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ABSTRACT

Lien, Yao-Nan. Ph.D., Purdue University. August 1986. Distributed Databases

On Local Multiaccess Computer Systems. Major Professor: Benjamin W.-S.
Wah.

Concurrency control, distribution design, and query processing are key
issues in the design of distributed databases. In this research, we have studied
these issues with respect to a relational database on a local computer systern
connected by a multiaccess broadcast bus. A broadcast bus not only allows
information to be distributed efficiently but also provides a synchronization tool
for the concurrency control. Consequently, it simplifies the distributed dutabase
design. Some NP-hard file placement problems are found to be solvable in
polynomial time when updates are broadeast. A trausaction model that
integrates the concurrency control and query processing i3 proposed. In
concurrency control, a protocol based on locking is used since much less
communication overhead is needed for lock management. A dynamic strategy
is used in query processing, as less data are transferred when compared to a

static strategy. The status information needed in dynamic query proce

be conveniently obtained by broadeasting. Lastly, a new query proce

strategy is proposed for the distributed database connected by the

communication networks., The problem is formulated as a general

ed trav

salesman problem, and is solved by various solution algorithms.  The
performance of the system is evaluated by simulations on a SUN workstation,

The results shows the design is feasible and efficient.



CHAPTER I

INTRODUCTION

With digital computer technologies, Database Management Systems
(DBMS’s) provide better service for maintaining and accessing information over
conventional information processing technologies. Expensive computer syste s
and the lack of computer networking technology in 1970’s had limited the
DHMS to be centralized in a computer complex, consisting of a few large
computers, referred to as centralized DBMS's (CDBMS's). With the advance of
computer networking technologies, a Distribuled Database Management System
{(DDBMS) allows a single database to be efficiently and cost effectively spread
over a computer network that consists of a number of geographically dispersed
computers interconnected by a communication petwork. In the last decade,
DDBAIS's have been studied by a mumber of researchers [APES3] [BHAB2a]

(B11A33] [BER81a] [BERSIb] [BERSIc| [CERS3] [CHIB4] (CHUS2] [DOWS?]

HEVT9a] [PAPT79] [RAMR3] {SACS4] [WAHS5] [WONTT] [HEVS85] [YUB4a|
IYURib]. There are some pioneering systems developed: SDD-1 [ROTB8O, System
R *[LIN84|, Distributed INGRES [STO77], and LOCUS [POP33}. As the need
of ommmm automation and the capability of smaller computers grow rapidly, a
DDBMS is now considered as a good candidate offering better information
processing service for an environment in which users of a single database are
spread within a limited distance area, ceferred to as focael area. University

environment is a typical example of such environments. DDBMS's in local area

KERA2|
[NGU3Bla| [SAC84] [WAHSS5]. In this research, we aim at studying the DDHVS's
in local area environments and providing a feasible configuration accomplished

with adequate control functions.

1.1 Distributed Database vs. Centralized Database

The major advantages of DDBMS’s over CDBMS's are their superior
achievements in reliability, data availability, throughput, and flexibility. Under
some circumstances, a DDBMS may also provide faster response time and lower
cost. On the other hand, the control functions in DDBMS’s are much more

complicated. There is a good discussion in Sykes’s paper [SYKRQ].

11y Dot HH , Tability BH
{1} Reliability. Reliability is the probability of a system keeping functio

In a distributed environment, f{ailures on some components should not

disable the entire system. Users’ requests at the failed sites can be

transferred to other sites; failures on a communication link can be handled

by routing the traffic to alternate links. Although high reliab

ty can also

"be achieved in centralized systems, the cost is much higher in general

P vyr . e R
{2} - Availability. Availability of data is the probability of at least one copy of
each piece of data being available in the system. In addition to the

-

reliability, data availability is also a desirable feature of DBMS's. B

replicating the data at different sites in DDBMS’s, t}

pathes to a particular piece of data are broken s i fuced. Tt
T .
availabilities of other resources such as processing power may also !

ms.

enhanced by the resources sharing capability of distributed syste



Throughput. Throughput is usually measured by the number of service
requests ( called transachions ) thal a system can process within a time
unit. In a DDBMS, a transaction may be carried out by multiple processing
units at different sites, or by the processing unit at any site with idle
processing capacity. In other words, DDBMS’s could have better load

balancing, and hence larger throughput.

Flexibility/Extensibility. The flexibility of upgrading system capacity is
desirable whenever the future demand on the capacity is unpredictable at
the design stage or is changing rapidly. Without such flexibility, a system
may be over-specified at the design time to avoid the potential mismatch

between the capacity and the future demand. Also, even if the future

demand is predictable, the utilization of a system designed to match the
future demand is very low before the demand matches the capacity. Those
drawbacks can be avoided by allowing the system to be dynamically

upgraded in response to changing demand. In a well-designed distributed

adding new components or replacing old components have only

little impact to the entire system. Consequently, high extensibility of
DDBMS’s is relatively easy to achieve, since the dependency among all

components is usually much lower than that in CDBMS's.

Local Autonomy. Each local site can have more design freedoem to meet
specific requirements of its local environment. Usually, the requirements of
different user groups {eg., engineering, accounting, marketing, ... etc ) in an
organization may be very diverse and, even worse, may sometimes conflict

with each other. In a DDBMS, each individual need can‘be easily satisfied

&

since each site can have its own aatonomy. In contrast, it's very dif

for a CDBMS to satisfy all different needs. Even when tradeofls among
these needs are made, none of the users might be completely satisticd with

the result.

{6) Response time. Most of the transactions in a well-designed DDBMS with
good resource allocation strategies may have a great chance to be processed
locally without extensive network activities. The average response time can

be very short in this situation. However, certain types of transactions |

DDBMS's may involve many complicated control functions making the

response time relatively high comparing to CDBMS's.

) Cost. Accessing a centralized database from a remote site may ir
expensive communications. A well-designed DDBMS may localize most of

database accessing and hence, save expensive carnnu

tion cost.

However, under some circumstances, the overhead of the cornr phcate control

functions may be too high to be compensated by the benefit obtained from

the localization of remiote accesses.

1.2 Motivations of DDBMS’s in Local Area Environment
In addition to the advantages described in Section 1.1. there are Lwo

driving forces that make the DDBMS a good candidate o provide good

information processing service in a local area environment with phy
dispersed users. The diameter of z local area environment is usually within a
few kilometers. A hospital, a building with branch offices, or a manufacturing

factory are some of the examples.



The first driving force comes from the need to improve office productivity
due to the rapid growth of information volume and personnel cost. Office
Automation, which tries to computerize most of the office functions, has been
considered as the most promising approach to achieve this goal
m,.»D\m,.f:\ﬁ,}m.A as another example, have attracted a lot of attention for its
potential to enhance engineering and manufacturing productivities. In these
environments, information storage, maintenance, and retrieval are considered

important services to support higher productivity.

The other driving force comes from the advance of technologies. ﬂwwn,
growing microelectronics and local area networking technologies in recent years
have made local area networks, which connect smaller computers with
reasonable processing power, inexpensive enough such that almost all companies

can afford to install one.

The cost of fabricating a given logic element {processor, memory, peripheral
controller) has been declining by a factor of 10 every three years over the last
decade. Another way of looking at technological advances is to compare the size
of memory on a single chip. Starting from 4 Kbits in 1873, it increased to 256
Kbits in 1979, and | Mbits DRAM woaww‘ The present density of logic on a chip
is quite high such that any complex logic element can be built with a few chips

at a cost lower than $1000. A workstation with 1-Mbyte main memory, 1-MIPS

on instruction per second) processing power, and [-Mbps networking
capability is available in less than $10,000. Current prices may fall in the future
because of even larger production volumes and the rapidly developing trend to

standardize chip interface logic. Further, smaller syscems are much easier to

* CAD/CAM/CAE : computer aided design, computer aided manufacturing, and
computer aided engineering.

operate and maintain than larger systems. This is even more important to
small enterprises, since the shortage of skiliful system engineers of large systems

has made the central computing centers difficult to set up, even if they

affordable.

are

Recently, local area uetworks (LAN) have been extensively developed and
used. These networks make use of such technologies as twisted pair, coaxial
cable, radio transmission medium, as well as more sophisticated technologies
like fiber optics. LAN can be installed in a building, on a campus, in a factory,

etc. Many experimental and commercial LAN's have been in use for years, and

both their feasibility and cost-effectiveness have been widely demonstrated.

Although CDBMS's may outplay DDBMS's on the efficiency in local area
environments, a DDBMS is still considered as a better alternative for all its
advantages other than efficiency and implementation complexity. In fact, the

implementation complexity is not an important factor from the users’ point of

view as long as a good user interface is provided.

1.3 Design Objectives and Design Issues of DDBMS's

The objectives of DDBMS’s are differeat from system to system. Most
commonly addressed objectives are data integrity, cost eflectiveness, good user

interface, robustness, and simplicity. In fact, these objectives are genera

applicable to most DBMS’s.



{2)

£.3.1 Design Objectives

Data integrity. In a DBMS capable of processing more than one
transaction at a time, transactions may interfere with each other such that
either unexpected results are produced or the database itself is converted
into incorrect states. Therefore, maintaining data integrity in processing
transactions is one of the most important objectives of any DBMS.
Cost effectiveness. A DBMS should maximize its performance within a
cost constraint, or in another way, meet the performance requirements with
N
the least cost. Theserformance requirements are also different from system
to system. These may range from minimizing response time or cost, to

maximizing throughput or reliability, or a combination of more thau one

parameter.

Good user interface. Without a good user interface, a high performance
system may be of little use or even useless to the users. In addition to good
query languages as needed in CDBMS's, distribution transparency is also
needed in DDBMS's [CERSB4}. Users do not have to know the location of
any piece of data; the update to multiple copies of any piece of data should
be automaticaily taken care of by the system itself. Further, 2 DDBMS may
,..cmi.mn of some different local databases. It would be very difficult for users

to access the database through different local systems a global data model is

not available. Therefore, a global conceptual data model is desirable.

Robustness. This is the capability of a system to operate correctly in the
presence of any failure or unexpected transactions. For example,
communication-link failures may partition a system into isolated parts. A

robust systern should be able to continue the services with possibly

degraded performance even if the hardware fails. Also, it should be able to

-

recover the system back to a correct state, once the failed components are
operational. [t is generally true that the more complex a system is, the
higher the probability that failures may occur. Therefore, the system
designers should anticipate the failures and provide some ways to recover
the system from failures automatically. In a worse case, ‘w DBNMS may
operate with undetected errors if the failures do not stop the system. For
example, a noise on the data path along which an update request is
transmitted may change the database incorrectly if the system does not
have error-detection and error-correction capabilities. As another example,
two or more transactions may deadlock to each other. The system may
eventually stop if it does not have any deadlock-prevention or deadlock-
detection mechanisms. Robustness is particularly important in a DDBM>

since its control functions are generally much more complicated than those

in a CDBMS.

Simplicity. For a complicated system such as a DDBMS consisting of

many components, it is difficult to prove its correctness, to make it robust,

to document it, to maintain it, and to update it. Hence, simplicity is alse

an importaant objective in designing a2 DDBMS. However, very often, this
can only be done at the cost of efficiency and performance. Compromises

should be made io this case.



1.3.2 Design Issues

Although there is almost no difference between CDBMS’s and DDBMS’s on

their objectives, there are some problems in DDBMS’s that cannot be handled

well by techniques developed for CDBMS due to the difference between their

operating environments. The followings are some key design issues in DDBMS's.

{1

Architecture. The design of a DDBMS is a complex and difficult task
requiring careful consideration in all design aspects. A systematic
architectural design can help designers solve the problem easily. In the
sirnplest view, a DDBMS consists a set of computer systemns interconnected
by a communication network as shown in Figure 1.1 Each local system is
equipped with a local database. According to the homogeneity of local
systems, three types of integration can be used [PEE78]. In the first
approach, each ocal DBMS ‘knows about’ the existence of others. All the
components work together cooperatively like a single integrated DBMS
system. This approach is possible only if the entire DDBMS is designed and
built from the ground up. If this is not the case, existing DBMS’s should be
used. One of the two forms of ‘federated’ models should be used.
Integrators and translators must be used to integrate different DBMS’s into

an integrated DDBMS system and to translate different database models

inte a unified conceptual model. The logical model of this approach

shown in Figure 1.2. More detailed discussions can be found in Peeble’s
paper [PEET7S].
Ooavc?ﬂ.mnnﬁ.owﬁ‘a‘mwmwmoam of the essential parts of the architecture

design, providing the service for information exchange and resource

Communication

Network
>
-

Figure 1.1 A simple model of 2 DDDMS



-

sharing. Basically, a network is a collection of two or niwre processing
elements that offer various services and capabilities. A network consists of a

certain type of transmission medium connecting all processing elements in a

ARCHITECTURE OF DDBMS

certain topology, the control mechanisms controlling the transmissions over

!
!
!
!
i
!
{
i
i
!
|
i
i
{
i
i

the medium, some type of network interfaces, and a sef of protocols

controlling the transmission of information among the basic hardware

0BMS  |———| DBMS

elements. The combination of different choices on these components may

result in a large number of networks differing in characteristics such as

propagation delay time, communication capacity, addressing scheme,

© = s 5 s 1 o 1 s o e s o

transmission cost, and effective network diameter. A good DDBMS needs a

carefuily designed computer network since most the problems
DDBMS's cannot be solved well without considering the characteristics of

the underlying networks.

{(3) Data Distribution. The design of data distribution considers the

allocation of data such that data can be accessed and maintained etficiently

In a DDBMS, replicated copies of a piece of data are allowed to be stored at

HOST-HOST COMM. NETWORK

different sites such that some expensive remote accesses can be localized.

!
m
m
!
m
]
W
m
m
!
m
!
i

B o 0 s e e e 3

" On the other hand, the overhead of maintaining the integrity of replicated

.data, the directory information, and the need for extra storage inhibits

© data from being over replicated. A careful allocation for the replicated data

" to balance the benefit and overhead is needed to maximize the cost

Fiay . i :
Figure 1.2 Logical Architecture of A Distributed Database System.
effectiveness [CHUGS] [DOWS2]. :

{(4) Concurrency Control. Concurrency Control maintains data integrity in

a multiuser DBMS. It is complicated by some factors in DDBMS



follows. Multiple copies of a piece of data being stored, accessed, and
updated at different sites at the same time; communication delays prohibit

instantaneous distribution of status information such that it is difficult to

L . . file
matntain all sites in an identical state at all tirnes; and the unexpected partitioning

failures of some components may cause the database in different sites to be *

modified in different ways{BERB8I1b).

(3) Query Processing. The operations performed on the data in a database is

called a query. In a DDBMS, a query may originate from any site in the concurrency file -

query
control o Pia t < processing
system. When processing a query, either the required files are assembled at €

a single site and the query is processed there, or the query and the
intermediate results are sent and processed sequentially through the sites

containing the files. A combination of the two strategies is also possible.

v

The design of effective strategies of processin ueries to maximize the
€ p £ g .
cemmunication

system efficiency is known as the DQP, or disiributed query processing network design
y q

problem [APES3] [YUS84b|.

Some other problems such as failure recovery, security/privacy, and logic

datahag P 1 Y c 3 N . . . . . s . .
database design are also relatively important. Figure 1.3 The relationships of design issues in distributed databases.

these issues are interrelated together as shown in Figure 1.3. For
example, the files are partitioned and placed according to the characteristics of
the network and the query; the design of the query processing strategy, the
concurrency control algorithm, and the communication network depend on the
placements and partitioning of the files. The issues shown in Figure 1.3 are also
interrelated to other important problems, such as failure recovery, logical

database design, and directory management. It is very difficult to solve these



problems as a whole, so the designer usually decomnposes them into independent

problems and studies each based on simplified assumptions of others.

Oue potential problem of the above approach is that oversimplification may
lead to undesirable resuits. An example is shown in the use of a network model
that is independent of the hardware characteristic. A simple network model is
often used because, besides simplifying the design of DDBMS strategies, it allows
the software to be transportable, and permits many applications of different
requirements to share the same network. A protocol hierarchy is used, which
allows the DDBMS to interact with the lower levels through system calls. As a
result, the status information needed in the control and the interchange of data
among sites must be formulated into messages that are recognized by the lower
levels of the hierarchy. This mismatch between the characteristic of the physical
network and the requirements of the DDBMS results in inefficiency and increases
the complexity of control strategies. To improve the performance, the
capabilities of the network must be taken into account in the design. Based on

this consideration, we have developed the objectives and the methodology of

research in Section 1.5

1.4 DDBMS's in Local Area Networks

Since most of the problems of DDBMS's are so strongly dependent on the

supporting network, it would be a good methodology to design the supporting

network first and then solve the other problems based on the characteristics of

the network. As a matter of fact, local-area-network (LAN) technology is getting

* N *
matured and standardized [IEEE83]. There is no ne { to design a special LAN
* {n 1980, the mﬂmm set up 2 Technical Committee, known as the 802 Commitiee, whose
purpose is to establish standards for local ares networks.

16

to support the DDBMS on local area environment if any existing LAN can
support the DDBMS well. Therefore, the best methodology is to choose an
existing LAN whose characteristic is close to what a DDBMS may need and o
design the DDBMS based on the chosen LAN.

1.4.1 Local Area Networks *

A local network is a communications network that provides for the
interconnection of a variety of data-communication devices within a small area.
A local area network (LAN), a special case of local networks, is a general purpose
local network supporting minis, mainf{rames, terminals, and other peripherals
[STAB84]. The data rate can range from 0.1 to 20 Mbps, the distance from 0.1 to

50 kilometer, and error rate from 10 % to 10 '\

The principal technolog
alternatives that determine the nature of a LAN are the transmission medium
and the topology. There is a good survey in Stalling’s paper mm%bwi.

(1) Transmission Medium. Table 1.1 lists the types and the capacities of
the transmission media that can be used in a LAN. The most commonly
used media are twisted pair, coaxial cable, and optical fiber.

{a}) Twisted pair wiring. Twisted pair wiring is the simplest one with
the lowest capacity and cost. It is the most cost effective choice for
single-building, low-traffic requirements. Only baseband transmission,
which uses digital signaling, is suitable for twisted-pair wiring. One
weakness of twisted-pair wiring i3 in its susceptibility to interference
and noise.

{b} Coaxial Cable. High-performance requirements can be met by
coaxial cables, which provide higher throughput, can support a large

number of devices, and can span greater distances than twisted pair



Table 1.1  Characteristic of local area networks.

Transmission dium
Topology
Transmission speed
Maximum distance

umber of devices supported

N
Attachment cost

Twisted pair, coaxial cable, optical fiber
Bus, tree, ring, star

0.1-20 Mbps

~ 25 kilometers

10's-1000's

500-5000

¢

{

2)

Both baseband and broadband transmission methods can be employed
on a coaxial cable. In general, basebaud transmission is simpler but
less capable than broadband transmission. Baseband systems are
typically from 1 to 10 Mbps and are generally linited to a single

building. Broadband systems can support multiple data paths, each

with t to 10 Mbps capacity. Existing CATV cabling technologies can
be used in broadband LAN.

Optical Fiber. Optical fiber has greatest capacity and is a promising
candidate for futvre LAN’s. it also has the following advantages over
both twisted-pair wiring and coaxial cables: light weight, smalfer
diameter, low noise susceptibility, and no emissions. However, it has
been little used so far due to its high cost and technical limitations. It
is only suitable in to point-to-point configurations. The problem of

insertion-tap loss must be overcome to use it in

configurations.

Topology. Characteristics of LAN’s are also highly dependent on the

topology used. Star, ring, bus, and tree are the most commonly used

topologies. They are shown in Figure 1.4.

(a)

{v)

Star. Instar topology, a central switching elements is used to connect

all the nodes in the network. Only one node can use the network to

o

transmit or broadcast at any time. Therefore, a connection request
the central switching node is needed to establish a connection from one

station to other stations.
Ring. The ring topology coansists of a closed loop, with each node
attached to a repeating element, called repeater. Data circulate around

the ring in a series of point-io-point data links between repeaters.
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Optical fiber is well suited in ring topologies such that its higher
capacity can be utilized. Token rings, siotted rings. and insertion

istns (ST AR

rings are the most commonly used access control mechs:

A station wishing to transmit data should get the access right first and
then transmit the data through the ring in packets with source and
destination addresses. As the packet reaches the destinalion, the
destination node copies the data. There are some problems associated
with a ring topology. The reliability of the ring is jeopardized by a
single failure on cables or repeaters. These failures are difficult to
isolate. Further, adding new stations into the ring will degrade the

performance.

Bus/Tree. Multipoint medium is used in bus or tree topology. The
bus is a special case of the tree, in which there is only one trunk with
no branches. Each station uses a passive interface to tap into the

single bus. Since there is no active device on the bus, the reliabitity of

bus LAN’s is much higher than the ring topology LAN’s. All stations
share a common transmission medium, while only one station can use

the medium to transmit at any time. A distributed-medium acce

protocol is needed to determine the station to transmit through e
medium, Broadcast capability can be easily achieved since all stations
‘listen’ to the medium. The broadcast capability is very useful for

DDBMS’s. This will be discussed in the next section.



1.4.2 Local Multiaccess Bus Networks

Currently, the most popular bus LAN is the Ethernet [MET76] [SHO82].

Most of the low-cost, twisted-pair LAN’s for microcomputers use a bus topology.

The following are the key characteristics of local multiaccess bus LAN's.

{1} Zc_amﬁo:wv configuration. More than one station are connected to the
bus. Each transmitted message has the addresses of the source and
destination stations. Bus access control protocols are needed. :

{(2) Serial transmission. Since all stations share a single data bus, only one

station can transmit at any time. This could become the bottleneck of the

system. The utilization of the bus is an important issue in system design.

{3) Broadcast Capability. All stations can listen to the bus simultaneously.
The broadcast capability can be easily implemented. Many Ethernets
support the broadcast capability [MET786] [SHO82|. Another useful
potential capability is multicasting, in which messages may be targeted to
more than one destination. This is also included in the KEthernet
specification.

{4} Baseband/Broadband. Both baseband and broadband transmissions can
be employed except in the twisted-pair wiring bus, in which only baseband
transmissions are allowed. If broadband transmission is used, more than
one channel can be available, Virtually, it can be modeled as a multi-bus
LAN in some cases,
wxm“ other multipoint configurations, a multiaccess bus needs bus access

h station has the

control. The access control is the protocol to determine w
right to transmit data when more than one station wants to transmit. Either

centralized or distributed control can be used. A centralized control may have

the reliability problem since the entire network will fail il the control station
fails. Furthermore, a heavy traffic to the control station may be induced by the
access requests generated by the slave stations The most commonly used
distributed protocol is the carrier sense multiple access with collision deleclion
(CSMA/CD) protocol. A station wishing to transmit should frst sense the
existence of the carrier signal on the bus to avoid destroying the current
transmission. It can only transmit messages when the bus is idle { whea no
carrier signal presents on the bus). Otherwise, it should wait and keep sensing
the bus until it is idle. A collision happens when more than one swation transmit
messages at the same time. Once a collision is detected, the transmitting stations
should stop the transmission immediately and restart the procedure after a
random period of time. Usually, a ‘binary exponential backoff’ algorithm is

applied to determine the range of time within which the next attempt to

retransmit will be taken.

1.4.3 End-to-end Transmission Speed of Muitiaccess Bus Networks

The most important characteristic of a LAN in designing a DDBMS is th

end-to-end communication speed, which is defined as the amount of

infgrmation that can be transferred from the memory of one station in

original form to the memory of the other station in a ready-to-use fo

=
=

time unit. [t is also called the effective data rale. We use these two tern

interchangeably in this dissertation. It is much slower than the raw data rate on

these networks because the overhead on the communication protocols, such as
error detecting/correcting, medium-access control, flags, addressing, buffering,
routing, packetization, flow control, sequencing, and synchronization, may

reduce the effective date rate dramatically. For example, the typical end-to-end



transrmission speed of a 10 Mbps Ethernet is only 1 Mbps. The TCP/IP protocols
on a VAX-11/780 computer runing 4.2BSD UNIX with a Ethernet may have

only 0.5-0.75 Mbps end-to-end transmission speed.

1.4.4 DDBMS’s on Local Multiaccess Bus Networks (DDBLMN)

The broadcasting capability and multi-point configuration are the most
important reasons that make the local multiaccess network a good choice for

supporting a DDBMS in local area environments.

{a) The update of multiple copies of a single piece of data can be made by one
broadeast. This not only saves operating cost but also simplify the design.

(b) The costs of remote accesses and updates are site independent. This can
also simplifies the design.

{c} Systemn status is almost completely available to all stations by monitoring
the activities on the bus. The status information exchange is, therefore
extremely small,

{d} Every station gets the information on the bus almost iastantaneously, since
it is a multli-point configuration. For example, the minimum contention-slot

time, which is at least twice the time to propagate a signal from one end of

the bus to the other end, in Ethernet specification is 512 bit ~times ’

[SHO82]. The maximum propagation delay on the Ethernet, hence, w

excess 258 bit-times. Comparing this to the minimum packet size of 576

bits, the propagation delay will not cause any problem. If we assume that

the database state cannot be changed within a packet time, it’s reasonably

* A bit-time is defined as the time that the trsnsmission system needs to trans

single bit. For example, in a |-Mbps system, 1 bit time is 1 ) second.

-
safe to assume that the status exchange is instantaneous.
{e) The multiaccess bus is a synchronization tool. When messages are not lost,
all messages arrive at each site in the same order as they are sent. For
example, if broadcast message m, is received at one site before o message

m,, m, is received at all sites before m,. Therefore, the communication bus

provides a synchronized communication environment IBANT7Y|.

1.5 Relational Data Model

The data model of a database provides a logical view of the database to the

users that can help users to access and manipulate the database without t
knowledge of complicated physical organization of the database [CODTO]. The

two basic elements of a data model are:

{a) a mathematical notation for expressing data and relatinnships among data

elernents, and

(b) operations on the data that serve lo express queries and other

manipulations of the dala elements{ULL82|.

Among three different models {relational, hierarchical, and network) that have

been extensively studied, the relational model is the most popular one due 10 its
simplicity, symmetry, easy to use, and its strong theoretical foundation. For the
same reason, this research is based on the relational data model.

The mathematical concept underlying the relational model is the set-
theoretic relation, which is 2 subset of the Cartesian product of a list of domains,
A domain is a set of values. The Cartesian product of domains D, Um. .
writien as D x Dyx - xD,is the set of all k-tuples (v, v,, ..., v,

v, isin D, vyisin Dy, and so on.



A relation is any subset of the Cartesian product of one or more domains. it
is always assumed finite. The members of a relation are called tuples. Each

- x D, is said to have arity or degree k. A

relation that is a subset of D x D, x
relation can be viewed as a table, in which each row is a tuple. Columas are
called attributes. The set of attribute names for a relation is called the relation
scheme. If we name a relation R, and its relation scheme has attributes a, b, ¢,
and d, then the relation scheme is written as R{ a, b, ¢, d). The attribute a of
relation R is denoted as R.a. The order of both the tuples and the attributes are

unimportant. A couple of examples are shown in Figure 1.5.

An operation to a database can be decomposed into two parts, the target-
data identification and the targei-data retrieval or update. The target-data
identification usually needs a sequence of basic operations o be applied on the
database when users query the database using high level query languages.
There is no unique way to process such queries. Also, the processing overhead
for different processing sequences may be quite different. Hence, a major task of
database design is to design a strategy thal can produce efficient processing
sequences {or all possible queries.

There are five basic operations that fan manipulate a relational database.
{1} Selection. Selection selecis those tuples in a relation that satisfy a given

condition, and is denoted as o (R}, where F is the condition and R is the

relation to be operated.

Projection. Projection takes unique values in an attribute of a relation,

and is denoted as ﬂmmmw where A is the attribuie to be projected and R is
the relation to be operated.
{3} Join. When two relations share a common attribute, they can be joined.

The result of a join operation on a common attribute of two relations is the
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Curtesian t::?l. of the two relations, with the tuples which share the
same value in the common attributes. Only one cornmon attribute is kept
in the resulting joined relation. This type of join operations is also called
equi-join. There are other types of join operations {ULL82}.

(4) Union. The union of relations R and S is the set of tuples that arein Ror S

or both. It is denoted as R UJ S.

(5) Set difference. The difference of relations R and S, denoted as R — S, is

the set of tuples that are in R but not in S,

The examples of these ations are shown in Figure 1.6. These operations can
be concatenated together to form more complicated queries. There is no unique
way to form a complicated query to get the final result. Furthermore, different
basic-operator sets may have equivalent manipulating power. That is, the result
obtained by applying a sequence of operations belonging to an operator seb can
also be obtained by applying operations belonging to another operator set. For
example, the join operation can be replaced by the Cartesian product operation,
since a join operation can be replaced by a combination of Cartesian product,

selection, and projection. This is shown in Figure 1.7. Notice
{a) that the join operation is a binary operation with two relations as operands,

(b} that the join operation is symmetric,

that the size of a joined relation would be much larger than the the sizes of

each individual relations, and

* Cartesian product. Let R and S be relations of arity »M and wn: respectively. Then
R x 8, is the set of m»w + *mv.«awﬂ«w whose first wm components form a tuple in R and
whose last m.qa camponents form 2 tuple in S,
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Figure 1.7 An example of join operation.
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{d) that there is a selection embedded in a join operation.

The most commonly used operations are selections, projections, and joins.
Selection and projection are unary operations and generate relations with

smaller size. A lot of overhead may be involved in a join operation

it
usually expands the size of the joined relation. Further, in a DDBMS, o
perform & join operation on two relations stored in two different locations may
involve a lot of network activities. Therefore, to process join operations
efficiently is the most critical task in the design of either a CDBMS or a DDBMS.

Most of the existing query languages are based on three primitive query

languages: relational algebra, tuple relational calculus, and domain relational

calculus [ULL82]. For simplicity, we consider the join queries only in

which are in the form of :

GETRa WHERE (Ra=S2)AND{Rb=Tb)

The result of the query consists attribute a only, which is projected from the

result of joining relations R, S, and T together.

1.8 Objectives of This Research
This dissertation intends

{1} to study the key problems of distributed databases in local m

jaccesy
petworks {DDBLMN) including distribution design, query processing, and

concurrency control, as well as

{(2) to propose strategies for solving these problems in an integrated fashi

such that a DDBLMN supporting efficient execution of user transactions

can be easily implemented.
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We have mentioned that solving all the DDBMS problems together in an
integrated fashion is very difficult. Further, there is no need to design the
communication system with the DDBMS together. Therefore the local
multiaccess network, which has nice characteristics that can simplify the design,
is chosen as the supporting network. Then, the DDBMS is designed based on

these characteristics,

To further simplify the problem, the distribution design problem is solved
separately although it is related to the other two problems. Distribution design.
is done before a DDBMS is operational while query processing and concurreacy
control problems is to be solved dynamically. As long as the system
characteristics do not change rapidly, this approach can lead to stable and
efficient design.

The relationship between query processing and concurrency control
problems is so strong that it is difficult to combine the solutions of solving each

problem individually.

1.7 Overviews of Current Researches

Most current researches of DDBMS’s in local area environments have
attemmpted to solve one or more individual problems. Actually, most of them
consider the query processing problem without considering the concurrency

controt problem.

Hevner, Wu, and Yao [HEVS5]

This research investigates distributed query processing on address ring and

broadcast networks. Only communications cost is concerned.

An address ring is really a token ring [STAS84], which uses a token to
control the ring-access right. A station wishing to transmit a message to one or
more other stations should get the token first. The addressees copy the messages
down to the stations by matching their addresses to the addresses associated
with the massages. The average transmission cost for a message is taken as the
average time for the sending site to gain control of the token ring and a term

proportional to the data volume and the distance to the addressees.

A broadcast network under consideration can have either a bus or ring
topology with various protocols. The average communication cost of sending a
message on the network is the average time for the sending site to gain control of

the network and a term proportional to the data volume.

Static query optimization algorithms, in which the processing strategy is
determined before a query is processed and cannot be changed during
processing, are proposed. For some restricted cases, these strategies may be
capable of getting optimum solutions. These strategies can be extended into

heuriitic algorithms to find strategies for general queries.

Sacco [SACS84]

Sacco investigates the query processing problem on broadeast networks.
Three heuristic algorithms are proposed. These algorithms can be implemented
either statically or dynamically, However, no adequate approach flor

implementing dynamic query processing is shown.



LAMBDA Systems [CHA83] [CHAS4a] [CHAS5]

LAMBDA. a database system on a local multiaccess/broadeast network, is
an experimental system designed at the AT&T Bell Laboratories, Murray Hill,
for studying DDBMS issues in a local area network. it provides (1) high data
availability through replicated data, (2) automatic recovery from site failures,
and (3) uninterrupted transaction processing during site recovery. The design is
simplified by assuming a reliable broadcast network. Algorithms for transaction
commitment, concurrency control, and crash recovery are designed in

\

LAMBDA,

Gouda and Dayal [GOUS8L]

Jouda and Dayal investigates the query processing problem in a local area
network with one or more parallel broadcast busses. The database is assumed

without data redundancy. This research pointed out that the query processing

* N
problem in this environment is NP - hard and heuristic algorithms are needed

[«

to find good solutions to the query processing problem.
MICROBE Systems [NGUSla]j INGUS81b]

MICROBE is a DDBMS on a network of LSI-11 micro-processors connected
by a local broadcast network implemented at the Laboratoire IMAG in the
University of Grenoble. A mix of static and dygamic query processing strategies

s used in MICROBE. The primary optimization objective is to minimize local

processing and communication costs.
* A problem is called NP-hard if there s no known algorithm that can solve the problem
in a time polynomislly proportional to the problem size.

LU (LUS8S]

Lu proposes a load-balanced query processing (LBQP) approach to solve the
query processing problem using load balancing in a local DDBMS. The database
is assumed to be fully replicated. A dynamic query processing strategy, which is

capable of migrating a process to other sites during the query process

used in this research to enhance system load balancing and, consequently,

reduces the response time.

UNITY Systems [KERS82]

The UNITY system, developed at the AT&T Bell Laboratories, consists of a

minicomputer and a set of microcomputers connected by a star network.
Kershberg, Ting, and Yao presented several query optimization techniques that

are specially designed for star networks.

Ceri, Paolini, Pelagatti and Schreiber [CERS2]

Ceri et. al. were implementing a relational DDBMS on a star local area

network in italy. The major concern of this system is on the file partitioniug

problem ({see Section 2.1.1). Conventional majority two-phase loc

concurrency control protocol (see Chapter [V }is used for concurrency control.

DDBLMN

Similar to LAMBDA system, DDBLMN in this research is assumed
supported by a reliable local multiaccess/broadcast network. However, hle

allocation problem, distributed query processing problem, and concurrency



control problem are solved together in DDBLMN. While all existing systems only

focus on one particular problem. The performance of such systems may be quite

different from the expectation when they are really implemented in a working

environment. Further, the design of DDBLMN takes the advantages of

supporting network such that simple but efficient control strategies can be

developed to enhance the system performance. The overview of working

environment of DDBLMN is shown in the Section 1.10.

1.8 Contributions of This Thesis

.~

The contributions of this thesis are as follows.

A new transaction processing model that is particularly suitable for DDBMS

on local multiaccess networks.

The information exchange in general networks is inefficient such that a
transaction is generally processed at the site it was entered. EKither the
needed information is gathered from other sites, or the entire transaction is
migrated to related sites to be processed. These processing models do not
take advantage of the distributed processing system, i.e., the parallelism is
low. The proposed mode! allows allrelated sites to work together to carry
outl a transaction and to maintain a high degree of parallelism.

Selution of the simple file allocation problem in local multigccess nelworks
in polynomial fime.

In general networks, SFAP is an NP-hard problem. In local multiaccess
networks, we have solved in polynomial time the standard SFAP and the
SFAP with availability consiraints. Although the problem is NP-hard
when there is an average-delay constraint, it is isomorphic to the knapsack

problem, which has good approximate solutions.

o

3

Efficient solution of the general file allocation problem in local multiaccess

networks.

The FAP with storage constraints in local multiaccess networks is NP-hard.
An efficient algorithm combining a branch-and-bound search with the

knapsack problem has heen developed.
Integration of distributed query processing and concurrency control,

Currently, distributed query processing and coucurrence control are studied
independently in general networks. The combined results may not be good
for an integrated systemn. An integrated model that combines query
processing optimization with concurrency control has been developed in
this thesis.

Generalization of the disiributed exiremum identification algorithm on local
multiaccess networks to identify the sub-query to be processed.

Based on Wah and Juang’s distributed extremum identification algorithmn
[WAHS5b], which can identify the site with the extremnum value efficiently,
a general algorithm has been developed to synchronize transaction
processings.

Realization of dynamic query processing on local multiaccess networks.

The major obstacle to realize dynamic query processing, which performs

better than static query processing, lies in the difficulty to coll

ci global
systern status in real time. We have proposed an efficient dynamic query

processing algorithm based on the extremum ideatification algorithm.

Perfermance improvement by redundant materialization and non-profitable

data identification,
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Redundant data are used in query processing to help reduce the size of
intermediate results. The non-profitable data identification is included in
the query processing algorithm to eliminate useless transmissions. These
two methods work together to improve the performance of query
processing.

Transformation of the query processing problem in Juture compuler
networks into the generalized traveling salesman problem.

Current solutions for the query processing problem are not adequate for
DDBMS in future nc.:tcama networks, which are characterized by high-
speed data links. We have modeled the problem as a generalized traveling
salesman problem. An efficient algorithm that utilizes the existing solutions
of the standard traveling salesman problem has been developed and
analyzed.

Development of a framework of intelligent query processing system.
Knowledge based on the history of the database operation can be used to
generate better query processiog strategies. This provides a good direction
to improve the query processing strategies.

Development of an efficient concurrency control protocel in local
multieccess networks.

Current concurrency control protocols are designed for general networks,
which do not support efficient information exchange among tocal processing
sites. Information exchanges in the local multiaccess networks are extremely
efficient, and an efficient and highly concurrent protoeot for DDBLMN has

been developed.

1.9 Significance of This Research

The current trend in multi-user local-computer-system development tends
to be the network of small computers. A number of interesting projects are in
progress today on designing such systems. Among all applications in a local
computer system, database management is definitely very important. As
consequence, the design of a robust, easy-to-use and cost-effective DDBMS in a
local area environment is becoming an important issue. Although DDBMS on
wide area networks have been studied extensively, their results cannot be applied
directly for the following reasons. First, the characteristics of local area networks
are quite different from global networks. Second, the users’ behavior and users’
requirements are different, e.g. the mobility of users in such an environment may
be much higher. Lastly, the combination of solutions derived from individual
problems in global networks may not perform well in an integrated local
system. In short, a DDBMS study in an integrated fashion is needed for the

local area environment.

Although the research in this thesis does not solve all the problems of
DDBMS, we have studied three of the most important problems, namely, file

allocation problem, distributed query processing problem, and concurrency

control problem, in an integrated fashion. The feasibility and the effectivens

of the design are demonstrated by simulation studies. Based on this research, a
prototype can be implemented easily. This research also provides a framework

for DDBMS design in a local environment.
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1.10 System Model

The DDBLMN to be designed is based on the environment described in this

section.

1.10.1 System Overview

From the users’ point of view, the system is nothing but an integrated
relational database consisting of relations as shown in Figure 1.8(a). Physically,
it's a set of local database systems interconnected by a multiaccess/broadcast |

communication bus as shown in Figure 1.8(b).

1.10.2 Logical Database

It is assurned that a very large relational database with a global conceptual
schema is available to the users. Virtually, users can access the database from
different locations through the same conceptual schema. Therefore, we assume
that the probability of a user accessing the database from any location is non-
seto and is not uaiformly distributed. There are some locations that a user may
access more [requently than other sites. These two assumptions are essential to
the distributed database. With a strong locality of access, there is no need to

design an integrated database. Ot the other hand, a random access pattern is

also unrealistic. Each relation is stored as a file and is the unit to be locked, t.e.
2 relation is either available or not available to a user, without partial
availability. The statistics about the frequencies of access and update is oaly
available on a relation basis. The data directory is fully distributed over all sites.
The directory is maintained in the same way as a relation. Using fully replicated
directories simphifies the system design dramatically. The additional storage is

not significant since the directory is much smaller than the database itsell.
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Unless the database is reorganized very [requently, the update frequency to the
directory is much less than the retrieval {requency. Moreover, the updating cost
is independent of the number of copies in a network with broadecast capability.

Therelore, the additional overhead of directory maintenance is also insignificant.

1.10.3 Transactions

The users activities to the system are called transactions. Each transactien
is atomic, which should be either completely finished or completely wvoiwa .
leaving the system unchanged. All transactions are independent of each oth-r.
We further assume that each transaction can not be aborted by the user.
Therefore, a transaction is always terminated successfully in a reliable system
unless the concurrency control protocol aborts the transaction. A transaction
may consist of a set of independent queries. Each query consists of two parts: the
specification of the target-data and the operations on the target-data. The

specification is in the form of consecutive equi-joins. An example is shown in the

following.
GET Ra  WHERE (Ra=Sa)AND(Rb=Tb)
UPDATE S.a  WHERE (Sa = =8b)
GET Ta  WHERE(T.a=Sa)

otice that the values to be updated are not given here since it is not important.

1.10.4 System Architecture
As shown in Figure 1.8.(a), the DDBLMN consists of a set of local systems
connected by 2 local multiaccess bus with the broadeast capability. A local

database system is accomplished by each local system. The transmission system

is assumned reliable, which simplifies the system design [CHAB84a] [CHAS4b]. The

transmission system provides guaranteed delivery of messages. A distributed
multiaccess protocol, such as the CSMA/CD protocol, is assumed to control the
bus accesses. In general, each station has equal priority to access the hus.
However, the performance can be enhenced il priority messages are aliowed.
The end-to-end communication speed of the bus is about 1 Mbps lmnillion bits
per second). The number of local systems is around twenty to several hundred.
each one with about 1 MIPS ( million instructions per second ) processing
capability. The transmission cost, which can be either real cost or the elapsed
time depending oo the system objectives, is proportional to the volume of
transmitted data. Under these assumptions, the processing capability per station
is much larger than the communication bandwidth per station. Consequently,

the local processing cost can be ignored.

i.10.5 Architecture of Local Systems
DDBLMN is not designed for any system with a specific local architecture.
However, a local system architecture described here serves as an example. The
logical structure of the local sysiem at each site is shown in Figure 1.9. Each

system consists of five different modules: Transaction Monitor, Transaction

Handlers, File-Server subsystem, Concurrency-Control subsystem, and

Network-Interface subsystem.

{1} Transaction Monitor {TM): This module coordinates all local and

remote transactions by

{(a) imitiating/terminating Transaction Handlers that handle each

individual transaction, and

(b) providing interface functions among all other modules.
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Figure 1.9

Logical architecture of local sites.

{4)

It also maintains a global directory and provides access transparency to
users.
Transaction Handler {TH): This module is created by the Transaction

Monitor for handling each individual transaction. The TH can be initiated

either locally or remotely. All the transaction processing functions, such as

query decomposition, user interface, query processing, and query schedu

for a transaction, are performed in the TH designated for the transaction. It

is eliminated when this transaction terminated.

"ile-Server Subsystem: This module, which serves as a local DBMS,

responsible for accessing and updating the local database. A TH makes
relation access/update requests through the TM to the Hhile-server

subsystem.

Concurrency-Control Subsystem: This module monitors the actions of
all local and remote transactions on the network through the Network-
Interface Subsystem. All necessary status information is also maintained

here. All the local data access/update requests should be checked by t

module to maintain data integrity.

Network-Interface Subsystem: This module, which performs
interface functions to the communication network, provides guaranteed
end-to-end message delivery. The network interface functions include
addressing, network access control, flow control, error control, message
receiving, format conversion, protocol control, sequencing, synchronization,

fragmentation, and reassembling.



The detailed relationship between TM and the TH's is discussed in next

section.

1.10.8 Transaction Processing

Users of a DDBMS interact with the database by executing transactions. A
transaction, which consists of a sequence of operations {queries) on one or more
database objects, transforms a current consistent database wﬁwom into a new
consistent state. Query processing and concurrency control are two key tasks in

~

transaction processing. In this section, we discuss how a transaction is processed.

1.10.8.1 Transaciions and Processes

A process is a program initiated by the system for handling a particular
task. A process is called active if it is currently executed by the system. In a
concurrent environment, more than one process can exist in the system at the
same time although they may not be all active. One processor can only execute
one process at any time. If the number of processors in a system is less than the
number of processes Lo be executed, then either a time sharing or queuing
system is needed for processor mvmlzmm. The concept of processes helps to
simplify the design of a complicated system. Virtually, a system can initiate a
separate process to handle a particular request. A process, hence, needs only to
haadle a single job. Instead of considering all the job requests together in a
single complicated program, system design is decomposed into two parts: the
design of each individual process which handles a given job, and the
management of processes. The design process is thereiore greatly simplified. In
DDBMS's, a transaction may involve more than one local system and hence
system design is much more difficult. [t is better to handle the transactions using

the concept of processes.

