RESOURCE ALLOCATION IN COMPUTER NETWORKS this is dedicated

to my parents

A Thesis

Submitted to the Faculty
of

Purdue University

Jie-Yong Juang

In Partial Fulfillment of the

Requirements for the Degree
of
Doctor of Philosophy

s

August 1935

il

ACKNOWLEDGMENTS

This thesis could not have been accomplished without the advice and sup-
port of Professor Benjamin W. Wah, to whom the author would like to express
his most sincere gratitude. The author is also grateful to the other advisory
committee members, Professors Edward Coyle, K. S. Fu, Frederic J. Mowle,

and Andrew Whinston for their guidance and comments.

This thesis is fortunate to receive consistent support from the National
Science Foundation Grants ECS 81-05068 and IECS 80-16580, and CIDMAC, a
research unit of Purdue University, sponsored by Purdue, Cincinnati Milicron
Corporation, Control Data Corporation, Cummins Engine Company, Ransburg

Corporation, and TRW,

iv

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES....ccooeieinee revereeeere s
ABSTRACT........ et e ettt eae— e s ettt et et a e ren e en e xiit
CHAPTER I - INTRODUCGTION L. e 1
1.1 A Generic Model of Resource Sharing Computer
SYSLETNS 1uveeneiuieireeenreirmrars et see st rsr s e SRS 2
1.2 Resource Scheduling....... ettt et oa——eniaatee rtaeeee et ir e peae e e e e ettt 11
1.2.1 Issues of Resource Scheduling.....cocoeeiirnns creereesresnane st e i1
1.2.2 Efficiency of Resource Scheduling. ..o 13
1.2.3 Scheduling Diselplines.. o 15

16

1.3 The Objective of This Thesis.
1.4 The Organization of This Thesis

CHAPTER 11 - A TAXONOMY OF RESOURCE ALLOCATION
SCHEMES .

2.1 A Taxonomy of Resource-Allocation Schemes ...
2.2 Implementation Considerations and A Design

Methodology 22
CHAPTER II - RESOURCE ALLOCATION IN SINGLE

CONTENTION BUS ... e erteeseeeastaaneane et ieate e e an e aeae et eaen 24

3.1 Single Contention Bus Networks o 24

3.2 The Optimal Resource Allocation Algorithms..oiinn 28

3.3 A Distributed Minimum-Search Algorithm ... 30

3.4 Integration on A Bit-Serial Single Contention Bus.ois 31

3.5 Window Control Algorithms 33

ix
Figure Pag
3.6 The performance of the window protocol with different
window controls and load-estimation methods ..o IUURURSTRORPTOROR:
37 Comparison of Ethernet Binary Exponential Backoff algorithm
LIST OF FIGURLES with dynamic-programming window control v e 47
3.8 Dlustration of the maximum probability of successful contention
and the maximum of the approximation function g
(upper bound = 0.4, lower bound = 0.3) s e ST OSSO £ |
Figure Page
4.1 A resource sharing computer system connected by a bit-parallel
1.1 A generic model of resource sharing computer systems COREERLION DUS..ciitee i iiieirteerrteess crreerrre et s s s b52
4.2 Parameter-space partitioning for
1.2 A queucing representation of local computer network determining the maximum using the MACD
with load balaneing. . e reeseaeeree st seresaeseennee § contention-resolution SCHEMEcooowmerreccririnrienss s 1)
1.3 An organization of VLSI systolic-array multiprocessors S PUUUUURS PO ¢ 4.3 The probability that the maximum is determined by 2 MACD
scheme in one step of contention [SE TSNV ROURUUUUOUROUURPROTOTRRPRRRIPPOY £
1.4 A data-flow rmulliprocessor ... e etiireneereenaeereeeesennene e 10
4.4 Average number of contention slots for resolving
1.5 A queueing model for resource sharing confliets of bus requests using MACD schemes oo TSP §
computer Zw.égm:
4.5 The choice of the size of code space...coivvrnnnn e s R ‘g
2.1 A taxonomy of resource-allocation schemes ... JURTUTPUPPRSTUPPRUOTIRRRIS ¢
5.1 A resource sharing computer system
3.1a A resource sharing system connected connected by multiple buses RRTPUURTIOURORe o e
by a single contention bus R RO U U OO URURUURRIOORPOSPRS.S:
5.9 Transceiver arrangement in the interface between a processor
3.1b The operations of a contention bus with and multiple buses ceree e TP EP U STIRPP ORISR 8
alternating phases ... s e e a e rae e nanaeaene e 2O
5.3 A queueing-network representation of the distributed
3.2 A typical contention resolution protocol routing scheme in multiple-bus networks...............
showing the transmission of one message............... SSPPPSOUUUPPUUPRRRPe .Y
5.4 The percentage of channel being wasted
3.3 An example illustrating the updates of the global window ﬁwmowmvmwwzn routing}...... rreerieernenns 8
to isolate the station with minimum contention parameter
{Braces indicate windows used in different SEEDST w32 5.5 The percentage of channel being wasted
(state-dependent FOULIRE) .o i IOPUTURRRIN !
3.4 A window protocol for determining the minimum of
distributed rand~m numbers e e SSUUTROURUIO: & | 5.6 Comparison of probabilistic routing and

3.5 Possible sizes and positions of a window
during a contention............. e e R

state-dependent routing with load-estimation.....oooiiiins A

xi

Figure Page
57 Ilustration of heuristic window control............... srveresrennenesinceessnnesn 108
58 A multi-window ordered selection procedure.....oooonnnniinien- 110
59 A heuristic window-control procedure ... RUUUUISUURRTORROPRRS § § |

5.10 The performance of multi-window ordered selection ..ovvvrercviininnnn 121

5.11 The performance of multi-window ordered selection

with fixed number of buses .o 22

..... e 122
6.1 Different connection states of
a 2% 2 cross-bar switch e e 12D

6.2 A multistage resource sharing interconnection network

embedded in an 8x8 Omega network ... 2

6.3 The associated flow-network obtained from Figure 6.2
by Transformation 8.3 ESUURORPUUURUROVOUPIRPRRRRIRORS b 443

6.4 Iustration of flow-augmenting paths.. cerrernerannens 137
6.5 Ilustration of a resource relocation .. crerrareeereno- 130
£.6 A MIRSIN with request priority and resocurce preference...iinnn 143

8.7 The associated flow network obtained from Figure 6.6
by Transformation 8.2 i ISRV rreeeerereenn . 144

6.8 ustration of the generation a layered network .o, rerreneeneen e 181

8.0 A systolic architecture of a homogeneous MIISIN embedded in an

88 Omega netWoTK . UTTTOTIR e 153

6.10 State transition diagram of 2 homogeneous MRSIN

without priority and preference ... e JRUTEIUPTRRRII weerveennea 157
8.11 Path labeling of a switeh i e teteerereernersnsenees e 180
.12 Organization of a switching element oo SRUURTURUUUUSIUTUUOURPRRTRRG 1 1.

.13 Partial state transition diagram of a switching element ... e 183

Figure Pag
6.14 All the possible state transitions

during a switch reconfiguration

from a cross connection to a parallel connection ..coviiiviinnn168

6.15 All the possible state transitions
during a switch reconfiguration
from a parallel connection to a cross €onnection ..o..oovvieeeeens e ... 167

6.16 All the possible state transitions
during a switch reconfiguration
{path 1 was registered and becomes £0-L:) [T eeeeee 168

6.17 All the possible state transitions
during a switch reconfiguration
{path ! was free and becomes registered)......ocoevoruecenneseeeeneennenen 170

Appendix
Figure

A.1 A protocol to support MAX-MIN load bafincing
in CSMA/CD networks SRS O TS UU VPV SRR OUOPRPRURSRRPRPHRRITS Ly

A.2 A reduction in job response time under load balancing
with no message traflic ... verereereneenn 200

A3 Effects of the ratio of service to transmission delaysc..oinn.. 201
A.4 Effects on load balancing due to message traffic............. s v 207

B.1 Performance of the TREE-URN protocol with dynamic-programming
window control............. e SRUTTOSR e s 22(

vi

Page
CHAPTER VI - RESOURCE ALLOCATION IN MULTISTAGE
INTERCONNECTION NETWORKS ..o e 124

6.1 Multistage Resource Sharing Interconnection Networks .
6.2 Resource Scheduling in Multistage Intercounection

Networks e e et eaeestehebeeearaeeeaaa e e e e e st et e e ar s e e ...127
6.3 Optimal Resource Schieduling for Soaomgoczu MRSINs....cocouneee 128
8.3.1 Flow Networks........ et e e et s ... 130
6.3.2 Optimal Resource Mapping in Eosommzoc:w MRSINs............ 131
6.3.3 Homogeneous MRSINs with Request Priority and
Resource Preference. e 140
6.4 Optimal Resource Scheduling for :rﬁw«omozmosm Ewwuzw vere- 140
8.5 A Systolic Architecture with Broadeasting for MRSIN ..o ..149
6.5.1 Dinie’s Maximum-Flow Algorithm........ooovni oo 148
6.5.2 w Systolic MRSIN .. veeern 152
6.5.3 The Coutrol Processes in
A Network Switching Element.158
8.8 Concluding Remarks .o e 171
CHAPTER VI - SUMMARY AND CONCLUSIONS .., 173
Tl SUIMIIMATY coriiiiieniiiciiaseirtinaesces crreteaessetitntsaa et eensassnansn onssncnes 173
7.2 Extended Applications...cv 175
7.2.1 The Distributed Minimum-Search Algorithm ... 175
7.2.2 The Multi-Window Ordered-Selection Algorithm178
7.2.3 The Systolic Max-Flow Architecture176
7.3 Suggested Future Studies .ot veveeenne 177
7.3.1 Fault-Tolerant Resource-Allocation Schemes. ...y 177
7.3.2 Adaptation to Network Operating Systems........ vt 177
7.3.3 Special Purpose Computer Networks .. 177
7.3.4 Distributed Algorithms Synchronized by Message
BroadcaSting v vvenirion i e e RIS rf:!
7.4 Conclusions .o et e hhneteavaneheh e fteaeseuns bt et e e e arenes 178
LIST OF REFERENCES ... BTSSRSO ROPUPPPPRPRRN 180
APPENDICES

Appendix A: Load Baloneing on Systems Connected by
A CSMA/CD Network

A1 Load Balancing
A2 MAX-MIN Load Balancing Strategy ..o 104

v
Page
3.5.1 Binary-Divide Window Control ..ccoonveriinii e 35
3.5.2 Dynamic-Programming Window Control.................... U, 40
3.5.3 Optimal Greedy Window Control.......coocvimniiii i 48
3.5.4 Approximate Greedy Window Control ... 53
3.6 Load Estimationsccoiovvinvrnmeiinin e e et 56
3.6.1 Maximum Likelihood ropm musawroa ORI 56
3.6.2 Improving Load Estimation by ARMA ... 58
3.7 Estimating the Distribution Function of
Contention Parameters..........cccceeei. eeeeereeere e e eeaae e btreee e nhreesereeas 58
3.8 Concluding Remarkscccooiiiiiiiii e 50

CHAPTER IV - DISTRIBUTED EXTREMUM SEARCIH IN
BIT-PARALLEL CONTENTION-BUS NETWORKS

4.1 Multi-Access Code-Deciphering Contention Resolution
4.2 Implememtation of MACD
4.2.1 Unary Code oo it e e s
4.2.2 Binary Code .ot e s
4.3 Determining the Maximum Priority CmEm MACD
4.3.1 Code-Space Partitioning

4.3.2 Parameter-Space Partitioning......... e e s 69
4.4 Evaluation of MACD Contention Resolution Scheme.........ociil 70
4.5 Adaptive MACD Contention Resolution Scheme......... 76

Concluding Remarks.......... et eveerrreennaaee BTSSP TR SUSUION 81

CHAPTER V - RESOURCE ALLOCATION IN MULTIPLE
CONTENTION-BUS NETWORKS................ et e e 83

5.1 Architecture of Mulliple Contention-Bus Networks

5.2 Resource Scheduling for Multiple Contention Buses................ 86

5.3 Random Resource Allocation with Distributed Routing...
5.3.1 A Queuing Network Representation of Packet

Routing Schemes . e e 00
Probabilistic Routing....... ettt bt e e e e eteas et eennreeeetrs it tenrt e enn 40

5.3.3 State-Dependent ROULNE oovvivvericiiere s 85
5.4 Resource Allocation with Distributed Ordered Selection 100
5.4.1 Multi-Window Controli..ovivininnnnnn. BTN OURUNUIURI 103
5.4.2 Sequencing The Selected Numbers ..o 105
5.4.3 The Termination Condition.....oococcevvivivieniiennnnn, TR v 108

5.5 A Multi-Window Search Scheme for Ordered Selectionooovveenn, 106
5.5.1 Proof of Correctness e s e e et arasantriarei 109
5.5.2 Performance of The Protocol e, UTUTT 115

5.6 Concluding Remarks ..o 120

vii

A.3 A CSMA/CD Protocol for Supporting
MAX-MIN Load Balancing Strategy ...
A4 Performance of MAX-MIN Load Balancing ...ccovvvrinvininnn. 188

Appendix B: Unification of Adaptive CSMA /CD Protocols........ veeerenen-203

B.1 Introduction .oveeeveveeeeeeneeriiieneneenen, v rrrrveeeeerearecerrenerennees 203
B.2 Characteristics of The Window Protocols....cccovvvcniciiiiinnnnnnnn 205
B.3 The Family of Window Protocols........ e rereeeernerersereerenonesees 20D
B.3.1 Adaptive-Tree-Walk Protocol ...ooovvrvinniniiinnnnn 208
B.3.2 Urn Protocol e iiieoiieeeiceecrrenrnnrerreeeeencveonseeessonsnne- 210

B.3.3 Priority-CSMA Protocol.....o.ee. FUOSUROUUPROUPIROPPPRTROTS-.S § |
B.3.4 Arrival-Time-Window Protocol....ccvvevicieeivcnncnnnccinnennn. . 213
B.3.5 Virtual-Window Protocol UTUT U UPUIOTUIURRURUIROUN .4 L |

B.4 Performance of the Window Protocols...cooocnveinininnnnn 216
B.4.1 Virtual-Window and
Arrival-Time-Window Protocols i 00 217

B.4.2 Tree-Walk and Urn Protocols ... v irsreeniesnereenreenssese B 18
B.5 Concluding Remarks. ... SRR crrerenienee 223

Vil

LIST OF TABLES
Table Pa;

3.1 Performance of the window protocol
_with dynamic-programming window control. {r=10) ... 44

3.2 The effect of truncation on the performance
of the window protocol with dynamic-programming
window ¢ontrol {B=20).c..cciiiir e e 4D

3.3 Summary of the proposed resource allocation scheme
in single contention-bus networks (bit-serial bus) ... v B0

e
ot

Summary of the proposed resource allocation scheme
in single contention-bus networks {bit-parallel bus)..................82

o
fns

E{Z), the expected number of X{'s falling in a

. .o .
window of size — when the estimated

e
number of random numbers in an unsearched interval

(OF STZ€ W) IS Yovrroveriseeeeesniseisseeesses s eseese e sseesene s esenaniesnsnnne s 1 1B

5.2 The design of the distributed resource allocation scheme
in multiple contention-bus networks ..o vern 123

8.1 Summary of the proposed distributed resource allocation

scheme in multistage resource sharing interconnection

HEEWOTKS oot eiin et e e st st smsessatssesesstces sosseesseseenennnserenssorseaees L F S
Appendix

Table

B.1 Simulation results of the TREE-URN protocol with
dynamic-programming window control
{number of stations = 10}. 22

e e 13

dynamic programming window control
{number of stations = 20). ... e 222

L P A 4

ABSTRACT

Juang, Jie-Yong. Ph.D., Purdue University. August 1085. Resource Allocation
in Computer Networks. Major Professor: B. W. Wah.

In this thesis, we have studied the resource-allocation problem in resource
sharing computer systems. A resource sharing computer system is character-
ized by a pool of request generators and a pool of resources interconnected by a
resource sharing interconnection network. Central issues in resource scheduling
inciude the minimization of resource conflicts, the reduction of the probability
of network blockage or congestion, and the balance of workload among
resources, Evaluations indicated that distributed state-dependent scheduling
schemnes are preferable. Moreover, integrating the scheduling schemes into the
network protocol significantly reduces the overhead of collecting status infor-
mation.

A methodology has been proposed to optimize the resource mapping,
reduce the scheduling overhead, and [facilitate a fast implementation. The
methodology has been applied to design resource-allocation schemes for three
representative networks of increasing complexities.

Tor a single contention-bus network, the resource scheduling problem is
reduced to the problem of identifying a station with the minimum parameter
among a set of physically dispersed random numbers. A distributed
minimum-search algorithm that utilizes the collision detection capability of the
contention bus has been proposed. The window-search procedure can resolve

the global minimum in an average of 2.4 contention steps. No explicit message

transfer is required in this process.

For a mulliple contention-bus network, the resource-allocation problem |
reduced to the problem of ordered selections. A multi-window search prc
cedure that is an extension of the single-bus search procedure has been pic
posed to select the minimum numbers in parallel. The average time complex
ity of this search procedure is about O{logyt), where ¢ is the number of buse:
"The mapping between the selected resources and processors has been found t

be the classical stable-marriage problem.

For resource allocation on multistage interconnection networks, the prol
lem is transformed into different network-flow optimization problems, for whic
there exists many efficient algorithms. The network-flow algorithms have bee
integrated into the network protocol with a VLSI systolic-array architectus

that allows rescurce scheduling to be carried out at signal propagation speed.

CHAPTER I
INTRODUCTION

Due to the rapid advances in microelectronics and Very-Large-Scale-Integrated
(VLSI) circuit design technologies, the cost of computer hardware has dropped
drastically and the speed of processors has approached some physical limita-
tions. The development of computer networks is also keeping pace with the
need of computer communication. The technological advances coupled with
the explosion in size and complexity of new applications, have led to the
development of resource sharing computer systems. Such systems usually con-
sist of a large number of general and special purpose processors interconnected
together by a communication network called resource sharing inlerconnection
nelwork [WAH84b).

A resource in a computer network is a processor which performs computa-
tion functions or manipulates data objects. 1L may generate requests to utilize
other resources. A system featuring resource sharing capabilities should sup-
port dynamic task migration which is a scheme that allows tasks to be relocated
dynamically. Depending on the system status, a task originally allocated to a
processor may be migrated to another processor and executed wmﬁcmmw%u Rea-
sons for the migration of a task include (1} the local processor is unable to exe-
cute the task because it does not support the designated computing functions;

{2} the required data are not available locally and have to be retrieved from a

remote site; (3) the workload of the local processor is heavier than that of th

remote processor, i.e., the remote processor has better turnaround time; or

the local processor is unavailable due to hardware or software failures.

For convenience, the following terms are defined. The processor whic
receives a migrated task is called a resource to this task, and the processc
from which the task is migrated is called 2 request generator. The tern
request generating processor and request generator are interchangeable, an
may be abbreviated as request or processor when no ambiguity is aroused.
processor may play both the roles of being a request generator and a resourc
For example, a general purpose processor may request for migrating a Fas
Fourier-Transformation (FFT) task to a special purpose processor. At tl
sare time, it may accept a language-translation task from another process
which has much heavier work-load. A special purpose processor can only be
resource if it always receive tasks {rom the others.

In this chapter, a generic model of resource sharing computer systems
presented. Based on this model, the issues of resource scheduling are explore

and guidelines of designing a good scheduling mechanisms are discussed.

1.1 A Generic Mode] of Resource Sharing Computer Systems

Resource allocation problem involves the scheduling of resources
resource sharing computer systems. In order to study the resource allocat]
problem, a generic model that helps grasping the instantaneous configuration

such systems is devised and shown in Figure 1.1, The model consists of a p

UW‘Ommmm01m . resources

. resource
sharing
interconnection

network

bbb

p; - i'th request generating processor;

ry - }'th resource for executing a designated task.

Figure 1.1 A generic model of resource sharing computer systems [WATIB4b|

i

of resources and a set of request generating processors. These resources an
processors are connected together by an interconnection network. This mod
is the logical construction of resource sharing computer systems. A computa
tional device that makes .Sacmmﬁm is represented by a processor in the processc
pool, and a computational device which can receive and service tasks
represented by a resource in the resource pool. A device may be either a pre
cessor or a resource in this model due to its dual roles of being a resource and
request generator. Those devices not involved in resource allocation are m

represented in the model.

According to the network selected and the characteristics of processor
the proposed miodel may represent different classes of resource sharing system
1t includes multiprocessors, local computer networks, or long haul comput
networks. The model addresses issues of the global resource allocation ar
excludes the details of local scheduling. If a set of tightly coupled processors
connected together by a fasi network, then the cluster of processors
represented by a single request generator or resouree in the model. T
resource scheduling algorithms developed in this thesis may be applied rec
sively to the scheduling within the cluster.

Systems which can be characterized by the generic model have the follo
ing properties:

(1) the global status information of the system is not available to the indi

dual processors;

2) the interconnection network is the only inter-communication fac

v,
¢

along processors;

{3) a request may be dispatched to any one in the set of available resources

which are capable of carrying out the designated task; and

{4) a resource is accessible by any request-generating processors.

A resource sharing system with the above characteristics has the following

advantages.

(1) Tasks may be executed in parallel, and workload of processors may be
distributed evenly.

{2) Optimized architectures for performing special tasks may be incorporated
in the system.

{8} Modifications to include new functions or increased performance can be

done easily due to its modularity.

e,
o
g

Malfunctional devices may be removed from the system without bringing
down the entire system.

Consequently, the performance of such a system may be improved by increas-
ing the number of resources or replacing au existing resource by a more
efficient one. The system is also highly reliable and maintainable.

A shared resource may manipulate data objects or provide computational

w

ervices {o a request. Issues on sharing data have been studied intensively in
recent years. Many schemes have been proposcd to deal with the synchroniza-
tion of data access and data coherence problems. Examples include monitors
and synchronization schemes in operating systems [HOAT4, DII78], cache
cohercnce schemes in multiprocessors [DUBS82], and the methods of maintaining

data integrity in distributed database management systems [SEL83]

e

As we

shall see in the next chapter, schemes for sharing computational devices are less

developed. Most existing schemes are based on centralized control or simyj
distributed extensions of centralized control. The characteristics of the n

work are ususally not incorporated in the design of resource sharing schemes.

The above generic model encompasses many existing or proposed systen
The dynamic task migration is the basic feature of most proposed distribut
programming languages such as the Cooperating Sequential Processes by Ho:
[HHOA78, SIL83], CLU developed at MIT [LIS81, LIS82], and Distribut
Processes by Brinch Ifansen [TIAN78]. New operating system designs also p
vides mechanisms to support dynamic task migrations. Examples include pij
in MEDUSA [OUS80] and UNIX [RIT74]. Many architectures also exhibit ¢
characteristics of this generic model. Examples include local computer n
works with load balancing such as the ECN [HWASBL] and LOCUS [WALS
VLSI-systolie array multiprocessors [KUN81, KUNS82, BRI82|, and data-fl
supercomputers [DENS80]. Since resources of these architectures represe
different levels of abstraction, it is instructive to briel these architeciures a

indicate their mappings to the generic model.

Example 1 : Local Computer Network with Load Balancing

Load balancing is a scheme which engages communication facilities in st
porting remote job execulion in a user-transparent manner, so the turnaroy
time is reduced through the enhancement of resource sharing. Depending
the workload of processors, the network operating system may distribute jc
to a remote processor, or may schedule them for local execution. A local co

puter network with load balancing is illustrated in Figure 1.2 [HWA

WALIB3b]. Corresponding to the model, those processors of heavy load ;

A

Y

Yy

‘l

/

CSMA/CD network

ion

t

b

other processors

migra

Jo

~

A

ls

gt —— Joad from

results

I

Yy

arriva

external
processor

Y

result /

return
A queueing representation of Jocal computer network with load

balancing

Figure 1.2

Q

\A

Y

request-generators, and those processors of light load are resources. Th

resources in this system are job-level processors.

Example 2 : VLSI-Systolic Array Multiprocessors

A VLSI systolic array is a parallel pipeline architecture dedicated to
recursive function, such as the FIR filtering, matrix multiplication, or Fas
Fourier Transformation. Such VLSI chips are usually organized as attache
processors to host computers as shown in Figure 1.3 [KUN81]. In this organ
zation, requests are generated [rom processors and routed to systolic arra
through the system bus. The resources in such systems are process-level speck:

purpose processors.

Example 3 : Data-Flow Supercomputers

In contrary to the conventional Von Neuman machine, there is 1
sequence-control mechanisms in a data-flow machine. The execution of
insiruction is driven by the availubility of its input data. An instruction
active when all its input arguments are ready. An active imstruction is ex
cuted at a processing unit. The outputs of this instruction will activate oth
instructions for the subsequent executions. A data flow program has hi
degree of parallelism and is suitable for running on multiprocessor systems.
typical data flow multiprocessor is shown in Figure 1.4 [DENSO]. In this arc
tecture, instructions are allocated in the activity store and wailting for th
inputs. Once an instruction becomes active, it is routed through an arbitrati
network to a processing element and executed by 2 processing element. T

output is then routed back to the activity store through a distribution netwo

10

processing units

. interprocessor
communication network

mv s 0 - host processors

resource sharing

interconnection network

resource sharing

interconnection networks
o 1|
M , > cell block-1 —
| = cell block-2
® @ 9 servers - ‘W ®
% . /.m s cell block-n

VL SI-systolic arrays activity store

Figure 1.3 An organization of VLSI systolic-array multiprocessors
Figure 1.4 A data-flow multiprocessor

It

The activity store are divided into cell blocks, and active instructions in a cell
block are requests. The processing units are arithmetic and logical devices,

hence they are instruction-level resources.

1.2 Resource Scheduling

Resource scheduling 1s to manage the allocation of resources (including
communication facilities), so task migrations can be carried out efficiently. In
general, the migration of a task in a distributed resource sharing system is
divided into three phases: The resource bidding phase, the task migration
phase, and the result-return phase. In the first phase, the local processor has to
make a request for utilizing a resource. In the second phase, the body of the
task, including the task control, program code, and data, are transferred to the
resource aliocated and executed remotely. In the last phase, the results gen-
erated from the execution of the task are routed back to the original processor.
Basically, only data transmission is involved during the migration and result-
return phases, Resource scheduling is carried out in the resource bidding
phase. In this phase, system status information has to be collected, and the

decision of rescurce allocation has to be made.

1.2.1 Issues of Resource Scheduling

The central issue of resource scheduling is to determine a resource map-

ping that maps requesis to resources. Resources will be allocated to associated

12

requests delermined by the mapping. Since a task can be allocated to one
set of [ree resources, and multiple requests may contend for the same reso!
there may be many requests allocated with the same resource while many
ers may be left idle. This problem is called resource conflicts. If the resc
has a local memory, the tasks may still be migrated and queued at the resc
regardless of conflicts. This causes no error in operation but may deteri
resource utilization due to the imbalance of workload. If the resource hs

buffering capability, then every request except one has to be rescheduled ag

In addition to resource conflict, a bad resource allocation may degrad
performance of the network. Depending on the characteristics of the syste
may have {o assign a physical communication link fo every processor-resc
allocation and operate in circuit-switching mode, or may share links
operate in packet-switching mode. A resource allocation scheme which m
izes resource conflicts is not necessarily optimal since there may be many |
being blocked in circuit-switching mode, and packets may be congeste
packet-switching mode.

In summary, there are three major issues that will affect resource ut
tion in resource sharing computer systems. These include network blockin
packet congestions}, request conflicts, and imbalanced work-load. Unles
scheduling algorithm is carefully designed and implemented, there ma

thany adverse effects on the resource sharing.

13

1.2.2 Efficiency of Resource Scheduling

To illustrate the effect of the above issues, a resource sharing system may
be transformed into a queueing network as shown in Figure 1L.5. In this queue-
ing model, a processor is represented by an arrival process with arrival rate X;,
while a resource is represented by a server T; with service rate g An addi-
tional server S is introduced to model the resource allocation mechanism and
the communication network. A branch from the output of server S feeds back
to the input of this server and represents the unsuccessful resource allocations
due to network blocking or resource conflicts. Although the scheduling
mechanism is represented by a single server, it does not imply a centralized
control. Instead, it may be realized in many allernative ways as will be
described in Chapter 2. Task transmission delays in the network are con-
sidered part of scheduling overhead.

In a word, the service rate of S depends on two factors: the speed of the
scheduler and the delay of task transmissions. According to the results of
queueing theory [KLET2|, the service rale of server S is erucial to the overall
system performance. Thus, improving the efliciency of resource allocation is
essentially to increase the service rate ol the server S and reduce its feedback
probability. These may be achieved: (1} by a good design of a high speed
resource allocation mechanisms, {2) by utilizing a good scheduling algorithm
which generates a good resource mapping, and (3} by using a high-speed com-

munication networks.

14
r By
itz
o F2
S
Hs
!
L]
L
@
Yb tg

S - a server represents the resource allocation mechanism;

o - the probability of network blocking and resource conflicts;
A, - request generating rate of processor py

4; - service rate of resource rj;

g5 - scheduling rate of 8.

Figure 1.5 A queueing model for resource sharing computer systems

1.2.3 Scheduling Disciplines

Depending on scheduling disciplines, requests and resources may be
characterized by multiple attributes. A request may be represented by the
types of task it requests, expected execution time, and priority level. On the
other hand, resources may be modeled by its speed, load, and reliability. A
scheduling algorithm has to evaluate the allocation costs based on these attri-

butes. .

.

Gmswaﬁ. a scheduling instance that consists two types of requests: matrix
computations and scalar computations. Suppose that requests for matrix com-
putations have higher priority than those requests for scalar computations, that
all veclor processors are busy, and that there are pipelined progessors available,
Under ,%Ww condition, a requests for matrix compulations would be allocated if
the scheduling algorithm determines the priority of requests first, and then
assigns resources to the selected requests. It is common that the cost of execut-
ing a task that requires many matrix computations on a vector processor would
be less than that of running it on a pipelined processor. However, a pipelined
processor may be preferable to serve a task with many scalar computations.
The cost of allocations would be lower if the scheduling algorithm determines

the preference of resource first.

