which the total operational costs can be reduced by

decreasing the total update cost and increasing the total retrieval cost. Before

the technique is described, the characl.eristics of an update is first studied.

An update on a relation can broadly be divided into two types. The first

type updates only a small segment of the relation and the second type updates

all the tuples in the relation. As an example, consider an employee relation.

The first type can be an update which increases the salary of a particular

employee and the second type can be an update which increases the salary of all

the employees in the relation. If the first type is more prevalent, and there is a

locality of the updates on the DDB, then the total update cost can reduced by

partitioning the relation into segments and distributing the segments to the

various nodes of the DDB instead of distributing multiples copies of the relation

to the various nodes. On the other hand, the entire relation usually has to be

accessed in a retrieval or in a multi-relation update in which the target informa­

tion to be updated must first be determined. The relation must be searched

tuple by tuple in order to determine the set of tuples satisfying the predicate. If

a relation is partitioned and distributed on the DDB, all the segments have to be

assembled before the retrieval can be made. This cost is likely to be greater

than the cost of accessing a copy of the entire relation on the DDB. The resul­

tant cost of file partitioning is therefore an increase in the total retrieval cost

and a decrease in the total update cost. The use of file partitioning is further

illustrated in Figure 2. 7.

S sl
1----:::"-----j sz

(a) Multiple Copies of Relation S Without File Partitioning

{b) Single Copy of Segments of Relation S With File Partitioning

--~Updates

---+Retrievals

Figure 2.7 The Retrievals and Updates on a DDB
(2 Nodes) With and Without File Partitioning

54

55

The problems that are related to file partitioning are two folds: how to parti-

tion the relations and after the relations are partitioned, how to distribute the

segments on the DDB. The first problem can be solved by studying the charac-

teristics of the updates made at different nodes of the DCS and partitioning the

relation according to these characteristics. There exist algorithms to solve this

problem, e.g., by clustering [JAR71, BON64]. We are therefore more concerned

with the problem of distributing the segments of the relations on the DDB after

they have been partitioned. In this section, the case with no extra redundant

information is first considered and the case with additional redundant informa-

tion is considered in section 2. 7. The model developed here is shown for the spe-

cia! case of two relations and is generalized later to the case of more than two

relations.

In addition to the symbols defined in section 2.2, we define the following

symbols here. Let

=number of segments that relation a (b) is partitioned into;

= the j'th segment of relation a (b), j = 1, ... , P a (P0);

p

For single relation queries,

fr(a1 I q;~a) [fr(b; I qf,o)] =fraction of retrievals accessing the j'th segment

of relation a (b) given that the retrieval rate is q;~a (q;~b};

fu(a; lUi~~) [tu(b; luf.o)] =fraction of updates on the j'th segment of rela­

tion a (b) given that the update rate is u;~a (U;0,0);

For multi-relation queries,

f r(a I qa.b) [tr(b I qa,b }] = fraction of multi-relation retrievals access-j i,a,b f i,a,b,

ing the j'th segment of relation a(b} given that the retrieval rate is

q a.b .
i.a.b•

fr(t; IU;~;,b) [tr(t1 lu;~b
0)] =fraction of multi-relation updates that have to

56

access the j'th segment of relation t (t = a, b) in order to determine

the actual updates, given that the update rate is U;.~;.b(U;.~bb);

fu(a; !U;.~f) [fu(b; !U;.~bb)] = fraction of multi-relation updates on the j'th

segment of relation a (b) given that the update rate is U;.~;.b(U;.~bb);

It is further assumed that the parameters ex, {J, -y, f are independent of the

effects of partitioning. The optimization problem of placing P a segments of rela-

tion a and Pb segments of relation b on the DDB can be formulated in the follow-

ing linear program.

min

ps n

+ L: L: L: fi.sls•y:•
s=a,b k.=1 i=l

subfect to

n
L: Yf;;;l
i=l

n
L:Xf.; = 1
j=l

n
nYJ' ;;; L: Xf.; ;;; 0

i=t

}{' = 0, 1

P.
1::> I; fr(s;lgt .•)::>Ps

j=l

(2.7}

(2. 7a)

(2.7b}

(2.7c}

(2.7d)

(2.7e)

(2.7f}

(2. 7g}

(2. 7h}

(2.7i}

(2. 7j)

P,
1,; I; fr(s; I q;~O.~b) ;;; P 5

j=t

P,
1;;; I; fu(si lu.f .•);;; P 5

j=t

P,
1;;; I; fr(s; I U;~!b);;; P 5

j=t

n
1 ;;; I; fu(s1 I U;~5b);;; P 5

j::::l

where s,t E fa,bl, i.j E f1,2, ... ,n! andpEfa 1, ... , apJ (c7.J.fb 1, •.• , bp,!

57

(2.7k)

(2. 71)

(2.7m)

(2.7n)

Eq. 2. 7a to Eq. 2. 7i are similar to the corresponding equations in Eq. 2. Eq. 2. 7j

to Eq. 2. 7n represent the conditions that one or more of the segments may have

to be accessed when a relation is queried. A lemma and theorem similar to

Lemma 2.1 and Theorem 2.1 can be proved for this problem.

LEMMA2.3

Optimization problem 2.7 can be partitioned into Pa+Pb independent optimiza-

tion sub-problems, one for each segment. The optimization sub-problem for seg-

ment sk where sEfa, b !. kEf1, ... , Psl is:

where

Q? = [qf.sfr(sk I qf,s)O<f.s + q;~a.b.bfr(sk I q;~a.b.b)O<;~;,b

+ I; U;~lbfr(sk IUi.~lb)v;~s"]l••
t =a..o

u~· = [,J fu(s I"~)" 5 + •• ~.bfu(s l,f',b)Ri'·b]l t,..s k ""'!.,S 1-'t,s --z.,s k --z.,s tJ'l,s sk

F •• -
i - /i,slsk

subject to

(2.8)

58

i=l, ... , n

A generalization of Lemma 2.3 is to allow any number of relations in the

DDB. This is shown in the following theorem.

THEOREM 2.3

The general problem of optimizing the placements of multiple relations on a DDB

using file partitioning can be decomposed into multiple sub-problems, one for

the placement of each partition independently.

The proofs of Lemma 2.3 and Theorem 2.3 are very similar to those of

Lemma 2.1 and Theorem 2.1 and will not be illustrated here.

We demonstrate the use of this technique in the next section with the exam-

ple from section 2.4.

2.6A NUMERICAL EXAMPLE TO ILLUSTRATE THE USE OF FILE PARTITIONING

ONADDB

Using the same example in Section 2.4, we assume that both relations Sand

SP are partitionable into two segments each, with:

Ps = Psp = 2

ls, = ls 2 = 4500

lsp 1 = lsp
2
= 10000.

We further assume that when a retrieval is made on a relation, all the segments

of the relation must be accessed, that is, for s,t E!S, SP!. iEp, 2, 3j and

fr(sJ I qf..) = 1

fr(si I qf.f.~p) = 1

fr (sJ I u,~£"P) = 1

59

We would like to see what is the effects of varying the fraction of updates that

have to access multiple segments. ForiE!l,2,3l, let

and

fu 2 = fu(Stluf.s8P) = fu(S2iuf.tfP) = fu(SPtiuf.tfj') = fu(SP2iuf.t/jf)

That is, the fraction of updates that will access a particular segment of the rela­

tion is independent of the relation, but is dependent on the type of the updates,

namely, single relation updates or multi-relation updates. The relation between

fu 1 and fu 2 is shown in Figure 2.8. It is seen that the total operational costs

after partitioning is always less than the cost without partitioning. However, due

to the fact that there is a higher overhead in maintaining a larger number of

files on the DDB, all the curves in Figure 2.8 will shift upward. Depending on the

additional cost in the overhead, a threshold in ju1 and fu 2 can be found, below

which the scheme is cost-effective.

2.7 COST REDUCTION ON THE PLACEMENT OF RELATIONS ON A DDB BY UTIL­

IZING REDUNDANT INFORMATION AND FILE PARTITIONING

The technique described in Sections 2.3 and 2.5 can be combined together

to give a further reduction in the operational costs. Extra redundant informa­

tion is first added to the relations in the DDB. These relations are then parti­

tioned before they are allocated. Using the symbols defined before, we first dis­

cuss the case of two relations, a and b, which are partitioned in P ~ and Pb seg­

ments. We assume that the multi-relation-reduced-single-relation queries

behave in a similar fashion as the original multi-relation queries in accessing a

segment of a relation, that is, the variables fr and f'J. defined for the multi­

relation queries are identical for the variables fr and fu defined for the multi­

relation-reduced-single-relation queries. Further, it is necessary to define for

60

1 • 1

1. 0 -------------------------------------

"' c

"' -c c
·~ 0
c -0 - ·~
~ ... • 9, ... c..

"' c.
"' .r: 0s::.

·~
3: ·~

3:
VI • 8 0 VI
u 0

u
E

"' E
E "' ·~ E
c ·~ with partitioning ·~ c
E ·~

E without • 7
partitioning

• 6 .so • 55 • 6 0 .65 • 7 0 • 7 5 2 • 8 0 . a 5 • 9 0 • 9 5 I • 0 0

fu
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
fraction of multi -re 1 a ti on updates that need to access all the segments

Figure 2.8 A Plot of Cost Ratio with respect to f~ for various
va 1 ues of f2 under File Partitioning

u

61

the updating of redundant information, the following symbols:

frrd(ti ju..;~,.) [frrd(ti lu..;\)] =fraction of updates on the redundant infor­

mation that have to retrieve the j'th segment of relation t (t=a,b) in

order to determine the redundant information to be updated, given

that the single relation update rate is uf.a (uf,.);

furd(ti lUi~,.) [turd(ti I'Ui~b)] =fraction of updates on the redundant infor­

mation that have to update the j'th segment of relation t (t=a,b)

given that the single relation update rate is 'Ui~ .. ('Ui~b).

frrd(t5 iu..;~;,b) [frrd(tj\'U.;~bb)] =fraction of updates on the redundant infor­

mation that have to retrieve the j'th segment of relation t (t=a,b) in

order to determine the redundant information to be updated given

that the multi-relation update rate is u..;~;,b (tt.;~bb).

furd(ti IUi~a.") [furd(ti 1'-'i~bb)] =fraction of updates on the redundant infor­

mation that have to update the j'th segment of relation t (t=a,b)

given that the multi~relation update rate is uf.a.b {uf.0•).

l1~ =length of segment j (j=l, ... ,P1) of relation t (t=a,b) after the redun-

dant information has been added.

The optimization problem of placing the segments on the DDB is:

min (2.9)

Ps n n
+ "' "'"' "'(1 -va,b)qa,b fr(s jqa,b)oca·bea·bl'X

5•s• L; LJ LJ LJ -1 i,a.,b i.a,b k i,a.,b i,s i,s sk i,j i,j
s=a,b 1:=1 i=l J=l

Ps n n
+ "' "' "' "' g fr(s I g"·•)cx"·•z" x•• s• LJ LJ LJ LJ ti,a..b i,a,b k i,a.,b i,s sk i,j i,j

s=a.b k=t i=l j=l

P. n n [P, t
+ " " " " ,,J>.,b ii~"·b " " fr(t 1 .. -~.b)v!>.!blt' x-·-st. LJ LJ LJ LJ ~.S 'I.,S LJ L..J 9 """'l,S '1., 8 'I.,J 1.,J

s=a..b k=t i=l j=l t=a,b e=l

f (I ~,b) ~ bl' M• y••] + U Sk Ui,s flt.S sk i,i j

P. n

+ I: I: I: t •.• l:.Y.·
s=a.,b k =1 i=l

subject to the constraints 2. 7f to 2. 7n with four additional constraints:

p•
1 ~ I; frrd. (s; I u.f.t) ~ Ps

J=l

p•
1 ~ I; furd.(s; lu.f.t) ~ Ps

i=l

P,
1 ~ I; frrd.(s,- luf.!b) ~ Ps

;=1
P,

1 ~ I; furd. (s1 I Ut~!b) ~ Ps
j=l

s,tEfa,bl, iEf1, ... ,n!

s,tEfa,b !. iEf1, ... ,n!

s,tEfa,bl, iEf1, n!

s,tEfa,b! iEp, ... ,n!

62

The explanation of each term of Eq. 2.9 is similar to the corresponding term of

Eq. 2.7.

A lemma and theorem similar to Lemma 2.1 and Theorem 2.1 can be proved

for this problem.

LEMMA2.4

Optimization problem 2.9 can be partitioned into P~ +Pb independent optimiza-

tion sub-problems, one for each segment. The optimization sub-problem for seg-

ment sk where sEfa, b !. kEfl, ... , P.! is

n s s n ..J!i sir; s sk ~ s sk 2:; Q; • min S;,J + 2:; LJ U; M;,; Y; + LJ F; Y;
i=l i.Y;k=t i=l j=l i=l

min

where

Q:• = [qf.sfr(sk I qf..)af.s + (1--y;~i:.b,b)qf;;,~bfr(sk I qf.;,.~b)a-f;;,bef'}
+ ..,~.b q~·b fr(s I q~·b)a~·b + " "~lbo"lbfr(s l"~·"!b)vP.·b f \,a.,b 'I.,O.,b k \,a.,b 't,S LJ --z., i, k --,., t.,S

t=a.,b

+ 'TJ~ u"i-frrd(s lu"i-)a"·b + 'TJ$ •~-~l>frrd(s lu~~b)a~·b]z' 'l.,Q.,b 'L,S k 1.,S i,S i,a.,b -,,$ k 'I.,S 'l,S S,t

ut• = {ut.du(sk lu.;:' .•)li'f.s + u.;:~;,bfu(sk lu.;:"})li't.sb

+ 2:; TJf.a,buf.tfurd (sk I uf.t)U.s + 2:; 'TJf.a.b U;~!0furd (sk I U;~!0)U,.]z~.
t =a. ,b t =a. .b

F,•• f t' = i.s ••

s= t E ~S.SPl andtyis

subject to

•• Y; = 0, 1 i=l. n

63

(2.10)

A generalization of Lemma 2.4 is to allow any number of relations in the

DDB. This is shown in the following theorem.

THEOREM 2.4

The general problem of optimizing the placements of multiple relations on a DDB

using additional redundant information and file partitioning can be decomposed

into multiple sub-problems, one for the placement of each partition.

The proofs of Lemma 2.4 and Theorem 2.4 are very similar to those of

Lemma 2.1 and Theorem 2.1 and will not be illustrated here.

The next section demonstrates the use of the combined technique with the

same example discussed in Section 2.4.

2.6 A NUMERICAL EXAMPLE TO ILLUSTRATE THE USE OF ADDITIONAL REDUN-

64

DANT INFORMATION AND FILE PARTITIONING ON A DDB

Using the same values defined in Sections 2.4 and 2.6, we further assume

for s, t E: !S ,SP l. i E! 1,2, 3! and j E! 1,2!, that

frrd(tj I ul.s) = 1

frrd (t1 I U;.~;,b) = 1

fu 1 = furd(s; I'U./'.s) = furd(s, lu.f.t)

fu 2 = furd (s; 1 uf.,;SP) = furd (5; 1 uf.1SP)

The evaluations of the combined technique are shown in Figures 2.9 to 2.12.

Comparing Figures 2.9 and 2.10 with Figures 2.5 and 2.6 under the assumption of

fu 1=fu2=0.75 (that is, 50% of the updates have to access the two segment

together), it is seen that the combined technique gives a larger cost decrease

than when redundancy is used alone. In fact, as seen from Figures 2.9 and 2.10,

it is "almost" true that the combined technique is always more cost effective

than the case when none of the techniques are used. On the other hand, the

curves plotted in Figure 2.11 where 6=7]=')'=0.5, have a higher cost ratio than the

curves plotted in Figure 2.8. This means that the use of the combined technique

is worse than the case when partitioning is used alone. The explanation for this

is because there is a large update cost for the additional redundant information

and this is not offset by the cost decrease due to partitioning. However, if

sufficient redundant information can be added to the system so that the

retrieval cost can be further reduced, the total operational costs may drop.

This is shown in Figure 2.12, where 6=7]=')' have been reduced to 0.4. The curves

in Figure 2.12 indicate a smaller cost than the curves in Figure 2.8.

We conclude that the combined technique is always better than the tech­

nique of using redundancy alone and is better than the partitioning technique

only when 0, 7 and 7J are .,small enough".

l.S

"' c:
0> "Cl.tr " -c:
0 -.... -.... s..

"' Q. ..,
<:

"' >,
u
" "' ..,
c:

"' ..,
"' s..

.&: ·-3::
"' 0
u
s
"' s ·-c: ·-E

0 -.... ·-tt. 3

"' Q. ..,
~1. tr
>,
u
" ~ 1. 1
<:

"' ..,
"' '-1.0 r--------....
"' _g

..... • 9 ·-3::
....
"' 0 • 8 r u
s
"' E ·- • 7 c:
E

with redundancy and partitioning
without redundancy and partitioning

y=l.O
-------- -----...r..=OJl.

..:t.=0.6

y=0.2

y=O.O

·
5

o~-----.~~~----.~z;-----~-3~----.-;.------.~s------~~s------.~,~----~~so-----.-s;---~~~-. o

o (n=O.S)

Figure 2.9 A Plot of Cost Ratio with respect

c under the use of Redundancy and to y for various values of
Partitioning (f1=f2=0.75)

u u

65

I • S I

"" 0> .~1- ..

"' <:
~ 0 <: ~

0
·~ :;;t . 3
·~

"' ... Q,

"' c.
'gl • 2

'1:1 "' I:

"' a >, ,§1. I <J

"' "' "' <::
'1:1 "' "' "' "' ~1. 0 '1:1 r-.,

::I

"" 0::
• 9 ·~ r :;:: -.,_, :;::

"' .,_,
0 "' . 8 u 0
E

u

"' E E "' - E • 7 <:: ·~
·~ <::
E ·~ e

• 8

. s
0

Figure

with redundancy and partitioning

without redundancy and partitioning

n=l.O

----- ---
n=0.6

n=0.4

n=0.2

• l . l • 3 . s • i • 6

6 (y=O.S)

2.10 A Plot of Cost Ratio with respect
6 under the use of Redundancy and

--·

• 7
• 9 • 8

I • 0

to n for various values of
Partitioning (f1=f2=0.75)

u u

66

"' C't~l .. l
c r:

- 0 r:-
0 +' --........ - ...
+' "' ... c..

"' c..-gt.O

"'0 "' r:

"' ~
>, r:
u "' r:-o
"' r: "'0 :::1
r:-o
~ f .9
Ql
... +'

:::1 ;;_g
- +'
]: ·;
+' "' ...
0 "' u 0
e u
g 5
- e r: ·~
- r: e ·~ e

• 6
• 50 JS

0 0.1
fraction of

F1 gure 2 .11

with redundancy and partitioning

without redundancy and partitioning

• 6 0 • 6 5 • 7 0 2 • 7 5 • 8 0 • 8 5 • 8 0

f u
0.2 0.3 0.4 0.5 0.6 0.7 0.8
multi-relation updates that need to access a 11

67

• 8 5 I • 0 0

0.9 1.0
the segments

A Plot of Cost Ratio with respect to f~ for various values of

f 2 under the use of Redundancy and Partitioning (6=n=y=0.5) u

"' c:
~

c:
0
·~ ...,
~ ..., ...
"' 0..

"0
c:

"' >,
u
c

"' "0
c

" "0
Qj ...

..<::: ...,
·~
3: ...,
"' 0
u

s
" s
·~ c
·~
E

1 • 1

"' c:
~

c:

-----with redundancy and partitioning

without redundancy and partitioning

68

01. 0 ---------------------------------------· ~ ...,
·~ ..., ...
"' 0..

"0
<::

"' >, • 9
u
c

"' "0
c:

" "0

"', • 8
" 0

..<::: ...,
·~
3: ...,
"' 0
u
s • 7

" s
·~ c:
·~ s

• 6 . s 0

0

. s s • 6 0 • 6 s • 7 0
f2

u
• 7 s • 8 0 • 8 5 • 9 0 • 9 5 1 • 0 0

0.1 0.2 0.3 0.4 0.5 0,6 0.7 0.8 0.9 1.0
fraction of multi-relation updates that need to access all the segments

Figure 2.12 A Plot of Cost Ratio with respect to f~ for various values of
f 2 under the use of Redundancy and Partitioning (o=n=y=0.4)
u

69

2.9 CONCLUSION

In this chapter, we have studied the problem of optimal relation placements

on a distributed relational data base. The objective of the problem is to minim­

ize the total operational costs of the system and to allow query decomposition to

be done more efficiently. The type of queries that can be made on a distributed

relational data base are classified. It is seen that non-decomposable queries

cause a lot of communication overhead on the system. Two techniques and a

combination of these two techniques are analyzed in this chapter. By pre­

analyzing the type of queries made on the DDB and the probability distribution

of the data in the relations, the first technique introduces additional redundant

information on the DDB so that non-decomposable queries can be made decom­

posable. The result is a decrease in the total retrieval cost and an increase in

the total update cost. The second technique partitions the relations on the DDB

into smaller segments which results in a decrease in the total update cost and

an increase in the total retrieval cost. The third technique combines the above

two techniques together. The total operational costs are going to drop if the

total cost increase is offset by the total cost decrease. It is proven in this

chapter that the problem of optimal relation (or segments of relation) place­

ment on a DDB can be decomposed into multiple sub-problems, one for the

placement of each relations (or segments). The result is a significant reduction

in the complexity of the optimization problem. A simple example is used to

illustrate some of the properties of these techniques. It must also be noted that

a lot of generality is introduced in the development of these techniques and a lot

of parameters are defined. However, most of these parameters are identical in

general, and therefore, as illustrated in the examples, the number of parame­

ters to be estimated on the system is relatively smalL

After decomposing the placements of multiple relations into the place­

ments of individual relations, it is necessary to study algorithms to perform the

70

placements. This is the topic of discussion in Chapter 3.

71

3. THE PLACEMENT AND MIGRATION OF MULTIPLE COPIES OF A FILE ON A

DCS

3.1 INTRODUCTION

In the last chapter, we have studied the placement of multiple relations on

a DCS and have decomposed the problem into multiple sub-problems of placing

multiple copies of each relation independently. In this chapter, we develop the

theory and the techniques to place and to migrate multiple copies of a single file

on the DCS. This is done by first showing that the file allocation problem and the

dynamic file allocation problem (or file migration problem), which have been

studied extensively in Computer Science, are isomorphic to two equally well

known problems in operations research, called the single commodity warehouse

location problem and the single commodity dynamic warehouse location prob­

lem. Due to this isomorphism, it is found that many techniques which have been

developed for one problem can be applied to solve the other problem. Further,

it is found that some techniques developed for one problem match very closely

with techniques developed for the other problem. The implications of such a

proof of isomorphism are further shown in sections 3.6 and 3. 7. By combining

some conditions devloped in both the file allocation problem and the warehouse

location problem, we have developed a file placement heuristic which performs

better than other heuristics proposed. The heuristic is tested on sample prob­

lems whose optimal solutions have been established previously in the literature.

In studying the file migration problem, we have proved that it is NP-complete

and have developed some conditions to indicate when file migration should be

carried out.

3.2 DEFINITION OF THE PROBLEM

72

On a DCS, one of the important problems is to distribute or place the files

so that they can be accessed efficiently. Chu has studied the optimal file alloca­

tion problem which is defined as follows: given a number of computers that pro­

cess common information files, how can one allocate the files so that the alloca­

tion yields minimum overall operating costs [CHU69]. This problem is directed

toward the optimal placement of multiple files on the DCS. Subsequently, many

researchers have partitioned the problem of allocating multiple files to multiple

problems of allocating individual files, e.g. [CAS72, LEV74, MOR77]. In Chapter 2

of this thesis, we have shown the decomposition of the optimal placements of

multiple relations into multiple sub-problems, one for the optimal placement of

each relation in a distributed relational data base. This single file allocation

problem has been coined by Eswaran as the File Allocation Proble-m (FAP)

[ESW74] which can be defined as: given a number of computers that process

common information files, and users on the system that access these files, how

can one allocate multiple copies of a file so that the allocation yields minimum

overall operating costs. This is a very simple formulation in which all the con­

straints on the system are transformed into a common unit of cost which may

include file access cost, multiple update cost, file storage cost and file migration

cost. Different constraints may be reflected in the form of different costs. For

example, a prohibitive route in the network is represented by a high acces cost.

A more general problem is the Dyna-mic File Allocation Proble-m (DFAP} or the

File Migration Proble-m in which the files are allowed to migrate over time in

order to adapt to changing access requirements. It is assumed that the period

for migration is fixed ahead of time and is not determined dynamically. There

are other people who have studied variations of the general process and file allo­

cation problem. Among them are Stone and Jenny, who have studied the alloca­

tions of processes on a multi-processor system [ST077a, ST07Ba, ST07Bb, JEN77,

HOF7B]; Loomis and Popek, who have introduced additional parameters such as

73

the capability of a node on their model [10075, 10076]; Mahmoud and Riordan,

who have considered the file placements and the capacity assignments for links

jointly [MAH76}. We concentrate in this chapter on the FAP defined by Eswaran

(multiple copies of single file allocation problem} and the DFAP (an extension of

FAP in which the placements vary over time}.

3.3MOTIVATIONS FOR FILE PLACEMENT AND MIGRATION

The major reason that multiple copies of a file are allocated to certain parts

of the system at certain times and it is not necessary to keep a copy of every file

at every node all the time is because users have localities of access. At any par­

ticular time, a file may be used by a group of users, and it will continue to be

used by the same group for a certain length of time. For a particular user, the

file that he wants to access may be available locally, in which case, he can

access the file with very little cost. If the file is not available locally, he would

have to pay a cost in terms of delay in accessing the file and also additional

traffic in the network before he can make the access. It is under this situation

that we should consider moving a copy of the file to his node. Introducing a new

copy would also increase the cost in terms of storage space and the extra over­

head in locking and concurrency control. Therefore, the decision of whether to

introduce a new copy of a file involves a balance of the cost between the two

cases. The costs, e.g. communication costs, storage costs, etc., are a function of

the topology of the system, the storage sub-system at a node, the type of com­

munication protocols used, and most importantly, the extensiveness of usage at

a particular node. Some examples of the tariff for the usage of Telenet Data

Communication Network are shown in Table 3.1 [TE178}. For example, suppose

the user uses a public dial-in service with local dial at 1200 bps, the cost that he

has to pay (assuming 100% line utilization with 30% overhead} is $4.009 for 1

Kbyte of data. On the other hand, the storage costs on the system, with the

74

Table 3. 1 E:r:a:m.ples of Cammunication Costs on Te!enet Data Cammunication
Network (July 1, 1978} [TEL78]

Type of Port Installatf~f Usage'S' co: . "'- .. ChRra"
Dedicate 50-300 bps 400 300/month
Access 1200 bps 500 340/month
Facilities 9600 bos BOO 1100/month
Public Local Dial 110-300 bps 0 3.25/hr'
Dial-in Local Dial 1200 bps 0 3.25/hr'
Service Jn-WATS 110-300 bps 0 15.00/hr

ln-WATS 1200 bos 0 15.oo/hr
Private 110-300 bps 320 180/month'
Dial-in 1200 bps 340 215/month'
Service TWX 300 210/month'
Private 75-300 bps 420 300/month'
Dial-out TWX 420 300/month'
Service

' Regular Service - $0.50 per thousand packets; each packet contains up to 128
characters of user data.

advances of low cost mass storage, are much smaller as compared with the com-

munication costs. As an example, it costs $1.00/month to store 24 Kbytes of

data on the disk of the CDC 6400 at the University of California, Berkeley. There-

fore, the minimization of communication traffic on the DCS, in the expense of

using additional storage by having multiple copies of the data, is a more impor-

tant problem.

Before we show the proof of the isomorphism, we survey in the next two sec-

tions, some of the previous work on file allocation and warehouse location.

3.4 PREVIOUS WORK ON THE FILE ALLOCATION PROBLEM

Most of the previous work on file allocation is based on static distribution.

that is, the allocation does not change with time. A typical method,in dynamic

75

distribution involves the application of a static algorithm whenever need arises.

Levin has applied dynamic programming to migrate copies of a file over a multi-

period horizon [LEV74). He has also developed some conditions in order to

reduce the number of solution vectors that have to be generated in each period.

However, the static algorithms are usually very expensive to run in real time.

Grapa and Belford remarked that a particular solution to this problem solved a

thirty node problem in one hour on an IBM 360/91 computer [GRA77b]. The

difficulty in optimization is also exemplified in [SIC77]. Moreover, the problem

has been shown to be NP-complete [ESW74], i.e., a class of problems for which

there is no known optimal algorithm with a computation time which increases

polynomially with the size of the problem [KAR72). The computation times for

all known optimal algorithms for this class of problem increase exponentially

with the problem size, i.e., if n represents the size of the problem, then the com-

putation time goes up as kn where k>l. In order to achieve a polynomial execu-

tion time, heuristics are generally used which sacrifice optimality for efficiency.

A summary of the previous work in file allocation is shown in Table 3.2. Some of

these studies introduce additional constraints on the model (e.g. link capacity,

node capability). Basically, the algorithms for statically allocating multiple

copies of a single file can be divided into two types: (1) mathematical program-

ming and exhaustive searches and (2) heuristics.

(1) Mathematica~ Programming and Exhaustive Searches

This technique has been used by Chu [CHU69], Casey [CAS72], Levin and

Morgan [LEV74, LEV75, MOR77), and Mahmoud and Riordon [MAH76). Using the

notations defined in Chapter 2, and is repeated here in Table 3.3, the formula-

tion of the FAP is as follows 1:

1 Since we are considering a single tile a, without ambiguity, all the subscripts and superscripts
for a will be delected in the formulation.

76

Tabte 3. 2 A Summary of the Previous work in File Placement/Migration

llathematJca.l Programm:lna & ExbaWJtive Searehe! Heuristic
--- ------------------------
Chu (CHU69] Casey Levin 1t. Mora:an Ghosh

(CAS72] (LEV7<. LEV?~. [GH076]

ILOR77] ========== ========= =========== ========
Complete rela- All objects Only proare.m- All objects

Uoru~ amana o~ independent de.ta relations independent.

1ect.s; File access estst. between

is poisson. objects.

---------- --------- ---------- --------
Store.ae cost; Storqe cost; Comm.llll1caUon Data base

Transtmssicn Query cost for query: with mu1Up1e

cost.: FUe len,th: trani!llt\isston CommunicaUon araet sea~

Request rate cost; Update cost for update; ment types:

between rues: transmission ~amc rate for Quertes with

Update rate cost; Query query /update multiple tar~

between files; rate bet....-een from a node to a get seament

YUim.um allow~ nodes; UP- tue vta a pro.. types.

able access UJne: date rate gram; Inter-

Storaae o apaoi- etween period :me mier&--

ly. nodes. Uon cost.

-------- ------- ----------- --------
Inteaer Proaram~ Path search Path search on Combinator\-

mlng oncost costaraph; al search

graph dyne.rnic pro~ through pos-

&rMUnlntl sible solu-
Uons

Algorithm very Algcr!t.bm Al&orilhm Maximize

compln; Constd- efficient; In~ eft'lcient: Deflntte number of

er dele.y from dependence access relations segments

net work queue- of obiects among objects that query

1n& approach. reduces allo- reduce the aDo- oan retrieve

caUon of cation of mulU~ in paraUel

multiple 1Ues ple files to single from

into single file; Define condJ. difl'erent

1Ue. tions to reduce nodes; Do not

dynamic pro- model com.

gramming munication

search delays.

Foster et. al. Loomis & Popek. Mahmoud &. Rlor-

[FOS77] [L007~. L0076] don [liAH76]

=========== =========== =======-====
Star network: All Complete Proba- Inde-pendent ob-

objects tndepen... bllistlc relations]eels; Query and

denL amona: objects. return tra:mc di-

vtded equally

&m.oJll: allocated

nodes.
----------- ----------- -----------
Queuetnc time & Inter-node CommunicaUon
nrvloe time tor tr&I1Sinl"""' cost.: File stcraae

transactions: cost.; Node capa~ cost;

Stora;e cape.oi- blllty; File Query /update

y: Averaee Ienat.h; Process- trt111c lt.

number of mes- in& needs of trle; correspcndma

sages in network: Probability of a return tramc for
Average local request access- each 1Ue at each

processina: Aver~ ina an object; no~e; A.va.Dabl.Hty

aae ftle length: Probability that requirements.
Access freq,uen~ a

cr. Hardware, request/update

software charac- ts incident on a

terisUcs. node: Probabn.tty

of 2 objects pro-

cessed in pareJ..

lel. ---------- ----------- ----------Queuelna net- Cluslerlna Add.<irop heurl!o-

work algorithm: Uc

Inteaer program-

mlng

Dynamic net- Obtain both Mhilirdze

dltTerenoe from

optimal branch~

work behavior ig~ capacity assig;n­

nored; M8%im.i2e ment for links &c

ing probabiUUes; potential for

Algorithm com- parallelism.

plex.

rue placements:

Should consider

query to be rout­

ed to nea.rest

node &: not dis..

tributed equally

amana: all nodes.

---------- --------- ----------- --------~----------- ----------- ------------

77

Ta.ble 3.3 Ma.pping between the Defined Nota.tions in this Thesis a.nd Ca.sey's No­
ta.tions [CAS72]

Notations Casey's Explanation
defined in notations
this thesis
1or ~file a

I I = index set of nodes with a copy of the file;
n n = number of nodes in the DCS;
Us 'ifls = update load originating at node j per unit time;
Qi A; = query load originating at node j per unit time;

~.i rit,.k = cost of communication of one query unit from j to k;

"At d;.J< = cost of communication of one update unit from j to k;
cr. = stora11e cost of file at k per unit time.

An optimal allocation for a given file is then defined as an index set I which

minimizes the cost function.

" C(I) = 2:; fL; U1M1,t + Q1 min Ss.J<] + 2:; Ft
S=l lk£1 k£1 tEl

By defining a control variable Y1 such that

i ;t I
jE/

The cost function can be written as:

C(I) = f; If; U1M1,t Yt + Q; min S;.kl + f: Fk Yk
i=l k=l ke.l. J:=l

The optimization problem for file placements is:

min

" C(I) = 2:; Q; min Sp
;=I kel

subject to

Yk = 0 or 1 (integer) k=l, ... ,n

a.nd

(3.1}

78

" Gk = Fk + :E U;M;;;c (3.2)
j=l

The quantity Gk has been introduced as Zk in [GRA77b]. Optimization problem

(3.1) can be solved by using integer programming techniques [GE072]. Casey

[CAS72] and Levin and Morgan [LEV74, MOR77] have used the hypercube tech-

nique to enumerate over a reduced set of possible solutions in order to find the

optimum. However, the approach of using integer programming or exhaustive

enumeration is only suitable when the problem size is small. Due to this

difficulty, Grapa and Belford have done some pioneering work in developing

three simple conditions to check whether a copy of a file should be placed at a

node [GRA77b]. This reduces the complexity of the problem tremendously

because many alternatives can be eliminated.

(2) Heuristics

Heuristics are "reasonable" search strategies which do not guarantee that

the optimum solution can be found. Heuristics are usually interactive algo-

rithms. A feasible solution can be generated. Users or some decision algorithm

then has to decide whether to improve the solution or not and how to improve it.

The decision algorithm is usually an add-drop algorithm in which perturbation is

induced on the existing solution to see if a better solution can be obtained.

Three of the most commonly used heuristics are (1) hierarchical designs; (2)

clustering algorithms; and (3) add-drop algorithms.

(1) Hierarchical designs

This is a heuristic procedure in which attention is first restricted to the

more important features of a system. In a file allocation problem, attention can

first be restricted to geographical regions. After analysis has been performed

and the files have been distributed to different geographical regions, attention

can be directed to the less important details such as allocating files within a

geographical region. This stepwise refinement procedure can continue down

79

many levels. At each level of optimization, it is hoped that the effects on the

optimization of the current level from the levels above and the levels below are

very small. Nevertheless, iterations and design cycles may exist to refine the

solution.

(2) Clustering algorithms

Clustering algorithms are horizontal design processes which have a simi­

lar objective as hierarchical algorithms, namely, to reduce the complexity of the

analysis in a large system. In a DDB, clusters can be formed from geographical

distribution of access frequencies. The files are then allocated to clusters. The

file allocation within a cluster may further be refined as in hierarchical algo­

rithms [L0075, L0076].

(3) Add- drop algorithms

In applying this algorithm, a feasible distribution of files is first found.

The total cost of the system can be improved by successive addition or deletion

of file copies. When a feasible solution with a lower cost is found, it is adopted as

a new starting solution and the process continues. Eventually, a local optimum

is reached in which addition or deletion does not reduce the cost. The whole

procedure can be repeated with a different starting feasible solution and several

local optima can be obtained. By taking the minimum of all the local minima

obtained, it is hoped that we can get very close to the global optimum [MAH76].

The disadvantages of all these heuristics are that they usually find a local

optimum instead of a global optimum and the validation is very difficult. The

goodness of a heuristic is often measured by its computational complexity and

by its average and worst case behavior. Because the average and the worst case

are difficult to solve analytically, evaluations are generally done by simulations.

Therefore it is possible that the heuristic performs satisfactorily for some exam­

ple problems, but it may perform unpredictably for some other problems. Using

80

the add-drop principle, a heuristic for the FAP is shown in Section 3.8.

3.5 PREVIOUS WORK ON THE SINGLE COMMODITY WAREHOUSE LOCATION

PROBLEM

Although the development of DCS's is very recent, and the problem of file

allocation in DCS's is rather new, a similar problem has been studied by many

operations researchers a long time ago. As early as 1951, Dantzig used the sim­

plex method to solve the transportation problem [DAN51]. In 1958, Baumol

described a problem called the warehouse location problem [BAU58]. The prob­

lem was then studied by many people. There are several variations of the prob­

lem and all of them consider a single type of commodity on the system.

(1) Si"mple plant location proble"m:

Given a set of plants which can supply customers with goods and have no

constraints on the amount shipped from any source, the problem is to deter­

mine the geographical pattern of plants' locations which will be most profitable

to the company. The optimization is done by equating the marginal cost of

warehouse operation with the transportation cost savings and incremental

profits resulting from more rapid delivery. This problem has been studied in

[MAN64, EFR66, SPI69, SNY71, ALC76]. Manne studied the use of "steepest

ascent one point move algorithm" [MAN64]. Efroymson and Ray, Spielberg,

Alcoufie and Muratet studied enumerative optimal algorithms [EFR66, SPI69,

ALC76]. Snyder studied a special case of the plant location problem in which the

paths connecting two plant locations lie on a rectangular grid [SNY71].

(2) Single Co"m·modity Warehouse location proble"m {SCWLP):

Given a set of factories, a set of customers and a set of possible warehouse

locations, the problem is to locate the warehouses so that the fixed and the

81

operational costs of the system is minimum. A special form of the problem is to

neglect the transportation costs from the factories to the warehouses and to

consider only the transportation costs from the warehouses to the custorners

which then becomes the simple plant location problem. This problem has been

studied in [KEU63, FEL66, KHU72]. Keuhn and Hamburger developed the add­

drop heuristic for the problem [KEU63]. Feldman and Ray extended Keuhn and

Hamburger's work to include non-linear fixed costs [FEL66]. Khumawala further

extended Efroymson and Ray's work [EFR66] and applied branch and bound

algorithm to solve the problem [KHU72].

(3) Single Commodity Dynamic facility location problem (SCDWLP):

This is a dynamic version of the simple plant location problem or the ware­

house location problem, except that the locations of plants or warehouses are

allowed to change over a planning horizon of r periods so as to adapt to changing

demands of the customers. This problem, first proposed by Francis [FRA63], has

been studied in [WES73, ERL74, SWE76, RA077]. Wesolowsky and Erlenkotter stu­

died the single facility migration problem [WES72, ERL74]. Sweenly and Tatham

applied dynamic programming to solve the multi-facility migration problem

[SWE76]. Rao and Rutenberg studied a dynamic multi-location problem in which

time is continuous and demand can change at different rates [RA077).

(4) Capacitated warehouse location problem:

Consid!'r a set of warehouses with a finite and fixed capacity, the problem is

to determine the warehouses' locations so that the customers' needs can be

satisfied and the costs of the system is minimum. This problem has been stu­

died in [SA 69, GIG73, AK177]. Sa, Akinc and Khumawala solved the problem

using branch and bound technique [SA 69, AKI77]. Giglio solved a special case of

the SCDWLP in which capacity constraints are taken into account and demands

are assumed to be growing at a decreasing rate.

82

(5) Quadratic assign-ment proMe-m:

Given a set of plants in which certain fixed quantities of the single type of

commodity are to be shipped between the plants, and a set of possible plant

locations, the problem is to assign the plants to locations so that the total costs

of the system is minimum. This problem appears in [K0057, GIL62, ARM63,

LAW63, HIL66b, GRA70, RIT72]. Armour and Buffa have presented a heuristic

which considered pairwise exchanges of work centers and locations [ARM63].

Gilmore and Lawler have developed optimal algorithms which are computation-

ally feasible for small problems [GIL62, LAW63]. Lawler's solution requires a

large number of linear assignment problems to be solved. Hiller and Connors

modified Gilmore and Lawler's algorithms and obtained a more efficient but

sub-optimal algorithm [HIL66b]. Graves and Whinston solved the problem using

a probabilistic branch and bound algorithm [GRA70].