There are three different approaches to handle transactions ina DDBMS. In
Bernstein’s mode| {BER81b], as shown in Figure 1.10, a Transaction Manager
(TM) and a Data Manager {DM) reside in each site. A TM handles all the

transactions entering the site and a DM handles all the queries issued by

her
the local or remote TM’s. Obviously, the design of TM’s and DM's in this

approach is not easy.

In another approach, a process is created for each data access/update
request entering the site either locally or remotely [BIR82] {STURD]. In this
approach, creating and initializing a process to handle each remote request
require too much overhead. Further, the sequence of requests withins a
transaction must somehow be tied together and kept in order. With respect to
data access authorization, each request must be individually authenticated.
which is an expensive operation.

|, a process is created for a

In the third approach, used in R [LINS
transaction and retained for subsequent use for the duration of the transaction
session. There is only one setup cost for each transaction. More importantly,
keeping track of the sequence of requests within a tranmsaction is no fonger a

complicated job. The transactions in this research are processed in a way

B
similar to System B 's approach.

1.10.8.2 Transactions and Processes in DDBLMN
Refer to the system model shown in Figure 1.9, a transaction entering the
system through a local site {called the home site of the transaction) is processed
by a TH initiated by the TM in the home site. TH may then ask the TM's in

remote sites to initiate TH's to process the transaction together. All these TH's
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Figure 1.10

Hernstein’s transaction processing model.

belong to the same transaction and are retained until the transaction is
terminated. In this way, a transaction is carried out by a set of TH's

cooperatively as shown in Figure 1.11.

in a DDBMS, a transaction cannot be processed independent of other
transactions. In addition to the TH's, other processes are 312?;.5 coordinate
the activities among the transactions. The Concurrency-Control subsystem in
our model is the process in each site to handle concurrency control. Each data
access or update request generated in a site is sent to the Concurrency-Control
subsystem in the site, which will in turn check the consistency between the
request and the current database state. if there is no consistency problem, the
request will be forwarded to the local File-Server subsystem, which is another

process handling the local database, and is then processed there.

1.10.6.3 Transaction Processing Strategies in DDBLMN

A transaction consists of a sequence of independent queries. After entering
the system, a transaction is first processed by the home site in a phase called the
preprocessing phase. All necessary initializations are performed in this phase.

The transaction is then broadcast to other sites for further process

g, Lastly,
each individual query is processed in sequence by the system. The processing

sequence of a transaction with three queries is shown in Fi

reprocessing, initial-broadeast, and query processin phase w
P ) q P IS

Chapter 1L
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Figure 1.11 Example of two transactions being processed by the system.

Figure 1.12  The processing sequence of a transaction with three queries
@1, @3 @3 (a) the transaction; (b) the processing seq




1.11 Thesis Organization

n Chapter 1, the distribution design problems on DDBLMN are analyzed.

A dets

ed cost model of file allocation problem, which is a special case of the

gERer:

distribution design problem, is developed. Different cases of the problem
are analyzed.. Both solutions for some solvable problems and the proof for the
other NP-hard problems are presented. Efficient approximation solutions for
NP-hard problems are also developed.

Distributed query processing is analyzed in Chapter I, while concurrepey
control problem is studied in Chapter V. A processing strategy consisting of .ive
different phases are proposed, and various strategies for each phase are
developed. A locking based concurrency control protocol for local multiaccess
networks is also presented.

Under certain conditions, the query processing problem can be solved as a

od traveling salesman problem. In Chapter V, an extensive analysis of

generalized traveling-salesman problem is presented.

simulation resuits to demonstrate the fe;

bility of the

opased [ e shown. Fina

v in Chapter VII, the sumimary of the

res is given and the directions for future research are suggested.

CHAPTER I

FILE ALLOCATION

2.1 Introduction
The distribution design problem entails
{1} the fragmentation of the database and

(2} the allocation of these fragments with possibly redundant «

The objective of data distribution is to maximize the efficiency or performa

of database operations subject to the system constraints. The perforn

cecan

be measured by various parameters such as the overall operation vost, respo

time, and throughput. The constraints can be the average response time,

availability, degree of redundancy, ete. The operation cost may consist of rthe

communication cost, storage cost, and processing cost. Although bl

depends on the transaction processing strategies, solving the two

together is very complex. In our de

n methodology, the distribution-design

problem is solved independently from the transactiou-proce

database design phase.

2.1.1 Fragmentation

Fragmentation partitions a relation into several fragments, each of wh

has some special properties. There are two reasons that make {ragmentat

NECessary.



y be too farge to be stor

canses pot o

the storage problem b

also the processing problem. For
example, the buffer space in a system is limited such that there is no way to

b

ing entire relation into the butfer to process. A cor

derable overhead

may be induced to solve this problem.

{2} Most of the data retrievals from a certain class of users may be targeted to

& s

I portion of the database most of the time. That is, there may exist a

strong locality within a relation. A lot of the processing costs can be saved if

tt

relations can be further partitioned such that a certain class of users
may need to access a certain {ragment of each relation. This may reduce
processing  overhead, as only the oneeded fragments are searched.
Fragrmentation can be viewed as a ‘pre-selection,” which can reduce the

overhead of fnture query operations.

As an example, a relation storing the personal information of all students in

iify the user interface, this

contains 40,000 tuples. To

is organized as a single relation. However, most of the queries

tfrom a department will only involve the portion containing information

¢ students in the department. it is natural to decompose the relation such

t each fragment only contains the information about students in a given

department. Not only the processing

is saved, by

t the communicalion cost

earh

s0 saved

be stored in the local computer of each

rtment. An examg istrating fragrmentation is shown in

There are two conditions that a {ragmentation should satisfy.

Completeness. All data of the original relation should be mapped

gments; Le., a data item in the original relation must Sexist in at least

one fragment,

o8
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Figure 2.1 Example to illustrate the fragmentation problem
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ce in this location is reduced.

{11 The storage s

{(5) The average respouse Uime may be reduced since some remote accesses are

localized.

{6) Then

bility of this file is inereased.

lo general, the decision to allocate a specific file to a specific location

cannot be made independent of the allocation of other files. The problem is

fort o an integer programimning problem with the overall operating cost

as the objective to be mintinized. The problem is NP-hard on general networks.

However, the problem mplified on local multiaccess networks and is

solvable

olynom 1 some special cases. There are two reasons why the

em is simplified.

1

: remmote access/update costs on the network is site independent.

The update cost for a file

independent of the number of copies aliocated if

wore than one copy is allocated.

tation, the different cases of the simple file allocation problem

o spe

case of FAP, and the general file allocation problem

pstraints are studied and solved. The followi notation are

file f per unit time;

it size of query from any site to any other site;

d’ - cost per unit size of update from any site to

»\ - storage cost per unit time of file fat site &

tother sites;

g

- length of file f;

'

5, - storage capacity at site &;

1 if tile [ exists at site k

0 otherwise

2.2 Simple File Allocation

The SFADP considers the allocation of a single file, in w

ich the effects of

queries, updates, and data storage are represented as costs [RAMR3L {t has been

shown to be NP-hard [ESW74] [GAR79], which means that the romputation

time for all known optimal algorithms for th

reases al

s class of problems |

ast exponentially with the problem size. Numerous exhaus

algorithms and suboptimal heuristics have been studied [WAHS.

In this section, a solution to the SFAP for local multi

proposed. Since only one broadeast is required to either lock,

a file, the problem

found to be polynom

with respect to

number of sites,

In the following cost function for u given placement [ the index [ s

dropped because the problem is defined with ¢

N N
Cliy= Sadli Y)e Nod +
FRS FES [

The first and last terms on the RHS of the above equation repres

and storage costs, respectively. The second term accounts for the

fate cosis




When multiple copies of a

e exist in the system, each unit of update incurs a

constant cost of d°. However, when only oue copy ol the file exists, updates
xists, updates

origina

1o from the site with the copy do not incur any cost because they do not

have Lo be broadeast.

- _ . ] . .
Phis problem can be formulated as an integer program with Eq. (2.1) as the

cost fune

u and constraints that at least ¢ 15t " is e
| 1t feast one copy exists and ¥ is either O or L

Three different cases are considered in this section: the conventional SFAP

SEPAP with  availab

ity constraints, and SFAP with average delay-time

constraints.

2.2.1 Conventional SFAP

b . . .
[he solution to this problem can be simplified by conside

the single-

copy and the multi-copy

ses separately.

For the single-copy case, the cost function becomes

N
Y = { , ) . .
S eh V“%V._m*nv“&xw qug.vaﬂw (2:2)
- ] 1 }
N N
= NN d o+ d e - .
I“,VNQLWJ:h Mtw,:\« V_WA «v\_mku

.2}, the cost of not placing the file at site yis

e tr PN I . . X s
fe the cost of placing the file there s o . Thus the file should be

placed at site j if the cost diflerence o, —A d-d d') on this site is the
1 H ’ A - N

minin

nal allocation can, thus, be found

v O(N) time.

a

at least two copies must be allocated. The cost

3

[

by

The first term in the ybove equation is constant. The optimal allocation

i
ing a copy

found by alloca

wtosite g if (o

!

the overall cost, C{1). In case that none or one of the cost differt

two copies with the minimum cost differences are selected

allocation can hence be found in O{N] time.

The global optimum is obtained by comparing the costs under the sin

copy and multi-copy cases. Therefore, the SIFAP is of solvable in

polynomial time. Asan example, consider a system with four nodes. query ©

A, = [6.7, 4, 5], update rates b, = (3,06,

and storage conts o, ¢

The per unit quety and update costs, d and d", are assumed to be

the single-copy case, [o, ~ A.d - b,d'| =

should be allocated at site 2 with cost 29, In the multi-copy rase,

a tord

M 3, -2, —2,0]. Copies should be allocated to sites 1, 2. and 3w

30. Comparing the single-copy and multi-copy cases,
g g b

placed st site 2.

2.2.2 SFAP With Availability Constraints

The SFAP can also be sotved eth

included.  As mentioned in Chapter

probability that at least one copy of a is available

reliable and the f

ure rates of sites are assumed to be identical

constraint can be expressed into am nimurm number of copies

lacations for these copies can be determ ned as above.



There s no ¢

ference helween t

he SEFADR with an av

ability constrag

the conventio

PSEFAP A the

jARS)

number of copies of the file is one

H

be more than two, then only the multi-copy case

nuimber of caplies shao

necds to be considered.

A eopy .of the file

ocated at each site with negative TJ j\:‘

Additional copies are allocated such that the availability constraint is met and

the cost

crease is minimum. The complexity of this algorithim is also O{N)..

2.2.3 SFAP With Average-delay Constraints

The SFAD’ becomes NP-hard when an average-delay constraint is imposed.

that the average delay of messages on the multiaccess bus is a constant, ¢,
the average delay for all queries and updates must satisfy:

v Y
S >_h3\<uv+aam D' or M.fnf\w@.vﬁ,w {2.4)

IR ;1

pdate

are assumed to be always broadeast. The SFAD with the

Ahove average delay constraint can also be separated into the

igle-copy and

copy cases. The single-copy case is solvable in O(N) time. For the multi-

se, the vost formula in Eq

s
o

{2.3) van be rewritten as

N
= N {d

HES Y

e the Arst term on the RHS

i-copy case can be writlen as

mazimize C{Iy= N (o -a d

62
| Y = (orl
J
This problem is reducible from the 0-1 knapsack problem  with N objects by
variable transformation N\ = fﬁ where the profit and weight of the

object are {or - X d)and A

, ; L respectively. However, the profits

H

for some of the objects, and they are excluded from co

optlisnization. The problem can be solved by dynamic programming al

or Tully polynomial-time approximation schemes.

2.3 General FAP With Storage-Capacity Constraints

The general FAP considers the allocation of multiple files undec such design

ents as delay, storage capacity, parallelism, and

simplification, each query is assumed to access a single file,

are assumed to be independent. Only the storage capacities ol sites

considered in the following formulation.

subject to:

N

Jiven a finite set {/ of m obje
and a profit plu} € 2 for each uw ¢ U/, where Z is the set of p

The knapsack problem searches for 2 subset %

C €/ that maximizes



{a) JE LN fEF
(each site contains at most one copy of each file);
N
(b) s ¥l= JEF
1=l
{at least one copy of each file exists in the system};
(&) ©f ﬁ. =5, i=1,.,N

fEF

(the storage capacity at each site is not exceeded).
The above problem is non-linear, but can be linearized easily by using different
index variables [GEO72]. This problem is NP-hard as shown in the following

theorem.

Theorem 2.1: The optimization problem defined by Eq. (2.6} is NP-hard.

Proof We show that the 0-1 knapsack problem reduces to this problem in

‘nomial time. Given an instance of the 0-1 knapsack problem, an instance of

the problem in Eq. {2.6) can be formed with the following parameters: N = 2;

F=0;L' Hm:f’owmmmﬁmwn M«\..mwuwwamuomoqu.ﬁwymnw;nmm
FeF

constant for f € F; GW\“ ymﬁ and QM are chosen such that ymxn. l@w\n; 1@%

= p{J} for / € F. Basically, the first site has large enough capacity to hold a

copy of all files in #. The query and storage costs are chosen such that a copy of

1

! files are allocated at site 1. Therefore, the problem becomes the packing of

the second site, which is the standard knapsack problem. ©

2.3.1 Optimal Solutions of FAP With Storage Constraints

Although the problem in Eq. {2.6) resembles the packing of m n copies into
m knapsacks, there is a subtle difference here. The profit of allocating the first
copy of file f to site j is CJ\mfvg\a. B QD“ while the profit of allocating the
second copy of file ftosite k, k#J is ?/»\& - &M&‘ - Q»\v The extra term 9\_\3

in the profit of the second copy offsets the additional profit incurred when the

first copy is allocated. The profit of ailocating other copies of file [ to site ¢,

i

g#j and g#k, wm;q\.m - o,

). Note that these profits may be negative. Due to
the above and since one or more copies must exist in the system, the problem is
decomposable into multiple independent knapsack problems only if at least two
copies have been allocated in the system. The overall profit can then be
maximized by independently optimizing the profit of each site with the
remaining capacity. An optimal algorithm, therefore, consists of enumerating
the allocations of the first two copies of each file, and solving N knapsack
problems for each combination. The structure A,:. the state-space tree is as

follows.
{1} The root is in level 0.

{2) In the first- m levels, the first copy of all files are aliocated. Level f

ix<f=m, represents the allocation of file /. Each file can be alioeated (o one

of the N sites. Thus the degree of the tree in the first m levels is N. [ a

cannot it in a site, the subtree representing this allocation is considered

infeasible and terminated.

w

The allocation of the second copy of each file is carried out in the {m+1)'st
to the 2m'th levels of the tree. Since the second copy must not be allocated
to the site containing the frst copy and may not have to be allocated in the

DDBMS, the degree of branching in each level is ¥ If a copy cannot fit ina




site, then the subtree representing this allocation is considered infeasible
and terminated. Further, if an allocation of the second copy at site & results
in negative value of C{\& - :»\7 then the second copy should not be

allocated at site k, and the corresponding subtree is also terminated.

{4} For all active nodes left in the state-space tree in level 2m+1, the allocation
of the remaining copies is solved as N single-knapsack problems. For a
particular site, the files to be considered for packing into the remaining
capacity are those that have not been allocated at this site and those with
the second copy allocated in the system. The algorithm for solving the
conventional 0-1 knapsack problem has to be modified to take into account

the negative profits.

Bounding criteria similar to those used in branch-and-bound algerithms can
be developed here [GEO72]. In particular, an upper bound on the profit can be
computed for each node in the state-space tree by a linear program or a greedy
algorithm without the integrality constraints. The maximum profit of the
currently available feasible solutions is kept in the incumbent. If the upper
bound of a node is smaller than the incumbent, then the subtree originating

from this node is pruned because it cannot possibly lead to an optimal solution.

An example illustrating the allocation of two files in a system with two sites
using a depth-first search is shown in Figure 2.2. In computing the upper bound
for a node in the branch-and-bound tree, each site is treated as an independent
knapsack. Given that s, +=0, 1, 2, copies of a file to be included in the knapsack
have been allocated in ascendant levels of this node, the profit of the file to he

used is that of the {s+1)'th copy. A greedy algorithm computes the upper bound

by assigning the files to each knapsack in descending ratios of profit to length

the koapsack is full. To keep the knapsack [

i, the last file may be
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partially allocated. The worst-case number of knapsack problems to be solved

Im

in this approach is N°7, which is much better than an exhaustive enumeration.

2.3.2 Heuristic Solutions of FAP With Storage Constraints

When the problem size is large, an optimal solution may not be possible to
get in a reasonable amount of time. More efficient approximate solutions are
needed.

The algorithm in Section 2.3.1 can be easily modified to get good
approximate solutions. The knapsack problems in the algorithm can be solved
heuristically, instead of optimally. Although the search method in Section 2.3.1

requires a total of & ‘" knapsack problems to be solved, it is still a useful

algorithm because the FAP can be solved in design time instead of in real time.

2.4 Summary

In summary, FAP on local multiaccess networks is simplified by the
broadeast capability and the property that the communication costs are site

independent. The solution algorithms for the SFAP are efficient and can be

evaluated in either polynomial or pseudo-polynomial time. These algorithms

can be applied in real time when the access rates change. However, optimal
algorithms for the general FAP are complex and should be used in the design

stage only. The algorithm can be easily modified into 2 less complex heuristic

algorithm for large problems.

CHAPTER I

DISTRIBUTED QUERY PROCESSING

As mentioned in Section 1.10, a transaction is processed in a strategy that
consists of preprocessing phase, initial broadcast, and query processing phase
The preprocessing phase and initial broadcast are discussed in Section 3.1, The

query processing phase is discussed in the rests of this chapter.

3.1 Preprocessing Phase and Initial Broadcast

Preprocessing Phase
The operations which need to be performed in this phase are :
(1) Administration. These include authorization, accounting, ete.

oy .
{2} Query decomposition and transformation. Users of a database us

query the database using a high level ‘user friendly’ query language. Direct
execution of queries presented in the original form is usually inefficient. A
decomposition and s transformation of the given query may resnlt in more
efficient execution. For example, in target-data identification, a sequence of
basie operations are applied to the database to identify the needed data.
The size of the intermediate results may be different in different processing
sequences. It is generally more efficient to apply unary operations, such as

selections and projections, as early as possible.




659

{3} Related-site identification and materialization.  Kelated sites of a
transaction are the sites participating in the transaction processing.
Materialization identifies the specific copies of relations needed by a
transaction. A relation in a site is materialized if it is identified in Lhe
materialization. The related sites of a transaction in DDBLMN are the sites

where at least one materialized relation is stored.

Initial Broadcast

After preprocessing, the transformed transaction with the necessary
information is broadcast to all related sites. This is called initial broadeast.
Each related site, then, initiates a TH to participate in the transaction
processing.

Since the network is using a contention based bus access protocol, it is
remotely possible that a transaction can never perform its initial broadcast.

Further, a transaction is not known to other related sites until its initial

broadcast has been carried out. Hence if the network can support priority

messages, initial broadcasts should be given higher priorities for the transaction.

3.2 Introduction to Distributed Query Processing Problem

Minimizing processing cost is the most important goal of query processing.

o

A large amount of communication traffic may be involved in distributed query

processing (DQP). The communication cost is usually proportional to the
volume of transmitted data in most DDBMS’s, including DDBLMN. Hence the

objective of query processing in these systems is to reduce the total data volume

to be transmitted.

The main difficulty of query processing s the target data

tification

which involves the identification of the set of physical fragments {relations)
referenced by the query (materialization), the selection of the order of execution

of operations, and the selection of the method for executing each operation.

The raw-target in the execution of a target-data identification is defined as
the smallest portion of the database that contains the' target-dats. The

procedure of target-data identification is like applying a sequence of ‘cuts’ on the
)

‘raw-target’ to gel the target-data. Initi the eatire

. the raw-target
database. After applying an operation, the portion that is known not to contain
the target-data is cut off. After a sequence of cuts, the target-data is finaliy
identified. This procedure in DDBMS is known as reduction and is shown in
Figure 3.1. One difference between the procedure in the example and the real
DQP is that the size of a raw-target may be increased after a join operation.
Obvicusly, the query processing cost is a function of the total vohime of raw-

targets in all the intermediate steps. The selection of the order of reductions

becomes the major task of DQP.

3.2.1 Redundant Materialization

[n most of the previous studies, the materialization is

independently and is non-redundant, in which one copy of
iventified in processing the query. A possible alternative is the redundant

materialization, in which more than one copy of each relation may be iden

The redundant materialization has the following advantages over the non.

redundant materialization.

{1)

fon-redundant materialization s a special  case of

materizlization. For each schedule obtained from a
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redundant materialization, a schedule with less or equal cost can always be

found from a system using redundant materialization.

Redundant materialization is more flexible. In a DDBMS, a local dutabase
may have to answer queries initiated from more than one transaction at the
same time. A transaction has to wait if the local database is busy. With

redundant materialization, the availability of data is higher.

Redundant materialization may have less query processing cost in a
heuristic query processing. Whether a piece of the raw-target contains the
target-data or not usually depends on the relationship among different
components of the raw-target. For example, in the following query
GET R.a WHERE (R.a = S.2a ) AND (Ra = T.a),
the target-data is a portion of R.a and the initial raw-target cousists of
three components R, 3, and T. They can be easily reduced into R.a, S.a,
and T.a in the beginning. To perform further reduction, the relationship
between R.a and S.a, and the relationship between R.a and Toa should be
known. If relations R, §, T are stored at different sites, then there is no way
to know the relationship among them to perform any reduction in each
local site. Without an exchange of information among sites, the sronaliest
raw-target which can be identified is the set céntaining R.a, S8, and T If

some of them are stored at the same site, say R and S, then the raw-target

can be reduced to a set containing T.a and ,nmm portion of Roa whose va
are also found in S.a. From the above example we can see that the more
relations a site has, the more relationships among target-data components
for data reduction it can have. Using redundant materialization in target-

data identification, the materialized relations in each site are generally more

than that of using non-redundant materialization, and consequently, more
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relationships among the raw-target components are available for the raw-
target reduction. Hence, the volume of final raw-target in a site can be
smaller. For example, in the same query as above, the volume of raw-target
in a site storing R, §, and T should be the smallest { even the target-data

can be identified in this case ) among all sites.

Although the redundant materialization may have smaller communication cost,
more local processing cost may be involved. A system emphasizing on local

processing cost may not be adequate for redundant materialization.

3.2.2 Processing of Joins

Among three most frequently used operations {selection, projection, and

in operation is the only one that is a binary operation and that may

join),
expand the volume of raw-targets. The efficient processing of join operations
becomes the most important job of target-data identification in both CDBMS

and DDBMS.

3.2.2.1 Multi-site Joins and Semi-joins

Processing a join operation is more complicated in DDBMS since the two
operands of a join operation may reside in twe different sites. One approach to
process such a join operation is to send one relation in one site to the other site

and execute the join operation in the second site. The cost of this approach is a

function of the size of entire relation sent. A better approach proposed by

is semi-join. They observed that when

Berustein and Chiu {BERS81aj [BERS8Ic]

two distributed relations are joined, one of the operand relations can be reduced

in size by deleting those tuples that do not appear in the final result. This may

be achieved by sending values of the joining attribule of the second relation to

the first one and performing a join there. This reduction effect is called a join

restriction M<>Oq£4 The join is completed by sending the reduced form of the

first relation to'the second one. Referring to the raw-target moc
N

a semi-join is

essentially cutfing the raw-target at one side first, then sendi

ig the remain

) in

raw-target to the other side. As an example, relations B{a.b) and S(s

Figure 3.2(a) are stored at sites A and B, respectively, and are noAvm joined on
the joining attribute, b. In the frst approach, as shown in Figure 3.2(b),
relation S is sent to site A and s joined with relation R there. The
comrunication cost is a function of the size of relation S. The sermi-join
approach is shown in 3.2(c), in which the unique values of attribute R.b is frst
projected and sent to site B, then relation S is reduced by eliminating those
tuples whose values on attribute b are not in attribute R.b. Finally, the
remaining tuples of relation $ are sent to site A and are joined to R there. The

communication cost is a functiou of R.b and a portion of S.

When multiple relations are to be joined, the most promi

g approach
currently is to first execute a sequence of semi-joins among relations to reduce
the size of relations, then the remaining fragments are transferred to a single site

at which the complete join is performed. Since the major overhead is

du
semi-joins, the minimization of this overhead is the objective in most DQP
studies. A comprehensive approach of query processing that incorporates semi-

joins has been developed by Apers, Hevner, and Yao [HEV7%a] {APERS

i
i
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Figure 3.2 An example to illustrate the procedure of join and semi-join
{a) reiaticn R and §; {b) sending relation 5 to join with K;

{¢) semi-join.
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3.2.2.2 Size Estimation and Selectivity

It’s obvious Lhat the performance of a DQP algorithm highly depends on
the estimation of the sizes of raw-targets. The choice of a reasonable estimation

algorithm is, therefore, extremely important.

Suppose that relations R, and R, are single-attribute relations and the
values of the common attribute ‘a’ are uniformly and independently distributed
on the relations. The the size of R, alter joined with R, .a has to be estimated,
By letting p, , be the probability that a value appears in Ria, t==1, 2 thea p,
is called the selectivity of R, on attribute a. Since the expected total number of

distinct values existing in attribute a of both relations is | _xu_,wiuw where ja|

.2’
is the cardinality of the domain a. The size of the reduced R, can be estimated
to be _vmxv_.uxvm,uxs:w or Iﬂmmxvruxi,m“ where memm is the cardinality of R,

and w.a is the width of attribute a. Essentially, the size of R, is reduced by a

factor of p, .

In case of joining multiple-atiribute relations, not only the size of the
joined attribute and the size of the joined relation are reduced, but the size of
other attributes are also reduced. This is called an indirec! semi-join. In the
above example, suppose that R, is a relation with two altributes, a and b, Alter
semi-joining R .a with R,, the cardinality of R, can be estimated as me.w,}w: o

The cardinality of R,.b was estimated by Bernstein and Chiu [BERS!

can be demonstrated in the following ball-color problem. In this problem, there
are n balls with m different colors. It is necessary to find the expected number of
colors if ¢ balls are randomly selected from the n balls. The correspondences
between the bali-color problem and semi-joins are as follows. The value n
corresponds to the number of tuples of R, before the semi-join, m is the number

in distinet values of R, projected on atiribute b before the semi-join, and ¢
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corresponds to the number of tuples of R after the semijoin. The expected

number of colors of the ¢ selected balls is

n{{m — 1)/ m) —i+1

n—i+1

The computation of this formula is expensive. An approximation is needed and
was given by Bernstein and Chiu. This solutien is the same as the solution in

Yao's paper |[YAQT77] for estimating the hit ratio of the block-access problem.

3.2.2.3 Static Semi-join Scheduling
Yao, Hevner, and spers [APES3] [HEV79a] proposed a static semi-join
scheduling strategy to soive the DQP. In which, the processing costs of different
semi-join schedules are estimated first based on their selectivities; the schedule
with the least estimated cost is selected; and the query is executed according to
the selected schedule. The problem is NP-hard even for simple queries with one

common joining attribute [HEV79b]. The main advantage of this approach is

that the optimal schedule of a certain type of queries can be precompiled and

reused later. There is no need to produce a schedule for each query processed in

real time. On the other hand, there are some disadvantages associated with the
statie semi-join scheduling.

(1) An accurate estimation is hard to get. The computation of selectivities
does not consider the dependency among attributes. In fact, attributes in a
ceal database are usually dependent, although the effects of semi-joins on
dependent attributes are difficult to estimate. Further, the assumption on
uniform distribution may not be realistic. Lastly, the indirect semi-join

effect complicates the problem. In most current research on static semi-join

scheduling, the indirect semi-join effect is simply not taken into account.

{2) The errors in estimation usually propagate and accumulate after a sequer

of semi-joins. This is especially true when the model of estimation is
simple.

(3) A static schedule is inflexible . Ouce a semi-join schedule is determined, the
schedule is generally not allowed to change during the execution. The eatire
transaction is blocked if the needed relation in any stage is not available.
The probability of being blocked is increased as the number of required
relations increases or the system load increases.

(4) The computational overhead of static strategies is high. Although heuristic
algorithms are generally used to determine semi-join schedules, the
computational time is still very high, especially when more accurate
solutions are needed. This overhead can only be reduced by using pre-

compiled semi-join schedules in a relatively stable system.

3.2.2.4 Dynamic Semi-join Scheduling

An alternative is to use dynamic semi-join scheduling [YUS3]

[WAHS84b], in which each individual step in the schedule determined

immediately before the execution of that step based on the the current st

the database. Suck a dynamic scheduling algorithin is a greedy heuristic
algorithm. Some of the problems associated with static scheduling do not exist
in dynamic scheduling.

(1) There is no accumulated estimation error. In each step, at mo

@

L0

o

estimation is made in dynamic scheduling.



{2) Dynamic scheduling is more flexible, and the probability of being blocked
is lower. Whenever the required relation is not available during the
execution, the schedule can be changed. Another way is to only schedule
semi-joins for available relations.

The success of dynamic semi-join scheduling relies on the selection of the
joining attribute. In greedy heuris ic, a function called heuristic function is
designed to measure the possibility of leading to the optimal solution for each
candidate. Therefore, the key problems are the design of the heuristic function
and the collection of database statistics. Designing a good heuristic function is as
complicated as designing a good static scheduling algorithm. There is no easy
way to collect statistics on general networks. Status exchange on a distributed
systern not only involves a lot of communication overhead, but also slows down
the query processing. Further, real-time statistics exchange is almost impossible
in general networks because the system statistics may be already cutdated when

it is collected. Therefore, a necessary condition for a DDBMS to employ a

dynamic semi-join scheduling algorithm is that an efficient system statistics

nic schedules in general networks. Fortunately, the broadcast capability
1 i i istribution of st
of local multizccess/broadeast bus allows an efficient distribution of status

information. Hence, dynamic semi-join scheduling is employed in DDBLMN.

3.3 Previous Waork
Most of the previous studies on distributed query processing were based on
relational databases in a non-broadeast system. A materialization is assumed
for each query, the order of processing is optimized, and the operations are

clustered into local actions. Further, the transmission cost per unil data is

assumed to be constant for any two points in the network, and the cost of local

processing is negligible. Since the DQP is NP-hard, heuristic algorithms were

generally used m«(‘OZNJ, The semi-join approach was fitst incorporated

DQP strategies in SDD-1 system by Bernstein and Chiu and was shown Lo be

more efficient than full joins [BERS81a] [BERSIc]. Yao et 4l improved this

approach with a static semi-join scheduling strategy. Consi ferable drnonnt of

research have been carried out on finding good static semi-join scheduling

strategies.

Further, studies have been made to improve semi-joins. Yu et al. reduced
the transmission cost by incorporating complement transmissions into semi-joins
{YU82]. The complement of an attribute is defined as the set of values absent
from a given attribute. In semi-join operations, the complement of an attribute
5 sent if its cardinality is smaller than that of the original attribute
Nonetheliess, there is no efficient algorithm to determine the optimal semi-join
Sequence, even for simple queries. Data compression techniques have also been
applied in semi-joins. For instance, a bit vector indicating the absence or
presence of a value can be sent instead of the attribute if the size of the bit-

vector is smaller than the size of the attribute (GOUS1). Suboptimal techniques

for semi-joins with smaller optimization overhead have also been studied

[KiI84]. Chen and Li employed a graphical approach to identily and

E inate

reduadant transmissions in a sen; i schedule [CHES4]. Query processing on
;

a star network was studied in [KERS2]. Static query processing strategics for

local area broadeast networks and address ring were developed in Hevner, Wy,
and Yao’s paper [HEVS5]. A good survey was given by Yu and Chang ?Hw&f
Chu and Hurley have developed a unified approach that considered both

the local processing and transmission costs [CHUS2]. A query-tree mode! for




selecting the transmission sequence ang the sites for executing a set of subqueries

was proposed.

In short, previous studies on DQP  assumed that attributes were

M:amcm:gm:? ignored the effect of semi-joins on non-joining attributes, and used

a non-redundant materialization as well as a static strategy.
3.4 Query Processing Strategy in DDBLMN

In this section, we describe 3 solution of the DQP with possibly redundant >

ization and 3 dynamic strategy. An attribyte is first solected for

vﬁo.&?mm::m, Semi-joins are perfurimed and the statistics of the resulting

database are collected at aj sites.  Based upon these statistics, the sites

cooperatively select the text attribute to broadcast.

Tt

The process is repeated.

tis strategy has been proposed before [Yuss [SAC84], but was hampered by

the high cost of collecting statistics after each semi-join. The use of a broadeast

network  allows the collection of statistics at a reasonable cost. The

materialization can be either non-redundant or redundant. The system designer

should make the decision based og the ratio of the communication cost and the

actual local processing cost if it g

important.  Sipce non-redundant

materialization is a special case of redundans materialization, only redundant

materialization s discussed  here, We  assume that an independent

materialization algorithm is provided if the non-redundant materialization is

used.

3.4.1 Five Phases in Query Processing

A query processing strategy consisting of five phases is executed at each

related site: Concurrency-Control {CC), Local-Proces 1ig (LP), Global Semi-jom

(GSJ), Relations-Transmission (RT), and Post-Processing (PP) phases.

3.4.1.1 Concurrency-Control (CC) Phase

H H . NI & PN e

Our proposed concurrency control algorithm utilizes locks. Hence, th

; NP [ y,m

lations used in a query must first be locked before any processing iy carriec
re

t. Locking can be achieved in a distributed fashion by utilizing the
out.

transaction information broadcast in the Initial Broadcast Phase. If ;
are to be locked initially before the transaction is processed, this phase is
completed at each related site when all needed local relations are not locked by
other transactions. However, il the precedence relationship is resolved whenever
conflicts are detected, as proposed in the concurrency control algorithm in

Chapter IV, then this phase has to be repeated before each semi-join broadcast.

3.4.1.2 Local-Processing (LP) Phase
N H .3 ;g as the
The LP phase may be started immediately at a related site as soon as the
Jelecti jections local joins are performed on
CC Phase is completed. Selections, projections, and local joins r ;
all materialized relations, which are all the relations referenced to by the query,

i i led by tt ry ina
in this phase. After local processing, the relations needed by the query

i i site-refation. An
related site are joined together into a single relation called the site-refation. /

i
3 G s riginagd-
relations and attributes are referred to as the original-relations and origingl
t

| firi used in the discussion of the
attributes. The site-relations and site-atiributes are used in the discussion of ¢

query processing strate Y The use of the original-atiributes w be discussed
proc g st g S s

after the various phases are presented.



Depending on the lock requests received from the bus, the results of the LP
phase for a transaction may have to be retracted if a conflicting lock request is
received before the first semi-join broadcast for this transaction is sent. This
problem can be avoided by broadcasting a message to inform all sites that the
LP Phase for a transaction has started, so other sites will not send conflicting
lock requests. The synchronization of the LP Phase will be discussed in the next
section. The LP Phase for all related sites should be completed before the next
phase can begin. This requires the identification of the slowest site and will be

discussed in the next section.

3.4.1.3 Global Semi-join (GSJ) Phase

In this phase, semi-joins on site-attributes are carried out. An initial site-
attribute is broadeast, and site-relations at other related sites are semii-joined
with the broadcast site-attribute. The statistics of the site-attributes are then
collected at each related site. Based on measures to be discussed in Section
3.4.4, the site-attribute with the minimum heuristic value, called the minimum
allribule, is selected as the next site-attribute to be broadeast. An algorithm to
identify the minimum site-attribute is discussed in the next section. A semi-join
may be blocked because one or more relations containing the attribute to be
semi-joined are locked by other transactions. To avoid the delay of waiting for
these relations to be unlocked, the processing order of semi-joins may be
rearranged, so attributes that are not locked can be processed first. The process
of selecting and broadcasting minimum attributes is repeated until all site-
atiributes are broadcast. Two techniques, complement broadcast and noo-
profitable attribute identification, can be used to reduce the communication

cost and are built into the scheduling algorithm.
A

Ooavrwﬂ_m:mwaowmnmmo

Semi-joins can be improved by the use of complement attributes [YUy? J.
The initial complement denotes the complement of a site-attribute before the
GSJ Phase. As global semi-joins are carried out, the size of a site-attribute will
decrease, while the size of its complement will increase. The size of the
complement of an updated site-attribute will always be larger than that of its
initial complement. Figure 3.3 shows the relationships among the complement,
the initial complement, and the site-attribute itself. When the cardinality of the
updated site-attribute is smaller than that of its initial complement, a nornal

broadeast that broadcasts the updated site-attribute should be used; otherwise, a

complement broadcast that broadcasts the initial complement should be used. A

semi-join can be carried out with either the site-attribute or its complement.

Non-Profitable Attribute Identification

Since the materialization is redundant, the information contained in one
site-attribute may be a subset of the information contained in another site-
attribute at a different site. For example, if R is stored in sites I and 2, then
the information of the site-atiributes at sites 1 and 2 will overlap Lo each other.

More than one copy of R, may be joined together. The resuit of

redundant relations is equivalent to that of joining single copy r

elations.

Because the result of equi-joining a relation to itsell is equivalent to the relation
itself, and join operations are commutable. However, redundant information

had better not to be broadcast in GSJ phase. The following definitions are

phase.
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The component set of site-atiribute j in site-relation Wx 15 defined as the ser
of original-relations in site x that contain site-attribute j- For example, let Z_
with attributes a and b (R, .a, R,.b) and R, with attributes b and ¢ {(Ryb, R, o)
be stored in site x. After the LP Phase, a site-relation (R,} with site-attributes
R .a, R b, and R, .c is created by joining R, and R, The component sets of
R,a, R b, and R care (R}, {R, R,} and {R,} respectively.

The broadcast component set of domain j is defined as the union of the
component sets of site-attributes in domain j that have been broadcast. In GSJ
phase, a site-attribute j does not have to be broadeast if its component set is a
subset of the broadcast component set of domain j, because the information
contained in this site-attribute is already known to all sites. Aflter a site-
attribute has been broadcast, the corresponding broadeast component set s
updated at all sites. For example, suppose R, is stored in sites x and y, R, s
stored in site y, and R, is stored in site z. Assuming that these relations have
one common site-attribute j, then site-attribute R_.j, with component set mwww
is constructed at x; site-atiribute Ww.? with component set Ax__ R}, s
constructed at y; and site-attribute R, j, with compospent set mmwt,f B

broadeast

constructed at z. If ww(w is broadcast first in the GSJ Phase, then
component set of domain | is updated from empty to {R,, R,}. Since the
component set of R_.j is one of its subset, R_.j does not have any reduction effect

on R_.j and does not have to be broadeast.



3.4.1.4 Relations-Transmission (RT) Phase

In this phase, the resulting fragments of the site-relations are broadeast
sequentially to the post processing sites, where the complete join will be
performed. The problem here is the determination of the order of broadcast.
Since semi-joins may not execute a join completely [BER81a), an appropriate
broadcast order may result in some reduction effects {join restrictions) on the
unsent fragments. However, these effects are insignificant, especially when the
number of semi-joins in the GSJ Phase is large. Therefore, the site-relations
may be broadeast in an arbitrary order. Of course, site-relations at the post

processing sites do not have to be broadcast.

3.4.1.5 Post-Processing (PP) Phase

In this phase, the full join and subsequent operations are executed, and the
results are sent to the site from which the query originates. The process of
determining the post processing sites is different for retrievals and updates. For
a retrieval, the set of post processing sites must be selected such that the total
overheads of transmission in the RT Phase and transmission of results from the
post processing sites to the originating site is minimum, Since the set of post
processing sites must be determined before the RT Phase begins, and the
difference in overheads of processing at different post processing sites is usualily
small, the originating site can be chosen as the post processing site arbitraryly.
For updates, the results of the post processing sites must also be sent to all sites

relations to be updated. By an argument similar to that of retrievals,

the originating site is chosen as the post processing site. At the beginning of the

the originating site will decide to broadcast either the update set or

tions that haven’t been broadcast. In the latter case, the update set can

-t

he constructed at any site. Of course, consistency checks must be performed
before the corresponding relations are updated. The query is completed after

this phase.

An example of query processing in DDBLMN is illustrated in Figure 3.4,

3.5, and 3.6. The query i u relational query with the following predicate,

(Ry:a=R;a) AND (R,.b =R, b=R, b) AND (R,c =R,

=R .c)
The distribution of the original-relations and the resulting site-relations are

shown in Figure 3.4. The various phases of query processing are shown in Figure

3.5.

3.4.2 Improvements to The Five-Phase Query Processing

Because of the expansion effect of joins, the size of a site-refation at a site
may be much larger than the total size of the original-relations there. To reduice
the cost of constructing site-relations, site-relations are not really coustructed in

LP phase. Instead, original-relations are used. Site-attributes are extracted from

the original-attribute to broadcast only when they are needed. As

minor changes have to be made in several phases. In the LP Phase, o

semi-joins, instead of {ull joins, are performed in each related site armnong the

original-attributes. Since only equi-joins are considered, the set of

values in a site-attribute ai a related site

the same as that in any o

attribute of the same domain there. Therefore. broadeasting a site-attribyte
R _.j in the GSJ Phase is equivalent to broadcasting any original-atiribute of

domain j in site x. After an atiribute is broadcast, all original-reiations are

semi-joined with this attribute. In the RT Phase, fragments of ¢

relations, instead of the site-relations, are broadeast, A unique copy of every

relation must be selected to broadcast. Since the directory is redundant and the
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Figure 3.6 An example of the schedule generated by the improved
query processing strategy.
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size difference among original-relations tends to be small after the GSJ Phase, a
tie-breaking rule using the site number can be applied to identify the unique
copy to broadcast. An example of the broadcast sequence using the original-

attributes for the schedule in Figure 3.5 is iHustrated in Figure 3.6.

3.4.3 Protocol for Extremum lIdentification

In the proposed query processing strategy, it is necessary to m<:~7_~0~:..”m all
related sites at the end of each phase and to identify the minimum ;rm:r::« in
each step of GSJ phase. These two problems are equivalent to finding the site
with the extremum value and can be solved by the protocol discussed below.
Although the proposed protocol does not require additional hardware support,
extremum-identification protocols with special hardware interface can also be
used [WAHS3] (JUAS4] [WAH85b]. Without loss of generality, only the problem
of identifying the site with the maximum value is studied here. The algorithmis
shown in Figure 3.7. It is a distributed algorithm, executed at each site, that

y, is the maximum. Each site contends

determines whether the local parameter,

for the bus and broadcasts its local value. It also listens to the bus for values
broadcast by other sites. If the value received is better than y, then it drops out
of contention. This process continues until all sites have either broadeast or
b ve been eliminated. The last broadcast value is then the maximum.

This process is complicated by the non-deterministic time to generate the
deal parameter at each site. After a site has broadcast its local parameter, it
sets a timer to allow sites with larger parameters o hroadcast their paramelers
and sites that have not fnished evaluating their parameters to broadcast an

‘ynfinished’ message. If a timeout occurs before such a message is received, it

| presume that the current maximum is the real maximum. Since the elapsed
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process maximuwm (x, yh

{ ¢* This process executed at site x with value y identifies whether y is the maximum of all sitas.
cuarrent max represents the broadcast maximum.
aext_x is the site that has been selected 1o broadcast next v

current [max iw= - x; R
/* estimate the site that will broadcast next */

compute next x;
fork (gemerate_y); /* create process to generate y '/

while {true} do {
wail {event);
case [event) of {

(y is generated): {
if{x = gext _x) then /* broadcast y only if this site Is next x *
1ignal network iayer to contend for bus and to broadcast y;
case {y) of {
{y > current_max}: current_max := y;
{y s current_max): retura{failure) }

{receive new currest_max): {

current_max :== max{uew current max, current_maz);
oext_x := x; /* any site could broadcast aexi */
case {y} of {

(¥ is not available): {set timer; signal to contend for bus to broadcast ‘unfinished'};
{y > curreat_maz}: {set timer; signal to contend for bus to broadcast ¥h

(¥ = current_max}): {

if (trying to broadcast y} then withdiaw this brosdcast;

returo{failure) } } };

{receive ‘unfinished’): {
unset timer; /° there are unfinished sites */
next_x :== site sending the ‘unfinished’ message;
if {trying to broadcast) then withdraw this broadeast };

{get busj: {
if (y s available) then {broadeast{y); set timer)
else {broadcast{'unfinished'); unset timer};

{timeout}: {
if {trylog to broadeast) then {
o E E i her broadcast */
/7 timeout cecur, all unfinished sites stop any furthe ]
withdraw this broadcast;
return{failure}}
else returnisuccess} }

Figure 3.7 Protocol to identify the site with the maximum.

i

time before receiving such a message depends on the network load, the delivery
of these messages should be given higher priority, especially for ‘unfinished’

messages. To prevent the network from ficoded by the unfinished messages, all

sites that are still evaluating their parameters will refrain from sending further
‘unfinished’ messages once the frst ‘unfinished’ message is received. The
sequence of events is illustrated in Figure 3.8. The shaded 5&3& indicatles a
contention period during which sites with larger parameters or ‘unfin; red”

messages contend for the bus. The contention period ends when an ‘unfinished’

message 18 broadecast.