In this thesis, we consider only the class of scheduling disciplines in which
multiple atiributes are transformed into a single parameter. The parameter
that characterizes a request is called the priority of the request, and the param-

eter that characterizes a resource is called the preference of the resource.

16

1.3 The Objective of This Thesis

The objective of this thesis is to investigate the design of eflicient resou
scheduling mechanisms for resource sharing computer systems, and explore |
integration of the scheduling algorithms and computer networks. Several go
are to be pursued in this research:

(1) A feasible scheduling strategy for improving resource utilization

resource sharing computer systems will be studied;
{2) The distribution of scheduling intelligence will be investigated; and
(3) Fast implementation for the scheduling mechanisms will be developed.

A unified design methodology is employed to incorporate the above th
design goals. However, we consider only those scheduling schemes that alloc
one resource to a request at a time. When multiple resources are requested b

single equest, they have to be allocated sequentially.

1.4 The Organization of This Thesis

This thesis is presented in the following order. A taxonomy of
resource allocation schemes is presented in Chapter 2. This taxonomy class
the resource allocation schemes according to the distribution of schedu
intelligence and that amount of state information used. Previous work
resource sharing systems is also discussed. In Chapters 3 and 4, the opti
scheduling algorithms for single contention-bus networks are characterized

reduced to the problem of determining the minimum among a set of distrib:

17

random numbers. The proposed scheme is integrated into the network by a dis-
tributed minimum search algorithm. The extension of the scheduling algo-
rithm for a single contention-bus petwork to that of multiple contention-bus
network is described in Chapter 5. Resource scheduling in multi-stage inter-
connection networks is discussed in Chapter 6. Lastly, extended applications of
the algorithms obtained in this thesis and problems for future studies are

identified in Chapter 7.

18

CHAPTER I
A TAXONOMY OF RESOURCE ALLOCATION SCHEMES

In the design of resource allocation schemes, to achieve high speed sched:
ing and to obtain an optimal mapping are usually two mutually conflicti
goals. Compromises between the optimality of the scheduling decision and ¢
overhead of the collection of system status information are reached in ma
ways. Resource allocation schemes can be characterized by the trade
between these two goals. In this chapter, a taxonomy of these resource allo
tion schemes is presented. The advantages and disadvantages of each class
resource allocation schemes in the taxonomy are explored. This leads to
conclusion that distributed state-dependent-allocation scheme is a prefera
resource allocation mechanism. To tackle the complex design problems of <
tributed state-dependent resource allocation schemes, a systematic des

methodology is proposed in this chapter.

2.1 A Taxonomy of Resource-Allocation Schemes

A taxonomy that categorizes most resource allocation schemes is given
Figure 2.1. Resource allocation schemes may be classified into two clas

depending on whether global status information is used or not, and whet

19

state-independent

[resonrce allocation schemes

probabilistic scheduling

{ state-dependent

centralized scheduling]|distributed scheduling] random scheduling

load balancing

Jocalized scheduling

central server (sentral scheduler

resource sharing

Figure 2.1 A taxonomy of resource-allocation schemes

they are state-dependent or state-independent.

Tn the class of state-independent scheduling schemes, resource allocation j
carried out by the individual request-generator. The processor determine
which resource to bid for based on the local information available. The info
mation available may include the statistics of the system’s operating histor
which is usually characlerized by a stochastic process, piggy-backed inform:
tion carried by the return message ol previous requests, and the specificatior
of individual resources. If the processor chooses a resource randomly, then tl
scheduling scheme is a random scheduling scheme. On the other hand, if tl

statistics on previous requests and resource specifications are inputs to tl

scheduling decision then the scheduling scheme is a probabilistic schedu
scheme. Since requesting processors do not communicate, resource conflic
are unavoidable. Conflicting requests have to contend for the resource, th
bid for. Queuneing-network analysis has been applied intensively to analyze t
efficiency of this class of scheduling schemes [TOWS0, N8I, WANSS].

On the other hand, in the class of state-dependent scheduling schemes, t
global status information is crucial. Among them, a localized state-depende
scheduling scheme requires every processors to maintain a copy of the glol
state information and to determine the resource allocation independent
While in centralized stale-dependent scheduling schemes, the status informati
is collected by a central control node which determines the resource mapping
be distributed to all requesting processors. A scheduling scheme with this ki
of organization is called a ceniral scheduler. Essentially, only the fasks
resource bidding are carried out in the central control node. Task migrati

and result-returns are carried out independently. However, the central con!

21

pode may be also responsible for buffering tasks and dispatching them to
resources. In this sense, the scheduler becomes a central server. A central
server is usually found in systems in which resources do not have local

memories. Some master-slave multiprocessors belong to this class [ENS77].

A distributed scheduling scheme differs from the localized scheduling and
centralized scheduling schemes in the way that global status information are
collected and utilized. In a distributed scheduling scheme, only partial status
information is maintained by each processor, and the scheduling decision is
made cooperatively through exchanging information. The amount of informa-

tion flow is usually lower than that of the previous two approaches.

Most existing resource scheduling schemes belong to the class of state-
independent schemes [DAYTO, JAY82, LEIS1, LEi84]. The resource sharing
protocol of ARPANET is a typical example in which task migrations are deter-
mined by end users|THO73]. This class of resource scheduling schemes is simple
and incurs relatively little overhead. Nevertheless, the problem of low resource
utilization remains unsolved. Centralized state-dependent scheduling schemes
can be found in many multiprocessor systems with master-slave structure
[ENSY7, HAY78, BAESO, HWAS4|. However, adopting this approach to dis-
tributed systems tends to eliminate their advantages. Localized siate-
dependent scheduling schemes are the direct distributed extensions of central-
ized control. The load balancing schemes of ECN and LOCUS belong to this
class. Although this approach can be implemented in an existing network, it
incurs a large amount of redundant information flow and is hard to maintain a

consistent state information due to the network delay. Consequently, a

resource mapping generated by an optimal scheduling algorithm is not

22

necessarily the optimal one since inaccurate information may be used.

Distributed state-dependent scheduling schemes are generally preferab
for the following reasons: (1) The information flow in maintaining the glob
information is reduced because status information is utilized efficiently; (
They can achieve optimal resource allocation; and (3) Their speed may m
increased due to the concurrent execution of scheduling tasks. Only a few sir
ple distributed state-dependent schemes have been proposed [MAN84, RAT?
WAIIS2, WAHS3b, WAHS4b, JUAS4b-c]. It is still an open area to study. V
focus on the design of distributed state-dependent resource scheduling schem

in this thesis.

2.2 Implementation Considerations and A Design Methodology

In general, a resource scheduling algorithm generates a resource mappi
according to the system status information. A good resource mapping is o
that minimizes a cost function under the network constraints. The cost fur
tion is usually determined by the scheduling disciplines. 1L is usually casier
optimize the cost function regardless the constraints imposed by the netwo:
As a result, many processors may not be allocated a scheduled resource due
conflicts in the network. To reduce this probability, A high-bandwidth n
work is usually used {FEN81]. A crossbar network has been used in syste
such as the C.mmp[ENS77, FUL78]. It does not have nmetwork blocking pr
lern. Hlowever, the cost of a crossbar network is O(n®) , where n is the num!

of devices connected, and is not practical when the system is large

23

multistage interconnection network is a cost-elfective choice [WAH84Db], but
blocking probability may be as high as 60 [PAT81, FRAS82] if resources are
not allocated properly. These observations indicate that a good resource
scheduling algorithm should incorporate network constraints in the optimiza-
tion of a given scheduling discipline. The following design methodology is pro-

posed.
{1} Formulate into a constrainted optimization problem.
(2) Design a distributed algorithm to sclve the problem.

{3) Identify primitive operations of each process in the distributed algo-

rithm.
{4) Integrate the primitive operations into the network.

The cost of collecting status information may also be included in the objective
function, so tradeofls can be made between the amount of status information
used and the efficiency of the scheduling algorithm. A well-designed distri-
buted algorithm should reduce ununecessary message passing. The crucial
speedup of the scheduling scheme lies in implemnenting the primitive operation
into the network., This approach essentially shifts the responsibility of schedul-
ing requests by the request generators to the network

We have applied the methodology to the design of resource scheduling
schemes on three types of networks: single contention-bus network, multiple
contention-bus networks, and multistage interconnection networks, They
represent elasses of networks of increasing complexities. In each case, we have
obtained optimal scheduling algorithms with efficient decision-support mechan-
isms. The resource scheduling algorithms obtaimed is fast and imcurs small

network blockages.

24

CHAPTER II
RESOURCE ALLOCATION IN
SINGLE CONTENTION BUS

In this chapter, resource allocation schemes on a single-bus system ar
developed. A special class of resource allocation schemes that encompasses mos
of the conventional scheduling disciplines are characterized. An oplima
scheduling algorithm for this class of allocation schemes on a bit-serial conten
tion bus is also developed. The scheduling algorithm is obtained by applyin
our proposed design methodology in Chapter 2. The architecture and the basi
operations of a contention bus are reviewed first, followed by the characteristic
of the optimal algorithm. A distributed scheduling algorithm is then proposed

aud the integration of the scheduling algorithms into the network is described.

3.1 Single Contention Bus Networks

There is only one communication channel in a single bus system, an
only one processor is allowed to transmit at a thme. Processors in the networ
communicate with each other by passing messages through the bus. Message
transmitted over the bus are broadcast to every processor in the network.

diagram of such a network is depicted in Figure 3.1a.

Processors

Juw % I mu:
(1 contention

resources

Figure 3.1a A rescurce sharing system connected by a single contention bus,

contention slot

/

packet packet D S packet

e i N R
contention packet-transmission
interval interval

Ficure 3.1b The operations of a contention bus with alternating phases
=

26

A contention bus is a bus in which a distributed random-access b
arbitration scheme is used. The operation of the bus is divided into two alts
nating phases, contention-resolution phase and data-transmission phase, whi

are illustrated in Figure 3.1b.

The contention-resolution protocol is shown in Figure 3.2. Whenever
processor has data ready to transmit, it checks the bus status to see if the b
is free. If the bus is in use, the processor has to wait until it becomes fr
Once the bus is sensed free, a processor is allowed to transmit its data. T
message transmitted will propagate along the bus to its destination. Belc
this message arrives, other processors also detect the same status and transn
their data. Consequently, data transmitted from different sources will interle
with each other, and would not be recognizable. Should this happens, a co
ston is said to occurs. In a contention network, every processor is able
detect the occurrence of collisions. This capability is called collision defectic
In the worsi case, it takes an end-to-end propagation time for every process
to detect the occurrence of a collision. This period is called the colfisic
defeciton fime or a conlention slof. During the collision-detection time,
transmission is vulnerable. A processor cannot be sure thal its curre
transmission is successful until it has transmitted for a time longer than
collision-detection time without any collision. To avoid repeated collisions,
contention-resolution protocol is used to control transmissions.

Many contention-resolution protocols have been proposed and imp
mented during the last decade [KLE75, MET76, CAP70a, CAP78b, HLUS
Basically, they follow the structure shown in Figure 3.2 and are distinguish

by the different transmission controls,

TYPICAL CONTENTION RESOLUTION PROTOCOL

» The Mlow Chart : Start,

Sense Bus Status

No

Free?

Yes

Schedule £ n,.w.

tend for L
Conten . Retransmission

Transmission
— !
‘ Detect Collision

Figure 3.2 A typical contention resolution protocol showing the transmission
of one moessage

In summary, a single-contention bus network is characterized by the fol
lowing properties: (1) there is a single communication channel; {2) every proces
sors on the bus can receive data simultaneously; (3) random access is allowed
(4) the processors are capable of detecting collision; and {5) a distribute

transmission control is used.

3.2 The Optimal Resource Allocation Algorithms

The objective of a resource scheduling algorithm is to generate a
appropriate resource mapping. As discussed in Chapter I, an optimal resourc
mapping for a circuit-switched network may maximize the number of resource
allocated and minimize the allocation costs. If the system operates in a packe
switched mode an optimal mapping is one that balances the workload
resources and minimizes the transmission delays.

In genoral, the optimal resource allocation problem is a constrained optim
zation problem that optimizes the system performance subject to the co
siraints of the network. Since there is only one communication channel in
single-bus system, only one resource can be allocated at a time. Therelore, il
scheduling problem is reduced to finding 2 pair of processor and resource th
optimize the system performance. In a scheduling algorithm for load balancin
the central problem is the determination of a request-generator from whic
task is to be migrated and a resource to service the request, so the avera

response time of serviciag jobs is minimized.

Let Q be the set of request gencrators and It be the set resources. The
priority level of a request p € Q is x,, and the preference level of a resource s €
R is y, Due to the network constraint that only one job can be transmitted at
any time, the optimization of resource scheduling on a single bus may be
represented by the following non-constrainted optimization problem:

min H{x,,y,) (8.1)
{psIEQXR

The cost function H is defined with respect to different scheduling discip-

lines. It may be very complex and difficult to optimize in general. We will

only study a special class of the cost functions that satisfly the following eondi-

tions.
% \
O Hix.y) <0 (3.2)
Dy, {xpyed < .

Eq. 3.2 implies that the cost of utilizing a resource is independent of the
characteristics of the task, and the cost of dispatching a task is independent of
the resource allocated. Most existing scheduling problems, such as load balanc-

and FCFS, can be solved by independently selecting the task to be serviced

i g
and the resource to service the task. Hence, the independence relations hold

for these problems.

1t follows directly from Eq's 3.1 and 3.2 that

min Hix,,v.} = H{ max{x,), max{y, 3.3
[pslEQ=R bepye) (cmmm e s€R }) (3.3)

According to Bq. 3.3, resource scheduling may be split into two steps. A request

30

p which maximizes x, and a resource s which maximizes y, can be determine

p
independently in each step. This property allows the problem of resourc
scheduling in a siogle bus system to be reduced to the problem of determinin

the maximum among a set of random numbers called conlention parameters.
The generation of contention parameters may be dependent on each othe

and may be site-dependent. For tractability reason, the parameters a

assumed to be independently generated and possibly site-dependent in th

thesis.

3.3 A Distributed Minimum-Search Algorithm

Conventionally, the implementation of an extremum-search algorithm in

distributed system relies on the message-passing mechanism to collect all t

random numbers fo a central site. It needs O{n) messages, where n is
number of processors. In this section, an efficient distributed algorithm f
identifying the minimum is presented. The algorithm for searching the ma
tmum is similar. In this chapter, we will describe an efficient protocol for
bit-serial coniention bus to determine the extremum of a set of rande
unmbers. A corresponding scheme for a bit-parallel bus will be discussed
Chapter 4. It is assumed that each processor is able to perform the followi
two operations: (1) maintain a global reference interval or window, and |
count whether there is none, one, or more than one random number falling

the reference interval

31

Based on these operations, the minimum of a set of distributed random
numbers can be searched in the following way. Suppose the set of contention
parameters are {X,, .., Xy} in the interval between L and U, and y; is the i-th
smallest of the xm_m. To search for the minimum, an initial interval or window
is chosen with the lower bound at L and the upper bound between L and U.
There can be zero, one, or more than one number in this window. 1f there is
exactly one number falling within the window, this number can be verified as
the minimum, y,. Otherwise, the window has to be updated: it is moved if it is
empty, or is shrunk to a smaller size if it contains more than one number. The
process is repeated until the minimum is uniquely isolated in the window. This

algorithm is called the window-search algorithm. An example of the steps

involved are shown in Figure 3.3

3.4 Integration on A Bit-Serial Single Contention Bus

The distributed minimum search scheme described in the last section
incurs no explicit message transfer because every processor can maintain the
global window and are able to count the number of random numbers in it. In
a conventional distributed system, the algoritbm ean be implemented on top of
the message-transfer mechanisms. The global reference interval can be main-
tained with the aid of synchronization schemes that are realizable by message

passing. Counting numbers can also be done by message passing . The

message communication overhead can be reduced if a collision detection

mechanism is available.

W3

“’2

32

Ty

.

contention

Station 1

Station 2

Station 3

Station 4

Station §

parameter

ision,

update upper bound to w;

coll

Step t

no tranamission

update lower bound to wy

Step 2:

ission

Step 3: successful transm

stop.

ates of the global window to iso-

late the station with minimum contention parameter (Braces indi-

cate windows used in different steps)

An example illustrating the upd

Figure 3.3

33

+34
{a) Counting random numbers:

procedure window_protocol_station_i;

This operation can be implemented with the collision detection capability, /* procedure to find window boundaries for isolating one of the contending stations *

which is a primitive operation in contention-bus networks. A no-transmission [/+ window - function to calculate window size w,

in a contention slot implies that none of the numbers is in the window; a sue-
cessful transmission indicates that there is exactly oue number in the window;

and a collision shows that there are more than one number in the window.
(b) Synchronizing the global window:

Instead of synchronizing the global window by explicit message passing,
this operation may be done by running a commou algorithm with identical
inputs. Since identical information is received by all stations in each conten-
tion slot, the global window can be synchronized by the common window-

update rule as described in Section 3.5.

An implementation of the distributed window-search algorithm at Station
i, 1<i<n, on a multiaccess bus with a three-state collision-detection mechan-

ism is shown in Figure. 3.4.

3.5 Window Control Algorithms

In general, the update of the global window has two degrees of {reedom:
position and size. The determination of its position has to be constrainted, so
the processor that wins the contention is the one that owns the minimum.

This can be done by the window-update rule as described in the window-search

algorithm. Four window-control algorithms are described below. As discussed

random - {unction to generate local contention parameter,
estimate - function to estimate channel load,
transmit_signal - function to send signal to bus with

other stations synchrooously,
detect - function to detect whether there is collision on the bus {three-state),
1, - local contention parameter, ’
f - estimated channel load,
{b_rninimum - lower bound of interval containing minimum {minimum is L},
ub_minimum - upper bound of interval containing minimum {(maximum is U},
contending - boolean to continue the coutention process,
state - state of collision detect, can be collision, idle or success

{for three-state collision detection). */

1b_minimum := L;

eb_minimum ;= U;

r; : = random {L,U};

f 1= estimate ()

w ;= wisdow {Ib_minimum, ub_minimum, i);
contending : = true;

while {contending} do |
if {r; > Ib_minimum and r; < w} then {
transmit_signal (};
[+ test for unique station in the window s/
state : = detect {};
if state =idle then .
«u update lower bound of interval containing minimum sf
b_minimum (= w;
else I state = collision then o .
/+ update upper bound of interval containing minimum 3/
ub_minimum 1= w;
else [+ successful isolstion of minimum sf
return {Ib_minimum, ub_micimum};
= window {Ib_minimum, ub_misimum, 4}]
else
contending := false /s stop contenting *f

|

return {ailure)

Figure 3.4 A window protocol for determining the minimum of distribut
random pumbers

35

36
before, the inputs to these algorithms can be collected from information broad-
cast on the bus.
3.5.1 Binary-Divide Window Control
A straightforward way to determine the window size is to choose the . Vindow \/W@\\)
upper bound of the window at the middle of previous window. It is interesting 4 + e t
14 Y3 DAY Ya

to investigate the performance of this simple method because it provides a

{2} Contention is resolved by a window with {b) Contention
. y ntion i 3 i
lower bouad on the @mlow'awanm. size greater than {y,~y,}. with size namw_mwprﬂwww\wmwwu 2 Mindow

The overhead is analyzed in terms of the number of contentions the proto-
col to determine the minimurn. In any given step, if the window size is greater
than the distance between the two smallest random numbers, y, and y,, then
the minimum may be isolated depending on the relative positions of y, y,, and

window
the window (Figures 3.52 and 3.5b). On the other hand, if the window is ——

reduced to a size smaller than the distance between y; and y,, and the bounds . A Y3

of the window are updated according to the procedures in Figure 3.4, then the
{c}) Contention is always resolved il size of window is
.. . .y s . Co . .) . v) R ;
minimum will always be isolated in such a window. This is illustrated in Fig- MMMWWM HWMMV.QN v1) and lower bound of window is
: an ;.
ure 3.5c. Henee the maximum number of contentions required to resolve the
minimum never exceeds the number of steps required to reduce the window to
a size smaller than the distance between y; and vy, Assuming that k steps are

required, the following condition holds :

% < yamy, < 9-(k1) (3.4) Figure 3.5 Possible sizes and positions of a window during a contention

Taking the logarithm of the inequality in Eq. 3.4 and rearranging it,

37

log,(y2=yy) log,(ys—
_ Y ek <1- (yzy))

log,2 log,2 (3:5)

This inequality gives the upper bound of the binary-divide window control for
a given instance of y; and y,. From the theory of ordered statistics IDAV7D,
FELT71, if the y;'s are uniformly distributed over the interval (0,1), then the

joint probability density function of y; and y, is

e] n—a
?cwvwi y2) for 12y,>y,>0

m. v,y =
yod V1Y) 0 otherwise (3.6)

From Eq.'s 3.5 and 3.6, E(k}, the average number of contention slots to resolve
contentions in the binary-divide window control, can be obiained by integrat-
ing the weighted upper bound over the domains of y, and y,.

_log.(y2myy) w
log,2 * {n— N !

E)

{I=yg)" -a.fmwm

iy
< wlmalo Momiw %om%ﬁlff&; (1-y,)"*dy, (3.7)
Y2
Since flog(y,—y,Jdy, = yalogys = ¥o . Eq. 3.7 can be simplified as:
0
n! u
ER)< M!Awtrwmommw W.ﬁlw&z‘m@mwownf — ¥aldy, (3.8)

The integration in the RHS of Eq. 3.8 can be evaluated to become:

38

1

.\.Awlu\mvﬁlm%w_cmnv\mmvﬁw = :: - :.ul— ﬁw
* [1]

where I is the harmonic mean of the series {1,2, ..., n}, i.e.

._.l._.
e
w
oud

=L
|_:M

log.n + v + oM
The harmonic mean is approximately equal to = [REY7
n
where ~ is a constant. Hence, from Eq.’s 3.7 thru 3.10, we obtain
- log,n log,(n—1
Bll) < 1- n{n—1} g0 (01} I (3.1
log,2 n n—1 n—l n
Since log,n = log,{n—1) for large n, Eq. 3.11 may be reduced to:
-1} (1+log.n)
E(k) < 1+ 20 3 + log 3.
(k) < log,2 n{n—1) < OB20 A

Hence,

E{<) = Oflogn). {a.

In addition to the sbove analysis, a simulation has also been conducted
evaluate the performance of the binary-divide window control. The results ;
plotted in Figure 3.6. Note ihat the average number of contention slots
smaller than Ologan), which confirms that Oflogon) is an upper bound on |

average performance.

30

4.3 .
BINARY-DIVIDE WINODOQW CONTROL
40r
3S5¢r
MOVING AVERAGE WITH
ONE WINDOW LOCK wbmxw
30F e T T T e e e e

-
—

Ll

..m.
20F ¢

AVERAGE NUMBER OF CONTENTION SLOTS

L5 4

J T RS RALAL LA LL AL L E At AR A A
o

Distribution of contention parameters is uniform between 0 and 1

— o ———

mZ_OSZQ AVERAGE WiTH BINARY COEFFICIENTS
e
OPTIMIZED omm?mox, GREEDY

WINDOW CONTROL WINDOW CONTROL

-

/ DYNAMIC-PROGRAMMING
WINDOW CONTROL

ok Lo & 1

0 10

Figure 3.6 The pe
controls

20 30 40 50 60 70 80

NUMBER OF CONTENDING STATIONS

tformance of the window protocol with different window

and load-estimation methods

40

3.5.2 Dynamic-Programming Window Control

The dynamic-programming window control can be used to minimize the
expected total number of contention slots before a successful transmission i

possible. The following definitions are first defined:

N{s,b,n): the minimum expected number of contention slots to resolve con
tention given that there are n contention parameters in the {a,U
and collision occurs in the current window (a,b};

g(w,n,a,b): probability of success in the next contention slot if a window o©
{a,w], a<w<b, is used;

{(w,n,a,b): probability of collision in the next contention slot if a window ¢
{a,w}], a<<w<b, is used;

r{w,n,a,b): probability of no transmission in the next contention slot if a wir
dow of {a,w], a<w<b, is used.

Tt follows directly forin the above definitions that:
0{wm,a,b) + g{wnab) + r{wnab) =1 (3.1

The problem here is to find a w that minimizes the expected number
future contentions should collision be detected in the current contentio
According to the above definitions, this problem can be formulated recursive

as:

{ \
N{a,b,n) = min T + @g{w,n,ab} ¥ Nia,w,n}{{wnab]+ Z?b.vwis.?w,vww (3.1

a<w<b

41

The probabilities g{w,a,b), #{w,a,b}, and r{w,a,b) can be derived from the
distributions of the contention parameters and the state of contention. When
transmission is unsuccessful, it is always possible to identify a window (a,b]
such that at least two of the xi's lie in (a,b] and no x; is smaller than a. This
condition is designated as event A.

A = {at least two x's are in {a,b], given that all x;'s are in {(a,U}}.
Suppose the window is reduced to (2,w], a<<w<b, in the next slot, three mutu-
ally exclusive events corresponding to the three possible outcomes can be
identified in the next slot:

B = {exactly one of the x;'s is in {a,w], given that all x{'s are in (2,U}]};

C = {no x; is in {a,w}, given that all x{s are in {a,U}};

i

D

{more than one x; is in {a,w], given that all x{’s are in {a,U}}.

From these sets of events, the probabilities can be expressed as:

g{w,2,b} = Mu_.mwm A}l = WWWM'H@. (3.18)

r{w,a,b) = MVQOTPW = % {3.17)

The set ANDB represents the event that exactly one of the xs is in {a,w], at

least one x; is in (w,b], and all others are in {w,U]. The set ANC represents the
event that at least two x's are in {w,b], given that all x{’s are in {w,U}.

Let Fy(x) be the distribution that governs the generation of x;, I1<i<N,

and n be the number of contending stations, then event A occurs with proba-

bility:

i=1 i=1 i= i=1
ji

n {

IT01-Fi(a)]
1

The first and last terms in the numerator of Eq. 3.18 indicate the probabilit
that all x;'s are greater than a and b, respectively. The second term is the p

bability that exactly one of the x;'s is in the window (a,b]. Similarly,

o

m (Fy(w)=Fa)] » [T L(1-Fy(w)] = [T{1-F (b)

=

i = =t
J# i*i
gw,a,b) = - @
Pr(A) [T(1-F{a)]
i=i
mc-xi-w [Fy(b) = F(w)] TT[1=F{()}| - T TO=F (b))
1= i=1 VH_ =
rH{w,ab) = - da (3.
Pr(A) [TI1-F(a)]
=1

It follows that an optimal window can be derived in each step of the c
tention process once the channel Joad and the distribution of the contenti
parameters are kmown. However, the dypamic-programming formulation
continuous and requires infinite levels of recursion. Boundary conditions m
be set to terminate the evaluations after a reasonable number of levels
encountered. In practice, the ¥;s may represent indistinguishable physi
measures when their difference is less than 8. It is assumed that when the w

dow size is small than &, the probability that two stations have generat

43

parameters in this interval is so remote that coutention can always be resolved
in one step. The following boundary condition is included:
N(a,b} =1 for all {b—a) < §

1 . . .
Town’ where n is the number of contending stations,
X0

The value of § was set to

in our evaluations for continuous distributions and to one for discrete distribu-
tions. The results of evaluation are plotted in Figure 3.8, which shows that
the average number of contention slots is bounded by 2.4, independent of the

number of contending stations.

Simulations have also been conducted in which the binary-divide rule is
used whenever the window size is less than 8. The results obtained are also
summarized in Table 3.1, which also show that the number of contention slots
is independent of the number of contending stations. The numerical evalua-
tions using IBq. 3.5 are also shown in this table for comparisons. Note that
recursion in [5q. 3.15 stops whenever the window size is small than §, but that
the binary-divide rule is applied in the simulations. Hence the performance as
obtained by simulations is slightly worse. Nevertheless, the truncation does not

affect the performance significantly.

Another set of simulation results with different truncations are shown in

1
rxn

Table 3.2, The truncation interval § were set to , where n is the number

of contending stations and r is a parameter for varying the size of truncation
intervals. The results of numerical evaluation shown in the first column indi-
cale that truncation has little effect on the performance when r is reasonably
large. The second column of the table shows the simulation results obfained by

converting the dynamic-programming window control to binary-divide window

Table 3.1 Performance of the window protocol with dynamic-programming
window control {r=10)

Binary-divide window control is used in the simulations
when the window size is small than §

Performance of The Window Protocol
with Dypamic-Programming Window Control
n Numerical Evaluations Simulations
5 2.21 2.33
10 2.26 2.42
15 2.32 2.52
20 2.33 2.43
25 2.34 2.48
30 2.34 2.56
35 2.35 2.57
40 2.35 2.48

Table 3.2 The effect of truncation on the

45

performance of the window protocol

with dynamic-programming window control (n=20)

Binary-divide window control is used in the simulations

when the window size is smaller then §

The Effect of Truncation on
the Performance of the Window Protocol
with Dynamic-Programming Window Control
r Numerical Evaluations Simulations
1 1.54 2.48
2 1.96 2.49
3 2.12 2.49
4 2.10 2.52
3 2.24 2.48
6 2.97 2.56
7 2.29 2.52
8 2.30 2.50
g 2.32 2.45
10 2.33 2.47
1t 2.34 2.50
12 2.35 2.55
13 2.35 2.47
14 2.35 2.48
15 2.30 2.42
16 2.36 2.52
17 2.36 2.50
18 2.37 2.51
10 2.37 2.48
20 2.37 2.45

46

control after the window is smaller than truncation interval 8. The resul
indicate that the performance of window protocol is independent of trunc
tions. This behavior also reveals that the binary-divide window control is :
eflicient as the dynamic-programming window control after the first step
contention. In other words, window control for the first step of contention

crucial to the performance of the window protocol.

The results obtained agree with the results of Arrow et al.,, who had st
died a similar problem in economic theory [ARRS81]. In their study, the numb
of contending stations in a collided window was assumed to be exactly know
The problem can be formulated in a finite recursion, and has asymptotic ave
age bound of 2.4 steps as obtained by numerical evaluations. We ha
obtained comparable results when only tenary information on collision is ava
able and the infinite dynamic programmiag tree is truncated. These resul
demonstrate that information on the number of contending stations in a co
lided window is not very useful in improving the average performance.

