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In this thesis we present new methods for the automated design of new heuristics in

knowledge-lean applications and for �nding heuristics that can be generalized to unlearned

test cases. These applications lack domain knowledge for credit assignment; hence, operators

for composing new heuristics are generally model free, domain independent, and syntactic in

nature. The operators we have used are genetics based; examples of which include mutation

and crossover. Learning is based on a generate-and-test paradigm that maintains a pool of

competing heuristics, tests them to a limited extent, creates new ones from those that perform

well in the past, and prunes poor ones from the pool. We have studied four important issues

in learning better heuristics: (a) partitioning of a problem domain into smaller subsets, called

subdomains, so that performance values within each subdomain can be evaluated statistically,

(b) anomalies in performance evaluation within a subdomain, (c) rational scheduling of

limited computational resources in testing candidate heuristics in single-objective as well

as multi-objective learning, and (d) �nding heuristics that can be generalized to unlearned

subdomains.

We show experimental results in learning better heuristics for (a) process placement for

distributed-memory multicomputers, (b) node decomposition in a branch-and-bound search,

(c) generation of test patterns in VLSI circuit testing, (d) VLSI cell placement and routing,

and (e) blind equalization.
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1. INTRODUCTION

The design of problem-solving algorithms for many applications generally relies on the

expertise of designers and the amount of domain knowledge available. This design is di�cult

when there is little domain knowledge or when the environment under consideration is di�er-

ent from which the algorithm is applied. In this thesis we study an important problem in the

automated design of problem-solving heuristics in knowledge-lean application environments.

Problem solvers using \heuristics" are applied in many applications when a problem

cannot be solved optimally. Heuristics are commonsense knowledge that can be used to �nd

suboptimal solutions for a problem without any guarantee on the resulting performance.

Consequently, the performance of a problem solver can be a�ected by the choice of its

heuristics.

At present, most heuristics are derived in an ad hoc fashion based on past experience

of the designer. Often, the designer must spend a large amount of time to �ne tune the

heuristics in order to achieve a high level of performance. Since the number of possible

heuristics is very large for realistic applications of reasonable complexity, heuristics designed

manually may not work well when applied in new problem instances. Further, there is no

systematic method to evaluate the e�ectiveness of heuristics designed manually. To address

this problem, we need a well-designed automated system for learning heuristics that can

solve application problems with a high level of performance and within a reasonable amount

of time.
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In the past, there have been many e�orts on designing heuristics using machine learning

techniques [1{9]; however, most of them [1,2,4{9] assume a world model that relates heuristics

and their performance. This type of heuristics is known as \knowledge-rich" heuristics. In

this research, we focus on learning for a part of an application problem with \knowledge-

lean" heuristics where no such model exists. We address several shortcomings that exist in

current approaches [3,10{12].

The objectives of this research are to (a) develop an automated system for designing

knowledge-lean heuristics under resource constraints and (b) apply our system to learn

heuristics for real-world applications.

There are a number of problems that are neglected in the development of a learning

system for knowledge-lean heuristics. First, there are ambiguities and uncertainties in com-

paring the performance of di�erent heuristics. In many cases, it is di�cult to determine

which heuristics provide the best performance. Second, due to the lack of a world model, it

is very di�cult to generate heuristics with guarantees on their performance. Third, due to

the �nite amount of computing resources available, it is necessary for the learning system to

utilize these resources in an e�cient fashion in order to produce as good a heuristic as possi-

ble within the given resource constraints. Fourth, di�erent regions of an application domain

can have di�erent performance characteristics. It is necessary to identify these regions so

that performance can be estimated separately for each region. It is also necessary to have

an automated method for determining the true performance of each heuristic over the entire

problem domain.

Our research is developed to directly address these problems. Within the scope of this

research, we have de�ned (a) a strategy for evaluating the performance of heuristics, (b)

a framework for learning new knowledge-lean heuristics, (c) a real-time resource schedul-

ing strategy to test heuristics according to their partial performance information, and (d)

a generalization strategy for determining the true performance of learned heuristics over

the problem domain. These results have been implemented in a systematic framework for

designing new heuristics for knowledge-lean problem-solving environments. Our system for

designing new heuristics can be easily adapted to new applications and problem solvers.
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In the remaining parts of this chapter, we �rst de�ne and characterize what we mean by

\applications," \problem solvers," and \heuristics." After de�ning these terminologies, we

present an overview of the objective and issues in the automated design of new heuristics.

We also identify the type of applications, problem solvers, and heuristic components in which

we are interested. Then, we briey outline the overall approach we have developed and how

it is related to existing work, especially in the genetic algorithm area. Next, we present some

examples of the applications and problem solvers targeted by our automated heuristics-

design system. We then overview the chapters in this thesis. Finally, we summarize our

contributions in this thesis.

1.1 Applications

An application problem is a speci�cation of variables, constraints, and objectives, where

constraints and objectives are functions of the variables. The variables for an application

problem are divided into two classes.

(A) The �rst class of variables has values that are speci�ed initially before the problem is

solved. An assignment of values to these variables is de�ned as a problem instance or

a test case.

(B) The second class of variables is the remaining unassigned variables that will have their

values assigned during the problem-solving process. The assignment of these variables

is related to the values speci�ed by the given test case and the constraint and objective

functions speci�ed by the application problem. These assignments are referred to in

this thesis as the states of the application environment. A solution in this case is

the �nal assignment of values to all variables so that all performance constraints are

satis�ed.

A problem domain is de�ned as a collection of test cases that we wish to solve. The

number of test cases in a problem domain can be large or small. We are mainly interested in

applications with in�nitely many or a large number of test cases in their problem domains,
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where it is not feasible to evaluate all test cases in a reasonable amount of time. This

situation is common in many interesting applications.

The quality of a solution is the value of the objective function based on the values assigned

in the solution and is a measure of how good the �nal assignment of values to the required

variables (i.e., the solution) is when the test case is solved.

The quality of a solution can be divided into two classes. First, it can be related to

the appropriateness of the solution (correctness-based). This appropriateness is related to

the satis�ability of constraints or objective functions by the solution. Second, quality can

be numerical results based on substituting the solution into the objective function. In this

thesis, we focus on applications that have solutions whose qualities are measured numerically

(quantitative-based).

Some examples of application problems are shown in Table 1.1, along with the de�nition

of problem instance, solution, constraint(s), and objective(s) for each application problem.

We observe that the de�nitions of problem instance, solution, and constraint(s) can range

from fairly simple de�nitions for the vertex-cover problem to highly complicated de�nitions

for the VLSI placement and routing application. A problem instance (or a test case) in

the case of VLSI placement and routing is a speci�cation of all cells (including sizes and

shapes) and all of the connections among these cells, which correspond to a VLSI circuit

speci�cation. A solution in this case is a speci�cation of where each cell is placed on a VLSI

chip and how connections among these cells are routed on the physical chip. The constraint

in this case involves the timing requirements of each connection and the rule of physics that

enforces the routing of connections. More details about these examples will be presented in

Section 1.5.

Table 1.2 summarizes possible methods for characterizing an application problem. We

defer until Section 1.5 before showing how applications from Table 1.1 are characterized. In

this thesis, we focus on application problems that have large domains and have solutions

whose qualities are measured numerically.
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Table 1.1: Some examples of applications, problem instances, and solutions.

Application Problem Instance Solution Constraint(s) Objective(s)

Medical

diagnosis

[13,14]

A set of symptoms A diagnosis of

disease

A valid disease Correctness of the

diagnosis (to be

maximized)

Theorems

proving [14]

A set of axioms and a

theorem to be proved

Indication

whether the

theorem is

correct or

incorrect

Only accepted

axioms can be used

in the process

Correctness of the

proof and

correctness of the

solution (to be

maximized)

Test-pattern

generation

for VLSI

circuits [15]

The logic and gates

used in a VLSI circuit

A sequence of

test patterns

to input into

the VLSI

circuit

Valid inputs to the

circuit

Percentage of

possible faults

detectable by the

test patterns (to be

maximized)

VLSI

placement

and

routing [16]

A set of cells to be

placed and a set of

connectivities between

cells

Assignment of

each cell to a

location and

layout of the

connections

All cell placements

and connectivities

satisfy certain

physical rules and

timing

requirements

Chip area (to be

minimized)

Vertex-cover

problem [17]

An undirected graph

with certain number

of vertices and the

connectivities among

various vertices in the

graph

A subset of

vertices

All vertices in the

graph are

connected to at

least one of the

vertices in the

solution

The number of

vertices in the

solution (to be

minimized)

Process

mapping

problem [18]

A set of

communicating

processes and a

multicomputer system

A mapping of

processes to

processor

Each process is

assigned to exactly

one processor

Completion time of

all processes based

on the mapping (to

be minimized)

Blind

equalizer for

digital

channels [19]

A sequence of data

corrupted by an

unknown (possibly

nonstationary)

channel

A sequence of

recovered data

Each recovered

data value must be

valid

Accumulated errors

(to be minimized),

and S/N ratio (to

be maximized)

5



Table 1.1 (Continued)

Application Problem Instance Solution Constraint(s) Objective(s)

Load

balancing in

distributed

systems [20]

A set of processors

and their jobs and a

new incoming job

Decision to

place the new

job

Place the new job

on exactly one

processor

Completion time of

the new job (to be

minimized)

Depth

perception

using stereo

vision [21]

Two or more 2-D

images of the same

scene and camera

information

3-D model of

the scene

2-D projections of

3-D model must

match input images

Errors in range

estimation (to be

minimized)

Table 1.2: Characteristics of application problems. (Boldface indicates characteristics of
applications targeted by this research.)

Classi�cation Characteristics

Size of problem � Large number of test cases
domain � Small number of test cases
Quality of solution � Related to correctness of solution

� Numerical values from objective function(s)

1.2 What Are Problem Solvers and Heuristics

A process of �nding a solution for an application is known as a problem solver. A problem

solver interacts with the application environment (the variables unassigned according to the

speci�cation of a test case) to develop a solution for a test case. The problem solver tries

to modify the state of the environment so that some desired states can be reached, i.e., the

constraint(s) speci�ed in terms of the state of the environment and the test-case speci�cation

can be met. Many of these application problems are solved by making a sequence of decisions

one after another. The decisions are initiated by the problem solver at decision points and

are applied to change the application environment.

A problem solver in general consists of a domain-independent part and a domain-depen-

dent part. The domain-independent part is a general solution method that is applicable
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across di�erent applications. For example, a divide-and-conquer method is domain inde-

pendent because it can be applied to many di�erent applications. In contrast, the domain-

dependent part is speci�c for a particular application. For example, the mechanism of

partitioning a problem in a divide-and-conquer method is domain dependent.

The domain-independent and domain-dependent parts interact with each other to make

decisions during the solution process. The domain-dependent part provides information on

the current state to the domain-independent part, which returns a decision according to the

information provided. The domain-dependent part then applies the decision to change the

state of the application environment.

The performance of a problem solver on a test case depends on the quality of the solution

found by the problem solver for this test case as well as the cost (e.g., computation time)

in �nding the solution (i.e., quality of the problem-solving process). Here, we de�ne quality

(resp., cost) of a solution with respect to an input test case to be one or more measures

(based on the objective functions of an application and the solution values found by the

problem solver) of how good the �nal assignment of values to the required variables is (resp.,

how expensive it is to reach the �nal assignment) when the test case is solved. The quality

and cost of a solution are independent of intermediate states during the problem-solving

process.

A problem solver can be optimal or heuristic. An optimal problem solver is a realization

of an optimal algorithm that solves the problem optimally with respect to certain objectives.

In contrast, a heuristic problem solver has components (usually domain dependent) that are

designed in an ad hoc fashion, leading to possibly suboptimal solutions when applied. When

there is no optimal algorithm, the design of e�ective heuristics is crucial. Without ambiguity,

we simply use \problem solvers" in this thesis to refer to \heuristic problem solvers."

In this research, we focus on application domains that do not have abundant domain

knowledge in making some of the decisions. Due to the large solution space, optimal decisions

cannot be found in a reasonable amount of time. For these applications, their problem solvers

must apply heuristics to make decisions in order to reach the desired �nal state.
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Figure 1.1: A heuristic method applied to a test case in a knowledge-lean application do-

main.

Heuristics are ad hoc components within a problem solver that are used in making deci-

sions, leading to a (suboptimal) solution for a given test case when optimal decisions are not

feasible. Heuristics, in general terms, are \rules of thumb" or \commonsense knowledge"

used in attempting the solution of a problem [22, 23]. Newell, Shaw, and Simon de�ned

heuristics as \a process that may solve a given problem, but o�ers no guarantees of doing

so [24]." Pearl de�ned heuristics as \strategies using readily accessible though loosely appli-

cable information to control problem-solving processes in human beings and machines [22]."

In this thesis, we use the term heuristic method (HM) to denote a collection of heuris-

tic decision elements (HDE) or heuristic decision rules applied to solve a target problem.

There are many forms and representations of HDEs, including procedures, rules for making

decisions, symbolic expressions, and numerical parameters. Figure 1.1 shows the interaction

among test case, HM, problem solver, and solution.

The performance of an HM on a test case is the performance of the problem solver using

this HM on the test case. Each HM can contribute to the correctness (i.e., feasibility) of the

solution or the numerical performance of the problem solver (quality of the solution found

or cost of the problem-solving process). In this thesis, we are interested in developing HMs

that a�ect the numerical performance of the problem solver. We do not attempt to deal

with HDEs that may have to be proved correct before they can be used. Examples of these

include complex procedures and functions.

A heuristic problem solver can be classi�ed based on the availability of a good world model

for characterizing the relationship between its heuristics and its performance. A problem
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solver with such a world model is called knowledge rich. When such a model is unknown, the

problem solver (and its heuristics) is called knowledge lean and can be treated as a black-

box process. It is possible for a heuristic problem solver to contain components that are

knowledge rich as well as components that are knowledge lean.

There have been many studies in developing new HMs for knowledge-rich components

of problem solvers. In this thesis, we have chosen to focus on developing new HMs for

knowledge-lean components of problem solvers.

In summary, there are several characteristics that can be used to classify heuristic problem

solvers and their HMs. First, a problem solver can be classi�ed as knowledge rich or knowledge

lean based on the availability of a good world model for relating heuristics speci�cation to

their performance. Second, an HDE in a problem solver can be classi�ed as correctness

based, when the choice of the HDE can a�ect the feasibility or correctness of the solution

or quantitative based, when the choice of the HDE mainly a�ects the numerical performance

of the solution or the problem-solving process. Third, a problem solver can be classi�ed as

expensive or inexpensive based on the amount of time required to solve a single test case.

In this thesis we call a problem solver expensive when it takes more than 1 min to solve

a test case on a workstation. We have focused on these solvers because their performance

is generally hard to improve. Fourth, the set of possible choices of HMs can be large or

small. We have focused on the case where there are in�nitely many or a very large number

of possible HMs. Cases with a small number of possible HMs can be tested exhaustively.

Table 1.3 presents a summary of all of these characteristics.

Examples of problem solvers and heuristics for applications from Table 1.1 are shown in

Table 1.4. As we can see, there are a wide variety of heuristics, both in terms of represen-

tations and functionalities. For example, the representations range from simply a numerical

value in a process-mapping problem, to a symbolic formula for the branch-and-bound search

in a vertex-cover problem, to an if-then rule for the MYCIN medical diagnosis system. More

details, including the characteristics of these problem solvers and heuristics, are deferred

until Section 1.5.
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Table 1.3: Characteristics of problem solvers and HMs. (Boldface indicates characteristics

of problem solvers and HMs targeted by this research.)

Classi�cation Characteristics

World model: model of relationship � Knowledge rich | world model exists

between HM's speci�cation and � Knowledge lean | no world model

its performance

Execution time of problem � Expensive | more than 1 min for

solver each test case on a fast workstation

� Inexpensive | less than 1 min for each

test case on a fast workstation

Quality of problem solver � Related to the correctness of solution

(cost) � Related to numerical performance of the

solver and the solution

Size of HM space � Large (possibly in�nite) number of

possible HMs

� Small number of possible HMs

Table 1.4: Example of problem solvers and heuristics for applications in Table 1.1.

Application
Problem

Solver

Domain-Dependent

Heuristic Component

Heuristics

Representation
Example(s) Cost(s)

Medical

diagnosis

[13,14]

MYCIN [13]:

a rule-based

system

When the conditions

of a rule are met by

the environment,

then the action part

of the rule is asserted

Symbolic rules If (Symp-A)

and (Symp-B)

Then

(Disease-A)

|

Theorems

proving [14]

Resolution-

based

theorems

prover [14]

Inference rules,

deletion strategies,

and ordering of

operations

Symbolic rules If

(length(clause)

> max) then

delete(clause)

|

Test-pattern

generation

for VLSI

circuits [15]

CRIS [15]:

Search using

genetic

algorithm

Controls used in the

genetic algorithm:

iteration, rejection

ratio, sequence

depth, control factor,

frequency of usage

Numeric values,

�tness function

(2, 3, 4, 3.2,

100), H(�)

Execution

time of

problem

solver

10



Table 1.4 (Continued)

Application
Problem

Solver

Domain-Dependent

Heuristic Component

Heuristics

Representation
Example(s) Cost(s)

VLSI

placement

and

routing [16]

TimberWolf

[16]:

Simulated

annealing

approach

If ((acception ratio)

> (threshold)), then

reduce temperature

to next lower value

Numerical

threshold value,

cost function,

temperature

function

0.9, C(�), T(�) Execution

time of

problem

solver

Vertex-cover

problem [17]

Branch-and-

bound

search [25]

If a node has the

smallest decompo-

sition-function value

among all active

nodes, then expand

this node

Symbolic

formula

Lower bound

+ Upper

bound of node

Number of

nodes

expanded in

B&B search

Process

mapping

problem

Post-Game

Analysis

[18]:

rule-based

decision

making

If (processor

utilization / average

utilization of all

processors) >

(threshold), then

evict one process

Numeric

threshold value

1.10 Time to

�nd �nal

mapping

Blind

equalization

for digital

channels [19]

Gradient

descent

approach

[19]

Objective (error)

function for gradient

descent

Symbolic

formula of the

error function

E(�) Complexity

of the error

function,

Conver-

gence time

of �lter

Load

balancing in

distributed

systems [20]

SMALL: a

rule-based

system

If (average WL(�) >

(threshold)), then

migrate this process

Workload

function WL,

numeric

threshold value

WL(�), 2.0 Overhead

of load

balancing

Depth

perception

using stereo

vision [21]

Marr and

Poggio's

iterative

algorithm

Gaussian �lter for

image blurring and

edge detection

thresholds

(low

edge-detection

threshold,

channel width,

high threshold)

(0.6 2.0 5.0) Time taken

to discover

3-D model

11



Table 1.5: Characteristics of applications, problem solvers, and HMs targeted by our auto-
mated system for designing new heuristics.