The performance of the proposed protocol can be enhanced by making a
good initial estimate of the site containing the maximum. In the optimal case,
only one broadcast and a timeout period are necessary. If the distribution of the

parameters is known, then the maximum can be identified in a constant number

of messages (on the average) independent of the number of sites [WAHRY

M;«Cbm,: mze...\ymwmg. On the other hand, if the initial estimate is random, the

average number of messages is Ollog,n}, where 1 is the total number of sites.

The above extremum-identification procedure can be applied to identif

completion of the LP Phase. Parameter y in Figure 3.7 represents the local

completion time, and the site with the longest compiletion time is sought. The

time that each site spends between the Initial Broad

it and the end of the LP
Phase is determined by the length of the CC and LP Phases. Since the time to

vesolve conflicts in each site is known globally (all remote actions are broadeast)

and the processing times of selections, projections, and local semi-joins are
proportional to the cardinality of the relations, a good estimate of the slowest
site can be made by all sites. All other sites must wait for the estimated sfowest

site to broadeast its completion time before determining the next ‘unfinished’

:
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The sequence of events in identifying the maximum.
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completion time of the slowest site, and only a “finished” message to i

completion has to be broadcast. After the estimated slowest site has broadeast
its ‘Anished’ message, the remaining unfinished sites contend for the bus to elect

another site to broadcast the next ‘finished’ message. I all sites

ve hnished,
the last site waits for a timeout period before asserting that the LP Phase lias

completed.

The procedure in Figure 3.8 can also be applied directly to identify the
completion time of each semi-join and the minimum attribute in the GSJ Phase.
After one elected site has broadcast its heuristic value, finished sites with larger
hearistic values are dropped out of contention, and unfinished sites contend to
elect the next site to broadcast. If all sites have finished, sites with smaller
heuristic values contend Lo elect the site with the minirmum heuristic valie,

Since the estimation of the site containing the minimum attribute co

computationally expensive, it may be better to randomly elect it. Another
improvement is to allow each site to estimate ils heuristic value before it is
available, and to drop out of contention if the estimated value is larger than the

broadcast value. The next GSJ phase do not have to wait thissite. In this way,

the slower sites with large heuristic values will not slow down the G5J phases

3.4.4 Computing the Heuristic Value
The heuristic function, which estimates the potential of leading to the
optimal solution in the GSJ Phase, is another important f{actor to the system

performance. The system performance is affected by the following factors.

directly. Ounly the effective size, which is the product of the domain width



and the larger of the curreni cardinality of the attribute and the cardinality

of its initial complement, should be used.

{2) Attributes with larger size-reduction effects on other attributes should be
broadcast first because they affect the broadcast cost in successive semi-
joins.

{3) The number of unbroadeast attributes on a commor domain is another
factor of consideration. When this number is large, the broadeast of any

attribute in this domain will have a greater size-reduction effect on other

relations.

It is very difficult to have a heuristic function that satisfies all the these rules.
Depending on the application, the designer has to combine these parameters

with appropriate weights to get a good heuristic function.

As defined in section 3.2.2.2, the selectivity of an attribute is usually used to

estimate its size-reduction effect, which is defined as the ratio of the current

cardinality of the attribute to the initial cardinality of the domain containing

the attribute. When an attribute is semi-joined with another attribute, its new
size is computed as the product of its current size and the selectivity of the other
attribute. This estimation method is not suitable in a broadcast network
because the selectivity of a broadcast attribute may be used more than once in

computing the size of other attributes. For example, suppose attributes wn

3
Wb

i S 3§ and selectivities Pojr Pyy Pyyp are the

[
atiributes in domain j that are broadcast in sequence. After R_.j is broadeast,

the sizes of R_.j and R_j are changed to 8,4%P

P and S, |¥P and their

Pey

selectivities are changed to P, ;xp, ; and p, ;<P

When ww.w is broadcast next,

%}

the size of R_.j is estimated as ELE LN M which Py i used twice.

This contradicts to the fact that any attributed can only be reduced by another

atiribute at most once,

i oot . st

To overcome the above problem, the relative selectivity is used to measure
the size-reduction effect of broadcast attributes. The relative selectivity of an
atiribute in domain j is the ratio of its current cardinality to the cardinality of
current-domain j, where current-domain jis domain j with the reduction effects
taken into account. When an attribute in domain j with relative se wetivity pis
broadcast, the cardinalities of all atiributes in domain §, as well as t
cardinality of current-domain j, are reduced by a factor p. As a result, the
relative selectivities of all attributes in domain j will not be changed, and the

duplicate reduction effects using selectivities will not occur. In the last example,

suppose p, ;, p_;, and P, ; represent the relative selectivities. [uitially, bw;,H

Py =Py E‘a PLiTP, 5 .P?mw R_.j is broadcast, the sizes of ww;, and R_.j are

changed to 8% Py and Sy Py but their relative selectivities remain

unchanged. Hence, when wwg, is broadecast, the reduction effects on

estimated to be Pei Py
Four different heuristic functions have been evaluated:
(1} eflective size of an attribute;

(2} effective-size x selectivity {selectivity in the conventional sen:

(3) relative selectivity; and

{4) effective-size x relative-selectivi

These heuristic functions were evaluated by simulations on randomly gen

relations. The number of relations and the size of each are limnited by the

needs to find the optimal semi-join schedule in exhaustive enumeration. On the

VAX 11/780 computer, it took about three minutes CPU time to simulate a case

of three relations with two common attributes each, and 24 hours of CPU time




to simulate a case of three relations with three tomaion attributes each. [t was

assuned that one copy of each relation existed in the databuse, and that each

existed at a distinet site, The widths of the three atiributes were si

. eight, and
ten respectively. The width of tuples in each relation, including attributes not
in the joining domains, was thirty. The domain of each joining attribute was
assumed to be integers between one and ten. The distinct valyes in an attribute
were generated by Frst selecting a threshold, and then including a domain value
in the attribute if g random number generated exceeded the threshold. After
the atiribute values were generated, a cross-product was formed for each
relation to obtain the set of possible tuples. Tuples in this set were randomly
selected for the reluiisy by a process similar to that of selecting the attribute
values. A number vm database instances were obtained by using different

thresholds,

The simulation results are shown in Table 3.1. The ratios of the total

fommunication costs of various heuristic schedules to that of the optimal

are compared. These results demonstrate that dynamic query

processing, 1

ng relative select; ¥ as the heuristic function, is very effective,
The merits of the heuristic functions must be evaluated again when the relations

are generated differently.

3.5 Inteiligent Query Scheduling
To take the advantage of available history knowledge in a relatively stable
database system, an expert-system approach is proposed here. An expert
system is iacluded into the DDBMS to help the transaction handler to semi-join
schedules. The interactions between the semijoin scheduler and the Scheduling

Eipert System may be in three different modes: real-time, offline, and hybrid.
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Table 3.1 Relative performance of different  heuristic  sched
compared to the optimal schedule.

(3} Average behavior of B84 cases for three relations with two common attributes each,

Effective-Size | Effective-Size | Relative Effective-Sise

~ - selectivity [Selectiviy ! Relative-Selectivity
Average 1.812 2.037 1.138 w 2.037

Stand. Dev. 0.338 0.388 0.080 “ 0.388
Maximum 2.537 2.537 1.200 w 2.537

Minimum

1.098 1.099 [ 1022 1.099 |

{b) Average behavior of 17 cases for three relations with three common atiributes each.

Effective-Sise

. w~_m:<m‘m~mn27_w$

Average | L.742

1.07¢ 1.058
Stand. dev. 0.459 0.215
Maximum 2.200
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In the real-time mode, the expert system provides the necessary knowledge to
the scheduler in the scheduling. Both static and dynamic scheduling are capable
of operating in this mode. In the offline mode, the expert system provides the
scheduler with precompiled schedules stored in its Knowledge Base. Query-
reusable systems that store precompiled schedules and apply them later fall into
this category. Only static scheduling can operate in this mode. Lastly, in the
hybrid mode, the expert system provides precompiled schedules as well as the
pecessary expertise to the scheduler. Only dynamic scheduling is suitable in this
mode. The expert-system approach allows better scheduling algorithms to be
employed that are often too complicated to use in real time. Moreover, the
expert system can learn and adjust its scheduling strategies according to changes
in the database.

The logical structure of the proposed approach is illustrated in Figure 3.9.
The semijoin scheduler in a Transaction Handler is the part of the code that
generates semijoin sequences. When processing a query, the semijoin scheduler

consults the Scheduling Expert System to get ready-to-run schedules or

sched

[§)]

g expertise. The Scheduli

g Expert System has the following modules.

Pattern Recognizer: This module classifies the given queries cou led with
g g q p

the database states into system recognizable classes. Without this module,

the input domain of the Scheduling Expert System is too large to manage.

Ezpert Scheduler: This module is the inference module thai serves the

Semijoin Scheduler and the Learning Module by returning schedules in its
Knowledge Base. In the simplest form, this module can be a knowledge

retrieval system,
{3) Knowledge Base: This module stores all the knowledge of the system. The

knowledge can be inference rules, expertise of semijoin scheduling,

LO0

TRANSACTION HANDLER '

SCHEDULER

FTORE EVALUA

sveTan SCHEDUL ING
EXPERT

SYSTEM

Figure 3.9

[ntelligent semijoin schedy ing model.




weighting functions, or even the database history. A system niodel can also
be maintained in the Knowledge Base.

Database History Store: The most recent database history including queries

with schedules, results, and database states is stored here. This raw
knowledge is analyzed by the Learning Module periodically.

Performance Evaluator: When requested by the Learning Module, this

module evaluates the performance of the schedules. It is not practical to get
an absolute measure on how good a schedule is because the system cannot
exhaust different schedules for one query on the same database state. The

evaluation may have to be statistical.

Learning Module: This module analyzes the database history to extract the
scheduling expertise. It can be as simple as a copy mechanism that merely
copies the database history into its Knowledge Base, or it can extract the
useful knowiedge from the history and compiles them into statistics in the
Knowledge Base. It is the heart of the Scheduling Expert System for the
following reasons. First, no substautial experience has been collected and
built into the database at design time, hence new experience must be
learned. Second, the scheduling problem is an NP-hard problem, and no
simple rule can guarantee its optimality. More experience would probably
help in producing better schedules. Lastly, the performance of the
scheduling strategies is application-dependent as well as time-dependent.

Thus learning capability can help to adapt to changes in the system,

i
i
P
1
i
i

3.8 Intelligent Scheduling in DDBLMN

The current major difficulty of ::vr;:m:::m steh an inge

gent sche

system in a DDBMS systers is that we do not have enongh real.

Xperie

with DQP. We also do not have access to 5 real DDBMS. Cyrre ty, only

local

dynamic scheduling is adopted in DDBLMN. This may suffer from tigh

processing overheads due to possible redundant semijoins |

1 asystem with large

disk overheads. w‘:lrmﬁ the communication overheads in synch

ronization

in ideatifying the sjte with the minimum attribute may hamper the effectiven

55
of dynamic scheduling. To reduce these overheads, we wijf adopt more

intelligent scheduling in DDBLMN in the futyre.

Three alternatives in mEEmEm:::m intelligent scheduling  wil] be

1

considered. In the first case, dynamic scheduling is used with additiona]

knowledge provided by the Scheduling Expert System to estimate the site with

the minimum atiribute in semijoins and the slowest site in synchronization. The

number of network Messages is expected to be reduced, while the loca

processing overhead will aot be reduced significantly. The second alternative,

adaptive hybrid scheduling, combines static and dynamic scheduling,  The

scheduler wil} schedule semijoin broadeasts according to precompiled sched

When » scheduled broadcast cannot proceed beca

Us€ one Or more re

relations are locked by other transactions and are tecessible, the sched, fer

either chooses the gext candidate for broadcast o switches 1o dynarn

scheduling, In this way

. both comumunication and local-proces

o
<
p
ps
w
&
o
i}
2

expected 1o be reduced. The cost of rzvmmﬁmzmmmm the Scheduling Expert

System in the above cases would be approximately the same. [n the third

alternative, scheduling expertise extracted from the database history is used by

the scheduler. This is most likely to exist in the form of w g functions.
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The scheduler produces a schedule for each query with the help of the
Scheduling Expert System and schedules the semijoin broadeasts as in adaptive
hybrid scheduling. The biggest challenge in this approach is the design of the

Learning Module.

3.7 Summary

In summary, the most important problem in distributed query processing is
to find a strategy to identily the target-data with the minimum processing cost
in the processing of multi-relation joins. For a system in which the
communication cost dominates the overall processing cost, the most promising
approach is to execute a sequence of semi-join to reduce the raw-target before a
complete join is executed. A five phase query processing strategy with redundant
materialization and dynamic semi-join scheduling is proposed in this chapter.
Coupled with concurrency control and redundant materialization, dynamic
query processing strategies provide better Hexibility than static strategies.
Further, the propagation of errors in static semi-join scheduling is avoided. An
Oflog,N} algorithm based on the characteristic of iocal multiaccess/broadcast
networks is developed to provide an efficient method of collecting statistics in
the dynamic strategies.

Finally, an intelligent query processing model is proposed for future

research to improve the efficiency of query processing.
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: CHAPTER IV
CONCURRENCY CONTROL

In  this chapter, a concurrency  control  protocol  for local

multiaccess/broadcast networks based on the conflict graph and Thomas'

?,IO.JE algorithm is presented. Using the special characteristics of the

network, we modify existing protocols of wide-area networks, such that the

proposed protoco! can suit to this local system. The broadcast capability and

short propagation delay time of the network simplify the distribution of

complete transaction status to every site. Hence, the protocol behaves similarly

as a single site concurrency control protocol.

4.1 Introduction

In Bernstein and Goodman’s paper Mwmmm;_. concurrency control s

defined as “the activity of coordinating concurrent accesses Lo a database

Hr a

multiuser environment.” Concurrency control permits users to share a datubase

while preserving the illusion that each user is executing alone a dedicated

system. The consistency of a DDBMS is endangered by three factors that have

been stated in Chapter {.

(1) Multiple copies of a piece of data may be stored, accessed, and updated b

different users at different sites at the same time.

{2) Communication delays usually prohibit Instantaneous distributior

system status information.

{3} The information exchange may be impossible when some components fail.



The following are two typical anomalies that may be resulted in an ill-controlled

electronic funds transfer system.
. o

(1) Lost Updates. Suppose two customers try to deposit money into the same
account simultaneously through automatic teller machines (ATM). These
two transactions may interfere with each other. The two ATM’s handli

ATH ng
£ tw g
he two customers could read the account balance at approximately the
same time, compute new balances in parallel, and then store the new
balances back into the database. One deposit is overwritten w% the other
and is lost,

(2) Inconsistent Retrievals. Suppose a company has a saving account and a
checking account in the system, and each initially contains balances of
$1000. At i i !

0. A transaction TR is to transfer $500 from the saving account to

the checking account d i i
) . and another transaction TR, is to query the total
alance of both accounts. In the absence of concurrency control, TR, may

) p M
read the balance of the savi i

saving account before TR is processed {$1000) and

read the balance of ti i i
he checking account after TR, is processed {$1500).

The total balances that ﬂmw gets is $2500, rather than $2000.

The o

ctives of concurrency control are
(
{1} correctness,

{2} maxi

zing the system throughput,

simplicity.

Ghjective {1} is essentia a o urrency control Ol, W € a2 o £
} tial in one i protocol, wiaiie a Compromis

among objectives (2], (3), and {4) may be needed. Simplicity is tmportant in

practice since a com

cated protocol is hard ‘e
protocol is hard to prove to be correct, hard to

implement, and less robust.

Lo

»

4.1.1 Consistency and Serializability

The correctness of the concurreacy control algorithm depends on the

requirements of the database. When the processing order of a set of transactions

is order independent, i.e. any order is acceptable, the general condition to be
enforced is serializability ﬂﬁ.ﬁu‘\@w. Let E denote an execution of transactions
TR, TR, - - .,TR,. E s 2 serial ezecution if no transaction s executed

concurrently in E; that is, each transaction is executed to completion before the

next one begins. An execution is serializable if it is computational equivalent toa

serial execution, that is, if it produces the same output and has the same effect

on the database as some serial execution. The concurrency control of a DDBMS

should ensure that all executions are serializable.

The read {or write) setof a transaction is the set of data items that are read
{or written) by the transaction. A conflict occurs between two transactions if
the write set of one transaction intersects with the read set (r-w conflict) or write
set {w-w conflict) of the other. A set of transactions can be executed in parallel
and are serializable if the execution order of conflicting transactions is carefully

arranged.

4.1.2 Throughput

The system throughput \s defined as the average number of transactions a

system can process in a Gme unit. In a resl DDBMS, the definition is a little

vague since the lengths of transactions and the requested data entilies are

variant. In some cases, the ‘degree of concurrency,’ which is the number of
transactions that can be processed at the same time, can also be used to

measure the performance of the concurrency control protocols, We use

‘throughput’ and ‘degree of concurrency’ interchangeably in this chapter. More



precise definitions can be found in Papadimitriou’s papers [PAP79] [PAP82].
Given a set of transactions, we can always find a serializable execution with

the maximum throughput. However, it's not practical to achieve in a real

DDBMS for the following reasons.

{1) The arrival of transactions and the behavior of transactions are difficult or

even impossible to predict.

{2} Even if the transactions are predictable, finding an optimal solution i

@

computational expensive. To determine whether an execution is

serializable or not has been proved to be NP-complete [PAPT79].

(3) An optimal schedule way result in longer delays for some transaciions. A
real DDBMS may wish transactions to be serviced in a first-come-first-

serve order.

As a consequence, the most commonly used strategy in concurrency control
protocols is a combination of ‘first-come- first-serve’ and ‘trigl-and-error.’ When
a transaction enters the system, it is immediately processed until it is terminated
or is stopped for some reasons. In the latter case, the stopped transaction either

waits until the cause is resolved or restarts.

4.2 Previous Work

Many concurrency control algorithms have been proposed before. They can
¥ ¥ g P

be classified into three categories: locking, timestamp ordering, and optimistic.

Bernstein and Goodman provided a good survey on locking and timestamp

ordering based protocols |[BER81b]. In a locking protocol, data items are locked

before they are accessed. Locks must be issued in such a way that the

deadlock occurs, recovery must be possible

transactions are serializable, and i

Locks are released after the access is completed. The most popular locking
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protocol is the two-phase protocol in which unlocks for a transaction are issued

after all locks have been made. The execution is divided into two phases. During
the first phase, called the growing phase, the transaction can only request locks,
and during the second phase, called the shrinking phase, the trunsaction can ouly

release locks.

In a timestamp-ordering protocol, a transaction is :mmwn:.m; 3 uniyue
timestamp equal to the value of the local clock when it is initiated. In addition,
each data item is also timestamped with its most recent read and write. Before a
transaclion is processed, its timestamp is compared with the timestamps of the

accessed data. A transaction is rejected if a conflict is detected. When a

transaction is rejected, it should be restarted with a new timestamp, and

intermediate results have to be discarded. An important timestamp ordering
protocol is Thomas’s majority consensus timestamp ordering protocol [THOTY).
fn an eptimustic protocol [KUNBY] [BHARZDB], each transaction works on a
private copy of the database and no control is imposed on the execution of
o transactions. The consistency is checked on the termination of a transaction
The transaction is terminated if it has operated on a consistent state; otherwise,

the transaction is restarted.

4.2.1 Comparisons Among the Three Types Of Protocols

there is no overhead

lo both timestamp-ordering and optimistic protoco
A

on lock management. A very high degree of concurrency can be achieved if no

conflict bappens. Obviously, the success of both prolocols is high

an
the probability of confiicts among transactions, and the throughput tends to
decrease as the system load increases. The major problem of using these two

types of protocols on a DDBMS is the penalty of restarts, as the query processing




[
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4.3 Oc:n::m:n% Control in DDBLMN
cost is high is restarting a transaction. In addition to the restart overhead, the Based on the characteristic of local :E:::.nM,J.u.\gcuaswmﬁ networks, a lock
additional overhead is needed in both protocols for the authorization or the based protocol is proposed in this section for its high efficiency and ::.c:mrv,:
validation of updates. Recall the characteristics of local Bc_:wnnmmm\gowanwmn networks stated in
The expensive restarts can be avoided in lock based protocols. However, Section 1.4.4, .

they incur the following overheads when the network does uot have the ’ (1} The System status is almost completely available to all stations by
broadcast capabi ity. monitoring the activities on the bys.
(1) Messages for requesting/releasing locks. For each data access, three sets of (2) Every station gets the information on the bus almost Smﬁmiu:mc:mg since

messages are needed: a set of messages for requesting locks on all accessed itisa multi-point configuration.

data, a set of acknowledgements in granting the locks, and a set of messages (3) Al messages arrive at each site in the same order as they ar nt, wi
. 1y are sent, when
for refeasing the locks. Additional time is also spent in waiting for locks. ;

messages are not jogt.

2} Erira overhead for deadlock brevention, defection and recovery. Since
¥ ; . Yo 0 Due

to properties {1} and {2), status exchange on bus networks is extremely
deadlocks may occur in lock based protocols, additional overheads are efficient and fast, It is a natyraj to use lock based Protocols on these get k
H L ese networ S.
meurred on deadlock detection and recovery. The degree of concurrency Due to the property (3), the transactions are pot distinguished from global
b T |
may be degraded when deadlock prevention is enforced. - transactions. Hence, every transaction refers 1o the sarne database state

(3) Ertra watling  lLime for overlocking. A data item may be locked

annecessarily to minimize the possibility of deadlocks and to enforce 4.3.1 General Description

IR Tebe o ) t requ 1 initially .
Overlocking exists in protocols that request locks initis ly < " is assumed that the transactio

! processing model discussed Section 1.8

ase protocols. is used, that a relation is the basic unit of daty

and that ap aCeess inay

fn summ

1ary, information exchange is necessary in all three types of be either a read ©f a2 write but not both,

protocols. In a lock based protocol, it is done at the operation {read, write} level

to ensure serial ability. In timestamp ordering protocols, it is doae at the

update level, while in optimistic protocols, it is done at the transaction level.
When the number of writes is much less than the number of reads, the latter two

types of protocols are more efficient.



Broadcast Transaction Table and Precedence Graph

To record the global database stale, each site maintains a Broadcast
Transaction Table (BTT) that records the status of all transactions and the
status of relations (locked or unlocked). All Broadcast Transaction Tables are
always identical. Based on the information stored in BTT, a Precedence Graph

(PG} recording the precedence relationship among transactions is also

maintained in each site. A transaction is registered into the BTT and PG since

its initial broadcast and is retained until its termination. The precedence

relationship between two transactions can be added due to a conflict, deleted

due to a termnation, but cannot be reversed in any case. The serializability of

transactions is ensured by this property.

Interaction between transactions and Concurrency-Control subsystem

When a transaction wants to place a lock on a relation, it makes the lock
request to the Concurrency-Control subsystem in  the tocal site. The
Concurrency-Control subsystem checks the local BTT and PR to determine the

serializability condition. The transaction has to wait until serializability

satished. With a common bus and assuming that locks received are processed in
real time before a lock request is broadcast, oaly lock requests that will not be
rejected by other sites are broadcast. Once a lock is broadcast, the lock is

. granted to the transaction and is recorded in the the BTT and PG
grant

automatica
. . s e , .
in each site. The newly granted lock will not conflict with other jocks that had

been granted since the consistency had been checked by the local Concurreney-

g
. C o . a: . ;
Control subsystem. If this causes any conflict to the lock requests under
i P o e Qine i st
processing, then all those conflicting requests must be rejected. Since at most

=X

one broadeast can be made at any time on the bus, it is impossible to grant two

[—

conflicting locks simuitaneously. In this sense, the common bus acts as a

gateway for concurrency control as in a centralized database.

Information exchange

Essentially, information exchange is not needed for concurrency control in
DDBLMN. The read set and write set of a transaction are known to all other
transactions through the initial broadcast. Moreover, lock and unlock messages
can be embedded into the corresponding network activities. Recall the procedure
of query processing in Chapter LI, the lock and unlock messages can be
embedded in each semi-join broadcast and relation broadeast. Although thereis
no need to explicitly specify the granted locks or released jocks in these
broadcasts (they can be figured out from the information in BTT }, we
recommend that the system designer piggybacks this information on the

broadecasts to avoid significant overhead to trace the transactions.

The efficiency of information exchange not only saves the communication
overhead, but also saves the time waiting for locks and the time of overlocking.
The time of overlocking is saved because a lock is released as soon as it is not

used by the transaction.

Given a processing order for a sel of transactions. the latest locking time of

a lock on a relation by a transaction is the time that the transaction begins
use {read or write) it. The earfiest unlocking timé is the time that

transaction no longer needs it. The minimum locking time is the difh e
between these two time instances, Within this time period, a conflict accessing to
the relation will introduce inconsistency into the database. Since the
information exchange on the network is almost instantaneous, the minimum

locking time can be achieved il each transaction issues the lock request at the



right time and responds to lock releasing quickly. This will be discussed later in
this section. It must be pointed out that minimum locking does not imply the

maximum degree of concurrency which can only be achieved when

permutations on the transactions are compared.

Precedence order

The precedence order of transactions is governed by the times that a
conflict is found. The algorithm detects access conflicts between two
transactions from their read and write sets when they are broadcast; however,
the order of processing is not imposed until the conflicting access of one of these
transactions is made. After the order of processing is defined between TR and
TR, {say w.mu precedes ‘Hkm? then all conflicting accesses made by \Hmﬂ must

ity.

precede accesses of TR, to enforce serializab

This protocol is deadlock free because preceding tramsactions will never

wait for locks from succeeding transactions.

4.3.2 The Locking/Unlocking Time
The correctness and the performance of the protocol are dependent on the
time to lock and unlock relations. These are discussed in this section. Depending
on the query processing strategy discussed in Chapter II[, the time instances of

focking and unlocking for read and write operations are different.

Locking time for read-locks

The time m:w,wnm:nmw for a transaction to read-lock a relation is the time that
the relation is mﬂ,«ms read by the transaction. Consistency checks are performed
before the relation is locked. For relations that are semi-joined in the LP Phase,
they should be locked before the LP Phase begins. For other relations that
belong to the read set of the transaction but are not used in the LP Phase, they
should be locked once one of their atiributes is either broadeast or semi-joined

with a broadcast attribute.

Unlocking time for read-locks

Depending on the storage capacity, there are three different time instances
to unlock read-locks. In the first case, when the storage capacity is large enough
and the access to a relation is read only, a copy of the relation {with only the
atiributes to be accessed) is made in the working storage when it is read-locked,
and the relation is unlocked immediately. An update on the relation by the

succeeding transactions will not affect the values obtained by the current

transaction.

In the second case, when duplicate copies cannot be made due to storage
limitation, then the relation must be read-iocked until it is no longer read by the
transaction. The locking time in this case may be too long due to the long
query processing delay. Thus, the overall system performance may be degraded
drastically.

For a system with some extra storage capacity, the following approach can
provide much better performance at the cost of some exira storage. When
duplicated copies cannot be made, a projection on the attributes that will be

used in the global semi-join phase is stored in the working storage. Thus, these



read-only relations can be unlocked at the same time as that in the frst case.
These projected attributes provide less reductions in the semi-join operations
than those provided by the entire relations in the first approach, as indirect
serni-joins cannot be used. As a consequence, the query processing overhead
may be slightly increased; however the reduction eflects of indirect semi-joins

are generally small.

Locking and unlocking times of write-locks

A relation that is updated must be write-locked at the beginning of the PP
Phase by the first query in the transaction that updates the relation, and
released at the end of the PP Phase by the last query in the transaction that

updates the relation. For relations that are read and written in the same

transaction, the read and write locks must be released together.

4.3.3 Mintmum Locking Concurrency Control Protocol

The detailed description of the protocol is given in this section. The
distributed concurrency control algorithm is shown in Figure 4.1, 4.2, and 4.3.
The precedence relationships among transactions are stored in a precedence
graph and are maintained by procedure consisiency {Figure 4.3). Procedure
precedencecheck (Figure 4.2) checks whether two transactions conflict with each
other,

Process cc_minimumlock {Figure 4.1} is triggered by the arrivals of lock
requests, the successful contention in getting the bus, the termination of
transactions, and the release of locks. Transactions originating from a site
communicate with the local process ce_minimumioct Each transaction is a

ACING SUSPENDIED
process, which can be in one of the following states: THINKING, SUSPENDED,

16

process cc_mmimumiock (BTT, PG,
/* This pracess serves the asynchronons arrivals of lock requests.
transactions. The relations are locked for the wi
transactions.

unlock requests, and terg nation of
M amonnt of time with respect to precedent
It is assumed that a transaction <an lock one relation in each request, and that only
one request is processed at a time {due to the single by }- A transaction that has heen initiated
can be in one of the following states: PENDING: all lock requests received wiust he checked firgt
to determine if they coofiict with the current request; ACTIVE: the transaction is wai
availability of the bus; SUSPENDED: the transaction is not processed because
traosaction that is ACTIVE or PENDING, or it conflicts with another transacti
breadcast from another site; and THINKING: transaction is pot making aoy lock request,
Information about the active transactions and locked relations are available in BTT, the Broadcast
Tragsaction Table. Information about the precedence relations of trassactions are stored ig PG,
the Precedence Graph. v/

ng for the
there is another
ou that has been

{ while (true) do {

wait {eveat);

case (event) of {
{arrival of lock request from TR {
if {{there is a PENDING or ACTIVE request) then
set state of TR, to SUSPENDED and suspead TH,
eise {
PG’ = PG; [* make temporary copy of PG 4/
if’ {consistency( TR,, PG’} = success) then
if (new lock requests have been received from other sites) then
set state of TR, to PENDING
else {
set state of TR, to ACTIVE;
signal network layer to contend for bus }
else {
il {cousistency( TR, PC’) = waive} then { update BTT; return (waive) }
else set state of TR, to SUSPENDED and suspend TR,;
if {there are SUSPENDED requests) then wake up ose SUSPENDED request
{receive lock request from TR, Irom busk: { /* new lock is grasled at another site */
update BTT and PG;
i {there is 2 PENDING or ACTIVE request TR, ) then {
update PG
B F«mnmaannmnumarﬂ TR, TR, PG} =
W {TR, is ACTIVE} then
withdraw bus-conteation request;
i {TR, is 1o be rejected} then
set state of TR to SUSI'ENDED and suspend TR,
else return {waive);
if {there are SUSPENDED requests} then wake up ome SUSPENDE request )}
else if (TR, is PENDING) then|
set state of TR, to ACTIVE;
signzl network layer to cootend for bus }}
{a transaction is terminated at asother site}: update BTT, PG, aud £0°
{unlock is received from busk update BTT;
{bus is obtained): {
broadcast lock request for ACTIVE trassact
PG =pP0;
apdate BTT for locks sbtained by the broade
set state of ACTIVE transaction to THINKI
if {there are SUSPENDED requests} then

reject or waive} then {

{if necess

o

ion;

a3t transaction;

i

wake up one SUSPENDED request } }

Figure 4.1 Process for concurrency control with minimum locking time.



3 PRy PGR
rocedure precedencecheck { THuqmie [Riie oy TR
e. Thi i hecks tbe c.:z,:ﬁ. §72pb PG to determine whether the lock ﬂm;.. ;«:: o
;M—v.sﬂm”:ﬁm - TR iepes i3 tBe transaction that generates the sew lock: ecat
contlicts e abos 18 0 [
transsctica that 1s in the PENDING or ACTIVE sate. */

.
/* the cousistency for r-w conlicts */ . .
~\~ ﬂ“wmmw.:.:.n?eu_ N, .w.: %0 Niocar 18 PG and there is 7w or w-w coodlict} the
Yyt

retura {reject); . )
else if (edge exists from Ni,,u 10 Nysw and thers is 3 w-w conllict} then

return {waive};
elaa return (success)

Figure 4.2 Procedure for checking precedence relation
between Lwo transactions.

(TR, PG);
procedurs conmlency (T ’ Trassaction TR, 1 log to read or write Relstion R and
i* TR, s the v lag tr 3 N

i esented 22 a code N, im PC. This procedurs chwcks {aad updates Rm H”. ..-amwn”-aiu
Ea.uw v. { od only whea ome of the cof

nflicts. An edge will oaly be add . X
:H Ll zo“v mmaho_.tqnnﬁ‘w All transitive ares exist iz PG since the procedence relation is
reiations has .

irapsitive °/

{ if (N, dows not exist i: PG} then »dd a node ¥, o PG;

/* chock TR, lor r-w confiicts */
for (all nodes N, ln PG # A,) do {
if {thers s na sdgs between ¥, and ¥,) then
if (TR, bas r-w conflict with TR} then
it (R has not been sccaseed by TR,) thea { -
3dd an edgs from N, to N,; add all aecessury transitive ascs }
i TR, th )
1!«.”“ . _u&”aw“ﬁwwz .anz -Hnw sll mecessary transitive arcs; return {reject} }
aa N, 3
/* R is uslocked by TR, °/ . .
1..&.%&. odge fram N, to N,; add all necessary tramsitive arcs };
. N
fos if {there & 22 vdge from N, to N,
MM“ {r-w confllct s oo R that has oot been relvased by TR,) then
return {reject) }

if {TR, is » read request oz R} then return {success); /¥ all 7-w coaflicts have bees checked °/
{ { L
\

. Y
* cheek TR, for w-w condicts f TR, is waking s write requesi cu R */
for {all nodes ¥, Is PC # ¥} do {

if {thers s no sdge between ¥, and N,} than ’
i {TR, has w-w conflics on R with TR,) shen {

. . .
/® several alternatives oxist bore, the strategy ased minlmises tha aumber of updates

add an edge from N, to ¥,; sdd sli necssanry w«E—ﬁ.A. arce; resurn (walve) }
else if {edgs sxists from TR, to TR} sad (R is write-locksd by TR,} nvﬁwn eot sarend *7
tarn {reject}] /° write op B for TR, =il be walved _ﬁa,aw KMIVlWN b“ﬂ N 13
Lu.wn: {edge exists Prom TR, to TR} and { TR, has w-w coalliet wit +
and {R 1s locked o bas Deen unlocked by w.h..,v then ton of lower ) .
ragura {waive) }; /° R bhas been i8ed by uba»w..,« 2
return {suctess) [ ° all w-w confiicts havs been checked */

Figure 4.3 Procedure for maintaining the precedence graph.
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PENDING, or ACTIVE. When a transaction is in the THINKING state, it does

not generate any request Lo the database. After a transaction, say TR, makes a

2

request, consistency checks are made o a temporary copy of the precedence

raph to determine if any conflict exists between TR, and other transactio

i
the precedence graph. If a conflict is found, then TR, is SUSPENDED and
processed later. When ,:o conflict exists, TR is put into the PENDING state, so

lock messages received from other sites can be processed. TR will be

SUSPENDED if a conflict is found in this state; otherwise, it will signal the

network layer to contend for the bus and will be put into the ACTIVE st

The ACTIVE state s terminated when the bus is granted to TR and the
request is serviced. At this time, the original precedence graph is updated. If o
lock request received conflicts with TR, when it is ACTIVE, then TH s
SUSPENDED and the request to contend for the bus is withdrawn,

Procedure consistency (Figure 4.3) maintains the precedence graph. [t

defines the processing order of two transactions if they have {r-w or W-W) cor

on accessing a common relation. Once this order is defined, all accesses with a
r-w conflict on a common relation by a tramsaction of lower precedence must be
initiated after the conflicting relation has been unlocked by transactions of
higher precedence. For transactions with a w-w conflict. the transaction with a
higher precedence can be waived because the effect on the database is equivalent

to the update by the other transaction alone. To allow transactions to be

processed efficiently, the precedence order should he defined as late as possible

because the transactions are processed asynchronously, and the transaction

which first makes the conflicting access is unknown at the Initial Broadeast

Time. If a conflict is detected when a traasaction, say TR , is requesting an
3 ) g

H

access, and if an edge does not exist between the two nodes representing TR,
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and the conflicting transaction, say ﬂmi in the precedence graph, then an edge
is added between Lhe nodes. Transitive edges are also added to the precedence
graph since the precedence relationship is transitive. The rules for determining
whether a transition is accepted, rejected, or waived are specified in procedure
consistency.

An example of concurrent accesses of four transactions as controlled by the
proposed algorithm is shown in Figure 4.4. Boxed requests are not executed

because they are either rejected or waived. In Step 4, when TR, requests a

write-lock on A, there is a r-w conflict between ‘:m, and TH,, and TH, i

delayed because an edge exist in the precedence graph from N, to N, Tn Step 6,

the write request for ﬂmw can proceed because A has been unlocked. In Step 8,

Ny is added to the graph. Since B was accessed by TR, an arc .ﬂmwslcam&?oa

, to Ny, and a transitive are from N, to N is also added. TR is wzos@a«o
proceed because 13 has been released by TH,. In Step 14, the request to update
C by TR, is waived because the update on C by TR has been carried out and
would have over-written the update by TH, (an edge exists from N, to N,)

The serializability and deadlock-free properties of the proposed algorithm

are proved in the following theorems.

Theorem 4.1: The sequence of requests as controlled by procedure
cc_minimumlock represents a serializable execution of the transactions.

s read-only write-only model is saiisfed when the

requests are scheduled according to an acyclic precedence graph [PAPTY
mw\ﬁurmwf To prove that the sequence of requests as scheduled by
ce_minimumlock is serializable, it is necessary to show that the precedence graph

as maintained by consislency is acyelic, and that ce_minimumiock follows this

120

STEP | TR, TR, TR, TR, | PRECEDENCE GRAPH

1 wiock B seo i ()

2 unlock B Step 3

3 | rock A OH—©

‘ Dvlock A

H uslock A Tn.u«no

L] wioek A

7 ushoek A Step §

s tlock B Fo—)

9 unlock B :-3.:;‘
10 wiock C e e
’ £y
12 unlock C Muﬁin&
13 wiock C
14 wru.,mmwlnmu Step 16
15 aved ualoex C 9‘&
18 whock A | < e
17 unlock A DD
Figure 4.4 An example o illustrate the coneunrrent execution

of four transactions.
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precedence graph ip u,nrcac::m the requests. The precedence graph as

Mmaintained by Consistency is acyclic becayse transitive ares are always added

whenever 3 BeW arc is addeq

to the graph, and no arc will be added between twe

nodes if ap 4. already existg between them. T, show that the resulting

precedence graph is followed by e minimumiock in mnrma:::m all requests, it

ence qmuw:o:&:..o of currently active transactions as

defined by the Precedence graph ig always followed whenever 5 lock is requested,

that an are ig added to the precedence graph wheneyer a conflicting access iy firsy

discovered betweey two ?m:mmo:o:m‘ and that thig arc is maintajined untif one of

these transactions g terminated. Hence, the tesulting precedence graph

obtained at the end of a sequence of fequests cap be assumed to exjst before the

requests are executed, and , linear order of execution can be enforced for all

:u:mmw:ocmv wh

ch results ip 5 serializahle €xecution.
Theorem 4.9 The Proposed protoco) ce_minimumlgef is amm&oﬂ#‘?mG

Proof Given a set of transactions w.%ﬁ TR \ ﬂ%{ the wait-for ﬁm,.wmoarmn

in an execution controlled by nn«SNESmSNc; can be represented ip the

mo:c«f.zm wait-for graph. For each transaction w,ki there is 3 node N in the

wait-for graph. A directiong] AT connects

 to Pm if TR waits for mv%\ on a

conflicting aceess, Since only transactions of lower Precedence mygt wait for

transactions of higher brecedence, ang the Precedence graph s acyclic, the wait-

for graph is also acyclic, and the algorithm ig deadlock free. o

he proposed Loncusreney  contre) algorithm does not impose  the

precedence «mwmzonmmmw between two transitions un

the first confliey between

them jg detected This allows shorter transaction§ tq proceed firgg without

waiting for the longer ones. However, the Maintenance of the precedence graph

ienih 4 is case, a n e
at each site may Pose a significant overhead. [y this case, a pri

precedence relationship may be used when the Lransuactions are Mitiated  Op,.

ansacti ith a smalle
convenient way is to define a higher precedence for a transaction with a smaller

Initial Broadeast Time. The serializa y and deadlock-free properties will st

be satisfied.

4.4 Local Queries

3 s of all transactions is known to
We have assumed that the status of all transactions iy g

1 ” ~ . . .. .M .
the proposed concurrency control algorithmy. However, a locaf Guery that only

accesses local relations may block other global transactions and this fact
unknown to other sites. To solve this problem, additional statys messages eap
be breadcast during the processing of local queries, This overhead May be large
because a database with a good data distribution would have many local queries
Another method is to allow the local queries to be processed when the aceessed
relations are not locked. When a global transaction TR, wishes to access a
relation that is locked by a local query w,%% it will be blocked in the LP Phase
until the relation is unlocked. The site at which TR, originates wil| broadeast

i i ved i R, are trying to identify
an ‘unfinished’ message when other sites involved in w,:n ying

. 'R, is figi Vs site will broadeast -
the completion of the LP Phase. When TR, is finished, this site will broadeast a

‘finished’ message and start the G§J Phase for TR .

4.5 Summary

In this chapter, the problem of concurrency control ip DDBAISs s
examined. Based op the property that information exchange on local
i t i lock based

Biﬁwanmmm\vawanﬁm networks is extremely efficient and fast, a lock basec

protocol using complete systern information iy developed, The complete system




information is available to each site without additional overhead by monitoring
the activities on the networks. A lock based protocol on such networks avoids
the large overhead and restarts of a similar protocol in  general networks.
Although the maximum degree ol concurrency is difficult to achieve, the
protocol places locks on relations with the minimum locking time. The
execution of transactions as controlled by the protocol is proved to be
serializable and deadlock free. Through a careful design of locking and

unlocking times, the concurrency control protocol is integrated into the

distributed query processing strategies.
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5.1 DQP in Future Oo:::::mnv:c: Networky
Q:Ic::w. all bQp Strategies are developed based on the assumption that
the fommunication COSt is in the form of no+m,.H where €o . €y are constants

her, the fixed cost ¢

and x is the volume of data to be transmitted, Furt o i3 a cost
fepresenting the overhead ip selling up the Communication channe

1 The objective of pQp becores the min

ted data, This assump

I, and is

ignorec

imization of the volume
of

transg

tion may pot be true or even close (o the
characteristic of future Computer networks. In future local nelworks, data are
likely to be transmitted iy store-and-forwgrg fashion rather than through a
shared bys. The transmission cost of each “hop” can be modeled a,
where and  are the end nodes of the hop, me is the fixed cost for a
transp

ission from node 1 to pode J, and n”L

i3 the ransmission cost Per unit of
data from node

Plonode ;. The total comp

ftication cost for a transmission

along the path z,.omf R _‘.(wm&mw . .Zonwa can be modeled as
s
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high-speed tommunication technologies, ste a5 optical  Bher

cation technology the Per unit cost of transmission between each pair
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promising strategy as follows.

Algorithm DQPGTSP

ﬂ: Set current site to the home site.
2 oin al querieq rela as i the current site
A v Ji I d tio the L
d s ¢ d 1 P as 0
en € resy G a site s I al ieast one gqueri ation thal has no
th [ |2 to g e 4 € ]
o
va S - 3L
een ed. e 11s site 10 e the next current site
b ioined. Set t} te to be ti ¢
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til all queried relations are joined together.
(4] Repeatsteps 2, 3, and 4 until all qu

< Lo the honie site.
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D fJ q { 4 e X
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algorithm DQPGTSP. We observe
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Figure 5.1

An example of Algorithm DQPGTSP.

(1) that each relation is accessed at least once;
(2) that each site is actived at most once except the home site; and

(3) that all the links used by the algorithm connect together as a closed loop.

To minimize the communication cost of Algorithm DQPGTSP, a sequence of
connected links that access each relation at least once with the minimum cost
should be found. If we cluster all sites storing a given file together, the problem
can be viewed as finding a closed path connecting all clusters with the
minimum cost. The example in Figure 5.2 shows the result of the clustering on

the example in Figure 5.1. Cluster R, counsists of sites X and Y; Cluster R,

1
consists of sites Y and Z; Cluster mww consists of site Y only; and Cluster R,

consists of sites W and Z. The problem can be modeled as the generafized

traveling salesman problems {GTSP), which is deseribed and solved the rest

of this chapter.

5.2 Introduction to GTSP

The standard traveling-salesman problem {TSP) can be stated as follows:

given a set of cities and the distances {costs) between them, find a tour {a closed

ath passing through each eily exactly once) with the nunim
p P g Y ¥ ]

in the generalized traveling salesman prodlem {GTSP), ¢

into possibly intersecting clusters, and the objective is to fi

at least one node in each cluster with the minimum

nany  real

studied for many years and many efficient Levn
developed. However, the struclures of large real tend Lo be

hierarchical. In this case, GTSP will be a better model to represent them.