Some of the problems defined above are more general than the others. In

fact, problem (1) is a subset of problem (2) which in turn is a subset of problem

(3). Problem (4) also contains problems (1) and (2). We are concerned in this

paper with problems (1), (2) and (3). The formulations of problems (1) and (2)

are identical. Using the notations of Efroymson and Khumawala [EFR66, KHU72],

the SCWLP, with m potential warehouses (with unlimited capacity) and n custo-

mers, can be formulated as a mixed integer program as follows.

-mini1nize

Z = 2:; D; t;.;X;.; + 2:; F; Y;
i.j i

subject to

2:; xi.! = 1 j=1, ... ,n
it.Ni

0 <:: "' X· · <:: ~· Y· - LJ t.J - '"''. 't i=1, ... ,'1'Tt

j€..Pi

Y, = 0 or 1 (integer)

where

i=l, ... ,m

83

t,,; = the per unit cost which includes the FOB cost at the warehouse {i),

the warehouse handling cost and the transportation cost from the

warehouse to the customer {j);

D; = the demand of customer j;

X,,; = the portion of D; supplied from warehouse i;

F, = the fixed cost associated with warehouse i;

N; = set of warehouses which can supply customer j;

P, = set of those customers that can be supplied by warehouse i;

n. = number of elements in P,;

if warehouse exists at site i
otherwise

We assume that m=n and that every warehouse can supply every customer. Let:

I = index set of sites with a warehouse.

It has been shown in [ALC76] for j=1, ... , n that:

if t, ,. =min tk 3-, iEI
. ktl .

otherwise

That is, the commodity will be shipped to a customer from a warehouse with the

minimum transportation costs. The optimization problem can be rewritten as:

TTLini7nize

n
Z = L: D; min tk.j

j=! kef
(3.3)

subject to

Y, = 0, 1 (integer) i=l, ... ,n

In solving the warehouse location problem, many techniques have been

developed. Substantial evaluation results can be found on some example ware-

house location problems in the literature.

84

3.6 THE ISOMORPHISM BETWEEN FILE ALLOCATION AND SINGLE COMMODITY

WAREHOUSE LOCATION

Mter defining the (D)FAP and the SC(D)WLP, we are ready to prove the fol­

lowing theorem.

THEOREM 3.1

The FAP and the SCWLP are isomorphic and the DFAP and the SCDWLP are iso­

morphic.

Proof

The theorem can be proved by associating the variables of the FAP with the vari­

ables of the SCWLP and similarly, the variables of the DFAP with the variables of

the SCDWLP. This association is shown in Table 3.4. An alternative way to prove

the theorem is to notice that Equations 3.1 and 3.3 are actually identical with

only a change of variables. The mapping of the variables are also shown in Table

3.4.

Q.E.D.

Using the isomorphism result, we have shown the equivalence of these two

problems. Therefore all the results available to operations researchers are

available to computer scientists and vice versa. The implications are further

illustrated in the next section.

3.7 IMPLICATIONS OF THE ISOMORPHISM BETWEEN THE (D)FAP AND THE

SC(D)WLP

Because the FAP and the SCWLP have been studied in different directions

for a long time, techniques developed for one problem can be used to solve the

other problem. The techniques developed for the general warehouse location

problem can be used to solve the FAP and the DFAP. These include the add-drop

85

Table 3.4 Mapping between the (D)FAP and the SC(D)WLP

FAP RCWLP
Locations of computers n Possible warehouse sites n
Locations of file I Locations of warehouse I
Access for a file Commodity flow
Amount of access at i (), Customer demand atj D·
Per unit cost of communicat- si.k Per unit cost of shipping com- ti ,)<

ing one query unit from j to k modity from plant to ware-
bouse j and from warehouse j
to customer k

File storage cost + multiple Ct Fixed cost of opening a ware- Ft
update cost for file at node k house at site k
File mi"ration Warehouse relocation
Cost of migrating a copy of the Cost of relocating a warehouse
file from i to k from site i to site k

technique developed in [KEU63, ARM63, FEL66] which is a heuristic of complexity

0 (n 4) and generates sub-optimal solutions; the branch and bound algorithms

used in [EFR66, SA 69, KHU72, AKl77] which exhaustively enumerate over a

reduced set of possible solutions in order to obtain the optimal allocations and

the running time depends on the bounding and the branching criteria used; the

probabilistic branch and bound algorithm used in [GRA70] which is similar to the

branch and bound technique but it uses probabilistic estimation to generate a

lower bound; the direct search or implicit enumeration algorithm used in

[SPI69, ALC76]; the steepest ascent algorithm used in [MAN64} which is a sub-

optimal steepest ascent one point move algorithm; the dynamic programming

method used in [SWE76] in which some conditions are developed to reduce the

number of solution vectors searched; the heuristic developed in [HIL66b]; and

the polynomial algorithms for some special cases, e.g. a plant location problem

on a grid-like network is solved in [SNY71}. a one facility plant migration prob­

lem is solved in [WES73]. Similarly, there are techniques developed in the F.-\P

86

and the DFAP which can be used to solve the general warehouse location prob-

lem. These include the hypercube technique developed in [CAS72, LEV74,

MOR77] which is essentially the same as Alcouffe and Muratet's optimal algo-

rithm [ALC76] and is an implicit enumeration with conditions to discontinue

unnecessary searches; the clustering technique used in [L0075); the dynamic

programming method used in [LEV74] to solve for the optimal migration

sequence of copies of a file; and the max-flow-min-cut network flow technique

developed in [ST077a, ST078a, ST078b], which can be used to solve a special

case of the SCQAP2•

Besides the fact that techniques developed for both problems are inter-

changeable, there are instances where techniques developed for one problem

match very closely with techniques developed for the other problem. These are

stated in the following three corollaries.

COROLLARY 3.1

Two of the three conditions derived by Grapa and Belford [GRA77b] for a file to

be placed or not to be placed at a node are weaker than the conditions derived

by Efroymson and Ray [EFR66] for a warehouse to be opened or closed.

Proof

Before the conditions can be stated, some additional symbols must be

defined. Let:

Ko = U: Y;=Dl;

Kl = U: Y;=ll;

K 2 = [j: Y;=unassignedl.

In the FAP, K~o K 0 represent the set of nodes with and without a copy of the file,

and K 2 represents the remaining nodes in the system. In the SCWLP, K 1o K 0

z The proof of this is shown in Appendix A

87

represent the set of sites for which a warehouse is opened and closed and K 2

represents the set of the remaining sites.

Two of the three Grapa and Belford's conditions for a file to be placed or not

to be placed at a node are 3 [GRA77b]:

For iEK2:

n
Y:· = 0 if"' Q· max (S· .. -S· ·) < G·

1. LJ :J ,. K K J,.... 1 ·' ' i=l ~<'e: lu 2

where:

{
f

(! >+ = 0
if t ;;;o
iff <0

(3.4)

(3.5)

Two of the three Efroymson and Ray's conditions for a warehouse to be opened

or closed are4 [EFR66]:

(3.6)

(3.7)

In order to show that condition (3.4) is weaker than condition (3.6) and con-

dition (3.5) is weaker than condition (3. 7), it is necessary to show:

To prove

n

(a) L.H.S. = Qit{fli~ (Su-Si.i)+ + l: Q; tE"Wf~ (S1.k - S;,i)+ ____________________ L_JiL______ J =I 1 1'2
k "' . "' k ,oiL 3 Equation (3.4) has been augmented 'bfthe term'Si,i on the R.H.S. because the original condi-

tion of Grapa and Belford is not correct when Si,i>O.
4 The variables in the following two conditions have been transformed into the corresponding

variables in the FAP with the use of Table 3.3. In the original Efroymson and Ray's conditions, jEPi
which is the set of customers that can be supplied from plant (or warehouse) i. We have made the as­
sumptiOn that all the customers can be supplied from any plant and therefore j E f 1, . .. , n ~. Note
that t;,k in the SCWLP corresponds to Sk,:J in the FAP.

= R.H.S.

(b) Comparing term by term, we would like to show that

min(S1 k-S;;)+~ max (S1 k-Sj;)
kEK1 ' ' kt.K 1vK2 ' '

There are two possibilities (note that iEK2):

Therefore

n n
~
j=l

Q· min (S· k-s. ·)+ ~ " Q· max (S· k-s. ·) 3 kt.K 3 • J.t LJ 3 k€}{ uK J, J;l
1 j=l 1 2

88

This proves that the two Grapa and Belford's conditions are weaker than the

corresponding Efroymson and Ray's conditions. It must be noted that the third

condition derived by Grapa and Belford has no corresponding counterparts in

the SCWLP and therefore may be useful in the SCWLP. The summary of these

conditions are shown in Table 3.5.

Q.E.D.

By using the stronger Efroymson and Ray's conditions, a larger set of nodes

can be pre-assigned to have or not to have a copy of the file than by using Grapa

and Belford's conditions. This may save a lot of computation time in enumerat-

ing some possible assignments which cannot be pre-assigned using Grapa and

Belford's conditions.

COROLLARY 3.2

The dynamic programming method for file migration used by Levin [LEV74) is

Tab!e 3. 5 Summary of Conditions for P!acement and Non- placement of a file
at node iEK2
(The first three conditions are from [EFRSB]; the last condition is from
[GRA77b].)

Conr'if' Rule

a ..
Y;=l if I; Qi min (S;.<-Ss.<)+ > C;

i==t Jc€K1uKz . :.,

b ..
Y;=O if L; Q1 min (Ss k-S; .) .. < C;

.;, k£}{ t • •

c If
r"£, (S;,k -S1,;) < 0 jE!l nj,

then n; is reduced bv 1
d ..

Y,=o if c,-c, > ,~, Q1(s1 .• -s1 . .> ..

89

similar to the dynamic programming method for dynamic warehouse location

used by Sweenly and Tatham [SWE76].

Proof

In [LEV74], Levin has developed a method of dynamically migrating copies

of a file over a multi-period horizon. The technique uses the basic dynamic pro-

gramming procedure, but additional conditions on costs are defined in order to

reduce the number of solution vectors that have to be generated in each period.

The conditions are defined so that the reduced set of solution vectors always

include the optimum. On the other hand, Sweenly and' Tatham also have used

dynamic programming to solve the multi-period warehouse location problem. In

order to reduce the number of solution vectors that have to be generated in

each period, an upper bound is determined first. All solution vectors with values

less than the upper bound are generated and ranked for each period. Dynamic

programming is applied to find a new upper bound v'. If v~ is the sum of

90

optimum solutions for each period without the relocation costs and K=v·-v~.

then it is proven that additional solution vectors have to be generated for

periods where the difference between the best and the worst solutions is less

than K. A solution vector in a period is obtained by solving an integer program.

It is difficult to determine the number of solutions to be generated in each

period. However. some fixed number may be selected ahead of time based on

the previous knowledge obtained. Although both techniques do not give any per­

formance results on the number of solutions that have to be generated in each

period, it seems that Levin's solution is easier to apply because it is not neces­

sary to solve an integer program in order to obtain a solution. However, a

smaller number of solutions may be generated using Sweenly and Tatham's

technique, but it may be necessary to go through several iterations before the

optimum solution is contained in the solution vectors, whereas using Levin's

technique, the reduced set of solutions vectors always contain the optimum.

The solutions that these two techniques give may not be identical and the practi­

cal benefits between these two methods can only be distinguished when they are

applied on realistic problems. More evaluations are necessary before any quan­

titative judgement can be made between the two techniques.

Q.E.D.

COROLLARY 3.3

The hypercube technique developed by Casey [CAS72] and Levin and Morgan

[LEV74, MOR77] and the condition used to discontinue the search, are identical

to the algorithm and condition developed by Alcoufie and Muratet [ALC76].

Proof

The hypercube technique was first introduced by Casey [CAS72] (a later ver­

sion was developed by Levin and Morgan [LEV74, MOR77]) to enumerate over all

the possible combinations of allocations in order to find the optimal allocations.

A condition is developed to discontinue the search whenever the objective func­

tion [CAS72] (the sum of the query and the storage costs [LEV74, MOR77]) does

not decrease after a file copy is added to an arbitary assignment at a node. A

similar condition is also developed by Alcoufie and Muratet [ALC76]. However,

the algorithm used by Alcoufie and Muratet is slightly different. They started

their search from an assignment in which every warehouse is opened. This

corresponds to the case in which every node has a copy of the file. In Casey's or

Levin's algorithm, the search is started with the assignment in which every node

does not have a copy of the file. However, the basic underlying principle of these

two algorithms are still identical.

Q.E.D.

In conclusion, as a result of the proof of isomorphism, we have found that

many techniques developed for both problems are inter-changeable and that

some techniques developed for one problem match very closely with techniques

developed for the other problem. It is therefore possible to study these two

problems in an integrated fashion in the future. In the next section, we will use

the conditions in Table 3.5 to develop a heuristic for the F AP.

3.8 A HEURISTIC FOR THE FAP- Algorithm 3.1

In this section, we propose a heuristic to solve the FAP. The search for an

optimal solution is sometimes too time-consuming or impossible. Many of the

optimal search techniques in the SCWLP are of branch and bound type and they

are applicable to problems of moderate size. One way to reduce the execution

time of a branch and bound algorithm is to develop some criteria so that many

of the branches in the branch and bound tree can be systematically eliminated

although the result obtained may not be optimal. Jn the heuristic we are going

to discuss, several alternative criteria have been investigated. Essentially, the

heuristic is a greedy algorithm which starts with all the nodes unassigned. It

92

first applies the conditions of Table 3. 5 to see if any node can be assigned

without any enumeration. After all these nodes have been assigned, it comes to

a point at which it has to decide what node to extend the assignment and

whether or not to assign a copy of the file there. It does this by extending the

current assignment by one node. For each of these extended assignments,

there are two possibilities, either to assign or not to assign a copy of the file

there. Therefore, there are altogether 2*JK 2 1 possible assignments which results

in 2*IK2l candidate problems. (The state of a candidate problem is made up of

the states of allocation of the n different nodes on the DCS. In general, the n

nodes of the DCS can be partitioned into three sets, K 0 , K 1 and K 2.) For each of

the candidate problems, a representative value is calculated. The function of

the representative value is to estimate the minimum of the candidate problem

without actually enumerating over all the allocations for the unassigned nodes.

Based on these 2*IK 21 representative values, the selection criterion selects the

node and decide whether or not to assign a copy of the file there. After this

assignment has been made, the algorithm comes to a point at which it is ready

to check for the conditions of Table 3.5 again and therefore it repeats the steps

described above until all the nodes have been assigned. The general steps of the

algorithm are shown in Figure 3.1. We discuss each of these steps briefly here.

M-1 This is to initialize the candidate problem - all nodes are unassigned at

this point. The candidate list. which is a list of states, and is made up of

the sets K 0 , K 1 , K 2 and its corresponding representative value, is

assigned the empty set.

M-2-5 These four steps essentially achieve the following: a node is selected

from the un-assigned set, K 2, and is assigned a copy or not assigned a

copy of the file. A representative value is calculated for each of the can­

didate problems. The computed representative value and the

corresponding assignments are attached to the candidate list. These

Initialize Candidate Problem
K0=;, K

1
=ill, ~={1,2, ••• ,n}

K2+K , Candidate List+ 0

Form Candidate Problem c1 where

~.l+KO, :11_,i..-KlU{i}, ~,;+Kz-{i}
Compute Representative Vaule of Ci
Attach to Candidate List

Form Candidate Problem Ci where

~,i..-KOU{i}, :11_,;•Kl' ~,i+K2-{i}
Compute Representative Value of c1
Attach to Candidate List

NO

Use Selection Criterion to Select j
From Candidate List;
Set Ko~,j' Kl~,j' K2~,j For
The Selected Candidate Problem;
K2+K2;
Candidate List + ~

NO

Stop

Figure 3.1 File Assignment Algorithm

93

M-1

M-2

M-3

M-4

M-5

M-6

M-7

94

steps are then repeated for each node in K 2 •

M-6 This step selects, from the candidate list, the candidate problem and the

corresponding assignment of nodes using the selection criterion, and

uses it for the next iteration. Steps M-2 to M-6 therefore have selected a

node and have decided whether a copy should be placed at that node.

This node is removed from the K 2 list.

M-7 The steps M-2 to M-6 are repeated until the K 2 list is empty.

There are two basic parts of the algorithm, the selection criterion and the

computation of the representative value, and they are discussed here.

S 1 The setection criterion;

S1a Select from the candidate list, the candidate problem with the minimum

representative value;

S1b Select from the candidate list, the two candidate problems for which

node i is extended, that have the maximum difference between the

representative values of Y<=O and Yi=L From these two candidate prob­

lems, select the candidate problem with the minimum representative

value.

Rl The co7nputation of the representative value;

R1a A lower bound is computed by solving the linear program (Eq. 3.1)

without the integrality constraints. (This has been derived earlier by

Efroymson and Ray [EFR66]. See Appendix B for the derivation.);

R1b The expected value of the candidate problem is computed by assuming

that each of the remaining un-assigned nodes has equal probability of

having or not having a copy of the file (see Appendix C for the deriva­

tion);

95

Using the two selection criteria and the two types of representative values,

there are four different versions of the algorithm:

1. MINLB -minimum lower bound (S1a, R1a);

2. MINE- minimum expected value (S1a, R1b);

3. MAXDLB - minimum lower bound for a node i with the maximum difference

in lower bounds between Y,=o and Y,=1 (iEK2) (S1b, R1a);

4. MAXDE - minimum expected value for a node i with the maximum

difference in expected values between Y,=O and Y,=l (iEK2) (Slb, Rlb);

To further illustrate the steps of the algorithm, it is applied on Casey's 5

node example [CAS72].

Suppose the following matrix represents the query cost s,.; for a five-node

system.

Let

and

0 6 12 9 6
6 0 6 12 9

S= 12 6 0 6 12
9 12 6 0 6
6 9 12 6 0

Q = [Q.] = [24 24 24 24 24]

U = [U.] = [2 3 4 6 6]

F = [F.] = [0 0 0 0 o]

G = [G,] = [166 160 174 126 123].

By enumerating the 25-1 possible allocations, it is found that a copy of the

file should be allocated to node 1, 4 and 5 giving a cost of 705. The steps for the

four possible variations of the algorithm are shown in Figures 3.2a, 3.2b, 3,2c

and 3,2d respectively. It is seen that two of these variations give the optimal

solution.

* condition a

* condition a

MINLB

(O,U,0,1,1)
597.0

* condition b 1
(0,1,0,1,1)

717.0

* see Table 3.5

(U,U T" ,U)

(U,U,U,l,U)

1
(U,U,U,1,1)

(U,O,O,l,1)
606.0 649.0

sub-optimum

(U,1,0,1,1)
615.0

Figure 3.2a Evaluation of Casey's 5 node Example using M!NLB
(U indicates that the node is un-assigned)

96

i'• '•

' '

' I
'li

* condition a

* condition a

MINE

~ ---• :::>
• :::> .

0
~

~ ---• :::>
• :::> --~

cu.ulu,u)

(U,U,U,1,U)

1

~ -• -. :::> -0
• :::>
~

~ ~ ~ - - -- . • - - -. .
:::> 0 -. . . - :::> :::> - . • :::> :::> :::>
~ ~ ~

732.0 738.0 726.0 744.0 729.0 741.0

MINE

(O,O,U,1,1)
732.0

* condition b

* see Table 3.5

(1,0,U,l,1)
720.0

1
(1,0,0,1,1)

705.0

(U,0,0,1,1)

729.0

optimum

(U,O,l,1,1)
723.0

Figure 3.2b Evaluation of Casey's 5 node Example using 11INE
(U indicates that the node is un-assigned)

97

* condition a

* condition a

MAXDLB

~ -•
:::> .
:::>
•

0
~

481.5

* condition b

* condition b

* see Table 3.5

~
•

:::>
• :::>
~

487.5

(u.u

1
u.u1

(U,U ll,U)

(U,U,U,l,l)

~ ~ - -. -• .
:::> :::> . •
0 -. • :::> :::>
~ ~

520.5 497.4

1
(O,l,U,l,l)

1
(0,1,0,1,1)

717 .o

~ ~ -. -. .
0
:::> :::> . .
:::> :::>
~ ~

480.0 492.6

sub-optimum

Figure 3.2c Evaluation of Casey's 5 node Example using ~lAXDLS
(U indicates that the node is un-assigned)

98

* condition a

* condition a

MAX DE

~ ---:::>
• :::>
•

0
~

732.0

MAX DE

~ ---:::>
• :::> --~

(U,U,r,U)

(U,U,r,U)

(U,U,U,1,1)

~ --. :::> .
0
•

:::>
~

738.0 726.0

(O,O,U,1,1)
732.0

(1,0,U,1,1)

'T * condition b

*see Table 3.5

. (1,0,0,1,1)

705.0

~ ~ ~ -- - -- - -• - .
:::> 0 -. . • - :::> :::> - - .
:::> :::> :::> - - -744.0 729.0 741.0

(U,0,0,1,1) (U,0,1,1,1)
729.0 723.0

optimum

Figure 3.2d Evaluation of Casey's 5 node Example using 1-lAXDE
(U indicates that the node is un-assigned)

99

100

The algorithm is evaluated by applying it on the published examples in the

FAP and the SCWLP5• The optimal solutions for these examples have been esta-

blishe d in the literature. The deviation of the heuristic solutions from the

optimal solutions can be used as an indication of the "goodness" of the heuristic.

The heuristic is also compared against the add-drop algorithm of Keuhn and

Hamburger [KEU63] 6. The evaluation results are shown in Table 3.6. The four

proposed variations of the heuristic are all polynomial algorithms and each has

a complexity of 0 (n4) (the same as the add-drop algorithm). The execution

times on the CDC 6400 are shown in Table 3. 7. It is seen from Tables 3.6 and 3. 7

that the algorithm MINLB gives the best results and has an execution time very

small as compared with other algorithms. In fact, algorithm MINLB obtains the

optimal solutions more often than the add-drop algorithm in general, but the

worst case behavior seems to be worse than the add-drop algorithm and the exe-

cution times are longer because the algorithm is more complex. On the other

hand, algorithm MAXDLB produces more optimal solutions than algorithm MINLB,

but its worst case behavior seems to be worse. Algorithms MINE and MAXDE are

much worse than algorithms MINLB and MAXDLB. Improvements can be obtained

if we use the estimated lower bound (by estimating the mean and the standard

deviation and making an assumption of normal distribution), but the complexity

of the algorithm will become 0 (n 5) and it takes too long to produce a solution

for any of these problems (> 600 seconds). However, we can still improve the

heuristic solution by combining the results of the add-drop algorithm, the MINE

algorithm and the MAXDLB algorithm. In this case, over 60% of the problems will

have optimal assignments and the complexity of the combined algorithm is stilt

5 The first six sets of problems are taken from [CAS72]. Problems 7 to 18 are taken from
[KEU63] and problems 19 to 22 are taken from problem 7 of [SA 69. p. 1013].

6 Instead of directly using Keuhn. and Hamburger's add-drop algorithm. which selects only 5
warehouse sites to be evaluated in each cycle, the add-drop algorithm used here allows for all the
unassigned warehouse sites to be taken into consideration.

101

Tab!e 3.6 %Deviations of Fi!e AUocationHeuri.stic fro-m Optima! Solutions

Optimum Add-
MAXDLB I MAXDE Pro b. Sol. Dron MINLB MINE Comments

1 117596 0 0 0 6.43 0 a=0.1 Casey's 19
2 188738 0.03 0.31 0.31 0.31 0.31 a=0.2 node file
3 242581 0 0 0.66 0 0.66 a=0.3 allocation
4 291790 0 1.39 0 1.39 0 a=0.4 problem
5 431720 0 0 0 0 0 a=l.O fcAS72l
6 705 0.85 1.70 0 1. 70 0 Casev's 5 no- de ex. rcAS721
7 796648 0.11 0 0.78 0 0.78 Factory keuhn and
8 854704 0.15 0.09 0.89 0 0.89 at lnd- Hamburger's
9 893782 0.14 0 0.71 0 0.71 ianapolis 24 ware-

10 928942 0 0.61 0.94 1.49 0.99 houses, 50
11 1092916 0.08 0 0.13 0.10 0.13 Factory customers
12 1145923 0.13 0 0.22 0 0.22 at Jack- warehouse
13 1188241 0.13 0 1.37 0 1.37 sonville location
14 1244991 0.22 0.22 2.49 0 1.67 problem
15 614548 0.14 0 0.90 0 0.90 Factory [KEU63]
16 659983 0 0.12 0.80 0 0.80 at Balt-
17 690746 0.03 0 0.74 0 0.74 imore and
18 724886 0 0 0.42 0 0.49 lnd'oolis
19 806145 0 0 0.88 0 0.38 Factory at Problem 7
20 870792 0.15 0 0.67 0 0.67 lnd'polis, of Sa
21 919994 0.11 0 1.46 0 0.44 but not [SA 69]
22 970446 0 0.42 1.73 1.36 0.67 warehouse

mean 0.10 0.22 0.73 0.67 0.58
std.dev. 0.18 0.46 0.62 1.83 0.44

102

Table 3. 7 Execution time of Heuristic in seconds on the CDC 6400

Add-
Pro b. Dr on MINLB MINE MAXDLB MAXDE Comments

1 0.57 11.45 22.79 11.42 103.71 a=0.1 Casey's 19
2 0.43 11.59 23.57 11.66 105.57 a=0.2 node file
3 0.43 11.77 23.60 11.76 105.50 a=0.3 allocation
4 0.43 11.80 23.46 11.79 105.26 a=0.4 problem
5 0.29 11.80 23.80 11.84 105.10 a=l.O fcAS72l
6 0.04 0.08 0.09 0.06 0.24 Casev's 5 no- de ex. fCAS72l
7 11.46 8.08 11.85 8.29 26.41 Factory keuhn and
8 9.36 13.55 13.52 11.23 35.73 at lnd- Hamburger's
9 5.34 20.89 13.91 20.99 ·37.61 ianapolis 24ware-

10 3.61 8.48 8.29 8.50 21.42 houses, 50
11 12.08 6.40 9.13 6.39 17.74 Factory customers
12 8.62 12.66 12.64 12.71 30.62 at Jack- warehouse
13 7.82 22.16 21.26 22.83 62.03 sonville location
14 7.02 40.18 33.47 40.33 112.93 problem
15 9.75 5.48 12.44 5.50 25.35 Factory [KEU63]
16 7.33 5.49 4.37 4.64 7.90 at Bait-
17 5.58 6.82 7.01 6.84 17.25 imore and
18 3.79 2.66 3.75 2.68 7.26 lnd'oolis
19 12.24 4.94 9.16 4.95 16.04 Factory at Problem 7
20 9.02 13.63 13.81 11.29 34.39 lnd'polis, of Sa
21 6.76 23.27 22.05 20.97 67.74 but not [SA 69]
22 5.94 22.79 28.81 22.02 73.40 warehouse

mean 5.81 12.54 15.58 12.21 50.87
std.dev. 4.11 8.92 8.83 8.84 39.27

103

We have presented in this section a heuristic which can be used to obtain a

file assignment with a value very close to the optimal solution. We show in the

next section, that by including the migration cost into the cost function, the

above heuristic is also applicable. Further, we prove some conditions for file

migration on a DDB.

3.9 DFAP- THE MICRA TION OF FILES ON A DCS

The model that we have discussed so far assumes that the access and the

update rates at each node do not vary with time. The query load (Q;) and

update load (U;) defined in Table 3.3 are actually defined for a period of finite

length. If they remain constant for every period, then the placements of files

determined initially will remain static. However, it is generally true that the

access and the update rates are time-varying. For example, a DCS which covers

large geographic areas usually experiences different query and update rates at

different parts of the system due to the different time zones in different geo­

graphic regions. It would be beneficial if the time varying characteristics of the

query and the update rates are taken into account in the placements of files on

the DCS.

We assume in the following discussion that time is divided into periods and

the file assignments remain static within the periods. The length of each period

may not be identical. The shorter the period, the more adaptive the system

would be to the time-varying retrieval and update rates, but the higher would be

the costs of migration which include the relocation costs and the costs of exe­

cuting the file assignment algorithm. The selection of the period length is there­

fore very application dependent and is driven by the rate of change of the query

rates and the costs of migration. It is also difficult to estimate the query rates

precisely ahead of time. We therefore assume that the query rates are

estimated dynamically at the beginning of each period. This may be done by

104

using some type of working set algorithm [DEN70] which estimates the query

rates based on the rate of change of the query rates in the previous periods.

With this assumption, it is possible to optimize the file allocations of each period

independently and is not necessary to use dynamic programming to optimize

the allocations for all the periods as done by Levin [LEV74] and Sweenly and Tat­

ham [SWE76].

There are two approaches to migrate files on a DCS:

1. Apply stored decisions dynamically whenever restructuring is needed.

In such an approach, the decisions of how to restructure the file system

based on the dynamic state of the system is computed beforehand. At the

beginning of each period, it involves only a search of the appropriate

migrations to be taken. This type of stored decision approach is very

efficient because it is essentially a table look-up. However, the abundance

of states usually prohibit the application of such an approach. Further, in

order to store the decisions, it is necessary to find a convex hull to an n­

dimensional region where n is the number of nodes in the system. The

number of points on this convex hull is of the order k"' where k> 1. Present

algorithms to find the equation of a convex hull in four dimensional regions

have an expected behavior of 0 (m 2) where m is the number of points on

the hull [BEN77] and algorithms for higher dimensions do not exist. There­

fore it is unlikely that a general stored decision algorithm can be found at

this time for file migration. However, by utilizing some special structure of

the problem, it may be possible to find a feasible solution. This approach

has been taken in communication and control systems, e.g. [CHU76,

RUD77] and can be a useful and efficient heuristic if optimality require­

rnents can be rel?-xed.

105

2. Apply static file assignment algorithm dynamically whenever restructur-

ing is needed.

This is the approach taken by most people and is the approach taken here.

The disadvantages about this approach is the complexity of the optimal

algorithm. However, by using a good heuristic, close to optimal results can

still be obtained.

In the remainder of this section, we formulate the file migration problem

for each period and show that the costs of file migration can be included into the

fixed cost of the system. We define the following symbols in addition to the sym-

bois defined in Table 3. 3.

T = current period of consideration;

S J.k = cost of communication of one query unit from j to k in period T;

MJ.k = cost of communication of one update unit from j to kin period T;

NJ.k = cost of moving a copy of file a .from node j to node k in period T;

F[=storage cost of file at k per unit time in period T;

Q[= query load originating at node j in period T;

UJ = update load originating at node j in period T;

C:!;, = estimated cost of running the file placement heuristic in period T;

Ir = index set of nodes with a copy of the file in period T;

Ir_ 1 = index set of nodes with a copy of the file in period T-1.

By defining the control variable Y; with respect to the period of consideration,

we have:

The access and the update costs are the same as in Equations 3.1 and 3.2 except

that the costs per unit time are defined for period T specifically. Further, there

is an additional component of the costs, the migration cost.

106

n
File Migration cost = I; Y[min NJ.k

k:;:::l J€]T--1

That is, if node k does not have a copy of the file in period T and it is necessary

to migrate a copy of the file to node k, then a copy of the file is migrated from

the nearest node in the assignments of period T-1. It is easily seen that optimi-

zation problem 3.1 can be written in the original form with only a change in the

values of Gk (Eq. 3.2).

'TTL in

n
+ I; G{Y[

k=l

subject to

Y[= 0 or 1 (integer) k=l, ... , n

and

n
G[= F[+I;

i=l
UTMT · NT ; i.l< + _mm i.l<

'€1r --I

(3.8)

(3.9)

The importance of the above formulation is that the static file assignment

algorithms developed in the literature and the file assignment heuristic

described in section 3.8 are still applicable to solve the file assignment problem

in each period although migration costs have been included in the formulation.

Therefore, at the beginning of each period, it is only necessary to determine

Q[, U J, and cJ for all jE p, ... ,nl and the static file assignment algorithm can then

be applied.

3.10 CONDITIONS TO REDUCE THE COMPLEXITY OF THE DFAP

In this section, we want to establish some general theorems on the DFAP

which will aid in simplifying the problem. Specifically, we want to show the NP-

completeness of the problem of selecting the migration points and to find an

upper bound on the number of file migrations in period T.

3.10.1 The Proble-m of Selecting the Ti-mes for Migration is NP- Co-mplete

107

Since Eswaran has shown that the FAP is NP-complete [ESW74], the DFAP,

which is a general case of the FAP, is also NP-complete. However, we want to

show that the problem of selecting the points of migration in a multi-period

length of time is also NP-complete. This means that we have to exhaustively

enumerate over all the possibilities before we can decide when to initiate a file

migration. We achieve this by reducing the knapsack problem to the problem of

selecting the points of migration.

Knapsack Problem [KAR72]

Input: (a 1, a 2 , ••. ,a,., b) E zn+!; Z =set of integers;

Property: L;a;x;=b has a 0-1 solution for x;.

Problem of selecting the migration points - feasibility form

During a time period [D,t], at what points of time should migrations be initiated

so that the total operating cost = B

We assume that the query rates are changing with time and that migrations

can only be initiated at fixed discrete times, t 1, te , tk within the period [0, t].

The last assumption is made because computer operations are governed by a

clock which is discrete.

THEOREM 3.2

The problem of selecting the migration points is NP-complete

Proof

First, we want to show that the problem E NP. A non-deterministic Turing

machine can guess the set of times at which the files in the system are to be

migrated and therefore lhe problem E NP.

Second, we have to show that the satisfiability problem (SAT) is reducible to

this problem {SAT "' the problem of selecting the migration points). We can do

108

this by showing that the knapsack problem « this problem because SAT « knap-

sack and by transitivity, SAT "' this problem. Given an instance of the knapsack

problem, we can construct (in polynomial time), an instance of the problem of

selecting the migration points as follows:

Let

if no "migration is initiated at t;

otherwise

a; = the costs of migration at time t;. (The costs are not the same at

different t; 's because the costs may be discounted to time t 0 , or

different costs may be associated with different times).

B =b.

There are no other costs associated with the operation of the system.

The knapsack problem is therefore reducible to the problem of selecting

the migration points. Since the knapsack problem is NP-complete, hence, we

have proved the theorem.

Q.E.D.

After establishing that the problem of selecting the migration points is NP­

complete, we are left with two alternatives: (1) exhaustively check the 2k possi­

bilities of whether to migrate at the k discrete times within the period [0, t]; or

(2) establish some criteria for migration. The first alternative has been taken by

Levin [LEV74] and Sweenly and Tatham [SWE76]. We investigate the second

alternative here.

3.10.2 Criteria for Initiating a Migration

We want to establish in this section some criteria under which migration

should be carried out. First, we want to find the maximum number of necessary

file movements in any migration.

Le"m"ma 3.1

109

Given the allocations of the multiple copies of a particular file, the maximum

number of file movements needed is n-1.

Proof

A file movement is needed for node i whenever Y, = 0 before the migration

and Y, = 1 after the migration. Under no other cases should there be a file

movement. It is also assumed that there is at least a copy of the file on the sys-

tern. Therefore, the maximum number of file movements occur when there are

n-1 nodes without a copy before the migration and these n-1 nodes have copies

after the migration.

Q.E.D.

Given an allocation in period T, we are interested in finding a lower bound

and an upper bound on the costs of p file movements, p = 1, ... , n-1 in period

T+l.

Let

Recall that:

K'{; = U: YJ=Ol

Kf = U: YJ=ll

and assume that all the nodes have been assigned, i.e. K~ =rp.

Cf(CrJ) = lower (upper) bound on the costs of p file movements,

The following algorithm finds Cf, C{}.

Algorithm 3.2 - To find the Lower and the Upper Bounds on the Costs of p file

movements:

1. Cf +- 0; C{} +- 0;

K'{;.t 1 +- K'{;;

KT+t ,... KT. o,u 0•

K T+l KT.
1.L 1 •

2. Do Steps 3 and 4 p times;

3. Cf <- Cf+ mip NJ.k;
;tK,.L
k€K'{;J.'

K[11 <- Kf.!'u!k j. K'{;j, 1
<- K'{;J;1

- !k !;

4. Cl} <- Cl}+ max min NJ.k;
k €K[tl j€Kf.u

Note that Cf ~ Cf+1 because all the costs involved are positive.

110

Having established the lower and the upper bounds on the cost of p file

movements, we want to compute the change in total system costs due to a per-

turbation in the access rate. When the change in total system cost is greater

than a threshold, a file migration is necessary. The change in total system cost

is given partially by the following theorem.

THEOREM3.3

Let

R r- QT+ur.
' - :J '.

T T- QT/RT·
3 - ' 1.

RJ+I = R[+c,;J+I where c,;J+! is the perturbation in the total number of

accesses in period T+l at node j and is proportionally divided

between retrievals and updates;

= Cost increase due to the perturbation.

(a) If Vj, c,;J+ 1~o. then the upper bound of file movements that can be made

on the system is p where

p =min !p: Cl+CJ;,>CE!- 1 (3.1G)

(b) If ::1 j, '-'f+ 1<0, then the lower bound of file movements that can be made on

the system is 0.

Proof

Let

111

yT = (Yf, Yt , , , , Y,;) be the original optimal state of allocation in period

T;

yr.> I = (Yf+ 1 , y~+l, "', Y,f+ 1) be the state of allocation after the perturba-

lion in period T+ 1;

C(YT)[C(yT+I)] =cost of operation at state yT(yT+I).

We want to show:

(1) C~ is an upper bound in the cost increase due to OJ[+I if Vi, OJJ+ 1;;;,o;

(2) C~ is a lower bound in the cost saving due to OJJ+l if Vi, OJJ+1;;;.o;

(3) if ::li,j s.t. OJ[+1>0, OJJ+ 1<0 and C~;£0, then C~ is a lower bound in the cost

saving;

(4) if ::1 i,j s.t. OJ[+1>0, OJJ+1<0 and C~>O, then the lower bound in the cost

saving is 0.

To prove:

(1) We observe that :;1 yT+t s.t.

C(YT) ;£ C(YT+!)-C~+I ;£ C(YT+I) ;£ C(YT)+C~

where

The first inequality can be proved by contradiction. If

C(YT) > c(yT+ 1)-c~+ 1 , this means that C(yT+I)-c~+t, which is the cost of

operation at state yT+! without the cost of the perturbation, has a lower cost

than state yT. This implies that state yT cannot be the optimal state of alloca-

lion which contradicts the original assumption.

For the second inequality. c(yT+l);;;, c(yT+l)-c~+l, we observe that

c[+' 60 if an ""T+t;;;,o.

112

The third inequality, C(Yl')+C~ ~ C(YT+I), can be proved by contradiction.

If C(YT)+C~ < c(yl'+l), then it is not necessary to re-organize the data base to

state yT+l where the cost of operation is higher than the cost involved without

the re-organization.

Therefore, 0;;; C(yT+l)-C(YT) ;i; C~ and C~ is the upper bound in the cost

increase.

(2) We observe that:

C(yT+I)-C~+I ~ C(YT) ~ C(YT)+C~ ~ C(YT+I)

The proof is exactly the same as part (1) with an inter-change of yT and yT+l.

Therefore C(Yl')-C(YT+I) ~ -C~ and C~ represents a lower bound in the

cost savings.

(3) We observe a similar condition as part (2).

c(yT+I)-c~+l ~ C(Yr) ~ c(YT)+c~ ~ c(yT+I)

Therefore, C(YT)-c(yT+l) ~ -C~.

(4) We can only establish a weaker condition in this case:

C(YT);;; C(YT+I)-C~+I

C (yT+I) ;i; C (YT)+C~

These two inequalities can be proved similarly as before. We cannot prove

any relation between C(YT+I)-cE+t and c(yT+I) because c£+ 1 may be~ 0 or<

0.

In summary, we have proved for case

(1) 0;;; C(YT)-C(YT+I)+C£ ;;; C£

(2).(3),(4) 0;;; C(YT)-C(YT+l)+C£.

We can now prove the theorem.

113

(a) We observe that Cf+CJ;, is a lower bound on the costs of running the optim-

ization program and initiating p file movements, so in order for the

reconfiguration to be cost-effective, we must have

C~ <: C(YT)-C(YT+I)+C~ <: Cf+CJ;,

The upper bound on the number of file movements is

p =min !p: Cf+CJ;, > C~l-1

(b) We note that the lower bound on the cost savings is ;1:; 0, so the lower bound

on the number of file movements is ;1:; 0.

Q.E.D.

Although the above theorem does not provide us wi.th an upper bound on

the number of file movements when some or all of the OJ[+ los are less than zero,

we can still find an upper bound on the number of file movements if we can

establish a lower bound on the costs of operation for the perturbated state of

accesses. In these cases, i.e., when some OJ[+1<0, we can estinlate C (yT+I), the

lower bound on the optimal cost of operation after the perturbation without tak-

ing into account the cost of migration. Then

c'{; = c(Yr) + c~- c(yr+ 1);;: o
is an upper bound on the cost savings due to migration.

The maximum number of file movements is therefore

p =min !p: Cf+C:f;, > C'{;l-1
where

c~
C (YT)+C~ -C (YT+l)

if OJJ+1;;:;o Vj E! 1, ... ,n l
if =:jjEp, ... ,nj s.t. OJJ+ 1<0

(3.11)

The problem that remains is to compute the lower bound c(yT+l). This can

be done by solving the optimization problem (3.1) without the integrality con­

straints (see Appendix B). Theorem 3.3 therefore establishes the basis for the

114

initiation of a file migration on the DDB. It has also taken into account the cost

of running the optimization program for the FAP. It indicates that when it is

very expensive to run the optimization program for the FAP, it will not be cost

effective to do file migration.