Component Characteristics

Application � Large problem domain

� Qualities of solution are numerical values of

objective functions

Problem � Knowledge lean | without world model to relate

Solver heuristics speci�cations to their performance

� Relatively expensive problem-solving process
(takes more than 1 min of execution time)

� Numerical values as cost of the problem-solving
process

HM � In�nitely many or very large number of possible

HMs

The characteristics of the targeted applications, problem solvers, and HMs are summa-

rized in Table 1.5. For instance, in Table 1.4, the decomposition function of a branch-and-

bound search for the vertex-cover problem �ts all of the characteristics presented in Table 1.5.

There are in�nitely many possible symbolic expressions to be used as the decomposition func-

tion. There are also in�nitely many problem instances for the vertex-cover problem. The

performance measures for solving the vertex-cover problem are the number of vertices in a so-

lution and the number of branch-and-bound (B&B) nodes expanded in �nding that solution.

Although a small vertex-cover problem with 10-15 vertices can be solved quickly, a larger

vertex-cover problem with 30-50 vertices takes more than a few minutes to solve. There is

also no model to relate the speci�cation of the decomposition function to the performance

for each test case due to the complexity of the interactions in the problem-solving process.

More examples are shown in Section 1.5.

1.3 Automated Design and Evaluation of New Heuristics

In this section, we discuss the main focus of this thesis: the design of an automated

system for learning new heuristics used in knowledge-lean problem solvers. Our goal is to
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obtain better HM(s) for a target problem solver that produces a better solution for each test

case or reduces the cost of problem solving. This goal is very desirable since many important

applications require heuristics in their problem solvers (see Table 1.4 for several examples).

Heuristics are usually designed by experts with strong expertise in the target application

domain or by automated learning systems using machine-learning techniques. Both methods

focus on explaining the relation between heuristics and their performance and on generating

\good" heuristics based on observed information or explained relations. In this research, we

focus on studying \knowledge-lean" components of the problem solvers where there are no

good world models of relationship between heuristics speci�cations and their performance.

Existing work in this area [3,10{12] still has several shortcomings which we plan to address.

Our focus is on developing a systematic strategy for designing knowledge-lean heuristics

that are independent of speci�c applications and problem solvers. We want to be able to

easily adapt our heuristics-design system to any new problem solvers and applications.

In this section, we �rst outline the objective of a heuristics-design process and specify

the characteristics of applications and problem solvers targeted by our research. Then,

we outline various issues that exist in developing an automated system for designing new

heuristics, especially for knowledge-lean heuristics.

1.3.1 Goal and assumptions

A heuristics-design process is a process for developing or learning new and \better" HMs

for a problem solver. The underlining idea behind developing a heuristics-design process is

to improve the �nal solutions derived by its problem solver.

In the general case, the objective of the heuristics-design process is to obtain an HM

that leads to the \best" performance over the problem domain, which is usually vague and

can be contradictory since we cannot de�ne precisely what \best" performance requires. In

this thesis, we de�ne the objective of the heuristics-design process as �nding a new HM that

performs \better" than an existing HM with respect to some average objective measures over

the entire problem domain.
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For the scope of our research, we have previously enumerated in Sections 1.1 and 1.2

the characteristics of the application/problem solver/HM we like to study. Previously, we

have also presented in Section 1.2 an overview of the possible representations of HMs to be

developed. Here, we present an important assumption we have made in our research.

The major assumption we have made in our heuristics-design process is that a problem

domain can contain di�erent regions with di�erent statistical performance. Under this

assumption, the performance of each HM over the problem domain cannot be represented

by a random subset of test cases. In addition, the performance of an HM on di�erent subsets

of test cases can be independent of one another.

It is then necessary to divide the problem domain into subsets called subdomains so

that performance values within each subdomain can be compared. New HMs can then be

designed for a particular subdomain based on a subset of test cases from that subdomain.

Later in Chapter 2, we show that all performance values within each subdomain must be

independent and identically distributed (IID).

The complications due to this assumption can be seen in the next subsection (Sec-

tion 1.3.2).

1.3.2 Overview of issues

In this subsection, we enumerate all possible issues in the automated design of new HMs

for a problem solver. These issues may not be directly related to the type of heuristics-design

problem we are interested in. Later on, we focus on how each of these issues is a�ected by

the characteristics of the target problem solvers/HMs we have chosen.

The various issues can be enumerated as follows:

� Analysis of HMs { evaluate each HM analytically.

� Decomposition/Integration of Problem-Solver Components { related to improving com-

plicated problem solver in a piecewise fashion.
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� Classi�cation of Problem Domain { de�ning regions of problem domain where new

HMs can be developed independently.

� Generation of New HMs { related to developing better HMs based on performance

information obtained so far.

� Evaluation of HMs { related to comparisons with performance of existing HMs based

on minimal evaluations.

� Generalization of HMs Learned { related to determining the true performance of each

HM over the entire problem domain based on incomplete performance information in

the design process.

We ignore the analysis issue in this thesis because analytical evaluation of HMs requires

extensive domain knowledge that is not available in our problem solvers. We present an

overview of each of the remaining issues in the remaining parts of this subsection.

Decomposition and integration of problem-solver components

When a problem solver has many heuristic components, it may be too complex to de-

sign new heuristics for every component simultaneously. For example, the TimberWolf [16]

problem solver in Table 1.4 has many heuristic components, including a temperature-control

function, a cost function, and many numerical threshold values. These components are not

tightly related and may even have di�erent forms (numerical values and symbolic functions).

The number of possible combinations of these heuristics is too large to deal with e�ciently.

It may be more desirable to improve a problem solver sequentially as follows.

(a) Divide the problem solver into several smaller groupings of heuristic components,

(b) Design new heuristics for each group, with possible interactions between these

developments, and

(c) Integrate new heuristics from each group together to form an updated problem

solver.
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Integration

Design
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Group 1

Group 2

Group N

Figure 1.2: Decomposition and integration in a heuristics-design process.

This process is shown in Figure 1.2. Using the TimberWolf system as an example, the

temperature-control function can be studied �rst before the various numerical parameters

and the cost function.

There are two di�culties in the decomposition/integration process. First, some domain

knowledge is required to decompose the problem solver into smaller groups. Second, the

interactions between the development of new heuristics for di�erent groups are very di�cult

to characterize. The simplest way is to study these groups sequentially; i.e., develop HA for

group A, then develop HB for group B with HA in the problem solver.

This issue is not studied in this thesis as it depends on a good system for developing new

heuristics for each group. Our current system assumes that any decomposition/integration

is performed manually by the users.
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Classi�cation of problem domain

This issue deals with the situation when the statistical performance behavior of each HM

is di�erent for di�erent regions of the targeted problem domain. In this case, the performance

from di�erent regions cannot be combined or compared.

This di�culty a�ects the selection of test cases to be used during the heuristics-design

process where it is necessary to combine the performance of each HM and to compare the

performance of di�erent HMs. Obviously, randomly selecting test cases from the problem

domain is not a valid approach under this condition. The problem domain must be divided

into smaller subsets in which the performance from within each subset can be combined and

compared. This partitioning usually requires all performance values within each subset to

be independent and identically distributed (IID).

New HMs can then be developed for each subset of the problem domain. However, there

is no guarantee that these HMs will perform well on other subsets of the problem domain.

The generalization issue deals with the necessary condition for an HM to perform well over

the entire problem domain. Under certain conditions, it may not be possible for a single

HM to perform well over the entire problem domain and may be necessary to partition the

problem domain into subspaces.

There has been some work to develop di�erent heuristics under di�erent situations [26].

However, most currently existing heuristics-design systems implicitly assume that perfor-

mance values from the entire problem domain are IID. Consequently, these systems also

assume implicitly that heuristics learned can be generalized to test cases in the entire prob-

lem domain.

In Chapter 2, we present more details related to this issue and develop a method for

decomposing a problem domain into subdomains.

Generation of new HMs

The methods for generating new and better HMs are dependent on the amount of domain

knowledge available. For a knowledge-rich problem solver with a good world model to relate
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decisions made by each HDE and performance feedbacks, a better HM can be generated

based on the model through credit assignments. This approach is the focus of many studies

in machine learning [1,2,4{9].

The generation process is much more di�cult for knowledge-lean problem solvers where

such a world model does not exist and credit assignments cannot be used. Weaker, model-

free, domain-independent, and syntactic operators for generating new HMs can still be used

in this case. Examples of these operators include genetics-based operators such as crossover,

mutation, and hill-climbing.

An existing approach to machine learning that can take advantage of these weak operators

is the genetics-based machine-learning approach [27,28]. This population-based approach is

based on generate-and-test methods that generate new heuristics to be tested by applying

operators to existing heuristics that perform well [3,10]. A pool of multiple competing HMs

is maintained during the learning process. The new heuristics are potentially good as they

are generated based on good ones. Examples of genetics-based machine learning include

genetic programming [29] and the Pittsburgh approach to classi�er system [3].

This genetics-based machine-learning approach is suitable only for problem solvers whose

performance in terms of quality and cost of its solution is measured numerically. It is di�cult

to develop HMs for problem solvers whose performance is in terms of the correctness of the

solutions. In this case, some domain knowledge is required for developing new HMs.

We study this HM generation issue in more detail in Chapter 3.

Evaluation of HMs

One of the major issues in designing new and better HMs is the ability to compare the

performance of di�erent HMs. Performance information of an HM is obtained by applying

the problem solver using this HM on a set of test cases in a problem domain. We are mainly

interested in this issue when performance is in the form of numerical measures.
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This evaluation issue is relatively simple when the performance of each HM is determin-

istic. A single evaluation of each HM on one test case is su�cient to determine the exact

performance of that HM.

In this thesis, we are interested in two types of application domains: (a) those with a

large number of test cases and possibly an in�nite number of deterministic HMs for solving

them and (b) those with a small number of test cases, but the HMs concerned have a

nondeterministic component, such as a random initialization point, that allows di�erent

results to be generated for each test case. In both types, the performance of an HM is

nondeterministic, requiring multiple evaluations of the HM on di�erent test cases or multiple

evaluations of the HM on the same test case. Consequently, we must de�ne valid statistical

metrics for comparing two HMs without exhaustively testing all test cases using these HMs

(we use sample-mean values in this thesis). This statistical comparison requires identifying

subsets of test cases whose collective behavior on an HM can be evaluated statistically (see

the issue on classi�cation).

We present in Chapters 2 and 5 issues in performance evaluation of heuristics.

An important issue in implementing a heuristics-design system is the scheduling of �nite

computational resources for testing a possibly in�nite set of test cases and in�nitely many

variations of HMs, which entails apportioning computational resources to tests so that the

best HM is found when resources are expended. The problem is especially di�cult when tests

are expensive and nondeterministic. We study in Chapter 4 the scheduling of computational

time in heuristics learning.

Generalization of HMs learned

When the problem domain is very large and only a small subset can be covered during

the heuristics-design process, it is necessary to generalize the performance of HMs learned

to test cases not studied in the design process. We want to develop HMs that perform well

for the entire problem domain, not just for the test cases used during the design process.
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Generalization is di�cult when HMs do not perform consistently or have di�erent per-

formance distributions across di�erent sets of test cases (see the issue on classi�cation).

Chapter 5 examines issues in generalization under this condition.

Existing machine-learning systems usually assume that the test cases in their test data-

base are representative of the entire problem domain. In addition, it is implicitly assumed

that performance values of all test cases are IID. In this case, the performance over the test

database can represent the true performance over the entire problem domain. However, this

approach does not work when there are di�erent regions within the problem domain with

entirely di�erent performance behavior.

1.3.3 Links to previous work

In this subsection, we summarize existing work that studies various issues related to the

automated design of knowledge-lean heuristics.

From the previous subsection, we observe that most existing work has been focused on

the issue of generating new and better HMs (such as [1, 6, 7, 27]) with some related work

in evaluation and generalization. In most cases, these two issues are studied independently

of the HM generation issue. The issues on decomposition and integration and classi�cation

have been mostly ignored. This result is related to the fact that these issues appear only

in more complex applications and problem solvers. In addition, it is usually necessary to

address the other issues before these two issues can be dealt with e�ectively. This necessity

is particularly true for the decomposition-and-integration issue.

In this thesis, we attempt to address some of the issues that have been ignored previously

and provide a framework for integrating the solutions for each of these issues together. We

have focused on classi�cation and generalization with special attention on dealing with di�er-

ent statistical behavior in di�erent regions of the problem domain. We have also attempted

to provide a systematic solution to the evaluation issue. In the generation issue, we simply

base our solution on existing methods since there have been extensive studies in this area.

The only issue we have neglected in this research is the decomposition-and-integration

issue. This issue will be studied in the future.
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1.4 General Overview of Our Heuristics-Design Approach

Given the objective, scope, and issues de�ned in the heuristics-design problem, we present

in this subsection our overall approach. Our approach is built upon existing work in the area

of machine learning, in particular, genetics-based learning. We have developed metalevel

controls on existing learning methods in order to obtain better and more e�cient heuristics.

Speci�cally, we have identi�ed two major di�culties in learning a single general HM

across many di�erent test cases of an application. First, heuristics generally do not have

the same performance statistically across test cases of a di�erent nature, making it di�cult

to evaluate performance using statistical methods. Second, when tests are expensive to

carry out and computational resources are limited, one needs to schedule tests to identify

good heuristics and eliminate bad ones. Traditional methods generally assume that tests are

inexpensive and that heuristics learned can be generalized. An example of such an existing

approach is genetics-based machine learning.

In this thesis, we have used genetics-based machine learning as the underlying method for

developing good HMs. To cope with the issues on generalization and resource scheduling, we

have developed additional metalevel controls, resulting in an approach similar to a metalevel

genetic algorithm (GA) [27]. This approach has been studied in the past [30] and has been

found to work well in experimental prototypes [31{33].

We have developed two metalevel controls to address these issues. (See Figure 1.3.) First,

we have chosen to partition the problem domain into smaller subsets called subdomains in

which performance values of test cases in a subdomain are IID. Our metalevel strategy

here is to (a) select several subdomains, (b) apply genetics-based machine learning to each

selected subdomain, and (c) select the \best" HM across all tested subdomains. Second, we

have developed resource scheduling strategies for controlling actions in each genetics-based

learning process.

An alternative approach to selecting one common HM across all subdomains is to have

multiple HMs and to decide probabilistically, when given a new test case, which HM to
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Figure 1.3: General overview of the metalevel genetic-algorithm approach used in this thesis.

apply [34]. This approach is not suitable for applications studied since relative performance

of HMs will likely vary from one subdomain to another.

In Chapter 3, we present an in-depth study of our strategy and its relationship to existing

work. To determine whether one HM is better than another HM, especially when they may

have di�erent statistical behavior across test cases in the problem domain, we present in

Chapter 2 issues and techniques in comparing the performance of two HMs. Using these as

building blocks for our learning process, we then present in Chapters 4 and 5 details of our

metalevel strategies.

1.5 Example Applications and Problem Solvers

In this section, we examine several applications and their heuristic problem solvers from

Table 1.4 in more detail. First, Table 1.6 shows the characteristics of heuristic problem
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Table 1.6: Characteristics of heuristic problem solvers from Table 1.4.

Problem Solver

Size of

Problem
Domain

Performance

Type

Time of

Execution

World

Model
Availability

Size of HM

Space

MYCIN for
medical diagnosis

Large Numerical
(Percentage of

correct
diagnosis)

Inexpensive Knowledge-
Rich

Large

Resolution-based
Theorems
Proving

Large Correctness Expensive Knowledge-
Rich

Large

CRIS for
generating VLSI
test sequences

Large Numerical Expensive
(especially for
large circuits)

Knowledge-
Lean

Large

TimberWolf for
VLSI placement
and routing

Large Numerical Expensive
(especially for
large circuits)

Knowledge-
Lean

Large

Branch-and-
bound search for
vertex-cover
problem

Large Numerical Expensive
(less so for
small
problems)

Knowledge-
Lean

Large

PGA for
process-mapping

Large Numerical Expensive Knowledge-
Lean

Large

Blind
equalization
using gradient
descent

Large Numerical Expensive
(less expensive
than other
applications)

Knowledge-
Lean

Large

SMALL for load

balancing in
distributed

systems

Large Numerical Inexpensive Knowledge-

Lean

Large

Depth perception
in stereo vision

Large Numerical Expensive Knowledge-
Lean

Large
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solvers and applications from Table 1.4. Our focus is on applications and problem solvers

that �t all of the characteristics that we have chosen.

From this table, we see that MYCIN and the resolution-based theorems proving systems

do not �t our conditions. First, MYCIN, a rule-based system for medical diagnosis, has a

good world model for relating the correctness (quality) of its diagnosis (solution) for a given

set of symptoms (test case) to the rules used in selecting the diagnosis (heuristics).

Second, resolution-based theorems proving uses a set of rules (heuristics) to attempt to

resolve the given set of axioms with a new theorem (a test case). The correctness (quality)

of the decision whether the new theorem is correct or incorrect (solution) is an important

measure of this problem solver. Consequently, heuristics used in this system must be seman-

tically sound in order to avoid incorrect decisions. Such correctness-based problem solvers

are not targeted in this research. In addition, there is a good world model available for

knowledge-intensive improvement of this problem solver.

In the rest of this section, we explore in more detail several applications that �t our

conditions. These are the problem solvers that we will improve using our system for designing

new heuristics. For all problem solvers presented here, there are in�nitely many HMs that can

be selected. There is also no model for relating performance information to the speci�cation

of each HM. This condition is especially true for CRIS (a genetic-algorithm package for

generating test patterns in VLSI circuit testing) where we have only information on the

possible ranges of values used in CRIS and the results received after applying CRIS on a

circuit.

1.5.1 CRIS and GATEST

The �rst two problem solvers we have focused on are two genetic-algorithm packages

(CRIS [15] and GATEST [35]) for generating test patterns in VLSI circuit testing. Both

packages use a domain-independent genetic algorithm [28] that continuously evolves test

patterns by analyzing mutated vectors on their ability to identify (or cover) more faults in

a circuit. There are many possible domain-dependent HMs; however, in our experiments,

we chose the domain-dependent HMs for CRIS as a set of seven numeric parameters and
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for GATEST [35], one of the four �tness functions for computing the performance of test

patterns.

A test case for these applications is a circuit to generate test patterns for. There are many

possible circuits that can be solved by these problem solvers. In addition, both problem

solvers have nondeterministic components that lead to di�erent performance results.

In terms of performance, the main performance measure for both problem solvers is the

percentage of faults covered by the discovered test patterns (solution to this application).

The amount of CPU time used by both problem solvers is also important. GATEST requires

more than several minutes to solve each circuit, whereas CRIS takes less time but still can

require several minutes to solve larger circuits.

The results of our experiments for these two problem solvers extend the performance

results we have found earlier for CRIS [36] and show the ability of our learning and gener-

alization procedures to result in higher fault coverages than the original packages.