The performance of dynamic-programming window control is much bett
then the Binary-Exponential-Backofl algorithm of Ethernet [SHO82] as show
by the comparisons of the simulation results depicted in Figure 3.7. The cor
parison suggests that the performance of Ethernet may be improved by inclu

ing a load estimation mechanism into the current industrial standard.

)

3.2
o
<
7] mm!
e Ethernet
>
= 2.4
=
(9]
m 2.0 1
()
Y
© 1.6
g
g Proposed algorithm
= 1.2+
5
S g0 4
L
>
a
40 - R .
ot 5 # B + 4 o
.00 Y 7 T T i T T
0 10 20 30 4g 50 &0 70 80

number of contending stations

Figure 3.7 Comparison of Ethernet Binary Exponential Backofl algorithm
with dynamic-programming window control

48

3.5.3 Optimal Greedy Window Control

The size of the window will affect the probability that the minimum i
successfully isolated. An optimal greedy-window control is one that finds
window to maximize the probability of success, g{w,a,b), in each step of con
tention. The window-control scheme based on this algorithm is an optima
greedy scheme. We have am<£ov.ma an efficient way of finding the window tha
maximizes g(w,a,b). When the contention parameters have identical continu

ous distributions, g(w,a,b} can be expressed in a simple form as:
g(w,a,b) = K [F(w)=F(a)] [1-F (w)]""'-[1=F (b)) (3.21

where K = n{1-F(a))"/P{A}. It can be shown that Eq. 3.21 is unimod:

between a and b, so a maximum exists in the window {a,b]. To find th

optimal value of w, we set melmm?:wugw = g and solve for w. This derivatio
w

leads to the following equation if Hw)#=0:
[1=F(w)]" = [1-F(b)}" = (a=1){F (w)F (a)}{1-F ()] (3.2
Let 2 = 1-F{w), Eq. 3.22 becomes:

1 (n=1)[1-F{a)]z"% n-rF)t =0 (3.2
n n

Tt can be shown that a real root of Eq. 3.23 exists and satisfies the inequali
(1-F (b)) < z, < (1-F(a}). There is no closed-form solution to Eq. 3.23, and
has to be obtained numerically. Once z, is obtained, the upper boundary

the window, w,, can be computed directly from z, as follows:

48

w, = Fi{i-z,) {3.24)

The performance of the greedy window control scheme is analyzed as fol-
lows. Again, we evaluate the average number of contention steps it takes
before the minimum is identified. The key issue in the analysis is to show that
the lower bound of the maximum success probability, g(w,,n,a,b) is equal to

et

Lemma I : The following two relations hold if the contending parameters are

generated from a uniform distribution in the interval {6,1);

g(wy,01,0,1) > g(w,,n5,0,1) ifny < ny {3.25)
and
lim g(w,n,0,1) = ¢! {3.26)
n-+00
< Proof>

From Liq. 3.21, if F{x) is uniformly distributed, then

n,0,1) = nw,(I-w,)*! (3.27)

The RHS of Eq. 3.27 is maximized at

1
wal0:1) = — (3.28)

Substituting into Eq. 3.27 yiclds,

) n—1
glvon0) = | (

S.'.A-)
o
=)
o

[t is casy to verify that if n, < n,, then

50

ny—1 ng— i
4 > L (3.8

oy ny

-

Hence, Eq. 3.25 holds. 1t also follows from Eq. 3.29 that

o

:5&22??:“:51 lm ﬁw
n—00 n—ooi O

. {
Lemma 2 ;I g{w,n,0,b) is maximized at w,, then w, < P

< Proof>

It can be verified that g{w n,0b) is unimodal in the interval {0,b).

Furthermore,
a 11 i o
——g|— = |- (b= <o X
aw ol n n.0.b n (1) n {o (
It follows that 1 is on the [alling edge of the curve, and hence is grea
n
than w. .

Nexti, we prove that g{w,,n,0,b} is a decreasing function of b.

Lemma 8 :

mmfcb«ﬂumvvw M 0

(w5
c:rlQ’

=52}
ot

< Proof>

Without loss of generality, let F(x) be a uniform distribution. Then, Eq.

3.21 may be rewritten as

w - aw({1=w)"! = (1-b)*7 1) .
e O Coyab(1b) (339

Since g{w,n,0,b}) is maximized at w,, then by - definition,

0 — T
I {(w,,n,0,b} = 0. This leads to

Clisvnl - 35591, = ?l&i:?lét:,w {3.34)
By combining Eq (3.33) and {3.34) yields :

Al-w,)2

1-{1-b)*~nb(1-b)""!

a{n—1)w

glw,,0n,0b} =

Taking the logarithmic function of the above equation and obtaining the

derivative of the resulting equation yields:

0 1 A 0 MJW 2 @ﬁw n—32 mgb)
—log glw,n,0b} = — - 3
gy BB w, b iI-w, &b (3:36)

; o

n{n=-1b{1-bi" -

1~(1-b)"~nb(1-b)""'

The derivatives of Eq. 3.34 with respect to b is:

mc.,.s “wlvw:tw
b ﬁxwlémvlmmtwvﬁawtléswslw

Substituting Eq. 3.37 into Eq. 3.36, yields

Theorem 8.1 : The average number of contentions is less than

52

%ﬂ_om glwon,0,b) = (1-b)"2[1~{1=b)" = nb(1-w,)""'] (3.38

Since (1-b)" >0, the RIIS of Eq. 3.38 is less than 0 if

1-(1=b)" = pb{1~w,)" ' < 0 {3.39

. . b . .
For n=2, it can be shown that w, is equal to Y It is also easy to veril;

that equality of Eq. 3.39 holds when n=2. We have to show that the LI
of Eq. 3.30 is a decreasing function of n. From Lemma 2, ,.<=‘A|W. So
n
n—{

el < < aew)t (3.4
n .

Combining the LIIS of Eq. 3.39 and Eq. 3.40 yields

1-{1-b)® = nb(1—w,)* ! < 1=(1-b)® —nbe™ < O (3.4
- . . . i
Thus, inequality Eq. 3.39 holds. and hence, Mmtrvm glw,,n,0b) <0, an
b
g{w,,n,0,b) is a decreasing function of b. O

S
-1

< Proaf>

Let g be the maximum success probability of the i-th contention sle

Then the average number of contention steps can be expressed as:

) i-1
C = Y ixg[lli-g) (3.4
i=1 =
The success probability, g{w_,00,0,1}, is equal to .W. By a linear transic
2

mation, a window of any lower bound may be transformed into a win

53

¥

@ fre

starting from 0. From this result and Lemmas 1 and 3, we have g;>

fori > 1. Hence,
(3.43)

a

1

he performance of the optimal greedy control scheme is suboptimal and

approaches 2.7 contention slots for each successful transmission (see Figure.

3.6).

3.5.4 Approximate Greedy Window Control
The approximate greedy window control is similar to the optimal greedy
window control except that an approximate optimization to the equation on

success probability {Eq. 3.21} is used. Eq. 3.21 may be rewritten as

<{F(w)=F(a)] [F(b)=F ()] + 1=F (w)}*2 Yiv

=
[

i {3.44)

i
=

glw,ab) =1

where v = [I=F(b)]/[1-F(w)]. A function with a similar structure, g{w,a,b},
no2

can be obtained by substituting the term | 37v | by (n~1). That is,

i=0

glw,ab) = K’ [F{w)-F(a)] [F{b)~F(w)] [1-F{w)]*"? {3.45)
. g(w,a,b) is maximum at a position very close to that of

where K' = {n~1JK.
g(w,a,b} and can be obtained by solving %ewcm g(w,a,b}] = 0 (see Figure 3.8).
W

We obtain:

54

250 n
- il
i
2.9
/.48 Y
— s\“‘/r
k- \ N
/nw\... 1.56 it Ay
(75 w- N f&
%] ¢ s
O .~ B /
O 124 J v - N Pal
Q . N approximate g(w)
w : -u D / :
Y
Y 4 ¢ ¢ s
5 L B '
Lo \
> o« optimal gwiy,
— 4l N \
— 3 § /
m u § s
[3e! i /1
nm .w.aau_ u- I/l
[3 H /ll
= ¥
.00 «»h L4 v Y v
by 363 S¥ie I88 %o

Figure 3.8

1300 33 23257 338 330

WINdow Size w

Eﬂwﬁ;::: of the maximum probability of successful conten
and the maximum of the approximation function g {upper bo

= 0.4, lower bound = 0.3}

+ =0 (3.46)

or equivalently,
[F(w)]* + C[F(w)] +D =0, (3.47)

where

£ (a)+F(b) +(n—2)F (a)F(b)
n

D=

A solution to Eq. 3.47 in the window (F{a),F(b}} is given by:

-C-V/C*~4D :
Flw,) = 5 (3.48)

The approximate window, w,, as caleulated from Eq. 3.48 gives a performance
that is nearly as good as that of the optimal greedy scheme (Figure. 3.8). It is
worth to note that a binary-divide window econtrol scheme is derived {rom the
optimal greedy window-control scheme by setiing the number ol contenders, n,
to be two. When n=2, both Eq's 8 and 13 have the same solution, le., F{w,}
= [F(a)+F(b)}/2. I F(y) is uniformly distributed over {01}, then w, =
{a+b}/2. The binary-divide control rule can be used as a heuristic for window
control with general distribution functions. [t can be interpreted as one which
assumes that there are two contending processors. As a result, it performs
satisfactory when the channel is lightly loaded and degrades to have an

Oflog,n} performance when the channel load is heavy,

56

3.8 Load Estimations

Before the window-control protocol is carried out, the number of contend:
ing processors is estimated from the distribution of the contention parameter:
and the statistics of previous channel activities. This information is essential ir
estimating an initial window and in controlling the dynamic changes in windov
sizes in the current contention period. A method based on maximum likelikoos

estimation is described here.

3.8.1 Maximum Likelihood Load Estimation

After the t'th contention, the window, {a,w(t)] that successfully isolate th
station with the minimum is known to all the processors. A maximum
likelihood estimate, A{t), of the number of stations participated in the conter
tion can be computed from a likelihood function, which is the probability
success that the minimum lies in {a,w]. Assuming that the contention parame

ters are uniformly distributed in {0,1), the likelihood function may he derive

et
-
=)
o
e+
[
=
e
s
e
<
Py
I

Pr{io<Y,<w<Y,)

i

afthw(t){1-w(t))*! (3.4
L{n{t},w{t},a) is maximized at

oy -1 \
aft) = TYrE o<w(t)<1 (3.5¢

The number of contending stations in the {t+1)'th contention can be obiaine

by adding to #{t} the difference between the possible arrivals and departur

57

after the i'th contention. The average number of contention slots to resolve
contentions using the optimal greedy window control with this load estimation

method is 3.1 as shown in Figure 3.6.

Since the extremum is readily available when a contention is resolved, it
can be “piggybacked” in the packet transmitted. Hence an alternative estimate
is based on the density function of this statistic. The conditional density of y,
is derived as:

:
vy fyiyaldy,

W

([0<Y, <w<Yy) = (3.51)

wl

TItvx fyiyo)dydy,
aw

Since the conteniion parameters are independent and uniformly distributed in

(0,1}

A R 5

Nv(yiye) = n(o—1)(1-y)"? (3.52)
Substituting Eq. 3.52 into Eq. 3.51 yields:

H

Iviyia<Y,<w<Yy) = {3.53)

1
w
This result shows that the distribution of y, is determined once the window

{2,w] is known. Therefore, no new information is gained by using the first-

order statistic in estimating n.

58

3.6.2 Improving Load Estimation by ARMA

The accuracy of load estimation can be improved by using information ¢
the previous windows that successfully isolate a single station. Instead of usi
the window w{t} alone, a techniques in time-series analysis called Aut
Regressive-Moving-Average {ARMA) model can be applied to obtain
estimated window based on all previous windows, w(1), w(2), ..., w{t). A sit

ple example is to compute a moving average, w,, using the following formu

my

recursively,

SBLS = {3.5

The value of w,{t) is then used in Eq. 3.49 to estimate the channel load. T

performance of using ARMA load estimation is very close to that when

channel load is exactly known {Figure 3.6).

3.7 Estimating the Distribution Function of Contention Parameter:

In applications such as load balancing and finding the highest priori
class, the distribution functions from which the contention parameters are ge
erated are unknown and have to be estimated dynamically. Generally, the d
tribution functions are assumed, and parameters of the distribution functio
are estimated from the statistic collected. Since information on the distrib
tion functions is essential and must be consistent for all sites to optimize t
window control, independent monitoring of local information and informati

broadcast on the bus may be insufficient and may lead to unstable operations

50

The proposed window-control algorithms are quite robust with respect to
changes in the distribution functions. Experiments on variations of the param-
eter of a Poisson Distribution did not lead to any significant degradation in
performance. However, there is always a delay between the time that the dis-
tribution function is changed and the time that this changes is propagated to
all sites. The optimization in the window protocol may be unstable if changes
cannot be disseminated in time. In this case, a binary-divide window-control

scheme is preferable.

3.8 Concluding Remarks

In this chapter we have shown that a class of resource allocation problems
may be reduced to the problem of determining the extremum from a set of
physically distributed random numbers. A distributed algorithm that identifies
the extremumn in a constant average time is propused. This algorithm incurs
no explicii message transfer if implemented on a contention bus with the
collision-detection capability. The correspondence between the properties of
our design and the proposed methodology is summarized in Table 3.3. A load
balancing scheduling scheme utilizing the protocol described in this chapter is

illustrated in Appendix A.

60

Table 3.3 Summary of the proposed resource allocation scheme in single
contention-bus networks (bit-serial bus)

Methodology Design

Request of Highest Priority

Optimal Allocation

Resources of Highest Preference

Distributed Algorithm Distributed Minimum-Search

Primitive Operation Window Search

Implementation Collision Detection

No Explicit Message Transfer
Results

2.4 Contention Slots {Optimal}

61

CHAPTER IV
DISTRIBUTED EXTREMUM SEARCH IN
BIT-PARALLEL CONTENTION-BUS NETWORKS

We have studied a distributed window-search algorithm to determine the
extremum among a set of physically distributed random numbers in a bit-serial
single contention-bus network. In this chapter, we concentrate on the design of

the window-search scheme on a bit-parallel bus.

A bit-parallel bus is a common communication network in computer sys-
tems, and is composed of multiple parallel links thru which data can be
transmitted in parallel {Iigure 4.1). It connects regislers and arithmetic-logic
units (ALU} in central processors (CPUj. It is also used to connect CPU and
memories or peripherals. There are many proposed bus-arbitration schemes
[T1IU72, HAY79, BAERO, HWAS4]. These schemes performs well when number
of processors connected to the bus is small. However, their performance may

degrade drastically when number of processors Is large.

A deterministic Multiaccess Code-Deciphering (MACD) scheme for
efliciently scheduling bus access is presented in this chapter. Its scheduling
overhead is small and independent of number of processors. Furthermore, it is
capable of determining the extremum among a set of distributed random
numbers without any explicit massage transfer. Only the algorithm for identi-

[ying maximum is discussed here. The algorithm for identifying minimum is
simifar.

62
processors
Pi P2
bus interfaces

w

=

B

a

)

P

=

@

-~

=}

)

@ ® ©

H 4 3

=

B

«

[aW

&

z

bus interfaces
r T2 Tm
resources

Figure 4.1

A resource sharing computer
contention bus

system connected by & bit-parsl

63

4.1 Multi-Access Code-Deciphering Contention Resolution

In the bit-serial window-search algorithm discussed in the last chapter, a
global window is maintained by all contending processors, each of which gen-
erates a contending parameter before contention begins. A contending proces-
sor is eliminated from contention if its parameter is outside the window. A dis-
tributed window-control rule is applied to expand or to shrink the window in
each contention step. As the contending process proceeds, the window size
becomes smaller and smaller. Eventually, the processor that has generated the
minimum parameter will be isclated in the window. These window-control
algorithms are based on information of previous contentions and an estimate of
the channel load. On the other hand, a bit-parallel bus is usually used to con-
nect components in close proximity. The data transfer rate is so high that an
even faster bus-arbitration scheme is necessary. A similar window-control
scheme as used in a serial bus is too complicated to be uselul in this environ-

ment, The Code-Deciphering technique to be discussed next is a fast and

scheme that combines window control and collision detection in a sim-
ple manner to cope with the problem.

To adapt the window-control scheme to a bit-parallel bus, two mechan-
isms are needed: a collision-detection mechanism and a window-access mechan-

ismi. The collision-detection mechanism can be implemented by the Wired-OR

property of the bit-parallel bus. When i{wo or more processors write

64

simultaneously on the bus, the result is simply the bitwise logical OR of the
numbers. By interpreting the result after a write, each processor can determis
whether a collision has occurred. To deseribe the scheme formally, let |
assume that there are N requesting processors, and each processor writes
binary number X; (i=1,2,...,N} to the bus. For example, assume that there a
three processors, and that each writes the following numbers, X; = 100!
X; = 0101y, and X3 = 01005 on the bus. The bitwise logical OR of the
numbers is 1101p, which is different from X, X,, or X3. Thus, every processt
knows that a collision has happened by examining this number instead
exchanging messages. The decision to write another number on the bus can
determined by interpreting the data read from the bus.

Suppose the X,'s are chosen from a structured code space S with the {c
lowing properties:

(1) X, Xi€S, i#, are linearly related, e, X>X; or Xi<X; (4.1

(2) (X;® Xo® -+ B Xy) < max{Xy, Xy, ., Xy} EN

X,€S, N>t

where & is the bitwise logical OR operator. By reading data on the bus ar
applying f, the code-deciphering function, a processor knows the maximu
number written on the bus. This information provides a basis for the windos
search mechanism to set another window. If the initial window is set such th
thie maximum value is included in the window, then an optimal detection pr

cedure can be designed to isolate exactly one processor eventually.

65

4.2 Implementation of MACD

Using the code deciphering scheme described above, a bit-parallel
window-search scheme can be designed. The network supporting the protocol
should have the following components: a synchronous parallel bus for transmit-
ting data and codes, a bus-status control line for indicating the busy status of
the bus, and an intelligent processor-bus interface for each processor that is
capable of (a) sensing the bus-status, (b) reading data from the bus, (¢} writing
data to the bus, (d) gencrating random codes, and () deciphering codes read
from the bus. The time interval for generating a random number, writing the
number to the bus, and deciphering the code read from the bus is called a con-
tention slof. Whenever a processor has data ready to transmit, it senses the
bus status Grst. If the bus is in use, then it waits until the bus becomes idle.
To contend for the bus, a processor chooses a code randomly from the code
space S and writes it to the bus. The resulting code written on the bus is the
bitwise logical OR of all the codes written by the contending processors. Each

contending processor reads the resulting code written and computes the deci-

ered code using the code-deciphering Tunction. It compares the deciphered
code with the code generated locally. Three outcomes may result:

{1} the locally generated code is equal to the code read;

(2} the locally generated code is not equal to the code read but is equal to the
deciphered code; and

(3) the locally generated code is equal to neither the code read nor the deei-

phered code.

66

The last outcome implies that this processor has not generated the max
imum code and hence can be eliminated from further contention. The first an
second outcomes imply that this processor has generated the maximum cod
and should be allowed to transmit. Iowever, there may be more than one pre
cessor that has generated the same code. If there is more than one processor i
this set, a hidden collision is sald to occur, and the contention-resolution pre

cess has to be repeated.

There are two ways to detect a hidden collision. First, each processor i
this set generates an n-bit random number and writes it to the bus. T
prevent the possibility of two processors generating the same random numbe
each processor can use a distinct n-bit station-identification code as the rando!
number. If the number read from the bus matches with the number writte
then the hidden collision has been resolved. If collision is detected, then tl
MACD scheme is repeated. Second, we can assume that the hidden collision
not resolved, and the collision-detection process is repeated. The process has
be repeated a number of times until there is a high confidence that exactly o
processor is isolated. When the probability that a large number of statio
have generated the maximum code is high, the second method of resolving hi
den collision is better because the MACD process is likely to be repeated, ar
the time for propagating the random aumber in the first method is lost.
the other hand, if the probability that exactly one station has generaled t
maximum code is high, then the first method is better because hidden collisi
can be detected efficiently. Usually, the second method is used when the co
space 8 is much smaller. As a result, a few additional steps are necessary

achieve a high enough confidence that there is no hidden collision. In i

67

chapter, we have used the first method of resolving hidden collisions because
the number of contending processors is usually relatively small as compared to
the bus width. Another method is proposed in Section 4.5 to cope with a large
number of contending stations.

For the Code-Deciphering technique to work properly, a code space that
satisfies Eq's 4.1a and 4.1b must be constructed, and a code deciphering func-
tion must be designed. Two code spaces together with their respective deci-

phering functions are presented.

4.2.1 Unary Code

Let the code space S be taken from the set {0*10° ~ a+b = n-1,
a>0, b>0} where 0% represents a consecutive sequence of k zeroes. Then for
any two different elements u and v in S, it is easy to verily that the linear ord-
ering property holds in this space. For any n-bit binary number, X={x;x4...x,),
we define a deciphering function { on X such that:

f(X) = 071077, il x, 41 =1, x;=0 for all 0<j<p,

We claim that S and [as defined above satisfy Bq's 4.1a and 4.1b. To verily

this, we consider N codes such that:

e = ol poreli-t =y

H

wwa,,m%mzwﬁomomm..
¢;€8, and
max{c;,Cy, ..., cy) = 0MLO"™

where m = Bwiwﬁvw i=1,2,..,N}. An overlapped variable Y={yvs..v,) is

defined to be the bitwise logical OR of the ¢, Le,,

68

Yy ¥ T ®e® - By

Y as defined retains the following properties:
Ym+1 = 1, and
Y =0 for 1<k<m.

By the definition of the deciphering function f,

f(Y)y =om10"™ ! or
fley® cg® - - - @B cn) = max{ey,eq, .., ON)-

It will be shown in Section 4.4 that L (W is the bus width) stations remair

W

after each contention slot.

4.2.2 Binary Code

Il binary codes are used, Eq. 4.1a is still satisfied. A new code-deciphering
function has to be designed. By detecting the most significant bit that i
mismatched among the codes generated by the contending processors, half o
stations on the average can be eliminated in each contention slot. This is no!
as efficient as unary-code representations. A similar scheme can be found ir

MOKT]L

69

4.3 Determining the Maximum Priority Using MACD

4.3.1 Code-Space Partitioning

To determine the maximum priority level, the code space of the original
MACD scheme is partitioned into subspaces such that each subspace
corresponds to a priority level. The partitions should satisly the following con-

dition:
IMXES;, YES;, and i >, then X>Y

where 8; and 8; are subspaces corresponding to priority levels 1 and j respec-
tively. Using this partitioning, priority levels are encoded into the contending
codes, and the deciphering function proposed in Section 4.2.1 can identify the

highest priority level

4.3.2 Parameter-Space Partitioning

The partitioning of the code space is practiecal when the number of priority

H

levels is relatively small

as compared to the size of the code space. When the
number of priority levels is large, a parameter-spuce partitioning approach can
be used. A strictly increasing function which muaps priority levels onto the code
space is defined in each contention slot. The mapping is done in such a way
that the minimum number of priority levels is assigned the same code. In a
contention slot, every contending processor writes the code associated with its
priority to the bus and deciphers the number read from the bus. The subrange

that maps to the maximum code is identified. A uew function that maps this

70

subrange into the whole code space is defined, and the process is repeated unti
the subrange contains only one priority level. This method is illustrated in Fig
ure 4.2, In the first step, a sel of the priority levels, including level x,, ar
mapped to code Co. The first contention step shows that C; is the maximun
code. Accordingly, all the priority levels that maps to C, are allowed to con
tend in step 2. The second contention identifies C, as the maximum code. I
the last step, Cy is the maximum code and level x; is the only priority leve

that mapped to this code, so priority level x, is the maximum priority level.

4.4 Evaluation of MACD Contention Resolution Scheme

The analysis and simulation results are shown in this section. The tim
complexity of contention resolution can be measured by the mean number ¢
contention slots expended before the maximum can be identified. To analyz
this complexity, let N be the number of contending processors at the beginuin
of a contention period and K be the size of the code space, which is equal t
the bus width W, Assuming that priority levels are generated randomly, the
a processor generates a given code ¢ {1 = 1,2, ., N} with probability 1/W

Designate the maximum of N such ¢'s as ¢, the m-th code in the code spac

te ¢ = max{eli=12 .. N} If exactly one processor generates code e
¥ 3 =3 7

i

and other processors generate codes less than ey, then the contention

resolved. The probability for this event to oceur is:

71
1 [
m-
m|{NK=W})=N|—]|l— :
g(m|N,) = (
Since the maximum code can acquire one of the W possible values, and th
W events are mutually exclusive, the probability that contention is resolvec
C C., Cq Ck one step is Py \yy where K=W is:
t z W,
|]
TS L | step 1 <
;Y T L Pewn = 3 afm| NK=W)
\ K ~ \ ~ // m=
/ i | \ // ~ -
~ N-1
, oy ~ o _ wﬁ NIl
a0 Sa T T 2K K
/ ~ ~ m=1 AN
\ Om w. O.N M Ou /(m //u/.
e =4 step 2
X A < C ; K-t
VPN R o K - N T N (
VoD ~ >~ W «Hw
A AN ~ - u=
NN ~ >~
v AN ~ In Figure 4.3, Py y is plotted against N/W. It is observed that the probs
N ~
x> ~ . : D .
N N N step 3 ity of success in one attempt is higher if the code space {equal to the
Cy Cy Gy Cx width) is larger and the number of contending processors is kept constant. |
observed that Py is a strictly decreasing function of N and decreases
zero when N is large. This means that MACD is unable to rescive conten
in one step when the load is extremely heavy. However, most of the conte
Figure 4.2 Parameter-space partitioning for determining the maximum ysing ing processors are eliminated in one attempt. The number of survivor

the MACD contention-resolution scheme o) N
reduced significantly as contention proceeds, and the probability of succes

increased consequently. The following avalysis demonstrates this phenomen

Given that the maximum of codes generated by the contending proces

is ¢y, the m-th code in the code space. Deline indicator variables X i=1, .

73

PROBABILITY OF SUCCESS (Py w)

1.100
K=5N
W=32
95C\ /
AD- EPENDE A CHEME
S00+ Mvro D- INDEPENDENT MACD SCHEME
\ Yy
850 mium
K=SN
W=K=8
500k
=K =16
350+
W=K =32
200}
Ce Nrapolomnmzmmzﬂ MACD SCHEME
050+
100 . : a , u : : : ,

0.00 200 400 800 800 100G 20 140 180 180 200

{ NO. OF CONTENDING STATIONS) /W

Figure 4.3 The probability that the maximum is determined by a MACD
scheme in one step of contention

-1
e

_}1 with probability 1/m
X = 0 with probability 1 - 1/m

Let

The random variable Z indicates the number of processors that generate ¢
the contention. These processors are allowed to contend in the following step
The expected value of Z given m, N, and W, EN*BVZ_EY represents the ave

age number of surviving processors. It is easy to show that:

E(Z| m,N,W=K) = m,

Furthermore, the probability that the current maximum code with N conten
ing stations and a bus width of W is ¢, can be expressed as:

N N.
p(m|N,W=K) = m - mww (4.

The expected number of processors that would survive o contention is:

K
ENW NW=Kj= } ENM 5“23_“535” N, W=k}
m=i
. N N
_ SN m) _m-t
mo M K K
] N o N
S(IN NP N N2
1 2K 2 3K

N N

(4.6)

< Z is a measure of the average fraction of

K

The ratic ~

contending processors that can survive a contention. Let N, (t=0,1, ...} be the

expected number of contending processors in step t. By Dq. 4.6, we have

s

“
—

o 1oas b= log g {4

As shown in Figure 4.3, we can see that Py ywny—1 as N<W, and Pxwn—0
as N>>W. This fact reveals that the contention process of MACD can

pproximately be divided into two stages. The effect of the first stage, le,

£

when N, > W, is in reducing the number of contending processors. When the

process enters the second stage, te, Ny < W, contention can be resolved in

76

about one step. The overall contention process will stop within an average
logw/2No steps. Figure 4.4 shows the simulation results which confirm o
analysis. The number of contention slots shown include the additional slof
required for resolving hidden collisions. MACD performs better when the b

width is large.

4.5 Adaptive MACD Contention Resolution Scheme

As shown in Eq. 4.7 and Figure 4.4, the performance of the MACD schen
proposed in the last section is load-dependent and performs well when the b
width is large and the number of contending processors is small. Since U
number of contention slots grows logarithmically with the number of conten
ing processors, the scheme is inefficient when the number of contenting proce
sors is large or the bus width is small.

The cause for the load dependency is due to the fixed code space. In ord
1o reduce the number of processors contending in a slot, the code space can |
designed in such a way that it is a function of the number of contending pr
cessors and the bus width. By choosing the size of the code space that kee
the number of processors contending in a slot to be a relatively small consta
as compared to the bus width, contention can be resolved in a time that
load-independent. This result i3 similar to the window-search scliemes |
carrier-sense-multiple-access networks described in last chapter.

The solution depends on choosing the size of the code space and estims

ing the pumber of contending processors. Suppose N can be estimat

77

700

6.00r LOAD-DEPENDENT MACD SCHEME |

500+

4.00r

W=8

-
- - -
- E T - o P T s emw S

LOAD~INDEPENDENT MACO SCHEME (K= 35N}

AVERAGE NUMBER OF CONTENTION SLOTS

L

10 2% 40 53 70 83 16Q 13 130
NQ OF CONTENDING STATIONS (N}

Figure 4.4 v\n,.mnmmm number of contention slots for resolving conflicts of bus
requests using MACD schemes

78

accurately, and K/N = r. The probability that contention is resolved in o1

step (refer to Eq. 4.3) is:

K
mux.z.i = M q l|,~«n~$~

i

N K-1 N-1
u {4
{rxN)N =nWU«,<

where ¢(m|N={K over r},K,W} is defined in Eq. 4.2. The value of Py nyw
again plotted in Figure 4.4. Tt is seen that the success probability is higher a

load-independent as a result of the increase in the code-space size.