3.11 CONCLUSION

In this chapter, we have investigated some important properties and solu­

tion algorithms for the File Allocation Problem and the Dynamic File Allocation

Problem. First, we have proved the isomorphism between the (dynamic) file

allocation problem and the single commodity {dynamic) warehouse location

problem. Based on this property, we have found that many techniques

developed for both problems are inter-changeable. Among these are algorithms

developed in the warehouse location problem, such as the add-drop algorithm,

the branch and bound algorithms, the probabilistic branch and bound algorithm,

the integer programming technique, the steepest ascent algorithm and the

dynamic programming methods. These algorithms can be applied to solve the

(dynamic) file allocation problem. On the other hand, there are algorithms

developed in the file allocation problem which can be used to solve the ware­

house location problem. These include the hyper-cube technique, the clustering

technique, the dynamic programming methods and the max-flow min-cut net­

work flow technique. Further, we have found that some techniques developed for

one problem match very closely techniques developed for the other problem.

This is shown by the fact that Grapa and Belford's conditions for locating a copy

of the file at a node [GRA77b) are weaker than the conditions derived by Efroym­

son and Ray for opening or closing a warehouse [EFR66]. This implies that by

using the stronger conditions of Efroymson and Ray, more nodes can be

assigned initially to have or not to have a copy of the file. Another example is

shown in the similarity in the dynamic programming technique applied by Levin

115

to solve the dynamic file allocation problem [LEV74] and by Sweenly and Tatham

to solve the dynamic warehouse location problem [SWE76]. The last example is

shown in the hypercube technique which has been developed at different times

by Casey [CAS72], Levin and Morgan [LEV74, MOR77] and Alcouffe and Muratet

[ALC76]. We conclude that these two problems can be studied in an integrated

fashion in the future.

Second, we have developed a heuristic to solve the file allocation problem.

This heuristic uses the add-drop principle and different criteria on selection are

compared. It is found that a combination of these criteria, together with the

add-drop algorithm, is very promising and gives solutions very close to the

optimum based on sample problems published in both the file allocation prob­

lem and the warehouse location problem.

Lastly, we have studied some aspects of the file migration problem. It is

shown that the problem of deciding when to migrate the files is NP-complete.

This means that it is likely that an exhaustive enumeration is necessary before

an optimal migration sequence can be found. We have also formulated the

migration problem and have,shown that the migration costs can be incorporated

into the fixed cost of the system. This implies that the file allocation heuristic

developed in this chapter can be applied to solve the file migration problem

without special considerations for the costs of migration. Finally, we have

developed a threshold to indicate when migration should be carried out.

116

4 TASK SCHEDULING ON DISTRIBUTED COMPUTER SYSTEMS

4.1 INTRODUCTION

In the previous chapters, we have addressed the optimization problems of

data management on the query and the file level. The operations to be per­

formed on the query and the file level is a conglomerate of tasks, each of which

may require the use of a different resource for a different amount of time. In

this chapter, we address the problem of the task scheduling on DCS's so that the

hardware can be efficiently utilized and the requirements can be satisfied.

Although one of the motivations for the development of DCS's is the declin­

ing hardware costs, and therefore efficient hardware utilization is not as impor­

tant a problem as in early computer systems, the problem of task scheduling is

still an important topic of research because the parallel resources are more

difficult to coordinate and there are other constraints on the system which must

be satisfied. e.g. deadlines. response time. etc. Further. the advantages of using

parallel hardware is lost if the improvement over a conventional uni-processor

system is small. It is the goal of this chapter to study the problem of task

scheduling on DCS's.

A task is defined to be a simple request which uses a resource for a finite

amount of time. A request is said to be simple if no other resource is needed

during the processing of this request. A complex request can always be broken

down into a sequence of simple requests. A resource on a DDB can be physical,

such as a communication channel. a processor. etc .• or it can be logical. such as

a file. The tasks are usually governed by a precedence graph so that a task can­

not be processed until its predecessor has finished processing. For example, in

order to handle a file request on a data base, many processes, such as receive

message. create transaction. assemble reply, file storage I/O. etc., have to be

activated. Another example is shown in the processing of user queries. which

117

are directed to the difierent nodes on the DCS. Each of these queries may be

partitioned into a set of tasks. The general precedence graph for the processing

of a query which require the use of geographically distributed files are shown in

Figure 4. 1. On a DCS, the communication overheads, which include time to set

up the communication path and the queueing delay to transmit the messages,

are usually much larger than the processing overhead for a query. Therefore,

the time required to process a task at a node in Figure 4.1 is usually negligible

when compared with the time to pass the results over the communication sub­

system. There are also other queries on the system, each of which has its own

task precedence graph. There may also be precedence constraints among the

precedence graphs of the different queries. The task scheduling problem that

we are concerned with here, is to sequence the processing of tasks, subject to

precedence constraints, so that some overall optimization criteria are satisfied.

The criteria can be the maximum completion time of all the tasks if the objec­

tive is to maximize the throughput of the system; or it can be the sum of the

completion times of all the tasks if the objective is to minimize the average

response time; or it may be a combination of several optimization criteria.

We first describe a model of the DCS and state some tradeofis which can be

used to simplify the problem. We show that the problem of deterministic

scheduling on this model is NP-complete. Since the problem is NP-complete, it

is unlikely that a polynomial algorithm can be found. We proceed to study the

problem by putting additional constraints on the model so that the problem is

polynomially solvable. The resultant model we have obtained is the model for an

interleaved memory. We study in detail the performance of an interleaved

memory and show that the polynomial scheduling algorithm we have developed

is an optimal average behavior algorithm. That is, the polynomial algorithm will

have the best average performance as compared with any other polynomial algo­

rithms. Lastly, we return to the original model and show a heuristic for the

1
-N d i ,_Communication 1-Neighboring.,.,_Communication I Node i-J 0 e Sub-system Nodes Sub-system

--- .
Task of
decomposing &
processing
query at node i

Task of
communicating a
request to a
neighboring node j

Task of
communicating a
request to a
neighboring node k

•
•

•

Task of
communicating a
request to a
neighboring node m

H

f-l

Task of
processing
the request
at node j

Task of
processing
the request
at node k

•
•

•

Task of
processing
the request
at node m

1-l

I-;

Task of
communicating the
result to node i
from node j

Task of
communicating the
result to node i
from node k

•
•

•

_Task of
communicating the
result to node i
from node m

Figure 4.1 Task Precedence Graph for the Processing of a Query
which requires the use of Geographically Distributed Files

1 Task of
processing the
query at node i

.....
co

119

scheduling of tasks on the general model. Some simulation results for this

heuristic are also shown.

4.2A MODEL FOR THE SCHEDULING OF TASKS ON DISTRIBUTED SYSTEMS

4. 2.1 The Model

Flynn [FLY66] has classified methods of achieving parallel operations into

four classes: the single instruction, single data stream (SISD), the single instruc­

tion, multiple data stream (SIMD), the multiple instruction, single data stream

(MISD), and the multiple instruction, multiple data stream (MIMD). A basic

model of a computer system on a DCS for the scheduling of tasks is the SIMD

modeL This model is shown in Figure 4.2. The control unit may represent the

CPU. The N arithmetic processors may represent the peripheral processors or

the backend machines. An instruction may be a search for a particular item on

the mass storage and the data streams are corning directly from the disks.

Another example of a SIMD architecture is the Data Base Machine [HSI77]. On

the DCS level, the DCS may be represented by a Job-Shop model in which the

basic building block within the job-shop model is the S!MD model. A job-shop is a

model which has been used in industrial engineering and deterministic task

scheduling [GRA77a). The characteristic of the job-shop model is that a job or a

request is made up of a set of tasks, each of which may be processed on a given

machine or processor for a given amount of time. A conceptual model of a DCS

is shown in Figure 4.3. The graph is actually a fully connected graph in which an

arrow represents an instruction stream and the corresponding return data flow.

This is a more restricted model than the general job-shop model be cause each

job or request is made up of only a set of parallel tasks. The basic model at each

node is the SIMD model.

120

Arithmetic
Processor 1 Data Stream 1

Arithmetic
Processor 2 Oa ta Stream 2

Contro1 Instruction

Unit Stream

.

.
•

Arithmetic
Processor N Data Stream N

Figure 4.2 11ode1 of an SIMD Computer System [ST075]

•
• •

Figure 4.3 Conceptual Model of a DCS (The direction of an arrcw
represents the flow of an instruction stream and the
corresponding return data flow)

121

122

The model we have discussed here can be more general. For example, each

job or request may consist of a sequence of tasks to be scheduled on different

nodes or computers instead of a set of parallel tasks to be scheduled on neigh­

boring nodes. However, this scheduling problem can be solved only when the

status of all the nodes of the DCS is known. This is possible when the scheduling

is done by a centralized control and all the status changes are reported

instantly to the centralized controller. In a geographically distributed DCS, the

collection of global information for scheduling is usually very difficult and expen­

sive if not impossible. Therefore the use of a more general model is usually not

practical for a DCS. As a result, we have restricted to the case in which the

scheduling of tasks is done by using the local information available (distributed

control), that is, it is a SIMD model at each node. The restricted model to be

studied is shown in the dotted box in Figure 4.4. The notations used in Figure

4.4 are:

N - number of tasks to be scheduled (it may or may not fit entirely in the

buffers of M,. };

M._ -Distributor on the first stage;

Mb.j -module or machine j on the second stage;

P;(M;)- Processing time requirement of task ion machine M1;

buff (M;) - Amount of buffers for M;.

The task precedence graph for request i is shown in Figure 4.5. The precedence

graph in Figure 4.1 falls in the class of precedence graphs we discuss here if the

tasks of communicating to and from node i and the task of processing at a

neighboring node are combined into a single task. We assume that the optimiza­

tion criterion is to minimize the finish time of all the tasks in the system. This is

generally the assumption made when the objective is to maximize the

throughput of the system.

P.(Mb 1) 1 ,m-
M b,m-1

I
I
I
I
I
I
I
I
I

1 I
1 buffers module or machine 1

L--- -------------------------- _.i

Set of memory
requests not in

buffers

CPU's or
Requesting sources

Serviced
requests

Figure 4.4 An SIMD Model for Task Scheduling on a DCS

123

0 < P. (Mb) < "'
- 1 ,m

Figure 4.5 Precedence Graph of Tasks for Request i
which can be scheduled on the SIMD Model

124

125

It is also assumed that the amount of buffers on the second stage is finite

and that the amount of buffers on the first stage may be infinite, that is,

0;;; buff CMa) ;;; =;

0;;; buff (M~.I) = buff (M~,2) = · · · = buff (Mb.m) < =.
Further, it is assumed that there may exist precedence constraints among

different requests and the tasks may not be available initially, that is, they have

positive release dates. The analysis of this model is shown in Section 4.3. We

now discuss some assumptions which would allow the problem to be simplified.

4.2.2 Assumptions which allow the Task Scheduling Problem to be simplified

Certain assumptions can be made so that the task scheduling problem can

be simplified.

(1) Processing Overheads are ignored

The processing overheads are usually much smaller than the communi­

cation overheads and they are ignored. This assumption will eliminate

many tasks in the precedence graph.

(2) Static Algorithms are used

Static algorithms schedule a set of tasks available at the time of schedul-

ing and a set of tasks that are known to arrive at fixed future times. The

schedule does not change during the duration of the processing of these

tasks. On the other hand, dynamic algorithms are more flexible and they

re-schedule all the available tasks whenever a new task comes in. The

advantage of dynamic algorithms is that they allow task initiations to be

dynamic and do not restrict the schedule to the order determined ini­

tially, but they have the disadvantage of larger overheads. The choice

between the use of static and dynamic algorithms is system dependent.

If the arrivals of requests are indeterminate, then dynamic algorithms

126

are usually better. On the other hand, if the arrivals of requests can be

determined precisely, then static algorithms should be used. In our

model, we have assumed that static algorithms are used because it does

not depend on the arrival process and is easier to optimize. The static

algorithm developed can be used as a heuristic when the arrivals of

requests are indeterminate.

(3) Deterministic Processing Times are assumed

The processing time for a task can be assumed to be deterministic or

probabilistic. In the deterministic case, it is possible to determine the

order which can best satisfy the optimization criterion. However, it is

difficult to do so when the processing times of all the tasks are governed

by a common distribution. Certain assumptions have to be made before

an analytical evaluation is possible. The theory of scheduling developed

now is mostly applicable to the deterministic case. It can be used to

approximate the probabilistic case when the average or the worst case

processing times are used. A lot of work has been done in flow shop and

job shop scheduling, (see [GRA77a, LEN77) for a good survey) and the

theory developed there can be applied to study the problem here. The

algorithm developed in Section 4.5 is actually extended from Johnson's

optimal polynomial algorithm for a two stage flow shop [JOH54]. On the

other hand, when the processing time of a task is probabilistic, the

model we have shown in Figure 4.4 is a "central server model", and a lot

of work in queueing theory has been done to evaluate its performance.

For example, Baskett et. al. have developed a closed form formula for

the performance of a queueing network when certain conditions are

satisfied [BAS75); Sauer and Chandy have developed approximate

analysis techniques for central server models [SAU75); Chandy et. al.

have studied approximate analysis techniques for general queueing

127

networks [CHA75]. Unfortunately, when a probabilistic assumption is

made on the processing time of a job, it is usually difficult to determine

the order of processing which can satisfy some optimization criteria.

Some work has been done in finding a service schedule which minimize

expected costs [ME177, KONBB, KL174], however, a general theory for this

is still lacking. Therefore, we see that it is easier analytically to make

the deterministic assumption. One other advantages about the deter­

ministic assumption is that the difficulty of the scheduling problem can

be assessed easily in most cases. NP-completeness of the problem can

usually be shown or a polynomial algorithm can be found. The general

task scheduling problem on DCS's using our model can be shown to be

NP-complete. Under this situation, the designer has to look for good

heuristics which can be executed within real time constraints. However,

the evaluation of heuristics are generally difficult. Evaluation methods

and techniques are typically of three kinds, analytical techniques, simu­

lations and approximate algorithms. In analytical techniques, some sim­

plifying assumptions about the system parameters have to be made in

order for the solution to be tractable and the results obtained are usu­

ally not accurate. On the other hand, simulations are almost always

expensive to run, and it is difficult to exhaust all the possible cases of the

system. A third type of evaluation algorithms are approximate algo­

rithms [WE177]. There are two classes of these approximations, one

guaranteeing a near-optimal solution always, and the other producing an

optimal or a near-optimal solution "almost everywhere". These types of

algorithms are still in the research stage and a unifying approach in

designing algorithms of this type is still lacking. The future trend is in

the direction of investigating good approximation algorithms for schedul­

ing tasks.

128

By making the assumptions in this section, we have sacrificed some gen­

erality for some mathematical tractability. We hope that the results we have

obtained here are still applicable (to some extent) when these assumptions are

relaxed.

4.3 NP- COMPLETENESS OF THE TASK SCHEDULING PROBLEM

We prove in this section, the NP-completeness of the task scheduling prob­

lem on the model of Figure 4.4. It is assumed that we have identical processing

orders on all machines, that is, the best permutation schedule has to be deter­

mined; and the amount of buffer space in all the machines are infinite. It is

further assumed that no preemption is allowed in the schedule. We only prove

for the special case of two machines on the second stage (i.e. m=2).

THEOREM4.1

The problem of deterministic task scheduling on the SIMD model with the follow­

ing assumptions, is NP-cornplete:

(1) m=2 (two machines on the second stage);

(2) Each request has the following task precedence graph:

o--o
O<P;(Ma)<"'

i=P.2l. iE!l •... ,Nj

That is, each request only requires the service of one machine on the

second stage. There are no precedence constraints among requests;

129

(3) The optimization criterion is to minimize C mru<• the maximum task corn-

pletion time.

Proof

Problem E NP because a non-deterministic Turing Machine can predict the

sequence in polynomial time.

The problem is reducible from the knapsack problern1.

Let n=t+2

ViET P;(Mb.2}=0; 'L;P;(Ma}=A; 'l:;P;(Mb.t)=B;
itT iET

Jobs are agreeable if

= ~ I; P;(Ma) <a then 'l:;P;(Mb.t);:: b
SeT SeT

wherePi(Ma), P;(Mu) » 0

P,_I(Ma)=l; P,_I(Mb.l)=a; P,_I(Mb.2}=0;

P,(Ma)=b -A +a; P, {Mb.t}=O; P, (Mb.2)=B -b +A -a;

y =B+a+l

If knapsack has a solution, then there exists a schedule with 'l:;P;(M,.)=a and
i€S

C rou=Y as illustrated in Figure 4.6a. If Knapsack has no solution, then

L;P,(M,.)-a=c;iO for each SeT and we have a processing order
i£S

c>O => Cmax = 1+ 2:;P,(Ma)+P,(Ma}+P,(Mb.2) =B+a+c+l > y
i€S

c <0 = > see Figure 4. 6b.

If I; P; (Mb. 1)<b, then there exists overlap in between the operation
itS

of P1(Ma) and P1(Mb.l) for jET-S. The maximum finish time is:

t
1 The knapsack problem is: "Given positive integers a 1• ... , at. A =I! CJ.i, B, does there exist

a subset SCT=!l,t j such that I; a; =B.
iES

i=1

M
a

n-1 s n

n-1

T-S

s T-S

n

Mb,2
~~----------~------~--------~------~time

0 1 a+1 b-A+2a+1 a+b+1 B+a+1

(a) Knapsack has a solution

s n T-S

n-1 s T-S
f'///1/////)//////A 0 ~ 0

n

~---time

(b) Knapsack has no solution and c < 0

Figure 4.6 Proof of Theorem 4.1

130

131

Cmax = 1+a+B+6 > y

It follows that Knapsack has a solution iff this problem has a solution with

C me.x;i;Y. Since the Knapsack problem is NP-complete, the problem we are con-

sidering is also NP-complete.

Q.E.D.

THEOREM4.2

The problem of deterministic task scheduling on the SIMD model with

assumptions similar to Theorem 4.1 except for assumption (2), is NP-complete.

(2) Each request has the following task precedence graph:

That is, each request requires the service of both machines on the

second stage. There are no precedence constraints among requests.

Proof

Problem E NP because a non-deterministic Turing Machine can predict the

sequence in polynomial time.

Let

The problem is reducible from the knapsack problem.

n=t+l

P,(Ma)=l; P;(Mb.!)=t*a;; P;(Mb.2)=1; (iET);

Pn(M,.)=t*b; P,.(Mb.t)=l; Pn(Mb.2)=t(A-b)+1;

y=t(A+l)+l;

The timing diagram is shown in Figure 4. 7.

If knapsack has a solution, the ::1 schedule with I; P; (Ma)=b and Cmax=Y.
itS

.. ;>' ,,
, ;\'·

132

s n T-S

s T-S

s n T-S

~-r------------------~---------------r----------~---ti~e
0 1 tb+ISI tA+IS 1+1 t(A+l)+l

Figure 4.7 Timing Diagram for the Proof of Theorem 4.2

133

If knapsack has no solution, then I; Pi(Ma)-b =c,;iO for each S CT, and we have a
iES

processing order (!Ji:iESl; Jn; !Ji:iET-Sl) such that:

c>O => Cmax> L;Pi(Ma)+Pn(Mb,2) = t(L;Pi(Ma))+t(A-b)+l
iES i€.S

= t(A+c)+l:;;; y

c<O => Cmax > P,_(Ma)+Pn(Mb,t)+ I; Pi(Mb,l)
it.T-S

= t*b+l+t*A-tL;Pi(Ma)
ir.i.S

=t(A-c)+l;;;y

It follows that Knapsack has a solution iff this problem has a solution with

C m.,.;£y. Since the Knapsack is NP-cornplete, the problem we are considering is

also NP-cornplete.

Q.E.D.

THEOREM4.3

The problem of deterministic task scheduling on the SIMD model with the follow-

ing assumptions is NP-cornplete:

(1) rn=2;

(2) There exists precedence constraints among the requests;

(3) The optimization criterion is to minimize C max:

Proof

Problem E NP because a non-deterministic Turing Machine can guess the

sequence in polynomial time.

The problem can be reduced from a conventional two stage flow shop prob-

!ern with a tree precedence graph and the optimization criterion is to minimize

C maJ<· The reduction of the problem is obvious and will not be presented here.

Since the two stage flow shop problem with a tree precedence graph is NP-

complete, this implies that the problem we are considering is NP-complete as

well.

134

Q.E.D.

THEOREM4.4

The problem of deterministic task scheduling on the SIMD model with the follow­

ing assumptions is NP-complete:

(1) m=2;

(2) The release dates of jobs may be <:; 0, that is, not all jobs are available ini­

tially;

(3) The optimization criterion is to minimize C max:

Proof

Problem E NP because a non-deterministic Turing Machine can guess the

sequence in polynomial time.

The problem can be reduced from a conventional two stage fiow shop prob­

lem with release dates <:; 0 and the optimization criterion is to minimize C max·

The reduction is obvious. Since the two stage fiow shop problem with positive

release dates is NP-complete, this implies that the problem we are considering

is NP-complete.

Q.E.D.

THEOREM4.5

The problem of deterministic task scheduling on the SIMD model with the follow­

ing assumptions is NP-complete:

(1) m=2;

(2) There are no buffers on the second stage, i.e. buff(Mb.t)=buff(Mb,a)=O.

There will be no waiting of requests on the second stage;

(3) The optimization criterion is to minimize C max·

135

Proof

Problem E: NP because a non-deterministic Turing Machine can guess the

sequence in polynomial time.

The problem is reducible from the knapsack or the partition problem.

Let:

n=t+2;

If A is even, then

A
Pn-t(M,.)=1; Pn-t(Mb.t)=2+1; Pn-t(Mb.2)=0;

A
P,.(M,)=l; P.,(Mb.1)=2+1; P,(Mb.2)=0;

y=A+3;

1f A is odd, then

A+3 P,.-t(M,.)=2; Pn-t(Mb.!)=-
2
-; P,._t(Mb.2}=0;

A+3
P,(M,)=2; P,. (Mb.t)=-

2
-; P,. (Mb.2)=0;

y=A +5.

If knapsack (for A odd) or partition (for A even) has a solution, then there exists

a schedule with L;P;(M,.)=~ and Cmex=Y as illustrated in Figure 4.6.
i£5.8

If knapsack (partition) has no solution. then I; a;-A_=c;iO for each SeT and we
itS 2

have a processing order (J,._ 1; iJ;:iES L J,.; iJ;:iET-S D such that for A even,

c>O => Cmax = Pn-t(M,.)+ L;P;(M,.)+P,.(M,.)+P,.(Mb.t)
i€S

A A
= 1+-+c+l+-+1

2 2

>y

136

S=A/2 n T-S=A/2

n-1 n

s T-S

0 1~ 2~
2 2 A+2 A+3

Figure 4.8 Timing Diagram for the Proof of Theorem 4.5 (A even)

c<O => Cm= = P,._t(Ma)+P,._t(Mb,t)+ I; P,(Ma)+l
itT-S

= l+A+l+A+c+l
2 2

>y

137

Note that in this case, although the jobs in S have finished, job n cannot

be started until time=l+~ because there is no buffer available inMb.t·

It follows that knapsack has a solution iff this problem has a solution with

C max~Y. Since the knapsack problem is NP-complete, the problem we are con-

sidering is also NP-complete.

Q.E.D.

We have therefore proved that the task scheduling problem on the SIMD

model is NP-complete (with the assumptions stated in the theorems). An

approach we can take now is to design a suitable heuristic for each of these

problems. However, we delay this until Section 4.5. In the next section, we show

by restricting the processing time on each machine that the task scheduling

problem can be made polynomially solvable. The processing times of the tasks

are restricted in a fashion such that Pi(Ma)=l and P,(Mb.;)=m (m=number of

machines on the second stage) and each request needs the service of only one

machine on the second stage. This particular model represents a model of an

interleaved memory system.

4.4 THE RESTRICTED MODEL - AN OPTIMAL ALGORITHM FOR SCHEDULING

REQUESTS ON AN INTERLEAVED MEMORY SYSTEM

4.4.1 Requirements for the Design of a Primary Memory

In a top-down design, the requirements and the attributes must first be

identified before the system can be designed. Requirements are the constraints

which the system must satisfy and they reflect the environment as well as the

objectives of the system. Attributes, on the other hand, specify either options

138

or evaluation criteria for qualitative comparisons of competitive systems that

meet the system requirements. Attributes may be used to evaluate the

tradeoffs in competing architectures and to obtain a feeling for the 'goodness' of

the architecture in realizing the system. The requirements for the design of a

primary memory are:

(1) B and7JJidth

The bandwidth represents the average throughput of the memory system

and is given in terms of bits returned/unit time. In a parallel memory

system, the bandwidth is the sum of the bandwidths of all the modules

(Bandwidth = I; (word length of module k)•(average utilization of
module k

module k}/(cycle time of module k) where the average utilization of a

module is the average fraction of time the module is busy. For the case

of identical modules, the bandwidth can be written as:

Band71Jidth =
ln.um.ber of]· r 71Jord]· [average l
l m.odutes llength utilization

(speed of m.odu[e)

constant • [average num.ber of]
B and71Jidth = -----,---'--b""u=sy~m.=.o'-'d:::u:::CC'e"s'---'­

(m.em.ory cycle tim.e)
(4.1)

where the constant in Eq. 4.1 has a unit of (bits • memory cycle / unit

time). The model of interleaved memories presented here assumes that

all the modules are identical and the word length of each module are

kept constant. The objective of maximizing the bandwidth is therefore

equivalent to maximizing the average utilization of the modules.

(2) Response tim.e

The response time is the delay between the time a request is accepted

by the primary memory and the time the request is serviced, assuming

that the datum resides in the primary memory. This is also called the

waiting time of the requests.

139

(3) Size

This is the required memory size or capacity.

(4) Cost

This is the maximum allowable cost of the resultant design which

satisfies the above requirements.

The design of the memory must satisfy the above requirements. Moreover, the

performance of the final system can be evaluated by using these parameters as

evaluation criteria.

4.4.2 Characteristics of the Access Sequence of a Pipe lined Processor

In this section, we describe the characteristics of the access sequence of a

pipelined processor. A pipelined organization in the most general sense, instead

of specially structured pipelined computers with different arithmetic units (e.g.

CRAY I), applications (e.g. vector processing), additional memory support (e.g.

cache) and interconnections (e.g. ILLIAC IV), is assumed. The processor is

further assumed to be executing directly from the main memory. The schedul­

ing algorithms developed are general enough to be applicable to the interleaved

memories of all the specially structured pipelined computers. However, the

exact performance is not found for each type of machine.

A memory access sequence generated by a pipelined processor has Class D

dependencies as classified by Chang et. a!. [CHA 77]. A dependency is a logical

relationship between two addresses such that the second address cannot be

accessed (written or read) until the first has been accessed. Class D depen­

dency is characterized by a machine with instruction level multiprogramming

(from a large number of jobs), or a machine with sufficient lookahead or queue­

ing hardware to allow dependencies to be bypassed. However, there still exist

cases where the effects of dependencies cannot be eliminated. Anderson et. a!.

140

have identified three main sources of concurrency limitations which tend to

reduce the performance of the pipe [AND67). These are:

{a) Register interlock - When the current instruction needs a register

modified by a previous instruction, the current instruction cannot be

decoded until the previous instruction has finished;

(b) Branching -When a jump or a branch on condition instruction is encoun­

tered, further operations in the pipe cease until the target instruction

has returned from the memory. Conditional branching poses an addi­

tional delay because the branch decision depends on the outcome of

arithmetic operations in the execution units.

(c) Interrupts - Wh"n an interrupt occurs in the pipe, it is necessary to

sequentialize the execution of instructions in the pipe in order to deter­

mine the exact source of the interrupt. This sequentialism in execution

would degrade the performance of the pipe.

Various methods have been introduced to solve these dependency problems

[TOM67]. For example, regiester interlocks can be solved by using forwarding;

the sequentialism due to interrupts can be eliminated by using imprecise inter­

rupts as in IBM 360/91. The most predominant effect on the performance of the

memory is due to branching. When a branch or a conditional branch instruction

is encountered, request supply to the memory discontinues until the condition

code has been set and the target instruction has returned from the memory.

The utilization of the memory therefore decreases. The effects on the memory

performance due to branching dependencies are studied in section 4.4.9.

In addition to the effects due to address dependencies, the order in which

instructions and data are requested also affects the memory performance. For

a pipelined processor, the request stream is a sequence of instruction-operand

fetch pairs. However, not every instruction involves an operand fetch and if the

141

bus is wide enough, two or more instructions can be fetched in one access. A

notable characteristic in this access pattern is that instruction fetches are

made in a sequence interlaced with operand accesses. The performance of the

memory system may be improved by separating the memory modules into two

sets, one for instructions and one for data. In section 4.4.8, the effects on

memory performance due to separation and mergence of instruction and data

modules are compared.

4.4.3 Previous Work on the Study of Interleaved Memories

One of the early successful implementation of interleaved memories is in

the IBM 360/91 [BOL67]. ln this computer, the storage system is made up of an

interleaved set of memory modules and the degree of interleaving equals the

number of memory modules. The memory can service a string of sequential

requests by starting, or selecting, a storage unit every cycle until all are busy.

In effect, the storage cycles are all staggered (see Fig. 4.10). By using a set of

buffers called the request stack, conflicting requests which access the same

module can be resolved by allowing only one of these requests to access the

module and storing the rest in the request stack to be issued in later cycles.

Simulation results were shown for the average access time and the bandwidth

with various degree of interleaving.

The earliest attempt to model the performance of interleaved memories

was done by Hellerman [HEL67]. By assuming a saturated request queue (a

queue in which requests are never exhausted) with random requests, and no pro­

vision is made for the queueing of the requests on busy modules, the request

queue is scanned until a repeated request is found. This constitutes a collision.

Hellerman's results show that with m memory modules, the average number of

requests scanned before a collision is approximately rn °·56 for m between 1 and

45. This is taken to be an indication of bandwidth. Knuth and Rao [KNU75] show

142

an alternate exact way to calculate the bandwidth. However, both of these

results are pessimistic because they do not allow the queueing of conflicting

requests to the same module and the randomness assumption is not tenable in

real programs.

Burnett et. al. have developed a number of models on parallel memories. In

two of these models, [BUR70, BUR73], they assume that the modules operate

synchronously (all modules start and end their cycles simultaneously) and a

scanner scans a saturated request queue and admits new requests to service

until it attempts to assign a request to a busy module. In two other models,

[COF71, BUR75), they further assume that a set of blockage buffers is present so

that requests made to a busy module can be stored and issuued in later cycles.

The scanner continues to scan the request queue until all the modules have been

allocated or all the buffers are occupied. In effect, the maximum size of the

request queue inspected by the scanner never exceeds b+m where b is the

number of buffers and m is the number of memory modules. They have also stu­

died a request model similar to Strecker's model [STR70] by assuming a proba­

bility a for the succeeding request to request the next module in sequence and a

probability of (1-a)/(m-1) to request any other module. They have developed

two algorithms that modified the request pattern in order to increase the

bandwidth. The first one is called the Instruction-Data Cycle Structure, which

distinguish the request queues into two sub-queues, the instruction queue and

the data queue. These two sub-queues are inspected in alternate memory

cycles. They found that there are improvements from -4% to 12% in bandwidth

(the number of modules varies from 8 to 16) over a model with four blockage

buffers and a single queue [BUR75]. The second algorithm, the Group Request

Structure, separates a memory cycle into two sub-cycles, the first sub-cycle is

used for servicing the instruction queue, and the second sub-cycle is used for

servicing the data queue. They found that there are 8% to 16% improvements

143

over the same Instruction-Data Cycle Structure algorithm. Terman [TER76] has

made a trace driven simulation on the Instruction-Data Cycle Structure algo­

rithm and found that the theoretical predictions of Burnett and Coffman fit well

with the simulation results for the fetching of instructions, but their predictions

do not fit well with the simulation results for data requests which are more ran­

dom than instruction requests and are difficult to be modelled accurately.

Many other researchers have studied models of parallel memories. These

include Flores [FL064], Skinner and Asher [SKI69], Ravi [RAV72], Bhandarkar

[BHA75], Sastry and Kain [SAS75], Baskett and Smith [BAS76], Briggs and David­

son [BRI77], Chang, Kuck and Lawrie [CHA77], Smith [SMI77] and Hoogendoorn

[H0077]. These studies are directed toward multi-processor systems and we will

not describe them here.

In the remainder of this section, the deficiencies found in the previous

models are summarized.

(1) All the previous models assume that the memories operate synchro­

nously. As Burnett and Coffman pointed out, simultaneous memory

operations offer more opportunity to take advantage of program

behavior in a particular memory system [BUR75]. However, with syn­

chronous operations, there is the problem of returning the results of the

accesses from the memory. Since the results from each module are

available simultaneously, extra data paths or queues are needed to

return these data to the processor. Further, a pipelined processor usu­

ally makes requests in sequence rather than in batches. Therefore it is

desirable to study a model in which the memory modules operate out of

phase. By out of phase, we mean either a) the initiations of the modules

are asynchronous or b) the initiations of the modules are timed by a

clock and during a clock interval, at most one module can be initiated.

144

Because the operations of asynchronous modules are much more

difficult to control. only case (b) is considered in this design.

(2) Very few studies have been made to minimize the waiting time of a

request to the memory. Flores [FL064] has made a quantitative study

relating the waiting time factor to the memory cycle time, the

input/output time and the worst case execution time for different

numbers of memory banks. However, his studies were directed toward

the effect of interference from the input/output units and there was no

queueing of requests. In other models, a saturated request queue is

assumed, and the effects of waiting time are not considered. When the

queue size is finite, it is possible to develop algorithms which optimize

for the amount of waiting time in the queue, e.g. minimize the average

waiting time of requests in the queue. In this section, the amount of

queued requests is assumed to be finite so that the effects of waiting

time can be studied.

(3) None of the previous work considers the effects of dependencies on the

memory performance. Request supply to the memory ceases when a

dependent instruction is executed until the dependency has been

resolved. The effects of dependencies are difficult to determine because

they vary strongly with the configuration of the pipe and the strategies

employed in the pipe to resolve them. Request rate to the memory may

also decrease for other reasons. For example, in the IBM 360/91. there

is a small amount of instruction buffers in the CPU which serve as

another level of the memory hierarchy. When a small loop occurs such

that all the instructions of the loop fit in the instruction buffers, instruc­

tion accesses to the memory stop until execution of the loop is finished.

Other machines may have different approaches. However, the evaluation

of memory performance for a specific machine is too restrictive. We

145

take an approach which first evaluates the performance for the general

case of an interleaved memory with a saturated, non-dependent request

stream. The degradation in performance due to dependencies· in the

requests is then estimated subsequently.

4.4.4 The Organizations of Primary Me-mory for a Pipelined Processor

We present in this section two different implementation alternatives of

interleaved memories (Organization 1 and Organization II). The two organiza­

tions differ in the configurations of the request buffers. In Organization I, a sin­

gle set of request buffers is assumed to be shared by all the modules and in

Organization II, individual request buffers exist for each module. The general

assumptions made are as follows:

(1) The request rate from the processor is assumed to be high enough so

that any empty buffer in the memory system is filled up by an incoming

request immediately. Buffers are assumed to exist at the processor end

so that any additional requests generated by the processor can be

queued there. The requests that can be served by the modules are those

that exist in the buffers only. This assumption is made because we want

to get an upper bound on the performance of the memory. In a practical

system, the memory is usually the bottleneck and our assumption is

therefore valid.

(2) Each request is assumed to be an integer from 0 to m-1, which is the

module it requests, and is obtained as the residue of dividing the address

bym.

(3) The service time of each module (the read time or the write time) for a

request is assumed to be constant. This is a good model for semi­

conductor memories. We also assume that a memory module, once ini­

tiated to start a memory cycle, is not available until the end of the cycle.

146

(4) A memory cycle time is the time it takes for a memory module to ser­

vice a request. Each memory cycle is assumed to consist of m equally

spaced memory sub-cycles. It is further assumed that exactly one

module can be initiated to service a request at the beginning of a

memory sub-cycle and it takes m sub-cycles (1 memory cycle) to service

the request for all the modules i.e., homogeneous service times. With

this assumption, the problem of multiple data paths is resolved because

at most one module finishes in each sub-cycle and the system is never

confronted with returning results from more than one module simultane­

ously. The modules are therefore clocked by the memory sub-cycles.

In Organization I (Fig. 4.9), there are m memory modules; a single set of

b+1 associative buffers, Br. B 1, B 2 •...• Bb; and an intelligent scheduler which

schedules a memory module to start a memory cycle. The modules operate out

of phase in a fashion called staggered cycles. One example of a staggered cycle

is shown in Fig. 4.10. The set of b+1 associative buffers are used to store incom­

ing requests. A request queued on a specific module can be retrieved in one

associative search operation. Whenever a request is taken out from a buffer, all

the requests behind it are pushed one location up so that Br is empty. The

buffer Br has an additional function, namely, to receive requests from the bus.

Due to our assumption of high request rate, Br is filled immediately whenever it

is empty. The queueing discipline for the requests in the buffers directed

towards the same module is essentially First-In-First-Out (FIFO). Other queueing

disciplines are not studied because only uni-processor systems are considered

in this design.

The center of the control in the memory system is the intelligent scheduler.

The scheduler, using a scheduling algorithm. decides at the beginning of each

memory sub-cycle whether to initiate a memory module and if so which module

to initiate. The selection of which module to initiate is determined by the

r----------------------~--------1
I I
I 1

I
I
I
I
I
I
I
I

Module 0 I

Module 1

I
I
I
I
I
I
I
I

147

reAuests utputs

b+l associative
buffers

INTERLEAVED
PRIMARY

i nte 11 i gent
scheduler

•

•
•

Module m-

I
I
I
I
I
I
I
I
I
I

1 MEMORY 1

L----------------------------~

Pipelined processor

set of requests serviced
not sent to the L-----------' requests
memory because
buffers are full

Figure 4.9 Org. I - A Model of Interleaved Memories
with a Single Request Queue

3

2

....
1l 1
5
c
...
~

time during which
module 3 is busy

148

~ 0;---------------------~------------------~---------------~

r---~--,----.--~--~----r---~--~--~--~--~r
0 1 2 3 4 5 6 7 8

memory sub-cycle

memory cycle

Figure 4.10 A Gantt Chart to illustrate the Operations of the
Interleaved Hemories in Staggered Cycles (m=4)

9 10 11

149

information about the requests in the associative buffers and by the knowledge

about the status of the modules (free or busy). Three scheduling algorithms are

investigated in this design.

(1) A!gorith-m 4.1 Round- Robin (RR)

All the modules are initiated in a round-robin fashion regardless of

whether a request is queued on the module. The scheduler does not

make use of any information about the status of the system. The imple­

mentation of this algorithm is very simple and the scheduler only has to

konw the current module initiated. In Fig. 4.10, the Gantt Chart for the

operation of a 4-way interleaved memory with RR scheduling algorithm is

shown. This is the scheduling algorithm that is implemented in most

interleaved memory systems today.

(2) A!gorith-m 4.2 First- Free- First (FFF)

In this algorithm, only the information about the status of the modules

(free or busy) is utilized by the scheduler. There is a FIFO list of free

modules. At the beginning of a memory sub-cycle, the scheduler puts a

busy module to the end of the free list if this module finishes its cycle. It

will then initiate the module at the head of the free list if there are any

requests queued on it. otherwise the module at the head is appended to

the tail of the free list and no other modules are checked in this cycle.

The scheduler may also check all the subsequent modules in the free list,

but the time for this is proportional to the number of modules and is not

feasible when this number is large.

(3) Algorith-m 4.3 Maxi-mu-m- Work- Free- Module- First (MWFMF)

In this algorithm, both the information about the status of the modules

and the requests in the buffers are utilized by the scheduler. There is a

dynamic list of free modules. Conceptually, at the beginning of a

150

memory sub-cycle, the buffers are checked associatively to see if any

requests are queued on the free modules. If there is none, no module is

initiated. If at least one exists, an associative search is made on the

buffers and the module with the maximum number of requests queued

on it is initiated. In case of ties, only the first one is initiated (Fig.

4.1la). The implementation of this algorithm can be done by using an

additional associative memory of size m in the scheduler (Fig. 4.llb).

Each word in this associative memory can function as a counter and is

used to indicate the number of requests queued on the corresponding

module. The corresponding word is incremented/decremented when a

request enters/leaves the request buffers. The free module with the

maximum number of requests can be obtained by performing a max­

imum search on those words in this associative memory corresponding

to the free modules, e.g. [RAM7Ba] (see the associative memory design in

Chapter 5). The maximum search algorithm shown in [RAM7Ba] is paral­

lel by word and serial by bit and the time to perform a maximum search

is proportional to the number of bits in the memory. The speed of this

algorithm is therefore proportional to [log2 b l.

In addition to the overhead related to the execution of the scheduling algo­

rithm, there is also the overhead of selecting the request from the associative

buffers and sending it to the memory module. This overhead consists of match­

ing the selected module number against all the requests in the buffers and

selecting the first request if multiple responses occur in the match. Using a

bit-serial word-parallel equality matching algorithm, e.g. [RAM7Ba], and a binary

tree type multiple match resolution circuit, e.g. [FOSBB], this overhead is pro­

portional to [log2=l. In general, the overheads associated with the three

scheduling algorithms are very small, and the selection of a module and the

corresponding request to be initiated in the next sub-cycle can be overlapped

attach module that
finishes its cycle
to free list

yes

initiate first
module with maximum
number of queued
requests

remove module
from free list

Figure 4.11a Algorithm 4.3- HWFMF Scheduling Algorithm

151

no

pointer to
modules

0
1
2

.