Figure 5.2

~ e /

cluster R, P s
-

—— P

The clustering presentation of Figure 5.1
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For example, a traveling salesman wants to visit re 0 each stiate of

the country. Only one out of a number of possible cities in sach state is chosen as

the place to meet all local dealers in the state. To mi

ize the travel expenses,

a route visiting a city of every state is to be chosen. This problem can be
represented by a GTSP. As a second example, the post office wants to choose the
locations of mailboxs for all residential areas {one mailbox for each residential
area) as well as a route to collect mail from these mailboxes. A finite number of
possible locations in each residential area are under consideration. This problem
can also be represented as a GTSP. The third example is the construction of a
ring type optical fiber communication petwork. One of several possible sitesis to
be selected as the concentrators for each service region. The network is to
connect all the concentrators together as a ring. The cost of the construction is
proportional to the total length of the network and is to be minimized. The
forth example is a job sequencing problem in which some subtasks are to be
cascaded in various ways to carry out a given task with the minimurm cost. Fach
subtask can be carried out by various processes, and the cost of setting up a
process depends on the preceding process. By viewing a subtask as a cluster,
the process of carrying out a subtask as a city, and the cost of changing fram

one process to another as the distance between the two cities, the problem can

be represented as a GTSP problem. The fast example is a distributed query

processing problem solved by the algorithm DQPGTSE in Section 5.1

wown in Figure 5.2, each site storing a copy of queried file is a city:

storing a copy of a partic

are clustered into a cluster corresg

that file; and the traveling cost between a pair of cities is the communication
cost of the link connecting the pair of corresponding sites. The algorithm

DQPGTSP becomes finding a tour that visits each cluster at

ast once with the

minimum cost.
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The problem instances of both GTSP and TSP can be represented as
graphs. For any city in a problem instance, there is a node in the corresponding
graph representation. The cost of traveling from one city to another is
represented by a weighted arc connecting the nodes that represent the cities.
Various approuches solving the GTSP are discussed in Section 5.3. Formal
graph definition of the GTSP and some properties regarding its optimality are
discussed in Section 5.4. A set of transformations solving the GTSP by the
TSP-transformation approach are presented in Section §5.5. In Section 5.6, ,&m
properties of the transformed graph and the application of existing TSP

algorithms to solve the GTSP are discussed. A set of GTSP instances are tested

using the proposed algorithm. Finally, a summary is given in Section 5.7.

5.3 Solution Methods of GTSP

P is 5 well known NP hard problem. It is easy to prove that the

o NP hard since the TSP is a special case of the GTSP. Three
- approaches to solve the GTSP are discussed here. In the first

H H . . o
direci-solution approach, solution algorithms are directly applied

instances, There are some standard techniques applicable .

branch-and-bound algorithm  [LIT83]

ions are needed

found. The following two approaches utilize existing results in the TS to solve

the GTSP. They may not be better than the direct-solution approach, but 4

wumber of available solution algorithms for the TSP can be immediately

applied.

In the second approach, the carlesian-decomposition approach, a TSP
1

solution is found for each member of the Cartesian product of the clusters. Fach

TSP sclution is a feasible solution of the GTSP. Further, if the graph satisfios

triangle inequality, then the TSP solution with the minimum cost provides an

optimal solution to the GTSP. Assuming that there are m clusters with k nodes
m

in cluster i, the total number of TSP’s to be solved is i1 »N. In the third

L

approach, the TSP-transformation approach, the original problem is

transformed into another problem such that the TSP solution to the

transformed problem provides a solution to the QTSP of the ori

ginal prob

In this chapter, we show a transformation procedure in which every node

cluster of the original graph is expanded into three nodes.
™

3> k + m nodes has to be solved.

s>

in general, the Cartesian-decomposition approach has less complex

the TSP-transformation approach when exponentl

to, solve the standard TSP. On the other han

approach is more efficient than the Cartesian-decompos

n approach

polynomial-time approximation algorithms are used. ’
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5.4 Graph Representation and Some Optimality Properties

Let G = (N, A) be a directed graph. The set of nodes N are indexed by

2 . . i :
1, 2, .., n. For each arc {4, j) € A, there is a non-negative integer d(i, j)
representing a cost measure of the arc. The costs satisly the iriangle inequahty;

that is, d{i, j) + d{j, k) > d{i, k) for all i, }, k € {0, ..., n}. Nodes 1,2, .

., n are
partitioned into m possibly intersecting subsets (clusters) C , C [
P Y Ly
with k= |C i 5
. :.W >0 nodes in subset , and k +k,+ - +&k =n. For

convenience, denote {0} as cluster €y, C={1.2,

¢ e s g ] oy : :
arc (7, j) is an intercluster arc if 7 and jare not in the same cluster; otherwise

is an niracluster arc. A sequence of nodes 1

0t , Y.,y is called 2

generalized tour {g-tour)on G, when

= 1,2, .., m

The GTsP 15 to find a

g-tour {optimal g-tour) on the graph G

Gk =1

for v = 1, .., n, and mﬂ @ Qm = 4, for
Sy \ ) .
Y, 7 €41, nt 1 % j, then the GTSP degenerates into a TSP

L. .
ot} intersected wi

r cluster i

infersecting) cluster, and define the eovering

ng the node. We denote the coveris
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contained in that of the other. A g-tour domunales another g-tour if 1t visits
fewer nodes with a cost no more than that of the other. A g-tour is promusing il
it is not dominated by any other g-tour on the graph, and is non-promusing
otherwise. By first excludiug as many non-promising g-tours as possible out of
the search space in a solution algorithm, the complexity will be greatly
reduced. It is not practical trying to identify all such g-tours, because the
problem is equivalent to that of finding all optimal g-tours connecting the
minimum number of cities. From the definition of promising g-lours, we know
there exists at least one promising optimal g-tour in each graph. Therefore,
excluding all non-promising g-tours from the solution space will not eliininate all
optimal g-tours, although an oplimal g-tour may be non-promising. The

following definitions and Theorem 5.1 are helpful in identifying some non

promising g-tours in terms of topological properties. A canonic g-tounr

tour visiting no mutually exclusive node. For example in Figure 3.3, (7 s 4
- 1

non-intersecting cluster, while C, and Qw intersect to each other. The cove

cluster sets of v, , v, and vy are {1}, {2}, and {3}, respectively, while the

covering cluster set of v_is {2, 3}. The node v, is exclusive to both 1, and v,

G-tour {u, , vy, vy ¥y, v} is dominated by g-tour (v, , vy, vy, U 2

is non-promising. Further, it is act a canonic g-tonr, because it v

. s {4 i ¥
exclusive nodes, {v, , v} and {v,, u,t- The g-tour v

g-tour.

Since all nodes in a non-intersecting cluster are mutua

other, a canonic g-lour visits such a cluster only once. A«

graph without intersecting cluster is always promising, but it 1s not true il the

graph contains intersecting clusters. Theorem 5.1 shows that a non-cano

g canonic g-lours only in

tour is non-promising. For this reason, we are study

this chapter.




Figure 5.3

Some g-tours on a graph.

Theorem 5.1. For a graph satislying the triangle inequality, any g-tour thal
visits at least two mutually exclusive nodes is dominated by another g-tour on

the graph.

Proof: Let T be a g-tour that visits two mutually exclusive nodes v and v,

We can construct another g-tour 77 with no additional cost which

visits the same set of nodes visited by T except v, ith no loss of generality, let

ﬂuﬁ. SV U, Uy, Uy Yy v,), as shown in Figure 5.4, where v, and

i 2

{resp. vy and v ) are the nodes connected to node v, {resp. and £ {resp. 1)

is the path connecting v

and v, (resp. and vy} A closed path 77

H 2

Af VUL U Yy, g fv as shown in Figure 5.5 can be constructed. T isa
g-tour since ali clusters visited by T are visited by T’. The cost of T is no
more than that of 7, since d{v,, v} = d{vy, v ) + dlv , v,) Therefore, T'is

dominated by T'. ©

The following corollary states that a g-tour visiting more than one node of a

non-intersecting cluster is non-promising.

Corollary 5.1. For a graph satisfying the triangle inequalit

¥, any g-lour

visits more than one node of a non-interseeting cluster is dominated by a

g-tour that visits only one node of the cluster.

a non-inlerse

Proofl: Since the covering cluster sets of all

are all the same, by Theorem 5.1, such a g-tour is pon-promising. O



Figure 5.3

A g-tour T that dominates g-tour T in Fig. 5.4.

1a7

5.5 TSP-Translformation Approach

In this section, the GTSP is solved by the TSP transformation approach. A
transformation for graphs with non-intersecting clusters is presented in Section

5.5.1. Another set of transformations are developed in Section 5.5.2 to solve the

GTSP on graphs with intersecting clusters. In Section 5.6, heurist

gorith

for TSP, which are applicable to the transformed problem, are discussed and

are evaluated on some test cases.

5.5.1 G-tours on Graphs with Non-intersecting Clusters

We develop a G-S transformation that transforms a graph 7 with non-
-

intersecting clusters into another graph G’ = {(N', A"}, such thal any tour on

(' is a canonic g-tour on ¢ with the same cost and vice-versa. Denote the set of

nodesin C byv .,v . ,..., v Jford =1, ..., m. Thesetof nodes V'
: o Ui 1k, ’
in G’ is obtained as follows.
{i) For each node v, , G, create three nodes &, {i-node], 4 {b-node)
. ¥ ¥
and °, {o-node} in G
{i1) For node G in G, create two nodes 1 and ¢y, in G
, :
(1) For each cluster C in G, create a node g, (g-node}in
Let m; denote the set of nodes T..o Lo 2 4 b
[ mL in G created for the set of nodes in €. m:u?wm 6O are
clusters in G, We also define the set Tab coggh as Cpfvand (7= 00T

The set A contal

owing ares:

{iv) For the i

1odes, b-nodes and o-nodes in ¢

connected inte a cycle with aresi  {{e

3

V:7=0, 1, ..., k - 1}. These arcs have zero cost
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(v} The g-node in

a connected by arest {(3 g.),

7' =0,1, ..,k -1}, These

arcs have zero cost.

Anare {1y, 04,) with zero cost is created for cluster 0.

For an intercluster arc (v LU s m, 1, E i

€4, 0=sq4, 1 . .

:;..u 2

Pl

0 < f sk -1, 0= .Nv..v =k —1, there is a corresponding

intercluster are (o, .4 }in A’ with the same cost. That is, a
2l

cluster can only be entered through i-nodes and departed through o-

nodes.

An example graph G is shown in Figure 5.6. There are 24 g-tours. The
optimal g-tour is (0, v, |, v,4, U3, 0) with cost 12. The arcs added to G’ in
Steps (iv). {v) and (vi) are shown in Figure 5.7. Actually, single-node clusters,

that contain only one node, need not to be expanded.

The costs of intercluster arcs created by step {vii) are the same as the

corresponding ares in G, while the other arcs are intracluster arcs with zero

“herefore, the cost of tours on G consists of the costs of intercluster ares

Tosts.

Any tour on G can only visit clusters in the following restricted way:

visiting a cluster, a tour first visits an arbitrary tnode 1,

other nodes in the cluster, and leaves the cluster through the c-node o . If
E

intracluster arcs are taken away {rom a tour, then the rema

ng arcs represent a

canonic g-tour on G, Th

Theorem 5.2: Every tour on ' visits the nodes in m,,..w v €41, 2, ..., m}, using
. s r N {
a  subtour of  the form {5, Cob ek

\\\\ ///
\\ //
[
® )
\ /
// \\
I/I \\\
\\\\II// ,
\ )}
N J
Ill|\\
.\\\.\ia.-l'l/l
’ N
4 A Y
¢ \
§ }
/ \
Y \\
/Ill ‘\\\
cost matrix
0§ v | vy Yo | Yar | Yie
[i] 3 2 [ ] ]
Vi | 2 8 5 8
4#» 3 2 7 4
Vip | 8 7 4 3
ve1 | 8] 4 8 7
1?8 K] 8 8 8 L)

Figure 5.8

Clustered graph G with non-intersecting ¢l

isters,
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Ares added to G’ in Steps {iv), {v) and {vi}
of the construction process.

Wiy 1) mod k, Gy vk 1) moed k,

1 omad k0 Yoo

b e s Jlor j € {0, ... k 1}

7 iy

Proofl: If j is the first node in cluster C 7 that is visited in the tour, then the
W

theorem asserts that all the other nodes in cluster C." would be visited before

the tour exits through o, . The existence of such a subtour is obvious from the

[eE}

construction of G'. To show that the subtour is unique, suppose the theor

N

false, and the tour exits through 0, . . Jy * 7, then a contradiction can be

ERS

derived. Referring to Figure 5.8 , this implies that b, ,, canuot be entered

and must be entered through g .

through o, s

After traversing node o, the

Iz (P

tour can either exit the cluster or visit node b, ) In the first case, b, ,, canuot
ER I

be visited from o, , and must be visited through g9,. Node g is, thus, vi

W

twice. In the second case, the tour cannot exit without visiting nodes 1 or o
. .

T

w1y

again. These imply that the tour must exit through 0, and the theorem is
i

proved. O

Let ¥  denotes the set of all the permutations of {1, 2, ... m}. The

following three theorems prove the equivalence between the tours on (¢ and t

canonic g-tours on G.

Theorem 5.3: For every canonic g-tour on G = (N, 4), there is a

O

G = (N, A with 2’ = Z.

Proof: Let T = (0, v -

¥ ® 2

1

. . *
Gwhere {1, , 1, ,. ., 1 )€ and 5 €0, 1,




To
RTTEY

From

W ey,

arTs od laring
clastor Cf

Figure 5.8

arca leaving

Proof of Theorem 2.

113

tour T' = Toc 00 ~:. R N.‘_. s .Pav on 7 can be consiracted from 1
by  having t- = {i- 0 ) e kL b me o
f ,

i, FY) mod kL : mod & .

. .
L. - ) ,m. that
_-.fur»..\: mad ».. '

* ?

the arcs required to construct the tour 7' in the above sequence are present in

G, and the cost Z' of T’ is the same as thecost Zof 7. O

Theorem 5.4: For every tour on (', there is a canonic g-tour on G with

Z=2.

Proof: Let T' = Tc.o. 90 L r.” N Nr., + Vo) De any given tour on G
s B . . n )
where TT ty et } €S and ¢ is defined as in the proof of Theorem 3.3
m m P

cof € for

A canonic g-tour T can be consiructed on G by visiting node v
S

3

p=1,2, . m;thatis, T = (0, v~ -, v -, ..., 0" -, 0} Itis e

ti00y ERRE] Y1

i

y seen that

such a tour can be constructed and Z = Z°. O

Theorem 5.5: If a tour T is an optimal tour on G, then the correspe

caneonic g-tour T obtained in Theorem 5.4 is an optimal g-tour on (.

Prool: Assume that T is not an optimal g-tour, then there is a canonic

P = p

with smaller cost on G. By Theoremn 5.3, we can construct a tour 77 ot

rat T is the tour wi

the same cost as T, which contradicts the assumption t

the minimum coston G, O
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As an example, the corresponding optimal tour of G’ for the graph in

Figure 5.6 is shown as dashed lines in Figure 5.7.

5.5.2 G-tours on Graphs with Intersecting Clusters

For graphs with intersecting clusters, it is not easy to obtain a
transformation which provides a one-to-one correspondence between canonic g-
tours on a given graph and the tours on the transformed graph. The
transformation developed in this section can only guarantee that the optimal g-
tours on a graph can be obtained from the optimal tours on its transformed
graph and vice versa. A tour obtained from the transformed graph may
represenl a non-canonic or non-feasible g-tour on . However, another
canonical transformation can transform such a g-tour inle a canonic g-tour.
The transformation for the GTSP with intersecting clusters consists of two

stages. First, an [-N transformation transforms the original graph into an

intermediate graph {I-N graph) with non-intersecting clusters. xt, the [-N

graph is transformed into a third graph {G-§ graph) by the G-S transformation
developed in Section 5.5. The G-S graph is then solved as a TSP. The N
transformation that transforms the original graph G = (N, A) into the I-N

v P

3= (N7, A"} with aon-intersecting clusters O/, ¢

In a g-tour on (7, suppose the tour passes through a node v, whose covering

Lo . . )y . . ool
clusterset is S ={r v €C Y ie, v € [} C. In G, v isexpanded into IER
+ z 3 H ¥ P z

£ 8

nodes, referred to as the erpanded nodes of v, one for each cluster in the

'

covering cluster set. A g-tour that visits v, in ¢ unplies that the corresponding

g-tour in G’ would visit all the nodes expanded from v_.

With N'' = @ and 47" = J initially, the N graph "7 = (N7

constructed as follows:

{iy For every node v, in G, it is expanded into [

| v

| nodes in

N'=N" U T\._ . .mwuv. Notice that > 1. Denote the

4

expanded nodes of v, as E ,ie, E ={v, € Ch

»

H

v

(ii} For any two nodes in G, create lwo ares

AT=A" U {{y, .0 with  d(v, . vy o=

d(v, . v, J=0

™

{iti) For every arc (v, c<v

7€ ,@L and d{v, cTL

An example is shown in Figure 5.9 . Figure 5.9(a) is part of G Its

e

corresponding part on G'' i3 shown in Figure 5.9(b).

Essentially, every node in the intersection of multiple clusters is expanded
such that there is one expanded node for each cluster containing the node. The
cost on the arcs among the expanded nodes is zero. The arcs directed to and

emanating from the original node are duplicated for all the expanded nodes

Define the iniernal tour corresponding to a node v, to be the path

connecting consecutively all the expanded nodes of v, in G771

> cont

internal tour is zero since the cost of traversing the expanded nodesis zero. The

follows theorems show the equivalence between the optin

g-tours on

G
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5

ure .

9

tib

An example of I-N transformation;
{a) a part of graph G; (b} the I-N graph G'' of G;
{cjag-tour T on G''; (d) a better g-tour T'' on

G

LT

Theorem 5.8. Forevery g-tour on (, there is a g-tour on the I-N graph ¢

with 2"'=2.

Proof: Given a g-tour T on G, we can oblain an equivalent g-tour 7" on "'

as following: For every node v, visited on (, an internal tour can be created on

G’ that visits all nodes v, in £, For an arc (v, .:1 in T, thearc{v v }is

z [EIASNE

contained in T'', where v, is the last node of the internal tour cor
B !

cting the

T

nodes in £, and v, is the first node of the internal tour connecting the nodes

v

in Ey. It isobvious that 7" isa g-tourof ('  with cost Z2"'=2. O

Though every g-tour on G has an equivalent g-tour on G'', there is no such

correspondence from G’ to G except for the optimal g-tours. T s shown

the next theorem. Denote the preceding (succeeding) node of a node v inay

- +
tour T'" as v, ?:uv.

Theorem 5.7. For every optimal g-tour on the I-N graph G, there is an

optimal g-tour on the original graph G with Z=2"".

Proof: Let 7'’ be any promising optimal g-tour in G''. By

Section 5.4, T'' visits each cluster exactly once. Next, we show that from 777,

we can always construct another optimal g-tour T

G, T wvisits any node in K, then T

consecutively. Without toss of generality,
P + - - e
(o Vo g Vo By o ¥y Uy s ¥y s t,), where
N - . .
connecting v, and v, and v, Ty




its v instead of v,

- in cluster €77, where (7

e ¢ The -
VG ES Ihe node vy

may or may not be v, . The g-tour T'" is depicted in Figure 5.9(c). The new

g-tour T'' can be constructed by visiting v

» immediately after visiting Uy s

The are {v, | N.MHL is replaced by the arc (v, cmnvu and the arcs T\,_} cv)
and T.r: , f”:v are replaced by the are T:‘E R c_M:vA Since &f».: , cmcv =
divy oo ) o+ dle _+L. &cNL , cfv = 0, aad &cf , cmnv =
%,cm; , :ML. the cost of T'' is no more than that of T''. Further, since T’ is

optimal, the cost of T'" and T’ have to be equal. Therefore, every optimal g-
tour 7" on G'' can be reconstructed to another optimal g-tour T'' in G’
which visit all nodes expanded from the same node in G conseculively. From

T'', it can easily be seen that a corresponding g-tour T on G can be constructed

( by grouping all the nodes in an internal tour in T"') with thecost Z = 2",

Next, we prove that this g-tour must be optimal on G. Suppose that it were

not optimal, then this implies that there is another g-tour on G with cost less

7. By Theorem 5.6, there exiis a g-tousr on G with cost less than Z. This

i

contradict the assumption that the g-tour 7' on &' is an optimal g-tour. O

Theorem 5.6 and 57, the optimal g-tours on a graph with

tersecting clusters can be obtained from the optimal g-tours on its I-N graph.

The optim

| g-tours on the I-N graph, which contains non-intersecting clusters

can be obtained from the solution methods developed in Section 5.5.
However, the optimal TSP tours may not be easy to obtain if the problem size is

e, We should be able to transformi any TSP tour on the G-S graph into 2

e g-tour of a canonic g-tour on the original graph, such that any heuristic

TSP solution to the G-5 graph provides a heuristic GTSP solution to the

sriginal graph. From the theorsins in Section 5.5.1, we know every TSP tour

1149

on the G-S graph represents a g-tour on the [-N graph. So we only need to

transform each g-tour on the N graph into & canonic g-tour on the original

graph.

Given a graph G and its I-N graph G, an arbitrary g-tour 77

&

may visit the expanded nodes of a node v_ of G in the following ways,

{1) None of the expanded nodes is visited by 7',

{2) All expanded nodes are visited by T’ consecutively. That is, they are
connected as an internal tour.

{3) The expanded nodes are visited by 7'' in more than one non-
consecutive sub-tours. In this case, T represents a g-tour T in G

visiting v_ more than once.

s
S

Some but not all of the expanded nodes of v, are not visited by 77"

P
o
=

A combination of cases {3} and (4).

Some examples are shown in Figure 5.10 to Figure 513

graph G and its expanded nodes in are shown i

An example of 77" in G, which represents a g-tour vi

{case {3)}), is shown in Figure 5.11. Another example of

part of the expanded nodes of v, {case (4]}, is shown in Figure 5.12.

in Figure 5.13 is an example of case (4), sub-tours ¢ ,t,, and {yines

i

subtours. The equivalent sub-tours on G and G'' carry the same symbols.

T'' should be reconstrucied except that all expanded nodes are visited by

either case {1} or case

A canonic transformation algorithim CAN THANS to

be described first transforms a g-tour 777 on G
represens a feasible g-tour in &, then transforms an

g-tour. Given a g-tour 7" in the I-N graph G,



Figure 5.10

Figure

o

i

A graph G and its I-N graph G,

Atouron G’ that visit v, on G twice.

-

Figure 512 A tour on G that does not visit all expanded nodes of v,.

Figure 5.13 A tour on G’ that is a combination of Case (3} and
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original graph G, another g-tour in ("' representing a feasible g-tour in G is
first reconstructed by applying steps {1} on T’'. Next, the new g-lour is
transformed into a canonic g-tour by applying step (2} on every pair of mutual

exclusive nodes. The algorithm is shown as follows.
Algorithm CAN-TRANS

{1) For each node v, with expanded nodes E inG"

[

{(1.a}lf its expanded nodes in G*' are visited by 7" in either case (1) or case

¢

{2), then do nothing;

otherwise, execute steps {1.b) and (1.c).

{(1.b)Assuming that the expanded nodes that are contained in T’ forms

several pieces of possibly zero length (a single node) disconnected

paths, called internal paths,

?:L‘....c .L.?:iiic_tav*fl ?\n?«‘..j

), do

)
eéﬁ_.w

following.

Construct the internal tour T that connects all nodes in E_in an

arbitrary order except the first node and the last node, There are
three different cases in the sefection of the first node and the last node
of Tt

Case {a) - If al least one internal path has non-zero length, then select

the first node {resp. last node) of such an internal path to be the first

node {resp. last node) of T . U more than one alternative exists, then

select the pair of nodes, say v, _and that the value of

the first node and the last node should beloag to two different internal

paths. Assuming that the first node is v, and the

B st node is one of

Ly, ) to e

e from

Ac:.u N N N

v , take the arc {v
1.z :

ol

the internal path instead of are (v, o :.L‘

Case (c) : If only one expanded node in £ . say

T'’, then select v. _ as the first node and another arbitrary expanded

1,2

node of v, as the last node, say v, . Take the arc ( )t

7 Ty,

emanate {rom the internal path, and step (1.¢}is skipped.
(1.c)Replace the arcs directed to and emanated from the paths

Ac_.:« A q:L,f o, ?JL PP céi.uv with the arcs

- +
Ac<c
-u‘n

%
-

B - . . )
) I £ ), i.e., connect the first node and the
4 £, el

last node of each internal path together.

{2) Foreach pair or mutual exclusive nodes v, and v, do followings.

if the covering cluster set of v, is contained in the covering set of v,

then bypass node v by connecting the preced:
J ¥ v J

g node to
¥

succeeding node of v .

For example, the new g-tours of the g-tours in Figure 511 and b

are shown in Figure 5.14 and Figure 5.15 respectively. The cost of

g-tour depends on the strategies in interrelated steps of algori

TRANS. The best solution can only be made by compari

alternatives. Ad hoc strategies are preferable to an optimal o

procedure itself is a part of a heuristic algorithm,

Although the ares of I-N graph does not satisfy the triangle

{which is discussed in next section), the canonical transformation w

that the cost of the re

that of the




N

-

i .hi\

2
?u;%

Figure 5.14 The new g-tour of T’ in Fig. m 11
alter canonical transformation.

Figure 5.15  The new g-tourof T in Fig. 5.13

after canonical transformation.

tour as long as the arcs of the original graph satisfies the triangle inequality

This is proved in the next theorem.

Theorem 5.8. [f the arcs of 2 graph & satisly the triangle lnequality, then t

canonical transformation transforms any g-tour 7' on the I-N graph " into
another g-tour T.in G with equal or less cost.

Proof: Since arcs in G satisly the triangle inequality, step (2) of Algorithin
CAN-TRANS will transform a g-tour into another g-tour with no more cost. We
only need to show that steps (1.b) and {l.c} transform a g-tour on ' into

another with no more cost (step {L.a) will not change T'' ). Suppose v is the

node under congideration, and the expanded nodes of v that are contained

T' are connected as the following internal paths, (v ..

v R cél_kv.

b, (b}, and {¢]

hoavh [

Case {a), (b}, and {c} in the following refer to Case {a

respectively in st N-TRANS. First, if they are in Case
- + .
n £y, o y N )
{a), thea the ares ?:L , c:LW and {v . ) are kept unchanged in the new
T"”. However, the arcs {v__,v ) and {v ., v } are replaced by
fael tl 1 (P4

{v. ., * ), the ares {v. _,v _} and {v v, ) are replaced by

10,8 7 4,277 fg.x P Ty, i sp v Lz Ty vt/ Y
?a.u s c_u Lu and so on. The replaced arcs are all exis

should satisfy the triangle inegqual

in G or a2 new one with zero cost. The replacement will not increase the cost ol

T in both cases. Further, the cost of any internal tour is zero. Therefore, the
cost of the new g-tour is not increased. Second, if they are in Case {b}, then the

iy

and the cost

Lo Y L is kept unchanged in the new T
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the same as the cost of {v,

Ihe replacement of other arcs will not

‘rease the cost for the same argument as in Case {a). So, the cost of the new

g-tour is not increased. Third, if they are in Case (¢}, then the are {v CoLu L )is
, L)

1,1

kept unchanged in T'', and the arc (v :NV is replaced by the arc

B

{v, , v, ) which has the same cost as that of (v

e ,). Therefore, the cost

of the new g-tour is the same as that of the old one. O

In summary, a transformation consisting of two transformational phases
transforms the GTSP on a graph with intersecting clusters into the TSP of
another graph. The optimal GTSP solution to the original graph can be
obtained {rom the ov».::._: TSP solution to the transformed graph. The canonic
transformation transfor,ns any TSP tour on the transformed graph back to a

canonic g-tour on the original graph, such that the heuristic TSP algorithms

solves the GTHP.

5.8 Solutions For The Transformed Graph

s section, we examine the properties of the transformed graphs (G-S

ing TSP on these graphs. The

inequa

The ares do not satisfy the triangle inequality since there exisis ares with zero

cost. The graph is not cor

ce certain ares are omitted to force the TSP

By

tour to be a feasible and canonical g-tour on the original graph. However, the

graph can be transformed into a complete graph by add

dumimy arcs with a
very large cost. Heuristic TSP algorithms applicable only to complete graphs
can then be applied to the resulting graphs.

Different approaches to solve the ToP optimally have been studied
extensively in the literature [BELSS] [BUR7Y] [GUPE8]. These include {a) integer
programming [DAN54] [MIL76] [MIL78], (b) dynamic programuung [B311.62]
[HEL62] {GONB2], and () branch-and-bound [LIT83]. However, since the T5F s
NP-hard, it is difficult to apply these algorithms to solve the GTSP optimally.
For this reason, it is more realistic to apply polynomial-time heuristics for the

TSP to solve the GTSP.

Over the past fifteen years, a large number of polynomial-time heuristics

have been proposed to solve the TSP. These heuristics do not guarantee an

optimal solution but seem likely to lead to “good soluticns.”” Tt

can be classified into the following categories.

{1} Tour building : Starting from any node, a tour is bul

It by successively

including other nodes into the tour. Nearest newghbor [BELEX]

insertion {arbitrary insertion, nearest insertion, cheapest insertion, farthest

insertion) [KAR64] are two examples.

{2) Tour-to-tour improvement @ Start

g front a tour, better tours are

obtained by changing the order of some nodes iteratively. An example

o

Partitioning and decomposition: A

series of subproblems first, then each subproblem

Stripis such an example {BEAS9] [BENS3]. :



(1) Relaxation:  The TSP

relaxed into another problem, such as the
minimum spanning tree [HELT70] [HEL7L [HONT8], oplimal assignment
problem [KAR77] [KARTY) [GHLB], n-path {HOUSO|, and matching
problem [BELT1], then the solution is transformed into a TSP tour.

(5) Others: This calegory includes the longest-path-problem transformation

[HTARG2] [PANB4], analog computer approach [CLATS], etc.

Given a he [, let R_{{I) be the ratio of the obtained tour fength to
the rinimal tour length. For the TSP unconstrained by the triangle inequality,
for any &k = 1, the problem of finding a tour with & of length bounded by kis
NP-complete ?&qu,ﬁ, As a result, it is unlikely that polynomial-time heuristic
with constant upper bound on R_{H) exists, However, for the asymmetric TSP
unconstrained by the triangle inequality, Karp [KAR79] gave 2 polynomial-time
heuristies with complexity OA:J. If the distances of the graph are drawn

indepeadently from a uniform distribution, with probability tending to 1, this

hewristic has R < 1 +e(n), where e(n) goes to zeroas n ~ @,

Although the distance of the transformed graph of the GTSP do not satis{y

the above assumption, the algorithm still work well for the transformed graph.

hm on a set of test problem instances generated

hy randos

eratively selects two

cycles and replaces an are from each eycle with a pair of ares that connect the

Lwo cycles together. However, sinee the transformed grap

is not complete, the

¢ may not always be pos .. Dummy arcs with a very large cost may be

ed by other

contains suvh

anstive search

dummy arcs, then the resulting g-towur is permuted by an ex

algorithm to eliminate the dumnmy ares. Figure 5.16.5.17 508, 5.19 and 5.20

are the results on some test graphs whose cities are clustered in a more or

geographically related way. Table 5.1 shows  the results of a set of test grup

whaose cities are clustered randomly. The number of clusters ﬁiwm, from 3 to 8.
The average values shown in the table are the average on the ratios of the
heuristic solution to the optimal solution of all instances. The optimal solution
of a problem instance is obtained by a branch-and-bound algorithm. Due to the
lack of a good bounding estinate for graphs with intersecting clusters, the
clusters in all testing graph are non-intersecting. On the VAX 11/780 computer,
in most cases, it took about nine hours CPU time on the average to get an
optimal solution for a graph with eight non-intersecting clusters. The long

execution time is due to the inability of purging large number of solution:

the

branch-and-bound algorithm.

The following example is to show how the query processing probl

Figure 5.1 and 5.2 is solved. The graph representation of the problemn is shown

in Figure 5.21. In the problem, a guery initiated form

mwtmw.ﬁmww,mw* together. These files are allocated at sites W, X Y, Z In the grapl

each site is a node; the cost of ares are the communica

simplh

y, the graph is assumed symmetric and

same communication cost i

both directions. As discussed in

query processing problem can be solve as a GTSP problem if the cor




Number ol clusters : 7.

Cost of the optimal g-tour

optimal g-tour
P approximate g-tour

S 4551,

Cost of approximate g-tour : 5580.

Figure 5.16

Example graph 1: optimal and approximate GTSP solutions.

Number of clusters @ 13,
Cost of the optital g-tour

Cost of approximate g-tour

Figure 5.17

optimal g-tour
approximate g-tour

: 6518,

6818

Example graph 2: optimal and approximuate GTSP solutions.
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optimal g-tour

e approximate g-tour

Number of clusters : 8.

Cost of the optimal g-tour : 4614.
Cost of approximate g-tour : 4719,

Figure 5.18  Example graph 3; optimal and approximate GTSP solutions.

optimal g-tour

approximate g-tour

Number of clusters 5.
Cost of the optimal g-tour : 41051
Cost of approxiinale g-tour 1279,

Figure 5.19

Example graph 4: optimal and approximate GTSP solutions.
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Comt of the optimal g-tour

Number of clusters
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: 5179,

Cost of approximate g-tour

Example graph 5: optimal and approximate GTSP solutions.

Figure 5.20
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Table 5.1 Performance of the TSP-transformation approach as solve

Karp's TSP algorit

1

Cost of G-tours

Number | Average m,mﬁwv.l Maximum | Minimum
3 1.00163 | 0.001551 1.01635 i
4 2.3557 0.331121 3.54368 1
3 1.58284 | 0.153909 2.37311 1
6 1.95684 | 0.133881 2.62162 1.1785
7 1.52378 | 0117846 2.16867 1.03278
8 1.40966 | 0.109277 2.00763 1.01876 w

® Optimal cost is 1

® 10 cases are executed for each type of gaphs with a certain number of clusters

Execution Time

Number }<2‘u_><a~vmn”,mnwua Dev.|Stand D:., Maximum | MaximumiMini

of clustersi| Karp Qpt. Karp Opt. Karp |
3 18807 7 842 0.7 2377 12

: !

4 18318 24 e 2.2 18985 ! 38 | i5383 3.7
5 18102 83 243 w7 ) ez o 208 | tagor 15
8 18328 308 140 55 17388 | 874 15592 1
7 25343 1888 1805 2083 33147 0 18392 7394 260
8 24824 | 33718 2795 15980 g 42595 1 158997 18403 848

® CPU time umid © seceads o8 3 VAX-
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Cl

Figure 5.21  Graph representation of Figure 5.2.

Cluster Ry

Cluster B,

Figure 5.22  I-N graph of the graph in Figure 5.21.

data. The corresponding I-N graph and G-S graph are shown in Figure 522 and

5.23 respectively. For simplicity, single-node-clusters, clusters Z_ and W% are
not expanded in Figure 5.23, and the arcs connecting expanded nodes are
bidirectional. One of the TSP-tour in the G-S graph is shown in Figure 524,
The corresponding tour and g-tour in the I-N graph and the original graph are
shown in Figure 5.25 and 5.26 respectively. The joining sequence shown in

Figure 5.1 can then be obtained from Figure 5.26.

5.7 Summary
{n this chapter, we have examined the characteristic of commnunication
networks in the future and have proposed an algorithm to solve the distributed
query processing problem on such networks. The problem is then formulated as

a generalized traveling salesman problem. The properties of the genera

traveling salesman problem and various approaches to solve it are studied. A set

of transformations have been proposed to solve GTSP by applying the sof

algorithms of TSP on the transformed graph. A graph with intersecting ¢

is first transformed into another graph with non-intersecting clusters. The o

requirernent for this transformation to be valid is that the triangle inequ

is then transformed into a third graph such that the solution of

traveling-salesman problem on the third graph provides a solu

original problem. The transformation is done by expanding each node

original graph into three nodes and adding m nodes to control Lhe routing. For
g £
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To all i nodes,
To ali | nodes,
From all o nodes, Va, xrand Vo Vg, xo #nd vV
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From all ¢ nodes, <x. o snd <a- v

Ry

From ail o nodas

Prom ait o nodes

To ail | nedas From all o nodes,

From all o nodes,
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From all 0 nodes,
Toail § From all o nodas,

To all | nodes

To all i nodes,
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od
Fress all ¢ nedes From ail o nodes

To sil t nodes, Va, xr 8nd v

To ail | nodes, Va, xr and v,
odes,

su«

From sl o nodes,
Ya, xv 20d f:u v
<u. x: sad v

Figure 5.23  G-S graph of the graph in Figure 5.22.

Figure 5.24 A TSP tour found from the G-S graph.
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graphs with intersecting clusters, another transfor:

u converts the possi

infeasible solution obtained by solving TSP on the transformed graph into a
Cluster R

feasible and canonic solution of the original graph.

Cluster Ry

Figure 5.25 The TSP tour on the I-N graph.

\
4 7
7 Cluster Ry

Mo

Figure 5.26 Final G-tour on the original graph.




CHAPTER V1

PERFORMANCE EVALUATION

One of the best ways to evaluate the DDBLMN is to implement a prototype
system and then benchmark its performance. However, such a study would need
extensive time and resources, which is far beyond the limit of this thesis.

Further, it's inefficient to adjust the design by building new prototypes. Instead,

s ostudy is conducted to demonstrate the leasibility, correctness, and
effectiveness of the DDBLMN. The performance of different processing

strategies are conipared in the sitnulations.

8.1 Objectives of the Simulation
The objectives of the simulations are presented in this section.

{. Showing the Correctness. The design of a cornplicated integrated system

such as DDBLMN may not be bug-free even if each individual algorithm

correct. Further, the correctness of some algorithms in this thesis, such

hard to prove form
necessary to demonstrate their correctness.

2. Discovering the implementation diffculties. Some assumptions made in
this research may not be easy to implement in a particular system. For example,
no restriction is made on the number of Transaction flandlers that a system can

o concurrently. Thi
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focal systern can initiate as many TH's as possible. However, this is very difficuit

vo implementinas

] computer, since the number of concurrent processes that
a system can handle is usually limited. As a consequence, a transaction may be
blocked after the initial broadcast in the home site due to the lack of available
processes in other sites. Such problems can be easily discovered through

simulations and then solved before the system is actually implemented.

3. Comparing different strategies. When selecting a control strategy among
possible alternatives in implementing the DDBLMN, the system designer should
be aware of the differences among various strategies on the potential of

achleving system goals under different conditions. Henceforth, a comparative

study is one of the obj.ctives in this simulation study. We have compared

between
{a} redundant and non-redundant materialization, and
{b) releasing locks after the LP phase and afer the RT phase.

se strategies are compared under the {ollowing conditions:

{(a) the ratio of the number of update transactions to the total number of

transactions,

{b) the number of transactions a site can handle,

the ratio of packet size in the communication system to the block size

the transaction arrival rate.

8.2 Queuing Network Model

Figure 6.1 depicts the event-driven queuing model of DDBLMN. The
physical resources are modeled as servers, which include DISK’s, CPU's and the
NETWORK. The logical resources {relations) are not showu in Figure 6.1,
which are controlled by the concurrency control protocols and cannot be
modeled as a simple server. However, a pseudo server “"THINK" is used to model
the lumped waiting time in the transaction processing. A request for a service,
the start of a service, or the termination of a service is an event. The routing of

tokens is dependent on the state of the system. An active TH in a site s
represented as a token, which circulates around the servers in a site and the
server NETWORK. A token in a site is generated for an incoming transaction,
which in turn generates another set of tokens in other sites after the initial
broadcast. Each such token represents a TH in 2 related site. A token is

removed either after the transaction terminales or after the site where it is

located is no longer involved in the processing. A token is busy if it is be

served by a physical server {a physical server represents a physical resource);
waitting if it is waiting for service from a physical server; and sleeping otherwise.

A token is also called active if it is not sleeping.

Al processes in one site share the single CPU in a ‘process shari

The service time of a CPU server is proportional to the comuplexity of the job

and the volume of the data to be processed in the CPU. Since

time of the local database in each site is dominated by the disk :

it is modeled-as a DISK server working in FCFS (first come first

Only one token can be serviced at a time, and other tokens request

service should wait in the DISK queue. The service time of a DISK server

function of the disk seek and data transfer times. The disk seek
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Figure 8.1 Quesing model of simulator DDBLMN-SIM.
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uniformly distributed random variable. The data transfer time is proportional 1o
the volume of data to be read from or written to the disk. All sleeping tokens in
a site are put in the local server THINK until wakened up by other tokens.
There is only one NETWORK server in the model, which is operated i

L)

»

“random selection” mode to model the behavior of the CSMA/CD protocol. In

each site, a first-in-first-out (FIFO) queue is used to store ail local tokens |
tokens generated from this site) that request NETWORK services. The
NETWORK server randomly picks one of the non-empty queues and serves the
first-arrived token in this queue. This type of servers is called a RANDOM

server in this thesis. The service time is also proportional to the volume of data

to be transferred.

8.3 Process Flow of DDBLMN
The process flow of a transaction in the system is shown in Figure 8.2, A

transaction is initialized in the home site first. After the initial broadcast,

sub-queries are processed by a set of siles cooperatively. In each sub-query

processing, a TH requests read-locks from the local Councurrency-Control
subsystern for those relations stored locally and used in the LP phase. The

Concurrency-Control subsystem grants the locks to the TH tempora

request passes the consistency checking., At the end of L processi

synchronization phase is procecded to synchronize sites. The synchronizati

process also serves as lock confirmation. After the syachroniz

successfully, the temporarily granted locks are permancnt

the network will invalidate these temporary locks. The LP phgse

restarted in this case.
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TIALITATI

INITI
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R

Figure 8.2 Process-flow diagram of DDBLMN-SIM.

Following the successlul synchronization,  the  (SJ

Seostarts

immediately. During this phase, a sequence of global semi-joins are processed

iteratively. In starting an iteration, a TH requests the read-loeks for those

relations not locked in the LP phase. The minimuimn attribute is then

and broadcast to other sites which execute the semi joins with the

attribute. The iteration then terminates, and the next iteration begins, The RT
phase is started after all attributes are broadeast. All related sites broadeust in
turn their relations that have not been broadcast by other sites to the hore site.
A TH not in the home sile terminates at the end of the RT phase if there is no
relation in this site to be updated. All sites with relations to be updated
continue their processing in the PP phase. The write locks are lirst oblained in
this phase. After the write-locks are temporarily granted by the Concurrency-
Control subsystem, the home site broadcasts the identity of the target data with
new values to all sites. The write-locks are confirmed by the broadeast. All sites
will update their database and terminate the transaction. The write-locks may

be invalidated before the broadcast if there is a conflicting lock broadeast duri

this phase. The PP phase should be restarted in this case. All relations to be

updated are still read-locked in this phase, therefore, there is no need (o rest

from the beginning.

8.4 Assurnptions in The Simulation

To simplify the simulation so it can be conducted within a

amount of time, the following assumptions are made.

{1} There is only one query in each transaction.

{2) There is at most one attribute to be updated.



The attribute to be updated is also a queried attribute. Hence, a write is

always preceded by a read.

Il non-redundant materialization is used, a copy of each queried relation is

randomly selected. (In the simulations, the non-redundant materialization

is really implemented by a non-replicated file allocation.)

After semi-joined of joining attribute of selectivity p, a relation {say, R }is
y 13
reduced from the original size of 3, o a size distributed within 309

deviation of s xp. The estimated size of a relation after a semi-join is s <p.
:

The indirect semi-join effect is ignored.

The heuristic function used in the GSJ phase is assumed Lo be the product

of the effective size and the relative selectivity of the candidate mintmum

attributes.

The join restriction effect in the RT phase is ignored since it is insignificant
and is expensive to caleulate in the simulations.

The transmission order in the RT phase is governed by the site numbers.
Since only one message can be broadeast from any site at any time, we
assume that the Network-interface subsystem in each site can only process

onie network access request at any time.

The service time of a CPU server is independent of the number of processes
sharing the CPU. We make this assumption for two reasons. First, the
CPU time is about one to two orders of magnitude less than the disks and
network service times (the minimum overhead of the disk/nelwork is a

ﬂ o . , . :
block /packet). Second, inexpensive mulliprocessors are going to be

able soon such that each TH may be served by a dedicated processor in

such systems. { Intel has already produced a hypercube computer system

;
§
{
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consisting of 32 80286 microprocessors with a cost less than $100,000.

Finally, switching the CPU to service another token during the simulations

is very computationally expensive,

8.5 Sumulator DDBLMN-SIM

The simulation is implemented by a simulator DDBLMN-SIM, which is
written in the C programmming language and developed on a o,?@.«. systerns
runing BSD4.2" at the Department of Computer and Information Science, the

Ohio State University. The simulator is executed on a SUN workstation r

the same operating system.

A set of primitive subroutines in a simulation management package

DDBLMN-SMPL, which is a modification of SMPL [MACR0| is used to control

the simulations. These subroutines include initialization operations, eve

scheduling, facility reservations, random variable generation, data co

and reporting routines. A simulation model using DDBLMN-SMPL subro

is a static network of FCFS and RANDOM [acilities. Each of
associated with a queue in which incoming tokens wait for service. When the

facility becomes available, a token is taken off the queue and serviced. The

service involves reserving the facility for a given time period and, when t

time has expired, passing the token to either another fa ¢ or the THINK state

to sleep. After initialization of facilities, the simulator performs four

operations iteratively.