1.5.2 TimberWolf

The second problem solver we consider is TimberWolf (version 6) [16, 37], a software

package based on simulated annealing for placing and routing a set of VLSI circuit compo-

nents. There are many heuristic components in TimberWolf, including a temperature-control

function, a cost function, and several numerical parameters.

A test case for this application is a set of VLSI circuit components to be mapped to a

physical layout. A layout is a solution in this case. The placement of these components

(cells and wires) must meet the timing requirements and the requirements of the law of

physics. The quality of a solution is in terms of the chip area of the �nal layout. The cost

of �nding such a solution in terms of execution time must also be considered. A reasonably

large circuit (primary1) can take from 5 to 15 min to solve.

For this problem solver, we illustrate that, by tuning a set of ten numeric parameters in

TimberWolf, we can reduce the area of the chip as well as the time needed to �nd the layout.
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Results on extending our results on TimberWolf's cost and temperature-control functions

will be studied in the future.

1.5.3 Branch-and-bound search

The third problem solver is a software package WISE [38] that implements a branch-and-

bound search to �nd optimal solutions for combinatorial optimization problems. We consider

three combinatorial optimization problems in this thesis (vertex cover, asymmetric traveling

salesman, and knapsack packing). In this case, the branch-and-bound search is domain

independent, and we chose the decomposition HM as the domain-dependent heuristics. The

decomposition HM is used to pick an attribute to decompose a subproblem in a search tree

into descendents. The HM is represented as a symbolic formula of parameters that can be

obtained in the search tree.

For instance, in a vertex-cover problem, the goal is to �nd the minimum number of nodes

of a graph so that each edge is emanating from one of the covered nodes. In this case, a

subproblem represents a set of nodes in the graph to cover partially the edges in the graph,

and the decomposition HM picks the next node to be included in the covered set.

The performance measures of a branch-and-bound search are the quality of the solution

found and the number of nodes that have been expanded during the problem-solving process.

In this thesis, we assume that the branch-and-bound search will stop only after an optimal

solution is found. Consequently, all HMs have the same quality for the same test case, and

the objective is to minimize the cost (number of nodes expanded).

Because target applications are NP-complete [17], the amount of time required to solve a

test case can increase exponentially with the problem size. It is very common to take several

hours to �nd a solution for a single test case. In this thesis, we assume that relatively small

test cases are used in the design process and that performance of HMs learned can generalize

to larger test cases.
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1.5.4 Post-game analysis

The next problem solver is the post-game analysis (PGA) system [18,39,40], a simulation-

based method for mapping a set of communicating processes on a multicomputer system.

This system collects an execution trace, consisting of actual execution times in between

communications and amounts of data sent between processes, and uses them in a simulation

system to �nd the actual completion time of a speci�c mapping. It then applies heuristics

to propose a new mapping, evaluating the e�ectiveness of the new mapping through the

simulation system. This iterative re�nement is repeated until no further improvement is

possible.

A test case for this application is a set of communication processes and a multicomputer

system. A solution in this case is a mapping between the processes and the processors. A

process must be placed on exactly one processor. The quality of a solution is in terms of

the completion time of the communicating processes based on the �nal mapping. The cost

of �nding this mapping in terms of execution time is also important. A typical test case we

use takes more than one minute of execution time on a Sun SparcStation 10/30. There is

a trade-o� between the quality and cost for this particular problem solver. Ideally, a good

HM should �nd a mapping with low completion time while using minimal execution time.

Unfortunately, an HM that uses less execution time is also likely to �nd a worse mapping.

There are four components of the heuristics used in PGA: (a) proposal-generation heuris-

tics, (b) priority-assessment heuristics, (c) transformation-generation heuristics, and (d)

feasibility heuristics. These heuristics are represented as expressions that combine values

collected during program execution and are applied to make decisions.

1.5.5 Blind equalization

The �nal problem solver is a gradient descent algorithm to �nd a set of weights of an FIR

�lter [19]. The heuristic method involved is the cost function de�ned in the weight space for

the descent algorithm. The cost function is represented by a symbolic expression. In our
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experiments, the cost function is de�ned in terms of the weights of the �lter and the current

output of the �lter.

In this application, we de�ne a test case as multiple random sequences of data of �xed

length passing through a �xed channel and a �xed-length blind equalizer with a �xed set of

random initial weights. A solution is the sequence of output data recovered from a sequence

of input data corrupted in transmission.

The main performance measure in this problem solver is the number of accumulated errors

(incorrect values for the recovered output sequence) for a sequence of input data corrupted

in transmission. There are also other measures of interest, such as the convergence time

(amount of time required before there are no more errors) and the complexity of the �lter.

1.6 Outline of Thesis

This section gives a brief overview and organization of the di�erent chapters in this the-

sis. The thesis is divided into three parts. In the �rst part, consisting of Chapter 2, a

systematic examination of the issues involved in comparing the performance of two HMs is

presented. In the second part, consisting of Chapters 3, 4, and 5, a systematic framework for

designing knowledge-lean heuristics, TEACHER (an acronym for TEchniques for the Auto-

mated Creation of HEuRistics) [41], is described. In the third part, consisting of Chapter 6,

experimental results from applications of TEACHER, our automated system for designing

knowledge-lean heuristics, to develop new heuristics for several real-world applications are

shown. Figure 1.4 presents an overview of this thesis.

Before a process for designing new heuristics can be developed, we must have a good

understanding of how to determine if one HM is better than another HM. Hence, in Chap-

ter 2, we �rst study and analyze the problem of comparing the performance of two HMs.

The �rst issue in Chapter 2 deals with normalization of performance. Next, we present a

method for dealing with multiple objective performance measures that treats each objective

in an independent fashion. We then deal with partitioning the problem domain into smaller

subsets called subdomains. This partitioning is necessary in the case where performance

values from di�erent regions of the problem domain have di�erent behavior and must be
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Figure 1.4: Overview and organization of this thesis.
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dealt with separately. The performance-evaluation problem is then separated into two parts:

statistical performance evaluation within each subdomain where performance values are IID

and statistical generalization across subdomains where performance values must be dealt

with separately and independently. In this chapter, we observe potential di�culties in the

classi�cation of a problem domain and in statistical performance generalization across the

entire problem domain.

Chapter 3 presents a review of existing work in the automated design of knowledge-lean

heuristics and an overview of our heuristics-design process that systematically deals with

the issues of problem domain classi�cation, heuristics generation, performance evaluation,

and statistical performance generalization. Our system that implements this automated

heuristics-design process is known as TEACHER [41].

We then proceed to study the components in TEACHER. Chapter 4 presents various

strategies that we have developed for scheduling resources during each learning experiment.

Chapter 5 presents our uni�ed strategy for statistical generalization to extend each HM's

performance over the entire problem domain.

In Chapter 4, we study two problems in resource scheduling during each learning experi-

ment: sample allocation for allocating resources among active HMs and duration scheduling

for deciding on a proper time to generate a new set of HMs. We present a dynamic sample-

allocation strategy called nonparametric minimum-risk that does not require any knowl-

edge about the distributions of performance values. We also present a dynamic duration-

scheduling strategy called DMDS for dealing with situations in which constraints from multi-

objective optimization can prune o� most new HMs.

In Chapter 5, we study the statistical generalization process for estimating the perfor-

mance of a given set of HMs over the entire problem domain, based on each HM's incomplete

performance information obtained during the heuristics-design process. Our primary objec-

tive is to provide better performance than the incumbent HM. Our strategy is divided into

two parts. First, the performance within each subdomain is estimated and compared with

the incumbent HM. Second, the performance over the entire problem domain of each HM

30



is estimated, based on the worst-case performance of that HM over the selected subset of

subdomains used in the heuristics-design process.

Chapter 6 presents various results we have collected after applying our heuristics-design

system to various real-world applications. The target problem solvers include (a) process

mapping using PGA, (b) branch-and-bound search to solve several combinatorial optimiza-

tion problems, (c) CRIS and GATEST for generating test patterns for VLSI circuits, (d)

TimberWolf for placement and routing of VLSI circuits, and (e) blind equalization using

gradient descents. Our results consistently show the e�ectiveness of our heuristics-design

system in �nding new HMs that improve in performance over existing HMs.

Finally, Chapter 7 summarizes the results we have developed in this thesis and presents

some possible future directions to extend and enhance this work.

1.7 Contributions

The following are the main contributions of this thesis:

� Identi�cation of Issues in Automated Development of New Knowledge-Lean Heuristics

(Chapters 1 and 3). We have identi�ed �ve key issues that must be addressed in the

development of an automated system for designing knowledge-lean heuristics. These

issues are decomposition and integration of problem-solver components, partitioning of

a problem domain, generation of new heuristics, performance evaluation of heuristics,

and statistical generalization of learned heuristics.

� Development and Implementation of an Automated System for Designing Knowledge-

Lean Heuristics [36, 41] (Chapter 3). We have developed a systematic framework for

designing new knowledge-lean heuristics. This framework has been developed to specif-

ically deal with various key issues that we have identi�ed. TEACHER is an implemen-

tation of our framework that has been applied to develop new heuristics for several

applications. Currently, we have not extended our system to deal with the issue of

decomposition and integration of problem-solver components. This extension will be

carried out in the future.
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� Strategy for Performance Evaluation of Heuristics (Chapters 2 and 5). We have identi-

�ed various problems that must be addressed in the performance evaluation of heuris-

tics and a systematic approach to address these issues. Our main contribution is the

partitioning of a problem domain into smaller subsets, called subdomains, so that per-

formance values within each subset can be evaluated statistically. The criteria under

which the performance of an HM can be statistically estimated based on a small num-

ber of test cases is the independent and identically distributed (IID) property of all

performance values. Performance evaluation can then be divided into two parts: sta-

tistical performance evaluation within each subdomain and statistical generalization

across multiple subdomains.

To improve statistical performance evaluation within a subdomain, normalization is

applied to provide a consistent basis for comparing two HMs, and multi-objective

optimization can be dealt with by transforming all but one objective into constraints.

The transformation of multi-objective optimization allows each objective to be dealt

with independently.

� Strategy for Statistical Generalization of Learned HMs (Chapter 5). When a problem

domain contains multiple subdomains, performance from di�erent subdomains must be

dealt with separately and independently. The performance of each HM over the entire

problem domain can then be estimated based on their worst performance among the set

of subdomains used within the design process. This approach requires the performance

values from each subdomain to be normalized with respect to an incumbent HM.

� Resource Scheduling Strategies for Learning Under Resource Constraints [36, 42, 43]

(Chapter 4). We have developed a nonparametric minimum-risk strategy for allocat-

ing resources among active HMs without requiring any knowledge about performance

distributions. We have also developed a DMDS strategy for dynamic scheduling of time

to generate a new set of HMs. This strategy is designed to deal with the conditions in

which constraints due to multi-objective optimization can eliminate most or all HMs

generated.
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� Application of Learned Problem Solvers in Real-World Applications (Chapter 6). We

have applied our automated system for designing knowledge-lean heuristics to sev-

eral real-world applications. Our results consistently show the e�ectiveness of our

heuristics-design system for providing new HMs that improve over existing HMs.
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2. PERFORMANCE EVALUATION OF TWO HEURISTICS

In this chapter, we study the process of performance evaluation of heuristics. The primary

objective of this process is to determine, based on a �xed set of HMs and a given problem

domain, the HM that outperforms other HMs with high probability over a given problem

domain. We focus on the special case when there are only two HMs to evaluate and defer

to Chapter 5 to address the general case of more than two HMs.

Our systematic approach to performance evaluation of two HMs has been developed to

deal with two key issues: (a) ambiguities due to multiple conicting performance objectives

and (b) a large (possibly in�nite) number of performance values. There are six steps in our

approach to performance evaluation: (1) normalize performance values to obtain relative

di�erence in performance between the two given HMs for each test case, (2) transform the

original multiple-objective problem by applying constraints on all but one or all objectives

and choose only one objective to optimize, (3) partition the problem domain into smaller

problem subdomains when necessary so that each problem subdomain can satisfy the IID (in-

dependent and identically distributed) property, (4) use statistical estimation (which requires

the IID property on performance values as a necessary requisite) to predict true performance

over each problem subdomain based on a subset of performance values, (5) choose the HM

that is better based on sample mean and probability of win (measure of certainty of the

ordering of sample means) in all subdomains as the best HM for the problem domain, and

(6) validate the result of previous steps by examining aspects of HM performance not studied

in the previous steps.
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2.1 Introduction

Before exploring the issues in performance evaluation of heuristics, we �rst review in

this section some of the de�nitions de�ned in Chapter 1. We then de�ne the objective

in performance evaluation of two HMs and present the related issues. An overview of the

strategies for addressing these issues is then presented in the �nal portion of this section.

2.1.1 Background

We have de�ned in Chapter 1 an application problem as a speci�cation of variables,

constraints, and objectives, where constraints and objectives are functions of the variables.

The variables for an application problem are divided into two classes. The �rst class of

variables has values that are speci�ed initially before the problem is solved. An assignment

of values to these variables is de�ned as a problem instance or a test case. The second class

of variables is the remaining unassigned variables that will have their values assigned during

the problem-solving process. A solution in this case is the �nal assignment of values to all

variables in the second class so that the values of all constraint functions are satis�ed based

on the problem-instance speci�cation and this assignment. The quality of a solution is the

values of the objective functions based on the values assigned by the solution. A problem

domain is de�ned as a collection of test cases that we wish to solve.

A process of �nding a solution for an application is known as a problem solver. Heuristics

are ad hoc components within a problem solver that are used in making decisions, leading

to a (suboptimal) solution for a given test case when optimal decisions are not feasible. In

this thesis, we have de�ned a heuristic method or HM as a collection of heuristics within a

problem solver. Figure 1.1 shows the interaction among test case, HM, problem solver, and

solution.

The performance of an HM on a test case depends on the quality of the solution found

by the HM for this test case as well as the cost (e.g., computation time) in �nding the

solution (i.e., quality of the problem-solving process). Here, we de�ne quality (resp., cost)

of a solution with respect to an input test case to be one or more measures (based on the
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objective functions of an application and the solution values found by the problem solver) of

how good the �nal assignment of values to the required variables is (resp., how expensive it is

to reach the �nal assignment) when the test case is solved. The quality and cost of a solution

are independent of intermediate states traversed during the problem-solving process.

In this thesis, we focus on applications that have solutions whose qualities are measured

numerically and that have in�nitely many or a large number of test cases in their problem

domains. We have also focused on problem solvers whose qualities (i.e., cost) are measured

numerically. The actual numerical result(s) in evaluating an HM on a single test case is

called raw performance measure(s). Problem solvers studied in this research can also have

inherent uncertainties in their quality and cost, i.e., have di�erent solution qualities or solver

costs on the same test case.

Table 2.1 shows several examples of performance measures and raw performance measures

based on applications discussed in Chapter 1. For example, the main performance measure

in test-pattern generation for VLSI circuits is the percentage of faults covered by a test

pattern found by a problem solver (such as CRIS [15] or GATEST [35]). The objective of

each HM is to maximize this measure of solution quality. In this application, the uncertainty

in a problem solver can cause the raw performance measure by an HM to vary even for the

same VLSI circuit.

2.1.2 Performance-evaluation objective

Our objective in performance evaluation of a pair of HMs is to determine whether one

HM is probabilistically better than or worse than the other HM over each test case in a given

problem domain. One of these HMs can be designated as the baseline HM in this discussion.

Our goal is to determine whether the other HM is better, worse, or indeterminate with

respect to the baseline HM. An important assumption under this objective is that all test

cases are equally important.

To interpret the above objective in a more formal and mathematical form, we can des-

ignate HMB as the baseline HM and HMX as the other HM. Without loss of generality,

we assume that there are n objective performance measures, J1; J2; :::; Jn, to be maximized.
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Table 2.1: Example performance measures for several example applications. (Q refers to
a quality measure, C refers to a cost measure, Min means that the objective

is to minimize a measure, and Max means that the objective is to maximize a
measure.)

Application Performance Measure
Measure Type Goal Example

Test-pattern genera-

tion for VLSI circuits
Percentage of fault coverage Q Max 79%, 75%

VLSI placement and Area of layout Q Min 3431143

routing Execution time C Min 532.5 s

Branch-and-bound
search for solving a

Number of vertices required Q Min 5 vertices

vertex-cover problem Number of nodes in B&B search C Min 153 nodes

Process mapping Completion time of mapping found Q Min 1431.3 s
problem Time to �nd mapping C Min 20.1 s

Blind equalizer for Convergence time Q Min 431 bits
digital channels Total number of accumulated errors Q Min 89 bits

Signal-to-noise ratio of converged
state

Q Min -8.43 dB

Load balancing in
distributed systems

Completion time of incoming job Q Min 154.3 s

Stereo vision for Error in range estimation Q Min 143.3 in
depth perception Execution time C Min 53.2 s

We also assume that there are k test cases, t1; t2; :::; tk, where k can be in�nite. We use the

symbol P (b)
a;c to denote the performance value of HM a for objective performance measure

Jb on test case tc. When there is randomness within a problem solver, the performance of

this HM on a single test case can be represented by the average or mean performance over

multiple applications of the HM on this test case. Table 2.2 summarizes all performance

values for the two HMs.

Based on Table 2.2, we observe that there are a large number of performance values in

comparing two HMs. Since we are mainly interested in the relative performance of one HM

over another on each test case, we can transform each performance value for the baseline

HM, HMB, into a �x constant, BL. This BL value is dependent only on the choice of the
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Table 2.2: Raw performance values of two HMs: HMB (the baseline HM) and HMX .

Performance Test Case
Measure t1 t2 � � � tk�1 tk

HMB

J1 P
(1)
B;1 P

(1)
B;2 � � � P

(1)
B;k�1 P

(1)
B;k

J2 P
(2)
B;1 P

(2)
B;2 � � � P

(2)
B;k�1 P

(2)
B;k

...
...

...
...

...

Jn�1 P
(n�1)
B;1 P

(n�1)
B;2 � � � P

(n�1)
B;k�1 P

(n�1)
B;k

Jn P
(n)
B;1 P

(n)
B;2 � � � P

(n)
B;k�1 P

(n)
B;k

HMX

J1 P
(1)
X;1 P

(1)
X;2 � � � P

(1)
X;k�1 P

(1)
X;k

J2 P
(2)
X;1 P

(2)
X;2 � � � P

(2)
X;k�1 P

(2)
X;k

...
...

...
...

...

Jn�1 P
(n�1)
X;1 P

(n�1)
X;2 � � � P

(n�1)
X;k�1 P

(n�1)
X;k

Jn P
(n)
X;1 P

(n)
X;2 � � � P

(n)
X;k�1 P

(n)
X;k

transformation method and is independent of the choice of the baseline HM. The result of the

same transformation on the performance value of the other HM, HMX can be denoted by

S
(i)
X;j for objective measure Ji and test case tj (i.e., corresponding to P

(i)
X;j). This transforma-

tion is known as normalization and will be discussed in more detail in Section 2.2. Table 2.3

shows a summary of all performance values after normalization. Note that normalization not

only provides information about the relative performance of the two HMs but also reduces

the number of performance values by a factor of two.