.

.

m-1

busy-free amount of
status queued requests

0
1
1

ASSOCIATIVE
MEMORY .

•

•

1

Figure 4.llb Implementation of the MWFt~F Scheduling
Algorithm using Associative t~emory

152

153

with the current sub-cycle.

At the end of each memory sub-cycle, at most one request is serviced. The

result is sent back to the processor. The necessary queue for storing these

results is excluded from the memory model.

The requests of the system come into the memory in a specific pattern.

Two types of access patterns are considered in this design:

(1) RandoTTL accesses with no address dependency- All the addresses have no

correlation and are independent of each other. This can be used to

model the request stream from computer systems with instruction level

multiprogramming or multi-processor systems where the number of pro­

cessors is larger than the number of modules.

(2) Accesses fro= the execution trace of a TnonoprogramTned pipelined com.­

puter - The addresses in the execution traces are correlated and they

represent a similar addressing behavior when the actual program is exe­

cuted on a pipe!ined processor. We have used execution traces from a

pipelined processor, representing large scientific applications, the CDC

7600, in this study.

Organization II is similar to Organization I except that separate sets of

buffers exist for each module (Fig. 4.12). Requests from the processor are con­

tinuously moved into the buffers of each module via Br until a request in Br is

directed toward a module whose buffers are already full. The request in Br is

blocked, and as a result, further requests are blocked from entering the

memory. When the module responsible for this blocking has finished servicing

its current request, one request from its buffers is serviced which results in an

empty buffer. The blocking request in Br is moved into this empty buffer.

Because of the independent queues, one or more requests can then be accepted

to the memory system until the previous blocking situation occurs with one of

set of requests
not sent to the
memory because
buffers are full

•
•
•

Module m-

Pipelined Processor

serviced
L----------------------------~ requests

Figure 4.12 Org. II - A Model of Interleaved Memories
with Multiple Request Queues

154

155

the modules. When b=O, there is only one buffer, Br. in the system and this is

exactly the same as Organization I with b=O. Therefore Organization II degen­

erates into Organization I when b=O. The buffers used in this organization is

simpler than that of Organization I. Associative search capabilities are not

necessary for these buffers. The implementation of the scheduler is similar to

that of Organization I. The advantage with this system is that the request

buffers are simple shift registers and therefore are cheaper. However, in order

for this organization to operate at full capacity, more than one request may

have to be moved across the bus into the memory in a memory sub-cycle. As we

recall, we assume that a pipelined processor generates in the order of one

request every memory sub-cycle, therefore, the blocking situation may not

always occur and the buffers are under-utilized. Further, it is necessary to build

a faster bus so that multiple requests can be moved across the bus in a memory

sub-cycle. We can assume that sufficient requests are queued in the processor

so that the need of moving more than one request into the memory system dur­

ing a sub-cycle can be satisfied. An alternative is to allow a maximum of one

request to be accepted in every sub-cycle. This results in a degraded perfor­

mance for Organization II because the system is not operating with the max­

imum request rate.

Since the two organizations discussed are operating in steady state and the

systems discussed are balanced, the average arrival rate and the average wait­

ing time are related by Little's Formula.

Let

en = utilization of the buffers B" ... , Bb

(=1 for Organization I)

er = utilization of buffer Br

(= 1 for both organizations)

B = number of buffers in B 1, ... , Bb

(=b for Organization I; =m*b for Organization ll)

Um.b = expected utilization of the modules

Wm.b = expected waiting cycles of the requests

M = expected number in the system

)\ = expected arrival rate

W = expected waiting time of the requests

Then

M = (es •B + 1) + Um.b •m

1\= Um.b

W = m*Wm.b

and they satisfy Little's Formula,

M = 1*W

156

(4.2)

(4.3)

(4.4)

Eq (4.3) is true because in a balanced system, the expected arrival rate equals

the expected service rate. The physical importance of Little's Formula lies in

the fact that the average utilization and the average number of waiting cycles

are related. Once one of them is obtained, the other can be calculated easily.

Further, it also shows that Organizations I and TI are equivalent as far as the

average behavior is concerned. The only difference lies in the buffer utilization

which is less than 1 in Organization Jl whereas the buffers are fully utilized in

Organization I. In the next section, we present our evaluations for Organization I

only because the two organizations are equivalent and the results are directly

applicable. It is shown that the MWFMF algorithm minimizes the average com­

pletion time of the requests. This result only demonstrates that the MWFMF

algorithm is superior, but the exact throughput values of the system cannot be

obtained analytically. The techniques that are used to evaluate the performance

of these two organizations are embedded Markov analysis with random requests,

and simulations with random requests and execution traces and they are shown

in Sections 4.4.6 and 4.4.7.

157

4.4.5 Opti7nality of the MWFMF Scheduling Algorith"TTL

In proving the optimality, it is assumed that the requests in the request

queue are independent, randomly generated and of a finite size. The size of the

associative buffers may be greater than, equal to, or less than the number of

requests in the request queue. In a pipelined processor, memory requests can

be generated continuously until a dependency occurs. At this point, the request

stream is discontinued until the dependency has been resolved. Because of the

high request rate assumption, the requests generated between two dependen-

cies can be assumed to exist in the request queue after the first dependency has

been resolved. However, in a practical implementation, the pipelined processor

is only able to look ahead a fixed amount of instructions and this is modelled by

a fixed and finite amount of associative buffers in the system (which may be

greater than, less than or equal to the size of the request queue). The intelligent

scheduler is allowed to examine the associative buffers in making the scheduling

decision. The objective of the scheduling algorithm is to complete the service of

the requests in the request queue as fast as possible so that the throughput of

the memory is maximized. The symbols used in the following theorems are:

b = number of associative buffers - 1;

m = number of memory modules;

N = total number of requests that have to be serviced between two depen-

dencies;

where

(11 , i1) = state of module j;

11 = number of requests queued on module j in the buffers;

m
2j 11 = b +l and l1 ;;; 0 j=l, 2, ... ,m
j=l

if Tnadule j is free
O<n <= if module j is busy

158

In the case that module j is busy, n is the number of cycles

that module j has serviced its current request. The number of

cycles remaining before the completion of service for the

current request is (m-n) mod m.

k = variable used in the induction proof indicating the number of

remaining requests to be serviced (not including those in the

associative buffers);

CmaxlCtto it), (l2, i2), ... , (lm, iml!k =maximum completion time for the

state;

ECmaxl<lt• i,), (l2, i2) , (lm. im)h =expected maximum completion time

for the state.

Before the main theorem can be stated, the following three lemmas must

first be proved. Lemma 4.1 establishes the need for executing the MWFMF

scheduling algorithm at the beginning of each sub-cycle. Lemma 4.2 establishes

a basis for the induction proof of the main theorem and it also shows the

optimality of the MWFMF algorithm when the buffer size is very large so that all

the requests in the request queue reside in the buffers. Lemma 4.3 augments

Lemma 4.2 by further showing that algorithm MWFMF minimizes the sum of com­

pletion times of all the requests.

LEMMA 4.1

(1) In a period of m sub-cycles, every module can be initiated at most once.

(2) At the beginning of each sub-cycle, at least one free module is available

for scheduling.

Proof

{ 1) Obvious, because each module takes a time of rn sub-cycles to service a

request.

159

(2) Consider a time interval of m sub-cycles. Since at most one module can

be scheduled in each sub-cycle, the total number of modules scheduled

in m sub-cycles is less than or equal to m. At the beginning of its current

sub-cycle, if a module is scheduled m sub-cycles ago, then it will finish its

service at the current sub-cycle and is available for scheduling. If a

module is not scheduled m sub-cycles ago, then the total number of

modules scheduled in the last m sub-cycles is less than rn. Therefore, at

least one module is available for scheduling at the beginning of a sub­

cycle.

Q.E.D.

LEMMA 4.2

If all the requests in the request queue reside in the associative buffers (that is,

the buffers are large enough to accompany all these requests), then algorithm

MWFMF minimizes the maximum completion time for independent, random

requests in Organization I.

Proof

The maximum completion time is governed by the longest queue in the system.

Assume without loss of generality:

t 1 > l 2 > · · · > lm

Case 1: i 1 = 0,

MWFMF schedules module 1 first.

160

initiate module 1

--~----~--time
1<--->1

All modules will be initiated at most once in here due to lemma 4.1
(if number queued on it is non-zero) and all requests queued every
module except 1 can be initiated before the last request queued on
module 1 is initiated.

C max = l 1*m sub-cycles (initiate module 1 first)

If any other module, say module j, is initiated, then module 1 can only be

initiated in the next sub-cycle after module j has been initiated.

min C max = l 1 •m + 1 sub-cycles (initiate module j ~ 1 first)

Case 2:i 1 > 0

Let module j be the module such that

i; = 0 and i 1 > 0, i 2 > 0, ... , i 1 _ 1 > 0.

That is, module j is the free module with the largest amount of queued

requests. This will be the module scheduled by the algorithm MWFMF. In

fact, the module scheduled at this point is unimportant because the max-

imum completion time is governed by module 1.

Cmax = l 1*m + (m-i 1) sub-cycles

Therefore:

min Cmax = l 1*m + (m-i 1) mod m sub-cycles

Optimum algorithm: MWFMF

On the other hand, if l 1=l2> ... >lm and i 1, i 2 = 0, then the C max's are identical

whether module 1 or 2 is scheduled first. A similar proof holds for the case

Q.E.D.

161

LEMMA 4.3

If all the requests in the request queue resides in the associative buffers, then

algorithm MWFMF minimizes I;Cf for independent, random requests in Organiza­

tion I where Cj is the completion time for the j'th request.

Proof

Assume without loss of generality:

lt > l2 > . . . > lm

Consider two modules a, b, such that ia=O, ib=O and la>lb. Let Ca,b(Cb.a) be the

sum of completion times of scheduling a before b (b before a} for modules a and

b only. If b is scheduled before a, then

Cb,a = Cb+Ca = ';[Cla+l)la + (lb+l)lb] + la

Comparing this with the case of scheduling a first, it is found that:

Ca.b = Ca+Cb = ';[Cla+l)la + (lb+l}lb] + lb

Since la>lb => Ca,b<Cb,a• this implies that scheduling the module with a larger

amount of queued requests can reduce L;Cf. By adjacent pairwise interchange,

it is therefore better to schedule the module with the maximum amount of

queued requests if it is free. If the module is not available, scheduling the free

module with the maximum amount of queued requests is also optimum.

Q.E.D.

From the proofs of Lemmas 4.2 and 4.3, it is seen by using the MWFMF algo­

rithm that,

(1) The throughput of the memory is at a maximum because the maximum

time to complete a set of jobs is minimized (Lemma 4.2).

(2) The average waiting time is minimized. This is because C;, the comple­

tion time for the j'th job equals the waiting time for the j'th job,

162

W1=C1-o, (all the jobs are available at t=O). As a result, average waiting

time = I; W1/M is also minimized (Lemma 4.3).

THEOREM4.6

If all the requests in the request queue do not reside in the associative buffers,

(that is, the buffers are not large enough to accompany all the requests in the

request queue), then algorithm MWFMF minimizes the expected maximum com-

pletion time for independent, random requests in Organization!.

Proof

In order to prove this theorem, the following two parts must be proven and the

theorem follows from the result of part (a).

(a) Algorithm MWFMF minimizes the expected maximum completion time for

independent, random requests.

(b) Let states

S, = ~ ... , (l,i, ia), (lb1• ib), h

S2 = ~ ... , (la2• ia), (ll. ib), lk

where " " indicates that the remaining states are identical for S 1 and

Since the states of other modules are identical, and we assume that:

and

l 2 > l 1
• a a•

l 1 >l 2· b b•

-m ~ ia > ib > 0 or -m)- ib > ia > 0 with equal probability.

If l;}>lb1, thenECmax(St)k ;£ECmax(Sz)k;

If la2=lb1, then ECmax(Sth = ECmAx(Sz)k.

These two parts can be proved by induction. The truth is first established for

k=O, i.e. when all the requests reside in the buffers. These parts are then

163

assumed to be true for any positive integer k and the proof is complete by

proving the case of k+ 1.

(I) k=O

(a) MWFMF is optimal. This is established by Lemma 4.2.

(b) If there exists module z such that z.>l;}, and since z,f-;;;zb1>lb2 and l,f>l,},

then the maximum completion time for both S 1 and S 2 depends on z.

and are identical. Therefore,

EC rnax(S 1lo = EC max(S a)o

If there does not exist module z such that z. >l,f, then the maximum com­

pletion time of Sa depends on module a. Let there be two modules, x in

S 1 andy in S 2 such that l,f>l,,}>l.1, lb1>lJ>lt and i..,=iy=O. The following

three cases can be identified.

__ time

Sa !X] [8 ~
Starting Sequence Ending Sequence

C max(S 1lo = EC max(S 1lo < C max(S a)o = EC max(S a)o

(2) l,f>lb1, ia=O, ib<=

164

--tir.ne

8 rB ...
Starting Sequence Ending Sequence

Cm.,.(St)o = ECmax(S,)o < Cm.,.(S2)o = ECm.,.(Se)o

(3) t:f=tb1• ib =0, i~ <m

__ time

Starting Sequence Ending Sequence

__ tir.ne

0 ~ ...
Starting Sequence Ending Sequence

Since l;}=lb1, this ir.nplies that l.]=l(f, therefore the states S 1 and S2 are

syr.nr.netric in the states of the modules a and b and the probability that

ib = 0, ia <m is equally likely as the probability that ~ =0, ib <m..

EC max(S t)o = C max(S tf ib =0, ia <m)o•Pr (ib =0, ia <m)

+ Cm.,.(S 2 [i~=o, ib<-m)0*Pr(~=O, i,<-m)

= EC max(S 2)o

165

(II) Induction hypothesis:

Assume that the theorem is true for a positive integer k, that is,

(a) MWFMF algorithm minimizes the expected maximum completion time for

independent, random requests when the number of remaining requests

in the request queue is k.

(b) If l!>lo', thenECmax(S,). ~ ECmaxCSa)k;

Ifl!=lb1, thenECmax(S,h =ECmax(Sz)k.

(III) When the number of remaining inputs is k+1,

(a) Without loss cf generality, let modules 1, 2, ... , j be the set of free

modules. Choose any two modules, say 1 and 2, so that l 1>lz and there

does not exist pE f1,2, ... ,il such that l 1>lp >1 2• We want to compare the

difference between scheduling module 1 and module 2.

(1) Schedule module 1 in this sub-cycle,

1(1,,0), (lz,O), ... , (lm.i.m)lk+t

=> w,-1,1). (12.o) , Clm.Cim+1) -mod =Hk+t

A new input now enters the buffers, this input can be a request directed

to any module in the set with equal probability 1/m (due to the assump­

tion of independent, random requests).

New states after scheduling module 1:

1 enters: s' = w,. 1). (1 2, o), (1m, (i.m+1) -mod =Hk

2 enters: S 2 = w,-1, 1), (1a+1, 0), ... , (lm. (i,+1) -mod -m)J.

m enters: sm = 1(1 1-1, 1), (1 2, 0), ... , (lm+l, (i,+1) -mod -m)lk

(2) Schedule module 2 in this sub-cycle.

f(l,,o), (Za.O), (Zm.im>lk+t

=> W 1,0), (1 2-1, 1), ... , Um ,(i, +1) -mod -m)lk+l

New states after scheduling module 2:

It is

1 enters: S 1 = !(11 +1, 0), (1 2-1, 1), ... , (l,, (i.,+1) mad m)~.

2 enters: SZ = !(1 1, 0), (l 2, 1), ... , (1,, (i,+1) mod m)!k

m enters: S"' = !(1 1, 0), (1 2-1, 1), ... , (l,. + 1, (i, + 1) mod m lk

seen

166

and

ECmax(Si)<ECmu(S1) for i;£1,2. In proving ECmu(S 1)<ECmax(SZ), we can

use the induction hypothesis Il(b) and let i,.=O, i 0 =l, lcl=l 2, l0
1=lto lf=1 1

10
2=1 2 • The other parts can similarly be proved. Since the expected Cmu

is a weighted sum of the expected C max of all the corresponding states, it

is therefore better to schedule module 1, the module with a longer

queue, first. By using the adjacent pairwise interchange argument, the

free module with the maximum number of queued requests should be

scheduled first.

(b) In proving this theorem, the following parts are identified.

(1) lf > l~; Both modules a and bare not scheduled in the current sub-cycle.

This can be due to (1) ia>O and i 0 >0, i.e. both modules are busy; or (2)

there exists a free module z such that 1. is greater than 1f if

ia =0 or 10
1 if i 0 =0. Since it is assumed in the induction hypothesis ll(a)

that free modules with a longer queue should be scheduled, therefore

module z will be scheduled in this case.

After module z is scheduled, a new input enters the buffers.

a enters:

S~ = ! ... , (lJ+l, (ia+l) mod m), (l~. (i0 +l) mod m), · · · h

b enters:

sy = ! ... , (lJ, (ia+l) mod m), (l;1+1, (i;+l) mod m), · · · l•

j, j ;£ a,b enters:

S{ = !,.., (lJ, (ia+l) mod m), (l;1• (i;+l) -mod -m), · · · l•

a enters:

b enters:

j, j ;rf. a,b enters:

By the induction hypothesis,

ECmax(snk < ECmax(S~h

ECm.,.(S~h < ECm.,.(S~h

ECmax(St)k = ECmax(S~h

ECmax(S{h < ECmax(S~h

Therefore

if l.i=l~+ 1

V j;rf.a,b

(2) l.i > l0
1 and there exists a module x such that iz = 0 and

l.i > l, > l,} if ia;=O or

Let us look at the first case:

s 1 = ! (la;1.0), (lo1.io) , (lz,O), lk+l

S 2 = ! (l.i.o). (l.2.i.) <zz.o). lk+1

167

According to the MWFMF algorithm, module x should be scheduled in S 1

and module a should be scheduled in S 2 . It is necessary to compare the

expected Cmax after these have been scheduled. Suppose module xis not

scheduled in both states, from part III(b}(l), it is seen that

ECmax(Stl a scheduled)k < ECmax(S21 a scheduled}k. However, due to

the induction hypothesis, II(a}, scheduling x in state S 1 would be better

than scheduling a because lz>l,}.

ECmax(S 1! x scheduled}k < ECmax(S tl a scheduled}k

168

Therefore:

and

ECmu(Sih+l < ECma:x.(S2h+t·

The other case, i.e. lb1>lz >lb2 and ib =0 can be similarly proved. For the

remainder of the proof of this theorem, it is assumed that l(f?;, lb1>lz, for

all x_;>! a,b and iz=O.

(3) l(f > lb1, 0 < i,. < m, ib =0

Due to the induction hypothesis, module b should be scheduled in

S 1 and S2.

For state S 1, schedule module bin this sub-cycle,

{ ... , (l,.1,i,.), (l~,O), • • • !HI

=> f ... , l~. (i,.+1) mod m), (lb1-1,1), ···!HI

New input enters the buffer:

a enters: S~ =f ... , (l~+1, (i,.+1) mod m), (L~-1,1), h

b enters: SY =f ... ,(~. (i,.+1) mod m), (l,}, 1), · · · !k

j, j _.;>!a, b enters: S{ = f ... , (L~. (i" + 1) mod m), {lb1-1, 1), · · · !k

For state S 2, schedule module bin this sub-cycle:

f ...• (t:f,i"). (lb2.o). · · · !k+l

=> f ... , (l.;',(i" +1) mod m.), u:-1.1), ... jk+l·

New input enters the buffer:

a enters: S~ =f ... , (L.:'+1, (i,.+1) mod m.), (lb2-1, 1), · · · !k

b enters: s~ =f ... , (l:f, (i,. +1) m.od m.), (lb2• 1), ... !k

j, j _.;>!a, b enters: S~ = f ... , (l.:'. (i11 + 1) m.od m.), (lb2-1, 1), · · · !k

By the induction hypothesis:

EC max(S~)t < EC rnax(S~ h

EC mu(SY)k < EC m ... (s~ h

EC rnax(S{)k < EC max(S{)k Vj_r!a,b

169

Therefore:

ECmaxCSt)k+t < ECm.,.(Sz)k+t

(4) t:f > lb1• ia. = 0, 0 < ib < 7n

Due to the induction hypothesis, module a should be scheduled in

Stand S2.

For state S 1, schedule module a in this sub-cycle,

1 ... , (lJ.o), (lo1.io). · · · lk+t

=> f ... , (l,i-1,1), (lo1,(ib+1) 7nOd 7n), "". lk+t

New input enters the buffer:

a enters: S~ =f ... , (l.}, 1), (10
1

, (i0 +1) 1nod 1n), · · · lk

b enters: Si =f ... , (lJ-1, 1), (10
1+1, (i0 +1) mod rn), · · · lk

j, j ,;£ a,b enters: S{ = f ... , {l.}-1, 1), (10
1 , (i0 + 1) 1nod m), · · · lk

For state S 2 , schedule module a in this sub-cycle,

f ... , (l:f,o). (z?.io)!k+t

=> f ... , (l:f-1, 1), (l0
2 ,(i0 +1) mod m.), ... lk+t·

New input enters the buffer:

a enters: S~ = f ... , (l:f, 1), (10
2

, (i0 + 1) mod m.), · · · lk

b enters: S~ =f ... , (1(1-1, 1), (10
2+1, (i0 +1) mod m}, · · · lk

j, j ,;£ a,b enters: S~ =f ... , (l:f-1, 1), (l02, (ib+1) mod m), · · · !k

By the induction hypothesis:

ECmaxCsn;:;; ECmax{S~};

ECm.,.(sn;:;; ECmax(S~};

ECmax(S{);:;; ECmax(S~)

Therefore:

Vj,;£a,b

(5) z._2 = l0
1 Both modules are not scheduled in the current sub-cycle.

With the similar reasons as in III{b)(1), there exists a module z which is

scheduled in the current sub-cycle. Because of the symmetry between

the states of modules a and b, by the induction hypothesis II{b),

EC max(S ~ h = EC max(S ~)k

ECm.,.(SYh = ECmax(S~). and

ECm.,.(S{h = ECmax(S~)k jfo,b

Therefore:

EC mu(S th+t = ECmax(Sa)k+t·

170

(6) l:f = lb1 There exists a module x such that i,=O and

(7)

laa>l.,>la1 ifia=Oor

lb1 > l., > lba if~ =0.

For the first case,

s, = !.,.. (l,}, 0), (lb'· ib), (l,., 0), ... lk+t;

Sa=~ (laa• 0), (l:. ib), ... , (l,., O), ... h:+t·

With a similar argument as in III(b)(2), suppose module x is not

scheduled in both states and module a is scheduled. Due to the sym­

metry between the states of module a and b, and by the induction

hypothesis IJ(b),

EC max(S tl a scheduled)k = EC max(S al a scheduled)..

However, due to the induction hypothesis, II(a), scheduling x in state S 1

would be better than scheduling a because l,.>la1.

ECmaxCStl x scheduledh < ECmax(StJ a scheduled).

< ECmax(SaJ a scheduledh

Therefore:

ECmax(S,)k+t < ECmax(Sa)k+t·

The other case, i.e., lb1>l,. >lba and ib =0 can be similarly proved.

The proof is very similar to III(b)(3) and III(b)(4), except in this case,

l:f=lb1 and l,l=lb2 • Therefore, the states S 1 and Sa are symmetric in the

states of the modules a and b. By the same argument as in the proof of

171

I(b)(3), the probability that ib =0, ia <rn is equals the probability that

ia =0, ib <rn. This implies:

ECmax(S,).+t = ECmaxCS2)k+t

From the above seven cases, it is seen that in all cases,

ECmu(S t)k+t ::> ECmax(S2h+t·

Therefore, by induction, part (b) of the theorem is proved. Because part (a) of

the theorem utilizes the result of part (b) of the theorem, part (a) of the

theorem is proved.

Q.E.D.

The above theorem has demonstrated that algorithm MWFMF is optimal in

the sense that it minimizes the average completion time for a fixed set of ran­

dom requests. Intuitively, algorithm MWFMF is better because it tries to keep all

the modules as busy as possible. Suppose that some of the modules are

requested more often than others. The requests to these more frequently

requested modules became a bottleneck to the system whatever scheduling

algorithms are used. However, a better scheduling algorithm should make use

of the free cycles to schedule some requests for the less popular modules so

that these requests would not accumulate after the processing of the more

popular requests. This is the deficiency that occurs in other algorithms and is

overcome by the MWFMF algorithm.

In addition to proving that the MWFMF algorithm has the best average case

behavior, it may be necessary to show that the algorithm also possess the best

best-case behavior and the best worst-case behavior. However, in this case, the

best-case and the worst-case behavior are identical for all algorithms. The

best-case behavior occurs when all the requests are made in a sequentiai order,

that is, 0, 1, ... , m-1, 0, 1, ... , m-1. etc. No contention would occur and the

throughput of the memory is maximized, that is, 1 request serviced every sub-

172

cycle. On the other hand, the worst case behavior occurs when all the requests

are directed to a single module. In this case, the bottleneck is at this module

and the throughput of the memory is 1 request serviced every m sub-cycles.

Algorithm MWFMF is better than other algorithms because it has a better aver­

age case behavior even though its best- and worst- case behavior are identical to

the other algorithms.

Although the expected maximum completion time of the algorithm is

minimized, it is not possible to make a similar conclusion as in Lemma 4.2 that

the expected throughput of the memory is maximized because in this case,

there is no relation between the expected maximum completion time and the

expected throughput of the system. Furthermore, it is not useful to prove a

similar theorem for the I;C; case as in Lemma 4.3 because it is unclear that the

objective of minimizing I;E (C;) will be of any meaningful value.

Although Theorem 1 establishes the fact that the MWFMF algorithm is

optimal, no throughput values are obtained analytically. In the next two sec­

tions, the throughput of the system is evaluated by using two techniques,

embedded Markov Chains and simulations.

4.4.6 Embedded Markov Chain Technique

By assuming a saturated request rate, with inter-arrival time a constant

multiple of the memory sub-cycle and a request queue with random requests,

the two organizations can be analyzed by embedded Markov Chain technique

[FEL50]. With a RR scheduling algorithm, a state of the system for Organization

I is defined as fSr. S to S 2 , ... , Sb. S,. j. 1;;;Sr.S ~oS 2, ..•• Sb ,S,. ;;;m where

Sr.S 1.S 2, .•.• Sb are the states of the b+1 buffers and S,. is the memory

module that is being initiated in the current memory sub-cycle. The state of a

buffer is the module number that the request in it wants to access. The number

173

of states is therefore finite. A similar state can be defined for Organization II. It

is obvious that the conditional probability of any future event, given the past

event and the present state, is independent of the past event, that is, it satisfies

the Markovian property.

where n = 0, 1, 2, ...

X, = state of the system at the n-th transition

It is noticed that the Markovian property possessed by the two organiza-

tions is independent of n. Such a Markov chain is stationary. Let:

Pi.;= PlXn+t='4.+t I X,.=i,.l

Further, the time between successive transitions is constant and equals to the

duration of the memory sub-cycle. This is called an embedded Markov Chain.

The analysis of embedded Markov Chains is similar to that of Markov chains.

For an irreducible, ergodic Markov chain [ROS76], there exists a unique sta­

tionary probability distribution rr = lrri• j=1,2,. .. ,nl such that:

and

n
rri = I; rriPi.i

i=l

" I; 1Ti = 1
i=l

Using the matrix notation, it becomes

rr = rrP

where:

rr = lrr~o 1T2, .. · • Trn l
P = fPi.j l. the transition matrix

n = the number of states in the system

(4.1)

174

The Markov Chain used to model the interleaved memory system is irredu-

cible and positive recurrent because the chain is finite and all states communi-

cate with each other. However, this chain is not ergodic because the period of

the chain equals m. In this case, some of the conditions of the ergodic Markov

Chains are weakened, but vector 7T still represents the unique fixed probability

vector of P [KEM65]. Since the evaluation of the throughput only requires the

use of the vector 7T, the technique for evaluating 7T in ergodic Markov Chains can

still be applied here. This technique is illustrated in the following two examples.

Exa-mple 1

Consider Organization I with the following attributes:

m= 2

b = 1

scheduling algorithm- RR

access pattern- random

A state of the system is defined as lSr. S~o Sml where Sr is the state of Br. S1 is

the state of B 1 and Sm is the current module that the system is initiating. The

number of states can be reduced in half by considering only states in which

S1::>Sr and treating states in which Sr < S 1 the same as states in which

S1 ::>Sr. The transition matrix is defined as

p,1,1l p,1,2l U.2,2l f1,2.1! f2,2,1l f2,2,2l
0 0.5 0.5 0 0 0 f1,1,ll
1 0 0 0 0 0 f1,1,2l
0.5 0 0 0.5 0 0 f1,2,2l

P= 0 0 0.5 0 0 0.5 f 1.2.1l
0 0 0 0 0 1 f2,2,1l
0 0 0 0.5 0.5 0 f2,2,2l
0 0 0 0.5 0.5 0 f2,2,2l

On the first row, only the transitions from state f 1,1,1j to states f 1,1,2j and

f1,2,2j have non-zero probabilities. The state f 1,1,1l means that currently

module 1 is initiated and the requests in both buffers Br and B 1 are requesting

175

module 1. Therefore, the request in B 1 can be satisfied. The content of Br is

moved into B 1, and a new address is accepted into the memory. Since the

access pattern is random, this new request can be directed to either module 1

or 2 which results in states i1.1,2l or i1,2,2l. Note that Sm has changed from 1

to 2 because during the next memory sub-cycle, module 2 will be initiated. The

other rows of the transition matrix can be interpreted similarly.

able

Solving the equation rr = rrP, we get:

1T = i0.2, 0.1. 0.2, 0.2, 0.1, 0.2l

The utilization of the memory can be found by defining a new random vari-

Sr=Sm or S 1=Sm or bath

otherwise

e1s s ~ 1 equals 1 whenever during state 'Sr,S~oSml. one request is T• l~m (

satisfied because there is a request in the buffers which requests a currently ini-

tiated module. For our example, the transpose of e is:

The utilization of the memory is rr.e = 4/5 = O.B. The bandwidth of the memory

system is O.B * 2 = 1.6 words/memory cycle.

Exarnple 2

Consider again Organization I with the following attributes:

m= 2

b = 1

Scheduling algorithm - MWFMF

Access pattern - random

The state space in this case is larger than the state space of the corresponding

model with a RR scheduling algorithm because the next module to be initiated is

determined dynamically and therefore the states of all modules must be known

176

at all times. The objective of introducing a more complex algorithm like MWFMF

is to initiate any free module with queued requests without constrains on the

order of initiation. However, in this case, with m=2, improvement cannot be

accomplished. Let us assume that module 1 is initiated during the current

memory sub-cycle. In the next sub-cycle, module 1 cannot be initiated again

because it has not finished its cycle. The only possibility is to initiate module 2.

If all the requests in the buffers are requesting module 1, then no module is ini­

tiated in this sub-cycle and in the next sub-cycle, module 1 will be initiated

again. The resulting sequence of initiation is the same as a model with an RR

scheduling algorithm. Therefore the utilization of the model is the same for

both algorithms when m=2. This happens because the maximum number of free

modules is one in this special case. For m:<;2, the utilization for an MWFMF algo­

rithm is higher because the maximum number of free modules is greater than

one and the order of initiation is not necessary the same as the RR algorithm.

Let us complete this example by setting up the state space of the model.

We must know at the beginning of each memory sub-cycle which modules are in

service and what are the remaining service times that these modules need. We

must also know the contents of the buffers. A state of the system is defined as

!M0 , M1, B 1, BTl· M0 is the module number of a module that is initiated 2 cycles

ago and has finished its service at this time. M1 is the module number of a

module that is initiated 1 cycle ago and still needs 1 more cycle to finish its ser­

vice. A value of 0 for M0 or M1 indicates that no module was initiated. B 1 and BT

are the states of the buffers and as in the last example, we consider only states

with B 1 ~Br. We have the following ranges of values,

0 ~ M 0 , M 1 ~ 2; 1 ~ B 1o B r ~ 2. The total number of states is 3*3*2*2 = 36. How­

ever, not all states are possible. For example, state !2. 2,X,Xj is not possible

because it indicates that module 2 was initiated twice and simultaneously in the

last two cycles. Another example of impossible state is !2,0,1,Xj. This state

177

indicates that no module was initiated in the last cycle (M1 =0), and the current

contents of the buffers have a request for module 1. Since no new request was

accepted in the last cycle, this request for module 1 must have existed in the

previous cycle and therefore should have been initiated. By eliminating all these

impossible states, we get a state space of 12 states: f0,1,1,1j, f0,1,1,2l, f1,0,1,1j,

f1,2,1,1j, f1,2,1,2j, f1,2,2,2j, f0,2,2,2j, f0,2,1,2j, f2,0,2,2j, f2,1,2,2j, f2,1,1,2j and

f2,1,1,1j. Solving the equation rr=rrP, we get

1 1 1 1 3 1 1 1 1 1 3 1
rr=! 20' 20' 10' 10' 20' 20' 20' 20' 10' 10' 20' 20j

By defining eT as

eT = f 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1l

The utilization of the modules is rr.e = 0.8

The transition matrices P used in Eq. 4.1 are large sparse matrices. The

memory space required to store P is therefore substantially less. However, one

big disadvantage about this approach is that the number of states is large.

Although they can be reduced by eliminating duplicate or impossible states, the

memory size and the computer time required for solution is still beyond the

present computers' capability. For example, with 16 degrees of interleaving and

b=2 (3 request buffers), the number of states for Organization I with an RR

scheduling algorithm is 13056. This was calculated by treating permutations of

the three buffers as equivalent states. With an RR scheduling algorithm, the

module that the system currently initiates is sufficient to determine the next

module to be initiated. With other scheduling algorithms, the number of states

is more because the next module to be initiated is determined dynamically, and

therefore the states of all the modules (whether they are busy or free) must be

known at all times. However, regardless of the scheduling algorithm, the

number of equivalent states can be reduced by a factor of m by noting that if a

constant is added (modulo m) to each state variable, then the new state

178

obtained must have the same stationary probability, and that the corresponding

transition probability must also be the same. For the RR example given above,

the 13056 states would be reduced to 816. Although the number of states is

reduced, a solution using embedded Markov chains is still not practical. Since

none of the states in the matrix are equivalent and therefore cannot be com­

bined together, approximation techniques can be employed to reduce the

number of states further. In [WAH76], an approximate embedded Markov chain

solution for Organization I with RR scheduling algorithm is presented. The

approximation is done by combining some states of the transition matrix into a

single state when their transition probabilities into another state are "approxi­

mately" equal for all the states in the group. However, the difference between

the approximate and the exact solutions are sometimes large. Moreover, the

time it takes to generate the approximate matrix is still exponential because

the transition probabilities of a state must be generated first before it can be

determined whether the state can be combined with another state. The analyti­

cal solution using embedded Markov Chains is therefore not practical. In the

next section, the solution using simulations is presented.

4.4. 7 Simulation Technique

4.4. 7.1 Simulation Results

Due to the difficulties mentioned in the last section, our evaluations are

based on simulations. The simulations are run on a CDC 6400 computer. The

simulation program was written in Fortran and the total time to generate all the

results took over 12 hours on the CDC 6400.

Table 4.1 shows the results of simulation runs on Organization I for the

memory utilization and the average waiting cycles where a waiting cycle is

defined similar to Flores [FL064] as the ratio of the waiting time and the

179

memory cycle time. Two types of request sequences are considered, one in

which the requests are generated randomly, and one in which the requests are

derived directly from the execution trace of a program. The traces used have a

size of 500,000 and were obtained by running a scientific Fortran program

derived from BMD applications on a CDC 7600 and and they personify program

characteristics of scientific applications. They have the following characteris-

tics.

Table 4.1 a Simulation Results for Organization I with RR Scheduling Algo­
rithm (95'7. confidence interval shown assuming normal distribution)

Random Reouest Model Trace Driven Model
E(Memory E(Waiting E(Memory E(Waiting

m b Utilizatio~) Cvcles). Utilizatio,.;) Cvcles).

2 0 0.668±0.0 1. 75±0.0 0. 727±0.003 1.69±0.0
1 0.801±0.017 2.25±0.04 0.882±0.003 2.13±0.01
2 0.858±0.001 2.75±0.0 0.928±0.003 2.62±0.33
3 0.690±0.004 3.25±0.02 0.960±0.004 3.06±0.52

4 0 0.401±0.004 1.62±0.01 0.4 72± 0. 026 1.53±0.02
1 0.565±0.015 1.69±0.02 0.636±0.043 1.79±0.07
2 0.667±0.009 2.12±0.02 0. 732± 0. 050 2.03±0.14
3 0. 726±0.007 2.36±0.02 0.625±0.059 2.21±0.23

8 0 0.222±0.002 1.56±0.0 0.276±0.026 1.45±0.06
1 0.363±0.006 1.69±0.01 0.432±0.041 1.58±0.07
2 0.461±0.005 1.61±0.01 0. 525± 0. 049 1.72±0.10
3 0.534±0.006 1.94±0.01 0.610±0.060 1.62±0.13

12 0 0.154±0.003 1.54±0.0 0.166±0.026 1.45±0.05
1 0.266±0.005 1.63±0.01 0.306±0.042 1.55±0.10
2 0.354±0.005 1.71±0.01 0.406±0.056 1.61±0.11
3 0.423±0.006 1.79±0.01 0.464±0.070 1.69±0.10

16 0 0.117±0.002 1.53±0.01 0.157±0.015 1.40±0.05
1 0.209±0.003 1.60±0.01 0.254±0.024 1.49±0.05
2 0.265±0.003 1.66±0.01 0.345±0.033 1.54±0.06
3 0.350±0.004 1. 71±0.01 0.412±0.039 1.61±0.09

180

Table 4.1 b Simulation Results for Organization I with FFF Scheduling Algo­
rithm (95% canfidence interval shown assuming normal distribution)

Random Request Model TrAce Driven Model
• E(Memory E(Wait~g E(Memory E(Waiting

m b Utilizatio~) Cvcles Utilization) Cvcles).

2 0 0.501±0.0 2.00±0.0 0.571±0.002 1.88±0.0
1 0.668±0.014 2.50±0.05 0. 789±0.003 2.27±0.11
2 0.750±0.001 3.00±0.0 0.865±0.003 2.73±0.34
3 0.802±0.003 3.50±0.02 0.924±0.003 3.17±0.53

4 0 0.289±0.003 1.86±0.01 0.316±0.018 1.79±0.04
1 0.407±0.011 2.23±0.04 0.476±0.027 2.05±0.12
2 0.489±0.007 2.53±0.04 0.600±0.041 2.25±0.25
3 0. 544± 0. 008 2.84±0.08 0.878±0.048 2.48±0.42

8 0 0.173±0.002 "" 1.72±0.01 0.184±0.017 1.68±0.06
1 0.264±0.004 1.95±0.02 0.304±0.029 1.82±0.12
2 0.330±0.005 2.14±0.03 0.379±0.037 1.99±0.16
3 0.378±0.003 2.32±0.03 0.441±0.043 2.13±0.20

12 0 0.126± 0. 002 1.66±0.01 0.147±0.023 1.57±0.06
1 0.201±0.003 1.83±0.01 0.235±0.033 1.71±0.11
2 0.258±0.002 1.97±0.02 0.305±0.042 1.82±0.13
3 0.303±0.004 2.10±0.03 0.365±0.051 1.91±0.17

16 0 0.100±0.001 1.63±0.01 0.106±0.010 1.59±0.05
1 0.163±0.002 1.77±0.01 0.167±0.0 17 1.67±0.06
2 0.211±0.003 1.69±0.01 0.256±0.024 1. 73±0.10
3 0.252±0.003 1.99±0.02 0.314±0.030 1.60±0.13

181

Table 4.1 c Simulatirm. Results for Organization I with MWFMF Scheduling Algo­
rithm (95% crm.fidence interval shown assuming normal distribution)

Random Reauest Model Trace Driven Model
E(Memory E(Walting E(Me.mory

m b Utilization) Cvcles). Utilization)

2 0 0.667±0.008 1.75±0.01 0. 727±0.003
1 0.800±0.0 2.25±0.0 0.882±0.003
2 0.859±0.003 2. 75±0.03 0.928±0.003
3 0.888±0.001 3.25±0.02 0.980±0.003

4 0 0.4 79±0.003 1.52±0.0 0.515±0.029
1 0.612±0.003 1.82±0.01 0.673±0.043
2 0.691±0.004 2.09±0.02 0. 776±0.053
3 0.740±0.004 2.35±0.04 0.831±0.059

8 0 0.355±0.002 1.35±0.01 0.385±0.038
1 0.466±0.002 1.54±0.01 0.533±0.052
2 0.544±0.004 1.69±0.01 0.612±0.058
3 0.597±0.005 1.84±0.02 0.686±0.068

12 0 0.295±0.002 1.28±0.0 0.330±0.052
1 0.399±0.003 1.42±0.01 0.472±0.066
2 0.475±0.003 1.53±0.01 0.533±0.079
3 0.524±0.002 1.64±0.01 0.614±0.088

16 0 0.259±0.001 1.24±0.0 0.300±0.028
1 0.357±0.003 1.35±0.01 0.416±0.040
2 0.424±0.002 1.44±0.01 0.511±0.049
3 0.4 76±0.002 1.53±0.01 0.570±0.055

fraction of instruction word fetches

fraction of data word fetches

fraction of data word stores

average number of accesses per inst. executed

number of instructions per instruction word

fraction of instructions that need data

fraction of instructions that are

unconditional jumps

E(Waiting
Cvcles)"

1.69±0.0
2.13±0.11
2.62±0.33
3.08±0.04

1.49±0.02
1.74±0.08
1.97±0.18
2.20±0.28

1.33±0.06
1.47±0.08
1.61±0.11
1.73±0.16

1.23±0.05
1.35±0.08
1.45±0.10
1.54±0.12

1.21±0.05
1.30±0.07
1.37±0.08
1.44±0.10

0.597

0.336

0.067

0.600

2.787

0.242

0.044

successful conditional jumps

unsuccessful conditional jumps

number of instructions executed between

conditional jumps

unconditional jumps

successful conditional jumps

all dependent events

(cond. + uncond. jumps)

mean

0.030

0.015

22.3

st'd dev. 10.3

mean 22.8

st'd dev. 24.7

mean 33.9

st'd dev. 19.2

mean 11.4

st'd dev. 10.1

182

In Table 4.2, the simulation results for Organization II are shown. Since the

existence of multiple sets of buffers allows a request at Br to be blocked by a set

of full buffers in a module while buffers of other modules may be empty, a

column has been included in Table 4.2 to show the buffer utilization (this

excludes the buffer Br). The queue utilization results shown in Table 4.2 are

normalized with respect to the buffer size b.