{1) Reserves a facility for a token to disallow any other users

the facility is already in use, the requesting token is pli

waiting for the facility

* UNIX is the trademark of AT&T. BSD 4.2 is Berkeley version 4.2,



(2) Releases a facility, and allows a token (either the first one or randomly

selected) in its queue to access to it il the queue is not empty.
(3) Schedules a new event to happen at some future time. This action places
the new event in a time-ordered queue of future actions. This step is

referred to new-event-scheduling

(4) Causes the next event to occur. This action removes an event from the

time-ordered queue.

Figure 6.3 shows the fundamental flow of events used in the simulations. After
the queuing network is initiated, events are repeatedly generated until the

following termination conditions are satisfied:
{1} the system response time is stablized, and

(2) at least a certain number of transactions are executed.

[2) is needed to increase the confidence on the property of deadlock

Fach evenl asks the simulator to either reserve or release a facility. If the

Tacility is successfully reserved, the simulator schedules a release event to occur

at the end of the service time. If the event was to release a facility, then the

program releases it, routes the token to the next facility according to the state of

and schedules a new event to reserve the new fac

ty immediately.

A token in any queuc can be removed and rerouted to the local THINK

server. Tl uselul for mod r when

ng the behavior of & Transaction Han

the temporary locks it holds are invalidated by another transaction.

{t i nout very difficult Lo implement the queuing nelwork model in Figure

For DISK servers, the implementation is
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Figure 8.3 Event flow of DDBLMN-SMPL




straightforward since they are FCFS servers. However, modifications to
DDBLMN-SMPL are nceded to model resources operating in other lypes of
service and queuing disciplines. For the servers that can service all incoming
token parallelly, such as THINK and CPU, there is no associated wailing queue.
The finish time can be immediately calculated. Thus, next event can be
immediately scheduled when a service is requested. When a token needs a service
from the CPU at time t,, the service time ¢, is first computed and added to ¢,.
The next event after the CPU service is scheduled at time ¢, + ¢, When a
token is routed to a THINK server { either blocked or halted) in new-event-

scheduling, it stays there until wakened up by another token. There is no new

event Lo be scheduled in new-event-scheduling in this case. For the NETWORK

server, which serves “random selection” discipline with multiple FIFO
queues, we add 4 logical server in front of each queue to model the Network-
Interface subsystem in each site. This is due to Assumption (9) in Section 6.4.
Another queue is attached to the NETWORK sever itself. A token leaving the
Network-Interface server is routed to the NETWORK queue. Also, at most one
token from cach site can be routed to the NETWORK queue. In the mean

time, Network-Interface is not released to service another token unless the token

in the NETWORK queue is serviced. When the NETWORK server is free, a

in the NETWORK queue is randomly picked to be served and the
Network-Interface subsystem {rom which the token came from is free to service
another token in its queue. The tokens in the Network-Interface servers of other
sites should keep waiting for a NETWORK service. The DDBLMN-SMPL

imiplementation of the queuing model shown in Figure 6.1 is detailed in Figure

6.4, As we can see, there is no FIFO queue associated with servers THINK and

CPU. The Network-lnterface subsystern in each site is modeled as a FOFS

O\L n\/D P Cw..l 6

U NETWORK - INTERFACE

CUSTOMER

OTHER

SITES SUBSTETER

NETWORK

QuT

FCFS server
@ RANDG

SN Q .
§ } Server without queues
~’

OM server

‘Figure 8.4 DDBLMN-SMPL implemestation of DDBLMN-3IM.



"WORK s modeled as a RANDOM

In addition to the capabilities of supporting non-FCFS facilities and
removing tokens from any queue, DDBLMN-SMPL differs from the original
SMPL in that it is improved in DDBLMN-SIM. For example, a number of
subroutines in SMPL are translated into macro definitions in DDBLMN-SMPL

to reduce the overhead of subroutine calls in the operating system level.

The greatest difficulty in implementing the DDBLMN-S8IM is token routings
which is controlled by the complicated system state. The state transition
diagram is shown in Figure 8.5. The detailed description of these states can be

found in the program listed in the Appendix.

8.8 Simulation Parameters

The parameters used to drive DDBLMN-SIM are shown in Table 6.1 to
Table 6.8. Table 6.1 shows the parameters for system configuration. Due to the
CPU time constraints on the simulations, only four sites, four re.ations, and four
joining domains are set up for the system. We assume that each site can initiate
as many Transaction Handlers as possible. However, the maximum number of
transactions entering a site is limited. As a result, the number of TH’s that a
site may generate is also limited. The cardinalities of the joining domains, the
width of the joining domains, the width of the relations, and the initial
nw::mw::owcﬁﬁmmmtosmw«mm“mcmroiswm‘m,wimw;.Hrmnazmm:qwsonwam

relations, which tell whether a relation has a particular joining domain, is shown

The initial selectivity of each joining attribute, which is the ratio

cardinality of the attribute to the cardinality of the domain, is

ions is shown in Table 6.4

o st 0 L
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State diagram of DDBLMN-5IM

Figure 6.5




; Table 6.3 Initial selectivities of all joining attributes in DDBLMN-SIM.
Table 6.1  Parameters of DDBLMN-SIM system configuration.

attribute 1lattribute 2iattribute 3]attribute 4 w
i

Relation 1 - - 0.8 0.3

o T

Number of sites 4 I’J Imaf_wmnrﬁmi!l.(l cy\imwiw 88
b S elation 3 0.8 . 0.1 -

MAX_TR_OF _SITE 58,10 Relation 4| 08 - - 05|
Number of relations 4
Number of joining domains 4

Cardinalities of joining domains|80, 80, 160, 200

Table 6.4 Relation allocation in DDBLMN-SIM.

| Width of joining domain 16, 8, 24, 40
Width of relations 240, 376, 408, 368 Site 1|Site 2{Site 3|Site ¢
Initial cardinalities of relations |38707, 40960, 193536, 30720 | . mmuﬂmuw w M. ” M
Relation 3 i 0 1] H
Relation ¢ 0 1 [i] H

MAX_TR_OF_SITE: max. number of transactions that can enter 3 site at the same time.

Table 8.5  Service time of servers in DDBLMN-SIM.

{time unit : 10 ® second)

Table 8.2 Configuration of relations in DDBLMN-SIM.
CPU [3.0 * number of bytes

( 0/1: existence/nonexisience of sm attribute in a relation). DISK |uniform (0, 2 |+ 1000 * number of blocks
E) N Ooco L

BUS | 1.0 * bits/packet * number of packets

domain 1{domain 2|domain 3|domain 4
Relation 1 g 0 H H
Relation 2 0 { 1 fi} Table .8  Other timing parameters in DDBLMN-SIM.
ion . {tiane unit : 10 % second)
Relation 3 { t { ¢
Relation 4 i 0 0 i Bus contention slot| 30

Preprocessing time | 1000 |
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Table 6.7 Data format in DDBLMN-SIM.

_H!Z::::uq of bits/byte 3
_. Disk block fength 1000 bytes
i Packet length (bytes) | 100, 500, 1000, 2000

Table 6.8  Parameters used for query generation in DDBLMN->IM.

QUERY_REL_HIT 0.8

TARGET_REL_HIT 0.4

QUERY_ATT_HIT 0.4

TARGET_ATT_HWIT 0.4

UPDATE _QUERY _HIT {0,06.4, 07, ¢

hC1®>HM|>HHlI~.H 0.4

QUERY_REL_HIT:
TARGET _REL_HIT:
QUERY_ATT_HIT:
TARGET ATT _HIT:
UPDATE _QUERY_HIT:
UPDATE_ATT_HIT:
UPDATE_QUERY _HIT
UPDATE _ATT_HIT

probability that a relatios is gueried by 3 query.

probability that s relation is to be retrieved by a guery.
g‘ow:v,_:nw that an attribute is queried by a query.

probability that an atiribute is to be retrieved by 3 query.
probability that a query is an update.

probability that 2n atiribute in an update is to be updated.

is the probability that a query is an update.

is the probability that an attribute in an update is to
be updated
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All timing parameters are shown Table 6.5 and 6.6, At a speed of §

MIPS, we assume that 2 CPU can process a byte { 8 bits) in 3 instruction ey

and that the processing lime is proportional to the number of bytes to be

processed. The disk access timme consists of two parts: the block seck

and
the data transfer time. The length of each block is 1000 bytes. The block seek

time is a uniformly distributed random variable between 0 and 20 miliseconds,

which represents the time of moving the disk head and locating the sector. It is
assumed that there is no seek time between adjacency blocks transferred in the
same request. Once the first block is located, successive blocks can be transferred

continuously with a speed of 1 milisecond per block. The bus com “ation

overhead is represented by a constant and a variable proportional to the volume
of transferred data. We assume that all necessary initialization work is done in
the Network-Interface subsystem, and the contention overhead is accounted for

separately. Consequently, the service time of the BUS server is endent

on the number of transferced puckets. The number of overhend bits is ans

A contention slot

to be 208, which is the same as the Ethernet specificati

g phase

lasts for t milisecond. The data format is listed in Table 6.7, The size of a disk

block is fixed to be 1000 bytes and 8 bits per byte, while the packet ler

varies {from 100, 500, 1000, to 2000 bytes.

1s at this site

has reached the maximum, which is a parameter defined to the simulator, The

query pattern of a transaction is also randomly generated. Table 6.8 shows the
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parameters  controiling  the query  patlern  generation. We  call
relation/attribute as a il relation/atiribute if it is involved in Lhe target data

identification in a query. QUERY_REL_HIT/QUERY_ATT_HIT are the

probabilities of a particular relation/attribute hit by a query. A hit relation
must contain at least one hit attribute. The relation containing at Wmmmp one hit
attribute should be a hit relation. We call a relation containing at least one
target attribute as a target relation. TARGET_REL_HIT/TARGET_ATT_HIT
are the probabilities of a particular relation/attribute to be a target
relation/attribute in a query. UPDATE_QUERY _HIT is the probability that a
query is an update query. A queried relation is randomly picked to'be updated if
the query is an update. UPDATE_ATT_HIT is the probability that a target
attribute is to be updated in a relation to be updated. In an updated relation, at
least one attribute is to be updated. All these probabilities are set to 0.4 except
that QUERY_REL_HIT is 0.8 and UPDATE_QUERY_HIT is varying from 0.0,
0.4, 0.7, to 1.0. All queries are read-only when UPDATE_QUERY_HIT is set to

0.0, and are updates when is set to 1.0. Those tunable variables are

summerized in Table 6.9, Each combination is run with a rates of mean

interarrival time of 0.1, 0.3, 0.5, and 0.7 seconds.

8.7 Simulation Results

Due to resource contentions in distributed systems the performance

~al
i

measure of transaction response times is an autocorrelated quantity [FIS

Hence, the initial conditions of the simulation model may produce transient
measurements in the simulation outputs. We ran a series of test simulations to

determine the number of response time observations to be truncated in the

ing of each simulation run. By observing the resulting graphed dala, we

(BN

Table 6.9 Tunable variables in DDBLMN-SIM.

MAX_TR_OF SITE 5,8,10 M
PACKET_SIZE {bytes) 100, 500, 1000, 2000 ’
UPDATE_QUERY_HIT (or UQH) [0,0.4,07, 1 ,
R_LOCK {or r_unlock_time) 0,1 A
RED 0,1 |
PACKET_SIZE: packet length in bytes
R_LOCK: the time that a read lock can be released
0: after RT phase
1: any time after use
RED: materialization strategy

0: non-redundant
1: redundant
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chose the truncation point on the graph where it appeared that the mean
response time measurement had achieved steady-state stability. For the data
shown in Figure 6.6, the value 80 is found to be a good truncation point, which
is the minimum number of transaction to be observed. A value 2% is a good
allowed deviation, which is the difference between the simulated response time
of current terminated transaction and the average simulated response time of all
terminated transactions in the simulation run. Notice that there are some
unstable cases, in which the systems are saturated, in Figure 6.6. The minimum
number of transactions to be executed in a simulation is set to be 100 for the

safety margin, and the allowed deviation is set to be 0.5%. We now present the

simulation results of different combinations of parameters generated from Table

that the numerical values found in this section are

8.9, It must be emphuasi

accurate only to the extent that the data values and assumptions used to design
the simulator are representative of an actual system. The main concern of this
simmulation is to show the correctness of control algorithins, to discover the

implementation  difficulties, and to compare the relative performance of

Terent control strategies as discussed at the beginning of this chapter,

8.7.1 Deadlock-free and Iinplementation Difficulty
Since it is tmpossible to prove the deadlock-free property of the system by
simulation, demonstrating it in the simulation is complementary work to the
prool in Chapter 1V. During the testing stage of the simulator development, we
have tried to push the simulator to the exireme cases to find any deadlock. The
incoming rate of transactions is increased Lo an extent {ar beyond the capacity of

the simulated system, the percentage of updating queries to the total number of

queries wereased to 1009, and the simulator is run up to thousands of CPU
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TESTING RESULT
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minutes. There is no deadlock detected. We believe that these are suflici

demonstrate the correctiess of the concurcency control algorithins,

The implementation of DDBLMN is fairly complicated. We will not discuss

the programming difficulty of the system since it is a common problem of any

complicated working systemn. However, we would like to point out following

problems.

(n

The siruplicity of the concurrency control algorithms does contribute to the
success of the simulator design. The major difficulties of the program
development are on the stale transition and the token rouling, instead of on
the concurrency control itself. Simplicity of the design is important in the
implementation of a real system. We believe that DDBLMN would be a

good choice to implement a DDBMS in local environment.

The system requires each site to keep track of the complete state of the
database. To save communication overhead, stale transition is really
catculated by each site independently based on the network messages
received. The complexity of such a distributed operation is fairly high. This

not only causes some processing overhead, bul also makes the system

development and maintenance difficult. This is especially true in a larger

system. The system designer should implement this mechanism with care.

The poss y of errors in this part is high and may also lead to possible

deadlocks. Comparing this to other portions of the system, this should

deserve more attention. For example, a mistake on the minimum attribute
identification or on the cardinality estimation may only affect the
performance, but a mistake in this part may cause errors to the transaction

processing.  We would recommend that piggybacking the necessary
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information in the broadeast message would help to reduce the complexity

of the design and processing overhead. This is particularly true when the

communication overhead is independent to the volume of data transfer.

The complexity of computing the transitive closure is O/
substantial overhead when the system is large. The most commonly used

algorithm to compute the transitive closure is .1 matrix operation, in which

the precedence graph is represented as an adjacency matrix [AHOT4]. The

overhead of this algorithm may be wasteful when the probab

y of contlict
among transactions is low. For example, in an ATM system, customers do
not issue conflicting transactions frequently. In this situation, the adjacency

matrix representing the precedence graph s most  likely sparse

Furthermore, since the transitive closure is always kept in the precede
graph, the changes to the precedence graph would not be substantial
whenever a new precedence relationship is imposed or a node is retwoved.
There is no need to recompute the precedence order for the entire graph
The algorithm discussed in Chapter 1V can be maodified as follows
Algorithm DDBLMN-TRANSITIVE

Consider the graph as a family of isolated acyclic graphs, with one and

only one directed edge between any pair of nodes in the graph. Node

N, represents the transaction TR asstated in Chapter [V,

{a) Remove the node and all the edges connected o it

transaction that this node represents terminates.

{b} Whenever a new precedence relationship is imposed on TR and TR

{say, TR, precedes NRL.

{b1} connect N, to
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{b2) connect all preceding nodes of N to node ,,,<u and succeeding
nodes of k/,\.

We emphasis that this algorithm may not be better than the matrix

approach when the probability of conflict is high and the adjacency matrix

is not sparse,

8.7.2 Observations and Suggestiona
The numerical simulation results are shown in Table 6.10. Each
combination generated from Table 6.9 was simulated. The average, maximurm,

minimum, and standard deviation of all 192 combinations of different MIT on

the following observations are listed.

(a) Mean Response time is the average response time of all transactions ina
simulation.,
{b) Mean queue length of NETWORK is
mean queue {ength of

¥ 3
21 NETWORK ~ INTERFACE in the site’ ﬂ
ot ntes
/ ' w + mean queue length of NETWORK

v number of sites

in a simulation.

(¢} Mean queue length of DISK is the average value of the mean DISK

queue length in all sites, Le.

ESE ] w

number of siles

Utilization of NETWORK is the busy w of the NETWORK over the

total Ltime in a simulation.

Table 6

10 Simutation resuits of DDBLMNSIM

Mean Response Time

i Mean

o

[ NETWORK time total lrany. time

Ave | \Ma

x

Stand. dev

| D073 | 0368
01w | 047
0284 0.442 | 0143 }.0068

MIT] Ave | Max | Min {Stand. dev

0.1 {7.953]27.9000.190] 0.5410 ﬁlrl
0.3 12.739]15.900[0.160] 0.2995 LN
| 0.5 10.833] 5.190/0.170] 0.0723 _ﬁ‘ov
0.7 [0.482] 2.080/0.146] 0.0258 L9

0.338 G.485 | 0.150 Q.04

i

Utilization of NETWORK Mean { DISK time / total trans. time |
MIT] Ave | Max | Mia [Stand. dev MIT] Ave | Max | Min | Stand dev |
0.1 10,820 1.0000.280] 00200 0.1 |0.055 3100031 0.0043
0.3 [0.565] 0.999]0.105] 00247 | 0.3 [0.104 Tower | voost
0.5 [0.107] 0.949/0.055] 00209 0.5 0.124| 0.220 | 0.028] 0.0043
0.7 [0291] 0.7910.040] 00160 07 0131] 0220]00w0] oow

Mean Utilization of DISK Mean [ CPU Gme J total trans. time |
MIT] Ave | Max | Min |Stand. dev MIT] Ave | Max | Min |Stand, dev
0.1 [0.259] 0.453/0.084] 0.0082 0.1 0022 0.076 0001 | 00014
0.3 [0.128] 0.185/0.084] 0.0014 03 0.042] 0.08410.002] 00020
0.5 10.08¢] 0.104]0.084] 0.0007 0.5 [0.050] 0.0856.012] 00018
0.7 |0.657] 0.080[0.045] 0.0008 0.7 |0054] 0.088]0.018] 00015
Lost Transactions { srans, [ second Mean queue length of NETWORK
MIT %?ﬁ: Stand. dev MIT| Ave | Max | Min iStand. dev
0.1 10.221] 2.081/0.000] 0.0308 1033 .33tl0093] 01851
0.3 10,000 0.000/0.000] 0.0000 1740 6.659]0.012] 0.1560
0.5 10.000| 0.000[0.000] 00000 0.808| 3 482(0.003] 00885
0.7 10.000] 0.000(0.000] 000060 7 101671 La98lb00t po2t

Mean queue lengt
Total CPU Time (SUN) MIT] Ave | Max | Min
MIT] Ave | Max | Min Stand dev 0.1 10.108] 0.36810.002
0.1 |938.593]1914.600]484.900] 214398 o3 10.0131 0.08710.007
0.3 |732.786 | 1389.6001457.000] 13.8473 0.5 10.008] 0.021 00021 00003
0.5 803.789| 944.400/453.000| 78310 o7 oozl sovsloooll ouoet |

847.708 1 ¥95.700

438 000 7.1843

Time Uniz

: second



{e)

{f)

(g)

{h)

{i

)
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Mean utilization of DISK is the average utilization of DISK's over all
sites in a simulation.
Mean ratio of NETWORK service time to the total transaction

time is the average of

total time serviced by the NETWORK

total transaction time

of each individual transaction in a simulation.

Mean ratio of DISK service time to the total transaction time is the

average value of

total ime serviced by the DISK's

{ total transaction time v - { number of aites )

of each individual transaction in a simulation.
Mean ratio of CPU service time to the total transaction time is the
average value of

{ total time serviced by the CPU s

~m total transaction time v « | number of sites }

of each individual transaction in a simulation.

Rate of lost transaction per second is the ratio of total number of lost

transactions to the total simulation time in a sunulation.

Total CPU time is the total CPU time used in a simulation

workstations.

lowing are observations and suggestions we draw from the simulation

8.7, 6.8, and 8.9, it is clear that the system can handle the

be saturated when
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the MIT reduced to 0.1 in many cases.  When saturated, the queue of
NETWORK { including NETWORK-INTERFACE ) is full and a lot of
incoining transactions are lost. This occurs even when all queries are not
updates. When the MIT is longer than 0.3 seconds, the rate of lost

transactions is almost invisible.

Figure 6.7 shows that the percentage of updating queries does affect the

response time. The more the updates are, the longer the response time.

From Figures 6.8 and 6.9, we can also see that the UPDATE_QUERY_HIT
has no significant effect on the length of either the DISK or NETWORK
queues. That is true because we assume that at most one relation is cvavomm
and the volume of undated data is usually small. This fact also indicates
that the communicarwon overhead for lock management in this system is
very low as we expected.

Figure 6.10 shows the comparison of the utilization of DISK’s and
NETWORK. It is very clear that the NETWORK is heavily utilized,
especially, when the system load is high. When the system is approaching
saturation point, the utilization of the NETWORK is close to 100%. The
DISK utilization is kept as low as 20% even at this point. This tells us that

the NETWORK is the bottleneck of the system.

Figure 6.11 shows the comparison of the average ratio of the simulated time

serviced by CPU, DISK's and NETWORK to the total simulated

processi

time is spent on the NETWORK. Only less than 10% of the
tirne is spent on the DISK's and less than 5% on the CPU. Less than 50% of

the time is waiting when MIT is kept longer than 0.3,
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(6

) The size of packets in the NETWORK has sigaiticant effect on the response

time as we can see from Figure 6.12. It seerns unrealistic that the s

the packets are, the better the system is. This is due to the fact that the
fixed overhead in each packet is only 208 bits and the minimum packet
length we simulated is 800 bits such that the fixed overhead does not affect
the performance significantly. Really, there are many short broadeasts
during the transaction processing. For fixed length packets, a large portion

of their capacity is wasted.

There are two way to reduce this overhead: either using variable length

packets or piggybacking the necessary information into the sparse packets. Due

to the time constraints, we did not simulate either case in our simulations.

(7

) Figure 6.13 shows the effect of read_lock releasing time. Two alternatives

which all

are simulated. When the UPDATE_QUERY_HIT is 0.0,

queries are read-only, all relations can be released right after use

Therefore, having a second copy in the working space has no ads

thage
Moreover, the induced overhead may even worsen the performance. As the

UPDATE_QUERY_HIT s increased, having second copy does make

systemn performs better,

) The effect of materialization can be seen fram Figure §.14. Red

materialization does have some improvement over non-redut

materialization. The difference is not great, this is because the scale of

scale of the system is larger than DDBLMN-SIM.

CPU and disk overhead, they are not as significant as we observed [ros

simulation.



o eves in (Se00005 )

(seconds)

o e 1

207

N » N
\ ) \
\ g \
X 3 \
\ 1= 4
D \ o
\ —— e
\ - > N
rm N ta \ ey
\ e N N
v Sl .
\ o 2 Y *
N ~ \ -
. v = e )
Y * N
N | 4 \
‘e \ o \
\
y \
N \
\ \
i - A - ~
[ T
T e o |
R am e
o e m sm cw 1w wm = e e @ im e e sm i1m e e
rares ereemrn ow | 107! pecond) o permemrm e { 167 second}
ST QEEY_HIT B RLAK | R TR G ST 18 AEDN. WPORTT QUERY HIT 8.4 @ 100K | e TR GF SITE 19 MK !
CFECT OF PROET LENGTH EFFECT OF PROKET LENGTH
T T —~ T
§ 3 |
\ e \
e t - 3 o N
, == 3 Y
| el L ——
i o
i3 \ LY ~ - \ vlf\l,t
N o g | P
\
3 -
™ A sz \
Y v
N b
N ¥ :
e \ re \
\ il
\ \
\ |
Lm el e i
...... e
s - e ]
e TTe Ve im s e = e P S Y G P O T T R T

PR——— S L

AT QY AIT 8.7 R LGOK ) SRR_TR Y SIT 18 WD §

Figure 8.12

raree o v {107 swcond)
PEATE_CRY T 1R _LOOK | M TR O SITE 18 AN,

The effect of packet size to the mesan response Lime.

208
EFFECT oF R_LOOX OFICT OF A L0k
~ o - . T —
v A 1 PO R !
2 B © Voo
< . < \ .
S ew . G Voo
i O \
2 | @ Voo
@ A a N
T : T N e
- ' Py " N i
\ iy N ey
L | fpon = N -
i . I - N
H / .. \ S
\ X .
i - .. - >
AN A
. //
. / - o
S TTT—
- e
= e e s e e e e e sa (@ i@ e ‘e ta i@ e =
mnros, e | 107! swc0nd) et vwa {1071 second)
PTC i ATT 6.8 FOETROON 26 v TR OF ST 3 AR [ POV QAT 1T 07 MOMTROG 28 R A TSI ) WBR
EFFECT OF R LOCK
.., .
-~ ey
w
=]
<
Q
0
% -
S orm e
o
= A_LRmi
m .9
=
N
H
8.9 4
188 >
N -
//// L
LR
s 2 ¥ T
s ¥ 1m 3= ..o 2@ (X ] K] s

vTEwem v Tre | 187 second)

UPDATE_GUERY WIT 8.4 FRCKET(RLODO 28 MK TR _OF SITE S RERN. |

Figure 6.13

The efect of read_lock releasing time to the mean response

time.



5

g

&

:

i .-

L]

¥
-
-

=

EFFECT O RICRIAIIATION

N

T im i@ em e e e e

oo row { 107" sacond

ST QOn KT 8.8 L0001 MOETIRIOND MK TR U 18

(seconds)
[

EFFECT OF MATERIRLIZATION

s
-~ R
&
S
3
S
3
-
A
i -
H
5
-
by
==
-
o e S

oo, rwa {1077 second}

TS QUORY WIT 8.7 B ADR | ANOETIRAG0 38 E TR ¥ UTE e

Figure 8.14

OFFECT OF MATERIALIZRTION

[

argoaron s { 107 second}

P @ Y B9 R L0 | RGRTIBOG) 1 e TR_GF SITE 18

The efect of materialization to the mean response time.

8.8 Summary
In this chapter, we have developed a ¢

on a UNIX systems. The simulator DDBLMN-SIM

model using DDBLMN-SMPL, which is a queue management package embedded
in DDBLMN-SIM. DDBLMN was simulated under various conditions and

control strategies. The statistical results show that DDBLMN is feasible and

ared in

correct. The relative performance of various control strategies are co
the simulations. The results are consistent with the expectation projected from

the qualitative analysis.

The absolute values obtained from the simulation y not have sign

meaning Lo a system designer who wants to adapt the shimulation results inte a
real systemn. However, the relative performance among various control strategics

would be a precious reference.



CHAPTER VI

CONCLUSIONS

7.1 Summary and Conclusions

In this research, we studied the design of a distributed database on a local
compiter systeni connected by a multiaccess network. Three key issues are
addressed: data distribution, distributed query processing, and concurrency
control. Based on the characteristics of local multiaccess networks, efficient

strategies are proposed. The system is simulated in an event-driven queuing

mode!l to show the correctness, feasi y, and efficiency.

Due to the broadcast capability of multiaccess networks, each update can
be processed at a cost independent of the allocation and the number of copies of
files to be allocated. As a result, the file allocation problem, which is a
subproblem of data distribution, is simplified from the problem of “where to

locate copies of fles?

)

on general networks to the problem of “should a copy of

the file be located in a particular sit

* Some special cases are reduced from
NP-hard on general networks to polynomially solvable on local multiaccess

networks. Although the general problem remains NP-hard, the complexity is

s i Tm N o .
uced by decomposing the problem into N7 kaapsack problems. Since there

y polynomial approximation algorithms for the knapsack problem,

efficient heuristic solutions can be easily developed based on this framework.

2

A transaction processing model that integrates query proces ing and
concurrency control is proposed in the thesis. In identiflying the target data in

query processing, redundant materiali

tion and semi-joins with complement

transmissions are adopted. Redundant materiali

ation helps reduce the size of
intermediale results during the target data identification. On local multiaccess
networks, a broadcast attribute can be semi-joined with attributes at all sites
simultaneously, hence reducing the amount of data transfer as compared to that

of general networks. The broadcast network allows efficient

stributior

status information and permits queries to be scheduled dynami ally based on the
current status of the database. Although suboptimal, dynamic query processing
eliminates the errors incurred in estimating status information in static
algorithms, and has been found to perforni better than static algorithms.  An

extremum-identification algorithm is proposed to aid the dissemnination of status

information. One of the potential direction for future research on qu

processing is intelligent query processing, in which knowledge is collected and

extracted during the system operation and empleyed in later query process

Due to the prematurity of the distributed databases, there no suflic

knowledge available in this field to design a meaningful intelligent systen. Only

a model is proposed for intelligent query processing in this thesis, and deta

solutions are opened to {uture research.

This thesis also studies the guery processing prob

tutyre

communication networks, in which the communication cost between <

of nodes only depends on a fixed constant cost. The volunie of trans]

is no loger a dominating factor to the total communication cost Fnstead,

cost of communication channel usage dominates the overall cost. The [

problem can be formulated into the generalized traveling salesman orobles




this case. A number of solution methods are considered. Among them, the most

promising one that can be applied in the near future iy to transform the

problem into the standard traveling salesman problem and then solve it with
heuristic algorithms. This strategy was evaluated. Results show that the

algorithm is efficient with insignificant sacrifice to accuracy.

In contrast to conventional approach, our proposed concurrency control
algorithm is embedded into dynamic query processing such that potential
blocking due to unavailability of queried relations can be avoided. Asa result of
using multiaccess/broadeast networks, an efficient, serializable, and deadlock-
free concurrency control algorithm is developed in the thesis. The broadcast
capability allows locks v be known to all sites simultaneously, and hence
eliminates the use of explicit lock messages. The serial transmission property of
the network allows the database to be driven by network events. Thercfore, the

network itself serves as a synchronization mechanism.

ly, the system is simulated based on a queuing network model. The
correctness and the feasibility are demonstrated by the simulations.

Furthermore, different strategies under various conditions are also compared by

use of local multiaccess/broadcast networks not only

the design of distributed databases, but also reduces the processing

As a consequence, the distributed approach for a database in a local

sument becomes promising as the technology of small computer systems

he local ares networks advances.

7.2 Suggestions For Future Rescarch

There remains probleins to be studied in the future. These

lude

problem of recovery when the network or a site fails, the reliable broadcast of
messages, the use of multiple broadecast busses or a bus with high bandwidth,
the necessary modification on the operating system to support real-time
processing of information received from the bus, the dynamic file allocation
problem (file migration problem), the integration of file w:omw:c: with
transaction processing, better solutions for GTSE that models future high speed
communication networks, and the intelligent query processing. Some of them are

discussed in the rest of this chapter.

7.2.1 High Bandwidth and Clustered Local Multiaccess Networks

The most serious drawback of a multiaccess/broadcast network with a

single bus is that only serial transmission is allowed on the bus. Using current
communication technologies, the bus may become the bottleneck of the system

when network activities increase. One way to enhance the trunsmission

enhanced network interfaces. Another way is to use multiple bus networks.

little effect on our proposed concurrency control algorithms.

z
<
3

processing problem, the existing algorith

overhead of local processing is more significant. As discuss

semi-join approach may no longer be adequate in query process

new sirategies may be needed. For the file

programming approach may remain adequate, but the solutions are

complicated.



As the ber of computer and other deviees elwork

grows, a single multiaccess network may not be suflicient to support the entire

systerm. It is not unusual that the computing facilities owned by an organization
are imade by different vendors. The systemns made by a a particular vendor are
grouped as a cluster and interconnected by a distinct vender-supported network
with its own communication protocols. These ‘“local” networks are
interconnected by one or more backbone networks as a logically integrated

network. The Andrew system of the Carnegie-Mellon University is an example of
such systems [MORS8]. Currently, Andrew consists of 17 Ethernets and 2
ProNet rings linked by fiber-optic cables. Over 600 computers are supported by
the network currently, and over 5000 workstations are to be supported in the
future. It is perceivable that this type of frameworks will become one of the
most popular computing environments in the near future due to the success of

the Andrew project.

Although Ethernet type setworks seemn to be the most attractive

iter e for each individual network, the characteristics of the network as a

sle may not be the same as that of a single Ethernel network. For example,

the communication overhead across different networks is obviously higher than

a local network. Different control strategies are required for a
DIBAMS on this type of environment. For example, the overhead of remote file
access and update is no longer independent of the locations of files. Each local

ave independent communication such that communications can

. The network no longer serves as a
for concurrency control. Furthermore, new

are needed tos

pport dynamic query processing.
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7.2.2 Integeated Design of FAD and DQP

in general, the file allocation and query processing problems  are

interdependent of each other. To process a query, the allocation of files sho

be known. Likewise, to allocate files, the query access paltern and

processing strategies should also be known. Currently, only the allocation of files

is considered in query processing, while query processing strategies and query
patterns are not considered in the file allocation. Also, each query is assumed to
be accessing a single file. Solving query processing and file m:c.,m,:o: problems
together is extremely complex, especially when delay and availability constraints

are also included. Apers proposed a soluti

vor general networks [AP1ES2]

problemn is solved as follows. First, the query processing order is optimized

independently for each query or update using distinet copies of files. Distin

copies are located at virtual sites and the file allocation problem is the mapping
of the virtual sites to physical sites such that the total communication costs are

minital. This framework may not be the best approach for a DDBLMN, w

uses dynamic scheduling and redundant materi

ation. in

cating files

systermn with dynamic scheduling, it is really diflicalt to prediet the quer

system may take during query processing. As a result, the schedules that the

allocation relied upon may be quite different Trom the real sched

query scheduler generates.

One of the key factors to reduce the con ation overhead in

processing is to store as many related relations as possible at a site, where the
related relations are the relations to be joined. Une of the better approaches we

are considering is to impose such factors into the file allocation algorithm st

that it tends to allocate queried relations by v s few sites as
,

aceess it We

possible, in addition to allocating a file to



believe that this approach I be a good direction for [uture research to

integrate FAP and DQP together.

7.2.3 File Migration problem

The problemn of file migration arises from the dynamic nature of queries.
Although there may be a locality of access for a file, there are occasionally very
few activities inside the locality, and the file is accessed outside its locality.
Moreover, the locality of access may be time-varying, as in global networks
distributed over different time zones. It is efficient to allow the file to migrate to

major access sites.

A typical migration method is to examine the allocation periodically and to
reallocate a file if necessary. Over a period of tintervals, there are a minin.um
of 2' possible alternatives. The problem ol determining the best time to

execute a migration with minimum overhead is NP-hard on general network.

The problem complexity on DDBLMN may be reduced, however, eflicient

solutions are still opened to fulure research.
7.2.4 Intelligent Query Processing

As we mentioned in Section 7.1, the detailed design of intelligent query

processing is still open. The probl

y includes the representation, acquisition and

abstraction of knowledge, learning module design, expert scheduler design,

]

knowledge base design, as well as the interactions among system components

The major difficulty is on the knowledge acquisition due to the lack of expertise
in this feld. Comparing to other intelligent systems, we do not have good
knowledge on query processing as the interna! database activitles are

transparent implicitly to the users. Thus, a powerf i} learning model is the key

design issue of such intelligent query processing systemns.

7.2.5 Generalized Traveling Salesman Problem

The performance of the TSP-transformation approach for the GTSP

problem is obviously bounded by the performance of the TSP problem.
Furthermore, the problem size after transformation is expanded to N==3n+m,
where n is the number of nodes and m is the number of clusters. For a large
problem, even a complexity of OAZJ could be substantial. [n this sense, a
direct-solving solution without transformation may be a good candidate to
provide better solutions. One of the potential approaches we are studying 13 the
“decomposition” approach, in which the GTSP problem is decomposed into
several sub-problems. An example algorithin in this approach is shown as

follows.
Example GTSP Algorithm 1

{a) Select an arbitrary node from each cluster.

{b) Connect all selected nodes together as a TSP tour.

{c) Refine the solution.

H

¢

There are many ways to select nodes from clusters in step {

Obvious!

the center node, which is the node closest to the geographic center of the ¢
is a good candidate. Another good alternative is the node closest to the
geographic center of the graph.

Among various potential algorithms we will consider for the refinement
process, the following rubber-bend process is one of the promising approaches.
Rubber-Band Process

Assume the TSP path P={0,1,..,

ad node 1




the node selected from cluster 1in step {a). Consecutive nodes on the TSP
path is numbered consecutively, and node § is assumed to be the node
closest to the geographic center.
For all kin (0.1,...,n }do

set k= (k+ 1)mod(n +1)

sel k, = {k+2)mod(n +1)

draw a straight line between nodes & and k,

'

from cluster &£ + 1, select node k,'" which is closest to the line

replace node k in P with &’

done

The solution can be further refined as many times as needed. Such a process is

analogous to the following process:

“Consider each node as a pole, a rubber band is used to circle at least one

)

pole from each cluster with the minimum length.’
It is obvious that a necessary condition for an optimal solution is that the rubber

band should touch the pole closest to the line drawn between the two poles

selected from two neighboring clusters.

S ic, substantial experimentation is required

‘e the algorithms are heuri
to study the the performance of different algorithms under different conditions.
Currently, there is no way to draw any conclusion from the above discussion.

However, this could be a good direction for future research.
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AR dnaad il L T U SO
*  NANE DDBLMN-81¥ 8tmulwtor

* PURPOSE To simulate » DDBME ou « locel wultiaccees netwo:k
LY (DDBLMN)

* (REFERENCE B ¥ Wah and Y N Lien,

* Design of Distributed Detabases On Local Computar
. Syatems With A HultiacCese Belwork.

. 1EEE Trane Dn 8oftware Englueering.

. vol BE-11. %o 7. July 1985, pp 8006-819

> BTD INPUT

. waad ®2sd Lo random numbe: gansrator ( int )
. lsngth-of -exacution time (secoud)

- mean Lraneaction arrival time (O 1 wecond)

- fraction of updated tranwaction (int 0-10)
- time to relsase read lock { 1 ANYTIME. 2 CBJ_END )
. (o &T_8ND )

* BTD QUTPUT  DDBLMN SMPL information

* FILE QUTPUT s line contaiaing following information le

- ©OULPUt  to the file 'ddblmn data’ at the end of

. = simsilstion wxscution

. sverags Lraseaction procawsing time in ascond

- average ( ratioc of ths time wpsat on bus to the totsl
* procseaing time of TR ) op total transsctions
- svarsgs { ratic of the time wpesl on disk to the total
- processing time of TR ) on total tracwaciicos
. 3veraye ( ratic of the time spast oo Cpu tu ths total
° processing time of TR ) on total tranwactions
. lowt tracsaction par second

N utilization of disk st wite 1

-
-
-
-
.
-
.

Bverage queus lesgth of disk at site 1
utilization of diek al wsite 2
&verags quaus length of disk s site 2

utilization of disk at site BITE
Averags queus length of disk at site

-
- utiltzation of setwork isterfasce at wits

. sverags quaua lenglh of netEork lnterface i

b uwtilizalion of nstsark intecrlacs st Bite

. &varage quaue lengih of netmork loterface 2

.

-

-

. utilization of nstwork interface at site SITE

- average queus length of mastwork-interface &t site §iTE
.

- utilization of bus

. Bverags qusus lengtb of bus

.

- CPU-TIWE in swecond wused in ths simulation

*  COMPILING o fiisuame -lm

v DESCRIPTION See Chapter 8

> AUTHOR Yo Nun Liso, EE. Purdus University

* DATE August &, 1988
\...1..:.3........12.............5...‘32.....1:133.:..71

Binciude <stdio B>
#include <marh n>
#includs <sye/typas h>
Fincluds <sys/times bh>
#iocluds <ays/times h>
Bivclude <sya/rescurcs &>

Sinciude “smpl h*

I
- double  wrpat1(),
- untiform{y,
-]
e B T e
- Bystem conlfiguration coostants
-
#da?ine BITE 4
#dafine R 4
#defina TR 100 /% tr pool sizs =/
sdafine JA 4
$dafine TOKEN 10000 /= token pool sire »/
P - e e . R
- Folloming parametsrs im uesd in query gensratiocn
[ . [ S ./

Bdefice QUERY_REL_HIT 8 /v Bit ratio of qusried relstiun
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#define TARCET_REL_HIT

4 /* hit ratio of target relations ./
9define QUERY ATT_HIT 4
)
4

/* bBit ratio of querisd attributes </
/% bit ratic of target attributes */
/% hit ratio of updated attributes =/

#define TARGET_ATT_MIT
#defive UPDATE_ATT_HIT

2 R EGEETT TR R . U
: TIMING PARAMETERS ( ualt 1 micre wecond )
U N e y
fdefine PRE_TINE 100C © /* timing =/

#define DELTA_TIME 100 ©  /* tiny time used iz state transition %/

#detine INSTRUCTION TIME 1 O
#define CPU_TINME_PER_BIT 3 0/8% INSTRUCTION_TIME
/* time to process a bit */
#define BUS_TIME PER_BIT 1 O /% ave bus Time to tramemit a bit */
9define CONTENTIGN_TIME BO*BUS_TINE_PER_BIT
/* BG bits for 1 contention slot ¢/

#define DTIME_BEARCH 30000 O /¢ ¥ax diek swsrch time ¥/

#deftoe DTIME_PER_BLOCK 1000 O /+ | me diek transfer time per block */
o e e e e e e RS SRR
- Dats Format Constanta ;
e F e e e R R -
#defins BITS_OF_BYTE 8

sdefine BYTES_OF_BLOCK 1000

#define BLOCK _BIIE BITS_OF_BYTE » BYTES_OF_BOCK

%defins PACKET OVERHEAD 208 /v sume as Etbhernet specification ¥/

Je e SlTTTTIILTT s L e
. Fiags snd Otksr Constsnts )
.- R SO A N —

Sdafine YAXMAX 2147483847 O
#defins INF 2147483847
Sdeline WFG 1000000
$aefine DEVIATION o3

#define FRROR INF
#dafins FAIL -1
Sdefins BUCC
#de?ine NO
#detins YEB
#defina QUEUFD
#defias BUSY
sdsfine IDLE
sdafine NOWIDLE

OO O

#define REJECT

#define GOT_LOCK
Sdafine FWAIVE
Sdelins FANE
#defins DIFF
#define VALID
#dafine INVAL
#Gefine USFD
#detine FIRNED

Ssefine LbslorsR
#define Rbseforse!

e O

D

Lt e R e O

@6

Sdwt
EETRS

S process stals o/
#de?