The expected number of processors that would survive a contention ¢
also be derived similarly. In this case, the number of surviving processors is
if no station contends in the slot. That is, Eq. 4.4 becomes:

N
K m K<m<K-W+1

ElTWISING 1<mgK-W (4

The definition of E:LZ.?«W in Eq. 4.5 remains true. The expected number

surviving processors in one contention is:

- K - -
ElX wl= Ve[S who|Ew
r m=1i r B
K o [KW -
= 5 NoE v enp|Bw
m=K-w+1 M ¥ m= r

N N
AN || KW KW
= K K

(K-W)N (4.10)

Since K/N=r is a constant, E(Z

N={K over r},W} is a constant independent of

load { equals N) if K is large as compared to W.

The correet choice of r is shown in Figure 4.5. There is an optimal choice
of r to minimize the number of contention slots. This optimal value depends
on W and is load-independent (assuming that N is known). Tt is approximately
5 for the combinations of W and N tested. Using the optimal value of r, the
performance of the load-independent MACD scheme is plotted in Figure 4.4.
In generating these results, the size of the code space, K, is chosen to be W if
rxN is smaller than W: that is, the scheme proposed in Section 4.4 is used
when the load is light. [t is observed that the proposed scheme requires a small
constant number of slots even when the load is heavy.

The proposed scheme requires N to be known. Ia general, this is not pos-
sible due to the distributed control. One way is to estimate N based on infor-
mation collected during the contentions. However, this information can indi-
eate that one or more contending processors have generated the same code, but
canuot reveul the exact number of contending processors. This probability is
small if the number of processors contending in a contention slot is small com-

pared with the bus width. A reasonable estimate of N can be obtained by

o

sing the number of bits that are ones in a contention slot, B, as the number of
processors contending in this slot. That is,

o = Bxlh

W {(4.11})

This will sysiematically under-estimate the actunl valne of N, and some

R OF CONTENTION SLOTS

AVERAGE NUMBL

+ 80

4.50

Y

300K .
i ESTIMATED LOAD

263b X Vo

W !
-
-

/ KNOWN LCAD

1.50 n . : - .

L 3 4 6 7 9 10

2

12

|

-

r «(CODE-SPACE SIZE) /(NUMBER OF CONTENDING STATICN

Figure 4.3 The choice of the size of code space

81

correction to the value of r used should be introduced. In Figure 4.5, the
optimal value of r that should be used is slightly different when the estimate in
Eq. 4.11 is used. The number of contention slots required is slightly increased
when N is estimated (Figure 4.5). A maximum-likelihood estimate of N can
also be derived. Ilowever, the complexity of such a scheme is high and cannot
be efficiently implemented in bit-parallel bus networks. Moreover, choosing a
non-optimal value of r does not degrade the performance of the MACD scheme
significantly since the flat area of the curve in Figure 4.6 is very wide. The

MACD scheme is, therefore robust.

4.8 Concluding Remarks

In this chapter, we have proposed the MACD scheme for a bit-parallel
contention bus, and have shown that the MACD scheme is a primitive opera-
tion of determining the maximum among a set of distributed randorn numbers.

Thus, the optimal rescurce allocation algorithms fur the class of scheduling dis-

ipline characterized in Chapter 3 can be implemented in a system with bit-

o

Processors.

Table 4.1 Summary of the proposed resource allocation scheme in sing|

contention-bus networks (bit-parallel bus}

Methodology

Design

Optimal Allocation

Request of Highest Priority

Resources of Highest Preference

Distributed Algorithm

Distributed Extremum-Search

Primitive Operation

MACD scheme

Implementation

Code Deciphering

Results

No Explicit Message Transfer

Constant Number of Contention Slots

83

CHAPTER V
RESQURCE ALLOCATION IN
MULTIPLE CONTENTION-BUS NETWORKS

5.1 Architecture of Multiple Contention-Bus Networks

A multiple contention-bus network provides multiple communication chan-
nels between processors and resources (Figure 5.1). These channels may be
obtained by modulating a physical bus into multiple channels of different fre-
quencies or simply provided by muitiple baseband physical buses. Access to
the individual channels follows the same protocol as used in the single
contention-bus networks described in Chapler 3. Lvery processor in the net-
work is capable of transmitting data to every bus or receiving data from them.
There is usually a transceiver in each interface to allow paralle] transmission
of data to the different channels. If all channels share one transmitter, then
only one data stream can be trapsmitted at any time. However, in a conten-
tion network, every processor should provide a receiver for each channel to be
capable of receiving data from all channels simultaneously. Different

configurations of buffer arrangement are shown in Figure 5.2,

A multiple-bus system has the following advantages: {1) The structure of
the network is simple and regular. {2} It provides ample bandwidth. (31 It is

of highly modularity and easy to expand. {4) It can survive individual bus

84
resources
n To ® e a T s @ LY
bus 1
| O O | 1 | O - N | 3
111 111 J171 1711
j g } L i I 1 mr i1
. bus 2
4
S B)) 1Y)
bus ¢
Py bz s e e P s e P,
processors

Figure 5.1 A resource sharing computer system connected by multiple buses

.
Figure

a.

3

M

bus 1 bus 2 bus t

processor{resource}

{a) Multiple-bus interface with single transceiver

bus 1 bus 2 bus ¢

vmanmmmomﬁ&i:amw

{b) Multiple-bus interface with multiple transceivers

Transceiver arrangement in the interface between a processor and
multiple buses

failure. (5) It is less expensive than 2 single bus of the same bandwidth.
multiple bus has been proposed for connecting processors and memory modu
in multiprocessors [ENS77, LAN83, MARS82b], and channel access meths
have studied for multiple CSMA/CD networks {MARS2a].

5.2 Resource Scheduling for Multiple Contention Buses

As described above, a mulliple bus network may be expanded from as
gle bus network by adding more communication channels to the system. 1
resource allocation problem for this type of networks is also an extension of
counterpart in single contention-bus networks. Suppose that there are t ch:
nels, the issue of resource scheduling is to allocate t pairs of processors a
resources such that the total cost of allocations is minimized. In general,
total cost can be represented as s function of t {processor priority - resou
preference) pairs selected. Using the same conventions as discussed in Chap

3, the problem can be formulated as follows.

@wmwmm% H{{x g, v (X oy)X pu¥6) (5

I requests are independent, then the cost is the summation of the cost of e:

individual pair. Hence, Eq. 5.1 can be simplified as:

w
min Hix,,v.) o
{pisl€QxR Wu_ e (

For most scheduling disciplines, the independence relation described in Chap

3 holds.

87

8

;)
«\xF

Hix,y,) <0 {5.3)

.wumtnEx

<0
oy,)<

P_%m,

This equation implies that requests and resources may be selected separately.
However, the question on the method of selecting processors and resources
remains to be answered. The following theorem reveals that the t processors of

the highest priority and t resources of the highest preference should be selected.

Theorem 65.1: To minimize the cost of resource allocation in multiple-bus net-
works, if the cost function of allocation satisfies BEq. 5.3, then ¢ processors of
the highest priority and ¢ resources of the highest preference should be selected.
< Preoof>

The theorem Is proved by contradiction. Assume that the mapping T =

{{p;s) M 1<i<t} is optimal but the priority Xy, Is not among the t highest

ones, i.e., there exists a processor, g, which is not allocated and

X > X,

q>Xp, for some k such that 1<k<t (5.4}

According to Eq. 5.3, the function H{x,y) is a decreasing function of x.

Therefore, replacing ££g 5.4 into Eq 5.2 yields

i ¥

4
Xpu¥) + Hixgy,) S SH(x,) (5:5)
=t

This equation indicates that there is another mapping with a smaller cost
than that of T. Hence, the mapping T is not optimal, which contradicts

the assumption. To obtain the optimal mapping, the processors of the

88

highest priority must be chosen. With a similar argument, resources «
the highest preference should be selected. Thus, the theorem follow

O

For the allocation of single-resource requests, an optimal mapping
specified by a set of ordered pairs. The above theorem only characterizes tl
domain of this mapping, the pairing among the selected processors and ti
selected resources remains to be specified. In other word, a selected resour
has to be assigned to a selected processor after the selections. The procedure «

the above scheduling may be summarized as follows:

S1. The t resources of highest priority are selected and their costs are broa
cast on the bus.

a5 s

2. The t processor of highest preference are selected and their costs a

broadcast on the bus.

S3. The pairing between the selected processors and resources are carried ot
at every selected processors concurrently, and each pair of processor an

resource are assigned a bus.

3]
-

The processor allocated with a resource and 2 bus transmits its requests.
There are t! possible mappings between the selected processors and tl
selected resources. It can be shown that finding the best mapping is equivales
to the classical stable marriage problem [MCV71], which can be solved t
existing algorithms. In practice, pairing the minimum-cost processor to il
minimum-cost resource sequentially is & good heuristie. Before the optim
mapping can be found, the t processors of the highest priority and the

resources of the highest preference have to be identified. This is the problem «

89

selecting the t smallest numbers from a set of distributed random numbers,

To find the t processors of the highest priority and the t resources of the
highest preference, a centralized scheme would require the cost information of
all processors and resources to be collected. The collection of these information
represents a significant overhead of resource scheduling in a distributed
environment. Alternatively, a distributed ordered selection algorithm similar to
the distributed minimum-search algorithm of Chapter 3 was developed in this
thesis. The algorithm will be discussed in section 5.4. For the class of schedul-
ing disciplines in which no priority and preference are concerned, resource
scheduling may be further simplified and integrated with the channel routing

schemes. This integration is described in the next section.

5.3 Random Resource Allocation with Distributed Routing

Packel routing that selects a preferred path for transmitting packets is an
important problem in computer networks. In a mulliple-bus network, packets
may be transmitted through any available channel. The routing mechanism
may select a channel which is the best {(according to some measures}. For the
scheduling with a random allocation strategy, a request may be treafed as a
packet and relies on the routing mechanism to be assigned a channel. After a
channel is allocated, the request is broadcast. Upon receiving a broadeast
request, resources may send an acknowledgement to the source of the request.
.».mﬁ?mwmwc:nwxmBmmwwwmmmﬂéwmwmmcw,«mmoiﬁ&cmmnwmozmm&mmazmwmwom-

erat

@ by the multiple resources. Acknowledgements to a requests are

g0

abandoned if the request has already received one.

The design of routing schemes in a multiple-bus network is much simple
than that of a general network. The routing strategy used has significar
effects on the throughput of the network, and hence on the efficiency of tl
resource allocations. Conventional routing strategies are investigated belo
with the aid of a queueing model. A more efficient implementation is propose

later.

5.3.1 A Queueing Network Representation of Packet Routing Schemc

A packet routing scheme in multiple-bus networks may be described

y

terms of a queueing network {Figure 5.3) in which a chansel is represented by

pxs

server., The processors that are contending for a channel are queued to
corresponding server, and 2 “random” service discipline is used to model tl
random bus-accesses. The length of a queue is referred to be the channel lo
of its associated channel. A request generator represents a processor. Ti
requests are assumed to be generated by a request generator with a Poissc
process. The routing decision of a processor is modeled by the branches leadi

from the associated request generafor to servers.

5.3.2 Probabilistic Routing

Depending on routing strategy, a processor may route its ready request
a randomly chosen {ree channel Such a scheme is called a probabilistic rou
ing. Since channels are chosen randomly, a processor may happen to select
channel that is heavily loaded. Such an improper routing usually leads to :

imbalance of workload among channels and results in a poor chann

91
processor 1 bus 1
v: ¥ »>
processor 2 bus 2

processor n bus ¢

e 2O

igure 5.3 A queueing-network representation of the distributed
routing scheme in multiple-bus networks

92

utilization. To improve the performance of probabilistic routing, the branching
probabilities may be optimized with respect to the statistic of the network,
which include request rates, bus speeds, and data transmission times [CTI079].
The effect of the optimization is on the balance of workload among the chaa-
nels. Ideally, it would result in a balanced system of which the traffic intensi-

ties to all channels are equal.

We have evaluated the performance of probabilistic routing by measuring
the percentage of time that the channels are wasted. A channel is wasted when
it is idle and there are requests waiting at other channels. Let W be the

number of channel being wasted at any instant, then

W = min { (number of idle channels), (number of waiting requests)
Ay

W is a random number with a mean value that can be evaluated according
to the following assumptions. {1) The network consists of t channels. (2
Requests for transmission are generated independently from each processor an
are governed by a Poisson process. (3} The duration of the total of th
contention-resolution and packet-iransmission times is a random number will
an exponential distribution. (4) Channel loads are well balanced, and th
traffic intensity to every channel is assumed to be constant. These assumption
allow the best performance for probabilistic routing to be evaluated.

The network may be modeled by a queueing network consisting of muit
ple M/M/1 queues. Let n; be the number of packets queued at the i-th chann

{including the one in transmission), and p, be the probability that n is equal t

y. The probability that there are k wasted channels may be formulated

B

93
follows:
i
P(W=k) = lllﬁ:ms_ P& P (o) o+ A0 > 0,21, 1< < t-K) (5.4)
o t! ; .
+ Y = pd Pdny top o g Fh i 02 1<K)

h.n,mLJ.,_ e
where py is the probability of a channel being idle. The first term in the RIS
of Eq. {5.4) represents the probability that the number of waiting requests is
greater than or equal to the number of idle chanunels. According to the
definition, all the idle channels are wasted. The second term, on the other
hand, represents the probability that the number of waiting requests is less

than the number of idle channels.

>

set of cvents that the sum of a set of numbers being greater than ¢

<2

]
The

s

mutually exclusive to the set of events that such a sum is never greater than t.

Therefore, the following relation holds.

Pngtngt o T >t 0> 1L1<i<t-k) (5.5)
t—-1 .
= 1= % Py +upt -+ =s > 11<i<t-k)
5=}

The set of events that the total number of waiting requests is equaltor, r < ¢

includes all the combinations that the sum of waiting requests is r, Le.,

Pdo,+o,+ - +?ﬁwﬂmw n2>11<i<k)

— Y 3 R fr oo
- by Py{nyog ekl {5.6)

(combinatiens nytng+ -+ -+ =s)
The lelt-hand-side of the equation, ny+ny+ - -+ -+n,_, Ts, may be rearranged

by grouping together those ny’s of equal value and represented in the following

94

form:

[V
P

3
r =Y mn (
iz}

where m; is the mulliplicity of numbers, n;, and s is the number of such groug
Accordingly, the arguments, s and my's, in this representation satisfys the fc

lowing condition:

8
t-k = Ym; (5.7
i=1

With such a representation, the combinations that summation of u pos
tive integers equals v, or n;+ny+ -+ - +n,=v, may be obtained by applyi
the algorithms proposed for generating u partitions of an integer v [REIT
Furihermore, since all queues operate independently, the following result m:

be derived from queueing theory.

H mefnm« Mmplrw - w.:ﬁs» mvs:

&
oo

For an M/M/1 queue, the probability of its load being n;, denoted by p,, has

closed form solution that can be expressed in terms of its traffic intensity p.

%2}
o0

Pr, = 2"(1p) , {

The mean value of W may be formulated by combining Eg’s 5.4 to 5.8

-1
EW) = ¥k« P{W=k)
k=1
= i K ki
= 5% k e - -k
z ks g (I=p)p

95
-l t—k ! m, m m
N : 2, .. .
EPIIEDY m,! [Pa Pa Py,
el mylm,! - - my! 2
Simaq,=r
a=1
aM_ n_ .
+ ¥ - pd

m, gn. m

Pq Pq, "7 Pq,’ (5.9)

(mugyt meget -0 +m,q, =k +-j)

Note that s and v in Eq. 5.9 are determined by Eq. 5.7. The percentage of

E{w)
t

the channels being wasted, which is defined as x100%, is plotted against

ic intensily as depicted in Figure 5.4. it is observed from this figure
that probabilistic routing does not peiform well when .its load is moderate.
Under this condition, there are more than 50% of the chanunels being wasted on
the average. When p is small, there are only a few requests being blocked.
Likewise, when p is large, there are not many idle channels. In both cases, the

average number of channels being wasted is small as expected.

5.3.3 State-Dependent Routing

Probabilistic routing controls the branching probabilities according wo the
average behavior of the queueing system. Thus, it is unable to adapt to the
instantancous variations in load, and its performance is poor when the variance
of the loads is large. A state dependent routing strategy, on the other hand,
copes with the problem by determining the routing on a per-task basis depend-

ing on the load of every channel. With a state d

endent routing, a request is

percentage of channel being wasted,

96

L
<
]

L
o
i

oy
<
]

¢t - number of buses

i i i I H H i 1 l

1 2 3 4 5 & .7 .8 .9 1
traffic intensity, p

Figure 5.4 The percentage of channel being wasted (probabilistic routing}

97

routed to the channel with the mintmum load. Let the number of processors
contending for channel i be denoted by n;. Then, the decision of this routing

strategy is to identily the minimum among the n;s, 1 <i<t.

No good analytical technique has been developed for investigating the per-
formance of state dependent routing strategies. A simulation approach is used
here with the results plotted in Figure 5.5 using solid lines. It shows that the
percentage of channels being wasted is reduced to less than 5%. In contrast to
probabilistic routing, the percentage of channels wasted in state dependent
routing decreases as the total number of chauncels in the network increases.
This results in a larger degree of resource sharing. Note that more than one
request may be generated before the channel load information is updated.
These requests are routed to the same channel if they arrived at different pro-
cessors. According to the simulation results, the effect of such an improper

routing is minor unless there are bulk arrivals.

In a distributed computer system, the instanlaneous load of a channel is
not available to processors. Collecting this information by message transfers
may introduce an unacceptable overhead. However, the channel loads may be
estimated by methods as discussed in Chapters 3 and 4. Qur mmwﬂﬁmmmw resuits
are also plotted in Figure 5.5 using dashed lines. It shows that the bus utiliza-
tion under this implementation is only slightly lower than the case in which all

chanuel loads are known exactly. In conclusion, the state dependent routing

with load estimation performs much better than an ideal probabilistic routing

g8
6
-~ =~ load is estimated
/
load is known , ,/
g S
= > t - number of buses ; — >/ |
: /
3
s

5 Y

)

E

£

o

=

2 34

E

&

o

s

S 2.

D

B0

=

!

254

[

3

=1

0 T
1.2 ;

traffic intensity, p

Pigure 5.5 The percentage of channel being wasted {state-dependent routir

4]

a0
t - number of buses

<

€ 4o o £=30

X
IR A=10
T 30

3

=

=3

3 probabilistic routing

2 20 -

= B

=

3]

3

<33

i3]

=]

s 10 4 .

s .Hu«c

5 £=30

. state-dependent routing ,\ /

/. i
0 =T T T T Y 1 T 1 T

traffic intensily, p

Figure 5.6 Comparison of probabilistic routing and state-dependent routing
with load-estimation

100

5.4 Resource Allocation with Distributed Ordered Selection

Suppose N processors are bidding for resources through t channels. Eac
processor is associated with a priority level representing the cost of being allc
cated. Abstractly, the priority levels associated with these processors can b
seen as a collection of N physically dispersed random number:
<Xy <o X, < 0 < XN A (4,N)-selection problem is to deter
mine the ¢ smallest wumbers, X; X, , -+, X, from the N random number:
If the selected numbers have to be sorted, then the problem becomes th
ordered-selection problem. Assuming that there exists an ordered-selection pro

tocol, the scheduling of resource in a multiple-bus network can be carried ou

as follows:

{1) Perform ordered seleclion to identify the t processors of the minimur

cost.
(2} The i'th selected processor broadeasts its cost on the i'th channel.
{3} Perform ordered selection to identify the t resources of the minimur
cost.
{4) The i'th selected resource broadcasts its cost on the i'th chanpel.

{5) Every selected processor computes a resource mapping locally using
common algorithm. The mapping obtained should be identical since th

same input data are used.

{6) Each selected processor send its request io the mapped resourc

through a channel associated with the resource.

Two distributed ordered selection algorithins are developed and discussed

below,

(1) Sequential Ordered Selection

An ordered selection can be done by iteratively finding the minimum from
a set of distributed random numbers and excluding it from future iterations. It
is obvious that the average time complexity of this approach is O{t} if the aver-
age time to find the minimum is constant. Constant time distributed
mintmurn-search algorithm developed for single contention buses was discussed
in Chapter 3. In adapting the algorithm for solving the ordered-selection prob-
lem, the central issue is to optimize the window control. However, the average

iime complexity remains to be O{t} as shown by Arrow [ARRS81].

{ii} Parallel Ordered Selection

Alternatively, an ordered selection may be carried out in s multiple
contention-bus network in parallel with a multi-window search scheme. The
average time complexity will be shown to be Oflogt) if t numbers are to be
selected in a t-bus metwork. This scheme significantly improves over the
equential ordered selection schemes when t is large. The parallelism of the
multi-window scheme lies on the capability of a station to listen to all buses
simultanecusly, It requires that each processor has a transceiver counected to

each bus.

The basic idea of the multi-window search scheme is similar to that of the

single-window search scheme. To search the minimum, sub-intervals of the

w

earch range are resolved by contention. Initially

Zs

the entire search range is

102

unresolved. An interval is determined for each bus as a transmission windc
in each step of contention. As the contention proceeds, the search range is pe
titioned into intervals. A given interval may be resolved or unresolved.
resolved interval is one that may be either empty or contains exactly only o
number. On the other hand, an unresolved interval is one that has never be
searched or a collision was detected previously. The unresclved intervals
searched sequentially in a single window search scheme, while they are search
in parallel in a multi-window search scheme. The multi-window search scher
assigns to each bus an unresolved interval in a distributed fashion. A proces:
transmits its request to a bus i its priority falls in the assigned interval
that bus. A interval is resolved il there is no collision in contention. The p
cess is repeated until the intervals in the range that contains all the t small
numbers are resolved. A multi-window ordered selection algorithm incurs
additional EmmmmmWwwmwwummq overhead since the information on the state o
partitioned interval is available locally.

There are several issues regarding the implementation of such a scher
First, the method of partitioning the search range into intervals in each step
selection must be developed. Sccond, the time to terminate the selection p
cedure has to be determined. Third, & way to sequence the selected numb

must be provided. These issues are discussed in the following.

103

5.4.1 Multi-Window Control

The complexity of the multi-window control is much higher than that of
the single-bus case. In the minimum-search algorithm developed for a single
contention bus, the lower bound for the window can remain stationary.
Optimization of window control is reduced to the determination of the window
size {or upper bound) only. In the multi-window-search problem, both the
bounds and the size of a search window can affect the efficiency of window con-

trol scheme.

{a) The Optimal Multi-Window Control

Multi-window control is to determine u set of windows for the next step of
contentions. The windows are found from the set of unresolved intervals,
including collided and unsearched ones. These intervals may be represented by
a vector V in which each element represents an interval that consists of a iri-
plet representing the starting point, the ending point, and the state of collision.
Based on such a representation, the issue of the multi-window control optimiza-
ticn may be formulated in dynamic programming. The best choice of a win-
dow vector would be one that minimizes the nuinber of subsequent contentions.
This number depends on the results of subsequent contentions, and may be
expressed by the average of all the possible outcomes.

Consider the case in which t numbers are to be selected from N distri-
buted random numbers, and the current unresolved intervals are represented

%

¥ . N N . N . s
by a vector V. Given V, a contention step using contention windows ¥ results

in another unresolved status vector represented by U. Denote the expected

104

number of contentions in performing the ordered selection by Om ¢- Then th

ordered selection process with an optimal window control may be expresse
recursively as follows,

W .
Cyny = :wc L+ AM_WUvZ.ﬂ.ch'&VxQ%M.Q (5.12
i=

where vz.&.d,mﬁg is the probability that the contention results in isolating
nurmbers to be selected, and U is the status of unresolved intervals after con
tention il window @'is used. Contention for resolving the resulling unresolvec
intervals has to be continued until all the ¢ minimum numbers are identified
An optimal window vector is the one that minimize the recursive formulatior
Eq. 5.12. In order to evaluate Eq. 5.12, all the vz.a._.,ﬂmg%w must be available
which are too numerous to be evaluated. It is observed that there are 3* possi
ble outcomes of a contention. For each outcome, there is a corresponding vec
tor U, and for each vector U, an optimal window % has to be determined. I
each case, there are m_w?lw+axzxa possible distributions of X|'s in the inter
vals, where d is the number of unsearched intervals. Hence the evaluation o
Eq. 5.12 is too complex. We will pursue suboptimal solutions to the multi

window control problem.

(b} A Heuristic Multi-Window Control

A k-window control has 2k degrees of freedom since there are two degree
of freedom for each window: size and position, To simplily the multi-windov

control, the following restrictions are imposed in determining the windows. (1

105

The buses are allocated sequentially to search the unresolved intervals from the
lower end to the upper end. The sequential allocation will leave a single un-
searched interval at the upper-most end. {2) A collided interval is split into
two equal halves, and each is considered as an unresolved interval. (3) Extend
allocations into un-searched interval il all the collided intervals have been allo-
cated. The window size of the window in the un-searched interval is »\n,\,
where 7 is the estimated number of X/'s falling in the unsearched interval. The
size of unsearched range and the status of resolved and unresolved intervals
may be used in estimating 7. A simple estimation can be obtained by subtract-

ing the estimated pumber of Xi's in the searched range from the total number

e

of Xi's, Le., setting Y to N - q, - 2 % d;, where g, and mh. will be defined in

i

.Tl.

Section 5.4.2.

An example Hllustrating the above window control is shown in Figure 5.7
This figure shows that previous countentions result in isolating one pumber,
excluding several empty intervals from further considerations, and revealing
that there are two collided windows, According to the bus-assignment con-
, the search windows to be allocated to five buses for the next conten-

tion is shown in Figure 5.7b.

5.4.2 Sequencing The Selected Numbers
If the status of every interval is known, then the order of the selected
numbers can be determined. However, the number of intervals grows as the

contention proceeds. [t may be too expensive for each processor to keep track
o Iy ¥

-~
o]

7 the status of all the intervals, and is not effective if the task is assigned to a

Wy Wi Wy Wy Wy on 193
| x o] [>] |
_ Ep_ Wy Wy C»v C:

outcome of current contention
Y, Vs Vi U ze_ﬁ Usz th
2:91 o] {7:9] | 2 L
[y, v Y, Ver Ve,

new window assignment

(%3

x” - a collided interval

' - a success window

¥ ? . an empty window

=7 . an unsearched interval

"7 - to be determined by contention

Figure 5.7 [lustration of heuristic window control

107

centralized station. To reduce the complexity of local processing, each proces-
sor can observe the contention activities continuously and counts the cumula-
tive number of resolved intervals with upper bounds smaller than the local
parameter. To achieve this, each processor has to maintain a vector counsisting
of the relative order of each contention window. It is updated according to the

collision information afler each contention. Let the collision information of a

contention be represented by two t-tuples, (s;s, - ,8,) and {d;dy - - - ,d}},
where
| 1 il contention in the " th bus succeeds,
$iT 10 otherwise.
4= 1 if contention in the i’ th bus collides,
P71 0 otherwise,

The order of the random numbers in contention windows are maintained in

each processor by a vector

G = {qy,q9 - ,4y). These g's are set to 1 initially, and updated after each

step of contention in the following way.

-

g =gt

o
=
=)
b
-
i
i
o
uf'"“

(5.13)

KN

It is easy to verify that the counts g's are the order in the ordered siatisties

when the selection procedure terminates,

108

5.4.3 The Termination Condition

To determine the termination condition, the status of all the intervals ma
have to be maintained. As an allernative, each processor has to maintain a
indicator that points to the position where the ordered statistics X, and X,
are most likely to be separated. The indicator for termination can be sel

the upper end of the k-th window such that the following conditions hold.

-
i
L

q T 2x3d 2> gy T2 34 {5.1:
i

i

al

From Eq. 5.13 we know that the order of random numbers in the i'th windoy
a;, is the cumulative number of contending parameters that have been isolate
and are smaller than the numbers in this window since the beginning of conte
tion. Thus, the selection process terminates correctly when every interv
smaller than the indicator is resolved, i.e. the termination condition may 1

expressed as

L
3d; =0 andg2t (5.1
=

Since the termination indicator is set in a way that the { minimu
numbers are always smaller than it, the termination indicator Is also the upp
bound of the search range. Hence, the search range can be narrowed down

the contentions proceed.

109

5.5 A Multi-Window Search Scheme for Ordered Selection

A multiple-bus-CSMA/CD protocol based on the proposed multi-window
search scherie with a heuristic window control is outlined in Figures 5.8 and
5.0. The statements in this protocol are implementation independent except
for two functions : transmit(X, W) and observe(S, D). These two functions
depend on the architecture of the contention buses. The procedure can be
implemented on any type of petworks that support these two functions. The
logic of this procedure is also simple enough to allow it be implemented in

hardware.

5.5.1 Proof of Correctness
We prove that the above multi-window search protocol correctly selects
the t smallest numbers from N distributed random numbers. First, we show

that the distributed procedure terminates in a finite number of steps.

Lemma 5§ : The mulli-window search protocol terminates in a finite number

of steps il any pair of random numbers is separable. Two random numbers, x;

i

and x., are separable if is finite.

E

< Proof>

The procedure terminates when all disjoint intervals within the search

range are resolved. If remalns to show that number of such intervals is
finite, and these intervals were obtained by partitioning the seareh range

in a finite number of steps.

110

procedure multi-window-search{X, X-order);

/* N : Total number of distributed random numbers +/

/* t : number of random numbers to be selected *f

/* L & U : Lower & upper bounds of the range of random aumbers s/

/# X : The random number generated by the local processor i

/* X-order : The order of X among the N distributed random pumbers /

/% W = (W, Wy, - - - W) : vector of search windows, where wp = {w w0} ¥/
/+S & D : Collision detection vectors +f

/* 4 : The estimated order of Y)'s in the windows */

/+ T : Termination indicator +/

begin
fori=l to t do
begin
sp— 0, dj+— 0 g~ I
end;

T + U; X-order « 1; done + false;
while {{not done) and {X-order < t}} do

begin
iwsaoiﬂ. ,3.8,8,71); /# Determine the transmission windows =/
transmit{X , W); /* Transmit to k-th channel if wy, <X<w ;. #/
observe(S , B}; /* Detect the outcome of the contention. +f
/¥ Update current order of exch window and X-order. 3/
fork=1to{t+1}do
begin
o
Qg+ Ysg
=1

if { %.V;ihrm } then X-order «— q + s
end;
/* update search range by resetting termination indicator #/
P 0 r 0
while {{r < tJand {i <)} do
begin .

P ithreg+2s Ydg

=1

end;
H{i<t) then
begin

T wg

/* Hmzizpmom ?sf

it { 3d; = 0) then done +~ true;

=3
end; !
end;

end multi-window-search.