Based on the notations we have presented above, there are many ways to interpret the

stated objective. In our research, we have further assumed that the objective is to maximize

the average performance (or population mean) across the problem domain. This assumption

implies that the magnitude of the performance for each test case is important in evalu-

ating the performance of an HM. A major reason for choosing this assumption is that it

is commonly used in evaluating HMs and problem solvers. Another advantage of this as-

sumption is that the average metric has some nice properties that can be exploited in the

performance-evaluation process.
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Table 2.3: Normalized performance values for HMB, the baseline HM, and HMX , the HM
to be compared against the baseline HM.

Performance Test Case
Measure t1 t2 � � � tk�1 tk

HMB

J1 BL � � � BL

J2
...

...
...

Jn�1
Jn BL � � � BL

HMX

J1 S
(1)
X;1 S

(1)
X;2 � � � S

(1)
X;k�1 S

(1)
X;k

J2 S
(2)
X;1 S

(2)
X;2 � � � S

(2)
X;k�1 S

(2)
X;k

...
...

...
...

...

Jn�1 S
(n�1)
X;1 S

(n�1)
X;2 � � � S

(n�1)
X;k�1 S

(n�1)
X;k

Jn S
(n)
X;1 S

(n)
X;2 � � � S

(n)
X;k�1 S

(n)
X;k

Each of the interesting properties of the average metric [44, 45] is dependent on the

normalized performance values satisfying certain conditions. The �rst major property of the

average metric is that the true average can be statistically predicted based on incomplete

information when certain conditions are met. More details about this important property

will be shown later in Section 2.4.2. The second property is that the average performance

(or population mean) for performance measure Ji can approximate the median value for Ji

when normalized performance values of each HM are symmetric [44,46,47].

The median value [44, 45] for a set of numbers is the value in which half of the numbers

in the set are below it and the other half of numbers are above it. Since the median value

of HMB is �xed at BL, the median value of HMX can indicate which HM has better

normalized performance values more often. If the median of S
(i)
X;j over all test cases tj is

greater than BL, then HMX has better performance than HMB (BL) for measure Ji in

more than 50% of the test cases. This median value leads to a way to compare two HMs in

which the magnitude of the di�erence between their performance on a given test case is not

important and only the relative ordering of the performance of each test case is important.
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Using the average performance to compare HMs, the ordering of two HMs can be deter-

mined for one objective measure. With multiple objective measures, however, there can be

cases where the ordering of the two HMs cannot be determined. Let �S(b)
a represent the aver-

age of performance values from performance measure Jb for HM a over k test cases. HMX

is considered better when �S
(i)
X > BL for all measures Ji, 1 � i � n. HMX is considered

worse when �S
(i)
X < BL for all measures Ji. In all other cases, the ordering between the HMs

cannot be determined.

In summary, under the following assumptions:

� all test cases are equally important,

� relative performance in the form of normalized performance measure is used, and

� the average metric is the criteria for comparing performance,

our objective in performance evaluation of a pair of HMs can be interpreted as follows.

The better HM is the one that has better average normalized performance over the problem

domain for every objective performance measure. The ordering of the two HMs cannot be

determined when each HM is better than the other over a subset of performance measures.

2.1.3 Performance-evaluation issues and strategy

Based on the performance-evaluation objective presented in the previous subsection, there

are two key issues that must be addressed in the performance-evaluation process [36,48]:

1. Multiple objective performance measures that are inconsistent with each other (leading

to indeterminate ordering of HMs), and

2. Variation in performance values across di�erent test cases or even on one test case (due

to uncertainty in the problem solver). This variation can lead to many (and possibly

in�nite) performance values for each HM to be collected.

To address these two key issues, we have developed a systematic, step-by-step strat-

egy for performance evaluation. In the remaining sections of this chapter, we present and
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discuss each of the steps in our performance-evaluation process. In summary, the overall

performance-evaluation strategy is as follows:

1. We �rst normalize the performance values in order to (a) eliminate dependence on ab-

solute values in a test case and (b) simplify the process of determining relative ordering

of performance values for each test case. In Section 2.2, we de�ne this normalization

process, discuss some important properties of normalization, and present several nor-

malization methods.

2. To deal with multiple performance objectives, we propose in Section 2.3 a strategy

that either constrains all objectives or all but one objective.

3. To deal with in�nitely many or a large number of performance values, we use the

sample-mean value to predict the true performance of each HM over the entire problem

domain based on a subset of performance values. Note that performance results based

on statistical estimation [47] generally require all performance values to be independent

and identically distributed (IID) [47]. In particular, statistical methods must be applied

to test this property. These issues are discussed in Section 2.4.

4. If the normalized performance values of an HM are not IID over the problem do-

main, we must partition the domain into subsets which we call problem subdomains.

In Section 2.5 we de�ne this concept and discuss the implications of such partition-

ing. Speci�cally, the procedure involves performance evaluation within a subdomain

(Section 2.5.2) and performance evaluation across subdomains (Section 2.5.3).

5. Since we may not be able to evaluate each HM on all test cases, we must validate

the performance of HMs tested. The results of these validations can either con�rm

or reject conclusions reached in the performance-evaluation process. For instance,

performance of HMs on subdomains that are not used in the evaluation process must

be examined to see if consistent conclusions can be reached (Section 2.6.1). Second,

a more thorough examination of trade-o�s among multiple-objective measures can be

depicted graphically (Section 2.6.2).
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Figure 2.1 summarizes and relates these steps together.

The performance-evaluation process studied in this chapter is a special case of the more

general problem of selecting a single HM from a �xed set of HMs. The necessary extensions

of the steps presented above to the general case with more than two HMs are presented in

Section 3.6.4 and Chapter 5.

2.2 Normalization

In this section, we explore issues of normalization in transforming performance values in

order to compare the performance of di�erent HMs on each test case. First, we de�ne nor-

malization along with some examples of the process. Second, we explore several interesting

characteristics of possible normalization methods. Finally, we present several symmetric-

normalization methods that are useful in the evaluation process. In this section, we use the

notations de�ned in Section 2.1.2 as well as some additional notations.

2.2.1 De�nition and examples

Normalization of raw performance measures involves choosing a baseline HM (HMB)

and a test case and using the performance of the baseline HM as a reference point. The value

resulting from normalizing a raw performance measure is called a normalized performance

measure. The normalized performance S
(i)
a;j for HMa and objective measure Ji on test case

tj is a function of the raw performance of both HMB and HM a on the same test case and

objective measure. In other words, S
(i)
a;j = f(P

(i)
a;j ; P

(i)
B;j).

The simplest and most common normalization method on an objective measure is to �nd

the ratio between the baseline performance and the raw performance. In this thesis, we refer

to this normalization method as the improvement ratio. Using the notations in Section 2.1.2,

we de�ne S
+(i)
a;j , the improvement ratio of HM a for objective measure Ji (to be maximized)
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Figure 2.1: The process of performance evaluation of two HMs.
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on test case tj, as follows:

S
+(i)
a;j =

P
(i)
a;j

P
(i)
B;j

; (2.1)

where P
(i)
a;j is the corresponding raw performance measure for HMa, andHMB is the baseline

HM. When the goal is to minimize P
(i)
a;j (such as cost or time), then the improvement ratio

S
+(i)
a;j is de�ned as P

(i)
B;j=P

(i)
a;j , which is sometimes known as the speedup measure. BL, the

normalized baseline value, is always one in this normalization method regardless of the choice

of the baseline HM.

This normalization process produces two main results.

(1) Since the normalized baseline performance of each test case is designed to be a �xed

value, BL, it is easier to compare the performance of two HMs on a test case using a

normalized performance measure. For a given objective measure and a test case, HMX is

better than HMB when the normalized performance measure of HMX is better than BL.

The exact value of BL is dependent on the choice of the normalization method (BL is one

for the improvement-ratio method).

(2) Normalization reduces the di�erence in magnitude of raw performance measures. It

may lead to less variation in the normalized measures. (See Examples 2.1 and 2.2 later in

this section.)

We would like to point out that normalization is appropriate in dealing with one objective

measure at a time. Since the performance values from di�erent objective measures have

di�erent meaning, it is necessary to normalize each of these measures independently. When

there are multiple measures, each of them should be normalized separately using the same

baseline HM. (See Table 2.3 and Example 2.7 for some examples.) This also means that each

objective measure should be normalized with respect to the same measure (on the same test

case) of the baseline HM.

Another point is that normalization has to be slightly modi�ed to deal with randomness

within a problem solver; i.e., each HM can have di�erent performance values even for the

same test case. In this case, the performance of an HM on a test case can be represented
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Table 2.4: Variations in performance values of two HMs in generating test patterns to test
sequential VLSI circuits using CRIS [15] as the problem solver. The variations

are due to di�erent circuits and randomness of the problem solver.

Circuit

ID

Fault Coverages (%)

HM Random Seeds used in HM
Max. Avg.

61801 98052 15213 55414

s298
101 78.2 74.7 79.9 81.8 81.8 78.7
535 83.4 84.1 83.4 82.8 84.1 83.4

s444
101 60.3 13.9 11.2 60.5 60.5 36.5

535 81.9 86.3 86.3 83.3 86.3 84.5

s1196
101 93.2 94.4 94.9 92.1 94.9 93.7
535 93.2 92.5 93.6 92.4 93.6 92.9

by the average of a measure over di�erent applications of the HM on the test case, which is

demonstrated in the following example.

Example 2.1 [CRIS] Table 2.4 shows the fault coverages of two HMs in generating test

patterns to test sequential VLSI circuits [15, 36]. Each HM is evaluated four times using

di�erent random seeds on three di�erent circuits. The table shows that there are distinct

di�erences in performance values for di�erent circuits. The randomness in the problem

solver produces variations in performance values that seem to belong to a common statistical

distribution.

Using performance data in Table 2.4, Table 2.5 shows the normalized fault coverages using

HM 535 as the baseline HM. Each raw performance value is normalized using the improvement

ratio with the average performance ofHM535 on the same circuit as the baseline performance.

In this case, normalization simply changes the magnitude of performance for each cir-

cuit and does not a�ect di�erences in performance between the two HMs or variations in

performance for the same circuit. However, normalization makes it easier to determine that

HM 535 is better for circuits s444 and s298 but slightly worse than HM 101 for circuit s1196.

45



Table 2.5: Normalized fault coverages for CRIS [15] (normalized using the improvement
ratio with respect to the average performance of HM535 on a circuit).

Circuit

ID

Normalized Fault Coverages
HM Random Seeds used in HM

Max. Avg.
61801 98052 15213 55414

s298
101 0.94 0.90 0.96 0.98 0.98 0.94

535 1.00 1.01 1.00 0.99 1.01 1.00

s444
101 0.71 0.16 0.13 0.72 0.72 0.43

535 0.97 1.02 1.02 0.99 1.02 1.00

s1196
101 1.00 1.02 1.02 0.99 1.02 1.01

535 1.00 1.00 1.01 0.99 1.01 1.00

Example 2.2 [VC] The second example is based on applying a branch-and-bound (B&B)

search [49,50] to solve a vertex-cover (VC) problem [17]. The undirected graph representing

each problem instance of VC is characterized by

(1) the number of vertices in the graph (problem size),

(2) the degree of connectivity (DC) that measures the probability that an edge

exists between two vertices, and

(3) the random seed used in generating a test case.

In this example, we group all test cases with the same problem size and the same DC but

with di�erent random seeds together. Figure 2.2 shows the scatter plots of two HMs that

relate the number of nodes expanded with respect to DC and problem size. There are six

groups of results based on two di�erent DCs, three di�erent problem sizes, and 30 di�erent

random seeds in each group.

From this �gure, we observe that any changes in DC or problem size will lead to a large

variation in the number of nodes expanded. Moreover, variations in the random seed upon

which the test case is generated can lead to large (as high as two orders of magnitude)

di�erences in the number of nodes expanded.
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Figure 2.2: Variations in raw performance values in applying a B&B search to solve di�erent
instances of the vertex-cover problem. (In this example, performance values are
not normalized.)
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Figure 2.3: Normalized performance of HM 271 in applying a B&B search to solve di�erent
instances of the vertex-cover problem (HM1 is the baseline HM).

Using the performance data above, Figure 2.3 shows a scatter plot of the normalized

performance for HM271 when HM 1 (the HM used in the existing VC application) is used as

the baseline HM.

HM271 has fairly similar performance behavior for the same DC but with di�erent prob-

lem sizes and random seeds. There are more variations among di�erent problem sizes when

DC = 0.1 due to some extreme values (outliers). However, there are signi�cant di�erences

between performance behavior for di�erent DCs. This example shows that normalization

can eliminate or reduce variations in performance with respect to two problem character-

istics (problem size and random seed) but cannot deal with variations with respect to one

characteristic (DC).

Based on this �gure, we can also conclude that HM 271 performs better than HM 1 for

most test cases with DC = 0.1. Both HMs seem to perform similarly for test cases with DC =

0.5. Note that it would be di�cult to determine this information from the raw performance

values in Figure 2.2.
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2.2.2 Characteristics of normalization methods

Using the normalization process de�ned in the last subsection, we can now explore al-

ternative normalization methods. The improvement ratio de�ned earlier is just one of many

possible normalization methods. In this section, we examine the similarities and di�erences

among various normalization methods. Better understanding of these characteristics can

help select appropriate normalization methods under various situations.

First, we have made some assumptions about the normalization methods under con-

sideration based on the following notations: P
(i)
a;j and S

(i)
a;j represent, respectively, the raw

and normalized performance measures of measure Ji for HM a on test case tj, and HMB

represents the baseline HM.

� Normalized performance S
(i)
a;j is a function of only the raw performance values P

(i)
a;j and

P
(i)
B;j and does not contain any constant values. Hence, it eliminates methods such as

S
(i)
a;j = (P

(i)
a;j � 300)=(P

(i)
B;j � 300) from consideration.

� For a given test case tj and measure Ji, the HM that has the better raw performance

value will have a larger normalized performance value. For example, if P
(i)
a;j is better

than P
(i)
B;j, then S

(i)
a;j > BL(= S

(i)
B;j). In other words, the objective is always to maximize

the normalized performance.

These assumptions are made to eliminate simple variations of the same normalization method

from consideration.

Based on these assumptions, the ordering of normalized performance values of two HMs

on a given test case and a given measure will be identical regardless of the choice of the nor-

malization method. Consequently, the orderings of the medians of normalized performance

values obtained using di�erent normalization methods are always consistent since these or-

derings are dependent only on the number of times that each HM is better. Moreover, the

choice of a normalization method only impacts the magnitude of the normalized performance

values.
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Figure 2.4: Comparison of normalization results based on two di�erent normalization meth-
ods for four pairs of HMs (VC problem) with HM 1 as the baseline HM.

We demonstrate the e�ects of di�erent normalization methods in the following example.

Example 2.3 In this example, we attempt to compare four di�erent HMs (HM 107, HM 129,

HM 130, and HM 188) against the same baseline HM, HM 1, with two di�erent normalization

methods (called Method A and Method B in this example). These HMs are for solving VC

problems using a B&B search similar to the ones in Example 2.2. Each HM is compared

against HM1 over the same set of 15 test cases.

In Figure 2.4, we show the results of the two di�erent normalization methods for compar-

ing these four HMs against HM 1. This �gure shows that the ordering of the mean (average)

values (when compare with BL, performance of HM 1 ) for HM107 and HM 130 are di�er-

ent under di�erent normalization methods. In both cases, HM1 is considered better under

Method B but worse under Method A. This result is mostly due to di�erent emphasis on ex-

tremely bad performance values by di�erent normalization methods. However, the ordering

of the median values are consistent for all HMs.
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From Example 2.3, we can observe that the average of normalized performance values

can have di�erent orderings since di�erent normalization methods have di�erent e�ects on

the magnitude of normalized performance values. This anomaly is known as performance

anomalies due to di�erent normalization methods [36, 48, 51]. In fact, certain normalization

methods can order a pair of HMs di�erently depending on the HM chosen as the baseline.

This anomaly is known as anomalies due to the baseline HM [36, 48, 51]. Consider the

following example.

Example 2.4 Suppose the improvement ratios of HM 1 over (baseline) HM 2 on two test

cases are 10 and 0.1, respectively. Then the average improvement ratio is 5.05, which is

better than the baseline level of 1, and HM 1 is considered better than HM2

When HM 1 is used as the baseline, HM2 also has improvement ratios of 0.1 and 10,

respectively, for these two test cases. Consequently, the average improvement ratio is also

5.05, and HM 2 is considered better than HM 1.

In short, the ordering of two HMs is dependent on the choice of the baseline HM when

we evaluate these HMs using improvement ratios.

We now explore some conditions for selecting normalization methods that would lead to

a more consistent ordering of the average normalized performance values. We have identi�ed

two conditions that �t under this criteria.

Condition (A): The ordering of two HMs (HM 1 and HM 2) based on the average nor-

malized measure is independent of the choice of the baseline HM.

In other words, if HM 1 is considered better than HM 2 for measure Ji when HM2 is the

baseline HM, then HM1 is also better than HM 2 when HM1 is the baseline HM instead.

Normalization methods that satisfy this condition will not have anomalies with respect to

the choice of the baseline HM.
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Certain normalization methods can violate this condition if they overemphasize or de-

emphasize certain ranges of relative performance. For instance, the conventional improve-

ment-ratio (speedup) measure from Example 2.4 is biased against degradation over the base-

line HM (as degradations are in the range between 0 and 1, whereas improvements are in

the range between 1 and in�nity).

Based on our study, we have found a su�cient condition for a normalization method to

satisfy Condition (A). This condition is named the symmetric-normalization condition and

can be stated as follows:

Symmetric-Normalization Condition: When raw performance values of HM 1 and HM 2

on test case ta are a reversal of their values on another test case tb (i.e., P
(i)
1;a = P

(i)
2;b and

P
(i)
2;a = P

(i)
1;b ), the normalized performance values for test case ta are related to the normalized

performance values for test case tb as follows:

S
(i)
1;a = 2 �BL� S

(i)
1;b ;

S
(i)
2;a = 2 �BL� S

(i)
2;b ; (2.2)

regardless of the choice of the baseline HM. When HM2 is the baseline HM, the second

equation is equivalent to BL = 2 �BL�BL = BL.

Next, we must prove that the symmetric condition is su�cient for a normalization method

to satisfy Condition (A).

Proof. Let S1
(i)
2;j denote the normalized performance value S

(i)
2;j when HM 1 is the baseline

HM. Similarly, let S2
(i)
1;j be the normalized performance value S

(i)
1;j when HM 2 is the baseline

HM.