4.4. 7.2 Application of Multiple Linear Regression to Obtain a Closed Form For­

mula

Using the results of the simulations and the assumption that the utilization

is approximately 1 when b>>m (e.g. b=100, m=4), multiple linear regression is

applied to fit a curve to the results [DRA66]. Based on the tail area of the partial

F-value for testing the null hypothesis that a regression coefficient is zero, some

of the terms in the polynomial have been eliminated. In Table 4.3, the

coefficients for the regression analysis on the utilization and the waiting cycles

of the two organizations under MWFMF scheduling algorithm are shown. The

errors in the estimation can be shown to be less than 4% in most cases except

183

Tctble 4. 2ct Simulcttion ReStJ.lts for Orgctnizcttion II with RR scheduling Algo­
rithm (95% confidence intervctl shown ctsStJ.ming normctl distribution)

Random Reo11est Model Trace Driven Model
E(Memory E(Waiting E(Butfer E(.Memory E(Waiting E(Buffer

mb U tilizatior'i) Cvcles)" Utilization) Utilization\ Cvcles). Utilization)

2 0 0.667±0.0 1.75±0.0 - 0. 727±0.003 1.69±0.0 -
1 0.801±0.004 2.50±0.02 0. 700± 0. 006 0.882±0.003 2.4.3±0.16 0. 760±0.049
2 0.857±0.002 3.25±0.02 0.715±0.003 0.928±0.003 3.18±0.44 0.761±0.102
3 0.890±0.003 4.00±0.01 0. 732± 0. 004 0.960±0.003 3.92±0.61 0. 768±0.142

40 0.401±0.004 1.62±0.01 - 0.472±0.026 1.53±0.02 -
1 0.629±0.004 2.18±0.01 0.492±0.005 0. 737±0.052 2.09±0.17 0.554±0.085
2 0.731±0.005 2.75±0.03 0.515±0.009 0.84 7±0.058 2. 70±0.36 0.597±0.136
3 0. 792±0.004 3.33±0.02 0.531±0.008 0.903±0.064 3.34±0.50 0. 621±0.158

8 0 0.222±0.002 1.56±0. 0 - 0.278±0.026 1.45±0.06 -
1 0.487±0.006 1.97±0.01 0.347±0.006 0.586±0.055 1.87±0.11 0.384±0.083
2 0.628±0.006 2.41±0.02 0.379±0.008 0. 793±0.078 2.40±0.25 0.494±0.113
3 0. 705±0.004 2.88±0.04 0.397±0.006 0.882±0.085 2.95±0.45 0.518±0.148

12 0 0.154±0.003 1.54±0.0 - 0.186±0.026 1.45±0.05 -
1 0.417±0.005 1.88±0.01 0.283±0.005 0.599±0.083 1. 73±0.10 0.354±0.070
2 0.569±0.007 2.26±0.02 0.318±0.007 0. 733±0.105 2.22±0.26 0.404±0.125
3 0.661±0.005 2.66±0.02 0.338±0.006 0.753±0.109 2.63±0.47 0.381±0.151

16 0 0.117±0.002 1.53±0.01 - 0.157±0.015 1.40±0.05 -
1 0.379±0.005 1.82±0.01 0.249±0.004 0.502±0.048 l. 73±0.09 0.303±0.049
2 0.534±0.008 2.18±0.02 0.283±0.008 0.692±0.066 2.05±0.17 0.333±0.075
3 0.626±0.004 2.54±0.08 0.300±0.005 0. 745±0.072 2.23±0.32 0.284±0.094

184

Ta.ble 4.2b Simula.tion Resul.ts fo'T' 07'ga.niza.tion II with FFF Scheduling Alg~
'T'ithm. (95% confidence interua.l shown a.sS't.Lming n07'ma.L distribution)

Random Reauest Madel Trace Driven Model
E(Memory E(Waiting E(Buffer E(Memory E(Waiti~g E(Butrer

mb Utilizatio~) Cycles)" Utilization) Utilizatio~) Cycles Utilization)

2 0 0.501±0.0 2.00±0.0 - 0.571±0.002 1.88±0.0 -
1 0.870±0.004. 2. 74.±0.0 0.669±0.004 0. 789±0.003 2.56±0.16 0. 732± 0. 04.5
2 0. 751±0.003 3.50±0.02 0.688±0.010 0.865±0.003 3.30±0.4.8 o. 74.3±0.097
3 0. 789±0.002 4..27±0.01 0.699±0.004. 0.924.±0.003 4..00±0.62 0. 758±0.138

4. 0 0.289±0.003 1.86±0.01 - 0.316±0.018 1. 79±0.04. -
1 0.4.58± 0. 005 2.54.±0.01 0.4.54.±0.007 0.557±0.04.2 2.38±0.22 0.519±0.095
2 0.556±0.004 3.19±0.03 0.4.83±0.009 0. 702±0.04.8 2.95±0.4.8 0.558±0.14.9
3 0.628±0.003 3.80±0.04. 0.503±0.007 0.801±0.057 3.54.±0. 72 0.596±0.184.

8 0 0.173±0.002 1.72±0.01 - 0.184.±0.017 1.68±0.06 -
1 0.329±0.005 2.32±0.03 0.311±0.010 0.406±0.04.0 2.20±0.19 0.360±0.089
2 0.4.36±0.002 2.88±0.02 0.34.8±0. 004. 0.604.±0.060 2.73±0.36 0.4.61±0.121
3 0.4.98±0.004. 3.4.4±0.07 0.363±0.011 0.671±0.067 3.36±0.65 0.4.92±0.162

12 0 0.126±0.002 1.66±0.01 - 0.14.7±0.023 1.57±0.06 -
1 0.278±0.004. 2.20±0.03 0.250±0.007 0.396±0.055 2.03±0.18 0.325±0.080
2 0.383±0.005 2.71±0.05 0.285±0.010 0.510±0.073 2.64.±0.4.3 0.376±0.137
3 0.4.57±0.004. 3.22±0.05 0.310±0.009 0.529±0.085 3.19±0.55 0.358±0. 752

16 0 0.100±0.001 1.63±0.01 - 0.106±0.010 1.59±0.05 -
1 0.252±0.003 2.11±0.02 0.217±0.005 0.34.5±0.032 1.96±0.14. 0.267±0.050
2 0.34.9±0.003 2.61±0.03 0.250±0.005 0.4.78±0.04.6 2.33±0.30 0.286±0.082
3 0.4.24.±0.004. 3.09±0.05 0.14.1± 0. 008 0.527±0.050 2.62±0.46 0.262±0.092

185

TabLe 4.2c SimuLation ResuUs for Organization II with MWFMF ScheduLing Al­
gorithm (95% confidence inte-MJal shown assuming normaL distribution)

Random Reauest Madel Trace Driven Model
E(Memory E(Waiti~g E(Buffer E(Memory E(Wait~g E(Buffer

mb Utilizatio~) Cvcles Utilization) Utilizatio~) Cycles Utilization)_
2 0 0.667±0.008 1.75±0.01 - 0. 727±0.003 1.69±0.0 -

1 0.799±0.003 2.50±0.01 0. 700±0.005 0.882±0.003 2.43±0.16 0. 760±0.049
2 0.856±0.005 3.25±0.01 0.714±0.007 0.928±0.003 3.18±0.44 0.761±0.102
3 0.890±0.020 4.00±0.02 0. 724±0.006 0. 960±0.003 3.92±0.61 0. 768±0.142

4 0 0.419±0.003 1.52±0.0 - 0.515±0.029 1.49±0.02 -
1 0.648±0.001 2.13±0.01 0.482±0.002 0. 738±0.052 2.07±0.18 0.539±0.090
2 0.743±0.003 2.72±0.01 0.515±0.005 0.838±0.059 2.70±0.36 0.588±0.135
3 0.795±0.002 3.31±0.02 0.528±0.003 0.902±0.032 3.35±0.53 0.625±0.157

8 0 0.355±0.002 1.35±0.01 - 0.385±0.038 1.33±0.06 -
1 0.534±0.005 1.85±0.01 0.328±0.007 0.624±0.062 1.84±0.13 0.398±0.077
2 0.651±0.003 2.33±0.01 0.371±0.003 0. 799±0.079 2.40±0.26 0.498±0.118
3 0.717±0.003 2.81±0.02 0.391±0.004 D. 849±0.083 2.95±0.44 0.510±0.144

12 0 0.295±0. 002 1.28±0.0 - 0.365±0.052 1.23±0.05 -
1 0.472±0.005 1. 72±0.01 0.256±0.005 0.624±0.089 1.68±0.14 0.343±0.095
2 0.602±0.004 2.16±0.01 0.308±0.004 0. 735±0.106 2.19±0.29 0.395±0.135
3 0.683±0.006 2.58±0.03 0.332±0.009 0. 756±0.109 2.61±0.49 0.377±0.154

16 0 0.259±0.001 1.24±0.0 - 0.300±0.028 1.21±0.05 -
1 0.439±0.006 1.64±0.01 0.217±0.007 0.565±0.054 1.62±0.10 0.289±0.061
2 0.564±0.007 2.05±0.02 0.264±0.007 0.692±0.066 1.97±0.21 0.306±0.063
3 0.647±0.003 2.44±0.02 0.290±0.004 0. 745±0.072 2.17±0.34 0.271±0.096

Table 4.3 - Coefficients of 3rd Order Polynomial Regression of
Organization I and II under MWFMF Scheduling Algorithm
(RRM -Random Request Model; TDM -Trace Driven Model)
Note: AU other coefficients are set to zero.

Utilization

Model m 2 m 1/m b 1/3 b 1/2 bl/4
m m

186

const.

RRM-1 0.00050 -0.02011 0.56124 1.80176-0.32495 -1.37165 0.27655-0.21970 0.41273
TDM-1 0.00065 -0.02312 0.62605 2.29106 -0.45177 -1.69626 0.18115 -0.18268 0.4544 7
RRM-11-0.00009 -0.00283 o. 79465 3.04862-0.64641 -2.17849-0.22013 0.00866 0.26680
TDM-11-0.00012 -0.00301 0.60663 2.72327-0.61966 -1.60155-0.44904 0.11118 0.33023

Waiting Cycles

Model m b mb con st.

RRM-1 -0.00109 0.03312 0.00314 -0.31779 0.61021 -0.08138 2.30046
TDM-1 -0.00100 0.03038 0.00306-0.29262 0.56690-0.07661 2.19725
RRM-11-0.00082 0.02570 0.00219-0.26252 0.64230 -0.06200 2.19663
TDM-11-0.00075 0.02432 0.00016 -0.25363 0.77708 0.03024 2.12700

for a few cases with b=O, where the error gets to around 10%. From the polyno-

miai equation we have obtained, we can extrapolate our results beyond b=3. The

errors in extrapolating the values of utilization is small because the asymptotic

value of utilization when b is large is known. However, the errors may be large

when extrapolating the values of waiting cycle because its asymptotic values are

not known. With Organization 1, en=l, and therefore the values of waiting cycles

can be derived from the values of utilization by applying Little's Formula. With

Organization II, en <1, and the values of Um.b and Wm,b must be known in order to

estimate e0 • Since asymptotic values of Wm.b and e0 do not exist, the errors

may be large in this case.

In Figures 4.13 to 4.18, the performance of Organizations I and II are shown.

The actual simulation results are used forb ;>;3 while extrapolations are made for

187

b>3. In Fig. 4.13, a plot of the improvement in memory utilization with buffer

size for Organization I with m = B is shown. It is seen that the improvement in

memory utilization approaches a constant rate as the buffer size is increased.

Further, the MWFMF algorithm gives the best performance. In Fig. 4.14, a plot of

the expected waiting cycles for different buffer sizes of Organization I is shown

for m = B. It is seen that the increase of waiting cycles is much slower than the

increase of buffer sizes and the increase is almost linear. The trace driven simu­

lation results show a higher improvements in memory utilization and a smaller

number of waiting cycles than the random request model. This is because there

is a higher correlation between consecutive requests and the requests are likely

to be made in a consecutive order. As a result, there is less contention in the

system. The curves showing the estimated results due to dependencies are dis­

cussed in the following sections. The above observations are also true for other

values of m. Further, the MWFMF algorithm has the minimum amount of waiting

time among the three algorithms studied. In Figures 4.15 and 4.16, the

decrease in memory utilization and waiting cycles for increasing degrees of

interleaving of Organization I with a MWFMF algorithm are plotted. The rate of

decrease in memory utilization is more pronounced and the utilization is higher

when the degree of interleaving is small. Also, the effects on waiting cycles due

to buffer size is very small when the ratio of buffer size to degrees of interleav­

ing is small. Other schsduling algorithms also possess the same properties. The

effects on the memory utilization and the waiting cycles for various buffer sizes

of Mode II are similar to those of Organization I. In Fig. 4.17, the effects on

buffer utilization are shown for various buffer sizes of Organization II. It is seen

that the buffers are less utilized as the size is increased. This also accounts for

the diminishing increase in memory utilization as the buffer size is increased.

The difference in buffer utilization among the three scheduling algorithms is

very small. However, extrapolations for values of b beyond 3 are not accurate

I • 0 0

• 9 0

. a o

• 7 0

• .. - •• 0
< ...
...J .so
....
"' ,.. •• "' ..
t: ...
t: • 3

• 2

• I 0

0
0

random request model
trace driven model

X without dependency effects <> with dependency effects

I 2 3 • 5 6
SUFFER SIZE - B

7 9

Figure 4.13 The Improvement of Average Memory Utilization with
Buffer Size for Org. I (Degrees of Interleaving = 8)

188

I 0

.. ..
-' ...
)...
z -.... -< ,

189

... 0 --

3. 5

random request model
trace driven model

3. 0

'Z. s

l.O
~

l .

1.0~----~----~----~-----L----~------L-----~----~-----L----~ 0 l z 3 i 5 6 7 9 10
BUFFER SIZE - 8

Figure 4.14 The Increase of Average Waiting Cycles with Buffer
Size for Org. I (Degrees of Interleaving = 8)

a .. -....
< ... -... -....
"'
>
"' ..
s: ...
s:

190

1. 00

• 9 0

----~ -" -' -­-----~-- b"'lO - --........... --.eo --~
- - b"'6----------x --

.70

.80

. so

• 1 0

• 3 0

• z 0

• 1 0

00

random request model
trace driven model

X without dependency
0 with dependency

b=lo ------.;

1 8 8 10 1Z
DEG~EES OF INTERLEAVING - M

Figure 4.15 The Decrease of Average Memory Utilization
with respect to Degrees of Interleaving for
Org. I with MWFMF Scheduling Algorithm

---b --=3 ---

b"'3

1 1 1 6

r~~r: .,
i

a.s

s.o

s. s

s. 0

i,S

.. ... i.O
).. ...

3. 5 ..
z -~ 3. 0
< ::a

2. s

2. 0

I . 5

l • 0
0

b=10
b=lO

b=6
b=6

b=2
b=2
b=l
b=l

b=O
b=O

Figure 4.16

random request model
trace driven model

-----==:: ------------ -------
• e e 10 12
OfGRffS OF lNTfRLfAVlNG - M

The Decrease of Waiting Cycles with
respect to Degrees of Interleaving for
Org. I with MWFMF Scheduling Algorithm

1.

191

I 6

..
0 -~
< .. -...

••

. 5

-.
~
::>

"'
::>

"'
• 3

192

_...;.e..---*---~ -)E---
--*"·:;::-*-,_::.o:-==-*'==-~

RR .--:,..-:;<- -~- ~
~---~---~- --_::::~Mw~r-~-- ---->t

~ ..:>4----~---~
11
r ,.,,/ FFF

It)("
II I

II I
II I

I ll I RR
I I

I
I

I

random request model
trace driven model

.zL-----~----~------~----~----~------L------L----~~----~
1 z 3 • s & 1 e s 10

8UI"I"!R SJ zc: - 8

Figure 4.17 The Average Buffer Utilization for Org. II
(Degrees of Interleaving = 8)

193

for Organization II for reasons noted before. In Fig 4.18, a plot of buffer utiliza­

tion versus different degrees of interleaving is shown. The buffer utilization

drops as the number of modules is increased. However, it is seen in both Fig­

ures 4.17 and 4.18 that the buffer utilization is not sensitive to buffer size

changes. The decrease in buffer utilization is due to the fact that there is a

higher probability that Br is blocked when the number of modules is increased.

4.4.8 Effects of separating the instruction and the data area

The previous results have been obtained from simulations using a merged

instruction and data area. Since an instruction access results in some data

accesses, it is desirable to place the data accessed in modules not conflicting

with the next instruction accessed. This motivates us to investigate the separa­

tion of instruction and data area into different modules in the main memory.

Sastry et. at. [SAS75} and Nutt [NUT77} have made some pioneering studies on

the separation of instruction and data areas, but they have assumed a non­

pipelined multi-processor system. We study the effects with respect to a pipe­

lined processor here. In this section, an organization with separate instruction

and data modules is compared against an organization with merged instruction

and data modules using the traces available. Consecutive instruction words are

put in consecutive instruction memories and consecutive data locations are put

in consecutive data memories.

The characteristics of the traces reveal that 60% of the accesses are

instructions and the rest are data accesses, therefore the modules should be

divided according to this ratio approximately. Since it is desirable to have the

number of instruction modules and the number of data modules an integral

power of 2 for ease of address decoding, the modules are divided into a 4-2 parti­

tion so that four of the modules are instruction modules and the two are data

modules. It is not possible to designate ·exactly 60% of the modules as

1.00

.90

.eo

• 7 0

• eo ...
<
..... . so -...
"' • • 10
"' .,

• 3 0

. ~ 0

. I 0

0
0 ~

Figure 4.18

b=lO

random request model
trace driven model

1 8 I 10 I~

OEG~EES OF INTERlEAVING - M

The Average Buffer Utilization versus the
Degrees of Interleaving for Org. II with
MWFMF Scheduling Algorithm (m=8)

194

I 1 I 8

•
195

instruction modules and to satisfy the requirement that the number be an

integral power of 2. Since there are 6 modules in the 4-2 partition, it is neces­

sary to compare the performance of the 4-2 partition against a hypothetical 6

way interleaved system with merged instruction and data modules. The results

are shown in Tables 4.4 and 4.5. It is seen that the ~fferences between the two

alternatives are minimal. In fact in some cases, the merged model seems to

Table 4. 4 Camparison between Merged and Separa.ted Instruction- Data AT!Ia.s
jOT Organization I - Trace Driven Simulation.

RR FFF MWFMF
m b Memory Waiting Memory Waiting Memory Waiting

uti!. cvcles uti!. cvcles uti!. cvcles
Merged 6 0 0.336 1.49 0.243 1.69 0.459 1.36

In st.-Data 1 0.501 1.65 0.403 1.63 0.624 1.53
Areas 2 0.657 1.76 0.479 2.04 0.695 1.72
(m-6) 3 0.726 1.92 0.543 2.23 0.752 1.69

Separate 16 0 0.336 1.50 0.270 1.62 0.466 1.34
Inst.-Data I 1 0.517 1.64 0.394 1.65 0.619 1.54

Areas 2 0.616 1.61 0.464 2.03 0.692 1.72
(4-2 wavs) 3 0.696 1.96 0.540 2.24 0.730 1.91

Table4.5 Comparison between Merged and Separated Instruction- Data Area.s
jOT Organization II - Trace Driven Simulations

RR FFF MWFMF
m b Mem. Wait. Buf. Mem. Wait. Buf. Mem. Wait. Buf.

Uti!. Cvcle Uti!. Uti!. Cy_cle Uti!. Uti!. Cycle Uti!.
Merged 6 0 0.34 1.49 - 0.24 1.69 - 0.46 1.36 -

Inst.-Data 1 0.69 1.95 0.49 0.50 2.23 0.44 0.69 1.94 0.48
Areas 2 0.60 2.46 0.50 0.61 2.83 0.47 0.79 2.49 0.50
(m-6) 3 0.61 2.86 0.45 0.63 3.27 0.42 ·o.61 2.87 0.45

Sep. 16 0 0.34 1.50 - 0.27 1.62 - 0.49 1.34 -
Inst.-Data 1 0.65 1.98 0.47 0.49 2.16 0.40 0.67 1.90 0.43

Areas 2 0.75 2.42 0.45 0.57 2.74 0.41 0.76 2.41 0.45
(4-2 Wavsl' 3 0.77 2.96 0.45 0.59 3.29 0.40 0.77 2.95 0.45

196

perform a little better. This is due to the unequal utilization and waiting cycles

of the modules in the separated case. From the simulation results on the utili­

zation of the individual modules (not shown), the instruction modules are found

to be under utilized while the data modules are found to be over utilized. One

way to improve the performance of the system is to design the system with a

good instruction-data access ratio so that the utilization of the instruction and

the data modules are approximately equal and the number of instruction and

data modules are integral powers of 2. However, this ratio is highly program

dependent and is impossible to fix at the design stage. We conclude that the

improvement due to separation is minimal for this architecture, the CDC 7600,

and the specific class of programs.

4.4. 9 Degradation in Performance Due to Dependencies

In the previous sections, we have simulated the organizations under the

assumption that there is a high request rate from the pipe so that any empty

buffers can be replenished until they are full or a blockage occurs. However,

this assumption is not totally valid in a pipelined uni-processor. As mentioned

earlier, there are three sources of interferences which result in emptying the

pipe and reloading a new instruction stream. In the process of emptying the

pipe, new memory requests are not generated and the memory becomes idle

after all the pending requests are serviced. The utilization of the memory is

therefore lower than our simulated results. One solution is to simulate a pipe

together with the memory. However, different computers handle dependencies

differently, and the simulation of a particular machine is too limited in scope.

We therefore choose to estimate the resulting utilization with a general model.

4.4. 9.1 The Model Used to Estimate the Performance Due to Dependencies

197

Without loss of generality, all dependencies can be represented as a suc­

cessful (the jump is taken) or an unsuccessful conditional jump. In a conditional

jump instruction, the condition code is set earlier by an instruction which may

still be in the pipe. Until that instruction finishes and sets the condition code,

the jump instruction cannot proceed. It is assumed that the pipe prefetches but

does not decode the target instruction. If it is an unsuccessful jump, the pipe

can proceed after the condition code has been set. If it is a successful jump, the

pipe has to wait until both the condition code is set and the target instruction is

fetched from the memory. An unconditional jump can be modelled as a success­

ful conditional jump in which the condition code is available immediately. A

register interlock is the same as an unsuccessful conditional jump instruction

and an interrupt is the same as a successful conditional jump in which the entire

pipe has to be emptied.

The model used in the estimation is shown in Fig. 4.19. A linear pipe is con­

sidered. The instruction prefetch unit has to fetch instructions ahead of the

instruction decode unit so that the decode unit never has to wait for instruction

fetches. Let

L = number of stages of the pipe;

T = time needed to pass through one a stage of the pipe;

f = the number of instruction words prefetched.

The memory is assumed to be a single server with a constant service time of

rate Um,b, and a finite buffer space of length M-u.,,b •m (Eq. 4.2, 4.3). The service

discipline in the buffers is FIFO and the waiting time for a request is W (Eq. 4.4).

Since we are interested in getting an expected value of the performance, the

model is a sufficient approximation of the actual model. It is also assumed that

the occurences of successive dependent requests are separated far enough and

have no effect on each other. By "far enough", it is meant that after a depen­

dency is resolved, sufficient time elapses so that all the buffers are filled up

instruction
pre fetch
segment

U PIPE

T= time needed
to pass through
1 stage of pipe

instruction
decode
segment

L

operand
access
segment

+

198

execution -
••• unit

t
.-L-

return
buffers

I-,.-CP

MAI
(ap

---- -----------------------------------
N MEMOR
proxima e model)

memory modules

request buffers

~: I IU ~ um,b
I

- *

w b = delay time in passing
m, through the memory

Figure 4.19 Model of CPU-Memory used for Estimation of the
Effects of Dependency

199

before the occurence of another dependent request. The maximum time needed

is Um.b *M, (Fig. 4.22). This assumption is necessary because the effect due to

each dependent request can be found separately and the overall effect due to all

the dependent requests is the sum of the individual effects. From the statistics

of the traces which are shown in Figures 4.20 and Fig. 4.21, it is found that suc­

cessive dependent requests are separated by an average of 12 instructions. Suc­

cessive dependent requests may therefore have effects on each other and our

analysis slightly under-estimates the actual performance.

4.4.9.2 Computation of Degradation in Performance

The effect of dependencies is measured in terms of an idle period. An idte

period of the memory is defined to be a time interval during which requests to

the memory stop. The idle period is measured in terms of the number of

memory sub-cycles. At the beginning of an idle period, the number of requests

drops gradually to zero (Fig. 4.22). The resulting utilization of the module is

lower as is evident from a similar model with a smaller buffer size. When the

pipe starts requesting again, the number of requests in the buffers gradually

builds up to the maximum amount. The idle period is defined this way because

it represents an average length of the time during which the buffers are not fully

utilized. Let

d = distance in terms of the number of pipe segments between the instruc­

tion setting the condition code and the conditional jump instruction

at the decode segment;

r= average number of requests generated per instruction executed;

i = number of instructions per instruction word;

XtJ = fraction of instructions executed that are successful conditional

jumps;

XtJ = fraction of instructions executed that are unsuccessful conditional

number of
occurences

2000

1800

1600

1400

1200

1000

800

600

400

200

co
I - "' -I

"'

~ conditiona1 jumps

0 unconditiona1 jumps

.,.
"' I -

N

"" I

"' N

0 .,.
I

"" ""

co
I -.,.

"' I

"' .,.
distance between two dependent
events in terms of number of

instructions executed

.,.
"' I

"' "'

"'
I

"" "'

Figure 4.20 Histogram showing the Statistics
of Dependent Events in Traces used

0
co

I

""

200

-

cumulative
probability

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

201

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 ~20
number of instructions executed
between two conditional jumps

Figure 4.21 Graph showing Cumulative Probability of Number
of Instructions executed between two Conditional Jumps

number of
requests in
the memory

M

linear approx. with
slope -1/um,b

idle period

202

r---~------------
, linear approx. with
~ slope 1/um,b

I

time

(a) Time during which buffers are not full > M*u - m,b

number of
requests in
the memory

M

linear approx. with
slope -1/u b m,

~ dl e period)

fli>;;.._ __ l i near approx. with
slope 1/um,b

time

(b) Time during which buffers are not full < M*u - m,b

Figure 4.22 The Variation of the Number of Requests in the Buffers

203

jumps.

In the trace driven simulation results in Section 4.4.8.1, the instructions

and its corresponding operands are assumed to be accessed one after the other.

In the current model, the instructions are fetched much earlier than the

corresponding operands. We have ignored these effects on the memory perfor-

mance because there is very little correlation between the instruction address

and its corresponding operand address (except in some cases, e.g. an architec-

ture which implements the immediate mode, but the frequency of executing

these instructions is small).

Since it is desired to find the maximum performance of the memory, the

pipe must be designed in a way such that it is fast enough and long enough so

that it is always able to fill up all the empty buffers in the memory within a

memory sub-cycle. This design follows from our high request rate assumption.

In this model, the pipe is essentially executing at the speed of the memory, that

is, at rate Um.b/r. The assumptions made are:

(1) There is a large amount of return buffers in the pipe for serviced requests.

This assumption is necessary so that serviced requests can always be

returned to the CPU without delaying the initiation of requests in the

memory.

(2) Each segment in the pipe is very fast. This means that T is so small that if

sufficient instructions are available to the decode unit, the pipe can gen-

erate enough requests to fill up all the memory buffers in one memory

sub-cycle. This means:

T*M ;;;; r

Um,b

That is

204

T = T
u.,,b*M

(4.5)

(3) Since it takes a time W (= Wm.b "m) to fetch an instruction. the pipe would

have executed i*f instructions in this time interval at a rate of U.,,b if no
T

dependency occurs. Therefore

i*f _;:_.,__,_ > Wm,b •m
U.,,b/r

we set

f -- r Wm,b *.U.,.b *Tn
t*r

(4.6)

where fy] is the smallest integer larger than y. The value off is chosen to

be the smallest possible because when a conditional branch is encoun-

tered, one of the two paths is not traversed and therefore the instruction

fetches for that path are wasted. The value of f is kept small in order to

reduce the effects due to this waste.

(4) After an operand request is generated, the operand will be serviced after

an average time W. In the meantime, the corresponding instruction passes

through L-2 stages of the pipe in order to get to the execution unit. The

time for this instruction to pass through the pipe must be longer than the

waiting time for its operand so that the pipe is not blocked by this instruc-

tion waiting for its operand. We have

r• (L -2)
U.,,b

We set

w .'J)_ •m.. 1.. = r m.b --m,b 1 + 2
T

(4.7)

The value of L set in Eq. 4. 7 is the minimum pipe length required for a max-

imum memory performance. For a longer pipe, the memory performance is

lower because it takes a longer time for a dependent request to pass through

205

the pipe. For a shorter pipe, the pipe is not able to generate requests fast

enough because the last stage of the pipe is frequently blocked by unfinished

operand requests. The value of L chosen is therefore a compromise between

these two effects. These additional constraints can assure that the maximum

performance of the memory is achieved.

When a conditional jump instruction is encountered and the condition code

is set at a distance d stages away, the execution of the conditional jump is

stopped until the instruction setting the condition code passes through L-d seg-

ments at a rate of Um.b/r, if the conditional jump is unsuccessful. However, if it

is successful, then the pipe is blocked until both the condition code is set and

the target instruction has been fetched from the memory. If t:/f is set to be

the time interval between the recognition of a successful/unsuccessful condi-

tiona! jump and the time when the pipe can start execution again, then

t: =max! (L-d)*-r-, Wm.b•m.j
Um.b

t/ = (L-d)*.I._
171.

(4.Ba)

(4.Bb)

After the jump has been determined, it takes a small amount of time T/r to gen-

erate the operand request. It is not assumed that the decoding is done before-

hand as in some machines. Let t:/f be the time interval from the recognition of

a successful/unsuccessful conditional jump to the time when the pipe starts

making requests. Then

tV'= t:/' + L
r

(4.9)

After a dependent instruction has been encountered, there are still f

instruction prefetch requests in the pipe. The idle period begins after these

requests have been made to the memory. Let tb be the time to make these

remaining requests.

1
tb =f * -­

Um.b

206

(4.10)

The length of the idle period (ips/!) is therefore the difference between tr and

(4.11)

The above analysis is true for a particular value of d. Let D be the random

variable denoting the distance, and D has the following distribution

{
Pd

Pr(D=d) = 0

d = 1, 2, ... , L
otherwise

(4.12)

This distribution is shown for the traces in Figure 4.21. Then combining Equa-

tions 4.8-4.12, we have

+ I: Lti.(L-d)*r]] + ~- tb I , . ..,. . ., r u, .b
d<L --~~--...l.---

r

{
L (L -d) T }

ipf =max 0, L::Pd +-- tb
d=! Um.b r

(4.13a)

(4.13b)

Consider a time interval!, the number of accesses made during 1 is Um,b •I

and the number of instructions executed in this interval is Um.b •I. The average
r

amount of idle period due to successful and unsuccessful conditional jumps are

,L. •I u, •I
xb*ip 5 * --m.b + xtJ*ipl • ,b . The resultant utilization is

r r

Um.b •I

=-----Um~.b~----
(4.14)

207

As a result of the degradation in memory utilization, there is a degradation

in the buffer utilization. During an idle period, requests to the memory stop. At

the end of the idle period, requests to the memory begin again. In Fig. 4.22, the

decrease and the increase in the number of requests in the buffers are shown.

Since M may not be an integer in our model (effective buffer length in Organiza­

tion II), a linear approximation is used in the original function. In terms of the

idle period, the time interval during which the buffers are not full is y =

ip•/J + (M -M.)*Um.b where M 8 is the effective number in the system. In fact,

the shaded blocks in Fig. 4. 22 can be rearranged so that the effective buffer uti!-

ization can be calculated. M., during an idle period in the two cases, is

j M-

M. = 0
ifip•/J <M*u,,b

if ip • /! <:.M*u, ,b
(4.15)

Let M:/J be the effective number of requests in the system due to

successful/unsuccessful conditional jumps and let M' be the resulting effective

number in the system. For the time interval I,

[
total ef fectivel
buffer length =
time product

MJ + M • s tl..m.bi. s + Mf t Um,bi. 1 eXCJ tp eXCJ tp

That is

M'=
M +~(M;x~J+M{ xtJipf)

1 + Um.b (x~JiP 5 +xtJipf)
r

r r

(4.16)

Using Little's Formula, the resulting number of waiting cycles w;,.,b in the

system can be calculated.

M' w,. .b = 1 + --;cc.--
U,,bm

(4.17)

As a by-product of our estimation, it is not difficult to estimate the throughput

of a memory bounded pipe. This will not be demonstrated here.

208

Using the statistics from the trace program, the results of the estimated

utilization are plotted together with the simulation results in Figures 4.13 and

4.15. The degradation is quite significant and drops to about 50% of the original

value in some cases. As seen in Fig. 4.13, the module utilization levels off much

more rapidly with increasing buffer size than the original results with no depen­

dencies. The curves plotted are not smooth because of the integrality require­

ment in the pipe length and the number of prefetched instructions . It is

further seen that increasing buffer sizes do not improve the performance due to

the effects of dependency. The difference in memory utilization for b=3 and

b= 10 is very small as seen in Fig. 4.15. The estimations for waiting cycles are

not plotted in Figures 4.14 and 4.16 because they coincide almost exactly with

the simulation results. In Fig. 4.23, the buffer utilization for Organization I with

an MWFMF algorithm is plotted. It is seen that the buffer utilization is almost

constant for large values of m. It is also interesting to note that the buffer utili­

zation is lower for larger values of b. The explanation for this is because for a

large value of b, the waiting time in the memory is longer and the memory utili­

zation is higher. This implies that a longer pipe must be used (Eq. 4. 7). A longer

pipe means that it takes longer to resolve a dependent request and this causes

degradation in the buffer utilization.

The above estimations only give an average value for the performance. In

fact, if the memory can be utilized in some other way (e.g. for peripheral pro­

cessing) when a dependency occurs, the degradation may not be so significant.

The above analysis also reveals the fact that when the occurrences of dependent

requests are frequent, it is not beneficial to use a pipelined computer in a batch

mode. High degree of program interleaving using multiprogramming would help

in reducing the degradation due to dependencies.

4.4.10 Some final Remarks about the Design of Interleaved Memories

• .. -,_
< .. -.... -,_
::0

a:
:::0 ..
"' -... ...
"' < s:
"'
....
<
a .. -,_ ...
<

1. 0 0

.ao

.eo

,70

• 80

.so

. • 0

• 3 0

• 2 0

• 1 0

0
0 z

209

b=O ----...-... -._ o=I --......_

........ --~ $ ---=:.:::-- • -----~, -..............._--~-- - -----o
........ ~ ~-b=.J ---o-__ _

"~ ------ ---.
""" b 6 ~ --~-= - -----~

--0
"10 --+--

........_;;-...... ---------......_ ~ -------.o

• • 8 10 12 1. 18
OEG~ffS OF I"Tf~~fAVI"G - M

Figure 4.23 Buffer Utilization under Dependency for Org. I
with an MWFMF Scheduling Algorithm (Trace Driven Simulations)

210

We have presented in this section two organizations of an interleaved

memory system which utilizes a finite buffer space for the storage of requests.

We have designed a scheduling algorithm which allows a finite set of requests to

be processed in the minimum expected time. However, the performance of our

system is obviously less than the performance of systems with an infinite

saturated request queue which is an unrealistic assumption. In Fig. 4.15, we

have shown the performance of Hellerman's model [HEL67] together with our

simulation results. Although Hellerman's model is a simple model and allows no

queueing of requests, it is useful as a lower bound for the performance of other

systems. It is seen that with a random request queue, Hellerman's model is

better than our Organization I with b = 0, but is worse for b > 0. Note that the

performance curves all have the same shape. Since Organization II degenerates

into Organization I for b = 0, it is worse than Hellerman's model for b = 0, but

better for b > 0. The comparison with other models in the current literature is

not meaningful because they differ significantly.

We can improve our model slightly by considering the following. The

rationale behind the constraint that only one module may be initiated in any

sub-cycle is because the return bus can return at most one piece of datum in

any sub-cycle. But since reads generate return data while writes do not, we can

initiate two or more modules in a sub-cycle provided that exactly one of the

requests is a read. The improvement in utilization due to this is only about 2%.

The improvement is not significant because the fraction of writes in our trace is

Jess than 7% of all the accesses and its applicability is also limited by memory

interference.

The questions that still remain to be resolved are how can one select

between Organization I and Organization II and how does one choose the parame­

ters of the system in order to satisfy all the requirements. In the hardware

requirements, Organization I needs associative search capabilities in the buffers

211

while Organization II does not. However, the availability of fast associative

memory, (see chapter 5 of this thesis), can help in this regard. The perfor­

mance of Organization II predicted may be worse because it may require the

transfer of more than one request into the memory system during a memory

sub-cycle and it sometimes is not possible in a pipelined system. Organization II

gives a slightly worse performance than Organization I when a maximum of one

request is allowed to be generated in each sub-cycle and the effective buffer

sizes in both organizations are identical. Tradeoff in cost and performance must

be made in the selection of the organization. In order to answer the second

question we have raised, we need to design a cost model of the system. The cost

of individual component is highly technology dependent and will not be dis­

cussed here. However, the designer can find a configuration with the minimum

cost based on the bandwidth and the response time requirements. Assuming

that the bus width is determined and fixed, he can use the average utilization (a

function of the degrees of interleaving) as an alternate measure of bandwidth.

The response time can also be normalized with respect to the speed of the

memory to give the waiting cycle. In the above calculations, the effects of

dependency are not considered, otherwise, Equations 4.14 and 4. 17 can be used

to find the values of utilization and waiting cycle with dependency. Using Little's

Formula, the average number of requests in the memory, or the average

number in the request buffers can be obtained. The designer can then substi­

tute the values for the average utilization and the buffer size into the formula

obtained by regression (Table 4.3) to get a polynomial equation as a function of

the degrees of interleaving and the memory speed. By evaluating the speed for

different possible degrees of interleaving, the cost of the memory can be

estimated. The final configuration selected will be the one with the minimum

cost.

212

The MWFMF scheduling algorithm we have studied in this section is optimal

in the sense that it minimizes the expected finish time for a finite sequence of

random, independent requests. Although there exists restrictions and the per­

formance of specially structured computers, e.g. CRAY I, ILLIAC IV, etc are not

found, our scheduling algorithm is applicable to machines which support

vector-oriented computing, e.g. TIASC, and array type processors like ILLIAC IV.

The organizations we have presented in this section can be extended to

other levels of the memory hierarchy in which the modules can be disks and the

requests can be disk requests instead of memory addresses. The service time

distribution of a disk .is not constant as in the case of a memory module. How­

ever, some approximation can be made on the distribution (e.g. by an exponen­

tial distribution) and analysis techniques in queueing theory can be applied to

the model [BAS75]. In the next section, we return to the original task schedul­

ing problem on the general model. We show a heuristic to schedule tasks and

the heuristic is evaluated by simulations.

4.5 A HEUURISTIC FOR THE SCHEDULING OF TASKS ON THE GENERAL MODEL

We have presented in detail in the last section the design of an interleaved

memory which is a restriction of the general model we have described in Section

4.2. Although the task scheduling problem on the general model is NP-complete,

we see that an optimal average behavior algorithm can be designed when the

model is sufficiently restricted.

We would like to return to the original task scheduling problem on the gen­

eral model. Since the problem is NP-complete, a heuristic should be designed if

it is not feasible to enumerate over all the possibilities in order to find the

optimal sequence. We present in this section a heuristic for the task scheduling

problem on the general model. This heuristic is extended from Johnson's

213

optimal two stage flow shop algorithm [JOH54]. and the performance of the

heuristic is seen to perform reasonably well in a limited number of simulations.

The heuristic is designed for tasks with the following characteristics:

(1) Each request has the following precedence graph:

O<P;(M,)<=
iEfl, ... ,Nj

O<P; (Mb.i)<=

jEfl, ... ,ml

(2) There are no precedence constraints among requests.

(3) No preemption is allowed.

(4) buff(M,) ==and r; = 0 (iE fl, ... , Nl).

This says that the release times of jobs are 0 and the buffer size of Ma. is

very large, that is, all the requests are available initially for scheduling.