Figure 5.8 A multi-window ordered selection procedure

111

e

procedure window {(W,.35.0.1)

/* N : Total number of distributed random numbers 7

/* 2 Number. of random numbers to be selected +/

/* L & U : Lower & upper bounds on the range of random numbers supplied from calling
functions/

J* W = (wwa, - W) : vector of search windows, where we = {wy,w;5) %/

/* new-W : Temporary vector of new search windows */

/%S & D : Coliision detection vectors »/

/* Q) : The estimated order of y’s in the windows s/

/* T : Termination marker +/

begin
i~ 1
i~
while (i<t) do
begin
while { ¢y=0) doj «—jt];
ir{ T<U) then
begin
/¥ Allocate two buses io resolve a collided interval »/
neW-wyy — Wiy
cc;+ Wy
DeW-W(a ;
~ 2
new-qq v qy;
P i+l
BeW-Wi)~ NEW™ Wi, o
DEW-Wy g &= Wjo
new-q; + aj
end;
else begin
/# Search into unsearched interval ¥/
for k=i to t do
begin
DEW-Wy; — BOWTW
Wit Wity
NEW-Wig ii.rﬂw!!f!it%l!w
Zlnn(..nvauaw
=1
end;
Pt
end;
end;
W new—W,;
G« new~0;
end.
Figure 5.0 A heuristic window-control procedure

112

To search for the minimum in an unsearched range, the window control
determines intervals of non-zero size as contention windows. The searct
range is only partitioned into a finite number of intervals. These interval
may be resolved or remain unresolved after a contlention. If an interva
remains unresolved, it is split into two halves of finile sizes. In the wors

case, the number of steps to separate any two random numbers is

i
Nsx¢

k= ﬂOmw

where § = min : xwth J<ij, <t+1, and i#j}. Since 8 is finite, the valu
of k is also finite and the interval can be resolved in finite steps. Thus

the procedure terminates in a finite number of steps. O

If two numbers {o be selected are unseparable, they will always fall in th
same window. The contention outecome of this window will always be a coll
sion, and the search procedure will keep splitting the window but unable t
resulve the contention. Therefore, the procedure runs into an infinite loog
Theoretically, the probability of two continuous random numbers bein
unseparable is zero. In practice, two numbers may be identical because of lu
ited number of bits used in binary representations, or identical priority leve
are associated with the processors that generated these random numbers. T
prevent the procedure from running intc an infinite loop, a small randor
number may be added to each contending number in each contention t
separate unseparable numbers. The random number should be chosen from
small range so that the modification to the original contending numbers do:

not affect the physical meaning of the underlying applications. Stations me

113

use distinct sequences of random numbers for the modifications to eliminate the

possibility of unseparability.

The following lemma is also necessary for the proof of correctness of the

protocol.

Lemma 5.2 : All the intervals within the search range are resolved when the
procedure terminates.

< Proof>

There are two cases in allocating contention buses to resolve unresolved
intervals after a contention. In the first case, the following inequality
holds.

'

(q-1)+2s Yd <t (5.17)
&

we have 2 #

e

mw < i, ‘The number of unresolved intervals

=i
=1

in the search range is less than the number of buses available. Thus, there
are a suificient number of buses to be allceated to all collided intervals,
and the remaining buses will be used .to extend the search inio the
unsearched range if it exisls.

4
{q-1)+2+* 3dp 2t (5.18)
=1

As the contention proceeds, and the second case will bappen eventually.
This is a case in which there are more intervals to be resolved than the

number of buses available. In this case, there exists an index k, 1<k <y,

114

such that

/Fm t if contention in the k'th bus succeeds
(1) +2 # = i ~ lt+1 if contention in the K’ th bus causes collisi
According to the termination control, the termination indicator is set

wy in this case. The total number of buses required to search all collids

ﬁ. = t, ar

ISl

intervals within the range is less than t if q¢ > Lor 2%
i

0

k

there will be an unallocated interval if 2 » 33d; = t+1. However, it w
j=i

be excluded from the current contention il the outcome of collision dete

tion does not satisfy the following conditions.
2% 57d; =¢-1 and sd, =0

Or, if the condition is satisfied, the t'th bus will be allocated to search tl
interval in the next contention. Hence, every interval within the sear

range is searched until all intervals are resolved. 0

Now, the proof of correctness of the proposed multi-window search procedure

summarized in the following theorem.

Theorem 5.2: The multi-window search procedure with the proposed sub
timal window control performs a {t,N)-selection correctly.

< Proof>

115

We have shown that the procedure locates the ordered statistics
Xy Xy -0, and X correctly in a finite number of steps in Lemma 5.1.
According to Lemina 5.2, all intervals below the termination indicator are
resolved. From the way that the termination indicator is set, it is easy to
show that there are at least t numbers being isolated in these intervals.
Since the resolved intervals are disjoint and follow the linear ordering rela-

tion, the numbers isolated in these intervals can be ordered accordingly.

0

5.6.2 Performance of The Protocol

Splitting a collided interval into two equal halves is a good heuristic win-
dow control and is justified in this section. In Chapter 3, we have shown that
the binary-divide window control is optimal for resolving a collided interval if
there are exactly two numbers uniformly distributed in the interval. Suppose
that the size of unsearched interval is u and that the estimated amount of ran-

dom numbers falling in this intervals is 4. Then the proposed multi-window

control will allocate a bus to search a interval of size —. Let Z be the random

)=

variable representing the number of Xj’s in the collided window, and the aver-
age number of X's falling in this search interval be E{Z).
M -

E(z) = % pef|| 5] (-1 (5.19)
p=32 .M it v

The values of E{Z} with respect to different 4's are given in Table 5.1. The

table shows that E{Z} is less than 2.4 for reasonably large values of ~. A
J - o

116

Table 5.1 E(Z), the expected number of Xi's falling in a window of size

u

v

when the estimated number of random numbers uniformly

distributed in an unsearched interval (of size u) is 7y

1 | E@)
2 2.0
5 | 2312
10 | 2.326
2 | 2.329
100 | 2.337
500 | 2.346
1000 | 2.379

117

collided window contains less than 2.4 random numbers on the average since
the number of X{'s in a collided window that has been split would be smaller
than this value. The arguments above concludes that a collided window often
contains two numbers. Hence, the binary-divide rule is a good heuristic to
separate these two numbers.

The following lemma and theorem show that the third constraint of the

heuristic window control also results an efficient window control.

P
Lemma 5.9 - Let p be 2 natural number, and y; > 0. If W% = ¢, then [y, is

i=1 i=1

maximized when y; = —, 1=1,2,...p.

< Proof>
The lemma is proved by a mathematical induction. The induction base
{(p=1) is trivial. Consider the cases in which p is greater than one.
Assume that

p—i
Sy = fe where 0</ <1 {5.20)
=1

Accordingly, y, = (1-fJe. I pis equal to 2, then

vz = 2H(1-p) (5.21)

. 1
maximized when g = r’ e So the lemma

F4

o

The right-hand side of Eq. 5,21
i also true for p=2.

, . _ ¢ .)
e lemma s true for p = m so that y;=—. Consider the
m

m
case in which p = m+1. Let vy, = {1-f, then Y y=p¢ is maximized
i=1

118

at u:n..mlal. Hence
m

mti m ¢ i
Hy =0lydxyYm+ = 1P Tl&o (5.22
i=1 i=t m
The RHS of Eq 5.22 is maximized at 8 = —o—. This yield
m+1
p— < 3 o— &
y; = oy fori=1,2,..,.m+1L n]

Theorem 5.8: Let the number of X's distributed in the unsearched range (0,
be n, and the boundaries of windows be AST_.;\L" i=1,2,..t. Then, the prob:
bility that all t of X;'s are isolated within one contention is maximized whe

S S
WimWiy = .m., 1=2,..., L.

< Proof>
Without loss of generality, we assume that all random number are ge
erated from a uniform distribution in the interval (0,1}, The joint prob:
bility density funciion of the ordered statisties, yy ¥a,....¥y + 1, in general, &

wa..u.::w.a,T%x__va T wxn+ww -

i ; 4 g ¥
ooy S elxe) e (Gl)

where g{x} and G{x} are probability density Tunction and distributic
function of the parent distribution respectively. But for uniform distrib

tion, we have g{x} = 1 and G{x) = x. So,

118

n!
f (x,x Xy4y) = =
. . ” Avu e . R +
YiYaYird RSV AB t—1

i (1=x)" (5.24)
A sclection is successful when Vi€(wig wi), iT12,0t and y 4 ,€(w, 1)
Then the probability of success may be expressed in the following equa-

tion.

Pr{y,€(wi wi=1,2,...t, and y, 4 €(w, b}

WyWq w1
= .M.\. - .‘-.\- C i H Awlxe.*uvz:r.ew&xp'f~Q.&«...&.NMQNW
wy Wi Wy
n! b
= !I'AGISL —w,) m Wi—Wiy) (5.25)
. w“

Notice that the value of [](w;=w;_,) depends on w, and the partitioning
i=1

i
of the interval {0, w,). It follows from Lemma 5.3 that [](w~w,_,) is max-

et

Wy
. Substituting it into Eq. 5.25 yields

imized when wi—w;,_, = T 2

Priyi€{wi w)i=12,t, and y, 4, €(w, 1)}

- Klwuﬂa%%-;i& V {5.26)

{n—t}
It is easy to very that Eq. 5.26 is maximized al w, = mr. This leads to the
n

i
results of w =—
" n

The w{'s have to be adjusted by a factor r if the random numbers are dis-

u

tributed in the interval (0,1}, Thus, wi~w, mth. O
n

120

A simulation study has been conducted to evaluate the performance of th
multi-window ordered selection utilizing the proposed heuristic window-contre
scheme. The simulation results are plotted in Figure 5.10. It shows that th
average number of contentions in resolving {t,N} ordered selections is propos
tional to log,t. To reveal this fact, dashed lines showing the functio
log,t + 3.5 are also plotted in this figure. It is shown in Figure 5.11 that th

performance of the multi-window selection is independent of N.

6.8 Concluding Remarks

Iu this chapter, we have shown that optimal resource scheduling problem ma
be reduced to the ordered selection problem if the scheduling discipline satisfie
the independence relation. A multi-window search scheme is proposed to pe
form ordered selection on maltiple contention-bus. The proposed heurist
determines the smallest t numbers from a set of distributed random numbers |

Ollog t) contention slots.

of contentions

number

average

122

121
11.0
10.0
* ¥ simulation results
*_ o - Ttrajectory of log,t + 3.3 9.00 A
10.0 4
8.00 -
E 7.00
9.00 =
26.00 -
S
£5.00 \\o’\l\/\l(/\/\
. {t = 10)
8.00 S 400 -
2
3.00 4
.00 2.00 -+
1.00 - .
6.00 0.40¢ 1] 1 T H T T T T
N g 20 40 60 80 100 120 140 160 180 ¢
total random numbers, N
5.00 ; T T 3 1 T T T T
i 2 3 Y 3 & 7 g g i¢ i1
pormalized no. of buses ¢ H|«-xwo
N Figure 5.11 The performance of multi-window ordered selection with £

pumber of buses

Fioy 10 P -
FIgure 9.0U The performance of multi-window ordered selection

Table 5.2 The design of the distributed resource allocation scheme iy multiple
contention-bus networks

Single Bus

t Buses

One Request of the Highest
Priority

t Requests of the Highest
Priority

Most Preferable Resources

t Most preferable Resources

Distributed Minimum Search

Distributed Ordered Seleciion

Window Search

Multi-Window Search

Collision Detection

Collision Detection

No Explicit Message Transfer

No Iixplicit Message Transfer

2.4 Contention Slots

Ollog,t) Contention Slots

124

CHAPTER VI
RESOURCE ALLOCATION IN
MULTISTAGE INTERCONNECTION NETWORKS

A multistage interconnection network is composed of a set of axb cross
bar switches (usually 2x2) that are organized into stages as illustrated by a
Omega network in Figure 8.2 {LAW75]. A switch may be in one of the fou
connection states as shown in Figure 6.1. By setting the switches properly
each stage may realize a permutation {rom iis inputs tc ils outputs. A map
ping from processors to resources may be obtained through the composition c
multiple permutations. Both ceniralized and distributed switching control hav
been developed for multistage interconnection networks. It has been show
that this type of interconnection networks are most cost-effective for intercor
neeting processors and memories in SIMD array processors or MIMD multipr
cessors {PAT81, STO71, SIE7%a, SIE79b, KRUS3]. They provide amp!
bandwidth while using much less hardware than crossbar switches.

It is the objective of this chapter to study the resource allocation probler
on this type of networks. The complex interconnection structure complicats
the problem of representing network constraints in optimization. We will sho
that the optimal resource mapping may be obtained by transforming the prol
lem into a corresponding network-flow problem and solving it by existing alg

rithms.

125

upper broadcasting

lower broadeasting

3‘ . . .
Pigure 6.1 Different connection states of a 2x2 cross-har switch

128

8.1 Multistage Resource Sharing Interconnection Networks

A Multistage Resource Sharing Inferconneciion Nefwork is abbreviated
MRSIN throughout this chapter. A MRSIN has a similar interconnect
structure but a different routing strategy as in conventional interconnect
networks with address mapping [FENS1]. In a conventional interconnect
network, the resource address has to be determined before a request enters
network [SIE78a, SIE8L]. In a MRSIN, a request is directed to any f
resource in the pool and does not require the destination address of |
resource to be known Dbefore entering the network [WAII82, WAIHS
WAH8B4b, JUA84e].

The basic assumptions made in this chapter are:

{a) Circuit switching is assumed for the MRSINs rather than pacl
switching for the following reasons. First, packet switching is used in conv
tional address mapping networks because it allows a network path to be shar
by more than one request concurrently. This reduces the waiting time
accessing a resource. The issue is less eritical in MIRISINs because a request ¢
always search for another available resource provided that the netweork is fr
Further, the overhead of rerouting a packet when a path or resource is block
is higher than that of rerouting a resource request. Second, due to the char.
teristics of resources, a task cannot be processed until it is completely receiv
The extra delay in breaking a task into multiple packets may decrease the u

ization of resources, and hence increase the response time of the system.

{b} One or more types of resources may exist. A MRSIN is classified

the number of types of resources connected. A MRSIN with only one type

resources attached is homogeneous, while a MRSIN with multiple types of
resources is Aelerogeneous.

{¢} Request priorily may be associated with a request to indicate the
urgency of the request. Resource preference may be associated with a resource

to indicate the desirability of being used for service.

{(d) Bach request needs one resource only.

8.2 Resource Scheduling in Multistage Interconnection Networks

Blockage in conventional interconnection networks may be due to Zonwmmm

in the destination or blockage in the network links. In a MRSIN, blockage in a
resource can be avoided by searching for an alternate free resource. However,
this may not always lead to betier resource utilization because the allocation of
one request to a resource may block one or more other requests from accessing
free resources due to the blocked paths. A scheduting algorithm is, therefore,
essential. For example, consider an 8-by-8 Omega network [LAWTS] (Figure
8.2} with interchange boxes that can be set to one of the two possible states:
straight or exchange {broadeast connection is not needed since one resource is
needed for each request). In this example, assume that processors py, py, ps are
requesting one resource each, and resources ry, ry, r; are available. Other pro-
cessors are not making requests, and other resources are busy. Further, the
network is completely free. All the resources will be allocated if the following
wocessor-resource mappings are used: {{py,ry), (pa,ra), (ps,ra)}, {(py,ra),

M

i T (Pss sl {pursh (ot (psiro)} or {(py,ra), (p31a), (ps,ry)}. But if

128

02

03 13 23 @

Figure 8.2 A multistag S ing i i m d
. ge resource sharing interconnection network e
; nbedde
in an 8x8 Omega network ’

the following processor-resource mappings are used: {{py, ry), {Ps, r3), {Ps 1)} or
{{py. r2), (parr3)y {Ps, 1)}, then a maximum of two out of three resources can be
allocated without blocking. This illustrates that the scheduler must be
designed properly to give the maximum resource utilization. Simulations have
shown that the average blocking probability can be as low as 29 for a MRSIN
with an 8by-8 cube network [ITIC82,WAHS82]. (A cube network is an Omega
network with a permutation of the output ports [SIE281].) If a heuristic schedul-
ing algorithm is used, then the average blocking probability increases to around

20%. Further degradation occurs if the network is not completely free.

Due to the complexity of the network configuration, eflicient algorithm for
solving this optimization problem cannot be done by simply identifying the
processors of the maximum priority and resources of the maximum preference.
In this chapter, we examine a subset of scheduling disciplines in which the cost
of allocating a pair of processor and resource is the sum of the costs of the pro-
cessor and the resource. Within this class of scheduling disciplines, the optimi-

zation problem may be solved by network-flow optimization algorithms.

8.3 Optimal Resource Scheduling for lomogeneous MRSINs

In this section, methods for optimizing resource mapping are discussed.
Exhaustive methods that examines all the possible ordered mappings have

exponential complexity. In a hemogeneous MRSIN, suppose x processors are

King requests, y resources are available, and the network is completely free.

{for x>y} or N x! {lor y2>x)

J

130

mappings to find the best one [WAIR2 HIC82]. Sub-optimal heuristics can |
used, but is only practical when x and y are small. This problem is more cor

plex when the network is partially occupied.

[n this section, we transform the optimal resource mapping problem in
various network-flow problems that can be sclved by many efficient algorithn

[GOLB81]. The basic concepts of How networks are briefly discussed here.

8.3.1. Flow Networks

A flow network is usually represented by a digraph with weighted link
Let B = (V,E) be a digraph with distincet vertices s (source) and t (sink).
capacity function, c¢{e), is defined on arc e of D such that ¢{e) be a non-negati
real number for all e€B. A flow function fis an assignment of a real numb
fle} to each are, e, such that the following conditions hold:
{1) Capacity limstation : For every arc e€E,

0<fle)<cle)
This condition ensures that a flow is less than the link capacity.

{2) Flow conservalion: Let af{v) be the set of incoming ares of vertex v, ai

B{v) be the set of outgoing arcs of vertex v. For every vE V—{s,t},

Y e = 5 fe)
e€aiv) eE8ly)

This constraint ensures that each intermediate pode in the flow netwo
does not absorb or create flows.
A legal flow is a flow assignment that satisfies capacity-limitation as

flow-conservation consiraints. The network-flow problem is to find the leg

131

flow that optimizes a given objective function. Examples include the
maximum-flow, the minimum-cost flow, aud the trans-shipment problems
[PAP82]. An st path is a directed path from s to t. Insertion of a dummy
node in a path will increase the path length, but will not aflect the flow assign-
ment. lncreasing the length of s-t paths in this way so that all s-t paths are of
equal length will be called an s-f path equalization. For convenience, all s-t

paths are equalized in the [ollowing discussions.

The maximum-flow problem of a flow network, G(V,Est,c), finds the
maxirmum flow, F, from s to t under the capacity and How-conservation con-

straints. It can be formulated as a linear programming problem:

Mazimum-Flow Problem:
Maximize F

subject to:

—-F V=38
SV Y ,hmw = Y fe) =3 F v =t {fow conservation}
e€alv) €AY 0 otherwise

(2} 0 < fle) <cfe) forall e€E {capacity limilation)

8.3.2. Optimal Resource Mapping in Homogeneous MRSINs

The non-broadeasting setting of the switch is equivalent to a legal integral flow

in 2 flow network of unit capacity. The following theorem assures

[

ng can be obtained Ly finding a legal integral flow

in the corresponding flow network.

132

Theorem 6.1: For any MRSIN, there exists a flow network for which a leg:
integral flow is equivalent to a valid resource mapping.

< Proof>

Consider an n-by-m switch-box, where n is the number of input links an
m is the number of output links. A physically realizable non-broadcastin
setting of a swilch is one in which an input link is connected to ouly on
output link and vice versa. This switch-box is equivalent to a node in
flow network with Ja(v)] = n and |B(v)] = m. The switch setting
equivalent to a legal integral flow assignment. Since a link in a switch
either allocated or free while a flow assignment assigns a link to either zer
or one unit of flow, the capacily constraints are always satisfied if th
capacity of links is set to 1. There is a direct correspondence belween
switch-box and 2 node, and a switch setting and a flow assignment. So s
equivalent flow can be construcied by a direct transformation from
circuit-switched MRSIN. O
The following transformation produces a flow network such that i
optimal resource mapping of a homogeneous MRSIN with random allocatic

can be derived from its maximum-flow assignments.

Transformation 6.1: Create a flow network G{V,Est,c) {rom a homogen
ous MRSIN
T1. Create node-sets P, X, and R for processors, switch-boxes, and resource

respectively. Introduce two additional nodes: source s and sink . Define

T2.

T3.

133

Vo= {5t UPUXUR
Add an are from the source to each node of an associated processor. This
set of ares is denoted by S.
S = :ml: veP)

Add an are from each node of an associated resource to the sink. This set

of ares is called T.
T = {{(vt)| vER}

For each link in the MRSIN that connects two switch-boxes, a processor
to a switch-box or a switch-box to a resource, add an arc between the

corresponding nodes in the flow graph. Denote this set of ares by B.

B= if«cvm vePUX, weXUR}

B =5yTuB

Define capacity function ¢ as follows:

¢ associated link is occupied
e = N . T
Mmm 1 associated link is free

Mm associated processor does not generafe request

{p} = N
mw«uu T associated processor generaies request

0 associated resource is unavailable
mwu T 11 associated resource is available

Obtain arc-set B by removing those ares with zero capacily.

134

E =F -{e| e€F, cfe) =0}
Obtain node-set V by deleting nodes that are not reachable from s.
V=V l?; aViupdlv) =0, veVv'}

As an example, consider 2 MRSIN embedded in an 8-by-8 Omega netwo
in which two paths are already occupied (Figure 6.2). Processors py, py, ps, I
and pg are making requests, and resources ry, Iy, ry, Iy, and ry are available. 1

applying Transformation 1, the resulting flow network is shown in Figure 6.3.

The correctness of the transformation is proved in the following theorem.

Theorem 8.2: In a homogencous MRSIN with random allocation, the numb
of resources allocated by a mapping is equal to the value of a legal integral fic
in the corresponding flow network as obtained by Transformation 6.1.

< Proof>

Consider a flow metwork with equalized s-t paths. The integral fic

assignment of nodes in Stage i is a mapping, g;, that maps output flows
Stage i~ to input flows in Stage i+1. A legal integral flow assignment f
the network can be represented by a composite function, h =gg,..2
where L is the length of the equalized s-t paths. For a flow network
integral capacily as obtained by Transformation 6.1, it has been provi
that a flow assigned by a maximum flow algorithm to an arc e, fe),
either 0 or 1 [BONS1]. Due to the conservation law, the incoming flow
equal to the outgoing flow at node I Hence, g, is one-to-one. It follo
that h is also a one-to-one function. For any one-tc-one function, the nor

of its domain is equal to the norm of its range. The norm of ¢

>

All arcs have capacity one

The number shown on each arc is the maximum flow assigned to

the are

Figure 6.3

The associated flow-network obtained from [igure 6.2 by Transfor-
mation 6.1

composite flow-assignment function, h, is equal to the total flow leaving
the source and entering the sink. Thus, E = MOA = F, where I and O
represent the domain and range of g;, and I is the value of the flow. This
implies that every legal flow defines a set of F nonoverlapping paths from
s to £. In the MRSIN, each of these paths joins a pair of requesting pro
cessor and free resource such that the number of resources allocated i

equal to the value of Lhe corresponding flow in the flow network. O

From Theorem 6.2 and from a known result that the maximum flow of :
network with integral capacity is integral [BONSI1], we conclude that ar
integral maximum-flow of the transformed flow network is equivalent to the
optimal resource Bm:msm.

The flow assignment can be obtained by applying the maximum-flow algo
rithm. The first algorithm proposed for solving maximum flow problems is dus
to Ford and Fulkerson [FORG2]. It is a primal-dual algorithm in which the
flow value is increased by Heratively looking for flow cugmenting palhs until
minimum cut-set is saturated. A flow augmenting path is a path from th
source to the sink that can be used to increase the flow value and does no
have to be a directed path, When an arc e on this path points in the directior
from s to t, then additional flow may be pushed through e if the current flov
assigned to e is less thun ifs capacity, c{e). If arc e points in the opposite direc
tion, then additional flow from s to t may be pushed through it if some of it
flow is canceled. Thus, fle} > 0 always holds. For example, in Figure 8.4a, a
original flow fis assigned along the path s-a-d-t. Then path s-c-d-a-b-t is

11

oy

fluw angmenting path {Figure 6.4b). Advancing one unit of flow through ¢

augmenting path results in a new flow assignment f'. Two units of flow ar

137 138

pushed through two separate paths s-a-b-t and s-e-d-t according to this assign-

ment (Figure 6.4¢).

o

In the MRSIN, advancing flow through an augmenting path is equivalen
to a resource relocalion, ie., a permutation of resource mapping. Consider th
MRSIN in Figure 6.5a, which is the counterpart of the flow network used ir
the last example. The original flow f is equivalent to a resource mapping
{(pory)s (Poyy)}, while the existence of the flow augmenting path s-c-d-a-b-
implies that there is a blockage due to this mapping. Advancing flow throug
this path removes the blockage and results in a new mapping {(p,,ry), (PoTa)
as shown in Figure 8.5b. As an example, applying the network-flow algorithn
on the graph in Figure 6.3, the following processor-resource mappings ar
obtained: {(py 3y (P3 Ts)y (Psr re) (P7.71), (Per77)}. There exists mappings tha
cannot allocate all the free resources, but they are eliminated by the network
flow algorithm. The Bows in the graph are also shown in Figure 6.3.

Finding a flow augmenting path from the source to the sink in a flow net
work is the central idea in most maximum-flow algorithms. The improvemen

lies in the efficient search of flow angmenting path [EDM72,DIN70]. For exam

ple, in Dinic’s algorithm, the shortest augmenting path is always advanced firs
with the aid of an auxiliary layered network, and the computational complex

ity is bounded by O: ﬁ*uv for general networks. For a flow network of un

capacily as in our case, a even betier time complexity is expected.

Figure 8.4 [lustration of flow-augmenting paths

139 4 140

a b 6.3.3. Homogeneous MRSINs With Request Priority and Resource

Preference

In a homogeneous MRSIN with request priority and resource preference, a

request is associated with a priority level, and a resource is assigned a prefer-
ence value. As discussed previously, many application-dependent atiributes

such as workload, execution speed, utilization, and capability can be encoded

into the request priorities and resource preferences. The objectives of resource

scheduling here is to maximize the number of resources allocated while allowing

requests of higher priority to are allocated, and resources of higher preference
‘{a) An Initial Resource Allocation to Le chosen. However, it is not necessary that requests and resources are allo-
cated in the order of priorities and preferences. Further, the allocation of a

request of higher priority {cf. resource of higher preference) may block other

s

b requests of lower priority {cf. resources of lower preference}. For this class ol

MRSINs, the resource mapping problemm can be transformed into the

minymum-cost flow problem.
Consider a flow network G{V,Est,c,w) in which 2 cost per unit flow,

wle}, is associated with edge e€E. The minimum-cos! flow problem finds a

lega! s-t Bow assignment of value Fy with the minimum cost. The consiraint:
g g 0

r in the minimum-cost flow problem are the same as those for the maximum-foy

problem. However, the objective function is to determine the cheapest s-

o

paths through which a fixed amount of flow Fy can be pushed. The problen

may be defined in a linear programming formulation:
Figure 6.5 Ilustration of a resource relocation
Minimum-Cost Flow Problem

Minimize 3 w{e}fle)

e€E
subject to:
“Fo ifv=s
() S fle)— 3 fe) = (| Fy ifv= {flow conservation)
e€a(v) e€Av) 0 otherwise

(2) 0 < fle) € efe) for all e€B

{capacity limitation)

In allocating resources, the objective is to find corresponding flow network
whose optimal legal flows leads to an optimal resource mapping. The main
idea behind the transformation is to embed priority and preference information
into the objective function and the proper weight assignments on the links. A

possible transformation is given as follows:

Transformation 6.2: Create a flow network G{V,Estew) from a homo-
geneous MRSIN with request priority and resource preference.

T1. Create node-sets P, X, and R for processors, switch-boxes, and resources,
sink, &, and a bypass

respectively, and introduce special nodes: source, s

Vo= {54 uUPUXUR
T2 Create arc-sets S, T, and B as in Step T2 of Transformation 6.1,
Add an are from the node associated with a processor to the bypass node,

snd connect the bypass node to the sink. This set of arcs is denoted as Lt

L= Kfim rePiu e)}

142

E' =SyUTUBUL

T3. Define capacity function ¢ as in Step T3 of Transformation 8.1. In addi-

tion, define:

1 e#{u,t)

) = la(w) e=(uy

T4. Define the cost function w that assigns the cost of carrying one unit of flow

through a link e as follows:

0 for e€B
wdm,whv\:_wx +1, Qmax +1) for ecL
wle) = Ymax—Yp for e€S
P for ecT

where y.,., is the highest priority level; y, is the priority of the reques
from processor p; qu., is the highest preference level; and q, is the prefer
ence of resource s.

T5. Create arc-sel B and node-set 'V as in Step T4 of Transformation 6.1

T6. Set the total fow Fy to the number of requests.

As an example, in the MRSIN shown in Figure 6.6, each request is atiri
buted with a priorily level, and an available resource is given a preferenc
value. The preference and priority levels range from 1 to 10. A minimum-cos
flow network is obtained by applving Transformation 6.2 to the MIXSIN and i

shown In Figure 6.7.

The following theorem shows the correctness of Transformation 8.2

processors

143
8 f
%00 ®io ®20
Pa
7
Py %1
Py]
%02
10
503
Pg |
stage 0 1 2

Figure

5.