The �rst step is to note that when P
(i)
1;a = P

(i)
2;b and P

(i)
2;a = P

(i)
1;b , we have the following

equations based on the de�nition of our normalization process:

S1
(i)
2;b = S2

(i)
1;a ;

S1
(i)
2;a = S2

(i)
1;b : (2.3)
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Using Eqs. (2.2) and (2.3), we can conclude that

S1
(i)
2;a = 2 �BL� S1

(i)
2;b = 2 �BL� S2

(i)
1;a : (2.4)

This equation can be applied to any test case. Note that S2
(i)
2;j = BL = S1

(i)
1;j = 2�BL�S1(i)1;j.

We can then compute S1
(i)
2 and S2

(i)
1 , the average of normalized performance values for

HM 2 with HM 1 as the baseline and for HM1 with HM 1 as the baseline, respectively:

S1
(i)
2 =

1

N

NX
j=1

S1
(i)
2;j ;

S2
(i)
1 =

1

N

NX
j=1

S2
(i)
1;j ; (2.5)

where N is the number of test cases. We can then use Eq. (2.4) to simplify the above

equation:

S1
(i)
2 =

1

N

NX
j=1

�
2 �BL� S2

(i)
1;j

�

= 2 �BL� 1

N

NX
j=1

S2
(i)
1;j

= 2 �BL� S2
(i)
1 : (2.6)

Hence, if S1
(i)
2 � BL = S1

(i)
1 , then S2

(i)
1 � 2�BL�BL = BL = S2

(i)
2 . In this case, HM 2

is considered better regardless of the choice of the baseline HM. Similarly, if S1
(i)
2 � BL,

then S2
(i)
1 � BL.

Based on these steps, we can conclude that if a normalization method satis�es the symme-

tric-normalization condition, then Condition (A) will be reached.

One consequence of this symmetric-normalization condition is that the range of normal-

ized values that shows improvement over the baseline HM is the same size as the range of

normalized values that shows degradation from the baseline HM. Normalization methods

that satisfy this condition are de�ned as symmetric-normalization methods.
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An existing normalization method that satis�es the symmetric-normalization condition

is EWN (Equal Weight Normalization) [25]. This method normalizes all performance values

between 0 and 1 with the performance of the baseline HM at 0.5. It computes the normalized

performance S
EWN(i)
a;j for objective measure Ji of HMa on test case tj using the following

equation (assuming that the objective is to maximize P
(i)
a;j ):

S
EWN(i)
a;j =

P
(i)
a;j

P
(i)
a;j + P

(i)
B;j

; (2.7)

where HMB is the baseline HM.

Example 2.5 Using the data in Example 2.4, the EWN of HM 1 with HM 2 as the baseline

HM for the two test cases is 0.909 and 0.091, respectively. The average EWN is 0.5 which is

the same as BL. Hence, both HMs are considered equivalent. The same result is achieved

when HM 1 is used as the baseline HM.

Condition (B): The averages of normalized performance values of two given HMs (HM 1

and HM 2) are approximately the same as their median values.

We have already shown earlier in this section that orderings of HMs based on the medians

of normalized performance values are always consistent. Consequently, when this condition

is satis�ed, the orderings of HMs based on the average normalized performance values would

also be consistent and be identical to the ordering based on the medians. This condition

would eliminate anomalies due to the choice of normalization method.

We have previously stated in Section 2.1.2 that the average metric can be used to estimate

the median metric when normalized performance values are symmetric. So, for a given

measure Ji and using HM 2 as the baseline HM, a su�cient condition for Condition (B)

would be for the distribution of normalized performance values of HM 1 to be symmetric.

One simple measure indicating whether a set of data is symmetric is the skewness [52]

of the distribution ( = E([X � �]3)=�3). This value is 0 when the data set is symmetric.

Other more sophisticated tests for the symmetric condition of each data set also exist [53].
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From Figure 2.4 in Example 2.3, we can see that the results of Method A are much closer

to being symmetric than those of Method B. The normalized performance using Method A

is still not truly symmetric, as the absolute value of its skewness varies from 0.96 to 1.58

(still smaller than for Method B which is above 2 in most cases). In this case, the mean

values for Method A are also much closer to the median values than those of Method B.

This condition is much harder to satisfy than the symmetric-normalization condition. It

is dependent not only on the normalization method but also on the raw performance values

of HM1 and HM2. It should be noted that normalization methods that satisfy Condition

(A) will more likely satisfy Condition (B).

In the next subsection, we present several examples of symmetric-normalization methods

and discuss their di�erences. One of these symmetric-normalization methods should be

applied when Condition (A) and/or Condition (B) are desired.

2.2.3 Symmetric-normalization methods

In the previous subsection, we have de�ned normalization methods that can satisfy the

symmetric-normalization condition as symmetric-normalization methods. In this subsection,

we present several symmetric-normalization methods. To simplify understanding, we de-

scribe all of these methods in terms of the improvement-ratio measure, S+ (called speedup

in the special case). This description is possible because all of these methods are simply

monotone transformations of the improvement-ratio measure.

Symmetric improvement [36,48,54] is the normalization method we have developed specif-

ically to satisfy the symmetric-normalization condition. We have chosen to use this normal-

ization method as the �rst and most detailed example of a symmetric-normalization method.

We want the symmetric-improvement measure to treat the improvement of HM1 over HM 2

in exactly the same way as the improvement of HM 2 over HM 1, regardless of the choice of

the baseline HM. The improvement ratio, S+, treats these two ranges of relative performance

di�erently with more focus on improvement of the non-baseline HM over the baseline HM.
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We de�ne the symmetric-improvement measure, Ssym+, as follows:

Ssym+ =

8>>><
>>>:

S+ � 1 if S+ � 1

1 � 1

S+
if 0 � S+ < 1 ;

(2.8)

where S+ is the improvement ratio of the new HM with respect to the original baseline HM.

Note that we assume that the choice of the baseline HM is the same for all normalization

methods discussed in this section.

Equation (2.8) dictates that improvements and degradations carry the same weight: im-

provements are in the range from zero to in�nity, and degradations are in the range from

zero to negative in�nity. The baseline level BL is 0 for this normalization method.

Next, we need to illustrate that this symmetric-improvementmeasure satis�es the symme-

tric-normalization condition. First, we assume that the raw performance values of HM1 and

HM 2 on test cases ta and tb are exchanged, i.e., P
(i)
1;a = P

(i)
2;b and P

(i)
2;a = P

(i)
1;b . Next, without

loss of generality, we assume that HM 2 is the baseline HM.

Based on the de�nition of improvement ratio in Eq. (2.1),

S
+(i)
1;b =

1

S
+(i)
1;a

: (2.9)

Note that the improvement ratio does not satisfy Eq. (2.2).

Now there are three possible cases for the value of S
+(i)
1;a : greater than 1, less than 1,

or equal to 1 (= BL). We now consider the symmetric-improvement values under each of

these cases. Since BL is 0, we want S
sym+(i)
1;b = �Ssym+(i)

1;a in order to satisfy the symmetric-

normalization condition (Eq. (2.2)).

(1) S
+(i)
1;a > 1, which means that S

+(i)
1;b < 1 based on Eq. (2.9). In this case, S

sym+(i)
1;b =

1 � 1=S
+(i)
1;b . We can compute S

sym+(i)
1;a as follows:

S
sym+(i)
1;a = S

+(i)
1;a � 1 =

1

S
+(i)
1;b

� 1 = (1� S
sym+(i)
1;b )� 1 = �Ssym+(i)

1;b : (2.10)
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(2) S
+(i)
1;a < 1, which means that S

+(i)
1;b > 1. In this case, S

sym+(i)
1;b = S

+(i)
1;b � 1. We can

compute S
sym+(i)
1;a as follows:

S
sym+(i)
1;a = 1 � 1

S
+(i)
1;a

j = 1 � S
+(i)
1;b = 1� (S

sym+(i)
1;b + 1) = �Ssym+(i)

1;b : (2.11)

(3) S
+(i)
1;a = 1 = S

+(i)
1;b = BL. In this case, S

sym+(i)
1;a = S

sym+(i)
1;b = BL = 0.

We can see that the symmetric-normalization condition is satis�ed by the symmetric-

improvement measure for all possible cases of S
+(i)
1;a value. So this normalization method is

a symmetric-normalization method. Consequently, it eliminates the anomalous condition in

which the choice of the better HM can be dependent on the choice of the baseline HM.

As an example, the average symmetric improvement is zero (= BL) for the performance

data in Example 2.4 regardless of the choice of the baseline HM, thereby avoiding the anomaly

in which the average improvement ratio of both HMs is greater than BL, independent of the

choice of the baseline HM.

To illustrate the di�erence between improvement ratios and symmetric improvements,

we show in Figure 2.5 the distributions of speedups (improvement ratios) as well as symmet-

ric speedups (symmetric improvements) of an HM to solve the vertex-cover problem with

di�erent DCs. From this �gure, we observe that the contours for speedups are bunched

closer to the baseline value (i.e., 1 for speedups and 0 for symmetric speedups) than the con-

tours of the symmetric speedups, which represents the compression of ranges by the speedup

measure.

After exploring the symmetric-improvement method, we now proceed to present some

other symmetric-normalization methods. For these methods (including the symmetric-

improvement method), we mainly examine their characteristics, with special focus on the

di�erences between various symmetric-normalization methods.

� Symmetric improvement (Ssym+). As previously stated, the range of improvement is

from 0 to in�nity, and the range of degradation is from 0 to negative in�nity. BL is 0

for this normalization method.
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Figure 2.5: Contour plots showing the distribution of normalized performance values of one
HM on 15 test cases for solving the vertex-cover problem (using speedups and

symmetric speedups).
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When S+ > 1 (the new HM has better performance than the baseline HM), symmetric

improvement, Ssym+, has exactly the same behavior as improvement ratio S+ (except

shifted down by 1 in each value). When S+ < 1 (the new HM has worse performance

than the baseline HM), this method simply creates a symmetric range of degrada-

tions. The magnitude of this degradation is exactly the same as the magnitude of the

improvement if the performance values of the two HMs on that test case are reversed.

� Delta improvement where S� = S+ � 1=S+. The range of improvements is from 0

to in�nity, whereas the range of degradations is from 0 to negative in�nity. BL (the

performance of the baseline HM) in this case is always 0.

Delta improvement, S�, is similar to symmetric improvement except that there is a

slight expansion in regions where performance of the new HM is similar to performance

of the baseline HM (S+ close to 1).

� Log-improvement where Slog+ = log(S+). The range of improvements is from 0 to

in�nity, whereas the range of degradations is from 0 to negative in�nity. BL in this

case is always 0.

Log-improvement, Slog+, puts less weight (i.e., compress) on extreme values (for both

improvements and degradations). It is similar to symmetric improvement when S+ is

close to 1.

� EWN where SEWN = S+=(S+ + 1) (see also Eq. (2.7)). The range of improvements is

from 0 to 0.5, whereas the range of degradations is from 0.5 to 1. BL in this case is

always 0.5.

EWN, SEWN , compresses the entire range of possible performance values to be between

0 and 1.

The di�erence between various symmetric-normalization methods is in the compression

or decompression of di�erent regions of improvements and degradations. This di�erence is

illustrated by plotting the corresponding values of di�erent symmetric-normalization meth-

ods discussed above with respect to each possible value of symmetric-improvement measure

shown in Figure 2.6.
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Figure 2.6: Plots of symmetric-improvement (Ssym+) values using di�erent symmetric-
normalization methods.

From this �gure, we also observe that these symmetric-normalization methods and the

improvement-ratio method are related through some monotone transformations. When two

normalized values of one normalization method (say S+) are ordered in a certain way (say

S
+(i)
a;j > S

+(i)
b;k ), then the corresponding normalized values of the other normalization methods

(such as Ssym+) will have identical ordering (S
sym+(i)
a;j > S

sym+(i)
b;k ).

These symmetric-normalization methods can di�er only in the ordering of the average

performance while maintaining the same ordering of performance on individual test cases.

The choice of the proper symmetric-normalization method depends on user requirements and

weights that users want to put on di�erent ranges of performance. For example, if each HM

can have performance values that vary widely, compressing extreme values may be desirable.

An example method in this case is the log-improvement measure, Slog+.
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2.3 Performance Evaluation with Multiple Objectives

In designing new HMs, the performance of an HMmay be evaluated bymultiple objectives

(such as quality and cost). Of course, we would like to �nd HMs with improved quality and

reduced cost. In an ideal case, the better HM (among the two HMs) would have better

average normalized performance for every objective performance measure. However, this

may not always be possible, as improved quality is often associated with increased cost. In

general, one HM may be better than another on a few measures but worse on others.

In this section, we study some approaches to cope with the case when one HM is better

than the baseline on a subset of the objectives, but worse on others. This problem is generally

known as a multi-objective optimization problem [55]. The most obvious approach is to let

users simply choose subjectively the HM that suits them better based on all performance

information available. However, we are interested in developing a systematic approach to

identify trade-o�s among HMs before presenting these trade-o�s to users. In addition, we

like to extend the approach to the general case with more than two HMs.

There are two possible methods for resolving potential conicts when two HMs are ordered

di�erently based on di�erent objective measures.

Using Single Parametric Function. This approach optimizes a single parametric function

of all objective measures. Di�erent trade-o�s among the objectives are obtained by ad-

justing tunable parameters of the parametric function. This is the approach we have used

originally [42, 43]. Our experiences have shown that anomalies may happen with this ap-

proach [51].

� The performance of an HM (as de�ned by the parametric objective function) may

change drastically when minor changes are made on the parameters of the objective

function.

In fact, it is possible to show that one HM is better than another by �nding a new

parametric objective function of performance measures.

� It is di�cult to translate a desirable level of trade-o� into a corresponding set of

parameters for the parametric objective function. We have seen similar di�culties in
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Table 2.6: Inconsistent performance of PGA HMs with respect to multiple objective perfor-
mance measures. (E[cnormB;j ] = BLc = 0:5 and E[qnormB;j ] = BLq = 2:0.)

Quality Test Case j
Average

Measure 1 2 3 4

tB;j 1399.45 1426.59 1452.65 1343.02 1405.43

cB;j 30.41 51.12 11.90 56.21 37.41

t1;j 1489.26 1402.56 1415.82 1534.30 1460.48

c1;j 9.21 8.41 12.98 2.03 8.16

qnorm1;j 1.94 2.02 2.03 1.88 1.96

cnorm1;j 0.77 0.86 0.48 0.97 0.77

the goal attainment method [55] to determine a good combination of parameters so

that the HM with the best trade-o�s can be found.

In general, given raw performance of several HMs, it is usually di�cult to predict which

HM will have the highest performance under a parametric performance function.

These di�culties have been observed when one attempts to use a single parametric func-

tion with adjustable parameters to evaluate the performance of HMs for a process placement

application [42]. The following example illustrates these di�culties.

Example 2.6 [PGA] To demonstrate multi-objective optimization, we have chosen to use

post-game analysis (PGA) [18,39] (see Section 1.5) as a running example. PGA use HMs to

map a collection of communicating processes on a network of computers. The objectives of

each PGA HM are (i) to minimize the time for �nding a mapping and (ii) to minimize the

completion time of the mapping found.

For PGA HMs in Table 2.6, the cost ci;j is the time taken to �nd a mapping for test

case j using HM i, and ti;j is the corresponding completion time of the mapping found. The

quality measure for test case j using HM i, qi;j, is the reciprocal of ti;j. These performance
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measures have been normalized as follows:

cnormi;j =
cB;j

ci;j + cB;j
;

qnormi;j =
ti;j + tB;j

ti;j
; (2.12)

where HMB is the original baseline HM for PGA [39]. These normalization equations are

related to the EWN method presented in Section 2.2.2 (cnormi;j = S
EWN(c)
i;j and qnormi;j = 1=(1�

S
EWN(t)
i;j )). Based on the above de�nitions, E[cnormB;j ] = BLc = 0:5 and E[qnormB;j ] = BLq = 2:0.

Ideally, we want the HM selected to have high E[cnormi;j ] and high E[qnormi;j ]. In this

example, however, HMB has higher E[qnormi;j ] (E[qnormB;j ] = 2:0 > 1:96 = E[qnorm1;j ]), but HM 1

has higher E[cnormi;j ] (E[cnorm1;j ] = 0:77 as compared to E[cnormB;j ] of 0.5). Hence, we cannot �nd

an HM that is better on all objective criterias, and some trade-o�s between the two objective

measures must be made.

We have previously [42] de�ned a family of parametric functions with an adjustable

parameter Tscale as follows:

Qi;j(Tscale) =
qnormi;j

0:5 + (0:5� cnormi;j )=Tscale
: (2.13)

From Eq. (2.13) and the data in Table 2.6, suppose we want HM 1 to have the best

performance. It is di�cult to predict Tscale that will lead to this conclusion. Only by

experimenting with various Tscale values (as shown in Table 2.7) can we �nd the proper Tscale

(between 0 and 29 in this case). Table 2.7 also indicates that changing Tscale from 29 to 30

changes the ordering betweenHM 1 and HMB. This fact cannot be predicted ahead of time.

Transformation of Objectives into Constraints. [36,48] To avoid inconsistencies in order-

ing HMs due to multiple objectives, we must evaluate the two HMs based on each individual

performance measure and not combine these measures into a single parametric function [51].

This new approach applies constraints on all but one or on all objective measures and chooses
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Table 2.7: Average performance of two PGA HMs (from Table 2.6) based on a single para-
metric performance function (from Eq. (2.13)) under di�erent values of adjustable

parameter Tscale.

Tscale
Average Qi;j(Tscale)
HM1 HMB

10 4.154 4.000

25 4.015 4.000

29 4.002 4.000

30 3.999 4.000

45 3.976 4.000

50 3.971 4.000

one objective to optimize (usually the remaining unconstrained objective). In this case, the

better HM is the one that satis�es all constraints and has the best objective value in the

measure to be optimized.

First, all but one or all objective measures should be constrained. Based on the as-

sumptions in Section 2.2.2, we know that the objective is to maximize each normalized

performance measure. For each constrained measure, the original objective of maximizing

the average normalized performance measure can be transformed by putting a constraint on

the average normalized performance measure instead. Each constraint level should reect

the (user selected) desirable performance level for that measure. The goal is then to op-

timize a single objective measure. When all but one measure are constrained (leaving one

unconstrained measure), then the optimization objective is the single unconstrained measure.

An HM is considered unacceptable when one of its performance constraints is violated [36,

48]. If only one HM remains, then that HM is the better HM. If both HMs remain, then

the HM with the best optimization objective is the better HM. If both HMs violate the

constraints, then neither HM is acceptable. Based on this decision process, there can still be

cases where the two HMs cannot be ordered. However, such cases should be less frequent as

compared to the case of optimizing all the objective measures simultaneously. Notice that

this method preserves the correct ordering when one HM is better for all objective measures.
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Table 2.8: Examples in applying di�erent constraints (on E[cnormi;j ] and E[qnormi;j ]) on a multi-

objective problem (PGA) using performance data from Table 2.6. (BLc = 0:5 =
E[cnormB;j ], BLq = 2:0 = E[qnormB;j ], �c and �q denote elimination due to constraints

on E[cnormi;j ] and E[qnormi;j ], respectively, and
p

denotes an acceptable HM.) The

optimization objective is E[qnormi;j ].