(5) O<buff(Mb.l)= ··· =buff(Mb.m.)<=

That is, all the modules in the second stage have finite, non-zero amount

of buffers.

(6) Permutation schedule is desired.

The heuristic for scheduling this class of jobs is:

Algorithm 4.4: Heuristic to Schedule Tasks on the General Model

1. Order jobs that require the service of Mb.j (j = l, ... ,m) in increasing ratios

of:

2. Merge the job sequences for different Mb.;'s into one stream using the

MWFMF scheduling algorithm (Algorithm 4.3).

214

3. In the schedule obtained, for any continuous sequence of jobs that require

the same module on the second stage, reorder using Johnson's Algorithm

such that x should be scheduled before y if

min !P,(M,.), Py(Mb,J)l;;;; min !P,(Mb,;). Py(M,.)l

In step 1 of the algorithm, p is a constant to be selected. The rationale

behind why the jobs have to be ordered in this fashion is because it is better to

schedule jobs with smaller processing requirements on Ma first. By doing this,

the processing on the second stage can be started earlier than if a job with a

large processing requirement is started on M,. first. Even if two sequences finish

at the save time, there is more leverage for adjustment in a sequence which

starts the processing on the second stage earlier. This step only orders jobs for

each module on the second stage. Step 2 of the algorithm merges these

sequences together. Since the MWFMF algorithm (Algorithm 4.3) is found to per­

form very well, it is also applied here. Lastly, the sequence obtained can still be

improved if any two consecutive jobs in the sequence which require the service

of the same module on the second stage are rearranged using Johnson's algo­

rithm [JOH54]. The reason is because Johnson's algorithm minimizes the finish

time of a sequence on a two stage flow shop and we are treating Ma and one of

the Mbj's as a two stage flow shop in this consideration. Some simulations were

done to determine the performance of this heuristic. This is shown in Figure

4.24. The results are plotted for 1000 samples of 7 randomly generated jobs. It

is assumed that ==2, p =2 and four of these jobs require the service of 'mb,l and

three require the service of Mb,a· Although the amount of simulations is limited,

it is seen that the performance of the heuristic is very good. Approximately 67%

of the simulations have no deviation from the optimal performance and only

about 1% of the simulation deviate by 28% from the optimal performance. The

exact worst case and average case performance are difficult to be derived

analytically.

~ of total
occurences

70

60

50

40

30

20

10

0 N
I

....
I

M "' <Xl 0
I I

U'> I

"'
~ deviation

N "' <Xl 0 N
I I I I I "' U'> "'

from optimal solution

Figure 4.24 Simulation Results for Algorithm 4.4 using 1000
Samples of 7 Randomly Generated Jobs (m=2, p=2)

215

N "' <Xl
N N N N

I I I I "' U'>
N N N N

216

4.6 CONCLUSION

In this chapter, we have studied the task scheduling problem on a DCS. This

problem is related to the scheduling of tasks after the query has been decom­

posed and the files have been placed on the DCS, and is more related to the

hardware architecture of the system. Because it is difficult to collect global

information on the DCS, most of the scheduling decisions have to be made

locally. We have therefore restricted the general task scheduling problem to the

problem of scheduling tasks at each node independently. The model for such a

system is the SIMD model proposed by Flynn [FLYBB].

The contributions that we have made in this chapter are:

(1) We have proved the NP-completeness of the task scheduling problem on

the SIMD model. These include the cases when the jobs have positive

release dates, precedence constraints or no waiting space in the second

stage. Therefore it is unlikely that an optimal sequence can be obtained

without exhaustive enumeration.

(2) We have put additional constraints on the model so that the problem

becomes polynomially solvable. We restrict the processing times of jobs

so that they are constant and the ratio of processing times of the second

stage to the first stage is m (where m is the number of modules on the

second stage). We further assume that each job requires the service of

one of the modules on the second stage. The resulting model is a model

of an interleaved memory system for a pipelined processor. We have

evaluated several alternative scheduling algorithms and have proven that

one of these algorithms minimizes the expected completion time for a

finite set of random requests. This algorithm is therefore an optimal

average behavior algorithm. We have also evaluated the degradation in

performance due to dependencies in the access stream.

217

(3) We have designed a heuristic for task scheduling on the general model.

This heuristic is extended from Johnson's two stage flow shop algorithm

[JOH54]. Although the algorithm is evaluated with a limited number of

simulations, the performance is seen to be very good.

In the next chapter, we study some hardware support aspects for data

management on a DCS. One particular hardware necessary is the associative

memory which we have used in the design of interleaved memories {Section 4.4).

This associative memory must be capable of performing equality, and maximum

searches. There are other hardware designs which are needed to support data

base operations such as simple retrievals and updates, threshold, proximity and

minimum searches. We make use of the current LSI technologies to design some

supporting hardware for data management.

,.

218

5. HARDWARE SUPPORT FOR DATA MANAGEMENT ON DISTRIBUTED COM­

PUTER SYSTEMS

5.1 INTRODUCTION

In the past three chapters, we have discussed some logical solutions to data

management on a DCS. Some of these solutions do not require specialized

hardware support, e.g. query decomposition, file placement and migration,

while some others require dedicated hardware, e.g. the associative memory used

in request scheduling on an interleaved memory. In general, there is a tendency

for increasing hardware support for data management functions on a DCS. The

motivations for this tendency of functional distribution are:

{ 1) Parallelism

As the size of information processing grows, it becomes increasingly

difficult to use a uni-processor to achieve the system's requirements.

One alternative is to exploit the possibility of using multiple, less expen­

sive and less powerful processors to form a conglomerate of parallel pro­

cessors which can usually achieve the system's requirements in a more

cost-effective way.

{2) Crnn7nunicatian overhead

Processing on large file systems are often I/0 bound. Many of the file

operations are quite simple and a significant communication overhead is

incurred in transferring the file to a level of the memory hierarchy

where the processor can process it. By distributing the intelligence to

the different levels of the memory hierarchy, parallel processing can be

performed with very little communication overhead.

(3) Hardware or fiT77Lware realization of data base functions

The complexity of data base system software is largely due to the

219

processing of memory mapping operations. Memory mapping operations

convert the file accesses by a query into actual memory addresses and

must be highly optimized if they are to perform well. These operations

often utilize complex data structures to achieve efficiency. On the other

hand, data base software are divided into modules which perform

specific tasks. For example, modules may exist for query parsing, direc­

tory access, directory processing, data retrieval and update, and data

security. These modules usually have diverse capabilities, and

bottlenecks exist if these modules are executed on the same processor.

The system performance is consequently degraded. Specialized data

base hardware solves the above two problems by eliminating the complex

address mapping operations and utilizing hardware/firmware to replace

the software. The query is transferred directly from the processor to the

specialized hardware without address mapping. Then

hardware/firmware will process the query and realize the data base

functions.

As a result, there are many haredware designs proposed to speed up data

base processing. One of the earliest design is the associative memory [SLA56] in

which logic is distributed into each cell of the memory so that search operations

can be performed associatively. Such a design is rather expensive because logic

is duplicated for each bit in the memory. A more recent design is the data base

machine [HSI77] which is a remedy to the costly associative memory by sharing

one piece of the associative logic among a set of physically related data. A set of

physically related data may be a track on a disk in which case the design is a

logic per track disk; it may be a set of memory modules, in which case the

design is an SIMD computer model [FLY66]. Since the designer has the freedom

of designing the degree and the amount of parallelism, there are a lot of issues

related to the data base machine design. Some of these issues will be addressed

220

in Section 5. 3.

In this chapter, we present a design of an associative memory for ordered

retrieval in Section 5.2 and extend the design to a simple data base machine in

Section 5.3. In the associative memory design, we present some simple schemes

for a variety of searches, each of which may be performed in one complete

memory cycle using bit-memory logic primarily. The searches we study include

the basic equality search, the threshold searches (both greater than and less

than searches), the proximity search, and most importantly, the greatest value

and the least value searches. For each kind of search, we present both the algo­

rithm suitable for our needs and the logic circuit of the memory cell required by

the algorithm. Based on the basic search schemes, an algorithm for ordered

retrieval is developed. A comparison for ordered retrieval schemes is then made

between the proposed scheme and the previous algorithms. It is found that this

algorithm outperforms all the other algorithms compared, particularly in the

resolution of multiple responses. Finally, issues relating to LSI implementation,

manufacturing defects, and modular expansions are discussed.

In the data base machine design, we investigate some problems that exist

with the design and show that the design should be made as a combination of

SIMD and MIMD computer models [FLY66]. Lastly, we show the extension of the

associative memory to the design of a simple data base machine.

5.2 A DESIGN OF A FAST CELLULAR ASSOCIATIVE MEMORY FOR ORDERED

RETRIEVAL

5.2.1 Previous work

Content-addressable memories (CAM's), alternatively known as associative

memories {AM's), have received much attention in the literature since they were

first described in 1956 [SLA56). The distinguishing feature of such memories is

221

that stored words are accessed by matching some portion of their contents to a

search word and selecting the first one that matches rather than accessing the

data using its physical location in the memory as in standard random access

memories (RAM's). It can be readily seen that CAM's must depend upon a high

degree of parallelism in their search schemes in order to compete in memory

access times with RAM's. Large speed improvements can be gained from this

parallelism and this makes CAM's attractive to a wide variety of applications. A

good survey of the current technology in CAM's can be found in [PAR73, FOS76,

HAN66].

With the advent of large scale integration (LSI) technology, it becomes

feasible to economically implement fast search algorithms in CAM's by incor­

porating much of the control logic into the memory plane. Several search algo­

rithms for CAM's have been developed in the past two decades [FEN74, FRE61,

SEE62, LEW62]. Some algorithms, such as [SEE62] and [YAN66] have been based

upon distributed logic design, but few have incorporated a high percentage of

their search logic in the memory cell. An exception to this is found in a design

by Kautz [KAU69] for a special purpose sorting array. His design is oriented

towards ordering, rather than searching, of the memory, but does include asso­

ciative capabilities as a byproduct.

The trend in associative memory design is toward distributed logic. Previ­

ous designs have placed control logic outside the storage logic. These control

logic include comparison logic, propagation logic, multiple response resolution

logic, arithmetic logic, etc. In a distributed logic design, the control logic and

the storage logic are designed together. The controls are brought into the cells

as part of the storage itself. The cells become more complex and have more

control functions associated with them, but it also results in more homogeneous

and modular design. In this section, we propose the basic design of such a

memory and present some searching and sorting schemes and the

222

implementation of some basic searches using distributed cellular logic which is

considerably faster than any of the previous sorting methods. The capabilities

of the cells are actually a subset of the capabilities of Kautz's augmented CAM

array [KAU71]. Further, the concept and the design of some of the searches

hav<e been investigated earlier [TUR72, RAM7Ba]. The searches that we examine

include the basic equality search, the threshold searches (both greater than and

less than searches), the proximity search, and most importantly, the greatest

value search and the least value search.

5.2.2 Symbots used in the Design

The following conventions are used throughout the design:

B, The value of the i'th word of memory;

B,.1 the value of the j'th bit of the i'th word of memory;

C a priority circuit which is used to sequence response in W 2, W3 , W 4 or W 5;

D a circuit used to detect responses in W 2 , W 3, W 4 or W 5;

"•.; the equality state signal for the j'th bit of the i'th word in the equality

match between Bi.j and R;;

E,,1 the equality enable signal for the j'th bit of the i'th word in the equality­

inequality search mode and the least value search mode;

Ei,n+l signal which can be gated to set (or reset) any one of the word control

registers W z, W 3• W 4 or W 5;

F,,1 . the enable signal for the j'th bit of the i'th word in the greatest value

search;

Fi,n+l signal which can be gated to set (or reset) any one of the word control

registers W 2 , W g, W 4 or W 5 :

223

G the associative memory search mode command (equality-inequality­

proximity mode or the least value mode);

i an index for a word in the memory, 1~i~m;

I; the value of the j'th bit of the input/output register I;

j an index for a bit in the word, 1;£j ;>n;

k a variable index, 1;£k ;£n;

L; the less than state signal for the i'th word of memory; a signal which can

be gated to set (or reset) any one of the word control registers

W2, Wa. W4 or W5;

LSB Least Significant Bit;

m. the number of words in the CAM;

M; the value of the j'th bit of the mask register M, (used in the least value

search, the equality search, the threshold searches and the proximity

search);

Mj the value of the j'th bit of the mask register M• (used in the greatest

value search);

MSB

MZ

n

P;

Most Significant Bit;

the set of all bit positions with M; = 0;

the number of bits in a word of the CAM;

the synchronization bus signal for the j'th bit-slice in the least value

search;

Q; the default-detection bus signal for the j'th bit-slice in the least value

search;

r an index in the word control logic, 1;£r ;£5;

224

Ri the signal for the j'th bit-slice shared by the equality-inequality search,

the proximity search and the least value search;

S the value of the search register S;

Si the value of the j'th bit of the search registerS;

Ti the search-default feedback bus signal for the j'th bit-slice in the

greatest value search;

uj the synchronization bus signal for the j'th bit-slice in the greatest value

search;

vj the default-detection bus signal for the j'th bit-slice in the greatest value

search;

wi.r the i'th flip-flop of the word control register Wr;

W 1 the word flags register with m flip-flops;

W 2 - W 5 result stores or temporary stores in the word control logic;

X;,j the proximity state signal for the i'th word of the memory in the proxim­

ity search;

Xi,n+l a signal which can be gated to set (or reset) any of the word control

regisers W 2• W a. W 4 or W 5;

u abbreviation for logical OR operation;

E abbreviation for 11 an element of11
;

V abbreviation for "for all";

:=1 abbreviation for "there exists".

5.2.3 Basic Associative Me7nory Organization

The associative memory organization shown in Fig. 5.1 is used to implement

the search schemes to be presented. A bit- slice is a vertical slice through the

memory as arranged in Fig. 5.1. The j'th bit-slice is made up of the j'th bit of

WO
1

wo
2

rd

rd

word
m

input-output regi

Mask register

Search register

Mask register
~

1
Bit-slice control

• +
bit 0 t
cell It--' cell 1- ..
1 1 1 2

blt bl
cell 1-' cell 1+- ..
2,1 2,2

f f

1t
cell
m 1 m,2
bit bit

slice 1 slice 2

ster I

* M

s

M

logic

m,n
bit

slice n

memory
control
store

225

---------- ------------
"' ~ ::z ::z ::z

...
4J 4J 4J 4J Priority
"' "' "' "' Circuit ::z ~ ~ ~ ~

0> 0> 0> "' c ... 4J 4J 4J 4J
GJ
"' "' "' "' "' ~ 4J 4J 4J 4J
0>
4J 0 0 0 0

"' "' "' "' "' 0> >."" t' '"'">., ->,

"' Match ~ "' "' "' Detector 0 0 0 ., c. c. c. D e e e 0 GJ "' "' ::z
~ ~ ~

I
::I ::I ::I

"' "' "' I 4J "' "' 0:: 0:: 0::
I

L------------------------J Word Control Logic

Figure 5.1 Cellular Logic Associative Memory Block Diagram

226

every word in the memory. The search operations are parallel by word and

serial by bit-slice. A minor cycle refers to the time needed to perform an opera-

tion on a single bit-slice and a major cycle refers to the time needed to com-

plete an operation on all bit-slices of the memory. Hence, a major cycle for the

present AM organization is composed of n minor cycles where n is the number of

bits in a word. It is shown later that some searches will require a longer minor

cycle than others, thereby lengthening the major cycle as well. A "basic" opera-

tion is an operation which may be performed in a single major cycle.

5.2.4 Definition of Search Operations

In each of the following search definitions, the set of words involved in the

search are those where wu=l and iEU, 2, ... , mj. The result of the search par-

titions this set of words into two sets, the set that satisfies the search condition

and the set that does not. Let B; be the content of the i'th word in the memory,

S be the content of the search register, and M be the content of the mask regis-

ter. That is,

" B; = "'2"-i · B· · LJ t,j•
j=1

" S = I; 2"-i · S;
j=1

and

" M = I; 2"-; · M;.
:i=1

The. search is performed only on that part of the search word which is not

masked. In other words, only those S; bits for which the corresponding M; bits

are O's are included in the matching (comparison) process. Let MZ be this set of

bit positions. Other bit positions with M;= 1 are bypassed. {Note that j= 1 for

MSB and j = n for LSB.) We define the various searches as follows:

A. Equivalence Searches

1) Equality Search:

B;.;=S;. VjEfl, 2, ... , nj.

2) Inequality Search: ::1 k E MZ such that Bu;iSk.

3) Si7nilarity Search (Masked Equality Search): B;.;=S; Vj E MZ.

4} Proxi7nity Search: There is exactly one k E MZ such that B;.k;iSk.

227

Note: The similarity search is also known as masked-equality search. It

differs from the equality search in that the mask is effectively not used in the

latter while it is used in the former search. In most cases, this distinction is so

insignificant that the "equality search" is used to mean both the equality and the

masked-equality searches. Unless specified otherwise, we will assume that all

searches are masked.

B. Threshold Searches

1) Greater- Than Search: B;>S.

2) Less- Than Search: B; <S.

3) Greater- Than- or- Equal- To Search: Bi~S.

4) Less- Than- or- Equal- To Search: B;;i,S.

C. Double- Li7nits Searches

1) Between- Limits Searches: Let X and Y be the limits such that X > Y.

Then B; is

a)< X and> Y,

b) < X and ;;; Y,

c) ;i, X and> Y,

d) ;;,x and ;;; Y.

2) Outside- LiTnits Searches: Let X and Y be the limits such that X < Y.

Then B; is

a)< X of> Y,

b) <X or;;; Y,

c);:> X or> Y,

d) ;:> X or ;;; Y.

D. Extremum Searches

1) Least Value Search: Bi;:>Bto Vk;ii and k E fl, 2, m!.

2) Greatest Value Search: Bi<;Bko Vk;ii and k E fl, 2, ... , m!.

E. Adjacency Searches

1) Nearest- Above Search: if k E fl, 2, ... , m! such that B,>Bk>S.

2) Nearest- Below Search: if k E f 1, 2, ... , m! such that B, <Bk <S.

228

There are other non-search operations that can be performed in associative

memories. These include word addition, field addition, summation, counting,

shifting, complementing, logical sum, logical produuct, etc. Devices that incor­

porate non-search operations may be referred to as associative processors

[FOS76]. We will not investigate further on non-search operations in this

chapter.

5.2.5 Algorithms and Implementations of Basic Searches

We define a basic search as one which can be completed in exactly one

major cycle, assuming multiple response resolution as an operation separate

from search operations. This definition applies only to the configuration of the

CAM in Fig. 5.1. A multiple response is a situation when more than one word

satisfies the given search condition. The multiple response resolution resoles

this situation by means of a priority circuit [FOSBB] or other schemes, e.g.,

[LAN77, HIL66a, WEI63], and outputs all the responders one at a time. Among

the searches listed in the previous section, not all of them can be economically

implemented as basic searches. Therefore, we choose to implement those

searches which are most frequently used as basic searches while the rest can be

229

performed in a series of the basic searches. As an example, the between-the­

limits search (Y :!i.B,<X) can be generated by performing a less-than search {<X)

followed by a greater-than-and-equal-to search (<;Y) on the reponders of the

first search. In the implementation to be presented, the basic searches are the

equality search, the similarity {masked equality) search, the proximity search,

the four threshold searches, and the two extremum searches. Each of these

basic searches can be performed alone or a few combinations of them can be

performed simultaneously. These searches are grouped into three groups called

Mode A, Mode B, and Mode C operations. The Mode groupings are as follows.

Mode A: The equality search, the similarity search, the proximity search and

the four threshold searches.

Mode B: The least value search.

Mode C: The greatest value search.

Searches in Mode A can be performed simultaneously. Furthermore, Mode A or

Mode B operations can be performed simultaneously with Mode C operations. We

will assume that positive logic is used throughout our designs. It should be

noted that not all of these searches are required in a specific application. They

are presented here for completeness.

5.2.5.1 Mode A: Equaluy- Threshold- Proxi"Tnity Search Mode

In the equality-threshold search, the CAM is partitioned according to the

magnitude of the search word S into three sets, namely, words which are equal

to S, words which are less than S, and words which are greater than S. The

result ·of this search mode is stored in two of the word control registers, W 2 and

W 3, and the interpretation is given in the algorithm to follow. Further, in the

proximity search mode, the CAM is partitioned into two sets, words which are

near to S, and words which are not. The results of this are gated into W4 . Note

that if it is not necessary to preform the proximity search together with the

230

threshold searches, then register W 5 can be eliminated from the design. This

search mode is characterized by the signal G=O, which gates the contents of the

search registerS to the search bus. That is, R1 = S1VjEf1, 2, ... , nj. The basic

searches performed in this mode are the equality search, the four threshold

searches (namely, >S, <S, ~S, and ~S). and the proximity search. M1=0 means

that SJ is not masked while Mt=1 means s1 is masked.

The three query states are shown in the following table.

Query State
0
0
1
1

0
1
0
1

()

1
d
d

d = don't care

Algorith'Tn 5. 1 - Mode A Search Operation

1) ViEf1,2,, ... ,7rL!

a) Initialization:

S +- Search word, M +- Mask, G = 0, j = 0,

b) Data Path Setting:

These data paths and the control signal G are held until the completion of

the major cycle.

2) Let j +- j + 1.

3) Co7npute ViE! 1, 2, ... , 7n! simultaneously

b) E· '+I= E· ··e· · 'I.,J 1.,J 'I.,J.

c) d· · = E· ··B· ··i'- . 1
~.J ~.J '&.,:J 'I.,J.

1 di,j will be sensitive to Bi,j and only to tbe first bit mismatch between Bi and S. A simpler

231

d)

j
L,· = u d; k (wired-OR),

k=t •

4) Isj=n?

a) Yes - Proceed to step 5).

b) No- Proceed to step 2).

5) Result Interpretation:

For those words i with Wu=l,

W· o(L·) W· o(E- ") Inter ion (Eaualitv-Threshold search)
0 0 B; is greater than search word.
0 1 B; matches search word
1 0 B; is less than search word
1 1 r does not occur l

w,L()(, ·') w,. (K u) ,,.. ••inn imH.v ~· ,)

0 0 B; is not near to search word
0 1 B; matches search word
1 0 B; is near to search word
1 1 r does not occur l

In this search algorithm, the minor cycle is composed of step 3) alone while

the major cycle is composed of steps 2)-4). The result of this search mode is

handled by the match detector D in the word control logic. Any multiple

responses is resolved by the priority circuit C. The bit-cell logic needed to

implement this equality-threshold-proximity search mode is shown in Fig. 5.2.

The delay in each minor cycle is one gate delay for the equality-threshold

searches and three gate delays for the proximity search. The following example

shows the state of L,, Ei.j+t and Xi.J+t for a Mode A search of 6 words, each 5 bits
~-------------------------:;;;_------:::.;;:..

design using d;.,j=E·.i+l'Bi.:j can be used. In this case, r4.; will be sensitive to all mismatches
between Bi and S. Since _i;i is obtained by wired-ORing d;.,j 's. the final output voltage of tlle wired-
OR will depend on the number of mismatches. It will be more appropriate to eliminate this depen­
dence by only taking the first mismatch as what is done here. We must confess that the exact design
is highly technology-dependent.

R

'--.l--G"

Bit-slice control ·logic

,,...,..

r--------------------1
i I - I I I
I - t

I T

~.j~~
"'e

..__.. I
i j I

I I
I

"'
7

I
I - -;:u- I I
I Bf,j~ I
I I
I I

I
.__, :

I :--r-- T I ~

I I
I - I
I I

I C (open
I

I I
I - collector) I
I ___ -------- _di,.j. --- ____ J

X. j , .

L i wired-OR

Figure 5.2 Bit-cell with Equality, Greater-than, Less-than
and Proximity Capability for Mode A Operation

232

E; ,jt-1

233

long.

Example 5. 1: "Mode A" Search Operation

Search Word-S 10110,

Mask Word- M 00100,

Effective Search Word-S' 10d10 (d = don't care).

i B; State of (L;, E;,J+I. Xi.J+I) lines
at the end of the minor cvcle

j,.-0 1 2 3 4 5
1 10111 010 010 010 010 010 001
2 11000 010 010 001 001 000 000

memory 3 10010 010 010 010 010 010 010
words 4 10110 010 010 010 010 010 010

5 10101 010 010 010 010 101 100
6 01101 010 101 100 100 101 100

For interpretation of L;. E;.6• X;,a see step 5) of Algorithm 5.1 for Mode A search

operations.

5.2.5.2 Mode B: Least Value Search Mode

In this mode, the search register is no longer needed because no search

word is used. However, the minor cycle is more complicated than that in Mode

A. It now consists of a comparison phase and a default phase. Consider the j'th

minor cycle. In the comparison phase, one of the three conditions is to be

detected:

1) that the bit-slice is masked,

2) that the bit-slice is not masked and at least one enabled bit-cell contains a

"0", and

3) that the bit-slice is not masked and all enabled bit-cells contain "1"s.

In the first case, all the enable signals to this bit-slice are passed on to the next

bit-slice on the right. In the second case, those enabled bit-cells containing "O"s

pass its enable signal to the next bit-cells on the right. In both cases, the minor

234

cycle is complete. The third case, however, is called the default case and the

default phase is entered. The default condition is detected in the default­

detection bus and the default signal Q1 is fed back to the bit-slice via R1. R 1 is

connected to the default feedback circuitry (R1 = Pr Qj" G) when this search

mode is activated by setting G = 1. P1 is a synchronization signal and it also

serves as the search signal in the comparison phase. After the default phase, all

the enabled bit-cells pass their enable signals to the next bit-cells on the right,

thus completing the minor cycle. The result of Mode B can be stored in one of

the result/temporary store registers because Mode A does not operate simul­

taneously with Mode B.

The implementation of the Mode B search in bit-cell (i,j) is shown in Fig. 5.3.

Note that this implementation shares much of the circuitry with that for Mode A

and that at the beginning of the j'th minor cycle, R1 = 0.

Atgorith7n 5.2- Mode B Search Operation- The Least Value SearchAtgorith7n

1) ViEf1,2, ... ,7TLl

a) Initialization:

G = 1, j = 0, w;,1 = 1, w;.z = 0,

b) Data Path Setting:

Gate Ei.n+l to w;.z, w;.l to Ei.l.

The data paths and the control signal G are held until the completion of

the major cycle.

2) Let j <- j + 1.

3) Minor Cycle:

a) Co7nparisonPhase: Compute ViEf1, 2, ... , 7nl simultaneously.

235

--------~-------------
R

...--G

3~-~~~~trol~~~--L--J~- ~
Delay

Element

Default
Sync etection

bus

Figure 5.3 Bit-cell with Least Value Search Logic for Mode B Operation

236

i) E· "+I = E· ·· e· ·. 1.,j 'I.,:J 1.,:J

ii)p;,;(t) = E;,;(t - 2) (delay element used to synchronize the feedback of

Q; via Rn.

iii)

q;,; = 1 means that B;,; is enabled and equals 0.

iv)

m
P- = up· - (wired-OR).

J i=l 't.,:J

m
v) Q;=i<;,

1
q;,; (wired-OR),

Q; = 1 means at least one enabled bit in the j'th column is 0.

vi)

b) IsR; = 1?

i) Yes -Default detected, proceed to step 3c).

ii) No -Default inhibited, proceed to step 4).

c) Default Phase: Compute E;,;+t = E;.;·

4) Is j = n?

a) Yes- Proceed to step 5).

b) No- Proceed to step 2).

5) Read out the words that are indicated by w;,2 = 1.

Example 5.2 shows an example search of Mode B operation on 5 words, each

10 bits long.

Exam.ple 5.2 "Mode B" Search Operation

a) WORDS in which the least value is to be retrieved:

237

Word Bit Positions Order
Number 1 2 3 4 5 6 7 B 9 10 of

{i) (j) Retrieval
1 0 0 1 1 0 0 1 0 0 1 3
2 0 0 1 0 1 0 0 1 0 1 1
3 1 0 0 1 1 0 0 0 0 1 5
4 0 0 1 0 1 0 1 0 1 1 2
5 0 0 1 1 0 0 1 0 1 1 4

b) STATES of all enable lines (Ei,f+l) at the end of the major cycle:

Word
Number 0 1 2 3 4 5 6 7 B 9

i
1 1 1 1 1 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1
3 1 0 0 0 0 0 0 0 0 0
4 1 1 1 1 1 1 1 0 0 0
5 1 1 1 1 0 0 0 0 0 0

Note: Minor cycles 3, 5, 8 and 10 go through the default phase.

238

c) Timing diagram for bit-slice 3 in the major cycle:

\ ' G~1 Time in gate delay units

·----------- 0 1 2 •••

~ R3 p
3 - -

p3 Q3
- ·------------

E- 61,3
= 1 q1.

1,4

3

P1,3

'
E

.,. 62,3
~ 1 q2,

2,4

3

P2,3
E

,.,. 63,3
3,4

= 0 q3, 3

P3,3
E

' 84,3 ,_,
= 1 q4,

4,4

3 -
P4,3

E
85,3
= 1 q5,

5 4 Note:
•

3

Signals for bit-cells (2,3),
(4,3) and (5,3) are the same
as those for bit-cell (1,3).

P5,3
Bit-slice 3

t
0

: Starting of minor cycle for bit-slice 3;

t 5: Default condition detected;
t
8

: End of minor cycle for bit-slice 3;
FROM t

0
TO t

5
: Comparison phase of minor cycle;

FROM t 5 TO t 8: Default phase of minor cycle.

239

(d) Timing Diagram for Bit-slice 4 in the Major Cycle
M "0 ii4

G=1 Time in Gate Delay Units -

-· 1-

~ ..

~

'

'

'

------- ----
~

- '--!""' A

p~
R4 p
1-------- _4r-

81,4=1

P1,4

8z,4=o

Pz,4

83,4"1

il3,4

84,4=0

P4,4

8s,4=1

p 5,4
8it-sl ice 4

~

-q1

-
q2

q3

q4

qs

0 1 2 3 4 5
• • • • • • •

Q;dl I
I

p 4 61 I
I

R4 61 I
I

E1,5
I

E 1 I
. 1,4 aU

,4
E1,5 Bl :
- 1 I

E2 ,5 ~1,4 ~I I
I

q1,4 of I

,4 I
I
I

E3,5 E2,4 aLJ
E2,5 Ol I

,4 11 Pz,4 0

E4,5
Ci'z,4 11

0

,4
E3 ,4 61

~3,5 6: ES,S

,4
P3,4 6
"tf3,4 61

t 1 t
to tl =tz t3

Note: Signals for bit-cells (4,4) and (5,4) are the same as those for
bit-cells (2,4} and (1,4} respectively.

t 0: Starting of minor cycle for bit-slice 4;
t 1: End of minor cycle for bit-slice 4;
t 2: Default-inhibit signal becomes stable;
t 3: Bit-slice control logic in stable state.

6
•

240

5.2.5.3 Mode C: Greatest Value Search Mode

In the implementation of the least value search scheme, the speed for

searching is traded for less hardware in each bit-cell by sharing much of the

logic with the equality-inequality search. Had it not been required for the latter

search, the comparison time for the least value search could be shortened by

looking only at the content of the bit-cell, and the default time could be shor-

tened by looking at the feedback signal. Since the least value and the greatest

value searches are analogous to each other, we shall demonstrate the speed-up

design for the greatest value search. The implementation of the new design is

illustrated in Fig. 5.4 which shows the complete design for each bit-cell. With

this implementation, Mode C operations can be executed simultaneously with

either Mode A or Mode B operations. Note that Ti = 0 at the beginning of the j'th

minor cycle.

Algorith-m 5.3- Mode C Search Operation- The Greatest Value Search Algorith-m

1) ViEf1,2 -mj

a) Initialization: j = 0, w;.1 = 1, w;,5 = 0,

b) Data Path Setting: Gate F;.n+l to w;.4 • and wu to F;,1•

The data paths are held until the completion of the major cycle.

2) Let j <- j + 1.

3) Minor Cycle:

a) Co-mparison Phase: Compute ViEf1, 2, ... , -mj simultaneously.

i) F- '+I= F· ··(M~· + B· · + T-)
'l.,j 'I.,J J t.J '

ii) U;,j(t) = F;,j(t - 1) (delay element used to synchronize the feedback of

241
+V

"'

G>--++-----------------r-----~-----1--~ --1-------------- t-- ------------
!- 'G """

Rj __ r' o<;,J-- :: Resistors
C' G QJ. • - l__{-

:..... ;;
. "' j

1
wired-OR v j

Bit-slice u DC u
Control Logic j j -- r- t-1- ------ --------------- __ , + f-1--

~-------------------=, :sit-cell Logic 14 u1 ,u
Fi ,j >--+-H++----------,rnc _ 1

: t::PC' 15 vi .b
I ~ !
I 2 1 I F

t~tt=l~:::::::i======i:>---::jr:~~~i-rtt-- i,j+1 P· j I
Ei ,j I DC 1 • I

>--tti±t====t==::;-~e~r-116 I
~-~-----4-r1_r3 i ,J I

I Lt>r ~ r("J' I
I I
I lf; ,jf-- 8'\ I
I 18 7 8 - I
I J)- l?.... q; ,j I
I Bi ,j "1VI- I
I_.. I
I 13 1:£_

X.

E; ,j +1

, ,J I 8 12 I
I I "' 11 '>--i-1 +H+-x; , j + 1

I I
I '"-;'-I
~ =i>-d; ,j l
I_------------ _ _::_- __ _j

Li>-~~~+--------------------------w~~m;--rt-rr-__.[;
WlreO·UK

. ~- .
IIII

u.V.'P.Q.
J J J J

Figure 5. 4 Bit-cell for Simultaneous Ascending Retrieval and Cescen­
ding Retrieval or Equality-Threshold-Proximity Searches

242

iii)

v;,j = 1 means that B;,j is enabled and equals 1.

iv)

m

Ui = ;;', U;,f (wired-OR).

m
v) vi = i;'l Vi,j (wired-OR).

V1 =1 means at least one enabled bit in the j'th column is 1.

vi)

Ti = Ui V1 (wired-AND).

i) Yes- Default detected, proceed to step 3c).

ii) No -Default inhibited, proceed to step 4).

c) Default Phase: Compute Fi,JH = F;,j.

4) /s j = n?

a) Yes- Proceed to step 5).

b) No- Proceed to step 2).

5) Read out the words that are indicated by w;,5 = 1.

5.2.6. Ordered Retrieval

A. Ascending Order Retrieval

The ascending order retrieval of a set of data can be achieved by perform-

ing the least value search repeatedly until all the data are retrieved. With the

CAM organization that we have presented, a microprogram in the Memory Con-

trol Store provides an economical and efficient implementation of such a

retrieval algorithm. A flow chart for an ascending order retrieval algorithm is

shown in Fig. 5.5.

Set flags of
a 11 words to
be retrieved

Execute Mode B
search op.
on flagged

words in AM

Obtain one
selected word

,--.....; from Word

yes

(Multiple
responses)

Control Logic

Reset flag of
selected word

yes

Figure 5.5 Flow Chart for Ascending Order Retrieval

243

244

B. Descending Order Retrieval

The algorithm described for ascending order retrieval can be modified for

descending order retrieval by substituting the greatest value search for the

least value search. That is, Mode C search operation is executed in the CAM

instead of Mode B search operation. Hence, the algorithm for descending order

retrieval is to perform the greatest value search repeatedly until all the data

are retrieved.

5.2.7 Some Speed- up Techniques

The design shown here have 1 to 3 gate delays per minor cycle in each of

the Mode A search operations.2 The delay in Mode B operations ranges from 3 to

B gate delays per minor cycle, 3 while for Mode C operations, it ranges from 1 to 4

gate delays per minor cycle. We now consider several techniques that can be

used to reduce the search times. The four areas that bear investigation are too-

kahead techniques, external examination of retrieval process, implementation

of additional basic operations, and modifications to the scheme involving greater

parallelism in the search.

In the first area, lookahead logic can be added to each word in the memory.

The algorithms we have described previously are all bit-serial and word-parallel

in nature. This means that the enable signals for each word propagate from bit

to bit and operations for each word are performed in parallel. The speed of a

search operation is therefore proportional to n where n is the number of bits in

2 Assuming that all the ei, · signals are available before the search begins, there is one gate de­
lay per minor cycle in the equ~ity-threshold search while there are 2 to 3 gate delays per minor cy­
cle for the propagation of the xi,j signal.

3 In the case of the least value search, the maximum and the minimum delays are actually
shorter. The ei J signal of each bit-slice can be assumed to be settled before the major cycle starts
(see Fig. 5.4). Thls means that the Mi lines are enabled ahead long enough for the ei,j signal to set­
tle. In this case, the minimum time to pass through each bit-slice is 1 gate delay. The maximum
time to pass through each bit-slice is also shorter than 8 (the maximum gate delay count). When de­
fault occurs, Bi.j = 1 for all enabled words. Therefore, output from gate 7 is 0 and the feeddback
through R1 never has to go through gate 4. Hence, the maximum delay through a bit-slice is 7 gate
delays.

245

each word. We can increase the speed by adding some lookahead logic to each

word. Each word is segmented into contiguous groups of bits of equal size k, and

a lookahead circuit is added to each group (assuming k is a factor of n). Each

lookahead circuit operates on all the bits in its group in parallel and passes the

result onto the next group when it has finished. The speed of an equality-

proximity search operation using this lookahead circuit will be proportional to

n k' but for extremum searches, no improvement is found. This type of looka-

head is essentially single-leveled or cascaded. This means that the signals still

have to propagate from group to group instead of from bit to bit, and the looka-

head circuits exist in a single level above the storage circuits of each word. The

cellular property of the design is preserved because a group, instead of a bit in a

word, can now be regarded as a cell. We will not investigate other types of loQka-

head circuits, e.g., tree-lookahead circuits, because they do not preserve the

cellular property. We now illustrate the construction of these lookahead circuits

for the equality-proximity and the Mode B and Mode C searches.

An examination of the equality-proximity search operation shows that each

of the E;,;+l signals propagates from bit slice j to bit slice j + 1 in one gate delay

where j ranges from 1 to n. Similarly, the X;,; signal propagates from bit-slice j

to bit-slice j+ 1 in 2 to 3 gate delays. Improvement can be achieved by grouping

bits in each word and performing the comparisons in parallel. An example is

shown in Fig. 5.6 where the necessary lookahead logic for grouping bits j and j +

1 of word i is shown. In the equality search, comparisons in each group are done

in parallel. The results of comparison, e;.j+l and e;,;+2 , are ANDed together with

E;,f to form E;,;+2 • The propagation time for these two bits is 1 gate delay

instead of 2 in the usual bit serial operation. The speed of the equality search

will therefore be proportional to ~ gate delays. The number of gates for the

propagation of E;.; signal is also reduced from 2 to 1 for bit-slices j and j+ 1.

X. j 1 •

Ei . • J

246

iiiriiXim;t:iL"o"Ok=.-;h;;d---:
1 Logic for Bit-cells 1
l(i,j)and(i,j+l) 1
I I
I_ I
I A I

I i
l

>-J-+~---------------f-4-f~~~{>~~~~---@:) X •. T)-....J~~.. ,· .J· +2
i r ,
1 r-;;;;: :r ~c 1
'--------- -- ______ I

jE(i.;'lft;"Lo-~::-a'h~Ci---1

1Logic far (i,j) & (i,jtl~

>--t-f-4------------------ft~~~~:=:=:=:=:=:[~o)------+I~E;,j+2
L------ ----- ----...l

-------------- I
I I r----------------h 1 I
1 I I

1 T "'" l
I 1-' I

: B.-.~~+ l
I _1 ,J ::l >- I
I B •. i - .__ I
I 1 t::::1 I
1L Bit-cell Logic (bit j~
----------- __ .1

,I - :
I -~o--

Il ~e .. l B 1 ,J+ I
I _i,j 1 l3">- I
I B; ; _ I
I ~ I

~B_.!!_-~~1~ ~~g~ i_b_!t_j_~~

Figure 5.6 Bit-cells (i,j) and (i,j+l) of Word i with equality­
~raximity search logic and Look-ahead Logic

247

Similarly, in the proximity search, gates A and B of Figure 5.6 detect the condi-

tion when only one mismatch occurs in the group slice and gate C detects the

condition when there is no mismatch in the group slice. The logic equation for

xi.j+2 is:

Xt.J+2 = X;.1·(ei.J+fe>.J+2) + X;.J·E;.j·(e;.j+!oei.J+Z + ei.J+l""t.j+2)

which is similar to the Xt.j+t equation in Algorithm 4.1. However, in this case,

the propagation delay has been reduced to 3 instead of 6. The number of gates

required is also reduced by a constant factor.