8

A MRSIN with request priorit

y and resource preference

resources

“igure 6.7

144

N c=3

The associated flow network obtained from Figure 6.6 by Transfo
mation 6.¢

145 146

Theorem 6.3: The optimal resource mapping on a homogeneous MRRSIN with [FUL6LEDMT72]. For a flow network of 0-1 capacity, the time complexity i

request priority and resource preference is equivalent to the minimum-cost bounded by O:<_ tw* %). Furthermore, the minimum-cost flow for a flow net
integral fow in the flow network obtained by Transformation 6.2. work of integral capacity is integral. Thus the optimal resource mapping o

< Proof> homogeneous MRSINs with request priorities and resource preferences can b

It is easy to verify that a feasible flow does exist since one can always push
the required amount of flow Fy through the bypass node u. A flow that
passes through the bypass node implies thut the corresponding request is
not allocated. Thus, maximizing the resource mapping is equivalent to
assigning as much flow as possible to the part of the flow network other
than the bypass mode and is achieved by minimizing the cost of flow
assignment. This can be proved by contradiction. Assuming that the
minimun-cost fow assignment does not define a maximum allocation,
then there exists an s-t path such that the bypass node u is not on this
path, and the path is not saturated because at least one unit of flow can
advance through it. The remaining flow that could have passed through
this st path will pass through the bypass nnde u. According to the cost
function w defined in Transformation 8.2, the cost of advancing all the
flow through this s-t path is less than that of advancing the same amount
of fiow through a path passing through node u. The total cost could be

reduced if more flow is pushed through the s-t path instead of passing it

throush node u. The existence of such a path implies that the original

w
e
o

U3
ot
o
o

1t is not minimum, which contradicts the assumption. O

and Karp have shown a scaled out-of-kilter algorithm to solve

imum-cost flow problem for a general flow network in polynominal time

obtained efliciently. As an example, applying the minimum-cost flow algorithn
on the flow network in Figure 6.7 results in the following processor-resoure
mappings: {{pe.ts), (ps: 1), (P, 17)}. The flow values of the ares are also show

in Figure 6.7.

6.4. Optimal Resource Scheduling for Heterogeneous MRSINs

A heterogeneous MRSIN consists of resources of multiple types, and a pr
cessor may generate a request of any type. A resource-allocation problem on
heterogeneous MRSIN is equivalent to the mullicommodity mezimum-flow pro
lem. The necessary transformation is similar to Transformation 6.1 except the
multiple source-sink pairs are introduced.

For k types of rescurces in the MRSIN, a multicommodity flow networ
has k source-sink pairs, {stl), 1<<i<k. Let Fi be the flow of the i'th comm
dity. The search for the maximum flow can be {ormulated as a linear progran

ming problem [AST8]:

Multicommadity Maximum-Flow Problem

subiect to

147

«:Mum vy = u_W
1y v Eov - MU 2& ={F v=4 {flow conservation)
e€a{v) e€8{v} 0 otherwise

k
(2) 0 <Y file) <c(e) foralle€E (capacity limitation)

The first constraint above indicates that every types of commodity should obey
the flow conservation law and no intermediate node will create or absorb com-
modities of any type. The second constraint asserts that the sum of all the

commodities flowing through a link should not exceed the capacity of the link.

A multicommodity flow network of k commodities may be regarded as the
superposition of k single-commodity flow networks. Dach layer in the superpo-
sition represents a single-commodity flow network. The problem of finding the
maximum integral flow in a general multicommodity flow network has been
shown to be NP-hard [GART79]. If the constraints of a flow network can be
represented by a totally unimodal matrix [AS78], then the maximum-real-flow
of the network is an integer [EVATS], and the algorithms developed for deter-
mining the maximui-real-flow may be used to obtain the maximum-integer-
flow. In other words, an integer programming problem with the prescribed
constraints can be solved as a linear progranmuming problem. The Simplex
Melhod is 2 simple yet efficient method for solving linear programming prob-
lerms, and has been shown empirically to be a lincar-time algorithm IMCCs2].
ost multistage interconnection networks, including the cube and Omega, have

transformations that belong to this class.

148

The optimal mapping on a heterogeneous MRSIN with request prioritie
and resource preferences can also be obtained by transforming the problem ints
a multicommodity minimum-cost flow problem. Let wile) be the cost per uni

How for the i'th commodity on edge e, and \m?v be the corresponding flow. /

multicommodity minimum-cost flow problem may be formulated as follows:
Multicommodity Minfmum-Cost Flow Problem

k o
Minimize 3, 3 wie}f{e)

i=lecE
subject to:
lﬂm v =5
(1) 5 fley— ¥ fite) ={F§ v =t (flow conservation)
e€aiv) e€5(v) 0 otherwise

k
(2) 0 Y file) < cle) forall ecE {capacity limitation)
i=1

Fj) in the flow-conservation constraint is a predetermined flow assignment |
the link (t), s'), and means that a fixed amount of the I'th-type commoditi
have to be circulated from sink t' to source s'. The equivalent flow networ
consists of k source-sink pairs and k bypass nodes, where k is the number
resource types being requested. As in the case with no request priority, tl
flow network may also be regarded as the superposition of k single-commodi
flow neiworks, and Transformation 8.2 can be applied to each layer.

The multicommodity minimum-cost flow problem for a heterogeneo

MRSIN may be solved in a similar way as in solving multicommodi
maximum-fow problem,

149

8.5. A Systolic Architecture with Broadcasting for MRSIN

In this section, a systolic-array architecture for a homogeneous MRSIN
with random allocation is examined. The objective is to realize & resource
scheduling algorithm on a VLSI chip and to obtain a MRSIN that accomplishes
the optimal resource allocation at the speed of signal propagations. In this
architecture, the scheduling intelligence is distributed into the switching ele-
ments of the network. It isa distributed realization of Dinic’s maximum net-
work flow-algorithm.

The corresponding architecture with priorities and preferences based on
the out-of-kilter algorithm may be obtained with slight modifications. How-
ever, VLSI implementation of the scheduling algorithms for heterogeneous

MRSINs is very difficult, and software implementation has to be used.

4.5.1 Dinie’s Maximum-Flow Algorithm

Ford and Fulkerson's maximum network-flow algorithm is a pseudo
polynominal-time algorithm. A polynominal-time maximum network-flow algo-
rithm was first proposed by Dinic in 1070 [DIN70]. Dinic's algorithm is also
based on the method of augmenting fows iteratively through augmenting paths
as doscribed in Section 6.3.2. It is improved over Ford and Fulkerson's algo-

rithm by advancing {lows through the shortest augmenting paths. In the

algorithm, a layered network is used to identify the shortest paths. A

150

layered network is a weighted digraph which can be derived from a flow net

work, G(V,E), with a flow assignment [using the following procedure:

procedure 8.1: Construction of a layered network from G(V,E) with flo
/
AWW <o R vag i+~ 0.

{2} Construct T + mi vg v for j <i and there is a useful link {rom

vertex of V; to v}.
(3) 1 T contains t, then § «— i+1, Vy « {t}, and return.

{4) II T is empty, then no more augmenting path exits, and the preses

mapping is maximum.
(5) Let Viyy « T, i i+1, and goto step {2).
A useful linkis a link through which more flow may be advanced by either ca
celing existing flow or by adding more flow to it. In a layered network, t
vertices of the original network are arranged into disjoint sets, Vo Vi oY
such that no link points from V; to V; {i <j) A feasible flow ina layered n
work is said to be maximal if every (s,t)-directed path in the layered network
saturated. Note that a maximal flow needs not be a maximum flow. Comp
ing the maximal flow is easier than computing the maximum flow since canc
ing flow in reverse links does not Lave to be considered. The maximal f
obtained in the layered network is a net increment to the existing flow. Si
the maximum flow is finite, it can be obtained in a finite nurnber of steps us
the layered-network construction. An example illustrating the construction

a layered network is shown in Figures 6.82 and 8.8b.

(a)

(b} The layered network constructed from flow network shown in {a).

A flow network with a flow advaning through the path s-3-5-6-8-t.

T

€

i

e maximal flow of this netwok advances through the path s-1-

1-7-9-1.

Fi

H

o
o

ure 6.8

Vs

i
|
!
{

i
ﬂ
|
}
|
|
: m
|
*
|
| w
| |
|
|
!

i
|
!
H

| DU U I
Nlustration of the generation a layered network

8.5.2 A Systolic MRSIN

The systolic architeciure [KUN81] proposed in this section is embedded in
the multistage interconnection network. The scheduling intelligence is distri-
buted into the switching elements, resources, and request generators. A proces-
sor is connected to the network through a request server (RQ), and a resource
is monitored by a resource server (RS). A common bus links these components
together. The block diagram of this architecture is illustrated in Figure 6.9 by
an 8-by-8 Omega network. Autonomous processes in each component commun-
icate with each other by status signals via the bus and tokens via direct links,
The signals on the status bus are the logical OR of the signals set by individua

processes, which are accessible by every element in the system.

The network switching elements are responsible for the construction o
layered networks to find the augmenting paths, while the other components ar
responsible for the synchronization of the phase transitions in the iterations o
the scheduling algorithm. RQ accepts a request from the processor and broad
casts a request-pending status to the bus. Whenever a resource becomes ready
the associated RS will send a resource token to the network that will eventu
ally arrive at the requesting RQs. A requesting RQ will submit a request toke
{0 the network to bid for a resource as soon as it receives a rescurce toker
When a request token is received by a ready RS, it will acknowledge tt
request by returning an acknowledgement token. The RQ and RS will form
matched pair, and the path connecting them is registered until it is allocated -
tle end of the current scheduling phase or it is canceled by possible re-pairing

To achieve optimal mapping, 2 swilching process has to follow sever

token-propagation rules that emulate the procedures of the constructions

153

status bus -

-
=
O
-
=
&

\
O

o (NS) 3

i
ﬁ

i

\
O

| PSR W L > J | WIS S Y
processors request- switching network resource- resources
servers ’ servers

Figure 8.9

A systolic architecture of a homogeneous MRSIN embedded in an
8x8 Omega network

154

layered networks and finding the maximal flow in a layered network. Il a pat]
is free, the corresponding switching process will deliver any resource toke
received from the resource side to the processor side. These directions ar
reversed if the path is registered. A request token is expected {rom where
resource token was delivered. In case that there are more than one sendin
path, a resource token is duplicated, and one token is sent along each patl
No duplication is done for the request token, and one of the paths is chosen s

random.

To avoid chaos in the parallel search of augmenting paths, the schedulin
procedure is divided into alternating phases. In each phase, only one type ¢
tokens are allowed to propagate. The phase tramsitions is synchronized b
broadeasting the status of each process on the status bus. The scheduling pr:
cess is terminated when all the tokens are blocked in the resource-token distr

bution phase.

Based on these rules of token propagation and link reconfiguration, it
easy to verify that the resource-token propagation rules are essentially a para
lel consiruction of the layered network, and request-token propagations a
equivalent to finding the maximal flow in the lyered network. The conditic
wnder which no request-token is able to reach a ready RS is equivalent to tl
condition when every {s,t)-directed path is saturated. Therefore, whenever tl
iterations of the bidding and acknowledgement phases terminate, the maxim
mapping is achieved.

The synchronization bus has five signal lines. Let s;'s be the boole;

representation of each signal on the bus. Their values are interpreted as [c

lows:

156

1 at least one processor generates a request,
St =10 otherwise.
(1 al least one resource is ready,
S2 7 Ma otherwise.
| at least one request token is propagating,
%37 10 otherwise.
A I at least one acknowledgement token is propagating,
47 Mo otherwise.
1 at least one resource token is propagating,
S5 = 10 otherwise.

In terms of these five status signals, the state is defined by a five tuple
(31,80,54,54,55). The state transitions of the MRSIN are driven by processes
Q’s, RS's, and NS's that set or reset signal registers in each switching ele-
ment. The system is driven into state {1,1,0,0,0} when there are pending
requests and ready resources. Once mﬁmzwm this state, the ready RQs start lo
distribute their resource-tokens and drive ihe MRSIN into state {1,1,0,0,1).
While in this state, resource-tokens are propagating ghrough the network until
either of the following events happens: (1) all tokens are blocked, or {2) any of
the requesting RQs receives a token. In the former case, no mapping is possi-
ble, and the MRSIN goes back to the previous state. In the latter case, the
requesting RQs will search for ready resources by propagating request-tokens
and selting bus signals. In response o request signals, all N5s stop distributing
resource-tokens and prepare to propagate request tokens in the reverse direc-

; v N
tion. The MRSIN is thus driven into slate {1,1,1,0,0} by the R{s. Now, the

156

ready R8’s are waiting for the resource tokens. Should a request token reach
ready RS, the RS replies by setting the acknowledgement signa} on the bus L
drive the system into state (1,1,0,1,0) and sending an acknowledgement-toker
{or ack-token in short) into the network, Ack-tokens will be relayed to request
ing RQ's. The RQ's receiving an ack-token is allocated a resource. Thos:
unacknowledged RQs will try to bid for resources in the next iteration unles:
all request-tokens are blocked, and the MRSIN goes back to state (1,1,0,0,0)
A new iteration is initiated by the remaining ready RS's and the MRSIN goe:

back to state {1,1,0,0,1). Should all ready-tokens be blocked, no furthe:

increase in resource mapping is possible, and the MIRSIN enters the allocatior
state to allocate those registered RQ-RS pairs. These RQs and RSs have
cancel their request-pending and resource-ready siznals. Some RQs and RS:
may remain unallocated, so the MRSIN may enter one of the following states

{0,0,0,0,0}, (1,0,0,0,0}, (0,1,0,0,0), and {1,1,0,0,0). A state transition diagram o
‘the MRSIN is illustrated in I"igure 8.10. The control flow of this transitior

diagram is the same as that of Dinic's algorithm. Tt is easy to verify thai

whenever the MRSIN comes out from the loop, {1,1,0,0,1) — {1,1,16,0) —

{1,1,0,1,0) — {1,1,0,0,0) — (1,1,0,0,1}, the optimal mapping is obtained.

8.5.3 The Control Processes in A Network Switching Element

Processes RQ's and RS's may be realized by simple finite-state sequentia

machines. In this section, we show the design of the switching element by :

i

finite-state machine. The following design is developed with respect to 2

MESIN network with 2-by-2 crossbar switches. Each switch can be in a paral

lel connection or in a cross connection. The setting of the connections

1587

ram

O

{

k=3

homogeneous MRSIN without prior-

158

determines the two paths passing through the switch. For convenience, the
paths are labeled as shown in Figure 6.11. The status of a path may be free
registered, or occupied. It is occupied if the path has already been allocated tc
a processor-resource pair. While not being occupied, it may be registered o
free depending on whether it is temporarily engaged in connecting a processor
resource pair. A registered path is isomorphic to an s-t path of non-zero flow 1

the equivalent flow network.

Iu the current design, the configuration of a switch is controlled by -
coufiguration register of five bits. These bits are designated as X

I',, s, Gy, and Gy, and their functions are defined below :

i H the switch is in a cross connection
X=1g |

he swiich is in a parallel connection

11 the j' th path is registered
Gy =110 the i th path s free fori=1,2
Ox the i’ ih path is occupied

During a scheduling phase, an N5 is responsible for relaying tokens. T
configuration of a switch determines the way that tokens are received an
passed. Depending on the status of a path, a resource token i3 expected !
come in {rom the resource-side if the path is free, and is expected to come |
from the processor-side if the path is registered. The latter case is equivaler
io a flow cancellation. Let the four ports of a switch be labeled as g5, @, 1
and r,, in which q indicates the port at the processor side and r indicates tl
link at the resource side {Figure 6.11). The port {rom which a certain type

token is expected may be determined by the configuration registers. F

q ’ N
path 1] = = = o e = o s

92 2
path 2 o— e ——— e b a

G Ty
path 1 oo - [————

II\

G2 - 2

path 2 s = e ———b—" s

Figure 6.11 Path labeling of 2 2 x 2 switch

180

example, il a resource token is expected from port qy, then the value of ¥,G
must be 11. In the following definitions, the LIS is a concatenation of toke
type and port identification, which represents that the designated type of toke
is expected from the corresponding port if the Boolean expression on the RH

is true,

resource token—q, = F,G,

resource token—q,

|
*T3

=
o

I

l
l

I
‘gél
o
+
g
)
™

resource token—r;

1
!

|

+
NJ
&

resource token—r, = XF G
request token—q, = F;G,
request token—qy = FyGy

request token—ry = XF,G, + XI',G,

request token—ry = XF,G, + XFG

With this set of Boolean expressions, a switch can determine {rom which por
given type of tokens may be received and to which port a token shall be sent

The resource tokens are sent to ports where request tokens are expect
and a request token is passed to the port from which a resource token
roceived. Whenever a ready token is received, a switch duplicates as mu
tokens as it has to send and rejects any resource token received late, On
other hand, a request token is mot duplicated at any switching element. 1

simply passed over to the NS in the next stage. In passing request tokens, t

161

may be only one request token accepted but have two possible ports to send, or
two request-token accepted and only one port to send. In either case, a ran-
dom choice is made to determine a unique port. These token passing rules can
be implemented by simple logic circuits,

To mark whether a token has been reccived from any port, four one-bit
token-marker registers are introduced and designated as Q; Q,, Ry, and Ro.
They may be referred as vectors Q and R whenever it is convenient to do so.
A block diagram of the organization of a switching element is shown in Figure
6.12.

A switch is reconfigurated after every iteration of the layered-network
construction and finding maximal flow. During 2 reconfiguration, the value of
a configuration register is changed depending on the status of the correspond-
ing path. If a link passes both a ma@mmm" token and an acknowledgement token,
it will be registered during a reconfiguration. Two simple rules may be applied:
(1) registering a free link yields a registered oue, and (2) registering a registered
link results in a free one. Dased on these rules, all possible reconfigurations of
a switeh initially in configuration (XJF,Fq,GGy) = {1,1,1,1,0}, is shown In
Figure 6.13. A configuration is represented symbolically in this figure, in which
two paths of a switch are indicated. The status of a path is indicated by three
different types of lines, and the condition in which tokens are propagated is
indicated by arrows and dots. The digram only shows reconfiguration of a

switch in one state. A switch may be in 18 states, and the reconfiguration con-

trol is rather complicated. An approach to simplify the design of the

ruration control logic is discussed next.

162

control logic

@w Qw Qw mow X m,w Om

H
f A \ A
[

*-

) I R

- o = e
.o -
-~ -
A T4
e Sy

- ”
o o om e e W w te o Is

Figure 6.12 Organization of a switching element

164
163

. gwitch configuration vector @

Let the status of a configuration register prior o a reconfiguration be

attributed by an index t and that after reconfiguration be attributed by t+1.

initisl configuration . .
=(11101) Then the reconfiguration control of a switch may be represented by the

M: token markers m Boolean equations By and By, They are the functions of the current
[
I - w configurations.
M=(0010) :
8 X(t+1) = By(X(1.F(0,G(1), Q)R(L) (6.1a]
]
: -
% G(+1) = By(X(1),F (1,80, 3 R (1) (6.1b
]
=
=]

Based on these equations, the issue of designing a reconfiguration control ma)
M= o:: (1) be derived independently. The derivation of By is discussed first. The mais
idea behind the derivation is to count the conditions that cause changes o
status, This may be sinplified by defining two Boolean variables oy and fx a

follows.

true if X changes from 1 to 0
8X 7 Ifalse otherwise

3
3

=4

&

2

Laad

<

i =
Zuﬁow: g
- el

-3

o

o

=

o]

=1

=

=l

=

. true if X changes from O to 1
. I!!I..Mxi Bx = lralse otherwise

By may be expressed as in Eq. 6.2

By = X{t)ax + X{1)8x (5.

he variables ay and By may be expressed by Boolean functions of the state
configuration registers and token-marker registers. Based on the lin
N . . reconfiguration rules siated above, the conditions under which the swit
Figure 6.13 Partial state transition diagram of a switching element

configuration will change from a cross connection to a parallel connection 2

shown exhaustively in Figure 6.14, and those under which the configurati

166
changes from a parallel connection to a cross connection are shown in Figure
6.15. The same symbolic notation as in Figure 6.13 is used in theses figures.
By combining the Boolean representations of these conditions and simplifying it Symbolic Representation Boolean Representation

yields Eq’s. 6.32 and 6.3b as shown below:

w
z
b

S M s

Fact 1: (11100) (1010) (01110)
ax = FIFo(G® G)(QiQe® RyRy) + (G OG)QR D QaRa)) {6.3a)
By = PiPo((G® Go(QiQe® RiRo) + (G1OGQR® QoY) (6.30) (11100) (0101) (0110)

Where @ and O are the logic operators of exclusive OR and inclusive OFR,

I 101) {1100) {01110
respectively. The index t for all Boolean variables in Eq's 6.3a and 8.3b is (1ot))

neglected. Similarly, two Boolean variables associated with the status changes

of Gy, g, and Bg, may be defined as follows: (11101) (0011) (01101)

true Gj changes from1lto0

ag, = . for }=1,2.

false otherwise {11100} {1100} (01101}

true Gj changes fromOtol

Rpgayagieyetel
Qﬂmﬁmmﬂmw

B6, = lfalse otherwise for j=1 {11110} (0011} {01110}
Then,
wo»nuﬂmﬁsmmw + Gj(t)fg, for j=1,2. (8.4) (11111) (1010) {01101)
Fact 2:
(11111) (0101) (01110)
ag, = ﬁm@www+M@wmwxmwﬁxﬁummlmﬂxw+C,N7.qmwwm.m+Am@mmiw!mmumw (6.5a)
Bg, = (XQ R, +XQR)(FLQ(G ;u/Quw R,+G ,/O;wwwul. 2 Qs mlww.mw {6.5b} Figure 8.14 All the possible state transitions during a switeh reconfigurat

from 2 cross connection to a parallel connection.

Symbolic Representation

m.

w2
s
S

p s

Fra—

N
%!
N
|
O
N
%)
N

B

Figure 6.15 All the possible state transitions during a swilsh reconfiguration

Boolean Representation

S M s

(01100) (1001) (11110}

(01100) (0110) (11101)

(01101) (1100) (11110)

(01110) (1100) (11110)

(01110) (0011} (11101)

(01111} (1001) (11110}

{01111) (0110} (11101)

from a parallel connection to a ¢ross connection

168

The index t for all Boolean variables in Eq's 6.5a and 6.5b is also neglected
The two expressions are also obtained by logic ORing of all possible condition
that will cause a status change of path 1. These conditions are shown in Fig
ures 6.16 and 6.17. Because of the symmetry between path 1 and path 2, th

Boolean expressions of g, and B¢, may be obtained by a change of variabl

from Eq's 6.5a and 6.5b as follows :

Fact 33
QﬂuﬁvﬁhﬂTMJNVQTQ&,AMTOM,MNT—NLNV = QOaANvm.w«m.wiuOT@wue_.Mﬂw.mwv Amm
\wﬁ%vﬁmuTM.J&.DTQN_@T@M“MNTMN.“V = mﬁ%uﬂm,mwmlTOEOTD?@TWNLN_V AO@

The sequence control of this process is straightforward and the control logic ¢
slso relatively simple due to ihe Boolean functions obtained above. Thi
results indicate the feasibility of a VLSI implementation.

The states of Iy and Fy do not change until their corresponding paths
allocated at the end of each scheduling cyele. The controls for the state trai

tions are very simple and will not be discussed further.

For an axb switel, there are WTM (ifa > bjor %WT {if a < b) connec

patterns. It requires logs |2 b! (assuming a 2 b registers to control the
q g2y, g a2 g

nection of such a switch. Besides, there are up to b paths passing through
switch. A pair of registers F.G; is necessary for characterizing the statu
cach path. Hence, the complexity of the control logic for an axb switch w

be substantially higher than those described above.

170

169

Symbolic Representation Boolean Representation

Symbolic Representation Boolean Representation
SM
SM S M g'

(01000) (1x1x) (01010} (01010) (1x1x) (01000)

(11000) (1xx1) (11010) (11010) (1x1x) (11000}

{01100) {1x1x) (01110} (01110) (1x1x) (01100}

(01100) (1001} (11110) (01110) (1100) (11101)

11100) (1xx1) (11110) (11110) (1001) {11100}

(11100) (1010) (01110} (11110) (1100) (01101)

(01101) (1x1ix) (01111) (01111) (1010} (01101)

(11101} (1001 (11111} (01131} {1001) {11101}

{01101} (1100) (11110) {11111} (1001) {11101)

(11101) (1100} (01110) (11111) (1010) (01101}

(78 3407 3 428 28 R G G
%] I A S R
IBEOINEOEBIOINIOF O DR

Figure 5.16 Al tl ssil at sitions during a switch reconfiguration - . ‘ - . . ;
rigure v.wcm ./% %m%b?i e state transitions curing @ s ! & zure 6.17 All the possible state transitions during a switch reconfiguratio
path 1 was

!
registered and becomes free) {path 1 was {ree and becomes registered}

8.6 Concluding Remarks

In this chapter, we have transformed the various resource mapping prob-
lems into network-flow problems for which eflicient algorithms exist. For
MRSINs with homogeneous resources, efficient distributed scheduling algo-
rithms have been developed. An efficient VLSI implementation for the distri-
buted algorithm with random allocations can is also shown. With the proposed
VLSI systolic-array architecture, the augmenting paths are searched in parallel,
and the time complexity is measured in terms of gate delays instead of iustruc-
tion execution cycles. Therefore, the scheduling algorithm will run at least 100
{imes faster than a software implementation. For MRSINs with heterogencous
resources, no distributed algorithm has been found and software implementa-
tion of the centralized scheduling algorithm is necessary. Table 6.1 is a sum~

mary of the results obtained regarding to the resource allocation on MRSINs.

The transformation methods described in this chapter is simple, yet they
are not limited to solving resource mapping problems only. They can be
applied to solve load balancing problems and packet-routing problems in con-
ventional multistage interconnection networks. The former problem can be
transformed to the minimum-cost flow problem by encoding processor loads
into request priorities and resource preferences. The latter problem requires a
packet to be sent through a route of the shortest delay and arrive al a proces-
sor with the minimum response time. This is achievable by encoding buffer

delays into link costs in the minimum-cost flow problem,

Table 6.1 Summary of the proposed distributed resource allocation
scheme on multistage resource sharing interconnection

networks
Scheduling Homogeneous [eterogeneous
Discipline Rasdom P&P General Multistage
Equivalent Max-Flow Min-Cost Integer Real Multi-
Flow Circulation | Multi- Commodity
Problem Commodity

Optimal

Scheduling

Broadcasting

Communicate by Token
Propagation

Algorithm | Ford-Fulkerson, Dinic Cut-of-Kilter | NP Hard | Linear
Programining
Distributed Algorithm Yes Yes NA NA
Distributed Architecture
Implementation Synchronized by Software NA Software

173

CHAPTER VI{
SUMMARY AND CONCLUSIONS

The results obtained in this thesis and the new research topics to be inves-
tigated are summarized in this chapter. We will also discuss the promising

applications that the algorithms designed in this study can be extended.

7.1 Summary

In this thesis, we have studied the resource-allocation problem in resource
sharing computer systemns. A resource sharing system is characterized by a
pool of request generators and a pool of resources interconnected by a resource
sharing interconnection network. Central issues in resource scheduling include
the minimization of resource conflicls, the reduction of the probability of net-
work blockage (or packet congestions), and the balance of workload among

resources. Dv indicated that distributed siate-dependent scheduling

schemes are preferable. Moreover, integrating the scheduling schemes into the

network protocol significantly reduces the overhead of collecting status infor-
mation and enhances the speed of scheduling.

A methodology has heen proposed to optimize the resource mapping,

reduce the seheduling overhead, and facilitate a fast implermentation. The

174

methodology has been applied to the design of resource-allocation schemes for
three representative networks of increasing complexities.

For a single contention-bus network, the resource scheduling problem i
reduced to the problemn of identifying a station with the extremum paramete
among a sel of physically dispersed random numbers. A distributec
minimum-search algorithm that utilizes the collision-detection capability of th
contention bus has been proposed. The window-search procedure can resolv
the global minimum in an average of 2.4 contention steps. No explicit messag
transfer is required in this process.

For a multiple contention-bus network, the resource-allocation problem |
reduced to the problem of ordered selections. A multi-window parallel searc
procedure that is an extension of the single-bus search procedure has been pre
posed to select the processors with minimum numbers, The average time con
plexity of this search procedure is about O(logyt), where i is the number s
buses and is equal to the number of processors to be selected. The mappi
Letween the selected resources and processors has been found to be the classic
stable-marriage problem.

For resource alloeation on multistage interconnection networks, the pro
ler is transformed into different network-flow optimization problems, for whi
there exists many efficient algorithms. For systems with homogeneous reque:
and resources, the network-flow algorithm has been integrated into the netwo

protocol with a VLSI systolic-array architecture that allows resource scheduli

to be carried out al signal propagation speed.

7.2 Extended Applications

The algorithms developed in this thesis rescarch may be considered as
alternative solutious to many problems identified in other areas. Some exam-

ples are briefed in this section.

7.2.1 The Distributed Minimum-Search Algorithm

The proposed window search procedure is basically a contention-resolution
algorithm that resolves the distributed bus-access problem of CSMA-type net-
works [BER84, CAPT70a, GALTS, HLUSL, TOWS4]. It performs much better
than the DBinary-Dxponential-Backofl algorithm of the unotable Ethernet
[MET76]. It also provides a unified framework for optimizing many existing
adaptive CSMA protocols including the Urn protocol [KLE78, MIT8Y],
Arrival-Time-Window protocol [GAL78, MOS82:-b, MOS85, KURSS, KURSY,
TOWS2], and Adaptive-Tree-Walk protocol [CAP70a, CAPTOb]. A detailed

The access of CSMA networks with priority has been studied extensively
[CTIL80, NI83, TOB82, SHA83, GOLS3, ROMS1]. The proposed window-
search procedure is an elegant solution to this problem and is also discussed in
Appendix B.

The distributed query processing is crucial to the performance of distri-
buted databases. Wah and Lien have discovered that the proposed minimum-
search algorithm leads to an efficient heuristic solution to this problem
[WAL5]. Finding the extremum in a distributed environment by itself is also

an interesting problem [BOKSL, BOK®4, DOLS82 Siilsi],

7.2.2 The Multi-Window Ordered-Selection Algorithm

The ordered-selection problem in a distributed environment has been
investigated intensively in recent years [BAT68, PRE7S, KRU82, SHI3L,
THO77, WAHS84a]. Many special architectures have been proposed. Notable
among them is a lower-bound architecture proposed by Prepareta which is able
to solve an ordered-selection problem with worst case time complexity of
O(log,n), where n is the number of distributed random numbers [PRETS,
AIG82, BLU7T3, YAO80, WAHS4a]. The multi-window ordered-selection algo-
rithm can also carry out the same task with an average time complexity of
O{logst), When implemented on a multiple contention-bus network of ¢t chan-

nels. Thus, it is a practical alternative solution to the selection problem.