Case Constraint Level HM

ID E[cnormi;j ] E[qnormi;j ] HMB HM 1 HM Choose

1 1:2BLc = 0:6 � �c
p

HM 1

2 0:8BLc = 0:4 �
p p

HMB

3 1:6BLc = 0:8 � �c �c none

4 1:2BLc = 0:6 BLq = 2 �c �q none

5 1:2BLc = 0:6 0.9 BLq = 1:8 �c
p

HM 1

6 0:9BLc = 0:45 0.9 BLq = 1:8
p p

HMB

7 0:9BLc = 0:45 BLq = 2
p

�q HMB

We demonstrate this approach in Example 2.7 using the performance values in Exam-

ple 2.6.

Example 2.7 [PGA] Because our original objective is to optimize the normalized perfor-

mance, the constraint is also on the normalized performance measure. Since the normalized

performance of the baseline HM is always �xed at BL, the constraint level should be speci-

�ed relative to BL. Since the constraints are relative to BL, we always know ahead of time

whether the baseline HM, HMB, can satisfy a given set of constraints. The exact value of

BL is dependent on the normalization method. In this example, BLc = 0:5 and BLq = 2:0.

Table 2.8 shows several possible constraints that can be applied to the problem in Ex-

ample 2.6 and the HM chosen based on each set of constraints.

The optimization objective in all cases is to maximize the average normalized quality

E[qnormi;j ]. With one acceptable HM, this HM is always considered the better HM under that

set of constraints. With two acceptable HMs, the HM with the higher E[qnormi;j ] is considered

the better HM. In this example, E[qnormB;j ] > E[qnorm1;j ], soHMB is always considered the better
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HM when both HMs are not pruned. With no acceptable HM, neither HM is considered

better.

The �rst three cases (Cases 1-3) have constraints on only the average normalized cost

E[cnormi;j ]. These cases show the various possibilities with one acceptable HM, two acceptable

HMs, and no acceptable HM. Since HM1 has a higher average normalized cost, HMB would

always be pruned before HM1 under this single-constraint situation. In this situation, it is

easy to construct the appropriate constraint levels for any desirable conclusions.

The last four cases (Cases 4-7) have constraints on both E[cnormi;j ] and E[qnormi;j ]. The

di�erent combinations of constraint levels lead to di�erent sets of acceptable HMs (with 0,

1, or 2 acceptable HMs). Since there is more than one constraint, the set of acceptable HMs

can vary more due to the interaction between di�erent constraints.

From this example, we observe that it is easy to determine the conditions in which one

HM is considered better than the other HM.

When more detailed trade-o�s among di�erent objective measures are desired, it is nec-

essary to study the distributions and relationships between performance measures of each

selected HM. To inspect this information for the case with two performance measures, we

have proposed a multidimensional graphical representation of performance values, represent-

ing each performance measure in a separate axis (see Section 2.6.2). Two HMs are, therefore,

compared based on their relative positions in this multidimensional plot.

For the general case with more than two HMs under consideration, it is necessary that

the constraint levels are constant for all HMs. Consequently, the normalized performance

values of all HMs for the constrained measures should be normalized against a �xed baseline

HM. After eliminating all HMs that fail the �xed constraints, the remaining HMs can be

compared based on the single objective measure. See Sections 3.6.4 and 4.4.2 and Chapter 5

for more detail.
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2.4 Statistical Estimation of HM Performance

After studying issues in multiple-objective optimization, we can proceed to deal with the

case in which there are too many test cases in the problem domain for each HM to be tested

completely.

For accurate performance evaluation of an HM over an entire problem domain, we must

obtain performance information for every test case. Based on the second issue in Sec-

tion 2.1.3, this is impractical for most applications of interest due to the large problem

domain or randomness within the problem solver. In this section, we �rst present the causes

and examples of this large (and possibly in�nite) number of performance values of each HM.

We then discuss the potential of using statistical averages to evaluate each HM based on a

subset of performance values. However, statistical estimation of performance values gives

meaningful results only when the performance values satisfy a certain statistical property

(independent and identically distributed | IID). Consequently, we present some existing

methods for evaluating this IID property on each set of data.

2.4.1 Performance variations and their causes

In this subsection, we present an overview of the causes of di�erent performance values for

the same HM and some examples of variations in performance. First of all, di�erent objective

performance measures (such as cost and quality) will lead to di�erent performance values.

We have already presented in Section 2.3 a method that allows each objective measure to

be dealt with independently. In this subsection, we are concerned with only one objective

measure at a time.

For a given performance measure, there are two possible causes in variations in perfor-

mance values of an HM in a problem domain.

1. Internal characteristics of test cases. Di�erent test cases with di�erent problem char-

acteristics (such as problem size, internal structure, and random initiations) usually

lead to di�erent performance behavior. Problem characteristics and how they a�ect

performance values are application and problem-solver dependent.
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2. Randomness inherent in the target problem solver. For some problem solvers, there

is inherent randomness in the problem-solving process. Hence, di�erent performance

levels can result when a single HM is evaluated on the same test case multiple times.

For most problem solvers of this type, the randomness can be represented through the

value of their initial random seed.

To demonstrate that these variations lead to a large number of distinct performance

values that must be collected, we present some real-world data from several applications.

Example 2.8 [VC] In Example 2.2, we observe that any changes in DC, problem size, or

even di�erent random initiations will lead to a di�erent (raw and normalized) number of

nodes expanded (Cause 1).

A general problem domain of this application containing all possible VC problem in-

stances would encompass a large number of DCs, problem sizes, and random problem in-

stances. This large number of problem instances means that each HM will produce a very

large (and probably an in�nite) number of performance values.

Example 2.9 [CRIS] Based on the performance data in Example 2.1, we observe variations

in performance values for the same circuit by the same HM. These variations are caused by

the randomness in the problem solver (Cause 2). Since all existing sequential VLSI circuits

can be considered to belong to the problem domain of this application and since there can

be in�nitely many variations in performance values even for the same circuit, each HM will

produce in�nitely many performance values over the problem domain. Gathering all of these

performance values is practically impossible.

Based on Examples 2.8 and 2.9, we would expect that most applications will have a large

number of di�erent performance values from each HM over their problem domains. This

large number of performance values on each HM is di�cult to collect completely within

a reasonable amount of time. Although after normalization all performance values of the

baseline HM are �xed at BL, the normalized performance values of the other HM, HMX ,

are still uncertain as shown in previous examples. This uncertainty is the reason why we
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need to use statistical estimation to predict the performance of each HM over the problem

domain, based on only a relatively small subset of performance values.

2.4.2 What is statistical estimation

Statistical estimations [44{47,56] are methods for performance evaluation based on ana-

lyzing statistical properties of performance data. When certain conditions are met, statistical

estimation can be applied to a collection of data, which is a subset of a larger pool, and the

result can predict (represent) the result for the larger pool.

For cases in which we are interested, the population mean (our performance objectives

from Section 2.1.2) of a set of data can be statistically estimated based on the sample mean

(sample average) of a subset of this data set. Another related statistical estimator is the

sample standard deviation, which is an unbiased estimator of the standard deviation, a

measure of the spread of performance values. These statistical estimations are possible only

when all values in the data set are independent and identically distributed (IID) [46,47].

Example 2.10 [VC] Based on the VC data in Example 2.2, we �rst renormalized the data

using our symmetric-improvement method (with HM 1 still as the baseline HM) instead of

the original improvement-ratio method. The population mean and population standard de-

viation of these new normalized measures can then be computed for each combination of DC

and problem size. Table 2.9 shows these true performance indicators over each complete data

set (of size 30) along with their statistical estimators (sample means and sample standard

deviations) when di�erent subsets of test cases are tested (5, 10, 15, and 20).

Based on this table, we observe that these estimators are good approximations of the true

performance level in most cases. As the size of the available performance values increases,

these estimators usually move closer to the true performance level. It is important to note

that this is just one example of statistical estimation based on one �xed sequence of drawing

performance values from each data set. Fluctuations can still happen, and one or two

extreme performance values can still bring the estimators away from the true performance

level, especially when the number of available performance values is small. For instance,

observe the behavior of the data set with DC=0.5 and problem size of 25.
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Table 2.9: Example of statistical estimation (sample mean and sample standard deviation)
on normalized performance ofHM 271 for a vertex-cover problem. The symmetric-

improvement method is used in normalization (BL = 0) with HM 1 as the base-
line HM.

Number of Estimation Data Group with Given DC/Size
Test Cases Measure 0.1/25 0.1/30 0.5/25 0.5/30

30
� 0.219 0.507 �0:011 �0:021
� 0.295 0.824 0:039 0:027

5
�̂ 0.312 0.565 0:013 �0:024
�̂ 0.339 0.443 0:041 0:047

10
�̂ 0.214 0.461 0:012 �0:018
�̂ 0.258 0.491 0:051 0:039

15
�̂ 0.162 0.486 0:003 �0:019
�̂ 0.245 0.610 0:046 0:033

20
�̂ 0.162 0.494 �0:003 �0:020
�̂ 0.232 0.686 0:042 0:031

The accuracies of these estimates are dependent on both the spread of performance

values (which can be estimated by the standard deviation or the variance) and the number

of performance values in the subset. The accuracies increase when the spread is smaller

or when more performance values are used in computing these estimates. For the average

metric, there are certain statistical properties that allow the uncertainty of this estimation

to be calculated under certain conditions. We will take advantage of these properties in

Section 2.5.

When requirements on statistical properties of performance data are satis�ed (the IID

property in our case), statistical estimation can then be applied to predict the true perfor-

mance of each HM over the target problem domain from a smaller subset of performance

data (see Section 2.5.2). Unfortunately, the IID property may not be met throughout a

problem domain. We will discuss this issue in the next subsection.
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2.4.3 Test of statistical properties

In the previous subsection, we have shown that the performance of an HM can be eval-

uated based on a subset of performance values. However, the result of statistical estimation

is meaningful only when the necessary statistical properties (IID in this case) are met by the

performance values.

In this subsection, we formally de�ne this IID property and present some statistical

tests [46,47] to evaluate when this property is satis�ed or violated. We are mainly interested

in statistical tests that are not dependent on the exact distribution of data, i.e., nonpara-

metric statistical tests [47, 57]. We also present some examples on how real performance

values behave in relationship to the IID property.

The statistical tests presented here are applicable when only one objective performance

measure is considered. We can, however, test the IID property of each one of the mul-

tiple objective measures independently. The IID property for the case of multiple objec-

tive performance measures will hold when every individual objective measure is IID. This

multiple-objective IID property is possible because our method for dealing with multiple

objective measures (see Section 2.3) treats each of the objective measures (as constraints)

independently.

De�nition: A set of performance values is de�ned as having the independent and identically

distributed (IID) property when it satis�es both the identical-distribution property and the

independence property.

The identical-distribution property of a set of performance values means that each per-

formance value in the set belongs to the same distribution.

The independence property means that performance values within the set are independent

of each other.

Test of the Identical-Distribution Property: One method for testing the identical-

distribution property is the Kolmogorov-Smirnov two-sample test [57, 58]. This variation

of the Kolmogorov-Smirnov goodness-of-�t test [56, 57] compares sample cdfs (cumulative
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Figure 2.7: Example of the Kolmogorov-Smirnov two-sample test on the VC problem.

distribution functions [45]) of two sets of data. When the vertical di�erence between two

sample cdfs (D) is large, then it is unlikely that the two sets of data belong to the same

distribution. An example application of this test is shown in Figure 2.7.

For our purpose, we check for the identical-distribution property by dividing performance

data into di�erent subsets. We can then apply the Kolmogorov-Smirnov two-sample test on

each pair of subsets. If the Kolmogorov-Smirnov test statistic D, the maximum di�erence

between the two sample cdfs, is larger than the critical value D�
n1 ;n2

for data sets of size n1

and n2 and con�dence level �, then the two sets of data are considered to be from di�erent

distributions. See Example 2.11 later in this section.

There are other statistical tests that can be applied, such as the Mann-Whitney test [46]

and the Wald-Wolfowitz two-sample runs test [57].

Although the independence property is likely to hold when performance values are drawn

from randomly selected test cases (or randomness of the problem solver), we still need to

verify that this property is satis�ed.
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The testing of independence is a di�cult, if not impossible task [46]. We currently cannot

guarantee that all performance values are independent. However, it is possible to evaluate

the randomness of a given sequence of test cases, which is a necessary condition for the

independence property.

Test of Randomness: There are many existing nonparametric methods for testing ran-

domness of a sequence of data. These include tests based on runs-above-and-below the me-

dian [46,47], runs-up-and-down [47,57], and serial-correlation statistics tests [47,59]. Other

tests exist when data have speci�c distributions, such as the frequency test and the sequential

test for uniform distribution [59].

There are four main alternative hypotheses to the null hypothesis of randomness [47]:

(1) presence of shifts in the average level, (2) presence of trends in the average level, (3)

presence of cyclic movements in the average level, and (4) speci�c parametric alternatives.

The speci�c parametric alternatives are vague and ignored in this chapter. The various

existing tests of randomness have di�erent degrees of e�ectiveness against the �rst three

causes for violations of randomness. In this section, we present several possible statistical

tests that are selected to make sure that all three alternative hypotheses are covered. Other

alternatives can be found in [47].

For each randomness test, we use the notation X(1);X(2); :::;X(n) to denote a given

sequence of n data elements.

(A) Total Number of Runs Up and Down [47, 57]. For a given sequence of data, we can

consider the di�erences between consecutive values in the sequence. Replace a di�erence

between consecutive values, X(i+ 1) �X(i), by the symbol \+" if it is positive and by the

symbol \�" if it is negative. Runs of the symbols in this sequence (length n�1) are referred
to as runs up and down. A test statistic in this case is U , which is equal to the total number

of runs (up or down). For a sequence to be considered random with signi�cance level �, the

test statistic U must satisfy U�
L � U � U�

U . This test is most suitable for detecting trends

or cycles.

(B)Total Number of Runs Above and Below the Median [46,47]. A run in this case consists

of a set of consecutive values either all greater than or all less than the median value. In this
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case, the number of values above the median is the same as the number of values below the

median, i.e., N1 = N2 (n=2 when n is even or (n� 1)=2 if n is odd). A test statistic in this

case is Tmedian, which is the total number of runs. For a sequence to be considered random

with signi�cance level �, the test statistic Tmedian must satisfy T �
L � Tmedian � T �

U , where

T �
L and T �

U are dependent on N1 and N2. This test is most suitable for detecting shifts or

trends.

(C) Total Number of Runs Above and Below the Mean [57]. This is similar to (B) except

that the values are compared against the mean value rather than the median value. In this

case, the number of values above the mean, N1, is not necessarily the same as the number of

values below the mean, N2. A test statistic in this case is Tmean = total number of runs. For

a sequence to be considered random with signi�cance level �, the test statistic Tmean must

satisfy T �
L � Tmean � T �

U . This test is also most suitable for detecting shifts or trends.

(D) Kendall's Rank Correlation Coe�cient Test [47]. For every pair of data in a sequence

X(u) and X(v), where u < v, let Huv be +1 if X(u) > X(v) and -1 otherwise. A test statistic

in this case is H =
P

u>v

Pn
v=1Huv. For a sequence to be considered random with signi�cance

level �, the test statistic H must satisfy jHj � H�. This test is most e�ective for detecting

trends and shifts.

(E) Circular Serial Correlation Coe�cient Test [47]. A test statistic in this case for a

particular gap value k is Ck =
Pn

i=1X(i)X(i + k)=n, where X(i + k) = X(i + k � n) when

i+k > n. For a sequence to be considered random with signi�cance level �, the test statistic

Ck must satisfy jCkj � C�. The critical value C� is dependent on the distribution of values

within the given sequence. This test is most e�ective for detecting trends and cycles.

Table 2.10 summarizes the various randomness tests presented above.

We now show an example in evaluating the IID property on some real-world data using

the statistical tests presented above.

Example 2.11 [VC] Using the VC data in Example 2.2, we observe that, for the VC prob-

lem, normalized performance measures on test cases with di�erent problem sizes and/or

random seeds but with the same DC seem to exhibit similar behavior. However, it is likely

that test cases with di�erent DCs have di�erent performance distributions.
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Table 2.10: Summary of statistical randomness test methods.

Statistical Test
Test Nonrandomness Cause

Statistic Shift Trend Cycle

Total Number of Runs

Up and Down
U X X

Total Number of Runs

Above and Below Median
Tmedian X X

Total Number of Runs

Above and Below Mean
Tmean X X

Kendall's Rank Correlation

Coe�cient Test
H X X

Circular Serial Correlation

Test (gap size = k)
Ck X X

To con�rm this observation, Table 2.11 illustrates the identical-distribution test for dif-

ferent problem sizes and for di�erent DCs using HM271. First, this table shows that the

performance for the same problem size and the same DC is likely to belong to the same

distribution. This table also shows that the performance for di�erent problem sizes but the

same DC seems to belong to the same distribution. However, the performance for di�erent

DCs seems to belong to di�erent distributions.

Next, we test for randomness in each sequence of performance values for HM 271. This

randomness property is a prerequisite to the independence property. The results from various

randomness tests are shown in Table 2.12. All sets of data pass all tests in this case and

should be accepted as random and independent.

It should be noted that even if a set of data fails a few of these tests, a more detailed

examination should be performed before dismissing the data as nonrandom. There are

reasonable chances (at least �) that a nonrandom sequence of data is obtained even though

the underlying data are random. As an example, if we move the �rst data in the set with

DC=0.5 and problem size=25 to be the last data, then H = �133, which would fail to fall

within the critical region for Kendall's rank correlation coe�cient test.
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Table 2.11: Example of the Kolmogorov-Smirnov two-sample test, with � = 0.1 signi�cance

level, of normalized nodes expanded in a branch-and-bound search using a spe-
ci�c decomposition HM (HM271) to solve a vertex-cover problem.

Degree of Graph Number of
Dn D�

nConnectivity Size Samples

0.1 25 15:15 0.267 0.467

0.1 30 15:15 0.200 0.467

0.5 25 15:15 0.467 0.467

0.5 30 15:15 0.267 0.467

0.1 25:30 30 0.267 0.316

0.5 25:30 30 0.233 0.316

0.1:0.5 25 30 0.667 0.316

0.1:0.5 30 30 0.833 0.316

Table 2.12: Example of randomness tests, with two-tail � = 0.1 signi�cance level, of nor-
malized nodes expanded in a branch-and-bound search using a speci�c decom-
position HM (HM 271) to solve a vertex-cover problem (30 values from each set
of data).