For Mode B and Mode C operations, lookahead requires more hardware. The

existence of default cases have caused the increased complexity. Previously,

without lookahead, default is detected for a bit-slice when certain conditions

exist on all enabled words in that bit-slice. These conditions include 1) all

enabled words have 1's in this bit-slice for the least value search and 2) all

enabled words have O's in this bit-slice for the greatest value search. The

number of default feedback lines is 1 for each search mode. When a lookahead

circuit is added to each word for a group of k bit-slices, the number of default

feedback lines will be 2"". These 2k lines can be shared by both the least value

search and the greatest value search. Consider a particular group; the following

operations are to be carried out: a) The bits of each word in this group are

decoded into 2k lines. b) The corresponding lines from each word of this group

are wired-ORed together to form default feedback lines 0 to 2k - 1; a particular

feedback line p will be 1 when there exists an enabled word in this group whose

decoded value equals p. c) In the group-slice control logic, if it is a Mode B

operation, it will scan from feedback lines 0 to 2k - 1 until the first line with a 1

is found; similarly if it is a Mode C operation, it will scan from feedback lines

2• - 1 to 0; this line will represent the minimum/maximum of all these enabled

words in this group. d) This line is encoded into k search bus signals to be fed

back to each word in this group. e) In a particular word, the enabled line for the

248

next group is enabled if the current group of this word is enabled and the value

of this part of the word equals the search bus signal, i.e., it equals the

minimum/maximum value found by the group slice control logic. However,

there are some disadvantages of using lookahead on Mode B and Mode C opera­

tions. The extensive amount of decoding requires an order of 2k gates of fan-in

k for each group in each word. For each group-slice, thez;e are 2k default feed­

back buses running across all the words and this can cause difficulty in

integrated circuit implementation. The biggest difficulty, however, lies in the

implementation of the scanning algorithm in the group-slice control logic. The

algorithm of scanning across a set of lines until the first 1 is found is essentially

a multiple match resolution problem. If a tree-type multiple match resolution

circuit is used, e.g., [FOS6B], a maximum delay of log22k = k will be observed.

That is, the overall speed of a group of bit slices, with or without lookahead, is of

the order of k. Unless a faster multiple match resolution circuit is used, and

the cost of hardware is sufficiently low, lookahead for Mode B and Mode C

searches is not cost-effective.

An examination of the example illustrated in the previous section points out

another possible source of improvement, this time in the algorithm itself. In

many cases the number of words still enabled at the end of a minor cycle

rapidly drops to one within a few minor cycles. At this point the completion of

the major cycle is a formality since the greatest(or the least) valued word must

be the only remaining enabled word. Unfortunately the detection of this condi­

tion, the only-one-respondant-left condition, is too complex to be performed at

the end of every minor cycle, and would require extensive external wiring and

logic.

We have implemented some of the search operations defined in Section

5.2.4 as basic operations. Some other useful searches may be performed by

combining two or more basic searches and possibly some nonsearch operations.

249

An example is the between-the-limits searches, which is generated by perform­

ing a less-than search followed by a greater-than search on words selected by

the first search. In fact, all the searches described in Section 5.2.4, can be per­

formed as a basic search or a combination of basic searches designed in this

section. Speed improvements can of course be gained by implementing all of

these search operations as basic searches, but the amount of logic circuits may

be extensive. In most other cases, the more complicated searches, such as the

case of ordered retrieval, are implemented as a combination of simple searches.

One modification to our ordered retrieval technique that yields positive

results without compromising our cellular logic approach is to increase the

parallelism of the algorithm itself. This can be done by simultaneously perform­

ing the greatest value search and the least value search on the same set of

enabled words. The associative sort is complete when both searches select the

same word, an easily detectable condition, or when no words are still enabled at

the beginning of a major cycle, also an easily detectable condition. A small addi­

tional amount of external manipulation of the sorted file block is required by the

non-associative processor controlling the sort to concatenate the two halves of

the sorted block since one will be in the reverse of the desired order, but it is

felt that this is a small price to pay for a speed-up factor of greater than 2. This

technique is shown in Example 5.3 that follows.

The speed-up involved in this approach is greater than a factor of 2. To

understand why it is greater than a factor of 2 instead of exactly equal to 2, we

must consider the properties of the fields to be searched. Assuming an even dis­

tribution, there is on the average one more bit with the value "1" in the higher

valued half of a sorted file than in the lower valued half of the same file. This can

be verified in Example 5.3a). The greatest value search has a shorter minor

cycle time for bit positions with a value of "1" in the word with the greatest value

than for bit positions with a "0" in the word with the greatest value. Likewise,

250

the least value search has a shorter minor cycle time for bit positions with a

value of "0" in the word with the least value than for bit positions with a "1" in

the word with the least value. This provides for an average major cycle time five

gate delays shorter than if all words were to be selected in an ordered retrieval

by either search alone (assuming the delay for each minor cycle of both Mode B

and Mode C search operations ranges from 3 to 7 gate delays). The design for

this technique has been indicated in Fig. 5.4.

Example 5.3: "Mode B" and "Mode C" Parallel Operation.

a) WORDS to be retrieved:

251

A= Number Ascending
Word Bit Positions of 1's Order of

Number 1 2 3 4 5 6 7 8 9 10 2er Word Retrieval
1 0 0 1 0 1 0 1 1 0 1 5 12
2 1 1 0 0 1 0 0 1 0 0 4 20
3 0 0 0 0 1 1 1 1 0 1 5 6
4 1 1 1 1 1 1 0 0 0 0 6 30
5 0 0 1 0 0 0 0 0 0 0 1 11
6 1 1 1 0 0 0 0 1 0 0 4 23
7 0 0 0 0 0 0 0 0 0 0 0 1
8 0 1 0 1 1 1 1 1 0 1 7 14
9 1 1 0 1 0 1 0 0 1 0 5 21
10 1 1 1 1 0 0 1 1 0 0 6 28
11 1 1 0 1 1 1 1 1 1 1 9 22
12 0 0 0 1 1 1 1 0 1 1 6 10
13 0 0 0 0 0 1 1 1 1 1 5 4
14 0 1 1 0 1 0 1 1 1 1 7 15
15 1 1 1 1 1 1 0 1 1 0 8 31
16 1 1 1 0 1 0 0 0 0 0 4 26
17 1 1 1 1 1 0 0 0 0 0 5 29
18 1 1 1 0 0 0 1 0 0 1 5 24
19 0 0 0 0 0 0 1 0 0 1 2 2
20 1 0 1 0 0 0 0 0 1 0 3 19
21 0 0 1 1 0 1 1 0 1 1 6 13
22 0 0 0 1 0 1 1 1 1 1 6 7
23 1 1 1 1 1 1 1 1 1 1 10 32
24 0 0 0 0 0 0 1 1 1 1 4 33
25 0 1 1 1 1 1 0 1 1 0 7 16
26 0 0 0 1 1 0 1 0 1 1 5 8
27 1 1 1 0 0 1 0 1 0 0 5 25
28 0 0 0 1 1 1 0 1 1 0 5 9
29 1 1 1 1 0 0 0 0 1 0 5 27
30 1 0 0 1 0 1 0 0 0 0 3 18
31 0 0 0 0 1 1 0 0 1 1 4 5
32 1 0 0 0 0 0 1 0 0 1 3 17

Number of 1's in memory: 160

Number of bits in memory: 320

Number of l's per word in the smaller half of the ordered list= 4.69.

Number of l's per word in the larger half of the ordered list = 5.31.

b) ORDER of retrieval in parallel operation:

Let Ln and Lc be the lists of words retrieved by Mode B and Mode C search

operations, respectively. Both lists are ordered with respect to time. in Gate

Delay Units. at which they are retrieved," and neglecting overhead time between

major cycles. Assume that for the least value search, the gate delays for each

252

minor cycle range from 1 to 7 and that for the greatest value search, they range

from 1 to 4.

L, Time 11 Lr. LH Time« Lr. Ln Time 11 Lr.
Start 0 Start - 173 27 5 368 -

7 10 23 3 180 - - 385 32
- 26 15 - 198 18 - 404 25

19 32 - 22 226 6 1 408 -
- 48 4 - 239 11 - 423 14

24 66 - - 264 9 - 442 8
- 73 17 26 266 - 21 454 -
- 95 10 - 292 2 End of Retrieval

13 106 - 28 306 -
- 120 29 - 323 20

31 140 - 12 352 -
- 148 16 - 354 30

"' Time in Gate Delay Units

Throughput = 454 gate delays (32 * 10) bits = 1.42 gate delays/bit.

5.2.8 Issues and Limitations

We have presented a design of an associative memory that can be used for

fast ordered retrieval. From Example 5.3, neglecting the overhead in loading

and unloading the memory, the sorting speed is 1.42 gate delays per bit. This

design is therefore very attractive and can be used in many places where fast

searching and sorting is required. However, there exists many issues that need

to be carefully considered and resolved before successful operations can result.

We discuss four of these issues here, namely, LSI implementation, manufactur-

ing defects, modular expansion, and multiple match resolution. We do not con-

tend that they exhaust all the issues in this design. New issues may come up

during the implementation phase and will have to be resolved by the designer.

5.2.8.1. LSI Implementation

In Fig. 5.4, a complete design has been shown. Each bit cell requires 17

gates. There are extra logic associated with the registers and the controls.

253

Consider a 32-bit word and a 32-word memory. This design needs over 17,000

gates for the logic in the bit-cells only, excluding all other registers, memory

cells and control logic. Therefore, the memory size that can be effectively

implemented on an LSI chip is very limited. One solution is to reduce the

number of functions in a cell when the application does not call for it. However,

this is very much application dependent. Furthermore, the number of pins on

the LSI package also limits the word size. In order to maintain fast response and

high throughput, parallel reading and writing of bits of a word in the memory is

necessary. The major portion of the pins of an LSI package is usually taken up

for parallel reading and writing. For a 32-bit word memory, the pin requirement

is 32 plus a few controls and selections. On the other hand, the pin limitation

will put a maximum word size that can be implemented. It becomes obvious

that modular expansion is necessary in order for this design to be practical.

The issue of modular expansion is discussed later.

5.2.8.2. Manufacturing Defects

After the LSI chip has been manufactured, tests are made to determine

whether any cells are faulty. A faulty cell can be determined by injecting cer­

tain test patterns into the memory. If the number of defects are small and their

locations can be determined up to the locality of certain gates in the cell, then

these faults can be bypassed by utilizing some spare bit-slices designed into the

memory. The difficulty in recovering an error in a faulty cell of the CAM is that

the error may not only affect the word itself, but it may also affect other words

because the value of the faulty bit is available to other words via the feedback

circuitry. Therefore, it may be necessary to remove the current bit-slice or the

current and all bit-slices to the right from operation when an error occurs in a

cell. We have assumed that only stuck-at faults can occur in the gates of

memory cells and bit-slice control logic. Faults occurring in registers and con-

254

trol store are not considered since the logic there is only a small fraction of all

the logic on the chip. By assuming that the j'th bit of the i'th word is faulty, we

can identify three types of faults, one in which the j'th bit-slice has to be

removed from operation, one in which the i'th word has to be removed from

operation and one in which all the remaining bit-slices are rendered useless.

Referring to Fig. 5.4, for faults that occur in gates 14-17 and the bit-slice control

logic, they only affect the feedback values but they do not affect the enable lines

so long as the mask bit is 1, that is, the bit-slice is masked off. This can be done

by setting a 1 permanently in the j'th bit of the mask registers and shifting the

external pin connection to the chip by 1 bit. For faults {stuck at 0 or stuck at 1)

that occur at gates 2. 4-13 and the storage cell lB. and for stuck at 0 faults at

gates 1 and 3, they do not affect the remaining words so long as the enable sig­

nals are set to 0, that is, the i'th word is disabled. This can be done by setting a

0 permanently in the i'th position of the word flag register W 1 and the

result/temporary registers W 2 - W 5. For stuck at 1 faults that occur at gates 1

and 3, they affect the enable lines for the next bit-slice. If an enable line has a

faulty value of 1. that is, the remaining bits of this word are enabled regardless

of whether the current word or bit-slice are masked off, it may cause a faulty

feedback to other bit-slices on the right. So unless all the remaining bit-slice

are masked off, the fault that occurs in cell {i,j) will propagate to these bit­

slices. A finer recovery procedure can be developed if we can identify the

corresponding words to be disabled for a particular search operation.

From the above discussion. we see that recovery from manufacturing

defects are easy and most of the faults are recoverable.

5.2.6.3. Modular Expansion

Our philosophy of the associative memory design is that we want to distri­

bute the logic into the storage cells. In order for all the distributed logic to per-

255

form coherently, extra communication lines are needed to transfer enable and

feedback signals from bit to bit. The number of these communication lines are

usually large and this will eliminate the possibility of modular expansion which is

easy in the case of RAM's. Consider our design in Fig. 5.4, each cell has 4 enable

lines to communicate with the cell on its right; and each bit-slice has B lines

which are used for feedback, synchronization and mask. These lines run across

all words in the bit-slice (these exclude lines needed to read and write data into

each bit). Suppose a memory chip of m words by n bits is available. To extend

the word size of this memory, we can put 2 memory chips together side by side

as shown in Fig. 5.7(a). However, this design needs 4m lines to pass the enable

signals from the chip on the left to the one on the right. This is not feasible even

for a small m. To extend the memory size, we can put 2 chips one over the other

as shown in Fig. 5. 7(b). This design needs Bn feedback lines to pass the feed­

back, synchronization and mask signals between the two chips. Even for a small

value of n, the number of interconnections is very large. In order for our design

to be practical, some other schemes of modular expansion are necessary. In

Fig. 5.7(c), we show a scheme that allows us to extend the memory size by

increasing the dimensions of the memory. A batch of m memory chips are put

together in parallel. There is an extra dimension and is composed of a single

memory chip running across the m parallel chips. A flow chart for an ascending

order retrieval algorithm of m 2 words is shown in Fig. 5.8. The time needed to

orderly retrieve m 2 words is m 2 + m units of load time (time to store a word

into the memory) and m 2 + m units of search time (a search time includes the

time to execute a Mode C operation and to read it out into the 1/0 register). The

amount of search time can be reduced to m 2 + 1 units of search time when the

Mode C searches in chips 1, ... , m are performed in parallel with the Mode C

searches in chip 0. In a single memory chip which can accomodate rn 2 words,

the time needed for this memory system is 771
2 units of load and m 2 units of

4m enable 1 i nes
~

. >
~

-n bits

(a) Word Size Extension

--------n bits

a bit
slice

urrr uu . . .
llll II II v

{b) Memory Size Extension

- m words---~

'-/ ___ o __ /

m chips

256

1
m words

1

t
m words

~
Sn feedback,
synchronization
and mask lines

(c) 3-dimensional Associative Memory for Memory Size Extension

Figure 5.7 Modular Extension for Proposed Associative Memory

(Begin

Load chips 1.2m in
parallel with m words

(m units of load time)

Perform Mode C searches
on chip 1 •• m in parallel

and read out in parallel
(1 unit of search time)

Load m maxima into
chip 0 sequentially

(m units of load time)

Perform Mode C searches
on chip 0 in parallel

and read out
(m units of search time)

repeat m-1 times

(End·

Figure 5.8 Flow Chart for Ascending Order Retrieval of m2 words in a
Three-dimensional Associative Memory (see Figure 5.7c)

257

258

search time. Therefore the degradation in performance is minimal when m is

large. For a memory size larger than 1n
2 words, extra dimensions are needed.

We conclude that our scheme on memory expansion has minimal degrada­

tion on performance. The difficulty still exists in word size expansion. The limi­

tation is due to the pin requirements. However, we can trade performance for a

smaller amount of external pin connections by loading bits of a word in groups

instead of all in parallel. However, the degradation in performance due to this

loading scheme is more pronounced than our memory size expansion scheme.

5.2.8.4. Multiple Match Resolution

One of the most useful applications in our design is in the multiple response

resolution. A tag field can be included in each word. Each tag is a distinguish­

able number. The size of each tag must be at least flog2Tnj for a memory size m.

When there are multiple responses, each tag serves as a number for the ordered

retrieval scheme. The words used in the ordered retrieval are those that

respond. Only the bit-slices containing the tag are used in the search. The first

cycle can retrieve 2 words, the one with the maximum tag, and the one with the

minimum tag. Subsequent searches give 2 responses each time. The speed of

this resolution scheme is ! memory cycle per word and is independent of the

memory size.

There are two disadvantages in using tags for multiple match resolution.

First, there are irregularities in implementation. Because each tag has a distin­

guishable value and if each tag is hardwired into the memory, it will involve a

different design for each word and it will also be difficult to overcome the prob­

lem of manufacturing defects when a cell in the tag is bad. This problem can be

solved by loading the tags from a PROM when the memory is first used. Second,

when a cell in the tag becomes bad during operation, e.g., stuck at 0, then two of

259

the words in the memory have identical tags and it is impossible to distinguish

them.

We can also perform the multiple match resolution without using special

fields as tags. This can be done by treating the contents of each word or part of

the word as a tag itself. It requires all words under consideration in the memory

to be different in order for unique responses to result.

5.2.9 Co7npr:trisons with Other Methods of Ordered Retrieva~

We have presented in this section several of the search schemes, namely,

the equality search, the threshold searches, the proximity search, and the

extremum searches. The other searches defined in Section 5.2.4, can be imple­

mented as a combination of basic searches. Using the implementation in this

section, we compute the maximum and the minimum search times for each

search.

Search Type

Equality Search
Inequality Search
Similarity Search
Greater-than Search
Less"than Search
Greater-than-or-equal-to Search
Less-than-or-equal-to Search
Double-limit Search

Between-limit Search, X> Y
<X&>Y
<X&<1;Y
;i;X&>Y
;;;x & ;;,; y

Outside-limit Search, X < Y
<X&>Y
<X&<1;Y
;i;X&>Y
;;;x & ;;,; Y

Proximity Search
Extremum Search

1) Least-Value Search
2) Greatest-Value Search

Adjacency Search
1) Nearest-above Search
2) Nearest-below Search

Minimum Number
of Gate Delays

n+5
7

n+5
n+5

7
n+5
n+5

n + 12
n + 12
2n + 10
2n + 10

7
7

n+5
n+5
2n+4

n
n

2n + 5
n+7

260

Maximum Number
of Gate Delays

n+5
n+5
n+5
n+5
n+5
n+5
n+5

2n + 10
2n + 10
2n + 10
2n + 10

2n + 10
2n + 10
2n + 10
2n + 10

3n+6

7n
4n

Bn + 5
5n + 5

We see that the delay times in all these searches are proportional to n, the

number of bits in a word and is independent of the number of words in the

memory.

Several methods of ordered retrieval and multiple response resolution have

been proposed in the past. It would be of great value to evaluate the method of

ordered retrieval presented in this section in terms of these other schemes. In

particular, we compare this new algorithm with those of Frei and Goldberg

[FRE61], Seeber and Lindquist [SEE62], Lewin [LEW62], Miilter [MII64], and

Foster [FOS76]. In order to evaluate these various schemes, it is necessary to

determine the significant characteristics that we wish to examine and to deter-

mine the comparable features of these diverse methods.

In order to facilitate these comparisons, the methods mentioned will be

classified into two types, those with an algorithm to order the retrieval

261

according to the contents of the stored words and those which use an external

priority scheme, usually some form of priority tree, to order the retrieval

according to the physical location in memory. Among schemes of the first type

are those of Frei and Goldberg, Seeber and Lindquist, Miiller and Lewin. Miil!er's

scheme uses the contents of the responding words to resolve multiple response

conflicts but it does not necessarily order the selections in ascending or des­

cending order. Among those schemes that use an external priority circuit to

resolve conflicts are those of Weinstein [WEI63] and Foster. These schemes are

not strictly comparable to the proposed algorithm since they cannot be used for

sorting. Likewise, Miiller scheme is not absolutely comparable to our proposed

scheme but is similar enough that we will include it in the comparison.

The two main considerations for comparison are obviously the speed with

which a method retrieves stored data and the cost in terms of amount of logic

required. Rather than attempting an exhaustive analysis of the implementation

cost for each of the various schemes, we shall look at the more readily available

information as to the rate of cost increase for increasing memory size. In par­

ticular we are interested in the memory cost as a function of memory size.

We shall limit our discussion of speed comparisons to the number of search

cycles required to retrieve each stored word. For several of the schemes under

consideration, a significant parameter is the density of the flagged words, that

is, the ratio of the number of words to be retrieved to the number of words

addressable with the given tag field size. We will assume that the number of

words addressable by the tag field is the same as the length of the memory.

The chart of Table 5.1 shows as direct a comparison as possible between the

aforementioned searches and the search scheme proposed. The headings

include relative speed (in terms of the number of cycles needed to retrieve each

flagged word), comments upon dependencies of logic complexities to memory

262

Scheme Speed- R (n,k) (Cycles per Re- Memory Size Relative Com- Best Class

trleval of ann Bit Tag) Dependency plenty of of Problem
Hardware Re-

=a======== ===================== ========= -~~~======= =========
Fret and For n = 5 Length of tag Basic CAM High dens!-
Goldberg Best Cace (k = 2"): R =2k tleld (n) only ty of

--------- !~~~~~:-~=~t~-=2~---- --------- ------------ _l!!_P~~'=~-
Seeber and t = 2" Length of tag Complex cryo- Density
Lindquist R(n,l:) = ti(t+l:-1) + tleld (n) only genic logic at dependent

t(t-lt 2tn
each bit {18

-. }::(l:(t-2')•-• + gates)
t• t , ..

--------- _2_:_C!:~~~l_------------ --------- ----------- ---------LeWin 2k-1 Independent A registers plus lndepen--k-Eza.ct
9 gates per bit dent
slice --------- --------------------- --------- ----------- ---------lo{Uler Best ca.se k+l Independent Basic CAM plWI Multiple

:~
some additiooal response

Worst case : 2k-1
contrcland resolution k

--------- --------------------- --------- ~_r~o:_ ______ -~_]'_ _____
Foster 1 cycle per retrieval External log'- Tree Circuit Multiple

io uses external to CAM response
3(2"'·-•l-1 resoluUon
gates for 2"' only
words of

--------- ------------~--------
~!!!12l'_Y ____ ----------- ---------

Proposed i cycle per retrieval Increases as ,.,. 17 gates per lndepen-
log2m • for bit cell dent
m words of

--------- --------------------- ~~~2ry____ ----------- ---------
•togam is the size of a lag that must be used to uniquely identify each word for a memory size of m.

'l'bia differs from the other schemes which do not use a specialized tag for ordered retrieval.

Table 5, 1 A Comparison Table for Ordrrred Retrieval Schemes

263

size, relative complexities of the hardware needed for implementation, and com­

ments upon class of problems handled. Fig. 5.9 shows a plot of words to be

retrieved for a memory with a five bit tag field in each word, corresponding to a

memory size of 32 words. It is seen that our proposed scheme is equal to or

better than all of the presented schemes in terms of speed. and in terms of the

number of cycles needed to retrieve a word from memory. In terms of the abso­

lute speed, the Foster method is somewhat faster in terms of gate delays per

retrieval since it uses an external priority logic tree. The Foster scheme, how­

ever, is not useful as a tool for ordered retrieval, but only for multiple response

resolution. At two retrievals per memory cycle, our proposed scheme is by far

the fastest ordered retrieval scheme, even faster than the Miiller scheme which

does not even produce ordering, only resolution. As far as the complexity of the

hardware goes, our scheme is well within the realizable realm of LSI technology

and in fact is no more complex than that used by Seeber and Lindquist or Yang

and Yau [YAN66] in their implementation of Lewin's algorithm. We conclude that

such a design as we have proposed here may be a useful and realizable tool for

associatibe processing in any applications where ordered retrieval is important.

One of the applications is to use it as a multiple match resolver as we have

described in section 5.2.B. Another application is to use it as a file processor in

data base applications. In the next section, we look at some of the requirements

for offloading the processing onto a data base machine and see how the associa­

tive memory proposed in this section can be extended to sequential memories.

5.3 DATA BASE MACHINES

5. 3.1 Introduction

A Data Base Machine (DBM} is defined as an architectural approach which

raises the level of the interface from the CPU to the storage subsystem, and

8

7

';;; 6
>

"' ·~ ..
-OJ

"' .. 5 ..
Q)

0.

"' "' u 4
>.
u
~

"' E
;: 3
~

"' >
(l)

·~

!; 2
"' "'
"' Ol

~ 1 1 r "S--,
<>: ~

6

1

key
1 - Frei and Goldberg
2 - Seeber and lindquist
3 - Lewin
4 - Miiller (Best case)
5 - Foster
6 - Proposed

0 L------r------.------,-------r------.-----~------,-------,
0 5 10 15 20 25 30 35 40

k (number of words to be retrieved)
Figure 5.9 Comparison of Retrieval Speeds for a 5 bit Tag with k Words Flagged

N
0\ ...

265

distributes processing power closer to the devices on which data are stored

[LAN79]. There have been many DBM designs, among them are Data Base Com­

puter (DBC) [BAU76, KER79, BAN79], Context Addressed Segment Sequential

Storage (CASSM) [LIP7B, SU 79], Relational Associative Processor (RAP) [OZK77,

SCH79], Rotating Associative Memory for Relational Data Base Applications

(RARES) [LIN76], Da.tacomputer [MAR75], List Merging Network [HOL79], etc.

Although most of these designs are directed towards a specific application, e.g.

text processing, relational data bases, etc., the trend in the future is to utilize

the available LSI technologies to design a more general purpose DBM. There

have been many factors, both in the past and in the future, that pertain to the

growth of DBM's. Apart from the growth of semi-conductor technologies and the

rising need for larger data bases (Figures 1.2, 1.3, 1.4, Table 1.1), the most

important factor that leads to the increasing hardware implementation of data

base functions is the growth in complexity and size of data base management

software. Because it is necessary to provide a high level view of the data to the

users, it is essential to provide a complex translatwn from the physical data

structure to the logical data view and vice versa. Conventionally, this has been

done by the data base management software. Depending on how complex the

translation mechanism is, the amount of software to be developed and the

amount of execution time needed is also different. As an example, the INGRES

data base takes 350,000 machine instructions to process a simple transaction

which can be a retrieval or an update of a simple record of data. Out of these

350,000 instructions, only 25,000 instructions are real work that performs the

actual function of the query. The other part of the work (325,000 instructions) is

purely overhead which includes 25,000 instructions for parsing, 75,000 instruc­

tions for validity checks, 125,000 instructions for task switches and pipes and

100,000 instructions to ·interface with the users. Some of these overheads can

be made smaller, e.g. the amount of validity checks can be reduced if the main

266

memory is large enough and the system catalog can be put there; the user

interface can be made less complex; the query can be parsed at compile time in

order to eliminate the run time interpreter overhead, etc. The execution of a

simple transaction is therefore CPU bound. On the other hand, in order to pro­

cess a complex transaction in INGRES, which retrieves or updates multiple

records, it takes about 25,000 machine instructions to process a 512 byte page

and 20 msec. to fetch a page from the secondary storage. Out of these 25,000

instructions, only 6,000 are real work, the other part are overheads. However,

the processing of a complex transaction can be speeded up by (i) compiling the

query before execution; (ii) enlarging page size and/or adding drives; (iii)

developing better decomposition strategies and (iv) building a one process real

time system. As a result of these overheads, it is seen that the use of a DBM,

which executes the query outside the CPU, reduces the execution overhead of

the CPU and the 1/0 overhead in transferring data into the main memory.

5.3.2 Issues in the Design of DBM's

Traditionally, the design of DBM's are plagued by many issues. Among them

are:

(1) Parallelis'm- Kind and Degree

The designer has to decide on the kind of functions that can be pro­

cessed in parallel and in what degree. These functions include address

mapping operators and the DB functions as well. As an example, the

query processing in INGRES can be divided into four levels, (a) query

·modification which parses the query and reduces it to a useable form; (b)

query decomposition which decomposes a query that accesses multiple

files into multiple sub-queries that access single files; (c) one variable

query processing which processes these sub-queries: that access single

files and (d) access method which translates the requests into physical

267

disk accesses. We can have four different ways to cut the software into

two sets so that one set resides in the CPU and the other set resides in

the DBM. The analysis reduces to the allocation of processes in a two

processor system and the max-flow min-cut network flow technique

developed by Stone [ST077a] can be applied here. The parameters that

the designers must consider include the speed of the DBM and the

degree of parallelism needed. Further, they must consider the efficient

scheduling of tasks on these processors.

(2) Technology dependence

The designer of the DBM must take into account the available technology.

Further, the design must be able to evolve as new technologies are made

available. Using disk technologies, there is a large overhead in translat­

ing the signals available from a disk head to a useable form by the DBM.

With the availability of bubble and CCD memories, very little signal trans­

lation is necessary and the logic and the memory cells can be imple­

mented together on the same chip.

(3) Interface, where and in what farm:

The problem is to design a good interface between the DBM and the host

processor. This interface may be implemented in hardware/firmware or

software or a combinations of both. This interface translates queries

from the host processor to DB functions processable by the DBM. Impor­

tant questions like where to put this interface and how much capabilities

it should have, must be answered. Should it be a part of the host, or

should it be a part of the DBM? Should the interface be able to access

the memory hierarchy? How should the interconnection network be

between the DBM and the storage sub-system? What type of language

primitives should be used? These questions have to be considered care­

fully by the designer.

268

{4) Storage structure

The kind of storage structure is very important. If keyed accesses, that

is, accessing data via a key, are allowed, then additional hardware capa­

bilities like associative memory or extra pointers are necessary to sup­

port it. Further, questions like whether the storage structure is dynamic

should also be considered.

{5) Backend pri=itives

The designer has to trade the availability of backend primitives (which

include functions like sorting, file merging, etc.) with the cost and the

difficulty of implementing it.

(6) Control algorithTTLS

Because the memories of a DBM are usually slow (of the crder of 100

fLSec access time). much overlap and parallelism are necessary in order

to achieve a high throughput. Control algorithms like scheduling and file

placement and migration algorithms are therefore very important.

The designer of a DBM must consider all these issues together and make a

judicious tradeoff in the design.

5.3.3 Classification of DBM's

The DBM proposed so far can be divided into two types, {1) backend systems

using conventional mini-computers and (2) intelligent controllers which include

cellular logic, associative memory and MIMD architecture. We describe each of

them briefly here.

(1) Backend syste=s using conventionalTTLini- coTTLputers (Figure 5.10)

In this design, backend systems are added to a generally large CPU in order

to enhance its DB processing capabilities. The functions of the backend system

can include access validation, storage management, concurrency control and

269

r--- -------~

I I
I Processor I
I I
I I I 1Backend

Disk

I
I
I
I
I
I
I

I I
J_ ________ .J

Figure 5.10 Backend Systems Using Conventional Mini-computers

270

I/0 control. The advantages of such a system are that it allows concurrent shar­

ing of a single data base and it provides better security, integrity and recovery

measures because the backend machines provide a single gateway to the physi­

cal data base. In such a system, network protocols are designed so that the CPU

can offload the processing onto the backend machines. As an example, in an IBM

system, the CPU can be an IBM 370/168, and the network protocol is the SNA

network protocol. In this case, it takes 10,000 to 30,000 machine instructions to

execute the protocol and to offload the processing. However, if an INGRES data

base is implemented on the system. and the system can only offload a fraction

of the processing workload, e.g. validity checks cannot be offloaded, the speed

improvement is only minimal. Further, there is an upper bound on the number

of backend processors so that enough work can be offloaded onto these

machines. Other disadvantages include costly software development and low

reliability. The use of backend machines is therefore a temporary method to

extend the processing power of a large CPU.

(2) Intelligent controllers

The use of intelligent controllers is an extension on the concept of backend

machines. In the case of the backend machines, each one of them can control a

set of disks and can perform high level data manipulations on the stored data.

In the case of the intelligent controllers, the logic is partitioned further down

onto the stored data. The characteristics of this design are that simpler, less

costly designs are used and each of the controllers is dedicated to a smaller

block of data. There may be a higher level controller which controls the intelli­

gent controllers collectively. This design therefore approaches a multi-level

control scheme. Basically, this design can be divided into three categories:

(a) Cellular Logic (Figure 5.11)

In this design, the processors are duplicated across each of the memory

I/0 Control

Controller

•
•
•

Figure 5.11 Intelligent Controllers - Cellular Logic

•
•
•

271

272

elements which may be a track of a disk. They provide associative search

for data in the memory and they access data directly by value. Most of the

conventional designs follow this principle, e.g. TapeDRUM [HOL56],

Slotnick's Logic per Track Disk [SL070], RAPID (PAR72], CASSM [LIP78,

SU 79], RAP [OZK77, SCH79], RARES [LIN76], DBC [BAU76, KER79, BAN79],

Chang's Major/Minor Loop Machine [CHA78], etc. Because the logics are

distributed across the data, this design provides very fast searches and it

reduces the software overhead by performing content addressing.

Further, the architecture is very suitable for a relational data model which

is a two dimensional data model. A relation can be placed so that all the

tuples pass out in a bit-serial fashion to the cellular logic simultaneously.

Other data models can be modified to fit the architecture by adding addi­

tional data structures, e.g. CASSM. However, there exists many disadvan­

tages with this design: (i) Because of the large degrees of replication, the

logic are bound to be simple. Usually, only simple functions like equality

match, maximum. search, etc., are implemented and the designs are

directed towards specialized applications. {ii) The data base workload

must be large {>40%) in order to keep the parallel resources utilized. {iii)

In a large data base, the degree of replication may be large and the cost

may be prohibitive. {iv) Because of the way that data is placed in the

architecture, data types are limited to character strings and integers.

More complex data structures would require more complicated external

control. (v) If the DBM is built on a disk, the processors must be extremely

fast because very fast signal translations are needed in order to process

the disk data in real time. {vi) Lastly, 1/0 is usually the bottleneck.

Although the processing can be done in parallel, 1/0 is usually done seri­

ally. However, it is hoped that the pre-processing using the DBM's has

eliminated a significant portion of the data transfer.

273

(2) Associative Memories (Figure 5.12)

In this design, an associative memory, such as STARAN [G0075] or the pro­

posed design in Section 5.2 of this thesis, is used to provide associative

search capabilities. The model in Figure 5.12 resembles a conventional

memory hierarchy in which the fastest memory (the associative memory)

is small and is interfaced to the slow mass storage through an intermedi­

ate buffer memory. The advantages of this design are rapid search for

array resident data and its suitability for the relational data model. How­

ever, associative memories are still relatively expensive and large associa­

tive memories are not feasible. This design therefore experiences the

usual problems of a memory hierarchy, namely, the swapping of the data

across various levels of the hierarchy. It is still unknown whether the

locality of data accesses in data bases is better than the locality of

accesses in caches and virtual memory and is highly dependent on applica­

tions. Further, the technique is not effective for non-resident data and a

high bandwidth bus is necessary to transfer data between the associative

memory and the mass storage. In one such design [BER79] in which

STARAN is used as the associative memory, it requires 1024 I/0 lines with

300 to 450 nsec transfer time per bit slice to interconnect the associative

memory with the buffer memory in order for the technique to be effective.

This technique is ther-efore unduly expensive in the associative memory

and the I/0 bus.

(c) Multiple- Instruction- Multiple- Data- Stream (MIMD) Architecture (Figure

5.13)

In the MIMD architecture, the cellular logic have been pushed out of the

memory elements and are interconnected with the memory elements

through an interconnection network. This design offers more flexibility and

better load balancing and allows the processors to be shared among the

.-----------.,
I I Control I

I
I
I
I
I
I

Bit-slice I
I

Associative I
I Memories I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
L-----------.J
Associative Processor

(e.g. STARAN)

Fast
Buffer
Memory

Figure 5.12 Intelligent Controllers - Associative Memories

274

Mass
Storage

275

Master

Slave . . . Slave

Interconnection Network

r
ceo . . . ceo

E.g. DIRECT

Figure 5.13 Intelligent Controllers- MIMD Architecture

276

memory elements. Because of the fact that each processor can access

multiple memory elements simultaneously, it is easier to perform data base

operations which require multiple files to be coupled, e.g. a multi-relation

join. Further, expansion is easy and modular. However, this design suffers

from the same disadvantages as the associative memory when the size of

the memory is not large enough in which case excessive swapping will

occur. Nonetheless, by using memory modules which are sufficiently large,

it is possible that the amount of swapping can be limited to a tolerable

amount. This design is exemplified by the DIRECT system [DEW79].

Since the DBM is a very special purpose hardware and requires a large

degree of replication, it is important that unessential software are not placed in

the DBM. In particular, software for protection, file system management, code

swapping, task switches, pipes or system calls should be eliminated from the

DBM. These software modules can be shared at a higher level with no adverse

effects on the system performance. On the other hand, the DBM should have a

thin collection of utilities, the run time DB management system and a self­

managed buffer pool. The management of buffers is relatively easy here

because the accesses are usually made in a sequential order.

In the next section, we present the design of a simple data base processor

which is extended from the design of the associative memory presented earlier.

Our design is totally hardware oriented and follows the same principle as the cel­

lular logic approach. However, our design differs from the other designs in

several features, (i) it is completely hardware controlled and therefore is very

fast, (ii) the logic is very simple and therefore can be replicated easily and

implemented on the same chip as the memory elements. The design is capable

of equality, threshold, proximity and extremum searches.

5.3.4 Extension of the Associative Memory Design to Sequential Memories

,.

277

Our design presented in Section 5.2 can be extended to the design of associ­

ative sequential memories which is made up of multiple loops of circulating bits

shifting in synchronism. There is a read/write head for each loop so that one bit

from each loop can be read or modified in one clock period. This can be

extended to include multiple heads for each loop. Examples of such sequential

memories include charge-coupled device memory, bubble memory and fixed

head disk.

Since only one bit is available from each loop at any time, we can design the

associative logic outside the sequential memory as shown in Figure 5.14. In this

design, m words are stored in the memory, with one word occupying each loop.

During a clock period, a bit-slice of these m words is shifted out of the memory.

This bit-slice is then processed by the associative logic and the enable signals

are stored in temporary fiip flops. Note that in the design presented earlier, the

enable signals propagate from the MSB to the LSB and the data are stored in

flip-flops. In the case of a sequential memory, the enable signals are stored in

temporary flip flops. As the bit-slice is shifted out, MSB first, the bit-slice,

together with the stored enable signals, generate a new set of enable signals

which are stored back into the flip-flops. The exact design is shown in Figure

5.15.

There are two advantages with this design. First, the additional logic for

each word is very small and therefore the cost increase is minimal. Second,

when the memory size is extended, only 8 lines due to the associative logic are

needed to be connected between adjacent modules. Therefore, the memory size

can be modularly expanded. Moreover, the amount of bit-slice control logic is

small, so we can design a memory with n modules, each with its own associative

and bit-slice control logic. During normal operations, each module can perform

independent associative search operations. When it is necessary to perform

associative search operations on 2 or more adjacent modules, all except one of

r--
1
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I L __

----------------.,.
I
I

I R/W :
I

Word 0 I
I
I
I
I
I
I
I

J R/W ~ Word 1
I
I
I
I
I . I

. I
I .
I
I
I

Word m-1 _1 R/W : :
I
I
I

-----------------~
Sequential

Memory

Figure 5.14 Associative Sequential Memory

-

~

f--

"---

Bit-slice
Control
Logic

Associative
Logic

Associative
Logic

.

. .

Associative
Logic

Associative
Search
Logic

278

'-

-

-

-

Clock

D Delay
F/F

D Delay
F/F

D Delay
F/F

D Delay
F/F

From output of
Sequential Memory

/1

____ \L ____
'----"'t

I I

F J I
I

i' F; ,j+l !-
I I
I I
I I
I I

Ei ~
I
I

E; ,j+l 1--
I I I I
I . I I I

X. i! I 1 .J

I xi,j+lt
I I
I I
I B; . I

L1
I ,J I

I Latch r.l
-I 1 I
I I
I I
L_ --

lJ ~
- _ _J

Figure 5.15 Associative Logic for Associative Sequential f1emory

279

280

the bit-slice control logic for these modules are switched out of the system and

the feedback lines are connected together to form a large block of associative

memory. This dynamic reconfiguration capability is useful in applications where

the nature and the size requirements may change dynamically. However, there

are two limitations with this design. First, the words must be organized as

described here because our design can only process one bit-slice at a time.

Second, it is limited to memory types in which these logic can be easily imple­

mented in LSI technology, e.g. CCD memory and bubble memory. In disk tech­

nology, the associative logic have to be implemented on a separate chip and the

amount of interconnections between the memory and the associative logic may

become prohibitively large. In a feasible implementation, e.g. CCD memory, this

design can be used as the lowest level of a DBM. Higher level control may be

designed to include more complicated functions.

5.4 CONCLUSION

We have presented in this chapter two hardware features to support data

management on a distributed data base. The first design is an associative

memory which is capable of equality, threshold, proximity and extremum

searches. The design is completely asynchronous and is bit-serial and word­

parallel, that is, the enable signals propagate from bit-slice to bit-slice, but all

the processing within a bit slice is done in parallel. The propagation time across

a bit-slice is 1 to 7 gate delays and each ceil has a complexity of 17 gates. This

design is by far the fastest in the literature. Although memory expansion

presents a slight problem, but by extending the dimensions of the memory, the

memory can be expanded with only a slight degradation in performance.

The second hardware design presented is an extension of the associative

memory to data base machines. It is shown that the concept of the bit-serial

associative memory can be extended to associative sequential memory. The

281

design is useful in upgrading the capabilities of the mass storage and reducing

the amount of data transfers across different levels of the memory hierarchy.

282

'· CONCLUSION

In this thesis, the issues on the resource management of data on a distri­

buted data base (DDB) system are studied. These issues are concerned with the

management of data and files as resources so that they can be shared efficiently

by the users. The major issues studied are:

(1) Query DecoTnposition on DDB's

A query is an access request made by a user or a program in which one or

more files have to be accessed. When multiple files are accessed by the same

query on a DDB, these files usually have to reside at a single location before the

query can be processed. Substantial communication overhead may be involved

if these files are geographically distributed. It is therefore necessary to decom­

pose the query into sub-queries so that each sub-query accesses a single file.