/+ procesw stata */

B0
¥

dde?
sde?i

process 36 */
procvess 1d =/

- o
=
e
P

Bdef
sda?
sqaf

/v 8 remots query. regular =/
pesded reiw ars locally availsble /
7o wame se above and 2o remets update v/

e
v

ddaf
sde?

e

8defina HAD_BRO
#define FAIT_BRO
sdefine WOT_BRO

/v mits att had besn broadoast »f
ste att had not besa broxdcast *f
/e mite mit bad Dot bews brosdcast ¥

<RSP
~
¥

sdefine TRI 1 /v svent queus dsla ¥/
®define EITEID 3 /= avest 3u
#detive EVENTID 3

LERE ST
EETE A

#defina
sdefine
#define
sdefine

[amne-

#define
#dsfine
#define
#define
#define
Bdwfing
#defive
#detine
#detine
sdatine

#dafine
#delfine
#define
sdefine
8define
#detine
#define
Béefine
sdetfine
#daefins
#dafineg
tdsefioe

8define
Bdaline
#define
#define
#dse?ins
#define
#define
#define
sdafine
#dsline
#define
Fdeline
#dafine
¥dsfine
Bdelius
#define
8dsfine
sdafine
8$dsfine
#$dsline
#defice
#dafice
#dsfins
#define
#define
#dofine
#dsfioe

T —— e e oo

int
tot
inz
ian
int

I T .

gsJ 4
GBJ_BYN B
AT -]
23 7

WANT_RY
HEADING_WANT ¥ @

READING_WRITING ©
HAD_R® 10
EVENTe
NEW_TR o
CONTEND_BUS 3
RELEASE_BUS 2
NEED_D18K 3
RELEABE_DISK 4
LP_FINIBH 5
QBJ_FINISH 2
PP_FINIGH 7
WAKE_UP 8
NEED_BUB_TOKEN 9
RELEABE_BUB_TUKEN 10
8TOP 1
Trepsxction Handlar Btates

PRE 1 /% preprocesaing
LP_INI 2 /v LP toitisl
LP_PRE_LOCX 3 /* getting local lock
LP_®AIT_LUCK 4 /% ®atting for locke
LP_DISK 5 /+ LP readiang data uaing disk
P 83 e Je LP locs! semi join
LP_BYN_EST BRO 7 /% sst mits broad “fiaish™
LP_¥ATT_SYN 8 /* waitiag for »od of LP syuc
LP_ALL_FINISH 9 /% all sites finistad LP
LP_END 10 7+ LP phase is sading
LP_WAIT_END 11 /*® waitlog for vhe snd of LP
G843 _INI 12 /% GSJ tnisisi

BAIT_LOCK 13 /% for those nasd lock only

$AIT_SJ 14 /® waiting for s} processing
G8J_§J_BRO 16 /e 8] broadcast
GEJ_ALL_FINIBH 18 e all sitse finishad
GBJ_BAIT_BYN_END 17 is maiting for ths emi of syn
G8J_WAIT_ENG 18 /e maiting for the sud of G5!
RT_WAIT_BTART 19 f» waiting for the R start
RI_BTART 20 /= start of RY
PP_FAIT_START 21
PP_BTART az /% start of PP
PP_PRE_LOCK 23 7+ getting lacal wrize locks
PP_SAIT_LOCK 24
PP_WAIT_UPDATE 2% /= waiting for the sad of AT
PP_UPCATE 28 /% srart to updsiiag
END 7

Some Imput Vartables (1o}

HAX TR OF SITE
BIMULATED TR
UPDATE_QUERY_HIT
mean_tr
r_uslock_ tims

Some Qusuing System Variables {iat)

e oo e

ist

evsar :
new_tr :
ssw_tokes |
bus B /e bus to be reassrysd /
fioished tr. /% numhar of Iigoisbed trans =/
total_vr B /® total sumber of Lrans hed

Bome Working Variablse {(ist)



tae
iav
int
iot
int
int
int
int
int

doubie
doubles
doublae
double
double
int
float

AR
.
M

double
double
doubls
doubia
doudbla
Feoens

double
doubie
doubls
double
doublse
double

FES
it
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1,15
counter
stert_time
end_time ;

exscution _tims,

wfter . /% timestamp fur rsal sxecution time o/
bafore i /% timestamp for real exscution time ¥/
laet_rt
Bum_of _bro ;
working_wite
mintmum site
mazimum_site

total_tr_tima; /v total syecution time of all tr ./
total U bus | /% total bus busy ratio of all ur -/
total U disk : /+ total disk busy ratio oo sil sites =»/
total U _cpu  ; /e total cpu busy ratio on all witee =/
ave Ly _time . /% averags ezecution time of all tr ./
lost customer, /* total numbesr of lowt customer ./

allowed error, /¢ Allowable diff On ave Lr time between 2

Byetem configuration constasts { Doubls )

PACKET_8IZE_IN_BLOCK,
PACKET_TIME
PACKET_B12F
CUNTENTION_PACKET
DATA_BIZE . /% sumber of info bit in s packst

¥orking Variabias { Double )

XY,z
diek_vime
packat
Lrace _time B

€T_tima B /% the tims to wzwcuts cc¢_lock_get_bus
itaration_srror;

blocked by {TOKEN+11 /* who blocked this tokan
e TR+1° by pguser '= 0 =
biocked by lg  {TRs1],

N
iterv/
—
./
- e
./
Cef
7

i

J* % of block by local gqueriss+/

blocked _site [TR+1). /e & of blocked sites inm a tr +/
bro companent [TRe1] {3a+1) [Re1}, /eNULL, HAD_BRG +/

Bro. rel {TR+3} {R+1] F*NULL §ALT_BRO, HAD_BRO=/
bro_sits_att {TRs 1} [8i78 [Ja+1] ./ BANEsS
broadcasting ett [TRe1]

bue,_ tokea {817Ee 1], /* buw_token to be ressrved ¥/
clusw of {181}, /e RENOTE. LOCAL =/
componsat_set  [TRe1 [BITEY1) [Javi] (Re1}, /eYES, NOw/
diek t]

f® diskas Lo bs ressrved ¥/

wat {81TEe1] [Jar11: /% amt sty card »/
PrTe {817E31] [R:1}. /v astimatad rel csrd =/
2wt fTRe1)
first . the first RT aite of Lr =/
bome the homs site of tr ¢/
B 7+ hauristic valuse =/
int_rel_card Re1) Fo ivitlal card of reslatiocs v/
last_w} TR} J* flag of last s} broedcast »/
link_to_npsst_tr {TRv1}. f* the 1d of nazt tr «/
local _lock 8ITE+1} [R+1). /% local lock tabls =/
jocal_mig st TR+1}  {8rveEs1l,  /+  zbs minimum sty v/
lock, ®tats TR+1)]  [R+1l.
lock_velidity TR+1] {BITE+1}. /* valtdity of heid locks »/
lowt, tr {8IvE+1); /* & of tr lost at sits =/f
iptime {TR+1} [BITEv1i}: /= proc tims in LP phass +/
mio hv TRILY /e smailest by >/
min_mits TR+l /* sits with smalles:t hv */
ne¥_pg TRe1] [TRe1}, /* newly eg 7
new_ralative TRe:l  {TR+1]. /+ new rslativss iz pg v/

/% creat by get_locsi_lock =/
nov_lock_in_LP TOKEN+1], FeYES, NO=/
wum_io. g} TRe1}, /* 8 of b prucsssing gs) */
aum_to_ip TRe1Y, f* # of Lh in prucassing lp /7
num_of brosd TRY1 /% # of bro in axtrsmum 1d */
oum_of LT_at BITE» 1], /% # of ur sntering to wits »/
Grphan {TUKEN» 1], /% siogls ¢ntid po home ¥/
Pg {TR+1]  {TRv1}. /= precedencs graph i --> } «/
pgusst f81TE1], /* umer of lacal_pg */

iv BANE oo user =/
picked_mits {TRe1Y), /% tbe sits randomiy picked e/
pphime {TR+1}]  [8ITE-1]. /» proc time in PP phase v/

LR R EREE A TR AL LR

BEEEEGEEEEEEEAE

£gee
& el
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int
int
1av
int
ipt
int
int

int

double
double
double
double
doubla
FES R
.

-

-

#datine
#define
#dafine
#define
#define
#sdsfinse

#dsTine
Fdelline
#dafine
#dafine
#define
#de?ine

Bdnline

#daline

#dafine

#deiine

#dafice

#dafine

#dafine

Fdsfice

#de?ice

Qqueried _att
Guarisd_rel
ral_card
related _sits
relution_width
atte_stt_card
site_of

site_rel_conf
sitime
target_jatt
target _njatt
targwt_rel
th_state
token_of
vr.oof

tr_phas
tr_rel_width
trace_tr
updated jstt
updated_njatt
updated_rel
writing rel

BELECTIVITY
time _of tr
U_bus_tr

U odiek_tr
Ulcpu_tr
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{TR+1]  {R+1} [JAr1}, /= NO. YES. %/
[rRer]  {Rr1}. /e NO. YEB. s/
TR+1} {R+1] [BITE+1]. /= relatione carda +/
TR+1}  [BITE+1]; /v NULL . CHILD BITE HOME BITE~/
Rel],
TRe1]  [SITE«1] [JA+1]. /v card of site stis <
TOKEN+¢1}: /% the site of a toksa

* 1f tr_of{token}==0, it store

v the link to the next smpty cwll

.

/ 3

TR+1] [BITE+1] [JA+1]: J= YES, NO=/
TR+1] [8ITE+1], /+ proc timwe in GB] phase %/
TR+1]  [Re1) [Ja«1}.

TR1]  [R+1]:

TRe1] [Re1];

TR+1}  {BITE+1}.

TR+1] [BITE+1), /+ token of tr at the sita «/

TOKEN+1]; /* tbe id of nszt tokes o/
TR} /* NULL,PRE,LP_GSJ AT, PP/
TRetl  {Rv1]);

TR#1}.

TRv 1} {rR+1] {Ja+1],

TRe1] {Re1).

(T3] {Re1],

{TR¢1]. /* assume 2t most ! rel to bs updatsd </

{ 1 /* Testing srgument =/

{ I 7+ start time of & tr =/
{ TR+: 3. /% bus uszge of tr =/

{ 1 /% diek ussgs of tr </

{ 1 /% cpu usags of tr e/

Macro Definiticus and scme basic definitiocoss

pri{e)
pralv)
cut{v)

in :
loop(a, B,C)
repsat{n)
RANDOH (ranga)

far_all_token
for_all_tr
for_all_mits
tor_asil_rel
for_all_mtt

for_ali_relsted,

for_ali_raslsted

for all reiated

for( ASH: A<sC, A}
loop{i.1.8}
cail {{rand () /VAXMAX) *range]

loop { toksn, 1, TOKEN 3
ioop { tr. 1. TR 3
loop { ®its. t, P8t )
loop { rel, I S 3
loop ( att. L, A 3
site for_all_sita \
1t (raslated etteit bl 3

t repaat (BITE)

1f {related eitws DOBUTE )
totm state(siatal

if {relsted sits

#& th_wtate [

for_ all wite )

if(retatead_wmizsficri{astal = "CHILD SITE )

rapsat (BITE} \

17 (related sits f[tr){i] =: CRUL.D_BITF )}
for_all_wokes_of{(tr) for_sil_token
it { zr_of [ roken] == tr}

for _all_querted rsl_tao _sits foc_ail_rel \

17 { gusriad rel [ zr] freil} == 1 \
&k fap [ rel } [ mtzs } =c 1)
for_all_guerisd ati_io_rsl for_all_att \
if {queried_att{ wriirel] { sttt ] == 1t
©
E
I3 Jo== stars 3 {0\
counter=i, braak, \
¥
zount{counter. ranges. match_valus) { =< \
toop {I. 1. raags ) 3
1f { th_stateltri{l} =7 match_valael\
countsrd v,y
>



8define
#dafine
#define
#dafine
#dafine
#dwfine
#deline
#defins
sdefine

#deline
#deline

Sdefine

#daeline
#detine
#define
#define
sdetine
#define
Bdefine
#dafine
®de?ige
sdatine

#dafive
#dsfine

#dafins

Bdefine

#dwline

Bdeftns
sdetice
Sdsfine
#dslins
Bdsfine
#define

#defive

Fdsfios

s3sfins

Sdefine
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goto_state(s) th_state(tr]isite
goto_phaas(e) tr_phaas(tr] = »
go_sluep{tr, mits, state) th_astatsftrisite] = atats

t®_read pnly (writing rel { tr ] == 0 )

is_a_nom updste_stte(aite } (fap [writing rel{tr]l( eive J== 0 )
RETURR_REJECT request_status = REJECT,

retura_reject returs (REJECT)
return_waive retura (WAIVE)
wtors_ia {site) (fap {rel} [=stte

achedule_H(s. t tokea) { U bus_tr [ tr_of { token] ] += t. \
schedule( », ¢, token).}

schadule C(o.t, token) { U_cpu_tr { tr_of [ token] ] += ¢ \
achedule(s. ¢, token) }

schedule D{(a, t, tokan) { U_dtak_tr [ tr_of [ tokenl] ] += ¢; \
#chadulae{e.t, token) .}

==t N

]

the _rel_in_site_im_quaried {(queried_rel [ tr ] { rel
26 fap { rel ] [ eive } )

{queriad_stt [ vr }{ rel J[ ate } == 1\

a2 fap { ret ] { aite ] == 1)

the_rel_in_ site_i_is_queried (querled_rsl [ tr ] [ rel ] == t \
88 fap [ vel } [ 1] == 1)

thim_ati_ie_queried

wake_up(token) achedule_C( WAKE_UP, DELTA_TIME, token)
delaysd_wake_up{tokwn) schedule (WAKE_UP, 1 O*rwnd{)/INF, token)
selective_waks_up(token) wchedule{¥AKE_UP.1 Oerand{)}/INF, toksn)

UNIFORM(x1,¥2) (31 + (32 - 1) * prob(})

acstear{y) UNIFORM{{v)*{(1 O-DE¥IATIOR]} {v)*(1 O*DEVIATION))
EXPNTL (1) {-% » log { pred() })
PROB € rand(} [/ VAXMAX )

site_att of_{ir, eive, att) wite_rel_con? {tr] [site] {atvt}
bro_update(tr, sits, att )} {loop(I,1,R) \
1f {component_sat [tr]leite]faee]{I} == t ) \
bro_component [tr}lattl{I] = HAD_BRO, \
bro_site_att {fetrl [wive]l {att} = HAD_BRC.}
waks_up brother{tr. stats) {iloop{l, 1. BITE}\
1f{sh_atate{tr} {1} == srate 3 \
waks_up {vokss_of { tr 1 [ I 1 2:}
mioimum site{value, lnin.w {ime 1,3,
I = minimum_wits = INF, \
loop(J, 3. 8ITE ) \

if {c¢h atste { etr ] [ J ] == state \
8& vaiue [ tr] [ J} <D} \
mintmum_wite = J; \
¥
mavimum{valus, state) {ime I.J: 1\
I = mextmum_site = (- INF)} 3

loop(l. 1. BITE ) \

11 (ebostats [ vr 1 [ 51 == avave \
a2 valus { ar] {37 >71 ) A
maximum sits = 1.\
mazl{s b} {3 >8 7 a
min(a.b} (& <b>a
prew(s} { pra(s).pra(TKIR aut{tokss) . outl{tr). suti{sits }: }
preFRROE{s) { prels), ¢ 8TUP. D O, 0), ¥
Inpre(s) {ig.pr
prit{y, ri} {int ¢
prs (v 3; A
repsst{ri) outn Yile:}d
pre2iv.el.rd) {int 1.4 A\

prs (v ).1n, \
repeat(ri) { loop

prardy.ci.rd)  {inv §.3;
prs {

{ v [ro} {81):in,}
VY

{ v [ro} 0113 3m0}
jools. N

op (3, b, 73 jour (v {rol{t 3L 5 1 2:;1n.3}
{int L.§.k®, im: N

LAY %
3 Jout { w{ro} {1 30§ JI{x} 3.1n. Xisv}}
5
FILE =t
Joe e e e [ e
- Arraye with initial walues
./
at rsiatiano_comf {Rvy ) [ 3Aa+1 } = /e RO, YES =/

238
M
{¢ 0.0 0.0}
{4. 0,0 1, 1},
{d. 0,1, 1, 0},
{0, 1. 1.1, 0},
{0, 1, 0 o, 1)
}:
int rslation_nj_widtd { R+l 1 = /+ multiple of 4G bit=/
{0, 40, 200. 200. 200}, '
7
* relutlon widtk becoma O 240 378 408 388
»/
int domain_width [ Ja+1 1 = /v multipls of 8 bite/
{o. 18 8. 24, 40, },
int ini_rel_card ratio [ Ret ) = /* the existing tuples wvary 10 =/
/* The full je coowidersd multiplication of 1/10 of esch rangs =/
{0, 1 4 3. 8 3
7
* iwitial cardinality become
* 0 38707 40960 193538 30720
-/
int domain_range { JA*1 1 = /» multiple of 40 +/
{ 0. 80, 80, 180. 200},
double selsctivity [ R+1 ] [ JA+1 ] = f* Temporary mef, toc be change~/
{
{00, 00, 0Q, 00, © O}
{00, 6.1, 03 8 09},
{00, 03 04 09 07}
{co0, 08 06, 01, ¢ 3},
{00, 08 02 04 OB},
¥,
it fap [ R+l )] [ 8ITEs 1= /% WO, YEB w/
{
{90.0 0, 0. 0)
{0, 1 0. 1, 0},
{0. 0, 1,1, 0},
{o. 1. 0 0. 1},
{0, 0 1.0, 1}
i3

o
1
=
3
4

IEREE]

cher BUS_TOKEX { 8ITE +1 ] [ 12 1 = {

*BUS_TOKEN
*BUB_TUKEN
*BUB_TOKEN
*BUS_TOKEN
*BUS_TCKEN

Y

CRICEE=1
.

ebar BUS{ § = »Bus-,

F R Rt T T g

-

®  ¥acro defipiticns and global varizblsx of DDBLUN-SNPL

-

Rl R

#datine
#dafins
#deline
#ds?ine
#defing
#dafine
#dafina
#defins
$define

#dsfins
#define
#dafine
#delina
2delina

POULSIZE 10000/~ slze of el
BOFFACS 1000 /= mo  of fac
NAMELENGTH 8 /+ asz length
NIL "1 7/ snd of 1
NOTINIT ~3 /e lisr sot

INT int  Je type of
FLOAT double /% typs of ¢
Buey 3 /e status of
FREE o /e A

PRI{&) 18{x])/* priarity =//% quave slements «/
RY{ME (k) 14[x]/® remaintng evant time =/
Event(k} 13[k]/* svent no  */

Toxea (k) 1Z2{x}/* rokse ne v/

QUINK (k) 11{ki/* aext alt in pricrity gusua «/
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®detfine BBTART (& 16{#)/* busy start tima *//* ssrve
#defice BEUW (») 14[s]/* busy total tima */
#define BEUMSQ (@) 18{#}/+ buey aum of sq =/
#define RELCNT(w)  13[#}/v relesss count %/
#define UBRPRI (w) 12[@}/~ uesr priority =/
#dafive UBRTKN(w)  1i{sl/* user token no </
#dafine TQ8UM (1) 16{t+1]/* total qususiog time *//% facilities 3/
#de?ina PREEMPTC(f) 14{7+1}/» presmpt count =/
#dwfine NAME (£} 13{zv1]/* facility name </
#define DCHAIN(Z) 12{¢+1]/> next in facility chain =/
3dafine RESQ(?) 11{f+1]/* first in quauw =/
#dafine TLAST (1) 16{f}/* time of last change in qleogth =/
#definae QEXCNT(2) 14l2}/9 queus exzit couat <f
%define QUEN(?) 13{#1/* queus length =/
#dafine NOFBuay(f) 13[f]/+ number of busy servere v/ .
#defice NOFBERV(f) 11[f]/% oumber of wervers =/
#define WQLEN{?) 10{f}/% mazimum queus langtd +/
2 T T LT e meme oo 4
/= §ratic variables and arreye
/2T s G N ey
INT #mpl_token, empl_event,
INT busy fres [NOFFACS];
FLOAT clock /% current simulation time </
start. /% start time %/
INT 1Q[POOLEBIZE] . /% list slement pool =/
11 [POCLSIZE],
12{PoOLBIZE],
13{POOLBIZE]
FLOAT 14{PCOLEIZE] .
18 {POCGLBIZE],
16 {POOLSIZE] ;
char mdloame (60}, /* modeloame %/
*fam [NOFFACH] . /e facility came pointera v/
fnams [NAMELENGTH = NOFFACS + 11,/% facility names %/
INT avl, /* evsnt list besd </
fdb, /% facility descriptor block =/
avi, /* eyail list head =/
dac, /% dascriptor chala %/
na. /% pest available fnm index */
Fras. /+ next availabls fname indez v/
char striagbut (9], /* buffer for iat-to eiring coarsreions *»/
char wstr (), /¢ forward declsration =/
e B T L LT T e
/e Hacro funtions of DDBLWH-SYPL ;
e e S N
FE R TR e e e ./
FAd getelm - return fres slsment i from the moow
/e prob - return raadom from Uniform{ O, 1 )
i putelm - rTeturs slemant i to pool
i glength - returs queuslength at facilisny ¢
IAd statua - returs facility siatus for device ¢
/e 0 = Frae, t 7 Busy
/= tims - returs furrsal stmulation tims
e oo - RN L e 'y
#de?ine getelmi{smpl_i3 { smpi_i = avl; avl = RLUNK{smpl 1), ./%ger slams/2
#dsfine prov() {1 Gvrand{}/INF)
Bdefine putsim(sapl i) {QLINK {smpl_i} = avl, =vi = ampl_i; } .
#detine qlength{f) (JLEN ()}
#det Ge(f) (Bumy free [f1)
7o sratus{f) { {buey fres [t} == Busy 7 {Busy) (FREE}} </
sdefims timal) (clock)
- e e e memmieoo o cee awy
i csues - rczuse nest evesl Lo bappen retura svest w mad token tkn ®
Y2 T PR O o/
#defins cavasis. thn) { N
registar INT ampl_ i N
1t {evi =T WIL) \
srr {5} f* sapily svsst list »/f 5
smpl_t = &vl, \
wvl = QUINK {smpl_t}: /% uplink =/ N
Lim = smpi_token T Tokea {empl_i}. N
s = empl_svyeat = Eveat {empl_ i}, A\
ciock = PRL (smpl_3); \
putelm (wmpl_ i}, /% vetura e pool ¥/ N
N
{v DDD s/ N
12 {ampl_tr > © \
tracer . % 7. smpl_sveall, 5
7 (teet > 4) \
check () A
/® EEE o/ A\

240

ol e e ey
Iad #cbedule - scheduls event s at tokesn tkn to happes after YLims &
P R et -—————— - B et R -/

#define schedule(s, sapl_t. tka) {
register INT wmpl_i:

int «;
w={(mmpl_t);
/* DDD =/

1 (test > 8) .
printf (*>>>< achadule =% t3X7 tkn:Xd\n*. s. L. tkn).

1t (v < 0)

arr (43 /* Bagative avent time ¥/
/= RER =/
7

* @avs zssociated date 1nto the slemsnt cell train. then
* liok the train to the svan list
» sven liwt is a virtual chain built oo ths top of slamest pool

getelm (ampl_ i)
Token (empl_1) = tko
Event (smpl_1) = w,
RTINE (wmpl_i) = O

PRI (empl_ i} = clock + &t
snlist (evl, wempl_3).

P P P PP P P P e s

/® DOD =/
17 (smpl_tr > O)
trecer (tkm, “BC*, = *, o). \
/e EER s/
H
Je e B et T T e f
IAd locate - rsturn ssrver ressrvad for tokan tkw at Tacility f
“o or HIL if tkn did mOL reeerve any werver
@ DR 4 PR .7
#define locste(f, tin. smpl_i) { ragister INT empl_it. ampl k. \
smpl i = NIL; A
for {empl k = { + 3. empl_i == NIL. +tsmpl_k} \
17 {USRTKN (ampl_x) == tka) \
R ampl_t = smpl x - (r + 1}, \
e e e ceees ey
IAd vel9ass - releass toksn tkn from facility 2
R R e R cef
Bdefine relasselempl_f. uim} {
register INT smpl 3, /o ssrvsc e/
€,
ampl k. /* degueuasd sutry -> qusued eveat »/
£ = smpl_t,
/e DDO ¢/
1 (smpl_tr > 0)
tracer (tkn, “releams®, fnm[NaWE (£}, 3.
/% BEE =/

busy_fres [ f ] = FREE
smpl 43743,
UBRTKN (smpi i} = RIL,
SHRELCNT (ampl_t).
BBUM {ampl 1} % clock - BSTART (smpi_
B55UNSY (ampl_i) »=

(clock - B8TART (smpi_t}) = (clock - BETART {(smp!

RN
12 (QLEN (£} 1= ©) {/v dequeus and reschedula guausd tokasa »/

if (QLEN (7) > MQULEN (7))

WLEN (2} = QLEN (1),

TQEUM (1) += QLEN (1} » {clock - TLAST (f}}.

--QLE¥ (1),

Y AREXCNT {2}

TLABT {f} = clock:

i

* take a gueusd toksn out of quaus Lo serve

* Mormxliy. the firs:t ons le picked {FIFDQ)

* ¥For bus. bus contscasion ie simulated by ramdoaly pick 1}
% from ths bus queus THe pricrity can be playaed bers

7
sapl X=RESQ()
1t (f == pus ) {

e i e
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slee { /= not a bus gqueus . pick the firat one in queve */ \
REBQ (£) = QLINK {ampl k). N

}
/% ampl_k = index of entry degqueued ¥/ \
/% DOD %/ \
1f (ampl_tr > O) \
tracer (Tokes (empl k). “dequsue*, fam{NAME (£)]1. £);\

/+ EEE s/

1f (RTIME (wmpl J) > O) {/e resume, reesrve faci -/
busy fres [ ¢ ] = Busy . /* for deguesued token %/
USRTKN (smpl_i) = Tokes {(empl k),
USRPRI (smpl_i) = PRI (smpl ).
BSTART (empl_i) = clock:

/e DDD »/
1t (smpl_tr > 0)
tracsr {Token (smpl k). "rewmerve” fam[NANE (f)).f};

P S PP s S et

/e EEE */
¥
PRI (wmpl _k}=clock+RTINE (empl X} ./v achedule next svent =/
anliwt (evl. wmpl_ k), /* tor dequeued token %/
/» DDD s/
if (smpl_zr > Q)
tracer (Yokwa (ampl_k). "scheduls™., * =, A\
Event (smpl Xx});
/> EEE </
¥
O ./
saliat - soter slement eim to priority Queus *list™

queue i® sithsr evsni list (tims. sscesding order) or
facility gueue (pormal priority, decending order)

ERE JE N e ./
Fdetine wnilsr{list, sim} { N
register INY pred, succ, esit, N
FLOAT arg. N
A
j* DOD v/ N
1f {rest > &) \
prinvf {*>>>> aanliat list=%u  slo=fuln®, list, sim}; A
Sw EXE e/ N
N
srg = PRI {ealm}. A
suce ® list, \
s3ait = O /* ipitislize */ N
wpils {axic == 0} { /% £ind pasition »/ A
it {succ == NIL} /e end o list N
B3Il = 1 \
slus \
if (Qlise == evl) {/*% asecsuding crdsr =/ A
17 (PRI {succ) > arg) \
exit = 1,/% corract placs »/ /
¥ 3
sise \
/% desc order. pormzl cass ¥/ N
it (PRI {mucc) < arg i} A
PRI (succ) == arg &2 RUINE (eim) > O) A
7o <m. | presmpted traneaction v/ \
w2t = % N
it {exit o t= 33 i N
pred = purcg, A
suce = QLINK {pred} /v advacce »/ /
3
3 ’ \
N
QUINK {8lm) = succ) /® iowert to list v/ N
Lf {gucc v tist) N
iier = slm, jfo firatv =/ A
slswe N
QUINK {pred} = slm, /% somewbsre in the m'd ie =/ A
‘‘‘‘ U Uy
suqueuw - enter evant v in token ikn with prierity pri ssd

remaining wvent tims #% teo Zacility gqueus f

N [t e e

sdat

el {

ne snqueue(r
reglwner I

7e DOD =f
1?7 {umsn > B
printt {"<<<< soqueus f=%u ke Ko pri=¥r  ev=%e¢ te=Xr\n-,
1. tkn. pri, wv, te).
1¢ {smpl_tr > O)
wracer {tkm. "queus”. fam{NAMF (2}], 2),
/e BEE «/

PP

941

0
(S

TREUM (f) +¥ QLEN (f) » {clock - TLABT (£))./% quaue atata =/
++QUEN (1)
TLABT (1) = clock,

gotelm (ampl 1}.

Token (smpl_i) = tkm.
Event {(w#p _i) = ev.
RTIME (& pi_i) = te;

PRI (empi 1} = pri,

saliet (RESQ (1), smpl_ 1) /* insert to pri-quevs v/
¥
W
TAd - csncel event with token numbar tkn
fAd raturoc svenlt ey and remaining time Lo svant te
2, PR EOROSTR R I IR -
Bdefins cancel(tim, av. te) {

INT pred.

register INT wsucc.

far (succ = a¥l, eucc t= HIL Ak Token (succ) != tkm, succ =

QUINK { pred ) )
pred = succ,
1f (wuce == NIL) {
pra { The token have not wchedule any eveut )
wvent = O

/v old srr (8). token not in liwt =/
11 {aucc == evl)} /% unliok =/
avl = QLINK (mucc);
slse
|LINK {pred) = QLINK {succ),

av = Evant (succ),

te = PRI (succ) - clock,
putsis (succ), /e retura o pool e/
/* DDD =/
12 {empl_tr > Q)
tracar {tkm. “cancel®, ¥ *  sv}, \
/* BEE */
¥
B e e e
- Btatic variabls in DDBLNN- SMPL
e e e DD L S
INT smpl_tr O, /% vrace indicator O=off, 1, 3=on =/
vest =0, /* test aptica O 9. bhigher tasi. mors ocutpute/
isputi{i0] = /v I/P on ¢md line. cam be used by user =/
{o. 0, 0 ©, 0. 0.0 0.0, 0}
INT nl = POQLSIZE. /» po of pool elemscts v/
nm = ROFFACE 7/* mo of facilitias o/
2 . -
.
= - set up all broadcast componsat ssts
-
LR CALI ED 8Y new_trans {}
el R - T
7

bro_sen{token}
izt token
{

register int tr,

i.8ite.2tt, homs_sits

boms_site = site of [ tokeo }
o =  tr_of [ tokes ]
for_all_ral if ch-:aa(:w far ) [ ret ] == 1)
Bro_rel {tr] {rel}] = ®alt_sRg
slse bro_rei [ir] {rsi} =
tor_all_mive 1 { relsted site [ tr 1 { sits } >= CHILD 8iTE } {

PR ol

P S PP PP PP PP P



243

244
1024 bro_mite_stt {vr] {eita} {att] = WAIT_BnC.
1028 slwe bro_site stt [er] [wite] [are] = wNULL; 1118 )
1028 for_all_rel 1119 continue,
1027 12 ( relation_coot {rei] [ett] == 1 1120
1028 A% tap {rel] [eite] == 1 11321 switch ( evant ) {
10328 2a& quaried_att  [tr] [rel] [att] == 1 1122
1030 22 wite rel_cont {tr] {sitel [ate] == 1123 came ( NEW_TR )
1031 b 1124 new_trana (),
1032 componant_set (tr] [eite] {att] [rel] = 1; 1138 break.
1033 slse 13123
1034 componsnt_set [tr] [wite] [stt] {rsl)] = 0O; 1127 caws { NEED BUB_TOKEN )
loae 3 1128 if ( need_bus_token ( token ) == O ) returg,
1038 y 1139 1f { rwearve ( buw_token [ sits ]. tokea. O ) == BUSY ) {
1037 for_sll_att for_ail_ral bro. componeat f{trl [att] f{rel] = NULL: “ch wnvca,:.-ln { CONTEND _BUS, DELTA _TINE. token ),
1038 131
1039} 1133 break,
1040 1133
JORL  fo - ceee e e el e . . .- 1134 cass ( CUNTEND BUS )
1043« 1138 1t { remerve { bue. tokws., O )} =: BUSY ) {
1043 - Main Blmulaticn program atm () . 1138 wchedulte B ( RELFASE_PUS TUXEN. DRLITA TIME. tokeu ).
1044 - 1137 et _bus { voken ),
1048 e - o- oo e e o e e e o e e e e e e eo oo aa 1138 w
1048 «/ 1138 bresk,
1047 wim () 1140
1048 { 1141 came { RELEASE_BUS_TOKEN )
1049 regieter imt tr site,tcyas, T; 1142 relsase ( bus_toksa [ site }. tokan ),
1080  1imt iteration, starl -ime. sad_tims; 1143 break,
1061 imt sveont, 1144
1063 FILE ° fp3. * fopea ‘). 1148 case { RELEASE _BUB )
1063 1148 relasse { bus, tokes J;
1064 start_tima = timestanmp (). 1147 releszas_bus { token ).
1065 empl ( *DDBLEN"}, 1148 break.
10868 initial {}. 1149
1067 for_ail mite 13160 case { NEED_DISK )
diak (@ite] = facility { DISK P S e
to:r_wil_site 1162 FAd check if the lock atill vaiid or notv +/
bue_ token [sits] = facility { BUB_TOKEN (sitel. 1 3 1153 1 to_state { tr J { site ] == LP_PRE_LOCK
= factitey ( 808, t ) 11864 22 valid _chack { &r, site, LP_SAIT LUCK )} == 0
by 1168 Y retura { O 3.
scheduls { NEB_TR, 1 O. O ). 1188
1187 it ( reserve { disk{site]. toksn. O ) == BusY } {
1188 munwa:w ( token J.
fprintf { sidsrr. * Hinimum number of transaciions 10 be generated? \n” ), 11es
1087 wcan? (%47, SEIMULATEC_TR }, 1180 break.
1088 1181
1069 fpriot? { etdercr, * Allowed itsratiom error 7 im* ) 1182 cams { RELEABE DIBK
107C¢  scanf (“%¢+, anllowed_arcor J: 1183 relesas { disk{site}. woken )},
1071 1184 release drak { token ),
1073 fprint? { stderr. * Wean Lrunssclion srriving interval ® in secood \n" ) 1188 Break
1073 ecan?  {"%d*. &mean_tr ). 1188
1074 1187 came ( LP_FINISH )
1076 fprint? { siderr. * Fractios of updated transactics® O - 18 \n* ), 1188 finisk ( tokan }
1078 mceuaf (“%4”, &K}, 1189 braak
1077 UPDATE QUERY_HIT = 10 - K, 17
1078 1171 csse { G835 _FINISH )
1079 fprint? { side * tima to reisase rezd lock®” © LP. it npon - LP \a" ) 1172 fimtwh ( vokea ),
1080 scant  (*%d*. ar_uslock._time ). 1173 braak,
1081t : 1174
1082 fprinuf 8IZF in block/10 7 \o* 3} 1175 csss { PP_FINISH )
1083 ecan? . 1178 iotsk { tokan }.
1084 PACKFT_SIZE IN BLUOCK : 1 © = K/1Q, ; 117V braak,
1086 PACKE! 5125 - PACKFT SiZE_IN_BIOCK e BLOCK B1ZE | 1178
1088 CONTENTION PACK:{ = 1 O = BG /PACKKT BIZF . 1i7¢9 cses ( WaKe up
1087 PACKET Ti#F @ PACKEY 81IE < 8UR TIMF_FER 81T § § 1180 wvaksr up { Toksu ),
. ¢ i 1181 Break
Warimum & of TR sntering sach site’ \n" 1, * 1182
TROOF SITE ). 1183 case { TGP
1184 gate stop,
sdundant or neo  reduadaat matecisilzation” 1/0 3. 1185 }
1188
1187
rap T 1U31 = ¢ ¢ ve Y= fap [ 438 [ 1188 Jevvsvveces/ .
p {21 } sp [ 3 3{ &} fap 1 ERORS G 1189 atop
tp ¢ fopen {*ddbimn data®, 1180 Jewsvervens/
fociose { fIp ), i1t
DATA_BIZF = PACKFT_SIZE - PACKET_OVERKHFAD 1152 end time = timestamp ().
- o 1183 pry { szd_tims - stari_time }: ln;
fe 1194
» check if tr had bean tsrminatsd i 1198 report ().
.7 : 1196 1
i 1197 e mmmemoo- . . . .
hile Tinished tr <= 1wy, o_Ts H 1198 -
tterativa_srroc > al 1199 = nsed_bus_tokea{} ---
7 : 1200
a . 1201 = R R RN R .
< caues { svent, token 1. : 1202 -/
o H 1203 peed _bus_toksn{toxesn)
X tro®oteoof [ tokes ] | 1304 register ini tokss,
2 site = aits of { tokss . 1208 {
a wy_trace { Loken. tr, pitie, sveot ). 1208 ragistar it §.tr.rel.@ite atl, .k
4 1207  int resuli states.
B £ { th osvars {zr) {sive] == RUEE 1208 site © site of [ token }.
e &2 avent e NEW TR 1209 tr = tr_of | token |
17 a2 LERTEE 1a BTOF 1210

1281 ressic = 1,

i
i
i
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1314
132186
1218
1317
1318
1219
1330
1221
1323
1223
1324
1236
1238
1227
1228
1229

1243
1244
1248
1248
1347
1348
1249
1389
13861
13p2
1263
1254
13885
1258
1267
1258
1269
1380
1281
1382
1383
1284
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state = th_ wstate [ tr ] [ wite ]

svitch { atate) {

. LP phase

e

case LP_SYN_EST_BRO
case LP_8J
17 {(valid_check {tr, wite. LP_WATIT_LUCK)
break,

Je e e
- GBI pbae
0 O ./
casa GBJ_INL

1f { pot_lock_in_iP { toksa ] ==

1
22 valid_check {tr, site, GHJ WAIT_LOCK)== O) result =0
break.

e R - S

- PP phass

came PP_PRE _LOCK
1?7 (valid_check {tr, wite., PP _WAIT_LOCK)

break.
b
return (resuit),
¥
/= R Ceemes P
. get_bue{) --- gst the bue
o/

get_bus{token)

register int token,

{

ragister int ir.site aty;
site = site _of [ token }:
tr = tr ef [ token 1.

switch ( th_state [rriisize} } {

F T T T TR T
- LP phase
o e e e T [
cass PRE
11 { ec lock get {
schedule B ( 3.
break,
/% t: state had besn changed by wsolve_ pg conflict */
¥
wcheduie_B ( BFLEASE BUS, 3 » PACKET_TINE, toksn ).
break,

cass LE 8

suly one child site, homs sits is emply

otawd relations Lo homs wite

v/

packer © tr. sita }

schedils. pscket * PACKET_TINE, tokes ),
Breax,

cass LF SYN E8T _8&0

1f { co_lock_get . bue { tr, site } == FAIL 3 {
schedule 5 ( RELFASE_BUB, c<_tims. lokes )
brexx.
/+ t7 mtste had besn changed by wolvs_pg coaflicy </
3

pra { 18T HV BROAD ),
schsdule B { RELEASE_BUS. FACKET_TIME, ioksa )

bresk.
cems LP_WAIT_END
17 { zme_lock_gat_bus { vr. wmits ) == FaIt } {
scheduie B ( RELEABE_BUB, cc_tims, token }:
break.
j+ 1% state had been changed by wsclve pg.conflicy =/
¥
pra { An Altsroats Eat Slowsel sitse 18T HV BROAD ),
scpeduls B  RELFASF BUS, PACKET_TIME. token }.
break

e e st S el S0

1306
1307
1308

1310
1311
1312
1313
1314
1318
1318
1317
1318
ine
1330
1331
1322
1332
1324
1325
1328
1337
1328
1339

1331
1333
1333
1334

1338
1337
1338
1339
1340
1341
1343
1343
1344
1346
1348
1347
1348
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cawe LP_ALL _FINIBH
pre  Byochrosization of LP ).

1f ( cc_lock_get _bus { tr, aite ) ¥= FAIL ) {
wchedule_B ( RELEASE_BUS, cc_time, token ).
break,

/e 't atate had beeo changed by aclve_pg conflict s/
¥

goto_state { LP_END ),
packat = { 2 + CONTENTION PACKET ) » num of broad [ tr ]
achwdule B ( RELEASE_BUS, packet +« PACKET_TIMF. token

braak.
Jomen e R
.
D e w)
came GSJ_INI
it ( pguser{ sits) 2% tr

a& cc_leck _get_bus { tr, site )} == FAIL

PR

schedule B ( RELEASE BUB. cc_tims, tokan ).

break,

/+ 1 mtate bad bess changed by @olve_pg conflict v/
¥

packat = { 2 ¢ CONTENTION PACKET ) < sum of_broad {er )
schedula B ( RELEASE_BUS, packet © PACKET_TIME., token ),
break,

case GEJ 8J_BRO

mio { oite_att card [ vr } { ette ] {ave}
(0 & » domain_range L ate 1) 3.
packet = K + domain_width { att ] 4/ DATA_ BIZE.
packet = { packat < 1 ) ? t packet,
scbedule B ( RELEABE_BUS. packst = PACKET_TIME. token }.
/v wt least oow messags 1@ ossded ¥/
break.

Lt = broadcasting_att [ tr ]

case GEJ_ALL FINISH

packet = { 2 v CONTENTIGH_PACKET ) = sum_otf broad { tr ]
scbedule B ( RELEASE_BUS, packet » PACKET_TINE, tokes J:
break.

casa GSJ _WAIT_EXD

packet = { 3 + CONTENIION_PACKET 3 * num _of_ broad .
scheduls B { RELEASE_BUS. packet v PACKET TIME.
break,

- - -

- RT phase :

DO S

cass RT_START

packel = mize_of ri bra ( Lr. sita ]
parkst = ( pscket < 1 ) ? 1 pacwdr,
echedule, B { RELFASE_BUS. packet v PACKET Tiuwk. tok=s 3,
break,
P P - . .
> #P phass
. PRI S

cass PP_BTART

/v w tocsl guary broadcast blocking mees ;
schaduies B { RELEASE_BUS, 3 » PACKET_TIWE, token )
braeak.

Vo

cass PP_PRE_LOCK

17 { ce_lock_get bua { tr. site ) =¥ FAIL ) {
schaduls B { RELEASE BUS, cc_time, tokan J.
Braak.
/e 1t sists had bess changed by solvs_pg conllict +/
¥

1f ( clams_of [ tr ] == LOCAL_RUFRY } {
/+ brosdcasting blocking message for the locsl Juary */
schedula B ( RELEASE BUS. FPACHET TIME, tokss ).
break,
¥

«

Coust the size of updaiad iiridbulse

The cardinality is assumed the cross product
of all updated_aty

PR T

©n the copy esleciion
» %o get ths updales reiation to



1400
1401
1402
1403
1404
1408

count the cardinality” The differest copies may reach a
different rssult ¥a bad ignore ths joiln-rsstriction inm
RT and PP phase That slwo make diff copiss differamst
Here wa alwaysw ume the first mite that cootaina the
updated relation

/

AR E ]

{ tat bit_per_tuple, card, dsize. rel

dalze = O,
rel = writiog rel [ tr }
for_all_site

R 17 ( fap [ rel ] [ @tte ] == 1 ) breuk.

card = 1;
for_all_att
1t (updated_jate [ er ] [ rel ] [ act ] == 1)
card += ajte sttt card [ vr ] { ette ] [ stt }.

bit_per tuple = O,
for_all att
if ( updated_jatt [ tr } { rel } [ att ) == 1)
bit_per_tupls += domain_width{ att },
1t ( updated_njatt [ wr } [ re) J == 1 )
bit_per_ tuple += relatica nj_width [ rel 1;

wwAr.n = ( card » bit_per_tuple ) / DATA_BIZE.

packet maz{l, packet), packetmin {100, packat)
wchesdulae B ( RELEASE_BUB, packet = PACKET_TINE. token ).
break,
}
¥
Je- e e e
- retsans bus{) - after using bue
.

reisz=s bus{toksn)
register int token.
<

Tegister imt L.tr.j.rel.site, att,

The foilosing 3 stets is far trass whoes
: :

1ok had been withdrawn
due to a pg conflict

cass LP_WAIT_LOCK
Ior_all_ reiated i blocked_wits { tr ] --
wake_up brother { tr, LP_¥AIT_LOCK ).
bresk,

e e e el

. G phase

cama GSI_WAIT LOCK
vlocksd_site { tr § --
wake_up { tokan J.
break.

goto_phass { LP )

befers = vimsstamp {
arphan_test { token

/o check {¥ the #ils Contalus 2 sits raiation or not =/
1= 0,
for _all_azt
3f ( eize_tel_conf [rr}lsivel{art] == 1 3 4 wy,
ES SO UE LRI
o_sisap ( br, eits, PP_FAIT _BTART ),

1404
1498
1498
1497
1496
1499
1600
1801
1803
1803

1806
1608
1807
1502
1809
1610
1811
1812
1513
1614
1818
1618
1817
1618
1519

1888

1889
1870
1674
187%
1873
1874
1678
1678
1ETT
1578
1879
1EBO
1581
1883
1583
1584
1885

1587

243

child_gen { tr ),
dbelzs { tr, mits };
return;

¥

goto_state ( LP_INI )},
aum_is. lp { tr] ¢+,
chbild_gen { wr ).
dbeize ( uvr, wite ).
prs { Home ?lock },

LP_INI /+ entry poiol of = pnew child »/

1f ( pesd_lock_in IP ( toksn )== 0 ) {
schedule_C ( NEED DIBK. 1000 + INSTRUCTION. TINE, tokes) .
retura,

b

goto_stata ( LP_PRE_J.OCK ),
waka_up { token ).
break,

case LP_8J
pre ( BKIP GBJ PHASE GOTU RT PHASE ).

i
* the only ous c¢hild site, homs wites is smpty
- trunemit relatiocs to home wite

-/

ce_lock { tr, site )
goto_wtate { RT_START ),
last_rt = 0O,

goto orphan_cutia,
break,

LP_BYN_E8T_BRO
pro { EBTIMATE BLUBEST BITE Brosdcast HY ).

ce_lock { tr, sits ).