7.2.3 The Systolic Max-Flow Architecture

Network flow optimization algorithms are recognized as an important
modeling tool in many disciplines. Many efficient algorithms have been
developed. Distributed version of these algorithms have also been studied
[CHESRS, SEG82]. However, the synchronization of distributed processes in
these algorithms relies on message passing that is a significant overhead in the
system. The systolic architecture with a broadcast bus proposed in this thesis
can be used to synchronize distributed processes for maximum-flow computa-
tions. The processes in the proposed systolic architecture are synchronized by
a broadeast bus. This approach climinates the need of message passing and

speeds up the algorithm significantly.

177
7.3 Suggested Future Studies

Although we have obtained some significant results in this thesis research,
there remains future problems to be studied. Relevant topics are identified and

surmnmarized below.

7.3.1 Fault-Tolerant Resource-Allocation Schemes

Throughout this thesis research, the networks in question are assumed to
be [ree {rom noise or malfunctions of its components. The proposed resource
scheduling schemes may fail when inconsistent status information is received by
different stations due to noise or transient errors. To design a robust resource

. s ° $ i n v 3
scheduling scheme is an important issue 1o be studied.

7.3.2 Adaptation to Network Operating Systems

The couventional operating-system design considered the petwork as a
message passing mechanism only. All high-level applications are built on top of
this mechanism. This thesis suggests that the resource scheduling tasks may be
integrated into the underlying network protocol. This approach would have
great impacts on the design of network operating systems. Future network
operating systems should also include special primitives for supporting other

high-level applications.

7.3.3 Special Purpose Computer Networks

Research on interconnccting different famities of computer systems with

diverse applientions is important. This focus results in a flexible but inefficient

178

communication protocol. Future studies on a flexible and efficient resourc
sharing system for many diversified heterogeneous resources is essential. Thus

it is desirable to have a network which may be customized to special applica

tions.

7.3.4 Distributed Algorithmns Synchronized by Message Broadecasting

Most existing algorithms for interprocess communication rely on point-to
point message passing. As indicated in this thesis research and other researc]
studies, the synchronization with message broadcasting outperforms its messag
passing counterpart. Further, broadcast networks such as Ethernet are popu
lar. The future design of distributed algorithms should utilize the broadcas

capability of networks.

7.4 Conclusions

This research spans across various disciplines in computer engineerin
including computer arehitectures, computer communications, operaling sys
tems, and algorithm design. By successfully distributing the scheduling intell
gence into the network protocol, we have developed efficient schemes for sug
portiug distributed state-dependent resource scheduling that includes loa
balancing and resource sharing. The proposed extremum-search scheme is als
a realizable optimal backofl algorithm for CSMA networks and provides
unified optimization model for the family of adaptive CSMA protocols. Th

rimitives derived simplify several difficult problems in distributed database
P pilly

179

on local computer networks, such as concurrency control and distributed query
processing. Better solutions to the ordered-selection and maximum-flow prob-
lems have also becn developed. The study on multiple contention-bus networks
provides insights into the routing control of multi-channel broadband commun-

ication networks. The research also gencrates many new topics for future stu-
[ANDS83]

dies.

[ARRS1]

(BAES0]

[BAT6S)

[BER84]

(BLUT3|

[BOK31]

180

LIST OF REFERENCES

G. R. Andrew, and F. B. Schneider, “Concepts and Notations for
Concurrent programming,” ACM, Compuling Surveys, Vol 15,
March 1983, pp. 3-43.

K. Arrow, L. Pesotchinsky, and M. Sobel, “On Partitioning A
Sample With Binary-Type Questions in Lieu of Collecting Observa-
tions,” Journal of the American Statistical Association, Vol. 76, No.
374, June 1981, pp. 402-409.

M. Aigner, “Parallel Complexity of Sorting Problems,” Journal o
Algorithms 8, Academic Press, Inc., 1982, pp. 78-88.

AA. Assad, “Multicommodity Network Flows - A Survey,” Net
works, Vol. 8, 1078, pp. 37-61

I Baer, Computer Systems Architecture, Computer Science Press
Inc., Rockville, Maryland, 1980,

I8

K.E. Batcher, “Sorting Network and Their Applications,” Froc
1968 Spring Joint Compuler Conference, ALIPS press, Vol. 32, 1968
pp. 307-314.

T. Berger, N. Mehravari, D. Towsley, and J. Wolf, "Randor
Multiple-Access Communication and Group Testing,” IEEE Trans
on Comnmunications, Vol COM-32, No. 7, July 1084, pp.768-778.

M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjar
“Time Bounds for Selection,” Journal of Computer and System sc
ence, No. 1, 1873, pp. 448-46L.

S. H. Bokhari, “MAX : An Algorithm for Finding Maximum in A
Array Processor With Global Bus,” Proceedings of the 1981 Intern
tional conf. on Parallel Processing, 1981, pp. 302-303.

(BRI82]

(BROSA

[CAP704]

[CAP70b]

[BOKS 1]

[BONS1]

[CDC83)

[CHLS0]

[c1

E
i
i

£83]

[CHO79]

181

S. H. Bokhari, “Finding Maximum on an Array Processor with a
Global Bus,” IEEE frans. on Compulers, Vol. C-33, No. 2, February
1984, pp. 133-1390.

J.A. Bondy and USR. Murty, Graph Theory With Applications,
North-Holland, New York, N.Y., 1981

F.A. Briggs, K.8. Fu, K. Hvang and B.W. Wah, “PUMPS Archi-
tecture for Pattern Analysis and Image Database Management,”
IEEE Trans. on Comp., Vol. C-31, Nou. 10, Oct. 1982, pp 869-983.

R. L. Brown, P. J. Denning, and W. . Tichy, “Advanced Operat-
ing Systems,” [EEE Computer, Vol. 17, No. 10, October 1984, pp.
173-190.

J. Capetanakis, “Tree Algorithm for Packet Broadcast Channels,”
IEEE Trans. Information, Vol. 1T-25, No. 5, Sept. 1979, pp.505-515.

J. Capetanakis, “Generalized TDMA: The Multi-Accessing Tree
Protocol,” JEEE Trans. on Coemmunications, Vol COM-27, Oct.
1979, pp. 1470-1484

Control Data Corporation, “Technical Information: Control Data
Cyberplus,” News Release and Fact Sheet, Oct. 1983,

I Chlamtac, and W.R. Franta, “Message-Basd Priority Access to
Local Networks,” Computer Communications, Vol. 3, No. 2, April
1980, pp. 77-84.

T. Y. Cheung, “Graph Traversal Techniques and The Maximum
Flow Problem in Distributed Computation,” [EEE Trans. on
Software Ingineering, Vol. SE-9, No. 4, July 1983, pp. 504-512.

Y.C. Chow and W. Kobler, “Models for Dynamic Load Balancing in
a Heterogencous Muitiple Processor System,” [EEE Trans. on
Comp., Vol. C-28, No. 5, May 1879, pp. 334-361.

T.CK. Chou, and JA. Abraham, “Load balancing in distributed
systems,” [ELE Trans. Software iy, Vol. SE-8, No. 7, July, 1980,
pp.101-412.

(CHU80)

[CRU82]

[DAVT0]

[DAYT9]

[DENSO0]

(D168

|DIN70]

(DOL82

[EVATS)

1

{

IENS

-

é

7

182

W. Chu, L.J. Holloway, M.T. Lan, and K. Efe, “Task allocation
distributed data processing,” JEEE Computer, Vol. 13, No. 11, N
1980, pp. 57-69.

R. Cruz, and B. Hajek, “A New Upper Bound to the Through
of a Multi-Access Broadeast Channel,” IEEE Trans. on Informats
Theory, Vol IT-28, No. 8, May 1982.

H.A. David, Order Statistics, John Wiley and Sous, Inc., New Y¢
1670.

J. D. Day, “Resource Sharing Protocols,” IEEE Compuler, S
temnber 1077, pp.47-56.

J. B. Dennis, “Data Flow Supercomputers,” [EEE Compuler.,, N
1980, pp. 48-56.

E. W. Dijkstra, “Cooperating Sequential Processes,” Programn
Languages, F. Genuys, ed., Academic Press, New York, I¢
pp.43-112.

E.A. Dinie, “Algorithm for Solution of a Problem of Maximal F
in a Network with Power Estimation,” Sowiet Math. Dokl Vol.
1070, pp. 1277-1280.

D. Dolev, M. Klawe, and M. Rodeh, “An O{nlogn) Unidirectic
Distributed Algorithm for Extrema Finding in a Circle,” Journa
Alyorithms 3, Academic Press, Inc., 1882, pp. 2:45-260

M. Dubois, and F. A. Briggs, “Effects of Chache Ccherency in M
tiprocessors,” [EEE Trans. on Compuiers, Vol. C-31, No. 11, D
1882,

J. BEdmonds and R.M. Karp, “Theoretical linprovements in A
rithmic Efficiency for Network Flow Problems,” J. ACM, Vol
No. 2, April 1972, pp. 248-264.

LR. Evans and J.J. Jarvis, "Network Topology and Integral A
ticommodity Flow Problems,” Nefworks, Vol. 18, 1678, pp. 107-1

P. H. Esnslow, “Mulliprocessor Organization,” ACM, Compu
Surveys, Vol. 9, March 1977, pp.103-120.

[FAYT7)

[FELTY]

(FENS1]

[FORG2]

[FRAS2

[FRAS0]

[FUL6]

(GOLS3]

183

G. Fayolle, et al., “Stability and Optimal Control of the Packet
Switching Broadcast Channel,” JACA!, Vol. 24, No. 3, July 1977,
pp. 375-386.

W. Teller, An Introduction to Probubility Theory and Its Applica-
tions, Vol. 2, John Wiley & Sons, New York, 1971.

T.Y. Feng, “A Survey of Interconnection Networks,” IEEE Com-
puter, Dec. 1081, pp.12-27.

L R. Ford and D.IR. Fulkerson, Flow in Nelworks, Princeton Univer-
sity Press, Princeton, N.J., 1062.

J. M. Frankovich, “A Bandwidth Analysis of Baseline Networks,”
International Conf. on Distribuled Computing systems, Oct. 1882,
pp. 572-578.

W. RR. Franta, and M. B. Bilodeau, “Analysis of a Prioritized CSMA
Protoeol Based on Staggered Delays,” Acta Informalica, 13, 1980,
pp. 200-324.

D.R. Fulkerson, “An Out-of-Kilter Method for Minimum Cost Flow
Problems,” SIAM J. of Compuling, Vol. 8, No. 1, 1861, pp. 18-27.

S, H. Fuller, and S. P. Harbison, The C.mmp mulliprocessor,
Technical Report, Carneigie-Mellon University, Computer Science
Dept., 1678,

R. G. Gallagher, “Conflict Resolution in Random Access Broadcast
Networks,” Proc. AFOSR Workshop Communication Theory and
Applications, Sept. 17-20, 1978, pp. 74-76.

M.R. Garey and D.S. Johuson, Compuler and Intractability: A Guide
to the Theory of NP-compleleness, W I. Freeman and Company,
San Francisco, 1879,

3. Colden, M. Ball and L. Bodin, "“Current and Future Research
Directions in Network Optimization,” Computer and Operations
Research, Vol. 8, 1081, pp. 71-81.

Y.I Gold, and W.R. Franta, “Aun BEfficient Collision-Free Protocol
for Prioritized Aecess-Control of (able Radio Channels,” Computer
Networks 7, Nerth-Tlolland Publishing Company, 1983, pp. 83-98.

(HAJS2

(IIANT78

(HAY78]

(111C82)

(HLU81|

(HOAT74]

[OAT8)

(HHWAS0]

(HWAS1]

(HIWAS4]

(JAYS2]

[JUA84a]

184

B.E. Hajek, "Information of Partitions with application to Randon
Access Communication,” [EEE Trans. on Information Theory, Vol
1T-28, No. 5, September 1082, pp. 681-701.

P. B. Hansen, “Distributed Processes: A concurrent programming
concept,” Communications of ACM, Vol 21, Nov. 1978, pp.03+-941.

J.P. Hayes, Computer Architecture and Organization, McGraw-ill
Ine., New York, 1078,

A. Hicks, Resource Scheduling on Interconnection Networks, M.S
Thesis, Purdue University, Aug., 1982

M.G. Hluchyj, “Multiple access Communication: The Finite Use
Population Problem,” MIT Report, LIDS-TH-1162, Nov. 1981
Cambridge, MA.

C. A. R. Hoare, “Moritor: An Operating System Structure Con
cept,” CACM, Vol. 17, Oct. 1974, pp. 548-557.

C. A. R. Hoare, “Communicaling Sequential Processes,” Commun
cation of ACM, Vol. 21, August 1978, pp.666-667.

K. Hwang, and L. M. Ni, "Resource Optimization of A Parall
Computer for Multiple Vector Processing,” [EEE Trans. on Con
pulers, C-29, September 1680 pp. 831-836.

K. Hwang et al, “A Unix-based Local Computer Network Wit
Load Balancing,® {EEE Computer, Vol. 15, No. 4, April 1932, p;
55-66.

K. Iiwang, and F. A. Briggs, Computer Archileciure and Paral
Processing, McGraw 1Hill, 1834

B. Jayaraman, and R.H. Keller, “Resource Expressions for Applic
tive Language,” Proe. of the 1882 Internalional Conference
Pgrallel Processing, August, 1982, pp. 162-187.

JY. Juang, and BW. Wah, “Usnifled Window Protocol for Loc
Multisccess Networks,” Proe. of Third Annual Joini Conference
the [EEE Computer and Communications Societies, San Franeisc
California, April 1884

[JUA81b]

[JUA84c]

[KLET2]

[KLE75)

[KLET8)

[KRUS2]

KRUS:

WI.,
(KU 84

JY. Juang, and B.W. Wah, “A Multi-Access Bus-Arbitration
Scheme for VLSI-Densed Distributed Systems,” Proc. National
Compuler Conference, AFIPS, Vol. 53, July, 1984,pp. 13-22,

LY. Juang, and B.W. Wah, “Optimul Scheduling Algorithms for
Resource Sharing Interconnection Networks,” Proc. [EEE 8-th Intl
Computer Software and Applications Cuaf., November 1984.

Kleinrock, L., Queueing Theory, Volumn [, Addison-Wesley, 1072.

1.. Kleinrock, and F. A. Tobagi, “Packet Switching in Radio Chan-
nels: Part 1 - Carrier Sense Multiple Access Modes and Their
Throughput- delay characteristics,” [EEE Trans. Communicaiions,
Vol. COM-23, Dec. 1075, pp. 1400-1416.

Kleinrock, .. and Y. Yemini, “An Optimal Adaptive Scheme for
Multiple Access Broadeast Communication,” Proc. ICC, 1978, pp.
7.2.1-7.2.5.

C. P. Kruskal, “Results in Parallel Searching, Merging, and Sort-
ing,” 1982 International Conference on Parallel Processing, pp. 106~
108.

C. P. Kruskal, and M. Snir, “The performance of Multistage Inter-
connection Networks for Multiprocessors,” [EEFE {rans. on Comput-
ers, Vol. C-32, No. 12, December 1033, pp. 1001-1088.

S%.memmmmm;«\hmxm@&ﬁmmE:N«u\:xmmwm&mnmwOoﬁwimwwow-
ence Press, Inc., Rockville, Maryland, 1088,

~

T Ilung, “Why Systolic Architectures,” IEEE Compuler., Janu-
ary 1082, pp. 37-46.

J. F. Kurose, and M. Schwartz, “A Family of Window Protocols
for Time Constrained Applications in CSMA Networks,” FProc.
[EEE INFOCOM 83, San Diego, CA, 1983, pp. 405-413.

I F. Kurose, M. Schwartz, and Y. Yemini, “Multiple-Access Proto-
cols and Time-Constrained Commuuication,”” ACM, Computing Sur-
veys, Vol 16, No. I, March 1884, pp.43-70.

[LANS2]

[LANS3|

[LAWTS)

(LEI31]

[LEI84]

[LI1581]

(L1S82]

(MAGS1]

(MANS4]

[MARB82a)

(MARS2b]

186

T. Lang, M. Valero, and . Alegre, “Bandwidth of Crossbar an
Multiple-Bus Connections for Multiprocessors,” [EEE irans. o
Computers, Yol. C-31, No. 12, December 1882

T. Lang, M. Valero, and M. A. Fiol, “Reduction of Connections fc
Multibus Organization,” JEEE Transactions on Compulers, Vol. (
32, No. 8, August 1883, pp. 707-716.

D. Lawrie, “Access and Alignment of Data in an Array Processor,
IEEE Trans. on Compulers, Vol. C-24, No. 12, Dec. 1975, pp. 21
255.

Dennis W. Leinbaugh, *High Level Specification of Resource Sha
ing,” Proc. of the 1981 International Conference on Parallel Proces:
1ng, August 1081, pp. 162-163.

Dennis W. Leinbaugh, “‘Selector: High-Level Resource Schedulers,
IEEE Trans. on Soffware Engineering, Vol. SE-10, No. 6, Novembe
1984, pp. 810-824.

B. H. gwmxcﬁ et al., CLU Reference Manual (Leclure nofes in Con
puter Science) , Vol. 114, Springer-Verlag, 1981

B. H. Liskov, "On Linguistic Support for Distributed Programs,
IEEE trans. on Software Engineering, Vol. SI-8, No. 3, May 168
pp. 203-210.

B. ?H.wmmw:w, T. Lissack, and M. Austin, "“End-to-End Dela
analysis on Local Area Networks : An Office Building Scenario,
Proc. Natvonal Telecom Conf., 1978.

R. Manner, “Hardware Task/Processor Scheduling in a Polyproce:
sor Environment,” JEEF Transaciions on Compulers, Vol C-3
No. 7, July 1984, pp. 626-636.

M. A. Marson, and D. Roffinella, “Nonpersisient M-CSMA Prot
cols for Multichannel Local Area Networks” Proc. of the 7
Conference on Local Computer Nefworks, Minnesota, Oct, 1082, pj
100-108.

M. A, Marson, and Gerly, “Markov Models for Multiple Bus My
tiprocessor Systems,” [ELE Transaclions on Compulers, Vol C-3

[MCC82]

(MET78]

(MITS1]

[MOK79]

[MOL82]

No. 3, March 1982, pp. 230-248.

EIL McCall, “Performance Results of the Simplex Algorithm for a
Set of Real-Word Linear Programming Models,” Comm. of ACM,
Vol. 25, No. 3, March 1982, pp. 207-213.

R.M. Metcalfe, and D.R. Boggs, “Ethernet : Distributed Packet
Switching for Local Computer Networks,” CACM, Vol.19, July
1976, pp.395-404.

K. Mittal, and A. Venetsanopoulos, “On the Dynamie Control of
the Urn Scheme for Multiple Access Broadcast Communication Sys-
tems,” IEEE Trans. Communications, Vol. COM-28, July 19081, pp.
962-970.

AK. Mok, and S.A. Ward, “Distributed Broadcast Channel
Access,” Computer Networks, 1070, pp. 327-335.

ML. Molle, “On the Capacity of Infinite Population Maultiple
Access Protocol,” IEEE Tran. on Information Theory, Vol. IT-28,
No.3, May 1982, pp. 396-401.

J. Mosely, “An Efficient Contention [esolution Algorithm jor Multi-
ple Access Channels,”” M.S. Thesis, Dept. of Electrical Engincering
and Computer Sciences, MIT, Cambridge, May, 1982

1. Mosely, and P. Humblet, “A Class of Lfficient Contention Reso-
lution Algorithms for Multiple Access Channels,”” M.LT., Repori
L IDS-P-1194, March 1082,

1. Mosely, and P. Humblet, “A Class of Lfficient Contention Reso-
lution Algorithms for Multiple Access Channels,” [EEE Trans. on
Comm. Vol. C-35, Feb. 1985, pp. 145-157.

L. M. Ni and K. Hwang, “Optimal Load Balancing Strategies for a
Multiple processor System,” Proc. of 10tk Int't Conf. on Parallel
Processing, Aug. 1081, pp. 352-357.

L. M. Ni, and X. Li, “Prioritizing Packet Transmission in Local
Multiaccess Networks,” Proc. of Eighth Data Communications Sym-
posium, Cape Cod, MA, 1083.

(OUS80]

[PAPGS)]

[PAPS2]

(PATS1]

[PIP31]

(PRE78]

[REI79]

(RICT4]

[ROMS1]

[SEL83]

[SHAS3]

188

JK. Ousterhout, D.A. Scelza, and P.S. Sindhu, “Medusa: An
Experiment in Distributed Operating System Structure,” CACM,
Vol. 23, No. 2, Feb. 1980, pp. §2-105.

A. Papoulis, Probability, Random Variables, and Slochastic
Processes, McGraw-Hill, N.Y. 1965.

C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimizaiion:
Algorithms and Complexity, Prentice-Hall, Inc, Englewood Chfls,
New Jersey, 1082,

J. H. Patel, “Performance of Processor-Memory Interconnections for
Multiprocessors,” [EEE Trans. on Compulers, Oct. 1081, pp. 771
780.

N. Pippenger, “Bounds on the Performance of Protocols for a Mul-
tiple Access Broadcast Channel,” IEEE Trans. on Informalion
Theory, Vol. IT-27, No. 2, March 1621, pp. 145-151.

F.P. Preparata, “New Parallel-Sorting Schemes,” IEEE transaction.
on Computers, Vol. C-27, Sept. 1875, pp. 669-673.

EM. Reingold, J. Nievergelt, and N. Deo, Combinaforial Algo
rithms, Prentice Hall, 1970,

D.M. Riche, and K. Thompson, “The Unix Time-Sharing System,
CACM, Vol. 17, No. 7, July 1974, pp. 1278-1308.

R. Rom, and F.A. Tobagi, “Message-Based Priority Function |
Local Multinceess Communication Systems,” Computer Network:
North-Holland Publishing Company, 1981, pp.273-236.

A. Segall, "Decentralized Maximum Flow Protocols,” Network:
Vol. 12, 1082, pp213-230.

P. G. Selinger, “State-ol-the-Art Issues in Distributed Databases,
IEEE trans. on Software Engineering, Vol. SE-9, No. 3, May 188
pp. 218-219.

N. Shachan:, “A Protocol for Preferred Access in Packet-Switchir
Radio Networks,” [EEE Trans. Communicalions, Vol. COM-31, N
2, Feb. 1683, pp. 253-264.

188

Y. Shiloach, and Uzi Vishkin, “Finding the maximum, Merging and
Sorting in a Parallel Computation Model,” Journal of Algorithms,
Alarch 1981, pp. 88-102.

JF. Shock, et al., “Evolution of the Ethernet Local Computer Net-
work,” IEEE, Computer, Aug 1082, pp. 10-27.

H.J. Siegel and R.J. McMillen, “The Multistage Cube : A Versatile
Interconnection Network,” [EEE Compuler, Vol. 14, No. 12, Dec.
1981, pp. 65-76.

A. Silberschatz, “Extending CSP' to Allow Dyrnamic Resource
Management,” IEEE frans. on Software Engineering, Vol. SE-9, No.
4, July 1983, pp.527-530.

A.Z. Spector, "'Performing Remote Operations maawmwzw on a Local
Computer Network,” CACM, Vol. 25, No. 4, April 1982.

W. Stallings, Local Networks - An Introduction, Macmillan Publish-
ing Company, New York, 1084.

H. S. Stone, “Multiprocessor Scheduling with the aid of Network
Flow Algorithms,” [EEE Trans. Soft. Eng. Vol. SE-5, No. I, Jan.
1877, pp.85-93.

R. 11 Thomas, “A Resource Sharing executive for the ARPANET,
Proc. of National Computer Conference, AFIPS press, 1973, pp.
155-183.

C. D. Thompson, and H. T. Kung, “Sorting on A Mesh-Connected
Parallel Computer,” CACM, Vol. 20, No. 4, April 1877, pp. 263-271L.

K_J. Thurber, et al., “A Systematic Approach to the Design of Digi-
ial Bussing Structures,” Froc. of Nutional Computer Conf,, AFIPS
press, Vol. 41, 1672, pp. 718-740.

.Wm.ﬂammmvwﬁﬁQsﬂmxmm«2&@.2%& Twomaamﬁwz_wmo;Zmé.wmm.
sey, 1081,

F. A. Tobagi, “Carrier Sense Multiple Access with ?Mmmmmmm‘wmmmm
Priority Functions,” IEEE Trans. Communicalions, Vol. COM-30,
No. 1, January 1082,

160

[TOD82] K. W. Todd, “Function Sharing in a Static Data Flow Machine,
Proc. of the 1982 International Conference on Parallel Processin
August 1982, pp. 137-139.

[TOW80] D. Towsley, "Queueing Network Models with State-Depender
Routing,” JACM, Vol. 27, No. 2, April 1980, pp. 323-337.

[TOW82] D. Towsley, and Venkatesh, G., “Window Random Access Protocc
for Local Computer Networks,” [EEE Trans. Computers, Vol. C-3
No. 8, August 1082, pp. 715-722

[TOW84a] D. Towsley and J.K. Wolf, “On Adaptive Tree Polling Algorithms
IEFE Trans. on Communications, Vol. COM-32, No. 12, Decemb
1084, pp. 1204-1298.

[TRRE82] P.C. Treleaven, D.R. Brownbridge and R.P. Hopkins, “Data-Driv
and Demand-Driven Computer Architecture,” ACM, Compuli
Surveys, Vol. 14, No. 1, March 1682,

[TSY7¢a] B.S. Tsybakov, and V.A. Mikhailov, “Free Synchronous Pack
Access in a DBroadcast Channel with Feedback,” Probl Infor
Trans., Vol. 14, 1879, pp. 258-280.

[TSY70b] B.S. Tsybakov, M.A. Berkovshi, N.N. Vedenskaja, V.A. Mikhailc
and S.P. Fedorzov, © Methods of Random Multiple Access,” Fy
International Symposium Inform. Theory, July 7-6, 1979,

[WANS5] Y. T. Wang, and Robert 3. T. Morris, “Load Sharing in Distribut
Systems,” [EEE Transaclions on Computers, Yol. C-34, No.
March 1985, pp. 204-207.

[WATI82] B.W. Wah and A. Hicks, "Distributed Scheduling of Resources
Interconnection Networks,” Proc. National Computer Conferen
AFIPS Press, 1982, pp. 697-709.

mﬁuwﬁmmwww B.W. Wab, “A Comparative Study of Distributed Resource Shar
on Multiprocessors,” Proc. of 10th Annual International Symposi
an Computer Architecture, 1983, pp. 300-303c.

[WAHS83b)]

[WAHS a]

[WAH81b)

[WAHS4c]

o

[WALIRS

[WALS3]

[WANE5)

[YAOS0]

191

B.W. Wah and 1Y, Juang, “Load Balancing on Local Multiaccess
Networks,” Proc. of 8th Conference on Local Computer Nelworks,
Oct. 1983, pp. 56-G6.

B. W. Wah, and K. L. Chen, “A Partioning Approach to the
Design of Selection Networks,” IEEE, Transactions on Computers,
Vol. C-33, No. 3, March 1884, pp. 261-268.

B.W. Wah, “A Comparative Study of Distributed Resource Sharing
Interconnection Networks on Multiprocessors,” [KEE Trans. on
Computers, Vol. C-33, No. 8, Aug. 1984, pp. 700-711.

B. W. Wah, and J. Y. Juang “An Efficient Contention-Resolution
Protocol for Local Multiaccess Networks,” United States Patent
Pending, 1684.

B. W. Wah, and Y. N. Lien, “Design of Distributed Databases on
Local Computer Systems with Multiaccess Networks,” IEEE Trans.
on Software Engineering, Vol. SE-11, No. 7, July 1985, pp. 606-618.

B. Walker, et al, “The LOCUS Distributed Operating System,”
>roc. of Nineth ACM symp. on Operaling System Principles, 1083,
p.48-70.

gt !

Y. T. Wang, and JLT. Morris, “Load Sharing in Distributed Sys-
tems,” JEEE Trans. on Compulers, Vol. C-34, No. 3, March 1885,
pp. 204-217.

A. C. C. Yao, “Bounds on Selection Networks,” SIAM J. Compui.
Vol. 8, No. 3, pp. 566-582, August 1030,

192

APPENDIX A
1oad Balancing on Systems

Connected by A CSMA/CD Network

A.1 Load Balancing

Load balancing is a scheme that engages the communication facilities t
support remote job execution in a user-transparent manner in order t
improve utilization of resources. Depending on the workload of processors, th
network operating system may distribute newly arrived jobs to a remote pre
cessor, or may schedule them for local execution. The concept of load balanc
ing has been implemented in the Engineering Computer Network at Purdu
University [IIWAS1]. Operational experiences with the system reveal that loa
balancing has contributed significantly to the improved resource utilization an

reduced response time,

‘Theoretical studies on load balancing have been done with respect to cet
tralized control [CHO79, TOWS0, NI81]. Newly arrived jobs are routed
different processors by a scheduling policy. Two classes of scheduling strategis
have been investigated, namely, probadilistic and deferministic. Tn a probabili
tic routing strategy, an arriving job is dispatched to the processors according
a set of branching probabilitics. These probabilities are associated with tl

statistics gathered about the processing speeds and job arrival history. On U

103

other hand, a deterministic strategy is a state-dependent scheduling strategy.
It routes jobs to the processors according to the current workload status. This
is similar to a probabilistic strategy except that the branching probabilities are

updated dynamically whenever the system state changes.

Previous studies on both strategies have shown that a multiprocessor sys-
tern with load balancing outperforms one without it, and its performance is
nearly as good as that of a single fast processor. However, three problems
oceur when these strategies are applied to a system connected by a relatively
slow nebwork. First, the success of the above strategies lies in the fact that the
information on system load are readily available without any delay. When the
network is slow, significant delays may be incurred in distributing the status
informution. The routing of jobs based on inaccurate information may have an
adverse effect on performance. Second, the distribution of status information
may have a large overhead on the network traflic. Special considerations may
have to be made to reduce this overhead based on the network characteristics.
Third, migration of tasks tends to increase the network load and impede mes-
sage traffic. Tradeofls must be made Lo balance the delay of jobs and mes-
sages.