These sub-queries may then be processed in parallel at any location which has a

copy of the required file. The results after the processing are sent back to the

requesting location. It is generally true that the amount of communications

needed to transmit the results is much smaller than the amount needed to

transfer the files. This approach has been proposed in the design of the central­

ized version of INGRES and is extended to the design of SDD-1, a distributed data

base. However, in some cases, decomposition is impossible and some file

transfers are still necessary. In order to avoid these extra transfers, two cost

reduction models have been designed to reduce the operational costs of a rela­

tional data base. The first model reduces the retrieval cost but increases the

update cost by adding redundant information to each domain of a relational

data base so that relational operations such as joins and aggregate functions can

be performed without any file transfers. The second model reduces the update

cost but increases the retrieval cost by partitioning the relations into segments

so that they can be updated more readily. These two cost reduction models can

283

be combined to form a unified approach to reduce the operational costs of

DDB's. Further, it is shown that the optimization of placements of multiple rela­

tions under the use of these techniques can be done independently for each

relation.

(2) File Placement and Migration

This issue relates to the distribution and migration of data base com­

ponents, namely, schema, data and control programs on the DDB with the objec­

tive of minimizing the overall storage, migration, updating and operational costs

on the system. In this thesis, the problem of file placements and the problem of

selecting the times for migration under changing access frequencies have been

proved to be NP-complete. Further, the isomorphism between the tile place­

ment problem and the facility location problem are shown. The implications of

the last result are two folds. First, many results which have been derived in one

problem can now be applied to solve the other problem. Second, some results

obtained earlier for one problem can be shown to be weaker than the

corresponding results derived for the other problem. A tile placement heuristic

is developed. While not necessary yielding optimal design, the heuristic yields

solutions of lower cost than those generated by other currently available heuris­

tics.

(3) Task Scheduling

In task scheduling, the requests on the nodal computer system and the dis­

tributed computer system are sequenced so that high parallelism and overlap

can be achieved. The requests may be a single word fetch or it may be a page or

file access. A model for the scheduling of tasks on a distributed system has

been developed. This model assumes that global control is infeasible and all the

scheduling decisions have to be made locally at each node. It is shown that the

scheduling of tasks in this model, when all the task processing times are

284

deterministic, is NP-complete. A heuristic has been developed and the perfor­

mance of this heuristic has been verified using simulations. A more restricted

model, which represents an organization of an interleaved memory system, is

a.lso proposed. By using the additional constraints, it is proved that the optimal

scheduling problem is polynomially solvable. The performance of the scheduling

algorithm has been verified using simulations. Further, the degradation in per­

formance due to dependencies has also been estimated.

(4) Hardware support

Beyond the problem of resource management studied, the hardware sup­

port for the data base systems has also been investigated. In particular, an

associative memory which is capable of equality, threshold and extremum

searches in a time independent of the number of words in the memory has been

designed. The complexity of the design is 17 gates/cell. The design is asynchro­

nous and utilizes a word-parallel and bit-serial algorithm. The delay is 1 to 4

gate delays across each bit-slice. This design can be applied to the resolution of

multiple responses. Further, such a design is not restricted to associative

memories and can be applied to the design of associative sequential memories

and data base machines.

285

APPENDIX A THE ISOMORPHISM BETWEEN STONE'S PROCESS ALLOCATION

PROBLEM AND THE SINGLE COMMODITY QUADRATIC ASSIGNMENT PROBLEM

Stone's process allocation problem studies the allocation of processes to

computers [ST077a, ST077b, ST07Ba, ST07Bb, ST079]. The amount of communi­

cations between two processes are defined and this in turn defines the cost to be

incurred if these two processes run on different computers. There is also a cost

of executing a process on a computer. The problem is to place the processes so

that the total cost of the system is minimum.

On the other hand, the single commodity quadratic assignment problem

studies the allocation of plants to plant sites. There are certain fixed quantities

of the single type of commodity that are to be shipped between the plants and

these define an overhead cost to the system if these plants are located in

different plant sites. There are also fixed costs of locating a plant at a plant site.

The problem is to locate the plants so that the total cost is minimum.

We can now prove the following theorem.

THEOREM A- 1

Stone's process allocation problem is isomorphic to the single commodity qua­

dratic assignment problem.

Proof

The theorem can be proved by associating the variables of Stone's problem with

the variables of the single commodity quadratic assignment problem. This asso­

ciation is shown in Table A-1.

'P

10

1SE

n<

wa

(u

yd

'he'

nin

(

;uch

c

}

Reca

286

Table A- 1 Mapping between Stone's Process Allocation Problem and the Single
Commodity Quadratic Assign-ment Proble-m

Stone's Process Allocation Problem Single Commodity Quadratic Assign-
ment

Locations of computers Possible pJant sites
Process Plant
Communications between two Commodity to be shipped between
processes two~plants

Cost of communication between two Cost to ship commodity between two
comouters olant sites
Fixed cost of executing a process on Fixed cost of locating a plant at a
a com outer olant site

Q.E.D.

287

APPENDIX B THE LINEAR PROGRAMMING LOWER BOUND OF A CANDIDATE

PROBLEM [EFR66]

Efroymson and Ray's formulation of the linear programming lower bound is

n
based on the optimization problem of Eq. 3.1, with an exception that L,X;.kSJ.k

k=l

is not evaluated to be min s,. k where X,· k is the fraction of Q,· that is directed
kEf ' '

towards node k. The optimization problem that Efroymson and Ray considered

is (using the notations defined in this thesis):

min C (I) = L, Q1S 1 .•X;.• + L, c. Y•
j,k k

such that

n
1 = 2:, X;.k (j=1, ... , n)

k=l

(i,j=1, n)

yk = 0, 1

By defining the following notations,

N,- = set of indexes of those nodes that can be accessed by user j;

Pk = set of indexes of those users that can access node k;

nk = number of elements in Pk.

The objective function can be rewritten as:

min

such that

0 :> L, X,- .Jc :> n, Yk
jtPk

Y• = 0, 1

Recall that.

(j=1, ... , n)

(k=l, ... ,n)

(B-1)

(B-2)

288

The linear programming solution to the above optimization problem, neglecting

the integrality constraint of Yt, is,

.f s g• . [s gz j 1 i.k+- = mm j.z+-
nk ~fi.K1uK2 nl

otherwise

where

{
c.

gk = 0

This is the optimal solution because for kEK2,

L; X;.t :> n• Yt
i €.Pic

which implies that in the optimal solution, the equality sign will hold, i.e.,

or

1 L; X;.> = Y•
nk j£:.P~c

(B-3)

(B-4)

Substituting this value for Yt. kEK2 into the objective function, the linear pro-

gram becomes,

min C(I) = L; c.
ktK1

such that,

1 = L; X;.t
ktNi

{j=l, ... , n)

This lead to the optimal solution.

APPENDIX C THE EXPECTED VALUE OF A CANDIDATE PROBLEM

Recall that,

K 0 = !i: Y1=0!

K 1 = !i: Y1=1!

K 2 = !i: Yi =unassigned !
We can rewrite the objective function (Eq. 3.1) on condition on K 0 and K 1•

C(J) = I; G,
<«K,

+ "Q·* min S· · LJ ' .€] 'I.,J
i€Ko 3

+ I; Q, • min s,.1 + I; G,Y,
i€.K2 J€.! i£.K2

C(I) = " G, + " Q·* min S· · + " G,Y, LJ LJ ' .€.] ,., LJ
i~ 1 i€.}(0vK 2 3 i£.K 2

where G; is defined in Eq. 3.2.

Let

So

Z 1 = I; Q, • n:>in s,.1
i€}{

0
uK

2
3£1

C (I) = I; G; + Z 1 + Z 2
iEK1

289

(C-1)

(C-2)

(C-3)

(C-4)

Assuming that each of the combinations of Y1 for j EK 2 can be assigned uni­

formly, we would like to find the expected value of C(I). We first define some

notations:

For each row i of matrix S, we define a mapping 1-4. such that

j ,k E f 1, ...• n j such that S,,,.,··1(k) ;f; Si.~J<--1(k+l)

The mapping 1-4. maps the original set of nodes onto a new set such that the

costs of access from node i in the mapped matrix are in increasing order.

t €K 1 is the node which has the minimum cost of access from node i.

IK2I = IKo u K 1 1 (cardinaltiy of K2)

if IK,I = 0

if IKd > 0

K2iq = !x: xEK2 and J.Li(x)<;;J.Li(q)j

Now

E(Z) = L; G; + E(Z,) + E(Z2)
iEK1

E ('}'-J:p S;J) = C (K)

E(Z 2) = E(L; G;Y;)
jEK2

= L; G;E(Y;)
i €.}{ 2

2
(n-IK;;HJ

E(Y;} = C(K)

E(Z) = L; G;
i€K1

290

(C-5)

291

APPENDIX D BIBLIOGRAPHY

[AKI77] Akinc, U., and Khumawala, B., "An Efficient Branch and Bound Algo-

[ALC76]

[AND67]

[AND75]

[ARM63]

[ASC74]

[BAC75]

[BAD78]

[BAN79]

[BAS70]

[BAS75]

[BAS76)

[BAU58]

[BAU76]

[BEL77]

[BEN77]

[BER79)

[BHA75]

rithm for the Capacitated Warehouse Location Problem", Manage­
-ment Science, Vol. 23, No. 6, Feb. 1977, pp. 585-594.

Alcouffe, A., and Muratet, G., "Optimum Location of Plants",
Management Science, Vol. 23, No. 3, Nov. 1976, pp. 267-274.

Anderson, D.W., Sparacio, F.J. and Tomasulo, R.M., "The IBM System
360 Model 91: Machine Philosophy and Instruction Handling", IBM J.
of Research and Develop., Jan. 1967, pp.8-24.

Anderson, G. A. and Jensen, E. D., "Computer Interconnection
Structures: Taxonomy, Characteristics and Examples", Computing
Surveys, Vol. 7, No. 4, December, 1975.

Armour, G. C., and Buffa, E. S., "A Heuristic Algorithm and Simula­
tion Approach to Relative Location of Facilities", Manage-ment Sci­
ence, Vol. 9, No. 2, Jan 1963, pp. 294-309.

Aschim, F., "Data-Base Networks- An Overview", Management Infor­
mation, Vol. 3, No. 1, 1974.

Bachman, C., "Trends in Data Base Management", Proc. of AFIPS
National Co7nputer Conference, 1975, Vol. 44, AFIPS Press,
Montvale, NJ, 1975, pp. 569-576.

Badal, D. Z., "Data Base System Integrity", Digest of Papers, Camp­
con Sp. 78, pp. 356-359.

Banerjee, J., Hsiao, D. K., and Kannon, K., "DBC -A Data Base Com­
puter for Very Large Data Bases", IEEE Trans. on Computers, Vol.
C-28, No. 6, June 1979, pp. 414-429.

Baskett, F., Browne, J. C., and Raike, W. M., "The Management of a
Multi-level Non-paged Memory System", Spring Joint Computer
Conference, 1970, pp. 459-465.

Baskett, F., Chandy, K. M., Muntz, R. R., and Palacios, F. G., "Open,
Closed, and Mixed Networks of Queues with Different Classes of Cus­
tomers", JACM. Vol. 22, No. 2, April, 1975, pp. 248-260.

Baskett, F., and Smith, A. J., "Interference in Multiprocessor Com­
puter Systems with Interleaved Memory", CACM, Vol 19, No. 6, June
1976, pp. 327 - 334.

Baumel, W. J., and Wolfe, P., "A Warehouse Location Problem",
Operations Research, Vol. 6, March-April, 1958, pp. 252-263.

Baum, R. I., Hsiao, D. K., "Data Base Computers - A Step Towards
Data Utilities", IEEE Trans. on Comp., Vol. C-25, No. 12, Dec. 1976.

Belady, L. A., and Lehman, M. M., The Characteristics of Large Sys­
tems, IBM Research Report, RC6785, Sept. 1977.

Bentley, J. L., and Shames, M. I., Divide and Conquer for Linear
Expected Ti'me, Dept. of Computer Science and Mathematics
Report, Carnegie-Mellon University, 1977.

Berra, P. B., and Oliver, E., "The Role of Associative Array Proces­
sors in Data Base Machine Architecture", IEEE Co7nputer, March
1979, pp. 53-61.
Bhandarkar, D. P., "Analysis of interference in Multiprocessorsn,
IEEE Trans. on Co=puters, Vol. C-24, No. 9, Sept. 1975, pp. 897 -
908

[BOB71]

[BOL67]

[BON64]

[B0076]

[BRA76]

[BRI77]

[BUR70]

[BUR73]

[BUR75]

[CAS72]

[CHA75]

[CHA77]

[CHA78]

[CHU69]

[CHU76]

[COD70]

[COF71]

[DAN51]

[DAT77]

292

Bobeck, A. H., and Scovil. H. E. D., "Magnetic Bubbles", Scientific
Am,erican, Vol. 224, No. 6, pp. 78-90, June 1971.

Boland, L. J., Granito, G.D., Marcotte, A. V .. Messina, B. V .. and
Smith, J. W., "The IBM System 1360 Model 91 : Storage Systems",
IBM J. of Res. and Dev .. Jan. 1967, pp. 54- 68.

Bonner, R. E., "On some Clustering Techniques", IBM J. of Research
and Developm,ent, Vol. 8, No. 1, Jan. 1964, pp. 22-32.

Booth, G. M .. "Distributed Data Bases - Their Structure and Use",
Infotech State of the Art Report on Distributed System,s, 1976.

Bray, 0. H., "Distributed Data Base Design Considerations", Trends
and Applications, Com,puter Networks, 1976.

Briggs, F. A. and Davidson, E. S. "Organization of Semiconductor
Memories for Parallel - Pipelined Processors", IEEE Trans. on
CD17tp., Vol. C-26, No. 2, Feb. 1977, pp. 162- 169.

Burnett, G. J., and Coffman, Jr. C. G., "A Study of Interleaved
Memory Systems", Proc. AFIPS 1970 SJCC, Vol 36, pp. 467 -474,
AFIPS Press, Montvale, N.J.

Burnett, G. J., and Coffman, Jr. E. G., "A Combinational Problem
Related to Interleaved Memory Systems", JACM, 20, 1, Jan. 1973,
pp. 39-45.

Burnett, G. J., and Coffman, Jr. E. G .. "Analysis of Interleaved
Memory Systems Using Bolckage Buffers", CACM,
Vol. 18, No. 2, Feb. 1975, pp. 91 - 95.

Casey, R. G., "Allocation of Copies of a File in an Information Net­
work", AFIPS, SJCC, 1972, pp. 617-625.

Chandy, K. M. and Herzog, U., and Woo, L., "Approximate Analysis of
General Queeuing Networks", IBM J. of Research and Developm,ent,
Jan 1975, pp. 43-49.

Chang, D. Y., Kuck, D. J., and Lawrie D. H., "On the Effective
Bandwidth of Parallel Memories", IEEE Trans. on Com,p., May 1977,
pp. 480 - 490.

Chang, H., "On Bubble Memories and Relational Data Base", 4th lnt'l
Conf. on Very Large Data Bases, Berlin, Sept. 13-15, 1978, pp. 207-
229.

Chu, W. W., "Multiple File Allocation in a Multiple Computer System",
IEEE Trans. on Camp., Vol. C-18, No. 10, Oct. 1969, pp. 885-889.

Chu, K. C., Decentralized Dynam,ic Allocation Schem,e for Large
Congested Networks, IBM Research Report, RC6337, 1976.

Codd, E. F., "A Relational Model of Data for Large Shared Data
Bases", CACM, Vol. 13, No. 6, June 1970.

Coffman, Jr.,E. G., Burnett, G. J., and Snowdon, R. A., "On the Per­
formance of Interleaved Memories with Multiple Word Bandwidths",
IEEE Trans. Comput., C-20, 12, Dec. 1971, pp. 1570- 1573.

Dantzig, G. B., "Application of the Simplex Method to a Transporta­
tion Problem", Ch. 23 of Activity Analysis of Production and Alloca­
tion, T. C. Koopmans Ed., Cowles Commission Monograph, No. 13,
John Wiley and Sons, 1951.

Date, C. J., An Introduction to Data Base Systems, 2nd Edition,
Addison-Wesley, 1977.

[DDP78]

[DEN70]

[DEW79]

[DOW77]

[DRABS]

[EFRBB]

[EPS78]

[ERL74]

[ESW74]

[ESW76]

[FEL50]

[FEL66]

[FEN74]

[FET76]

[FL064]

[FLY66]

[FOS68]

[FOS76]

[FOS77]

293

Distributed Data Processing Workshop, Stanford University, Feb.
15-17. 1978.

Denning, P. J., "Virtual Memory", Co7nputing Surveys, Vol. 2, No. 3,
Sept. 1970. pp. 62-97.

DeWitt. D. J., "DIRECT - A Multi-processor Organization for Support­
ing Relational Data Base Management Systems", IEEE Trans. on
Co7nputers, Vol. C-28, No. 6, June 1979, pp. 395-406.

Downs, D., and Popek, G. J., "A Kernel Design for a Secure Data Base
Management System", Proc. Very Large Data Base, Oct. 1977, pp.
507-514.

Draper, N. R. and Smith H., Applied Regression Analysis, John Wiley
and Sons, New York, 1966.

Efroymson, M. A., and Ray, T. C., "A Branch and Bound Algorithm for
Plant Location", Operations Research, May-June 1966, pp. 361-368.

Epstein, et. al., Distributed Query Processing in a Relational Data
Bse Syste7n, Report No. UCB/ERL M78/18, Electronics Research
Laboratory, University of California, Berkeley, 1978.

Erlenkotter, D., "Dynamic Facility Location and Simple Network
Models" Manage7nent Science Notes, Vol. 26, No. 9, May 1974, pp.
1131.

Eswaran, K. P., "Placement of Records in a File and File Allocation
in a Computer Network", InfoT'Tnation Processing, 74, IFIPS, North
Holland Publishing Co., 1974.

Eswaran, K. P. et. al., "The Notions of Consistency and Predicate
Locks in a Data Base System", CACM, Vol. 19, No. 11, Nov. 1976, pp.
624-633. '

Feller, W. An Introduction to Probability Theory and its Applica­
tions, Vol. I, John Wiley & Son Inc. 3rd Ed. 1950.

Feldman, E., Lehner, F. A., and Ray, T. L., "Warehoude Location
under Continuous Economies of Scale", Manage7nent Science, Vol.
12, No. 9, May 1966, pp. 670-684.

Feng, T., "Data manipulating functions in parallel processor and
their implementations", IEEE Trans. Co7nput., Vol. C-23, pp. 309-
318, Mar. 1974.

Feth, G. C., "Memories: Smaller, Faster, and Cheaper", IEEE Spec­
tru7n, June, 1976, pp. 36-43.

Flores, 1., "Derivation of a Waiting-Time Factor for a Multiple Bank
Memory", JACM, Vol. 11, No. 3, July 1964, pp. 265- 282.

Flynn, M. J., "Very High Speed Computing Systems", Proc. of the
IEEE, Vol. 54, pp. 1901-1909

Foster, C. C., "Determination of priority in associative memories",
IEEE Trans. Electron. Co7nput., Vol. EC-17, pp. 788-789, Aug. 1968.

Foster, C. C., Content Addressable Parrallel Processors, New York:
Van Nostrand Reinhold, 1976.

Foster, D. V., Dowdy, L. W., Ames, J. E. IV, "File Assignment in Star
Network", Proc. of the 1977 Sigmetrics/CMG VIII Conf. on Co7np
Perf.: Modelling, Measurement and Management, Washington. D.C.,
Nov. 1977, pp. 247-254.

[FRA63]

[FRE61]

[FRY76]

[GIG73]

[GE072]

[GH076]

[GIL70]

[G0075]

[GRA70]

[GRA77a]

[GRA77b]

[HAN66]

[HEL67]

[HEV79]

[HIL66a]

[HIL66b]

[HOF78]

[HOL56]

294

Francis, R. 1., "A Note on the Optimum Location of New Machines in
existing Plant Layouts", The Journal of Industrial Engineering,
Jan-Feb 1963.

Frei, E. H. and Goldberg, J., "A method for resolving multiple
responses in a parallel search file", IRE Trans. Electron. Co"TTLput.,
Vol. EC-10, p. 718, Dec. 1961.

Fry, J. P. and Sibley, E. H., "Evolution of Data Base Management
Systems", Co=puting Surveys, Vol. 8, No. 1, March 1976, pp. 7-42.

Giglio, R. J., "A Note on the Deterministic Capacity Problem",
Manage"TTLent Science Notes, Vol. 19, No. 12, Aug. 73, pp. 1096-1099.

Geoffrion, A. M. and Marsten, R. E., "Integer Programming: A Frame­
work and State-of-the-Art Survey", Manage"TTLent Science, Vol. 18,
No. 9, May, 1972, pp. 465-491.

Ghosh, S. P., "Distributing A Data Base with Logical Associations on
a Computer Network for Parallel Searching", IEEE Trans. on
Software Engr., Vol. SE-2, No. 2, June, 1976, pp. 106-113.

Gilmore, P. C., "Optimal and Sub-optimal Algorithms for the Qua­
dratic Assignment Problem", Journal of the Society for Industrial
and Applied Mathe"TTLatics, Vol. 10. No.2. June, 1962, pp. 305-313.

Goodyear Aerospace Corporation, STARAN Reference Manual, Revi­
sion 2, GER-15636B, Akron, Ohio, June 1975.

Graves, G. W., and Whinston, A. B., "An Algorithm for the Quadratic
Assignment Problem", Manage"TTLent Science, Vol. 16, No. 7, March
1970, pp. 453-471.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H.
G., "Optimization and Approximation in Deterministic Sequencing
and Scheduling: A Survey", Proc. of Discrete Opti"TTLization, 1977,
Vancouver, Canada, Aug. 8-12, 1977.

Grapa, E., Belford, G. G., "Some Theorems to Aid in Solving the File
Allocation Problem", CACM, Vol. 20, No. 11, Nov. 1977, pp. 878-882.

Hanlon, A. G., "Content-addressable and associative memory sys­
tems: A survey", IEEE Trans. Electron. Co"TTLput .. Vol. EC-15, pp.
509-521. Aug. 1966.

Hellerman, H., Digital System Principles, McGraw Hill. New York,
1967, pp. 228- 229.

Hevner, A. R., and Yao, S. B., "Query Processing in Distributed Data
Bases", IEEE Trans. on Software Engineering, Vol. SE-5, No. 3, May
1979, pp. 177-187.

Hilberg, W., "Simultaneous multiple response in associative
memories and readout of the detector matrix", IEEE Trans. Elec­
tron. Co"TTLput., Vol. EC-15, pp. 117-118, Feb. 1966.

Hiller. F. S., and Connors, M. M., "Quadratic Assignment Problem
Algorithms and the Location of Indivisible Facilities", Manage"TTLent
Science, Vol. 13, No. 1. Sept. 1966, pp. 42-57.

Hofri, M., and Jenny, C. J., On the AUocation of Processes in Distri­
buted Co71Lputer Systems, IBM Research Report, RZ905, 1978.
Hollander, G. L., "Quasi-Random Access Memory Systems", AFIPS
Conf. Proc. EJCC, 1956, pp. 128-135.

[HOL79]

[H0077]

[HSI77]

[HUG75]

[JAR71]

[JEN77]

[JOH54]

[KAR72]

[KAU69]

[KAU71]

[KEM65]

[KER79]

[KHU72]

[KLI74]

[KNU75]

[K0057]

[KON68]

[KRI78]

[KUE63]

295

Hollar, L. A., "A Design for a List Merging Network", IEEE Trans. on
Computers, Vol. C-28, No.6, June 1979, pp. 406-413.

Hoogendoorn, C.H., "A General Model for Memory Interference in
Multi-processors", IEEE Trans. on Camp., Vol. C-26, No. 10, Oct.
1977, pp.998-1005.

Hsiao, D. K., and Madnick, S. E., "Database Machine Architecture in
the Context of Information Technology Evolution", Proc. Very Large
Data Base, Oct. 1977, pp. 63-84.

Hughes, W. C., et. al., "A Semiconductor Nonvolatile Electron Beam
Accessed Mass Memory", Proc. IEEE, Vol. 63, No. 8, Aug. 1975, pp.
1230-1240.

Jardine, N. and Van Rijsbergen, C. J., "The Use of Hierarchical Clus­
tering In Information Retrieval", Information Storage and
Retrieval, Vol. 7, 1971. pp. 225-239.

Jenny, C. J., Process Partitioning in Distributed Systems, IBM
Research Report, RZ873, 1977.

Johnson, S. M., "Optimal Two- and Three Stage Production Schedule
with Setup Times included", Naval Research Logistics Quarterly,
Vol. 1, pp. 61-68.

Karp, R. M., "Reducibility among Combinatorial Problems", Com­
plexity of Computer Computations, R. E. Miller and J. W. Thatcher
eds., Plenum Press, New York, 1972, pp. 85-104.

Kautz, W. H., "Cellular logic in memory arrays", IEEE Trans. Elec­
tron. Co-mput., Vol. EC-18, pp. 719-727, Aug. 1969.

Kautz, W. H., "An augmented context-addressed memory array for
implementation with large-scale integration", JACM, Vol. 18, pp.
19-33, Jan. 1971.

Kemeny, J. G. and Snell, J. L., Finite Markov Chains, D. Van Nos­
trand Company, Inc. 1965.

Kerr, D. S., "Data Base Machine with Large Content-Addressable
Blocks and Structural Information Processes", Co-mputer, Vol. 12,
No. 3, March 1979, pp. 64-79.

Khumawala, B. M., "An Efficient Branch and Bound Algorithm for the
Warehouse Location Problem", Management Science, Vol. 18, No.
12, Aug. 1972, pp. B718-B731.

Klimov, G. F., "Time Sharing Service Systems I", Theory of Probabil­
ity and its Applications, Vol. 19, 1974, pp. 532-551.

Knuth, D. E., and Rao, G. S., "Activity in an Interleaved Memory",
IEEE Trans. On Camp., Vol. C-24, No. 9, Sept. 1975, pp. 943- 944.

Koopmans, T. C. and Beckmann, M., "Assignment Problems and the
Location of Economic Activities", Econometrica, Vol. 25, No. 1, Jan.
1957, pp. 53-76.

Kongeim, A. G., "A Note on Time Sharing with Preferred Custo­
mers", Z. Warsch, Verw, Geb. 9, 1968, pp. 112-130.

Krishnarao, T., A Systematic Design and Analysis of Reconfigurable
Distributed Computer Syste-ms, Ph.D. Dissertation, University of
California, Berkeley, June 1978.

Kuehn, A. A., and Hamburger, M. J., "A Heuristic Program for Locat­
ing Warehouses", Management Science, Vol. 9, No. 4, July 1963, pp.

[LAN77]

[LAN79]

[LAW63]

[LEH76]

[LEN77]

[LEV74]

[LEV75]

[LEW62]

[IJN76]

[LIP78]

[L0075]

[10076]

[MAH76]

[MAN64]

[MAR75]

[MEI77]

[Mll64]

[MOE78]

296

643-666.

Landis, D., "Multiples-response resolution in associative systems~',
IEEE Trans. Comput., Vol. C-26, pp. 230-235, Mar. 1977.

Langdon, Jr., G. G., "Data Base Machine, An Introduction", IEEE
Transactions on Computers, Vol. C-28, No. 6, June 1979, pp. 381-
383.

Lawler, E. L., "The Quadratic Assignment Problem", Management
Science, Vol. 9, No. 4, July 1963, pp. 586-599.

Lehman, M. M., and Parr, F. N., "Program Evolution and its Impact
on Software Engineering", Proc. of the 2nd International Confer­
ence in Software Engineering, Oct. 1976.

Lenstra, J. K., Rinnooy Kan, A. H. G. and Brucker, P., "Complexity of
Machine Scheduling Problems", Annals of Discrete Mathematics,
Vol. 1, North Holland Publishing Co., 1977, pp. 343-362.

Levin, K. D., Orgc.nizing Distributed Data Bases in Computer Net­
works, Ph.D. Dissertation, University of Pennsylvania, 1974.

Levin, K. D., Morgan, H. L., "Optimizing Distributed Data Bases-A
Framework for Research", Proc. NCC, 1975, pp. 473-478.

Lewin, M. H., "Retrieval of ordered lists from a content-addressed
memory", RCA Rev., Vol. 23, pp. 215-229, June 1962.

Lin, C. S., et. al., "The Design of a Rotating Associative Memory for
Relational Data Base Applications", ACM Trans. on Data Base Sys­
tems, Vol. 1, No. 1, March, 1976.

Lipovski, G. J., "Architectural Features of CASSM: A Context
Addressed Segment Sequential Memory", Proc. 5th Ann. Symp. on
Camp. Arch., ACM-SIGARCH, pp. 31-38.

Loomis, M. E. S., Data Base Design: Object Distribution and
Resource Constrained Task Scheduling, Ph.D. Dissertation, Camp.
Sci. Dept., UCLA, 1975.

Loomis, M. E. S., and Popek, G. J., "A Model for Data Base Distribu­
tion", Camp. Networks: Trends and Applications, 1976, IEEE, pp.
162-169.

Mahmoud, S., Riordan, J. S., "Optimal Allocation of Resources in Dis­
tributed Information Networks", ACM Trans. on Data Base Systems,
Vol. 1, No. 1, March 1976, pp. 66-78.

Manne, A. S., "Plant Location Under Economies of Scale Decentrali­
zation and Computation", Management Science, Vol. 11, No. 2, Nov.
1964, pp. 213-235.

Marill, T., and Stern, D., "The Datacomputer - A Network Data Util­
ity", AFIPS Conference Proceedings, 44, 1975, pp. 389-395.

Meilijson, 1., and Weiss, G., "Multiple Feedback at a Single Server
Station", Stochastic Processes and their Applications, North Hol­
land Publishing Co., Vol. 5, 1977, pp. 195-205.

Miiller, H. S., "Resolving multiple responses in an associative
memory", IEEE Trans. Electron. Comput. Vol. EC-13, Short Notes,
pp. 614-616, Oct. 1964.
Moeller, A., "Fabrication Technology and Physical Fundamentals of
Components used for Semiconductor Memories", Digital Memory
and Storage, W. E. Proebster Ed., Braunschweig: Vieweg, 1978.

[MOR77]

[MUN74]

[NUT77]

[OZK77]

[PAR72]

[PAR73]

[POH75]

[RAM70]

[RAM76]

[RAM7Ba]

[RAM7Bb]

[RAM79a]

[RAM79b]

[RAM79c]

[RA077]

[RAV72]

297

Morgan, H. L., and Levin, K. D., "Optimal Program and Data Loca­
tions in Computer Networks", CACM, Vol. 20, No. 5, May, 1977, pp.
315-322.

Muntz, R. R., et. al., "Stack Replacement Algorithms for Two Level
Directly Addressable Paged Memories", SIAM J. on Computing, Vol.
3, No. 1, March, 1974, pp. 11-22.

Nutt G. J., "Memory and Bus Conflict in an Array Processor", IEEE
Trans. on Camp., Vol. C-26, No. 6, June 1977, pp. 514- 521

Ozkarahan, E. A., et. al., "Performance Evaluation of a Relational
Associative Processor", ACM Trans. on Data Base System.s, Vol. 2,
No. 2, June 1977, pp. 175-195.

Parhami, B., "A Highly Parallel Computing System for Information
Retrieval", AFIPS Conj. Proc., 1972, FJCC, Vol. 41, Part II, pp. 681-
690.

Parhami, B., "Associative memories and processors: An overview
and selected bibliography", Proc. IEEE, VoL 61, pp. 722-730, June
1973.

Pohm, A. V., "Cost/Performance Perspectives of Paging with Elec­
tronic and Electro-mechanical Backing Stores", Proc. of the IEEE,
Vol. 63, No. B, Aug. 1975, pp. 1123-1128.

Ramamoorthy, C. V., and Chandy, K. M., "Optimization of Memory
Hierarchies in Multi-programmed Systems", JACM, Vol. 17, No. 3,
July, 1970, pp. 426-445.

Ramamoorthy, C. V., and Krishnarao, T., "The Design Issues in Dis­
tributed Computer Systems", Inftotech State of the Art Report on
Distributed Systems, 1976, pp. 375-400.

Ramamoorthy, C. V., Turner, J. C., and Wah, B. W., "A Design of a
Cellular Associative Memory for Ordered Retrieval", IEEE Trans. on
Comp., Vol. C-27, No. 9, Sept. 1978.

Ramamoorthy C. V. and Ho, G. S., "A Design Methodology for User
Oriented Computer Systems", Proc. National Computer Conference,
AFIPS Press, 1978, pp. 953-966.

Ramamoorthy, C. V., and Wah, B. W., "Data Management in Distri­
buted Data Bases", Proc. National Computer Conference, AFIPS
Press, 1979, pp. 667-679.

Ramamoorthy, C. V., Ho, G. S., and Wah, B. W., "Distributed Com­
puter Systems - A Design Methodology and its Applications to the
Design of Distributed Data Base Systems", to appear Infotech State
of the Art Report on Distributed Systems, 1 979.

Ramamoorthy, C. V., and Wah, B. W., "File Placements of Relations
in a Distributed Relational Data Base", Proc. First International
Conference on Distributed Computer Systems, Huntsville, Alabama,
Oct. 1979.

Rao, R. C., and Rutenberg, D. P., "Multi-location Plant Sizing and
Timing", ManageTnent Science, Vol. 23, No. 11, July 1977, pp. 1187-
1198.

Ravi, C. V., "On the Bandwidth and Interference in Interleaved
Memory Systems", IEEE Trans. on Camp. Vol. C-21, No. B, Short
Notes, Aug. 1972, pp. 899 - 901.

[RIT72]

[ROS76]

[ROT77]

[RUD77]

[SA 69]

[SAS75]

[SAU75]

[SCH78]

[SCH79]

[SIC77]

[SEE62]

[SIL76]

[SK!69]

[SLA56]

[SL070]

[SM!76]

[SMI77]

[SNY71]

[SPI69]

298

Ritzman, L. P., "The Efficiency of Computer Algorithms for Plant
Layout", Manage'TTLent Science, Vol. 18, No. 5, Jan. 1972, Part I, pp.
240-248.

Ross, Sheldon M., Introduction to Probability Models. Academic
Press, 1976.

Rothnie, J. B., and Goodman, N., "A Survey of Research and Develop­
ment in Distributed Data Base Management" Third Int'l Conf. on
Very Large Data Bases, 1977, pp. 48-62.

Rudin, H., "On Alternate Routing in Circuit Switched Data Net­
works", InfoT'TTLation Processing 77, IFJPS, North Holland Publishing
Co., 1977, pp. 321-326.

Sa, G., "Branch and Bound and Approximate Solutions to the Capa­
citated Plant Location Problem", Operations Research, Vol. 17, No.
6, Nov-Dec 1969, pp. 1005-1016.

Sastry, K. V. and Kain, R. Y., "On the Performance of Certain Mul­
tiprocessor Computer Organizations", IEEE Trans. on Co'Tnp. Vol.
c-24. Nov. 1975, pp. 1066 - 1074.

Sauer, C. H. and Chandy, K. M., "Approximate Analysis of Central
Server Models", IBM J. of Research and Develop'TTLent, May, 1975,
pp. 301-313.

Schunemann, C., and Spruth, W. G., "Storage Hierarchy Technology
and Organization", Digital Me'TTLory and Storage, W. E. Proebster
ed., Braunschweig: Vieweg, 1978.

Schuster, S. A., et. al., "RAP.2 - An Associative Processor for Data
Base and its Applications", IEEE Trans. on CO'TTLputers, Vol. C-28,
No. 6, June 1979, pp. 446-458.

Sickle, L. V., and Chandy, K. M., "Computational Complexity of Net­
work Design Algorithms", InjaT'TTLation Processing 77, JFJPS, North
Holland Publishing Co., 1977.

Seeber, R. R. and Lindquist, A. B., "Associative memory with
ordered retrieval", IBM J. Res. Develop., Vol. 6, p. 126. Jan. 1962.

Siler, K. F., "A Stochastic Evaluation Model for Data Base Organiza­
tion in Data Retrieval Systems", CACM, Vol. 19, No. 2, Feb. 1976, pp.
84-95.

Skinner, C. E., and Asher, J. R., "Effects of Storage Contention on
System Performance", IBM Sys. J., No. 4, 1969, pp. 319- 333.

Slade, A. E. and McMahon, H. 0., "A cryotron catalog memory sys­
tem", Proc, Eastern Joint Co'TTLput. Conj., Dec. 1956, pp. 115-119.

Slotnick, D. L., "Logic Per Track Devices", Advances in Co'Tnputers,
Academic Press, 1970, pp. 291-296.

Smith, A. J., Characterizing the Storage Process and its Effects on
the Update of Main Me'TTLory by Write- Through, Research Report,
University of California, Berkeley, 1976.

Smith, A.J., "Multi-processor Memory Organization and Memory
Interference", CACM, Vol. 20, No. 10, Oct. 1977, pp.754-761.

Snyder, R. D., "A Note on the Location of Depots", Manage'TTLent Sci­
ence, Vol. 18, No. 1, Sept. 1971, pp. 97.

Spielberg, K., "An Algorithm for the Simple Plant Location Problem
with some Side Conditions", Operations Research, Vol. 17, Jan-Feb

[ST075]

[ST077a]

[ST077b]

[ST078a]

[ST078b]

[STR70]

[STR77]

[SU 79]

[SWE76]

[TEL78]

[TER76]

[THE78]

[TOM67]

[TUE76]

[TUR72]

[UPT78]

[WAH76]

[WAR76)

299

1969, pp. 85-115.

Stone, H. S., "Parallel Computers", ·chapter 8, Introduction to CoTn­
puter Architecture, H. S. Stone ed., SRA Inc., 1975.

Stone, H. S., "Multi-processor Scheduling with the Aid of Network
Flows", IEEE Trans. on Soft. Engr., Vol. SE-3, No. 1, Jan. 1977, pp.
85-93.

Stone, H. S., Progra1n AssignTnent in Three- Processor SysteTnS and
Tricut Partitioning on Graphs, Report No. ECE-CS-77-7, University
of Massachusetts, Amherst, Mass., 1977.

Stone, H. S., "Critical Load Factors in Two Processor Distributed
Systems", IEEE Trans. on Software Engineering, Vol. SE-4, No. 3,
May 1978, pp. 254-258.

Stone, H. S., and Bokhari, S. H., "Control of Distributed Processes",
Co1nputer, July 1978, pp. 97-106.

Strecker, W. D., Analysis of the Instruction Execution Rate in Cer­
tain Co1nputer Structures, Ph.D. Th., Carnegie Mellon U., Pitts­
burgh, Pa., 1970.

Stritter, E., File Migration, Stanford Linear Accelerator Center
Report, SLAC-200, Jan. 1977.

Su, S. Y. W., Nguyen, L. H., Emam, A., and Lipovski, G. J., "The Archi­
tectural Features and Implementation Techniques of the Multi-cell
CASSM", IEEE Trans. on CDTnputers, Vol. C-28, No. 6, June 1979, pp.
430-445.

Sweenly, D. J., and Tatham, R L., "An Improved Long Run Model for
Multiple Warehouse Location", Manage1nent Science, Vol. 22, No. 7,
March 1976, pp. 748-758.

Telenet Data CoTnTnunication Network Rate Schedule, Abstract of
Telenet Tariff, FCC No. 1, Effective July 1, 1978.

Terman, F. W., A Study of Interleaved Me1nory Syste1ns by Trace
Driven Si1nulation, Technical Note No. 94., Digital Systems Lab.,
Stanford Electronics Lab., Stanford University, Stanford, CA. 94305,
Sept. 1976.

Theis, D. J., "An Overview of Memory Technologies", Data1nation,
Jan. 1978, pp. 113-131.

Tomasulo, R.M., "An Efficient Algorithm for Exploiting Multiple
Arithmetic Units", IBM J. of Research and Develop .. Jan 1967,
pp.25-33.

Tuel, W. G., "An Analysis of Buffer Paging in Virtual Storage Sys­
tems", IBM J. of Research and Develop1nent, Sept. 1976, pp. 518-
520.

Turner, J. L., A design for a fast sorting associative TneTnory, Mas­
ter of Science Thesis, University of Texas at Austin, Aug. 1972.

Upton, M., "Price/Performance Game Rules Change", Co1nputer
World, hn. 23, 1978, p. 61.

Wah, B. W. Analysis of Buffering in Me1nory Interleaving, M. S.
Report, University of Calif., Berkeley, Dec. 1976.

Warren, H. S. Jr., Static Main Storage Packing Proble1ns, IBM
Research Report, RC-6302, Nov. 1976.

!

[WE163]

[WE177)

[WES73]

[WON76]

[WON77)

[YAN66]

300

Weinstein, H., "Proposals for ordered sequential detection of simul­
taneous multiple responses", IEEE Trans. Electron. C<YTTLput.,
(Corresp.), Vol. EC-12, pp. 564-567, Oct. 1963.

Weide, B., "A Survey of Analysis Techniques for Discrete Algo­
rithms", ACM Co-mputing Surveys, Vol. 9, No. 4, December 1977, pp.
291-314.

Wesolowsky, G. 0., "Dynamic Facility Location", Manage-ment Sci­
ence, Vol. 19, No. 11, July, 1973, pp. 1241-1248.

Wong, E., and Youssefi. K., "Decomposition - A Strategy for Query
Processing", ACM Trans. on Data Base Syste-ms, Vol. 1, No. 3, Sept.
1976, pp. 223-241.

Wong, E., Restructuring Dispersed Data fro-m SDD- 1: A Syste-m for
Distributed Data Bases, Camp. Corp. of America. Tech. Rep. CCA-
77-03, 1977.

Yang, C. C. and Yau, S. S., "Cutpoint cellular associative memory".
IEEE Trans. Electron. Co-mput., Vol. EC-15, pp. 522-528, Aug. 1966.