1f { r_uslock_time == ANYTIME ) {
cc_uniock { tr. @ite J,
_.-.,E:vv«mn?:nnv,

}

/* mneed check 1f ail have finished or nct */
go.wlesp { tr. wite. LP_SALT_END ).

rum_to_lp {tr} -,
1 (aum in_lp {tr] = G ) return
aum_of broad { ur

goto_atate { LP_AL
blocked mite { tr

came LP_ALL_FINISH

prae { LP_ALL FINISH ),

echedulae, O { WEPD_BUS. TUKEN, DELTA TIME _towesn ),
break.

case LP_¥AIT_END
{

Sroadosst

case LP_END /v start G8J phass v/
pras (== LP Phase END 11}
co_lock { tr, sits }:
1f ( r_uslock time == ANYTINE ) {
ez _unlock { ur, sits }:
resums_by { tr. sivs }
3
goto_phass { GBS )
goto_atate { LP_BAIT _END }
I = pick min_site { tr, eite, LP_WAIT_E8D ).
/% 1 1m sat mip eits =/

wake_up ( tokss_of [ trl {1 })
break.

caes GEJ_INT
pre { we ONE GS) PHASE A MIN BITE § IDENTIFIED }.

ie



18086

1888
1889
180
1871
1872
1873

1878
1878
1877
1878

188G
1881

case

caes

249

* Had Identified the min_site,
* lock those relationw not locked in LP phuse
* start Lo broadcast jolning attributs

-/

1t ( sov_lock in LP [ token ] == 1)
cc_laock { tr, sive ),

@chedule C { WEED DISK. DELTA_TIME, token )
goto_mtate { GBJ_81 BRO ).
braak,

G8J_BJ_BRO
pre ( AN ATTRIBUTE IS BROADCAST ).

s

* update brosdcaat tabls, bro_component, bro_site_stt
» waks up blocked processes

* if { o other ati tu be brosdcast )

- goto_state ( GBJ_WAIT_END ),

» otberwiss go sleep { tr, site, GBI _WAIT_SBYN_END );
-

7

dbeize { tr, =ite );

bro_update { tr , wite, local min_att {tr] { aitel );

materialization { tr, site. local_min_att { vr ] { eite]
e r_unlock_time == ANYTIME
a&x uot_lock_ 1o LP [ tokea ] == 1
¥
i r_unlock _tims == G8.J_END
PR ¢

cc_unlock { tr, wite );
resums by { tr, asite );
mot_lock_ia_i¥ [ tokean ] = O
¥

/e
* check o see 1f all eiie attributes bhad besd broadcaatl

./

3 =0
for_all stt
if ( vro_sits_att {tr] {eite] [ =tt ] == $AIT_8RG ) {

3 oes,
break,
3
12 (4 =2 ¢ ) { /v 2o stt to be bro in the site =/
o ( LAST_§J7 ),
go.slsep { Lr, sita, CHJ ®AIT_END ).
count (., BITE, GSJ_ WAIT_BJ ),

/® check if thia im the lmst ), ®at the flag =/
17

¥
wise go slsep { tr, eite, GSJ WAIT SYN END )

{ § == 0 x& viocked wita { tr } =- O )
last,sj [ r 1= 1.

tocsl mtn_att {ve] { sital = 0

Iz

v waks up tboss sites had broadoast all thsir atis
* Towy need perfurm semi joia tao
.?‘:-:.«a..f.u:..au.rnm.a
q

o etats [ GEJ BAIT_END 3 {
y

4% wake up thoss ®its Baven L Bro all sits attym »/

waks_up_brother { tr. GBJ_FALT 81 )}, /e msy ba smpiy +7.
P ¥ Py
braak, R
15K

TE FINISH SEMI_JOIN t1), .

GBS _ALL_FIN

pra { ALL I
This will not bs the last @). eince 2t lasst ons left
wake up a1} processes in GBI_WAIT_SYN_END atate
initiste acother GSJ phbaws

IR RS

go_mlesp [ tr. eiis. GBI

17086

1707

1778

caze

orphan_cutin

250

picked site [ tr ] = O,
=min_hbv { vr ] = INF,
ain mite ferd =0,

K = pick min_eits { tr. site, GBJ_WAIT BYN_END )
if (K== 0) {

pra { Bo aite in GBI _WAIT_BYN _END ).

1f ( blocked eite { te] == 0 ) (
pro ( ERRGR ):
schedule ( STOP. 0. 0. token ).
¥

slses returs,

¥

it ( wite == 0 )

return_tokea_id ( tokes ), /¢ use a dummy token */
wake_up ( token of [ tr] [ K 1 ),
break;

G8I_WAIT_END

pra_{ BND OF GBJ PHASE ):
/* This te ths end of GBJ phase. the psat bru ts for sya =/

goto_phase ( RT )
wake _up brother ( tr . G8J_WAIT_END

break,
2T phaas
- et -- e - - -/
RT_START
pre ( ONE B1TE BRUADCAST IT8 RELATICONS ),
count { lwet_rt, HITE. ZT_FAIT_START },
for_eli_quertied ral_in_site
if ( bro_rel {tr] [ rel} = HAD BRO ) {
rel card [ tr J [ rel ] { bome o? [ tr } 1 =
rel_card [ tr ] { rel } [ sive } .,
bro_rel [er] { rell = Hap BRO.
¥
cc_unlock { tr, site }.
i
® asmsume oo change in dosizxs { tr, site ),
* tocluds broadcast relstion to bome sites . updats db
=/
resume by { tr, wits )}, /% waks up blocked procsssss »/
ir ¢ orphan [ tokea } == 1 3 q
terminate_site { toksm, tr. site ).
terminxte_tr $wr ),
retura,
¥
ir ts_read_only
it iw_a pon _updets_sits ( sitw 3

3
termisate_wite { tokes, tr, sits ).

lsep { tr, wikte, PP_WAIT UPDATE ),

9o

* RT material

"
I

n_evats { RT_WAIT_8TART ) {

I =0,

17 { queried rel [ tr}] {rel} == 1
E 13 fap [ re} 7 [ 1 1 == 1
2% bro.rsl { tr ] { rel ] =: WAIT 8RO
PAR S
1=t
break,
¥
i (1 =20 {
laet rt -

[N te_read oniy



1778
1777
1778
1779
1780
1781
1783
1783
1784
1788
17688
1787
1788
1769

1791
1793
1793
1794

al
)

®_&_noo_update_sitas { 4 )

terminate site ( token of [ tr ] [ 1]
wise go mleep { tr, t, FP_WAIT _UPDAYE );
¥

}

1 ( lewt rr o=z 0 ) {
gota_phawe ( PP ),
wake up ( toxan,of [ tr ] { nome of { tr ] ] ),

/v
*  wakeup home ®ite for PP
*/
X
else {
for_all_related i in stactw { KT_WAIT_START )
break; .
wake up { vokan_of { tr ) [ 1} ):
}
brask,
2 SN Y .
. FP phass

cams PP_BTART

pre { LOCAL QUERY BROAD AN BLOCKING MFSSAGE read oaly 3.

ce_unlock ( er, site )

Te a_by { tr, sive };
terminate_wite { tokex, tr. sits }.
terminate_tr {wr ),

braax,
cass FP_PRE_LOCK

pre { UPDATED DATA 18 BROADCAST )

cc lock { wr. sits 3,
cc_unlock { tr. site ).

/¢ omit w-lock. unlocked immedistely %/
resums by { tr, sita )

terminate_sive { tokea. tr, site ).

1¥ ( class of [ tr ] == LOCAL_QUERY )} {
verminate_tr { tr }:
brealk,

¥
-

¢ unlocksd mincs sach site had gotvon updstesd valus
~ nobody can read tha dats befors the new valus is written
* to disk

=7
count { j. S8ITE, PP _FAIT_UPDATE };
i L ) == 0 )} terminate tr { r )},
wlsoe wake up bLrother { tr, PP_FAIT_UPDATE ).
braak,
¥
¥
- get_diwx{) - get ths uss of disk

Fdefins DTINE PER_BIT (DTIME PER_SLOCK/{(8ITS_OF _BYTE + BYTES_OF_BLOCK))

got diax{token)

ragister int tokso

{

ragistar int rel,sits, atl, or,
inloiLg.x.

tnt detze;

e = @its_of

wt {
tr = tr_of {

switer { th_state [rrilsitel ) {

1870
1871
1872
1873
1874
1878
1876
1877
1878
1879

1881
1883
1883
1884
18856

1887
1888
1889

1891
1893
1893

1896

1919
1930
1821
1823
1933
1824
1928

/-

* count tha disk_sccess_time, *hich is proportional
v to relation card { all tupls ehould be scaned )
* All involved relatioos ts counted

-7

1 ( valld check { tr, mite. LF SAIT LUCK )} =¥ 0 )
reiuro,

dsize = O;
for_all queried rel _in_site {
deize +=
U rel_card [tr] [rel] {sits] » relation_width {rel}).
lptime{tr] (eite] = dwire « CPU_TIME_PER_BIT,

¥
¥
break,
Fee e el . PO
» Q8. phase
P - RV . .
came G8J_8J_BRO
/e
* count the disk_access_time. which is proportionsl
* to att card it is sssumed projected stLributss are
* stored as a indspendsnt unit Only bro st is scaoned
* in GBJ phass, nc need 1o #can walire relation
% Any relstion containisg broad attributs is picked
/7

for_all _queried_rel_in_site

1t ( relution_con? { rwl ){brosdcssting att {
break, /+ need only one rsl with bro stirlb

£
]
)

duize =
stre_stt_card { tr J{ sits }{ Bbr
® domain_width { browdcastiog st
sitime {tr] [mite] = deixe » CPU_TI
break

oadcastisg stt {ur
v [ 1
ME_PER_BIT
case GEJ WAIT_SJ
cass GHJ_PAIT_END

{ tav wiv_psr_suple;

i

* coust the disk accees tims. which s proportional

* Lo sitber the card of relati cred ait card
* Depends on the opersting mods

® for ANYTIME or GBJ_END only projscted atiributss in
* 211 tavolysd relations ie countad

* for RT_EWD, ths eatire involved rslations sbhould bes

® scannad #incs fo projectsd stiribute sxlet

® The cardinslity of original relaticns ars used

* sioce culy valuss of the jolning atiribute i needaed
® by ths processcr. counl such atiributes ooly

./

deizs = O
sl 7 Broadeastiug att [ our
for all queried rel in_site

switch ( r_unlock_time )

came ANYTIWE
cawe GEJ_END
detre +7 (site_att_card
» domain_width [

Drask

cawe RT_END
domata_widih
oresk

dsizs *={ ini_rel_card

{ tut bit_psr_tupla:

i
* 411 unbrosdcael relations ars broad
T

cast
® Ths semi - joins o8 the original lations are sewume



1984
1966
1988
1987
1988
1969
1970
1871
1972
1973
1974
19785
1978
1977
1978
1979
1980
1981
1982
1083
1084
1988
1988
1987
1988
1989
1960
1991
1992
1993
1984
1998
19S8
1997
1958
1969
2000
3001

2002

253

» performed at the time a relation im brosdcast

* Relstion width nwesd not tc be the originai

+ since temporary coples of queried relatian ia usad

= But the cardinality is original since no eemi - join ts
o\». parformsd besfoce

.

dwirs = O
for all_queried_rel_in_site

1 ( bro_rel [ tr ] [ rel } == WAIT_BRO )
deize += ( ini_rxel_card [rei]
» tr_rel width [ tr ] [ ral } )

case FP_HTART

/* pp_time 2ud besn calculatad in get_duas

{ ot ®bir Ler_tuple;

All relations iw resd for post-procssaing
* Tbe result neadas pol be writtes back

* The ratrieved and updated target can be get here
¢ thers is Bo meed to rssd disk again
-

.

Nesded tuples can be filtersd aut st the swne time
Aseume their size will oot s¥Cewe the memory sice

REWOTE )

1t ( class_of [ tr }
desizs { tr, site

e
3

for_all_rel /* all rwele ars bro to homs B ¥/

1f { queried_rel [ 2r } { rel J == 1)
detze »= ( rel_card [trlirel){stzra}
* relation_»idth { ret ] } |
¥
break

cass PP_UFDATE

& 8 e

it bit_per_tuple,

i

I

» All updatesd relations is counted
= tation card { all tuple should be scaned )
N

Lo Fe 3
i/
deizs = 0,
for_ali_rel
1t 0 fap [ rel ] { sits } == 1
&% writing.rel { tr ] == rel
ERd
daize v= ( rel_card {eel{rotifatsal
+ ralation_width [rel] 3,
perime [ tr ] { eits ] = dsixs o CPU_TIME_PER BIT:

i
* because entira tuple should be scanned ln disk, wo

» used origimal widih, imetsad of useful stiribute only

)
¥
*
Breai
= UNIFGRM{G,DTIME BEARCH} + { DTINE PER_BIT ¢ dsisze),
(RELEASE _DIBK, disk_time, toksn).
ase _diek{} --- sfisr use or diek

2047

2049

31t

2108

R0
SRR
2112
2113

2118
118
2117
2118
2118
3130
2131
3123
123
23124
2138
2128
4187
3138
3139
3i3e
131
3132
3133
2134
2138
33138

3138
2139
2140

regiet

o=

local_query

e _dtek(token)
er int token.

er int t.tr.rel.site.atc. j.k.

wite of [ tokss };
tr_of { tokea ]

( th_ state [trifsitel ) {

case LP_DISK

11 { valtd chack ( tr, site, LP WAIT LOCK ) == 0)
returan,

1f { clase of fer] 1= REMUTE }
goto locsl query,

17 { sot_lock_ta LP [token} == 1 ) (
go_siesp (tr. site. LP_BAIT_END ).
return,

b

1f ( orpran{token] == 1 ) {
achadule C
{ NEED_BUS_TOKEN, 1 O # lptime{tr]{site]., tokea }.
goto_etata ( LF_BJ )},
return,

3

1 { set_slowsst_wmite of [tr] == O )
est_aloweet sites ( tr ),

17 { wite '= wet_siowset_sita_of [t
go_swiwep ( tr. wite, LP _WAIT_BYH
scheduls_C

( LP_FINIBH .1 0 » lpuims(cr}isite], toksa ).
retura,

¥

goto_stxus { LP_BYR_EEST _BRU )

achedule C { LP_FINISH, 1 O ¢ Iptime[trllsite]. tokan ).
braak,

case GBI 81 HRO

schsdule C { NEED BUE_ TUKEN
braeak,

. DELTA TINE, tokws

cass GS.I_WAIT_§J

schmdy
break,

V. ovokwn )

braak,

case RT_SBTART

mchedule C d.
bresk,
F T LT EE T
. FP phase
e P B e
case PP_BTART
schsduls C
{ PP_FINISH. t O » pptime { tr | [mite }. toksn )

ereak,
cnas PP_UPDAYE

s { tokea., tr, wite }
M |

€. PP UPDAT

tarmine

count [ 3 81

it {3y =0 ) 4 /v This iw




[
1
v

2141 terminste tr { ur )
2142 ¥
2143 break. 32238
2144 ¥ 2237 goto_state ( GBJ_ALL_FINIBH ),
2146 ) 2238 blocked_site [ er ] = O,
3148 e coooos R Rt Trrmmmmmmmeemeoooeoos 3239 schedule ( NEED_BUE_TOKFN, 100 v INSTRUCTION_TINE, toksn )
2147+ 2240 braak,
2148 = finieh() -~ after use of disk 234y
2149 » 2242 caoe GBI FAIT_END
2IBO - oo o - S e 2243
2161 «/ 2244 pum_tn ge) [ tr § --.
2162 finish(token) 3245
2183 int roksa, 3248 12 { oum_to_ge; [ tr } =- 0
2164 { 3247 tf ( lamt @} { tr } == 1 {
2165  int i.).k.rwi.@ite. att, tr. d248 /*+ count number of broadcast «/
2188 3249 syu_wteps ( tr . GBI _WAIT_END },
2167 site - site_of [ token }; 3350 achedule
2188 tr F tr_of { token 1. 3381 { NEED_BUS_TCKEN. 100 » INSTRUCTION_T1¥b, token .
2169 2262 ¥
2180 wswitch { th stats [trl{site} ) { 2283
3181 2764 slee {
2182 72 2266 Iv
2183 . LP phase 3268 * creat a dummy token to trigger the next GSJ
2184 D T -/ 3387 * Bince the wtals of tbe site in GBI_FALT_EN: is
2166 case LP_DISK /+ This is s local query */ wwmw .\ not to be changad, otberwise it will rum into trouble
2188 -
2187 1f { valid_check { tr, site. LP_WAIT JOCK ) == 0 ) { 2260

returo, /e stay in the stats LP_BAIT_LOCK =/ 2161 prs { Get w Pssudo toksn ).

: 2282 token = get _token_id ().

goto_state { PP_WAIT_BTART ), 2383 sits = site_o? | tokes ] = C,
wake_up { token ): 3284 tr_of [ token } = tr;
1¢ nuom wona uc-«um.;.

2238 3

3
break, 2287 brek,

LP_8YN_EST_BRQ

{ valid_check { tr. sive, LP_®AIT_LOCK ) == 0 ) {
raLurn, /% mtay i the etates LP_FAIT_LOCK /7
¥

achedule { NEED_BUS_TOKEN, 3 » toxen Y.
break, :

3373 cwxes PP _START

2W7s 1f { class of { cvr } *= REMOTE )
LP_EAIT_SYN 2378 int block, someons,

caaas

2278 /=
2379 » check to wss if thers are soms Lr blocked by
thia tr. If yes, broadcast a blocking meswags snd
s usblocking mewsigs Sincs one blocking messigs e
sufficient to tell mvery tr. thers ia no nsed to
Broadcast mora thin one blocking message

Bincs thers ie difficulty of detarmioe the time of
first blocking message ( slecting procedurs ars
virtually simulated ., it i@ broadcast oo ths t
of unlecik

/

u
a
©
-~

it { valid_check { tr, site. LP_WAIT_LOCK )
return,
*

sum_to_ip [ tr] --:

go_slsep { tr, mitve LP_FWAIT_END ),

w
©
3
1}
1

/% mneed check 17 all have finished »/
=0 ) L 3288

{ voken ).

»
It
3
e
IR

2390 /* Dstarmice if thers ate transacLions blocked by nro*f
2292 block_acmaone = QO

294 sepeat { TH )

3298 1f {
&

-

3. 2298 )
229% 3

2300 5

b

roken

2301
3302
2303
- 2304 tf { bleck_somsons =1y

€

case

. 2306 11 (18, read_onty ) {
2307 double F.

T gs IT_EYN 3308 Fo= 1o »
TT_BYN_END ). o
SETN N 2309 mcheduls

11 the sits had risiahed s}
uds thome sites in GSJ_BAIT_END
®alf thass biocked #itss  hers

sf {ooum tn.ge} {er] 5 0 3 return, ¢
wm gei leri 2317 7 { te_rsad ooty ) {
g8t the pumbsr of broadcast for synchronizatios +/ 2318 ce unlock { tr aits ),
Z320 { tr. wite J. /% recundant reaume =/
nazt.gs} 17 { syo_steps { tr. GBI ¥AIT_SYN_FND } == 0 ) { k3 Sata site { token, tr. mite )
N TR 2331 Cetmimateltr Ly
pre { NO BITE IN stata GSJ SAIT_8YH_) 2323 raturs
37 { vlocked_msite [ tr]l = 03 { 2323 3
prs { ERAOR ) 2324 slse goto pp_pre_lock
schsdule { BTGP, § O, token J. WWMM 3
3327 } /e t® a local quary */
3328

elee raturn,




o

2329 ¢ ( ie_read only ) { 2423 - LP phase
2330 terminate_sita ( tokea, tr. ®ite ), 2424 $o e e Rt EEEEERREY ¥
2331 terminate_tr { tr )}, 2428
2332 retura, 3428 czee LP_WAIT_LOCK
2333 ¥ 427
2334 2428 befors ° timestamp (),
3336 pp.pre_lock 2429 /- blocked witw { tr ] - | \74
2338 goto_state ( PP_PRE_L.OCK ). 2430 goto_state { LP_PRE_LOCK }
2337 2431
2338 case PP_PRE_LDOCK /% antry point of waken process »/ 2432 case LP PRE_10OCK /+ entry point of & wiken procese ¥/
2339 2433
2340 wwiteh get_local _lock { token, tr . site ) PIRS 2434 if { get_local_lock ( tokes. tr, site ) == REJECT ) {
2341 2438
2342 * cawe REJECT 2438 pra { BLOCKED ' ).
2343 go.mleep ( tr, mite, PP _WAIT LOCK ). 2437 site. LP_®AIT LOCK ),
2344 prs ( BLOCKED 'i ), 2438 site [ tr ] v+,
2345 blocked mite{ wrl ++; 3439
2348 break, 3440
2347 2441
2348 case GOT_LOCK . 2442 if ( clase_of { vr ] '= REMOTE )} {
2349 1t { clase_of [ vr } '= REMOTE ) { : 2443
2360 /* Dstermine i? tr blocked others »/ 2444 12 { cc_lock_get_bus { tr, site ) == FAIL ){
2361 it block_someane. 2445 pre { ERROR in obtained locks pg ceuflict )
2382 block_somsons = O 2448 schedule ( BTOP. O O. token ),
2383 repeat { TR ) . 2447 ¥
2364 it (< s 1= wr ) 2448
2365 ax ( Cpg [ or 10 11 == 1) 2449 cc_lock { tr, site ):
2368 ti ( oew_relative [ 1+ } { or ] == -1 . 2480 ¥
2367 b 2481
2368 ) £ 2452 aftar = timestamp (),
3389 block_someone = 1 3453 szscution_time = after - before + 20 » INSTRUCTLON_TINE
2360 break, el 2464 @schadule C ( NEED_DISK, 1 O ¢ sxecution_time, toksa ).
2381 ¥ 2466 break,
2382 2458
2383 1f ( block_someons == 1 ) /v block somsone v/ 2487 case LP_WAIT _END
2364 goto broad, 2468
2388 slee { 2459 it { a@t slowest site of { tr } =: site ) {
2384 /= did pot bilock any body. lock uslaeck 2480
RIAT * NQ paed to broad blockiog msssage 2481 wschedule O { NEED BUS DFI.TA Tiswt Lokwi )
23848 * cpu time im ignored 3482 /v et slowest _eits of b 1M, v/
2389 v potice o disk read im Deeded 2483 retura,
2370 * siace r_lock can protect Lhe read sebl to be 2484 ¥
2371 » sltered 2485
237 - 2488 Je e e -
2373 » tns following check is a redundancy chscking i 2487 - GEJ phaase
2374 e sioce pg sbould have nol bs changed right it 2488 R B 7
2376 ® wfter it get the lock for get local_lock im 2489
2378 * the same function code . 2470 case GBI_INI : /+ the sits had bean pluked s min site */
2377 v the cods im questionable No test yet | 3471
zava ./ 2472 goto_pbass ( G8J ) .
2379 had W73
2380 t? ¢ cc_tock_gst bus { wr. sive } == Fail 3{ 2474  gsj_ini
2381 doubla . 2476 schedule © ( NEED_BUS_ TUKEN. DFIT:_TINE, toksn )
2382 F = 20 » INSTRUCTION_TINWE + co_tims, 2478 bresk
2383 schedule ( RELFASE_BUS, F, token ). 2477
2384 ratura, 2478 case G8J_FATT_LOCK
2385 ¥ 2475
e 2480 1  get_local_leck { token. tr, site ) =¢ REIFCT J {
2387 ce_ lock ( tr, site }. ' 481
2388 cc_unluck { tr, site }. 24832 pra { BLOCKED 3
2389 Tesume_by { tr, site ). 2483 @o #issp ( tr, sits, GEJ BAIT LDCK ),
2390 termicats_mita { toksa, tr, mite ). - 2484 blocked site [ tr ) ++,
Q3G terminate tr { or 3, 2486
2392 braak, 2488
23493 3 K 2487
2334 ¥ ¢ 2488 ine {rr} == 0
2358 2489 ,
2398 broasd acheduis { tokeo ). 3450 wr, wite, G8I INI ),
2397 bresk 2491
2398 2492
2399 cave FAIVE 2483
2400 terminats_sits ( token. tr, =its ), 2494 ceme GSJ_WAIT_5J
2401 i warminate_tr { tr ). 3498 .
2402 braak, 2438 wum_ta_gs} [ wr} ee,
2403 3 2497 scheduls C { NEED_DISK, DELTA_TIMF., tokss )
2404 braak 24598 break
2406 ¥ 2499
2408} 2500 came GBI_WAIT END
2407 /e - R e oo
2408 = 2802 12 { tast_wy [ te] == 0 ) ¢
. 3503 N
- 2804 /s
> R EEE T 3806 * This 1s a site bad bru all ile elts att
- 2808 * In thts cu&s. the eite is wiked up Lo perform
x 2807 + @smi joius wilh the remaioing part the DB
- 2608 «/
{ 280¢
- 3k 2810
2511 DELTA_ TINK, tokes )
281
3613
{ 2614
BB © to RT phass
B - S 2618 g ¥

the firwl wits Then do 11




stay at AT _WAIT_BTAHT atate

if ( mtte == bame_of [ tr 1 )} {

sep ( tr, wite. PP WAIT START 3.
/+ pewudu broadcaet its relations v/
for_all rel
1t ( the_rel tn_site _iw gusried )
wro.rel [ tr ] { rel ] = HAD_BRO .
retura,

¥

17 ( firet_rt _site { tr)} ==0)
tirst vt { tr ),

1f ( otte = first rt _wite [ vr } ) {
go_siwep { tr, eite. RT_WAIT_START ),
return.
>

goto_atsts { RT_STARY ),
goto_pbase { RT }
schedule C ( NEFD_DISK. DELTA_TIME, vokan };

cawe RT_WAIT_BTART /» con home site only »/

goto_state ( RT_ETART .

s
+  Heed wume tims to do remxining esmi - join
v/
wctedule C
{ WEED_DISK. DELTA_TINK o INSTRUCTIGN TiWk, token )},
break.
2 R .
- PP phass
.- P T TP AR - N 74

casw _WAIT_UPBATE /* aon boma sits only =/

goto.atats { PP_UPDATE ).

/e
* assums no tims
s

scheduls € { NFED DISK
Break,

casa PP _WAIT_START
goto_phass

{ P
goto wtate { PP_START ),
. geu
N

case FP_BAIT_LOCK

cc_toey (O - wat pg pewrmanently 1o LP, GSi. BP
copy new_pg to pg

2048
2847

2670
2871
2873
2673
28674
2875
3878
877
2878
2879
2680
3881
2882
2683
2884
26885
2886
2887
2883
288%
2650
2891

2892
2693
2894
3858
898
3857
2898
2899
700
2701
3702
3703
3704

260

repsat ( TR )
old pg [+ 1 =pg [ tr ] [ 1] .

= new pg [ t 1 {3} .

/

* tovalidated thoes temporary rw-locke which la couflicting

* ®ith locke uwed by this trass and is hold by a trace

* which had no pracedence relationship with currest trans befors
» but ie preaceded by it now
-
.
.
.

Don't c¢are mbout directive precedeace ralationship
sonce no conflict may silt batswan tham

This should be moved Lo thw time after the bue is released

/
loep &, 1. BITE ) /% check sits by site to save time v/
12 { L 15 site
[ pouesr [ t ] Y= NULL
8% pguwer [ 1 1 t= ur
22 pgitr] [pgusec{t]] == Lbafored
ax  old_pg [pguser{i]] == 0
as lock_walidivy {(pguser(1l] { 1 ] =¢ VALID
¥ {
/* found a trans in eite { thal ie pewly preceded by tr */
tr} = pguser [ 1 ]
/% to see if the locke obtained in thie site by trj l1s lovuitd =/
for_ail rel $f ( querled ral [ tr § [ rwl § 7o 1 3
e ¢
S
€ lock wtate [ xr ] [ rel ] == READING
{i lock_state [ tr ] [ rel ] =5 READING_WANT_W
)
&%
4 local_loek {3 1 { ral ] == WRITING
Ui local_leex [ 1 1 [ ral ] == READINC_WRITING
>
i
11
{
¢ lock_state [ te ] [ rel ] ==
i} leck_stste { tr } { rey ] ==
3
&k
< local lock {1 ] [ rs1 ) =
Pl lecat doex [ 1} { ret ] ==
N ;
)
} .
{
lock_vatidivy [ ot T bl o= T,
break, )
¥
co_ time = VLimswitamp {J - sater_tims
feturn { 8UCC 3.
e e oo . - . e -
-
- ce lock_get_bus {3 --- @8t lock psrmasently in LP. GBI, PP
. copy local_lock to lock state, reset Tlag pguss
. . P - . . N

ragister st tr, sits.

{

register imt . j. imp, rel
ist  wrj;

int old.pg [ TR 5 1 ]
double snter_time,

cC_lock get_bus {( tr. site )
N

pre { cc_lock get_bum ),
otsr time = timsstamp ().
/% aavs old py info for cheuk va
Tapeat { TR )
elapg { + ] =pg [ o} L 1}

dity for other transacticns ©

I



2728
2727
27128
2729
2730
3731
3732
2733
3734
3736
2738
2737
2738
2739
2740
2741
1742
2743
2744
2745
2748
3747
2748
2749
2780
27863
2782
2763
2784
2765
3768
3787
1768
2769
3780
2781
2782
2783
278¢
2785
2788
3787
2788
2789
2770
3771
27ia
2773
2774
2776
3778
2777
3778
2779
2780
2781
2782
2783
784
2785
3788
3787
2788
2783
2790
2791

3793
2754
2795
2708
2797
ERET

+ Ssvs pg info in order to be restored at the end

* ¥ew information should be ®tored at new_pg at this moment

* It cun only be stored into pg sfier releame bus

.\au,- overhead ie dus to that cc_lock_get_bus uses pg. Dot Dew_pg

loop ( i, 1, TR )
loop ( j, 1. T8 )
mem pg [+ ] L )3 =pg L) Ly,

repeat ( TR )
old_pg [ 4+ ] =pg Ler] [ ¢+

loop ( 3. 1. TR ) {

1 { pew_relative [ tr } [ j ] == 1) {
if Cpg (er ] 031 == - 1)«

new_rwiative [ tr 1 [ }]

1f ( pot_lock _in lP [ token of [ vr ] { site } ] == 1}
th_state { tr ] { aita ) = LP_WAIT_END.

@olve pg. canflict { tr, uite )

ce_ tims = timewtamp ()} - auntar_time,
raturn { FAIL )
¥
traceitive { tr ~ 3.
cew _relative [ tr } [ j ] = veED,
¥
1f ( new_relative { tr ] [ 3} == - 1) (

it {pg Lar )] [ 41 %=1«
H

new relativs { tr
eolve_pg coaflicet { tr, wmite )

ce_tims * timsslamp ()} - enter_tims.
ravurn ( FALL ),
¥

trammttive ( w Lour )

ces_relative { or 1 [ 3 } = -UBED

¥

update lock_state, pguesr, be carsful, may bs cslled more thum once
in sve:y phass including LP phase

/e

/* Contirm locks for those sitss had obtained iocks =/

Yor_all ralatsed i {
17 { pguesr {1 ] == ur
Ex lock_validity Ter ] {41 == VALIO
3¢
pre { READIRG 3,
isck validivy [ wr 7 [ 83 =" FIRMFD,
pgusar [ 1} = ®iti,
for_atl_ral o
lock_stateftri{rel} =
{ lorw_statefzri{rel} < local_lock [ & 1 { rsel 1}
? local_ loekx [ 3 ] { rer ]}
lock_stave{ts){rael} )
lacal tock [ 1} [ rel 1 = NULL,
¥
lecsi_rsaums { t ),
H
break.
caes GBJ
3.
iecal pg ).
reil = locai_lock [ sire ] [ rel }
NUL
for_sll rel local_lock [ site } { rel ] = NULL
local rasume { ®ite )
breax,

2799

28014

3808

3809

2884
2888

2871
2873
aBT3
874
/7E
878
W77
878
/79
2880
asaL
I\B2
2883
2884
888
2888
3887
B8E
3IB8Y
896
3891
B892

n-u PP

Y pre ( SRITING ).

for_all_rel
Tock_state(tr]{rel]l = local_ lock [ site ] { rel

pguser [ site ] = NULL.

for_all_re! local_ lock [ smite } [ rel ] = WULL,
local_reaums { wite )
break,
}
i
% restore pg back to old pg
* and stors new pg into new_pg
./
loop ( &, 1. TR ) loop ( 4, 1, TR } {
c«vuu.-tvmﬂwW S IR
devpg [ 23 [ 31 =pg 41 {11,
wc 17 031 = tap,
cc_time = timemtamp () -
Teturn ( SUCC )
¥
PR b - e - .~ - -
- cc_psw_tr () --- update BTT under different cases
.
- CALLED BY PRE ou RELFASE BUS

+ NE®_TRANSACTION

* the iock _a@tals #tors tde lock requiremsat of each trans to

» msch relation The BANT ¥ is covered by Lhs WANT A Each updats
* is asmocistad with a R N BAIVE HAY UCCURRED 31

® Yhis rout

e 1% desigusd Iur gensral case with waivs possib

-~

ce pew_tr { wr )
register int tr.
{

register st i, ral,

registar int WEED_ ¥,
pra  cc_pew_tr (33,
loop € i, 1. TR ) {
vew _velative { tr } { ¢t ] =0
if (pew relstive [t 1 { tr ] >0
sew_raistive [ v 31 Lt } = - 1,
1f { new_ralxtive {1 ] [ wrl <o
new_relativa [ tr ] { ¢ } = 2,
¥
for_stl_rel {
HEFD R = { qusrisd _rel [ tr ] [ o= 3
NEFD_¥ = { writiag rs! { &r ] =5 ral ),
1 &8 NEED ¥ == 1 ) lock_state [ or Jf rel 1 = FANT_8¥
1 &2 NEED ¥ == Q ) lock.staie [ tr }{ ral ] = BANT R
O &% NEFD_¥ =7 i ) lock_ state [ tr }{ rel 1 = PANT @
C && NYED_¥ =5 O ) lock stats [ tr 11 ret ] = mui
pg Ler 3 Lr 1=
pg [t 1 Tl =0
lecp (&, 3. BITE } lock_walidivy { tr ] [ ] = vaLiD:
>
[ 2N R e e P .
>
- ce_uwniock {} ~-- unlock updats BTT, lock_ stats
- PG i® not updated since the pracedsccs relation
- can nol be changsd befare tarminstion
- CALLED by LP_SYN_EST _BRO, O8J_SI_BRG
- on RELFASE_BUS
-
* Diffsreat responsss for diffsrest operating modes
- © ihe sscond copy of rslalicns are stored after LP
- oniy projected stiributes ars storsd as second copies
- No sscond at all
+ LP pbaas, unlock those uanssded r locke { resd_ooly, lockes in LP )
+ GSJ phase, unlock those unnesded r locke { read_only, lecked in G681 )
= RT poass. unlock Lhose unneedsd r locks {read_only, locksd by ciphbas



2
263 "

3987 A
2893 + PP phase. unlock all r-locke and w-locks 2988 » The r-locked rel contalus tLe bro mti. could be
3894 =~ In sach phase, the set of locked relstions are idsatified firs 2089 » a candidats for unlocking
2886 @since a copy of the ralwticn iw assumed copted iato 2 a cond 2990 ./

.

place, it can be uslocked immediately after imitisl broadcest 2991
or asemi-joln Broasdcast 2992 k = O /* cbeck to mes if all att had been bro
; 2993

2994 for_all_ate
2900 cc_unlock { tr. aite } 2996 i«

2901 register int tr, wite, 2996 Ty
2902 { 3997 IR¢
2903 register int i, rel, att, 2998
7904  int tr). k: 3999
2906 iot to_be_unlock [ R + 1 ] ' 3000

3001 X =1,
2907 switck { tr_phawe [ tr 1) { 3002 oreak,

3003 ¥
caes LFP 3004

2008 ¥
1t { r_unlock time == ANYTINE ) { 3008

3007 1f ( k =* 0 ) loek_state [ v § [ rel 1 +e,

2898

relstion_conf { real ] { mtt ] =01
querted_att { tr J [ rel ] [ sty ] =21

/% check if the att had beso broadcast =/
it ( bro_component [trl{ ate }[ rel ] == WAIT BRII{

g

thers mey be soms @itws haven't finish yet if called let 3010 3 /v ANYTIME =/
time When called later, carsful toe 3011

3012 i1t ( r_uslock_time == GBJ_END ) {
wave 21 ihe lock etatus into ths vector to_be_unlock 3013
slimiu..r Lhome locks #till umed by wome siles 3014 /=
relases Lhoss locks no body use 1t =Ry more 3015

be careful, thers may bs @ome sites haves t get lock yet 3009 ¥ /% had r_locked */

EEEERE RS

= copsider those non_target rsliations only
/ . 3018 e check if all the atis had besn brosdcast
3017 s tf yes. unlock them
for_all_rel 3018 ./
To_be unlock [ rel ] = lock.atate [ tr ] [ rel 1. 3019
3030 for_all_quarisd_rel_in_eits
for_all _related_ i 3031
3022 17 { varget_relfrrliret} == 0 3¢
_FRE_LOCK 3023
_BAIT 1LOCK 3024

1t { tb_svats
P th_state
i1 th etave [ tr
th wtate [ tr

M 3027

Tr

1t{reiation_cunt [r
{

}{ brosdcewting sty
22 lock_mtate [

rel ] == READING

e

for_all_ rel - 302

ed rel contsine the bBro att, cou
for unlocking
1t { queried_rel [ tr

k tap [ rei 3 [ %

[ rel } == 1 30314

% tc see tf mlls atlt hed bess bro =/

o
o
B
n

¢ ( r_unlock_ tims T= ANYTIME ) { 3045

tock, atate { tr 1 {

v had roiocked
7 man vaigen
e GEIEND

s nobt locked By olher site 3049 ¥

cbeck tf ths relations locked by This wits 3048 ¥
v
t :inck them 306G

-

3062 Braak
s

to_be_usiock [ rel ] = lock_stats [ ir ) [ rel ] 3084 casu BT
foilowing pisce of codss ta redundant sincs ooce i 3087

iock_in_LP ie set. the relation will 5ol axist hsce 3068 it {
the currsat implsmestziion i 3089 &&
3

-
a4
-t
v a

I
b

site 3086 cass PP
48 nov lock_ia £P{ tokes of [ vr 10 1 31 =t 3068

w
4
2
v

trapsaction hes nothing to do #1Ub

e treatwd s tarmiusted

3988




3101
3102
3103
3104

3187
31648
3189
3180
3181
38z
a3

-/
it ( clase_of [ tr ] == LOCAL_QUERY ) {

int t_lock,

t_lock = lock_ state [ tr ] [ writing rel { wr } }:

for_all_rel

lock state [ te ) [ rel )] = NULL:

wonricnr o [ er ] [ writing . rel [ tr ) | = t_tock
slaw {

for_all_rel lock_srate [ or 1 [ rel } = WULL

Woomﬂr TR ) pp [t Il er ] mpg {er} [ ¢} =
break;

r

w- { cc_unlock ).

A B ol Uy gy
- cbild_gen () --- generats child processes

- ®at up neceswary information

- CALLED BY relessa_buw PHE

o e e
=/

cntld_gen { tr )

register int tr,

{

reyister 1nt . rel. sits. att
int bome. site. homs_token

., token,

prs { child_geo )
Bome ®1te = homs of {tr]
bome_token T token of [vr]

{ bome mits ].

for all reistad_site {/v someihiny in homs ®ite should aleo be sat =/

12 { site ‘= home_site } {
1?2 { { token = get_tokes_id (3} == 0 } {
pre { Toksn pocl full it 3.
cetura { ERROR )
¥

tekan
th stats LPING,
sum_in ip
¥
eiva tokeo * home _toksa
Jecal minavt §otr ] { mits 1 = O
min By [oer ] = INF
v frr )} { site ] = INF
rphan { voksn ] = 0O,
codes
Loty
{stve } T er} {3 ] =0,
{wite 3} L3 1} [ 2r] =0,
local lock im et in LOCAL_PRE_LOCK
I site } [ tr I { ray I =0,

/% thoss array nsed to bs fillsd hers +/

vor_lock_in LP { toksz ] = G
for _all_atz
if { wite_rei _con?{vrifeizsl ¥
bro site azr { zr } { s 1 = ®AIT_BRO;
-

® 2t up local relation and att cayrdioaiity, 1t should be reduced
* by thne locsl Joi6 using the sam setimation tech in
.

G83 Temporary sebl to ini_rel_cars, theu reduced in dbsizs {)

ftr ] el ] | site ] = ini_rel_ card {rsi}
[ve | f site } [ axe § =
1 { @ite ‘T homs _mite )

3184
3188

3323

3247
3338
3349
3250
2351
3262
3263
3364
3268
3368
3287

2606

releass_bus { token ), /v skip to tbat point ¥/
¥
y
2
.
- conmistency () --- Check ths consistency of & lock request
- Irom transactiocn tri at site ‘mite’
- Tuls ie the implemestation of proceducs
.
. cc - minimumlock
.
- CALLED BY
. .
* chack r-w conflicta first then check w-¥ comflict for all the
.

raquested locks needsd by the tri in the site
¢ The new precedeace relstions sre record in the vector new_relative

/

cocwistancy { tokea, tr, aite )
int token.

it tr;

register int mits,

{
int requset status;
int  ury. rel.

int  flag.

int 3o

registear int tri,

FILE =fpl, *fopen ().
tri = tr;

request_stutus = GOT_LOCK,

/* check for the r - w cooflict firet */
ioep { tr}. 1. TR 3} 1 {obry otmoergy 3
12 ¢ Pe { ert } [ ery ) == 0
&2 vew_relavive { tr1 } { try ] == @
34 /* ne precsdence relation basfors +/
/e

v Tbe wecond condition 18 for resolving the incousistency cauesd
* by different sites rague locks in differsul time

* The new_ralative ssitiag ioconwistent sincs tha

® situations ars differsot

w/
17 ( re_conflict { tri. nrj. site } == 1 )} {
/® bas r w comflict »/
tlag = O;
for all_re! if { thae rei_in wite is gueried ) {
switcd { lock _stxis { ar)y ] { re! ] 3 { fr oclaseify =/

Fe the folliosing ctosdition 13 aliminstsd Lo prevsst

» the two diff Lrans from setfing new relative Lo -

* such that deadiock to each othar, this may Cause aocms
= conflict, but 1t is mors clows to real siecuiion
case WRITING

case
caas HAD_READ

caes FRITTEN

caee HAD_AW fiag = 2 . break
¥iw wwinch ¢/ ¥

S flag = 1; goto nest, breuk

zext
switch { fisg } { /* procsws for dif? smitustion »/
casas O /% a1l locks hxven't bewd used by trj «/

pre { cass O ).

1t { mew _relative [ Tri} [ wr} ] == - 1
i1 nes_relativa { wri} [ oe} ¥ == - umED )
pre { ERROR 1o sew rslaliva 179 3
pri ¢ mew relattvs { vri) [ try) 3
acheduls { §TOP, O G, tokes }
¥

siss 7 ( naw_relative [ wri J{ wrj } vz USFD )
new_relative { tril [ ery 1 = 1

F* vrapsivive { tri. nyi 3. o=/

brax

caws 1 /v wome lorks ts being ussd by tr} e/
/+ ikis 1@ a redundant teetr v/



3288
3269
3280
3281
3283
3263
32684
3288
3288
3287
3288
3269
3270
3271

3272
3273
3274
3278
3278
3277
3378
3279
3280
3281

3282

3283
3284
3288
3288
2287
3288
3289
3290
3291

3292

3293
3294
3298

3298
3297

3396

2299

3300
3301

3302

3303
3304

330y
330
331y
3313
3312

3318

33zc
3321

3322
3323
3aazd
3325
3328
3327
3328
3329
3330
3331

3332
333
3334
3336
3338
3337
3338
3339
3340
3341
3342
3343
3344
3345
3348
3347
3348
3349
3360
3381

267

t} cow _relative [ tri} [ trj 1 == useDp ) {
pre { ERRUR in new_rsiative 190 },
pri ( new_relstive [ trid { trij )
sctedule ( BTOP, 0.0, token );

¥

9ﬂ-0u~Au->qwuny«oﬁnn“Wﬂcnuu.u,CmmuvA
new_ralative { tri} { ery 1 = -1
}
blocked by [ toksn § = tr}
RETURN_REJECT,
break,

came 2 ¢ /e
* all locks had beed ralessed by trj
ynnrun»o»<.ﬂawu.n1.v

-/

pra ( case 2 ),

1f { pev_relative [ tr1} [ &ry J == 1) {
prs ( FRROR o naw_relative 204 3,
pri ( pew_relative { trt} { wril )
schedule { STOP, O O, tokes };
¥

#ise if{ new_relmtive [ tri } [ wrj ] t= UBED

new_relative [ wri} [ uvry } = 1.
break.
¥ /® switch */
3 J* bas row conflict =/
)3 /* no pracadence reslation befors =/
eisa 1f { Pg [ert ] { ery } == Rbwfora
asw_reismtive [ tri } { trj i == Rbesforel
[23 rw. conflict { uri try, mite ) == 1
y (£
blocked by { toksn !} = tr}
RETURN_REJECT,
¥
} /* loop try =/
1t { request _status == REJECT )
ro_reject,
1t { wericing_rel [ wri ] == 0
tl nr_phass {ve ] = pp
> { /* rsad lock. el lock stats locally =/
tor_all_rel
it the_rel_in_ site ls_guerisd
&z ( { wite } [ ral ] ==
i { stte ] { ret ] ==
i
M
local_lock { mite ] f rel 1 +s
return { GOT_LOCK )
¥
/* check for the w-w con?iict then */
tosp { trj. i, TR }
12 { ert 1= owry 3 o
: e pg [ eri 3 { trs |} == Q
an osw _reiativae [ vri 1 { ori i = I}
3
F* wo precsdsscs rsialicn befors =/
31 { ww_confiiexr { tri, trj )} =¢ 1)
Je transitive { tri. tei ) o/
pra { sw_conflict )
i1 { paw_ralztive [ tri} { vr; | =% vy
pre { ERROR 1n new _relative 242 }
schedulas { BYOP. O O, toksn )
¥
alse 1?7 { saw_ralavive { trt } [ wrj 1 ¢% USED 3
ce%_ralative { zri} { wry ] = ¢
tock _stats { ¢r ] [ writing rel [er ]} e,
Teturu_weive
b
B /¥ no precsdsnce ¢ before =/

|

268

aloe 1 ( { pg [ trt 1 { try ] == Rbeforel feoury <o
{| pew_reletive [ tri ] { trj ] == Rbefarel
3
an( Jock etate [ try ] [writing ral {tv]] == WRITING
14 lock_state [ try } [writing rei [erl}
== REA
]
)
{
blocked by [ tokesn } = try.
Tequestl_wtatua = REJECT.
vew_ relative [ tri ] { try } = ~1;
¥
slae 1 { (pg { tri ] [ trj ] == LbeforsR /= tri -> tr}
11 pg [ tri 3 [ try ] == Lbeforer
)
ax{ ww_conflict { tri, wrj 3 == 1)
an( lock atate [ trj } [ wricvteg rel ftr} ] == WRITING
{] lock _wtate { trj } [ writing rel {tr] ] == READING
i lock stata [ erj ] [ writing rel fer] ] == WRITTEM
{{ lock_state [ trj }J { writing_rel {rr] ] == HAD R¥
PED RS
lock_atate {te ] [ re1 ] 7r,
vew_relative [ tre ] [ trj 1 = 1;
revurn walve,
¥
¥ /% loop try %/
12 { request_status =c ABJECT )
return_ reject,
rel = writing_ rel { tr }.
1t { ral == FANT ¥ || rel =% READING _WANT ¥ )
locai_ lock [ site } [ rel ] ++,
returns { GOT_LOCK ).
b
72 . .
- desize {} --- changs the size of DB aftsr & sem: jota
.
- CALLED BT : FINIS8H ( LP BYN _E8T _BRG. LP_WATIT_SYN )
- RELEASE_BUS ( GBJ_SJ_BAG. GEJ_WAIT_END )
-
< Calculste real and sstimated cardinalities of atte snd rels ia a}
* phass Cerdioalities are sseumad reduced by aslectivitise
.
* pew cardimality = old cardicaiity = sslsctivity of brosdcasliug att
-
* Toe sstimated cardinalitise is sssumed uniformly dtetributed betwwsn
# v- { DEVIATION }¥ of real valuss
> The origicel selsciivity, which is equivalent Lo relativs selsctivity
* of sach 3Ll 1@ kept
® Yo LP phase. the cards of all alts in ons domain ars tbs same
% @ince they can bs fully reduced in & sils
» In GBJ phase. ths unbrosdcast componssts of The broadcasting 3ty ars
* mbstracted out. sschk site take those abslracted components Lhat acs
* pot  in ths sits to reduce the cards af all atis and relstiocss
4

dbsize { tr, site }
ragister int tr, sits.