Task allocation in a distributed computer network is also a load-balancing
scheme [STO77, CHUS0, CHOS8Z, WANSS5). It deals with finite number of

;

mutuall sendent processes which carry out 2 task cooperatively. Inter-

e

processe communication is erucial to the perforamnce of such distributed

processes. The problem of task alloeation is to allocate these processes to avail

able processors properly so that the execution cost is minimized. This elass of

cine is out of the scope of this thesis.

>

194

A.2 MAX-MIN Load Balancing Strategy

Due to the limitation of CSMA/CD networks, only one job can be set
over the network at any time. According to the optimal scheduling algorith
developed in Chapter 3, jobs from the processor with the heaviest load shou
migrate to the processor with the lightest load. This scheduling algorithm
called the MAX-MIN load balancing strategy in this appendix. To support t

MANX-MIN load balancing strategy, the following tasks are involved:
(2) to decide when load balancing is needed;
{(b) to.identify the processors with the maximum and minimumn load,

{¢) to send a job from the processor with the maximum load to the process

with the minimum load;
{d) to send the results of execution back to the originating site.

Migrating jobs and returning results can be handled in a similar way
regular message transfers. However, the decision to perform load balancing
not depends on the network trallic. If the total round-trip delay of send
jobs over the network and the exeeution time on the remote processor is lon
ihan the local execution time, then load balancing is not beneficial. Monit
on nebwork traffic must be kept at each processor. When it is decided t
load balancing is necessary based on the previous status information collec
the workload status of all processors must be determined to identify ihe sor
and sink of the job to be balanced. A simple way is to scan the processors |
round-robin fashion. This is time-consuming because it depends on the pun
of processors in the network. We describe in the nexi section an efficient

tocol to resolve this problem.

106

A.3 A CSMA/CD Protocol for Supporting
MAX-MIN Load Balancing Strategy

There are four types of tasks to be serviced by the protocol for supporting

MAX-MIN load balancing. These include regular message transfer, result
Y

Global Priority
Resolution

return, job migration, and identification of the processors with the heaviest and

the lightest loads (MAX-MIN identification). They are listed here in descend-

ing order of priorities. Since the network was originally designed for message

transfers, we assign the highest priority to messages. Load balancing can be

free free - free am.si?
contention contention contention Enr.xu.acas\
minimum

{oad

done by using the spare channel capacity. The return of results from a remote

processor is important because its delay contributes to the response time of M

regular result .mov.
message return migration

|
y Y
is assigned the lowest priority. load balancing

decision

packet
First, the group of processors with the highest priority must be deter- , transmission

jobs. It is also natural that previous load balancing process should have higher

priority than that of a newly invoked one. Thus, the MAX-MIN identification

The identification of the processor for using the channel consists of two

mined. After these processors are known, a coutention phase follows, which

identily a unique processor to transmit. These phases must be carried out for

every packet sent in the system. A summary of the protocol is shown in Figure !

AL

The effect of our priority assignment favors the transfer of messages.
However, it would reduce the possibility of load balancing in the system. Sup-
‘ o o) Figure A1 A protocol to support MAX-MIN load balancing in CSMA/CD n
pose that the maximum (resp. minimum) response time in the system is r . works

1, and that the transmission delay of sending a job over the network

15 5. Let the channel load for messages be ¢,,. Since messages have higher

priority, the average total delay of sending a job is ww\ﬁ\osv. Assuming that
the return of results takes the same amount of time, load balancing will be

effective if

2 ww
Tinax > Thiin + PR
m
or
2 m..w
ep < 1 {A.1)
Tmax — Tmin

That is, although the channel is idle, load balancing cannot be carried out
beeause the channel delay is too high. A way to improve the channel delay for
load balancing is to reduce the priority of messages. This reduces the average
delay of job and result transfer at the expense of increased message delay.

The tasks required in the MAX-MIN load bLalancing protocol can be con-
sidered as the problem of finding the minimum of a set of physically distri-
buted random numbers, (Finding the maximum can be transformed into
finding the minimum using an inverse function)

{a) Contention resolution for packet transmission: When multiple processors
wish to transmit, each processor generales a random number in the inter-
val {0,1]. The processor assigned the channel is the one with the minimum

number.

(b} Identification of processor with the maximum (resp. minimum)} load: The
load on a processor is characterized by the response time of executing 2
job on that processor. The response times of all processors are distributed
in the interval [0,00). To find the processor with the maximum {resp.

minimum) load is equivalent to finding {he maximum {resp. minimum) of

198

a set of random numbers in the interval [0,00). To apply the window con
trol schemes developed in Chapter 3, the distribution of response times he
to be known. It can be estimated emperically. Due to the effect of loa
balancing, the response time of processors are pot independent. Howeve

they are assumed to be independent here for mathematical tractability.

(¢) Identification of the processors with the maximum priority: The priority
a processor is an integer from the set {0, 1, ..., Prac}- The identificatic
problem requires the maximum priority value of all processors in th

interval to be found.

These problems can be generalized as follows. Given a set of independe
random numbers y;, 1 = L, 2, ., 1, with distribution F{y} such that y;
ya < 0 <y the problem is to identify the processor(s) with value
Transformation may have to be performed on the original set of rand
pumbers in order to result in the required distribution. This problem can
solved efficiently using the distributed minimum-search algorithm developed

Chapter 3. It should be noted that in many cases, only an estimale on 1 ¢

be obtained.

A.4 Performance of MAX-MIN Load Dalancing

A simulator has been developed to evaluate the performance of 1
balancing as supported by the window protocol. The simulator was writier
ASPOL, and assumed that job arrivals are Poisson at each processor and

the service time is exponentially distributed. The normalized mean

190

response time with respect to different job traflic with no message traffic is
plotted in Figure A2, The results are compared against the case without load
balancing, that is, the case of multiple independent M/M/1 queues. We find
thut the average response time is always improved when load balancing is
apphed.

Load balancing is less effective when the job load is low, since almost no
queue is developed at each processor. In Figure A.3, we show the job response
time with respect to the ratio of job service time and transmission delay. The
pereentage of jobs being migrated is also shown. As we can interpret from this
figure, a system with fast processors coupled with a slow communication chan-
nel {r is small) will not benefit from load balancing. As the speed of the com-
munication channel increases, more jobs are migrated and the response time is
improved. However, when the channel speed exceeds a threshold, load balane-
ing can provide no further improvement. In Pigure A4, the effects on load

balancing due to message trafiic is shown. As the message traffic becomes

r, the effective channel capacity is less, and load balancing is not carried

outl as offen.

200 ¢

2.0

10.0 + ! M/M/L
w
=
-
& 800t
rd
@]
a
%)
w
o«
o 8.00-r
Q
>
w
2
T 4.00F MAX ~MIN
>
<

2.00 ¢+

0.00 i H L 1

Qo0 .20 A0 £0 .BO 1.0 1.
JOB TRAFFIC INTENSITY

Pigure A2 A reduction in job respouse time under load balancing with no
message traflic

PERCENTAGE OF J0OBS MIGRATED /10

AVERAGE JOB RESPONSE TIME

n
O

4.0

3.0

2.0

201

-1 0. .
LOGn

N

Figure A.3 Effects of the ratic of service to transmission delays

AVERAGE J0B RESPONSE TIME

i

L

G o - - e i G —— G G b A - e

i

MAX-MIN

1

A0 30

.30 .70

MESSAGE TRAFFIC

INTENSITY

30

Figure A.4 Effects on load balancing due to message traffic

203

APPENDIX B

Unification of Adaptlive CSMA/CD protocols

B.1 Introduction

The contention-resolution problem can be regarded as a problem of deter-
mining a sequence of enabled set of stations uuntil the last enabled set contains
only one aciive station. The problem has been studied for over a decade, and
many protocols were proposed. These protocols can broadly be classified into
nonadaptive and adaplive according to their contention-resolution algorithms.
A nonadaptive CSMA protocol selects an enalled set regardless of the channel
load. Nonpersistent and p-persistent protocols are examples of this class
[IKLE75]. On the other hand, the knowledge of the channel load is used to

decide the cnabled set in each contention slot in an adaptive CSMA protocol.

This knowledge may be estimated explicitly by a dedicated channel monitor as
proposed by Kleinrock and Yemint {KLE78], or may be acquired implicitly by
the contention experience of an individual station as in the Binary Exponential

Backefl scheme of Ethernet [MET76]. It has been shown that an infinite popu-

network with nonadaptive protocols is inherently instable

wel will tend to zero due to the

1S necessary,

204

The adaptive contention-resolution problem with ternary feedback is iso-
morphic to a class of sequential decision problems [HLUS1}. Although many
efforts have been made in searching for an optimal solution to such problems,
and Markov decision processes have been applied to maximize the channel
throughput for some specific protocols; they are computationally inefficient due
to the large state space [HLU8I,MOS82]. Alternatively, various bounds on the
maximum achievable channel throughput have been established [PIP8I,
TSY79a, TSY76b, CRU82, MOLR2, HAJ82]. A closer look at the problem
reveals that the large degrees of freedom in determining the enabled set is the
major source of complexity. In this section, we present the class of protocols
with restrictions in determining the enabled sets. The class of protacols are
isomorphic to the window protocol presented in Chapter 3. Many existing pro-
tocols will be shown to belong to the class of window protocols. Notably are
the Adaptive-Tree-Walk Protocol [CAP782,CAP70b], the Urn Protocol
INLE78, MITTS1], the Arrival-Time-Window Protocol [GAL78, MOS82,
TOWS2, KUR83, KURSY|, and the Virtual Window Protocol [WAHS3|. In
Section B.2 a distributed window search procedure is described, the various
adaptive CSMA protocols are briefly reviewed, and their mappings to the win-
dow protocol are identified. In partlicular, the underlying distributions of the
contention parameters are derived, and the schemes for estimating the distribu-

tions and channel load are proposed.

(34
o
o

B.2 Characteristics of The Window Protocols

The protocols we investigate have the following three restrictions : (1) &
linear ordering relation holds for the station identifiers (station-1D in short), (2)
the active station with the minimum station-) is given channel access, and (3)
the enabled set is convex in the station-ID domain. Since enabled stations con-
stitute a convex set in the station-ID domain and is analogous to a window in
this domain, so this class of protocols is named window profocsls. Notice that
this class of protocols is larger than that of Hiuckyj's classification [HLUSI]
which consists systems of finite population and discrete station-IDs, although
the same name is also used. Since a station-1D is assigned dynamically, it will
be called the contention parameter in the sequel.

In the class of window protocols, the contention-resolution problem is
equivalent to the problem of finding the extremum among a set of distributed

random numbers.

B.3 The Family Of Window Protocols

Tn this section, several adaptive CSMA/CD protocols are shown to be
menibers of the family of window protocols. The contention parameters that

The distributions governing

el
=
o
&
o
<
[
i
£
e
o
w
[y
W
(3
o
1223
o
23
=5
=
5
&

cial to the optimization of window control.

B.3.1 Adaptive-Tree-Walk Protocol

This protocol is basically a preorder tree traversal algorithm [CAP70]. /
tree is organized in such a way that each leaf is associated with a station in th
network. The search begins at the root, and all ready stations can transmit i
the first contention slot. 1f a collision occurs, the search continues recursivel]
from the leftmost subtree to the rightmost subtrec in the following contentio
slots. The search is successful when a single active station is contained in
subtree, which is allowed to transmit its packet without collision. After th
packet is transmitted, the next contention slot is reserved for the next subtre
in the preorder search.

To have better performance, the size of the enabled subtrees should adaj
to the channel load. A small subtree is enabled when the channel load

3

heavy, and a larger one is enabled if the channel load is low. One way !
adapt to different traftic conditions is to have different degree of internal nod
under different traffic conditions. Capenakis proposed a recursive scheme
construct a tree that maximizes the channel efficiency [CAPT792,CAPTOB]. T!
scheme assumes that the network operates in steady state known arrivals th
are Poisson distributed. [t also requires that channel loads are estimat
separatedly, and that the search tree has to be reconstrucied when the chans
load changes.

This protocol can be viewed as 2 moving window protocol. The leaves
the tree are labeled from 1 to N. The origin of the window is rotated dynar
cally across the leaves. A window is equivalent to an enabled subtree. 1

objective is to isolate an active siation with the minimum distance {rom

[
<
-3

origin by the window-search procedure.

From the model of the window protocol, the leaves of the tree is labeled
from | to N starting from the origin. Station i generates a contention parame-
ter equal to the distance from station 1 {the origin) if it is active, and generates
a very large number, say N+1, if it is idle. The probability density function
from which a station generates its contention parameter is

Pr{i'th station is active} k =i
f{k) = { Pr{i’th station is idle} k=N+1 (B.1)

0 otherwise

Let p; be the probability that the I'th station becomes active in one unit of
time if it was previously idle, and t; be the elapsed time since the station was
last enabled to transmit. In the following derivation, we assume that there is
only onc bufler at each station and that the probubility for an idle station to

hecome aclive in one unit time is constant for all stations Le. p; = p for all 1.

Then,
Pr{i'th station is moifmm p, 4} =1 —(1-p)" (B.2)

On the other hand, p may be expressed as a [unction of the total number
of stations in the network (N} and the number of stations that have transmit-
ted after the window has circumscribed around all the stations once {nl.

Assuming that it takes 8, units of time to transmit n packels, the next station

1

allowed to trapnsmit must have been waiting for §, units of time, and the pro-
bability that the station is active is {I={1—p}"). Denote the staius of the i'th
station by a random number X such that the value of X is one if the station is

active and zero otherwise. Since Station | has been waiting for 6, units of time,

208

Pr(X;=1) = 1-{1-p)" (B.3

From probability theory and Eq. B.3, n may be expressed as follows.

=
I
kg
e

{

N (1~ (1-p)™) (B4

If the contention time is much smaller than a packet-transmission time, ther

8, = n. So we have the following relation :

N (1-(1-p)") =n (B.5

Solving Eq. B.5 yields:

i

n fn .
- .H — M — e . >
p N B.o

By replacing p in Eq. B.2 by the RUS of Eq. B.6, we obtain the distributior
that governs the generation of contention parameter by the Ith station as fol

lows:

Fk)=t1-i-24" I<k<N (B.

. §

in Eq. B.7, t; and n are unknown variables. To estimate these variables
an N-bit register is introduced at every station to record the status of all the
stations during the last circumseription by the window. All the registers ar

updated synchronously as follows. After each contention is resolved, the

station, say i, that wins the contention is identified as the only active station
amoug those enabled. The i'th status bit of the register is set to 1, and the
bits associated with other enabled stations are set to 0. Consequently, the
channel load n is the total number of bits with value 1, and the elapsed time of
a station since its last transmission may also be obtained by counting the
number of bits being set to one between the station and the origin of the win-

dow.

In case that the register is too expensive to maintain, the channel load, n,
can still be obtained by counting the average number of stations that transmit
during a circumscription by the window. However, t; cannot be found exactly,
Lut can be estimated from n. With the assumption of uniform packet arrivals,
the probability that a packet was transmitted in the last circumsceription by
the window with distance greater than i from the current origin of the window
is (N=i)/N. The number of packets transmitted in the last circumseription fol-
lows an incomplete binomial distribution. To compute the expected value of
the clapsed time t, it is necessary to kmow the minimum and maximum

er of stations that could have transmitted when the window has moved

< N

from Station i to the current origin. The maxinium cannot exceed either n or

~i, and the minimum cannot be less than either 0 or n—L Thus, the probabil-

ity that k out of n packets being transmitted after Station 1is

m (B.8)

Substitut Eq's B2, B.6 and B.8 into Eq. B

e

, the distribution function for

216

Station i, 1<<i<N, to gencrate its contention parameter is

0 k<i

. s . ._\a
min{n, N~i} I
> TWZL Pr(t=j) i<k<N (B¢

1 k>N

B.3.2 Urn Protocol

The Urn Protocol of Kleinrock and Yemini [KLE78] is a window protoc
in the spatial domain. It assumes that n out of N stations are active, and t!
Urn model in probability theory is applied to find an appropriate number
enabled stations suel that the probability of exactly one active station
enabled set is maximized. Binary-divide is used if there are more than one st
ion in the set. In this approach, active stations are assumed to be uniform
distributed among all stations. Kleinrock and Yemini proposed a method
maintain such an uniformity, in which the enabled set is determined by sy
chironized pseudo random pumber generators. Equivalently, the stations a
lubeled according to a pseudo random sequence. Synchronization in the ne
work environments is nontrivial however.

Alternatively, a rotating window approach is proposed in which the initi
window size is also determined by the Urn model. This approach is similar
the Adaptive-Tree-Walk Protocol in that the stations are enabled sequentiall
However, due to the round-robin service discipline, those stations closer to ¢t

origin of the window have a longer elapsed time since last enabled, and thus

211

higher probability of becoming active. In this niodel, the active stations are no
longer uniformly distributed over the station space. The Urn protocol has also
to be supported by a subchannel to estimate channel load n. However, the
channel load can be estimated easily from the window sizes of the protocol. To
obtain a sequence of optimnal windows for contention resolutions, the scheme

proposed for the Adaptive-Tree-Walk may be used.

B.3.3 Priority-CSMA Protocol

Accesses with priority are important in scheduling shared resources. In
particular, the communication channel is a valuable resource in the uwetwork
and should be accessed with priorities. Several CSMA protocols for handling
priority messages have been suggested in recent years {TOB82, GOL83, NI83,
SHAR3]. They may be classified as linear protocols and logarithmic protocols.
Each station is assigned the highest priorit

y of the local messages. In a linear

J

protocol, a slot is reserved for each priority level during the resolution of priori-
ties. An active station contends during the slot reserved for the local priority
level. The process stops when the highest priority level is determined. This
scheme is good when high-priorily messages are predominantly sent. A loga-
rithmic protocol determines the highest priority lovel in OflogyP) steps by a
binary-divide scheme, where P is the maximum number of priority levels
[N183]. This assumes that the highest priority level is equally likely to be any

one of the P priority levels. Neither of tt

€

»mes i3 able to adapt to the

various traflic patterns.

The global priority resolution problem can be solved by a window protoc
such that the highest priority level at each station is used as the contenti
parameter [WAHS3]. To determine the highest priority level being present
the network, a subset of the high-priority levels is chosen, and stations wi
local priority belonging to this subset are allowed to contend. Since there m
be more than one station in each priority level, a collision may happen due
transmissions from either stations of the same priority level or stations
different levels. The global priority level is resolved if there is only one priori
level in the enabled set in spite of collisions.

To apply our window-optimization method, it is necessary io identify t
distribution of the presence of each priority level. Let N be the arrival rate
the 1'th priority level, and t; be the arrival time of the most recent packet
the 'th level that has been {ransmitted. Assuming a Poisson process for t
packet arrivals, then the probability that there is at least one station in the ¥

priority level is

o0
pp= 1= f NeMde
T-y
= ¢ MT-u {B.]
where T is the current time. Ience, the distribution of priority leveliis
0 k<
Fik) = e i<k<L (B.
1 k>L

wlere L is the maximum priority level. The srrival time of a packet may be
acquired by piggybacking information on the packet. The packet arrival rate
may be estimated by observing the packet arrival times.

The distribution of the contention parameters in the priority-CSMA proto-

col is of the same structure as that of the Aduptive-Tree-Walk protocol.

Hence, these protocols will have the same performance.

B.3.4 Arrival-Time-Window Protocol

Gallagher proposed a window protocol on the time axis in which all sta-
tions have a common window of length u in the past [GAL78]. Stations with
packets arriving within the window of time are allowed to contend. If there is

no transmission or a successful transmission, the window is advanced u units of

e, the window is reduced to a fraction, f, of its original size, and

-1

the process is

epeated until & packet is transmitted successfully. The parame-
ters u and [are chosen to oplimize the performance. Binary-divide is used in

Gallagher's protocol. Subsequently, Mosley applicd the non-discounted Markov

¢

decision process to refine the protocol and achieved the highest channel utiliza-

tion so far [MOSS2a, MOS85]. Towsley relaxed the constraint of collision

j=u
©
-
o
I
i
c
&
2]
o
o)
o
jutt
b
[
s
ol
o
]
P
I
e
=1
o
vt
L
o
@
=l
<
-y
U
<
=]
=
o
I
=1
<
o
=
<
I
=
(=5
=
124
e
e
=
Ex
<
=]

is known. A recursive procedure is used to maximize the channel efficiency,
but listle improvement has been obtained [TOWS2, KURS3, KURS4]
Although these protocols have high efficiency theoretically, there are several

drawbacks. First, the steady-state assumption is made in the optimization and

ihe instantaneous load conditions are not reflected in the problem. Second, t
optimization techniques are computationally inefficient. Lastly, the chann

load (packet-arrival-rate) estimation method is not included in the protocol.

The distributions that govern the generations of contention parameters :
derived in the following. Suppose that the window begins at time O, that t
current time is T, and that there are n contending stations. Since the proto
searches for the earliest packet-arrival time in this window, each station «
use the earliest packet-arrival time in the interval (O, T) as the content
parameter. Assuming the arrival process at each station to be Poisson, the ¢
tribution of the earliest arrival time conditioned on the current time T and

origin of window O is:

(

0 t<O
Pyt | O<t<T) = Lot 0 i=1.,N (B
(] < e 0<t<T sy] ,
) t>T

where X, is the packet arrival rate at station i Notice that il N # X, t
¥t} # Fi{t). The inference method discussed in Chapter 3 may be used

estimate the number of contending stations.

1B.3.5 Virtual-Window Protocol

A new Virtual-Window Protocol has been proposed to resolve content
of messages [WAHS3b, WAHB4e|. Bach of the n active stations generatl

random number from the uniform distribution U{3,1) as its conten

215

parameter. That is,

0 y<90
Fiy)=1y o<y<t i=1,... N (B.13)
1 y>1

A contention parameter is only a dummy argument in this protocol, and no
physical meaning is attributed. However, any application oriented parameters
may be mapped into this virtual domain using a one-to-one mapping of distri-
bution functions. The mapping is illustrated below by the Arrival-Time win-

dow protocol.

The contention parameter x; of the Arrival-Time Window Protocol is gen-
erated by an incomplete exponential distribution. A random variable gen-
erated by such a distribution, Fi{*}, can be iransformed into another random

variable that is uniformly distributed over {0,1} by replacing x; with [PAP85]:

xi{ = Filxy) (B.14)

¥

Since this transformation is a one-to-one mapping, and if the distributions are

| for all stations, then the optimization performed on the transformed

contention parameters can be shown to be equivalent to the original optimiza-

Ou the other hand, if the distributions are non-identical, some properties
are lost after the transformation. For examyple, the original order of packet
arrivals may not be preserved after the transfurmation. A packet arriving ear-
lier at a station with a hght traffic than a packet arriving at a station with a
heavy traflic may be transformed into a larger contention parameter than that

of the station with the heavy traific. Due to this phenomenon, the First-

216

Come-First-Serve discipline proposed in [GAL79, KUR83, KURS84| cannot

applied on the transformed contention parameters.

Load-estimation methods for this protocol were deseribed in Chapter 3.

B.4 Performance of the Window Protocols

The problem of optimizing window control was formulated recursively a;
dynamic programming problem in Chapter 3 of this thesis. With the sal

notation, the formulation is repeated here for convenience.

abl = mi 1+ Og(w,ab) (
H@b) = min Yt e w) (wab) + nwb)r(w,e,b) (B.

Let F;{x) be the distribution function for generating x;, 1<i<N, and M
the number of stations that are contending (M=N for the Tree-walk or {

Protocols, M=n for other protocols}, then event A has probability:

M hi M M
TT1-Fy(all= $]Fy0) = Fa)] [T-F)]~ [T-Fb)
i=1 1=1 www i=1
Pr{A) = - (B
T e)

The first and last terms indicate the probabilities that all x's are greater Ul
a and b, respectively. The second term is the probability that exactly one

the x;'s is in the interval {a,b]. Similarly,

M
glwab) = —— P ()P i) (B.17)
Pr(A)[T(1-F fa)) =
i=1

z z
1=)= TPyl
1= 1=
k4l ¥

1 M
t(w,a,b) = - [11t-Fyw)]

PriA[[(1-F {a) i=1
i=1

ML M A
"X [F5(b) = Fy(w)] [T 0]}~ PTG (B.18)
= i=1 i=1

j#i

The probabilities g{w,a,b), {{w,a,b), and r{w,a,b} depend on the distributions of
the contention parameters. The distributions obtained in Section B.3 were
used to evaluate the associated protocols under the dynamic-programming win-

dow control. The values of n{a,b) are computed and compared with simulation

B.4.1 Virtual-Windew and Arrival-Time Window Protocols

Since the distributions of the contention parameters are independent and
T R e R S s .
aniformly distributed over (6,1}, Eg's B.47 and 13,18 can be reduced to simpler

forms:

218
gw,ab) = 7<|£EléwsllClE?uﬁ\ B
(1-a)" — (1-b)" ~ n(b=a)(1-b)""
r(wiab) = TifﬁxE:..u?ii:tggl_ (B:

:cwW:t:tS:tu?lw:TE:L
Numerical evaluations and simulations based on the above distribution h:

been discussed in Chapter 3.

0.4.2 Tree-Walk and Urn Protocols

The discrete a,wm:,._g:wccm for both the Tree-Walk and Urn Protocols
non-identical and time-varying. Assuming that the origin of the window 1
Station 1, there are two properties that can be used to reduce the complex
of Eq's B.17 to B.18: (i} Fik) =0 for k<y; and (i) Fi(a) =Fi(b) for i< a,b

From these, we obtain:

3 b b b
Pr(A) = TT0-Fia)] - SEMT-Fio)] = TT0-Fb) (
i=1 i=a i=t1 i=1
jzi
_ D - L4 I |
g{w,a,b} = \Mw.mﬁ.wu. Wﬂwm, dw) = wﬂuﬂwnﬁ?@w - wnmmwlm‘ i(b)] {
At j#l
1 w) b b b ,
r{w,a,b) = o7 TI-Fiwi - T {Fdb) T10-F(b) ~TTI1-Fi(b)] {
Pr(A) }iny j=w i=1 i=1
i# i

Among the protocols we have considered, the Treewalk and Urn Prc

219

have the highest certainty about the values of the contention parameters. The
performance is, therefore, expected to be the best. The average height of the
dynamic programming tree has been evaluated with respect to the different
channel loads. The approximate distribution of I2q, B.7 is used in the numeri-
cal evaluations. The results plotted in Figure B.1 verify that perfect scheduling
is achieved when the load is heavy. It should bLe noted that the performance
degrades as the total number of stations increases. When N—oo, the protocol
behaves like one with a continuous distribution. The performance of the sys-
tem was also simulated. The window-control aud load-estimation schemes
described in Section B.3.1 are implemented directly in the simulator. The dis-
tribution of contending parameters were estimated at each station using Eq.
B.8. The average number of contending station estimated is called the load
average in this simulator. In driving the simulation, a station generates a
packet in a packet-transmission time with probability p. The simulation
results are summaried in Tables B.1 and B.2. The results demonstrate that the
proposed scheme is very efficient.

Since the distribution of the global priority-resolution protocol has the
same structure as that of the Tree-Walk and Urn protocols, the performance

itions discussed in Section B3 also a

pply to the global priority-

J

resolution protocol.

220

2.4
[43}
T
(@]
P |
[7p]
L, 20}
Q
fu—
=z
[¥Y]
E 18f
(o]
Q
[
o N=70
© g2k
a3
=z
po]
z N=10 N=30
v s _ N=50
O
{
@
wd
> .
< 40 :

0 0 20 30 40 e 80

NUMBER OF CONTENTION STATIONS

Figure B.1 Performance of the TREE-UR

€ T N protocol with dynamic-program-
ming window control) progran

Table B.1 Simulation results of the TREL-URN protocol with dynamic-

221

programming window control (number of stations = 10)

TREE-URN with Dynamic Programming Window Control

(No. of Stations = 10}

i
P M Load Ave. # of Contentions
0.02 1.27 2.07
0.01 1.47 1.68
0.06 1.6¢ 1.87
0.08 2.64 1.84
0.10 3.30 1.54
0.12 3.7 1.60
0.14 5.17 1.48
0.16 §.26 1.37
0.18 7.058 1.27
0.20 7.90 1.23
0.22 8.50 1.18
(.24 8.01 1.12
| 0.6 9.19 1.10
1 0.28 9.32 1.08
0.30 .54 1.05
0.32 974 1.03
0.314 .83 1.0
0.36 4.85 1.02
0.38 9.83 1.02
0.40 .03 1.01

(%
(84

Table B.2 Simulation resulis of the TREE-URN protocol with dynamic
programming window control {number of of stations = 20}).
TREE-URN with Dynamic Programming Window Control
{No. of Stations = 20)
p Load Ave. # of Contentions
.01 1.22 2.21
0.02 1.50 2.33
0.03 2.39 2.08
0.0 3.21 1.58
0.05 3.89 1.82
0.06 6.7 1.50
0.67 792 147
34.08 10.22 1.55
0.00 12.64 1.37
0.10 14.57 1.23
011 16.10 1.21
0.12 16.96 1.18
0.13 17.50 114
0.14 18.10 1.10
.15 18,78 1.07
0.16 16.09 1.04
8.17 19.16 1.01
0.18 18.37 1.43
0.18 109.51 1.02
0.20 19.54 1.02

B.5 Concluding Remarks

In this appendix, we have described the window-search scheme that deter-
mines the minimum among a set of distributed random numbers, and unifies a
class of adaptive CSMA protocols, The unification allows the optimization of
various protocols to be done by a unique method. Dynamic-programming for-
mulation to minimize the expected total namber of contention slots wag stu-
died and verified by simulations. The formulation was based on information on
channel load and distributions of contention parameters. In practice, the chan-
nel load cannot be obtained directly and has to be estimated from the window
size, the first-order statistic of the conlention parameters, and the distributions

of contention parameters.

224

VITA

Jie-Yong Juang was born in Taipei, Taiwan, Republic of China, on January 1€
1954, He received his B.S. degree in Electrical Engineering from Nationa
Taiwan University, Taipei, Talwan, in 1976, and his M.S. Degree in Compute
Science from University of Nebraska, Lincoln, Nebraska, in 1981.

He is currently a Ph.D. candidate in the school of Electrical Engineering
Purdue University. IHis rescarch interests include computer architecture, com

puter networks, distributed processing, and parallel processing.