Randomness Thresholds Data Group with Given DC/Size
Test Min. Max. 0.1/25 0.1/30 0.5/25 0.5/30

Number runs up/down 15 24 17 21 18 22

Number of runs
11 21 11 19 13 21

above/below median

Number of runs | 11 15 15 19

above/below mean Thresholds 10/21 8/17 10/21 10/21

Kendall's correlation -92 92 -37 -21 -79 -27

k = 1 0.02 -0.13 0.00 0.00

Circular serial k = 2 | -0.01 0.01 0.00 0.00

correlation k = 3 -0.01 -0.01 0.00 -0.00
Thresholds -0.03/0.03 -0.17/0.17 -0.02/0.02 -0.02/0.02
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Based on the two tables above, we can tentatively conclude, based on available data, that

the performance of HM 271 on VC problems with the same DC (with di�erent problem sizes

and di�erent random seeds) satis�es the IID property, and statistical estimation methods

can be applied. However, the IID property de�nitely does not exist when VC problems with

di�erent DCs are considered, and statistical estimation methods cannot be used.

When the target problem domain contains only problems with the same DC but may

have di�erent problem sizes and random seeds, then statistical estimation can be applied on

this problem domain. However, a more likely scenario is for the target problem domain to

contain all VC problems with all possible combinations of DCs, problem sizes, and random

seeds. In this case, it is not possible to use statistical estimation over the entire problem

domain. Some strategies must then be developed to overcome this problem. We will present

our strategy in the next section.

Based on these statistical tests for the randomness and the identical-distribution proper-

ties, we can identify when statistical aggregate measures can be applied to evaluate a given

set of performance data. When these two properties are satis�ed, the given set of data is

likely to be IID.

Results of Example 2.11 show that (a) there are subsets of performance data that can

be evaluated statistically, but (b) there are also characteristics related to the test cases,

such as di�erent DCs for the VC problem, that can cause violations of the IID property.

With these statistical tests, it is easier to identify exactly the test-case characteristics (and

randomness of a problem solver) that can be varied without violating the IID property and

the characteristics that will violate the IID property.

Since statistical estimation is a necessary step for e�ective performance evaluation, we

must

(a) reduce variation in performance behavior as much as possible through transformation

(or mapping) of performance values, and

(b) if the �rst step cannot eliminate violations of the IID property, partition the problem

domain into smaller subsets so that statistical estimation can be applied on each subset.
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Normalization (see Section 2.2) is already a good method to reduce the variation in perfor-

mance behavior (see Example 2.2 for example). We can then proceed to the second step in

dealing with non-IID performance data in the next section (Section 2.5).

One important note is that a monotone transformation of performance data cannot a�ect

their IID property. This fact is important since most normalization methods are related to

one another through some monotone transformations. See Section 2.2.3 for some examples.

Consequently, the IID property of a set of normalized performance values is not a�ected

by the choice of the normalization method when chosen from among methods (such as

symmetric-normalization methods) that are related by monotone transformations.

2.5 Problem Subdomains

Based on information in the previous section, it is apparent that applying statistical

estimation over the entire problem domain is not feasible for many applications. When

statistical estimation methods cannot be applied, performance evaluation of HMs is di�cult.

A logical approach would then be to partition the problem domain into smaller subsets so

that statistical estimation can be applied within each subset [36,48,54,60,61].

In this section, we explore the idea of de�ning subsets of the problem domain called

\problem subdomains" so that the IID property is satis�ed for each subset [54]. We then

proceed to discuss the consequences of partitioning the problem domain. Based on the

concept of problem subdomains, the performance-evaluation process can be divided into two

separate phases: (a) performance evaluation within a single problem subdomain and (b)

performance evaluation across multiple problem subdomains. Finally, we discuss the issues

involved in each of these phases.

2.5.1 De�nition

In this subsection, we explore the partitioning of the problem domain into subsets that

can satisfy the IID property [54]. We also explore how to determine the boundary of each

subset and outline the consequences of this partitioning on performance evaluation.
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De�nition: A problem subdomain is de�ned in this thesis as a subset of the problem

domain whose performance values satisfy the IID property over the entire subset.

As previously stated, this IID property is a su�cient condition for using statistical es-

timation to estimate the average metric. Consequently, the performance of an HM over a

problem subdomain can be estimated through statistical estimation over a subset of perfor-

mance data from that subdomain. The next step, then, is to determine which test cases

belong to a particular subdomain.

As previously stated in Section 2.4.1, there are two causes of performance variations for

a given objective performance measure. In this thesis, we assume that di�erent performance

values from the same test case, i.e., variations due to randomness of the problem solver

(Cause 2), are IID (see Example 2.13). Obviously, if performance values from the same test

case are not IID, then performance evaluation based on statistical estimation methods is not

meaningful. The only alternative in this case is to evaluate HMs based on exhaustive testing

of each HM.

Consequently, the partitioning of the problem domain into problem subdomains is de-

pendent on the application-speci�c knowledge about test-case attributes (characteristics)

(Cause 1) and how they a�ect the IID property of performance values of target HMs. The

minimum problem subdomain must contain a single test case since performance variations

due to randomness of the problem solver (if it exists) are assumed to be IID.

We must know the attributes of an application in order to classify its test cases and a set

of decision rules to identify the subdomain to which a test case belongs. Statistical tests from

the previous subsection can be used to determine (a) whether a given set of performance

data are IID and (b) whether di�erent sets of IID performance values (based on test cases

with di�erent attributes) belong to the same problem subdomain.

In some applications, it may be di�cult to determine the subdomain to which a test

case belongs. This di�culty can happen because the available attributes may not be well-

de�ned or may be too numerous to be useful. When we do not know the attributes to

classify test cases into subdomains, we can treat each test case as a subdomain by itself.

This treatment works well when the problem solver has some random components. By using
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multiple applications of the problem solver, we can obtain statistically valid performance

values of the HM on a test case (see Example 2.13). The situation is even simpler when

there is no inherent randomness in the problem solver and when the performance within

each subdomain is constant (no estimation required).

To illustrate the concept and methods for identifying problem subdomains, we continue

the use of the vertex-cover and the test-pattern-generation problems as running examples.

Example 2.12 [VC] We have previously stated in Example 2.2 that, based on available

domain knowledge, there are three main attributes for a VC test case: DC, problem size,

and the random seed. From Example 2.11, we observe that normalized performance measures

on test cases with di�erent problem sizes and/or random seeds, but with the same DC, seem

to be IID, while test cases with di�erent DCs lead to di�erent performance distributions.

Similar results are obtained for di�erent HMs on the same set of test cases.

Consequently, we can treat the degree of connectivity (DC) as an attribute to classify

graphs into problem subdomains. Each problem subdomain then contains all graphs with

the same DC and can have di�erent problem sizes and di�erent random seeds.

Example 2.13 [CRIS] So far, we have used two main criteria to study performance behav-

ior of the test-pattern-generation application: circuit ID and random seed for the problem

solver. To formally evaluate and test the performance of this application, we have collected

additional performance data for the HMs and circuits studied in Example 2.1. Results on

testing for identical distributions and randomness on the extended data sets (30 values in

each set) are shown in Tables 2.13 and 2.14, respectively.

Table 2.13 shows the maximum di�erences between two sets of data (Dn) and the max-

imum acceptable di�erences for a signi�cance level of 0.1 (D�
n ). Two sets of data can be

considered identical if Dn < D�
n . Table 2.14 shows the various statistics for randomness tests

along with the maximum and minimum acceptable values. The input data are considered

random when their test statistics are between the minimum and the maximum acceptable

values. When these maximum and minimum thresholds are the same independent of input
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Table 2.13: Kolmogorov-Smirnov two-sample test, with � = 0.1 signi�cance level, of nor-
malized fault coverages for the application on test-pattern generation.

HM Circuit Number of
Dn D�

nID ID Samples

HM 101

s298 15:15 0.267 0.467

s444 15:15 0.267 0.467

s1196 15:15 0.200 0.467
s298:s444 30 1.000 0.316

s298:s1196 30 0.633 0.316
s444:s1196 30 0.874 0.316

Table 2.14: Results of randomness tests, with two-tail � = 0.1 signi�cance level, of normal-
ized fault coverages in test-pattern generation based on HM101 (30 values from
each set of data).

Randomness Thresholds Performance Values from Circuit

Test Min. Max. s298 s444 s1196

Number runs up/down 15 24 20 15 17

Number of runs
11 21 16 11 14

above/below median

Number of runs | 12 14 13

above/below mean Thresholds 10/20 8/16 10/21

Kendall's correlation -92 92 -81 -77 41

k = 1 0.00 -0.01 0.00

Circular serial k = 2 | 0.00 -0.01 -0.00

correlation k = 3 -0.00 -0.00 0.00
Thresholds -0.02/0.02 -0.02/0.02 -0.02/0.02
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data, they are shown in the column titled \thresholds." When these thresholds are depen-

dent on input data (in circular serial correlation tests and number of runs above/below mean

test), they are shown in a separate row.

The results in these tables indicate that performance values from the same circuit with

di�erent random seeds are IID. Since performance from di�erent circuits is likely to be

di�erent, we cannot automatically group all of the circuits into a single problem subdomain.

There are many attributes that can be used to characterize each circuit (such as length of

the longest path and the maximum number of fan-in's and fan-out's). However, we have few

circuits for evaluation, and discrepancies in various attributes among available circuits are

large. In addition, based on the available domain knowledge, none of these attributes is a

clear winner in characterizing the circuits.

Since this particular problem solver (CRIS) has inherent randomness that leads to IID

performance for a given circuit, we have chosen each circuit as an independent problem

subdomain in this case.

After de�ning problem subdomains and methods to determine their boundaries, we

need to discuss the e�ects of partitioning the problem domain into subdomains on the

performance-evaluation process. With subdomain partitioning, the performance-evaluation

process can now be divided into two phases: (1) performance evaluation within a single

problem subdomain and (2) performance evaluation across multiple problem subdomains.

We will address each of these phases separately.

2.5.2 Performance evaluation within subdomains

By the de�nition of a problem subdomain, the average performance within a problem

subdomain can be estimated statistically based on a small subset of performance values

within the problem subdomain. Two HMs can then be compared based on their sample

means over a subset of normalized performance values with respect to each objective measure.

We have previously identi�ed and addressed two of the major issues that can inuence

the result of performance evaluation within a problem subdomain:
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(1) the normalization method used (Section 2.2), and

(2) the handling of multiple objective performance measures (Section 2.3).

The sample-mean values can then be used in place of the true average values for (a) testing

constraints violation (imposed to deal with multiple objectives) and for (b) ordering the HMs

based on the single optimization objective.

The main issue remaining that can a�ect the result of performance evaluation within a

problem subdomain is the inaccuracies in the estimated sample-mean values. Since a sample

mean is just an estimate of the true average value, the decisions based on a sample-mean

value (such as ordering or pruning due to constraints) can be incorrect. For example, the

sample means for DC/size equal to 0.5/25 with 5, 10, and 15 test cases from Example 2.10

(see Table 2.9) can mislead us to believe that HM271 is better than the baseline HM (HM 1)

for this data set. The true performance over the entire 30 test cases indicates that HM1 is

actually better than HM 271 for this set of data.

We �rst consider the issue of uncertainty in ordering two HMs based on their (estimated)

sample means on the single optimization objective. Consider two HMs, HMB and HMX ,

with HMB as the baseline HM for normalization and Ji as the optimization objective. We

denote the sample mean and true average normalized performance of HMX for measure Ji

over subdomain � as �̂X;i;� and �X;i;�, respectively. Based on �̂X;i;� and BL (true average

performance for HMB), we can �nd a tentative order between HMX and HMB for sub-

domain �. For example, if �̂X;i;� > BL, then we consider HMX to be better than HMB.

The issue is the degree of certainty that HMX will perform better than HMB when more

performance data are collected.

As noted in Section 2.4.2, the accuracy of statistical estimates of the true mean depends on

the number of performance values used in the estimation (n) and the spread of performance

values that can be measured by the (sample) standard deviation (� or �̂). As a result,

the true ordering of HMs is a�ected not only by the statistical estimate of their average

performance but also by these two factors as well. Under certain conditions, uncertainty

about the accuracy of the sample mean can be estimated.
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To deal with certainty in ordering two HMs, we have developed a measure called probabil-

ity of win, Pwin, that takes into consideration the value of the statistical estimate, the spread

of normalized performance, and the number of performance values used in the estimation.

This probability ranges from 0 to 1: the closer Pwin is to 1.0, the more certain that HMX

has better true average normalized performance than the baseline HM, HMB. The closer

Pwin is to 0.0, the more certain that HMX has worse true average normalized performance

than the baseline HM, HMB. When Pwin is 0.5 (probably when �̂X;i;� = BL), HMX can

be better or worse than HMB with equal probability.

Pwin is de�ned as the probability that the true mean performance of HMX (with respect

to one performance measure) is better than the true mean performance of the baseline HM,

HMB, (�xed at BL) for one subdomain [54] (see Figure 2.8):

Pwin(X;Ji; �) = P (�X;i;� > BL j �̂X;i;�; �̂X;i;�; nX;�); (2.14)

where �X;i;�, �̂X;i;�, �̂X;i;�, and nX;� are, respectively, the actual average normalized per-

formance, the sample mean of normalized performance, the sample standard deviation of

symmetric normalized performance, and the number of samples that HMX has been tested

for subdomain � and measure Ji. For simplicity, indices � and i are not shown in the rest

of this subsection.

By the Central Limit Theorem [45],

P (�̂X j �X ; �X; nX) � N
 
�X ;

�2X
nX

!
; (2.15)

when nX is large and where N (a; b) is the normal distribution function with mean a and

standard deviation
p
b [45]. Using this assumption, the following variable

T =
�̂X � �Xq
�̂2X=nX

(2.16)

is approximately Student's t-distributed with nX � 1 degrees of freedom [62]. Therefore,

Pwin(X) = P (�X > BL j �̂X ; �̂X; nX)

= P

0
@T <

�̂X �BLq
�̂2X=nX

1
A = Ft

0
@nX � 1;

�̂X �BLq
�̂2X=nX

1
A ; (2.17)
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Figure 2.8: Diagram demonstrating the meaning of probability of win.

where Ft(�; x) is the cdf of Student's t-distribution with � degrees of freedom. When n!1,

we have

P (�X > BL) � �

0
@ �̂X �BLq

�̂2X=nX

1
A ; (2.18)

where � is the standard cumulative normal distribution function [44].

Since Pwin(X) > 0:5 when �̂X;i;� > BL and Pwin(X) < 0:5 when �̂X;i;� < BL, the

decision of which HM is better for subdomain � can be based on comparing Pwin(X) with

0.5. Further, probability of win carries additional information on the certainty level of the

ordering of the two HMs. A bigger deviation from 0.5 means a higher certainty level on the

ordering. There is more certainty on the ordering of the two HMs when Pwin(X) is outside

the range 0:5 � � where � > 0. When Pwin(X) is between 0:5 � �, we can consider the

ordering between the two HMs to be indeterminate or uncertain. The higher � leads to

more certainty in the �nal ordering but is also likely to lead to more indeterminate ordering.
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Table 2.15: Examples of probability of win of HM 271 with respect to baseline performance
(BL = 0) for the vertex-cover problem based on data from Table 2.9.

Number of Degree of Connectivity/# of Nodes

Test Cases 0.1/25 0.1/30 0.5/25 0.5/30

30 1.000 0.999 0.067 0.000

5 0.946 0.977 0.741 0.159

10 0.986 0.992 0.762 0.089

15 0.989 0.996 0.598 0.021

20 0.997 0.998 0.376 0.005

Example 2.14 [VC] Based on the sample-mean and sample-standard-deviation values from

Example 2.10 (see Table 2.9), we can compute the probability of win for each possible case

using Eq. (2.17). The resulting probability-of-win values are shown in Table 2.15.

From this table, we can observe that the probability-of-win values in most cases (except

for DC=0.5 and problem size of 25) demonstrate a very high degree of certainty (close to 0

or 1). For these cases, the orderings based on the sample mean (and Pwin) also happen to

be correct.

For DC=0.5 and problem size of 25, however, the probability-of-win values indicate a

lower degree of certainty (closer to 0.5). This lower degree of certainty indicates a high

probability that the sample-mean values will give an incorrect ordering. In actuality, the

ordering based on the sample means for this data set with 5, 10, and 15 test cases is incorrect.

For � � 0:265, these incorrect orderings would be rejected due to an insu�cient degree of

certainty, while the orderings from other data sets (which are correct) would still be accepted.

However, the (correct) ordering for DC=0.5 and problem size of 25 with 20 test cases would

also be rejected under this criteria.

In the multiple-objective case, a similar uncertainty is involved in deciding for each

constrained performance measure whether the true average is larger than the given constraint

level [36]. The probability of satisfying a given set of constraints, Pok, can be used to estimate
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the likelihood that the constraint is satis�ed, based on given performance values [36]. The

computation of Pok follows the same reasoning as the reasoning for Pwin above.

For each constrained measure, Ja, the probability that the true mean of that normalized

measure is higher than the minimum constraint level, �a, for HMX in subdomain � can be

computed as follows:

P (�X;a;� � �a) = Ft

0
@nX;� � 1;

�̂X;a;� � �aq
�̂2X;a;�=nX;�

1
A ; (2.19)

where Ft(�; x) is the cdf of Student's t-distribution with � degrees of freedom.

When there are multiple constrained measures, the probability that all constraints (�j for

j = 1; : : : ; k) are satis�ed is equal to P (�X;1;� � �1\ : : :\�X;k;� � �k). Based on probability

theory, we know that

Y
j

P (�X;j;� � �j) � Pok = P (�X;1;� � �1 \ : : : \ �X;k;� � �k) � min
j

P (�X;j;� � �j) : (2.20)

Hence, we use minj P (�X;j;� � �j) as an approximation to Pok.

Similar to the case with Pwin, an HM is considered to satisfy a given set of constraints

when Pok > 0:5. However, when Pok is in the vicinity of 0:5 �� for some � > 0, there are

higher degrees of uncertainty about whether the given HM actually satis�es all constraints. In

our current situation where no further data will be collected, it is justi�able to simply accept

all HMs with Pok � 0:5 and eliminate all HMs with Pok < 0:5. In other situations in which

insu�cient testing is performed (such as during a learning experiment), it is desirable to

eliminate only HMs that are very certain to violate one or more constraints (see Section 4.4.2).

In this case, Pok < 0:5 �� for signi�cant values of �, such as 0.25, should be used as the

criteria to eliminate HMs from further consideration.

2.5.3 Performance evaluation across subdomains

In this section, we deal with the situation in which a target problem domain contains

more than one problem subdomain. Since our principal objective in performance evaluation
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is still to compare the performance of two HMs across the entire problem domain, this phase

of performance evaluation is very important. For a given set of problem subdomains, we can

estimate the performance of each HM within each problem subdomain in the set. Based on

this performance, we can evaluate and compare HMs over a given set of problem subdomains.