P .
Tagister int 1, ral, att, |
int effeci_component | R ¢

iot local_wffect compousnt
pre { dbstize }.
switcn { tr_phase { zr ] } {

cass LF

relw reduced by zii appitcable
sslection effsct on it

for_all_rel {
Tel card Lvr 3§ rey 11 =
wet ol card { tr ] { re!l ] [ : o
¥

tor_all_att o



3448
3447
3448
3449
3450
3481
3462
3453
3464
3485
3458
3487
3458
3459
34680
3481
3482
3483
3484
3485
3408
3487
3408
3409
3470
3471
3472
3473
3474
3478
3478
3’77
3478
3479
3480
3481
3482
3483

3491
3492
3493
3492
34986

3528
3529

3831
38537

site att card [ or J [ 41 [ ace ] =
eat_att _card { tr J [ § ] [ sex 1 = o,
3

>

for sll_reiated_t for_all_rel

it ( the rel 1o site i _ie _querisd b}
ost_reol card [ tr ] { ral ] [ &} =
rel_card {er )] frex ] [ 2] =

ini_rel _card [ raet }

tor_all_related_i {

doubles mite _stt_salect,
double est_wite att_select

i

® build up the site_att_card { eslactivity }

¥ mnd the setimated attribute cardinatitie

./

for_ ali_att f (wite rel _con? [ tr }{ 1 }J{ ate ] =x 1 )(

site_att
esar_sit

o:nn n
_att_select =

16,
for_all_rel /» see ech realation §f they contaize att e/

(¥4 W °l faee]

0o
W

queried_att { ©r
Te

H
{

T i 1
tap i rel ] 1

—g~

#ite_att_selsct % scuttsr{wslactivitylreil{azt]};
@t _®ite_atu _wselect *= mslectivity{rel]fintt]:

3
1t ( wive rel cont { vr } [ 4} [ ats § == 1) {
wite_att cerd { tr ] { t+ ] [ axe }
®= domaln_ranges { sttt } * @its_ali_select,
ssr_att cara [ wr ] {1 ] [ ave ]
= domain_range [ att ] » est _site_sri_aslect,
¥
far_all_rel /v wet up relatioca card +/
it { guerisd atv [ tr ) [ rel 1 { st ] == 1
22 Tap frev 1 [ ¢t} == 4
Y L
card { tr ] { rs
sl card [ tr ] [ re
site_att_selsct
est ral_card [ rr }

sst_rel card { tr |
sst_sits_sti_sel

¥

Y /v for all ave e/
4% for_ all related i v/

aty I broadoastin
@ oul ths compoaent that ln ths bro at: »/
for_all_rel {

affect componmnt { rel | =

componsnt_set [ tr J[ wita J[ act J { retl ]
it { wro_compocent [ tr} { srx] { rai I == HAD_BRO }
sffact_componsnt [ rel ] = O
3
for_all_relsved i {
£ { + = aive && site_rel con? [ 2r} { ¢} { sawe) =x 1 )
7+ oot the min site °F

i
- effsctive componast

sst up local :
tbe compossate that evist hars

* surip out

./
locs}_sffect compouent [rei}l¥ slfeci_componeat [r
7 { fap { rel 1 f 4+ } == 1)
lovsl_eftwcr_componant [ rei | = O
¥ /e 811 rel #/

3832
3833

270

« start to calculste new card of all atte and rele
® count the affect of each bro composent ome by oaa
* rel is the component im broadcast att

® § 1w the indices of local relatione

~

for_esil_ral

i local_seffect _component { rel |} =1
&k queried att { tr ] [ rei ] [ are } == 1
)«
®ite_aty _card fer ] 0 8] { ate } =

site att_card [ tr ] {1 ] { atc ]}
* poatter ( eslectivity { ral } [ avt ] ),
loop ( 3, 1, B )
ir ( tap SR T T G N =51
ax queried st [ tr ]} [ 3 1 f{ect] =21
)
rel_card [ er } { 5§ 1 {3} =
rol card [ ve T 0 5} (s 1]
o soattar ( meiectiwivy | Pl

Y /eoar e/
} /% non min _sita v/
} /% for_all related i »/
brewx,

ume the multi-slt joining »ffect ie not cousidered

case PP e
* for Local Qusrt

./
for_all queried_rel_in_stite

s caly

for_all querisd att_in rel

loep { ;. t. R

3f ( § 1= site &% queriad_att [eril{ j 1L att ] =« 1)
rel_card { tr } { rel | { site }
= selectivity [ § 1 { ate ] .

petime [ vr | [ wivs !
re}_card [ &r ] { ral § { sive ]
H

e CPU_TIME PER_8

sst_slowset_sits {J --- salimale slowaest @i =

if haven't <called yst, slowest_sita'of [tr]l = O

assums Lhs slts with lha largszt total relation cardinality ie
the slovsst site

To prevent the systam from deidiock dus 1o ths ubavailabilicy

of local_pg to the oiber traneactions which hold locks vewedsd by
the setimated wlowest site. Ths estimaiwsd slosest aits should ba
changed after timeout or the datection of deidlack

Ths biocked sile may bave highsr priocity of brosdcasting
mesesge Lo raduced the oumher of indursd messiges

To reduce ths programming difficuliy. we choose a simpls sirategy
%o resolve tbs deadlock Once the sstimated slta gets blocked. 1t
should changs ths right to amothsr site thit is ©ob blocked

7

sac_wloweet _sits { rr )

register ot r,

{

regiscer imt 1, . rel, site. Lokex

1ot k, ati, slowest_siie. max_Lime. size, st card,
1ot flag.

prs { sinwsat?);

max _time T -VAXMAX.
sliowest _sits = O
fisg = O

Jeveosvanassy
avoid
Jeremearasrn)



3834

3838
3837
3838
3839
3840
38641
3842
3843
3844
3645
3348
3647
3848
3849
3860
3851

3881

3898

3701

it ¢ < site te nome_of f{tr}

[ th_stats [¢r] [ aive ] 1= PP_SAIT_START
)

& Tlag == ]
i site 1= slowest_site
3

) £

1= o0:

for_ sll_queried rel_im site
J += ( est_rel card [ tr ] [ wita ] {rel)
¢ vr_rel wideh { tr ] { rel )):
1t (S > mex_tima ) {

ite = wite

¥

1t { th_erate [ tr ] { slovewt aite ) == LP_WAIT_END ) {

tlag = 1,

mcac avoid; /* avoid salect w @ite alreandy in LP_FAIT_END «/
sat_slovest_aite of [ tr ] = slovest_site,
>
F S el JP O [P
. first gt () --- get the firwt rt site { emallest site number )
v CALLED BY = WAKE UP GBJ_WAIT_END
;T TTITTT I e
firsv re { tr )
ot kv,
{
int site.
pre {11 .
for all te break,
firmi_rt_sita r ] atre
returs
g e .
- get. local_lock () ---
- CALLED 8Y WAKE_UP v WAIT_LOCK
«/
get_local_lock { tokesn. tr, sits )
{5t tokes,
registar ot Tr, sits,
{

sgister int i, vel. §.
pre { get_locsl_loex {3 3}

Ic
* Thers is & difficuity of determiving the new precedsnsce order betwsen

two trazszctioss thabt hss no precedeace rslaticaship befors in
distributed maaser
Sometimes two possibility sstet (L -> j. or § -¥ & . a wits doss not

know if otber aites can get uss of local pg or noi. therefare
geosrated possibilitiea ie oely a subset of all possibilitis

ulicn is make lster transactios alusys

The siraight forward ssluti
lationship

lstsr in precsdence

EREEEEEEE.

Fv test LI tkere exial mctiye or pending traneactions »/

¥ { pguser [ stte } iz BULL ) {
prs { local BTT 18 oot swailable Blocked by ),
tlocked_by { token } = 8 + 3
retura_rmlsct,
¥
for_2all rel
locai lock [ site Jirel] = lock stats {tri{rsel}
workicg ®ite = site.
sgussr [ sits | = 4r.
seiteh { conweistescy { tokes, tr . site } ) {

3728
3739

3731
37312
3733
3724
3736
3738
3737
3738
3739
3740
3741
3743
3743
3744

fommen

-
-
»
-

get_raelated site{tr) /% find out ths ®at of relate
Tegiste

{

register int rel.mit

lock_validity [ zr } [ rel } = VaLID,
pre ( GOT LOCK ),

- lopre { LOCK_BTATUS ), 1o,

3 retura ( GOT_LOCK ).

brewsk.

cawe REJECT
pguser { mite 1 = NULL,
lock_waltdity [ wr 1 { rel } = INVALID,
prs { REJECT ).
local_rewums ( ®ite ).
luprs { LOCK_STATUS ). la.
blocked by [ token | =

{ blockad_by [token]== 0 )71 blocked.by { token }.

retura_reject;
bresk,

caae WAIVE .
pguesr [ 2ite ] = NULL;
pro { WAIVE ),
local _resume ( aite ).
topre ( LOUCK_BTATUS )}, 1n.
Feturn_waive,
break

get_related sita(tr) --- figure out the related aite of tr
and @@t Up necesssry information

iat tr.

oatt,

/* test for 1f (t's local read  ef

claea_of {tr] = LOCAL READ,
for_all_rel

if{gueried rel {tr] [rei)] == 1 2& fap (rel] {bome_of [tr}
cless_of {tr] = REMOTE
breai.
¥

/® tesl for if a local irsnesclios s/
/e updating a remols copy ./

if{clams_ot (er] == LOCAL_READ 2% sriting_re! { tr } = o) {
rel = writiag rsl { &r };
for_all_sive v check other sits 4f a copy ls thers =/

1t {sttws '= bome of [tr] &% stors_in feita) 3 {
claes_of {trl = LOCAL_QUERY,
break,
¥
¥

/o @st up reslmied mites aad tsst {f 1t's = local fead =/

for_sli sits {
relntsd_sive {tr] feize] = O, /® ioitialize */
for_all_att
site_att of {tr. site .2}~ 0,
¥
1f (clase_of (tr} 1=
w:?nn»w 3.

REMOTE) {

for_all_size {

if(site == homs of [
reistsd_sive [ur}
wlss for_wil_rel
1f{quaried_rel {tr
related_sits {t

/* met up wits relatiom configuration */

si{reiszad_siteltcl{atts] >= CHILD SITE}
for_all_rel
for_sli_att
1f { relation_con? [rei
fap [{rei] Isits] =
qusried_att {er] (ra
©

site att _of {(ur .et

#ltes for wr of



3822
3823
3824
3826
3828
3827
3828
3819
3a30
3831
3832
3833
3834
3835
3838
3837
3838
3839
3840
3841
3842
2843
3844
3845
3848
3847
3848
3849
3880
3861
3862
3883
3864
3888
3868
3887
3858
3869
386G
3881

3882

3808

3510
3%t
3g12
3813
3914
39is

- get_tokeo_id{()} --- G a token from the token pool

-/

gst _toksn_1d(} /% get » tokesn_ld from token pool
/* (er_of, site_of ) »/

{

{ot tokaa:

3t (pew_token == INF ) {
priotf (“token pool full \a");
scredule (S8TQP, C O . Q)
retarn{0} .
}

elsaf{
token=new_token;
new_toksuzsite_of [new_token];
retura{token)

}
¥
25 VR S
. get_tr_1d()
*/
get_tr_:d{} /% get a tr_id from tr_pool »/
B /e (boms_of ) +/
{
int Tr,
12 {(pew_tr == INF )} {
priet? {*tr_id pool full ‘n*}.
/% temporsry delayed ths arrival rats of nsw tranasactions
* It should report te mwe i resl sxscution
-/
wchaduis { NEF_ TR . ezpoti (10000000 O+mean tr} . © ).
reatura(0} .
¥
wlus{
LyZpew _tr.
new _trslick_to_pest_tr loew_trl},
erurn{yr).
¥
2 [ e e e -
= ny_of_stis {} --- geL the heuristic vxlus of 3 zokan

put iatc hv arcay

by i® aswume ths eize * @slectivity
- each ®its scans Lnbro =t and calculates their
- B v

v choose the minimum ons as ke site b ¥

- put the id of min 2ty of the site in
B local_min_att [ tel {site], nesd chaaged
- TALLFED by mian_sits ges {3

oy _of sits { tokes, r. site }
int tokaa
reginter int tr, site

{

register ist  }, att,

int b

1t { pos_lock_in LF [ toksa) == 1 3 {

11 ( get_local_lock { tokem, &r, sits J == REJECT }{
go_wlasp { tr, site, GHJ_BAIT_LOCK
biocked_asite [ tr } se,
retura { INF };
¥

¥

b= INF
for aii_ste

v N

1t { bro_site.att [ tr ] { sits J [ azt ] == WAIT.BRO ) {

Io= sive stt card [ tr ] [ etve ] { wex ]
4= I % I v domain_width [ att } / domain_range [ szt I
1t {3 <y {
o=,
local min sy [ er ] { ei1te I = ate
¥
¥

3via
07
3vi8
3919
3920
3931
3waz
3923
3924
3926
3928
3927
3938
3929
3u30
3931
3933

2005
4008

4008
4009

fov)
-1
Vi

by { er ] [ site 1 = b,
return ( b ).

¥

T [

-

- initial{) ~-- Initialise the simulstor

-

PSR J P, e e
/

inttial () /* isitializatian */

{

regiwter imt i.tr.rel.eits.ate, .k, tokea,
FILE wfp. *fopen(d;

tprint? (stderr, * Seed 7% );
scanf(*Xd~. A

wrand{K),

link_token_{d(};
ltak tr. id{};

/e re

% dats bues */

i withing tr, re

PS4 % A3

for_all_tokan blocked by { token ] = O,
for_all_site {

pguser [ eits ] = O;

lost_tr { site ] = lost customer = O
tor_stl_tr th_state (tr){site} = C.
for_ali_rel local_lock { eive ] [ re
b

total_ty = fintshed_tr = O;

total _tr_time T ave_ tr_tims ¥ O O,

totsl U bus ¢ total U bus * total U disk = totsl
for ati_tr {

U, bue_triir] =

U.dtew trl wri =
claas_of {vr] =0

loop AW;AZ <
pg [(ecl(y] = O
new_relative [ tr 1 [ 3 1 = O,

be
for_all_sits {

lock_walidity [ tr
tr_passs [tr]

related sits [xr
bro_rel [erl {es

for ati sty {

-:-.‘w-fnmpq?lm-
bro.site_stt [tr)] It

for_all_rst {

queried_ral {tr} {rsl} =
target_rael {tr] {rsi}] =
updated_rel {tr) {rsi) =
targst_njave {vr] [rel] =
updated piatt {tr} [rell =0,

iock _atats {tr} {rai} = O,

tor_atl_art {

queried mte {tr] [rei] {ate] =
targst_jar: [vr] {rei}l [atc] =
uwpdated_jatt [rr] Irel} fazz] =0

¥
¥

/+ ®au up initial relaticn cardinsliny o/
tor ail rst {

ini_reat csrd {rell =
int_rel_cerd ratio {rai}.
x<5

U_cpu



tor_all_ate{

tf (relation_cont {rei} {att] ==1){
lot_rel.cerd {rel} == (domsin_resgs {ave)/k):
X 4= 7,
b

}

int_rel_card frei} /= 10,

}

for_all_ral {
relatton width [rel] =relstion_nj_wideh [rall;
for_sll_att

reistion_width [rel]l =
(relation_cont [rei] {att] ==1)7domain_width {ate] O

- is_covered (} --- check if the component set of the oite attribute
is covered by the broadcast compoment set

*/
te_coversd(tr.sits, att)
tot tr.site.stt;

{

regleter int rel;

int cowver,

cover = 1,
for_all_rel
1t {componeat_ wet [tr]
a2 bro_componsnt |
cover=0,
break
¥

return{cover),

sits] {atv] [r
1 farel [reid

“e

i
"
i

r

:m:n:nxm
tr ot |
slte_of
¥

tr_of [TOKEN] = INF,

Baw_ token = 1

M)
43
{

tok_tr_1d4() /® @st up the tr_id poal */

S
rapaxr{TR) {
nome_of [
N

-t F Y

4113
4114
4118
4118
4117
4118

lacal_resume () --- resume a procese which bad been blocked by
not svailable of pg

IR

local rasuma { mite )

regieter int wite

{

ragister int i, rel, oldest_tr,
double oldest_time,

pre { local_rewuma )
pguser [ site ] = NULL,

tor_all_rel
local_lock [ wite ] [ rel ] = NULL,

o~a‘|o>oa uo,
oldest time = I O = VAXMAX,
loep ( 1, 1, TR )

i ( blocked by [ token of { 1] { site ] ] == ( TR » 1}
sa time_of _tr [ ¢t ] < oldest_time
Y <

oldast_time = time of_tr { 1 1}
oldest_tr = 3

¥

1t { oldest_tr = 0 ) {

blocked by [ toksn_of [ oldest _tr ] { site } ] =0
blocked_site [ oldest tr ] --,
wake_up { token_of { oldest _tr I { strs ] },

¥
¥
2 e N . N .
-
- msterinlization {) -—-- Elimicatas redundant site sliyibutes
- for all site
- called by relvase bus GBJ _8J _BRC
-
o e e e e e - .
./

materializstion ( tr,
register int tr, site;
register int bro_aty,
{

register izt i, j, str,

prs { materializs ).

for_atl_related i
17 { B t=
ax { th_state [ &tr } [ ¢ 1 w=
i ehowtats oty } ¢ ] £
othostate [oor ] {1 ] ==
3
b
¥ { bvro_sits stncf{er}{ii{vro.sts] == FAIT_BAG
8% t®_covarsd { Lr. i, bro_ati 3 w= i
> {
vro_sive_ate { &r 1 [ 1} {bro_ stz 1 = RAD 8RG,
pra { 1 aty kilied ),
* prs { Ao 33t ls drawo oul }o
Iz
= c¢back to ses if the site bad sub of site attribute
-7
3 =0,

"
n

12 { bpro_mits sttt {ur} {t} [ att FAIT_BRO § {

1 ore.
braak.
¥
$2 {3} == 0 3} { /* noc at: to bs bro in the siis =~/
it { eh state [ tr ] [ 3 1 =v GSIFAIT_LOCK 3
blocked _sits [ tr ] --,

go_slssp { tr. 1
zot_lock_tn 1P { to
¥



4187
4186
4189
4190
4191
4192
e
4194
4106
4198
4197
4198
4199
4200
4301

4202
4203
4204
4208

47208
4207

4z08

4309

4310
4z11

4738

42m
4232

- #ite_estimats () ~-- returs estimated min_sita

- Notice that each wits should ueed its own setimated
- valus to contend the min_eet_sits in the mimulation
- ®ven though ite hv i Xnown, otharwiwe. conflicte may
- occur. Diff TH with diff results

. When broadcast, the estimated min sits cmc broadcas

. real min att in ite site

- CALLED 8Y : pilck.min sits () tn LP

-/

min_site eptimate { tr, site )
register iut tr, wite.

{

register int 1. ett,

tat mig L by, wet_pmin site. sat_card,

®t_hv,

pro { mio_site_swtimated ).

min_est_bv ¥ INF,
ewt_min_mits = O,

for atl releted t_fo atavte { LP_BAIY_END ) {

for_all_att 3¢ ( sive_srel cont [ tr ] [ 1] { mtt ]

u
i
-

sst by = est_att_card {tr ] [ 1} [ ave ]
» est_ st _card{er }J { ¢ 1 { ate }
* domata_width [ at: }
/ domain_range [ sttt } |
i1 ( est_hv < min_set _hv } {
min_setl _hv = swt_hv,

est_min site < i
¥
¥
>

reture { set_min mitw ).
¥
S e e e
- min_site_gen () --- generate ain_mite of tr
- CALLED BY © pick_min_sits, =min site_ssitmate
A4

min_wits gen { Lr, state
registsr ini tr, stata,
7

Tegletsr inv i

for_all related_ i in state { stats ) {

bv_of sita (
f sy [ or

-t

broadcasting sty { tr } = Iscxl_min st |

B

1on comws in
wz“onwmwmimm

;  sesd_lock s LP () --- a new transace
CALLED by LP_

EEEEE

check (f the relati»ns in ths site cesd to do local ssmi-join

or 8oL, 1f yes, read lecke ars reguired io LP phase. oLher®iss
®eit ®11) GBJ phass to lock In LP phass. disk accsss is suill
zeeded for obtaining tha H V. All broadcist semi.jcin are buffarad
15 thbs ®its until the time Lo broadcast is come

®8t the erray not_lock_ 1a. 1P [ tokes ] 1 pot locksd, O locked
Return the re®ult of the tokes { for ssviag soothsc check )

- Coadition  only oms rsiation in ths site

- though more than ous rels e

IEEEREEE]

- also possinle. bowsver, we igoore it for pimplicity
-
~ whether they are lockad OF 2ot aNould also be checkaed

Here ws sssume they ars sll locked im LP 1f 1t is stored iz other
- ®ites Lo save szscutlon tims and programming sffort

the only relation t# slso stored in othsr sits. the conditien of
e 1

4381
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1ot tokaen,
{
ragister int i. tr. ral, @ite, att.
int j, k. ons_rel ;
#ite = sits_of [ token }.
tr = tr ot | oken ]
pro ( LPlock®);ln:
i =0
for_all_querisd_rel_in site {
3 ove,
one_rel = rel.
b
i §o==113
for_all_ralated i 1t {1t '= site )
tf ( fap { coe_rel )] { £} == 1) retura (1 };
/* this stte will nesd & redundwatl get local_ lock {o this cese

pot_lock_in LP { token } = i,
retura { 0 )

¥
else returs ( 1 }:
¥
B e e e e -
M .
- resdad_lock{tr) --- figurs out the nseded locks of tranwaction
-
e e e -
=/
needed_lock{tr) /% ?ind out ths nsedsd lucke of tr v/
ragistear int r,
{

register int rel.

for_ali_rel
i? {queried relftr](ral]
lock_state{tr]{rel] =
if (updated_relftriire
lock state{rr]{rell

be
slwe il (updated_relitr]
tock ststaltr}irel
elwe lock ststs [ tr ] |

S e e e .
-

- maw_trase(} --- @ new transaclion comes in

-

-/

vew trana () /* A pew Lransaction coms in %/

{

ragister iot tr, rsl.site.satt token,
int i k.

f* ACTIONS s/

®ite * RANDOM (8ITE).
1f {oum_of_tr_ st {eite] > WAX_TR_OF BITE J {
pre ( BITE FULLY CUBTOMER LEAVE 14 ),
lost_trisital+r,
schedule { NE¥_TR , wipotl {10000C Ovmeaa_tr) , O )., >
raturs {0}
>

sles {

num of_tr _at [site} +v
tr = get tr 140

17 (tr == 0') retura (0).
tokeo = get tokes_id{).
tr_o! [tokxen} = wr,

sitw_of [token] = site;
beme_of {tr] = site,

token _of [tr] {sits] = toksa,
query _gen{tr),

get _reiated siteltr).

peeded lock{tr),

/v DATA BABE CHANGE =/

vime of _tr [ wr ] = clock,

toral_tr v ¢

Vopus vr § ve § = U dtek tr [ or } = U cpu vy { er } = 0,
i-



4376
4378
4377
4378
4379
4380
4381
4382
4383
4384
4388
4388

440G
4410
4411
4413
4413
4418
4416
4418
4317
4418
4419
4420
4421
4427
4423
4424
4428
4428
4427
4428
43429
4430
4431
4433
4433
4434
4438
4438
4437
4538
4339
4330
4441
4442
4443
4344
4445
4448
4447
4248
4239
4450
4281
4352
4463
ELETS
4458
1458
4457
4458
4383
4380
4482
4482
4483
4484
4485
4483
4487
4383

* fp=fopen(™ddblmn data”, va");

v fpriotf{fp, =%X7 Of NEWIR ¥d\n", clock., tr).
. ?Ho.-.:vw.

7

tr_phase [ vr ) = PRE,

th_state [tr]{sita} = PRE,

cc_new tr(ir):

1f { cluwa_of ! tr } == REMOTE ) ¢
echedule C ( NEFD_BUS_TOKEN , PRE_TIME . tokes ),
bro met{taksa),
last #3{ tr}
tiret_rt_asits [ tr ]
ewt_slowest wits of [ tr

"

RN
V0GB 0000

oum_la_ge) [ tr }
biocked aita [ tr ]
firee rt_site [ tr
sin_aite [ tr ]

¥

o

goto_state ( LP PRE_LOCK),
goto_phame { LP ).

»ake up { token )

}

"

e

+*e 1nitialize sits relstion card eesevews/

for_all rel for_all sita
1¢ { querisd. rel [ tr ] [ rei ] 1
a8 tap [ 1ol ] { msize ] 1)
rel_card { er] [ rel ] { ®ite ] = int rei_card {rei}

0o

"o

schedule ( NEW_TR |, expntl (100000 O < mean_tr) , O ),

¥

/e

* calculats effective ralstion width { sum of querisd atts }
-/

for_all_rel if { querisd_rel { evr 7 { rel } == 1 3 {
vr_rel_width { vr]l { rel ] = o
for _all_gqueried att_in_rel
tr_rel_wideh { tr} [ rel ] += domsin_widtn{ sty §;
it (targeT njate [ tr ] [ rel ] =51 )
ey _rol_width { trl [ rel 3 += relstvica_pj_width [ rel }:

¥

Fe st up effective rslation width for sach relation o/

for all_rel if { queried rae}
trorel_widid { er i
far_ail st if ( 1y
er_rel_widin {
if { Targec_njsii
tr_rel_midth [ 1.
¥
retura{tokea) .
¥
S e B e -
> orpbas_tsst {J ~-- test if the rslsted site ix a mingle Xid
+ It homs slte has some querisd reletions, ths coadition is wsb te fales
= sincs semi-jois procees s nssded is this case
* whwn this i an orphan sits, the aile w:ill parform join in the site
* then ment the results dirsctly. o PP phess is nesdad
-7

phan_tesl { token )

3= o,

for_ali_relztsd_mite § ++; A
1 { j == 1 ) orpban { token ] = 1. /
sise orphan [ tokes ] = O,

¥

- plc¥ _min_sfzs {} --  pick tbe mia sits in GBS

- CALLED by GBI_ALL_FINISH RELFASE_8US

- pick brothers ons by one until ths min sita is pioksd
- chesk 1f naed lock and gei the lock, 1f mnob. restart

4489
4470
4471
4472
4472

4477
4478
4479
4480
4481
4483
4483
4484
4486

4487

4488
4489

4519
4520

4583

280

.

4

pilek min_site { tr, mite, stste )
register int tr, sits,

int stute,

{

register int L, wizse;

int k.

int broadcast_sita,

int slive { SITE + 1}

pre { pick min_sive }:

min_site gso ( tr. stste }. /% start the slection process v/
1f ( atate == LP_RAIT_END ){
I

-
-

./

First min eite does nol need slection
count the pumbar of wiive witss and set up alive vector

atzs = O
for_all ralmted_i _in_etate { state } {

wize ++,
ative { 1} =1,
¥
num_of_broad [ tr ] = 1,
brosdcest _site = min site estimate { Lr. mite ),
mog mark3; /% skip the slsction stepa +/

sum_of _broad] tr ] = 0
Jemnusrvres;

markl
Jussnevnens/

@ize = C, /* ®tert the slction procems =/

for all relsted_ i in state { state ) {
/* count alive sites for min_site slecticn »/
wize ++;
alive [ 1] = 1;
¥

elas alive { 1 ] = o
Jeveveveves

markd
Jewsvsvens/

sum_of _brosd{ tr } s+
k= RANDOM { size 2, F¥ this t® & broai-as. =/
/e find out wha is ths site k to broadcast its b -/

tor_all relatsd ! _in_stats { stats )} if { zlive {13 == 1) {

7 { & =5 03 brsax,

e |

broadcast_site = i,

fovorevnava/
markd
Jeverveenuny

12 { brosdcast mite '= min_sits [ tr 134
. /* mon mis site bro by ¢/
12 (v [ vrl{ oroadcest_site] == mim by [ ar 1) {
i
» the broadcast valus squal to tke mic - hv. chasgs the
®= min ®ite miscticn
4
=in_site { tr } = 3
brosdcssting avtlir] = local_micn aut {tr}ibroadcast_sitel,
wnpo Barkd;  /* @et the wits 2s min - elts. sk P other stsps */

for_sli_related i _in_state { stats }
it (slive [ 1} == 1 3¢
i Cbvy Loardl 8] »= 2v { tr J{brozdceas:r_witsl) {

/* abur off =i
dixe ~ -

-

@2 ¥ith worws nv e/



4583
4584
4835

4587
4588
4589
1570

4589
$892

4595

4823

2828

4830
4871

an32
2633
4831
4835
4838
4337
4238
4839
4840
4841

4842

4844
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alive [ ¢} =0,
max-,..v Ctr. & . G8J_®AIT_8J ).

}

ection %/

WO«O mark3, /% Broadcast hv is not the min-hvy. repaat the

/* Kad picked up » the min_sits »/
fosrrecvnany

markd

Jeeveroreoss
it ( pot_lock in LP [ token_ of { tr] { broadcast_mite ] ] == 1 )

17 { get_local_ lock{rokea_of {tr) [brosdcant_wmits

er

== REJECT ){

go.slesp (  tr, brosdcast aite
alive [ brosdcast stte } = O;
blocked aite { tr ] e¢,

wize -,

waro marki, /* Tha slected site didn't get the lock, re slact +/

. G8J_WAIT_LOCK ),

tor_all_related i_in state ( otate )

go_mlsep ( tr. &t , GBI WAIT_ 8! )
th_state [ tr] [ broadcast_sita] = GBI_INI,

retura ( broadczet _site )

¥

72U . e il
” query.gen{tr) ---- quary gensration for a new transactism tr

., T

query_geo(tr) /% generata a query */

rsgister int tr:

1

register int
int a.b.c.
int num_of_updste,

L.k Tel eite stt,

/*  initialization ¥/

Bum 2! update = writing rel [ vr ] =

no,w;ui,:wﬁ
querisd_ rel {er]
Target_rel {er}
updated_rel fer]
targst_mjatt [or]
updatsd_njatt {tr]}

W

o

for_sil sty {
Queried_mtt  [tr}l {
rarget_jstt  fur} {
updated jsry fer} |

X

o

oo
Bk

/
= sat up the query
» sumber of updated relatiodn in sach query im sasums 3t moBL Oue

for_all_rel {
17 { RANDUM(I0) > QUERY REL_KIT } { /+» querisd sttriduts +/
queried_rsl frr} Irel] =i,

12 { RANDOW{10Q} > TARGET_REL _HIT } { /* targst rel

targat_ret {trl [ral} =i.

{

2t
ralatico_ces? [rel] [mts} == 1) {

11 RANDUM{10) > QUERY_ATT HIT 3

4857

1707

4715
4718
4717
4718
4719

4733
4734
4738
4738
4737
4738
4739
4740
4741
47432
4743
4744
4748
4748
4747
4748
4749
4756

282

queried st {tr] (rel} {at:] =1,

. 1t ( target_ral [er] {rei} ==
& &% RANDOM(10)} > TARGET_ATT_HIT
<

target_jatt [tr] {rel]l {wtt} =1,
} /e« target att %/

} /* rel_conf «/
¥} /* tor_all_att »/

/* Assums antire rel 1s targeted if ft's x target rslation */

i ( targat_rel {tr] [rei] ==
Mu RANDOW(10) > TARGET_AFL HIT
3

targst_niste [er] [rell =1,

}
} /% 4f querted relation o/
Y /* iloop R/

Vel
® Test for the sxistence of target_rsl sad queried_rel
v At least one should bs szist

=/

K=0;
for_all_ral {

it {target_rel {tr] [rel)] ==1) { K++, break, )
3

i1 {K=x0) {
K= 1,
Tel=RANDOM{R)

w-wm.rx:» {er] {rel] =querised_rel {url [rel} =1,

/» Gesusrate Update rsaltios and attributsa +/
1f ( RAHDUM(1Q) > UPDATE_QUERY_KIT )} {
/® Pick up one target relation to update *f
/® Currsntly. K is ths oumber of target reslaticne +/
int picked,

pirked = RANDOM (¥),
tor ali_rel {

1f { target_rel {tr] {rel}l == { )} {
1Y { picked == 1 )} {
spdated rel [tr] {rei} = i,
writing rel [ur] = rel

for_all_ att { /v pick updatad_atis +/

it { RANDGN¥{10) > UPDAYE_ATT_HIT)
updated iatt {tr] {rel]l fatx)] = 3
¥
/* Test for ths sxisteace of updats st =/
K=0;

for_all_aui

1?7 (rarget_jsxt fir} {rei} EEED]
{ Kee, Dreak }
1t ( Hoe0 [ RANDOB{1O) > UPDAIE HET O}
updated njatt fer] fretl =g
brask,
¥
siss picked --
¥
¥
¥
for all_rst {
i
© Tes. for ths ezistsncs of target_att
* At lsast ons mbould be exist
s
17 { sarget_srel [vel frel] == 1 ) {
1=0
for_mll_att
17 ( rmrget_jste {er] {rel] {ant] == © 3} { e+, bresk. }
tf ($==0) target_sjstt {xr] {reil = 1,
b4
/=

® Tesi for ths sxistsace of gusried_att
® At least cne should ba siiet



4751
4752
4763
4754
4768
4768
4767
4768
4759
4780
4781
4782
4783
4784
47885
4786
4787
4788
4789
4770
4771
4773
4773
4774
47785
4778
4777
]778
4773
4780
4781
4783
4783
4784
4785
4788
4787
4788
4789
4790
4791
4792
4793
4734
4795
4798
4797
4798
4793
4800
4801
802
48073
4804
4806
4808
4807
4808
4603
4810
4811
4812
4813
4814
4815
4818
4817
4818
4819
4820

48272
4823
4824
1825
4828
4827
4828
4829
4830
4831
4832
4833
4834
4835
4838
4837
4838
4839
4840
4841
48432
4843
4844
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+/
11 { queriswd_rel f[rr} [rel] == 1 ) {

1=0,
for_all_ate
tf {queried_att [er} [rell {ate] ==31) { {++, break. }

i (1=:0) {
1=RANDOM(R),
k=1
white ( § > 0 ) {

att = ( (k-1 ) ¥ JADY 1,
$7 ( relation_conf {rel] [ azz J == 1) j--,
ke
¥
querted_att {tr] {rel] (st} =1

¥

» Test for the esxistsnce of joining att
£ithar Zero or mors than one should be exist

Yor_ati_ate {

120,
for w1l rei if { quertsd act {tr] Irel] fattl == t } {4+
ir {t == 1} {
register int 1i;
1=0,
while { i == 0} {
i RANDOM(R)
1f (relaticn_conf {t] {szt] == 0) 1=0
¥
queried_att [er) {i] {[ett] = gqueried_rel {er] {1] = 1.
¥
¥
¥
Jo e e e e i
- resolve_local_dl ()} --- Rewsolving poseible local dsadlock
. CALLED BY LP_9AIT_SYN on finisn
> if the wetimated slowesl 91ts i@ blocked by somebody sliss, the
- io bald by the TH may causs deadlock problems
s Cn the sst mlowest sits sslectlicm to prevest it
.
v Check 17 ths setimated siosssr site is blocked, if YES them do it

Assigo tChe sst_slowsst site the one of the sits in etata LP_DISK
» 3¢ no such site. then chooss a sits in LP_WAIT_END, waks it up
=~ sst siowsst_sitw { tr ] sbould ba changad

41l { roken }

site = wits_of [ tokea }.
e = tr_of [ roken }
pra ( resoive_iocal _dl 3.

KX = esi_slowest ®ile

\
am«zaunwaacqwowu«unnocﬁOnr«uﬂoa.
* unlock unnesdsd locke. { read only }
L { cc_lock_get_bua { tr, site ) = Fali } {
pre { FAIL in resoivs_locsl _dl end cc_lock_get bus }
return { FAIL 3

3

ez _lock ( tr. sits ),

i { r unlock_timse = ANYTi#€ } {
ce unlock { o, ®ite )
resume by { tr. site }
¥

retura

¥

4938

EE Y K > o

aa KK < INF

&k th_state [ tr ]} [ ¥x ] == LP_WAIT_LOCK

RS

3 =0,

Tor_all_related i_tn_state { LP_DISK ) {
3= i,
break
Y

1 (3 >0 {
eat_mlowest asite_of { vr ] = 3.
return,
¥

for_all_relsted_i_in_state ( LP_WAIT_END } break,
sat_slowset site of [ tr ] = 4

th_state { tr ] { 1 } = LP_BYN_EST_BRO

sum_in ip [ wr ] v+

finieh { token of [ tr ] {1 1 )

}
retura;
>
2 e s
-
- resums_by () --- rasume all blocked processes by the token
-
e el o
>/

resume_by { ur, sits }
register int tr. site.
<

ragister {nu 1

pre ( resums. by ):

loop ( 1, 1, TOKEN ) <

int trefi,
1ot sitecti;
wrofi = tr_of |G I
sitecfi = stvs of { 1 ] |
2 o1= or
pa [ er 1 [ troty 3
zew _relative [ vrofi ] [ tr }
cew_relastive [ wroty | { vr ]

th_srate [ trofi } {
th state [ trefi ] { siveof:
th_state { trofa } { <

h»uwonw-aivuﬁw
22 blocked by [
3 L

blocksd by [ L}
blocked_site { tra
delayed wake up {

Fe e R

reaturn_tokes_id{rokes) A n 2 tokesn_ id to toksu id-opool «f
i (rr o? mnd site of) */

int tokws,

£

if{teken > TOKEN) {
printf{* TUKEN
wo«uqn (EARCHD

wr_of {toksn] = G,

sits _of [tokex] = new_toksa.

nes_tokes = tokaa,




4939
4940
4941
4642

5023
B324

5028
6027
BG28
BOIS
5030
5031
8032

recurc_tr_id{er)

int tr,

{

tffer > TR) (
printf(* TR NUMBER TOO BIG \a *);
return (ERROR) .

/e retura a tr_td to tr_id-pool =/
/+ {(bome_of and link _to. nezt_site_tr) ¢/

}

liok_to_pext_tr {tr] = naw_tr.

boma_of {erl = 0

new_tr = our,

¥
Joe oo I e e
- rw_confliict () - - check r w conflict betwsen tri <- tr} far all
- locke requeeted by transaction tri from site ‘mits’
< ww_cooflict () --- check w'w conflict betwsen tri <-> trj for
. THE loucks rsquested by transaction tri
. TALLED BY . conststancy ()
» condition of r-w coaflict : trj needs a read lock which is being or ie
- going to be sritten by trj
» condition of w-r conflict : tr] nseds a write lock which is besing or
. t® going to be vead by trj
* conditios of w-w conflict : tr] peede THE write lock om 'rel' which ie
- being, i@ going to be, or had been written
- by trj
./
re_confiict { wri. trj, site )

reglater
rototrg.

{

sgietar

int tri.

wite,

ot rel. tr,
F¥_contlict

N

14

tf { the_rsl_lo_site_is_querisd 3 {

lock_etate { tri ] [ rel ] == WaNT_R
lock_state [ tri ] [ rel ] == BANT_R¥ )
a2 lock_state { trj ] { rel ] == WANT_A®
| lock _state [ tri ] { rel } == READING_WANT_¥
lock atate [ trj ] [ ral ] == READING WRITING
tock _ataze { vri ] { rel ] == BANT_®
lock etate [ trj } { rel ] == BRITING })
(SR
IS NS updated_rel [ wri § { rel 1 == 1
&y { lock _state [ tri 1 [ rel § == BaANT ¥
bi tocx etate [ wri ] { rel ] == READING_WANT_¥ )
ax { lock_mstate [ tri } { rel ] = WANT_R
it lock_stare [ wri } [ rel 1 == READING
i1 lock stats [ trf 1 { rel ] == BANT_R®
i1 Yock_avate [ zry ] [ rel ] = READING_®aNT_§
it tock, etats { er} 1 { rel ] == RFADING_¥WRITING )}
rezura {1},
¥
returs { O )
ww_contlice { &7 vy
tat et owry,
rsgister int rel,
fe prs { we_confiict ), =f
rel = writiag rel { tri I;
LR G tock_aetats [ tri: } f rel ] s= §AHT. ®
1 lock_srats [ tri ] { rei } == WANT_R® )
Y tock_stare [ eey ] [ rel ] == WANT_RY
jock_srate [ wrj ] { rel ] == READING $ANT_®
lock state [ tri ] [ rel ] == READING_BRITING
lock_srate [ rri 1 { rel ] == 8AD_RW
lock weate [ wri } { rel ! == WANT ¥
tock_srata [ tri ] [ rel ] == SRITING
iock srave [ trj J { rei } =5 IRITIEN 3)
retura {1 ).
retura { O 3.
¥

50892
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2 CH B
-

- sizs_of_rt_bro () --- decids yhich relation to be brosdovat

. figure out the # of packete to be broxdcser

. returs the # of Packets

e e e e e e e e oo
./

wize _of rt bro / n-. wite )

register int tr. site,

{

regteter int rel., att,
tot tuple width, ri_sizs,;

pra { size_of_ ru_kro }:
rv_mizre = O,

for_ali_srel 1¢ ( the_rel_ in_silte.
a& bro_rel [ tr ] [ rel

WAIT_BRO ) {

width = O

rupl

for_atl_att 1f { quertied_att { tr} [ rel } { att ] == 1)
tuple_width += domain_width { att },

1 { zerget_sjett {(vrifrel} == 1)
tuple_width ¢= relation_pj.width [ rel j:

rv_eize += rel_card [ tr ] { rel ] [ wmite } * tuple_widib,

¥

return { rt_sire/DATA _BIZE ).

¥

7w e R . . .

-

- salve pg coaflict () - withdraw locks of a trsne dus tu pg conflict
N

- CALLFD BY  cc_lock_get _bus

© all tha @ites Of the Lraneaction ars reset Lo the stats WAIT_LOCK »f

* they are involved in thim lock bouncs

» a1l the status znd the databiss are rsset here

-/

wolvae_pg confiict { tr, site )
int vr, site,

{

tnv i, }. k. rsl. severnt.
doubla remain_time,

prs { solve_pg conflict }.

wwitch { tr_pbase [ tr ] ) {

cuse LI
LY S [owe
it (K>
&K K < INF
&2 th suavs [ wr ] [ K ) =c LP_WAIT FND
YL
i

* lockizg broadcast has basa smads
v This TH wbould go ahead alocs, oths: aites sill not
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