Unfortunately, because performance across di�erent problem subdomains is not IID, we

cannot use statistical estimation methods to generalize/predict performance based on a set

of problem subdomains to subdomains not evaluated. This is a major reason why we should

minimize the number of problem subdomains within a problem domain whenever possible,

i.e., maximize the size of each problem subdomain.

For performance evaluation over the entire problem domain based on a selected set of

problem subdomains to be e�ective and meaningful, these selected subdomains must be

representative of the entire problem domain. This representation implies that for any sub-

domains within the given problem domain, the two HMs' behavior will (theoretically) be

similar to one of the selected subdomains. This representation cannot be guaranteed with-

out exhaustive testing.

For a selected set of representative subdomains, we can evaluate performance of the two

HMs over the problem domain by treating the performance of each subdomain independently.

For one HM to be considered better for the entire problem domain, it must be considered

better in every selected subdomain. This condition means that for every subdomain the

selected HM must satisfy given constraints and, in the subdomain where both HMs satisfy

the constraints, must have better (sample) average normalized performance with respect to

the optimization objective.

The general performance-evaluation process across multiple subdomains based on the

above criteria can be divided into two steps.

(1) Eliminate HMs that violate the given constraints in one or more subdomains (Pok < 0:5

in one or more selected subdomain(s)).

(2) When no HMs or one HM remains, no further decision is necessary. With all HMs

pruned (no HMs remaining), neither HM is considered better for the target problem
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domain. With one HM remaining, the remaining HM is considered better in the given

problem domain.

When both HMs satisfy all of the constraints, they must be ordered based on their

average normalized performance on the optimization objective. The better HM is the

one with the higher average normalized performance in every selected subdomain. For

HMX to be considered better, Pwin(X;Ji; �) > 0:5 + � for all �. For HMB to be

considered better, Pwin(X;Ji; �) < 0:5 � � for all �. The condition � > 0 can be

applied to account for a higher degree of certainty in the ordering in each subdomain.

The di�culty arises when each HM has better average performance for di�erent subsets

of problem subdomains. In this case, the ordering between the two HMs is considered

indeterminate and is similar to the case in which both HMs are eliminated due to

constraints.

When both HMs satisfy all of the constraints and have better average performance on

di�erent subsets of selected subdomains, users must select the HM to apply. We cannot

simply combine the average performance values from di�erent subdomains since they come

from di�erent distributions. Some possible heuristics that can be used include average Pwin

across all subdomains or best/worst case Pwin. In Chapter 5, we go into more detail about

some possible heuristics for ordering HMs when there is no dominant HM.

We demonstrate our process for performance evaluation across multiple subdomains in

the following example.

Example 2.15 [VC] We continue to use the vertex-cover problem (see Example 2.2) as

a running example. We want to compare one selected HM (HM 271) with respect to the

existing HM used in solving VC problems (HM1).

Based on Example 2.12, each subdomain contains test cases with di�erent problem sizes

(number of nodes in the graph) but with the same DC (degree of connectivity). We have se-

lected six subdomains with DCs ranging from 0.1 to 0.6 to represent various regions within
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Table 2.16: Example of performance evaluation across multiple subdomains in the vertex-
cover problem. HM 271 is compared against the original and baseline HM,HM1.

Performance of the baseline HM, HM 1, is equal to BL = 0 for all subdomains.
In each subdomain, 30 test cases have been evaluated.

Performance Degree of Connectivity (DC)
Measure 0.1 0.2 0.3 0.4 0.5 0.6

�̂
sym+
271 0.283 0.068 0.060 0.049 �0:000 0.028

�̂
sym+
271 0.571 0.209 0.124 0.200 0:078 0.067

Pwin(271; �) 0.994 0.957 0.994 0.905 0:500 0.985

the problem domain. The performance of each HM is normalized using our symmetric-

improvement method with HM 1 as the baseline (performance of HM 1 = BL = 0). Ta-

ble 2.16 shows the normalized performance of HM271 for di�erent DCs. In this example, we

collect the performance of both HMs on 30 random test cases in each subdomain.

Since there is only one objective and no constraint, both HMs are acceptable and must

be compared based on the optimization objective (normalized number of search nodes ex-

panded). From this table, we observe that, in all subdomains except the one with DC=0.5,

HM 271 has better estimated performance (sample mean, �̂) than HM1 with a signi�cantly

high certainty level (high probability of win). When DC=0.5, the performance of HM271

is very similar to that of HM 1, which indicates high uncertainty about whether HM271 is

better than HM 1 for this subdomain.

Based on our performance-evaluation criteria, if � = 0, then HM271 can be selected as

the best HM across the problem domain. For any � > 0, then HM 271 cannot be considered

better than HM1 due to the subdomain with DC=0.5. In the latter case, most heuristics and

users would still prefer HM271 over HM1 based on the available performance information.
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2.6 Validation

In previous sections, we have presented our approach to performance evaluation. In this

section, we provide some methods for validating our performance-evaluation approach. This

validation process is necessary to make sure that the results and conclusions reached are cor-

rect and meaningful. In this section, we �rst outline a performance-evaluation process that,

based on statistical estimation of a small subset of subdomains, provides meaningful results

for the entire problem domain. Next, we present a method for a more thorough examination

of trade-o�s among multiple objectives. Our current graphical method is applicable for the

case with two objectives.

2.6.1 Validation based on unseen test cases

In the previous section, we have shown that the HM which performs consistently better in

all selected subdomains will likely perform better for other subdomains in the target problem

domain. This situation is based on the assumption (a) that the selected subdomains are

representative of behavior within the target problem domain and (b) that the sample mean

is indicative of the true performance of each HM within a problem subdomain.

In this section, we present a validation process for checking the performance of two HMs

on test cases not seen during performance evaluation: both from old and new subdomains.

If the HMs can be generalized, then their performance on new test cases should be consistent

with the conclusions drawn during performance evaluation. This consistency means that:

(1) for subdomains tested during the design process, the sample means of each HM on new

performance values in each subdomain should be similar to previous sample means (for

performance values obtained during the design process) for the same subdomain, and

(2) for all subdomains, the ordering of HMs based on sample means in each of these

subdomains should be similar to the orderings found during the performance-evaluation

process.
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Table 2.17: Validation of performance on previously evaluated subdomains for the vertex-
cover problem (see Table 2.16). Performance results are based on evaluating 15

new test cases in each subdomain (�sym+
1 = BL = 0).

Performance Degree of Connectivity

Measure 0.1 0.2 0.3 0.4 0.5 0.6

�̂
sym+
271 0.638 0.078 0.020 �0:004 �0:000 �0:010

�̂
sym+
271 1.361 0.189 0.112 0:064 0:027 0:020

Pwin(271; �) 0.955 0.934 0.750 0:406 0:500 0:037

Example 2.16 [VC] In this example, we verify the performance of the two HMs for the

vertex-cover problem discussed in Example 2.15. We �rst re-evaluate both HMs on subdo-

mains used in Example 2.15. The performance results based on 15 additional test cases are

shown in Table 2.17.

From this table, we notice that performance values for DC=0.4 and DC=0.6 are not

consistent with performance results found during performance evaluation. Performance re-

sults for DC=0.2, 0.3, and 0.5 are very close to the previous performance. Performance for

DC=0.1 is di�erent and exhibits a higher degree of variation due to some outliers in the

new set of test cases. The ordering of the two HMs is consistent with previous orderings

for DC=0.1, DC=0.2, DC=0.3, and DC=0.5. Results for DC=0.4 and DC=0.6 produce

di�erent orderings although their sample-mean values have changed by less than 0.055. We

notice that this performance (DC=0.4 and DC=0.6) does not deviate signi�cantly from the

previous performance when DC=0.5.

Table 2.18 shows the performance of HM 271 when normalized with respect to HM1 for 6

new subdomains. These performance values are largely consistent with performance values

from subdomains used during our evaluation process and are very similar to performance

values in subdomains with similar DCs. HM 271 consistently performs better than HM 1

except in the subdomain with DC=0.55. However, HM 271 has a lower degree of certainty

(probability of win) in some of these new subdomains than in Example 2.15. For DC=0.55,

the performance is not too far out of line as compared to that of DC=0.5.
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Table 2.18: Validation of performance on subdomains not used during performance evalua-
tion for a vertex-cover problem (see Table 2.16). Performance results are based

on evaluating 30 test cases in each subdomain (�sym+
1 = BL = 0).

Performance Degree of Connectivity

Measure 0.05 0.15 0.25 0.35 0.45 0.55

�̂
sym+
271 0.218 0.031 0.054 0.017 0.016 �0:011

�̂
sym+
271 3.178 0.209 0.179 0.057 0.071 0:034

Pwin(271; �) 0.645 0.609 0.945 0.943 0.886 0:043

Based on this information, we see that there can be misleading conclusions for individ-

ual subdomains (such as for DC=0.4 and DC=0.6) even at a high degree of certainty. In

addition, if no uncertainty factor is taken into consideration (� = 0) during the performance-

evaluation process, the �nal evaluation result may be incorrect, as HM271 is not better than

HM 1 in all subdomains. HM 271 is better than HM 1 in several subdomains but is also

slightly worse than HM 1 in some subdomains, sometimes with a high degree of certainty

(low Pwin for DC=0.55 and for the new set of validation data with DC=0.6). However, rea-

sonable conclusions can still be reached in most cases by taking the degree of certainty into

consideration (� > 0). For example, the conclusion reached during the evaluation process

with � > 0 is consistent with all validation performance results shown in this example.

2.6.2 Graphical comparison of HM performance

In Section 2.3, we have proposed methods to address trade-o�s among multiple objective

measures by treating each objective independently and by applying constraints on the average

normalized performance of each constrained measure. In short, we have only considered

trade-o�s among average objective measures in each subdomain independently. However,

the average performance by itself does not provide a complete picture on the e�ectiveness

of HMs and their trade-o�s among di�erent objective measures. Thorough understanding of

the trade-o�s provided by di�erent HMs requires more detailed examination than just their

average performance values [36,42,51].
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In this section, we present a graphical method for presenting multiple sets of distributions

for cases with two objective performance measures. This method allows a more thorough

examination of trade-o�s between two objective measures for one or more HMs. Methods

for dealing with more than two objective measures are left for future research.

We propose using graphical plots of distributions of performance values for di�erent

objective measures and di�erent problem subdomains as a tool for detailed evaluation of

performance and trade-o�s. The simplest graphical method is a scatter plot of performance

with respect to each test case. However, with multiple subdomains and multiple test cases

for each subdomain, a scatter plot may contain too many data points that obscure the

overall trade-o�, which is especially true when comparing performance of di�erent HMs.

Hence, additional information related to the distribution of performance values of an HM in

a subdomain must be provided within each graphical plot.

The overall process for obtaining a plot of performance trade-o�s based on their distri-

butions in each subdomain can be enumerated using the following steps [42,51]:

Step 1: The �rst step in plotting performance trade-o�s is to compute/�nd the values of

each performance measure for each test case with respect to di�erent HMs. If necessary, nor-

malization should be applied to make resulting performance values IID. Although a scatter

plot can be achieved this way, additional steps are required to obtain a more comprehensive

view of the performance of HMs.

Step 2: We must eliminate from the performance data any clearly anomalous data points

that might unduly inuence the statistical result we want to observe. We are mainly in-

terested in univariate outliers, i.e., the few extreme cost or quality values that do not �t

with other data points. These can be detected simply by computing the standardized score

((x� �) = �) of the (normalized) performance values for the given HM. Any data point with

standardized scores in excess of a threshold such as 8.00, i.e., a point more than 8 standard

deviations away from the mean, is considered an outlier and is removed. Note that this

computation does not assume any underlying distribution of the data.

Multivariate outliers, which are points with an unusual combination of cost and quality

values, can also be detected by computing the Mahalanobis distance for each data point. A
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data point whose Mahalanobis distance has less than a 0.001 probability of happening can be

considered an outlier [63]. The application of this method requires that the joint distribution

is a multivariate normal distribution; hence, if normality is not true, then the next step must

�rst be applied before computing the distance. This step may not be necessary if performance

data after eliminating univariate outliers appear to be reasonable.

Step 3: Next, we determine the joint distribution between the two (normalized) mea-

sures for a given HM. The most likely form of the joint distribution is a bivariate normal

distribution.

To validate that this assumption applies to a data set, we must check that the marginal

distribution of each (normalized) measure is normal. There are many methods for evaluating

univariate normality; examples include computing the values of skewness and kurtosis [63],

applying the goodness-of-�t test, such as the Kolmogorov-Smirnov [56] and Geary tests [44],

and applying the Shapiro-Wilk test [64].

Next, we must evaluate bivariate normality of the joint distribution. A method we can

use is the chi-square plot or gamma plot [65], which depicts the ordered square distance

from the centroid (mean values) to each data point against the chi-square distribution. If

the data have a bivariate normal distribution, this plot would appear as a straight line.

Other methods for checking multivariate normality can be found in [64].

If the performance values do not have a normal distribution, then a distribution has to

be assumed �rst so that the values can be transformed into another set that can be tested

for normality. Note that Steps 2 and 3 may need to be repeated a number of times in order

to assure that the data points have a bivariate normal distribution and to remove outliers

from the data points.

Step 4: Finally, we obtain a 90% constant probability density contour of the bivariate

normal distribution representing the joint distribution of the two (normalized) measures. To

do so, we �rst compute the mean vector, M, and the variance-covariance matrix, �, for

the distribution. The mean vector represents the centroid of the ellipse that represents this

contour.
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We then derive the axes for the ellipse that represents this contour from the eigenvalues

�1; �2 and eigenvectors e1; e2 of the covariance matrix, �. The axes of the ellipse are rep-

resented as vectors �22(0:1)
p
�1e1 and �22(0:1)

p
�2e2, respectively [65]. The notation �2�(�)

represents the critical value at level � of the chi-square distribution with � degrees of free-

dom [44,65]. These two vectors represent the direction and length of the axes for the ellipse

with respect to the centroid of data set, M. The resulting contour encompasses the area

where 90 percent of the data from the given bivariate normal distribution should appear.

If the original performance values are not normally distributed and a transformation was

made in the previous step, then the contour found in this step has to be converted into one

for the original data points using the inverse transformation.

Example 2.17 [PGA] To demonstrate our performance trade-o� plots, we have chosen to

use the post-game analysis problem solver discussed in Example 2.6 as an example. As

mentioned previously, there are two performance objectives for each PGA HMs: minimize

the cost (time for �nding a mapping) and maximize the quality of the mapping found (by

minimizing the time for �nding a mapping).

In this case, each of the performance measures is normalized based on the improvement-

ratio method (BL = 1). Based on notations in Example 2.6, we can express these two

normalized measures as follows:

cnormi;j =
ci;j

cB;j
;

qnormi;j =
tB;j

ti;j
; (2.21)

where the objective is to maximize qnormi;j and minimize cnormi;j .

Figure 2.9 shows the performance-tradeo� plot between normalized cost and quality

obtained using the steps described above for comparing a new PGA HM with respect to

the original baseline PGA HM (HMB) [39]. Note that these two normalized measures

(cnormi;j and qnormi;j ) were veri�ed to have bivariate normal distributions without requiring any

transformations. In this example, there are no outliers. From this �gure, we see that the
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Figure 2.9: Plot of performance trade-o�s between normalized cost and quality of two PGA
HMs (HMB and HM 1) over multiple problem subdomains.

new HM has much lower cost with slightly lower quality than the baseline HM for all test

cases.

2.7 Summary

In this chapter, we have explored the process of performance evaluation of two HMs over

a problem domain. The two HMs case is a special case of the more general performance-

evaluation problem. Our performance-evaluation objective in this research is to determine

the HM that has better average normalized performance over the given problem domain for

every objective performance measure. We have identi�ed two key issues in the performance-

evaluation process that must be addressed:

(1) multiple objective performance measures with unknown trade-o�s, and
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(2) a large (possibly in�nite) number of performance values for each HM due to vari-

ations in performance and a large (possibly in�nite) number of test cases in the

problem domain.

We have developed a systematic performance-evaluation process that can deal with these

issues. There are six steps in our process for performance evaluation of two HMs.

1. Normalize the performance values to (a) obtain relative performance between the two

given HMs with respect to each test case and (b) reduce di�erences in magnitude of

performance values with respect to di�erent test cases.

To avoid anomalies (inconsistent orderings) due to the choice of the baseline HM and

the choice of normalization method, we have developed normalization methods that

satisfy the symmetric-normalization condition. These symmetric-normalization meth-

ods can eliminate anomalies due to the choice of the baseline HM and can potentially

reduce anomalies due to the normalization method chosen.

2. When there are multiple objective measures, apply constraints on all but one or on all

objectives measures. The goal is to �nd the best HM among the HMs that satisfy all of

the constraints based on a single objective (usually the single unconstrained measure

when not all measures are constrained).

The original goal of �nding one better HM under all objectives may be di�cult to

ful�ll in most cases due to trade-o�s that exist among these objectives. Hence, it may

not be possible to determine which HM is better all of the time.

We want to avoid formulating trade-o�s among objective measures in terms of a single

parametric function because it is di�cult to determine appropriate parameters to result

in desired trade-o�s.

3. Partition the problem domain into subdomains. Normalized performance values within

each subdomain must be independent and identically distributed (IID).

We have presented several statistical tests for evaluating when a given set of data is

likely to satisfy the IID property. These tests can be used to identify test cases that

can be grouped into subdomains.
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Within each subdomain in which performance values are IID, statistical estimation can

be applied to predict the true performance level (population mean) based on a subset

of performance data.

4. Evaluate the performance of each HM within each subdomain. Due to the IID property

in each subdomain, the performance of each HM within a given subdomain can be

estimated based on a subset of test cases. The sample-mean values can be used to

decide (a) whether an HM satis�es or violates a given set of constraints and (b) when

an HM has higher performance for the single optimization objective.

However, there is uncertainty involved in using the estimated sample means to decide

which HM is better. Probabilistic analysis can be used to determine the degree of

certainty involved in using the sample-mean values in any decision-making process.

This probabilistic analysis results in Pok for checking constraint satisfaction and Pwin

for ordering the average performance with respect to the single optimization objective.

These probabilistic measures can be applied to increase the degree of con�dence in

identifying the better HM within each subdomain.

5. Evaluate performance over the entire problem domain. Since performance results from

di�erent subdomains are likely to come from di�erent distributions and have di�erent

statistical properties, they should not be combined. Our method is to treat each

subdomain independently.

The best HM over the entire problem domain must be better in all subdomains, taking

into account uncertainty about various statistical estimates (based on the method in

the previous step). If neither HM is better in all subdomains, then the ordering of the

two given HMs cannot be determined. In this case, users have to pick one HM based

on their application requirements.

6. Verify performance-evaluation results by (a) making sure that additional performance

values are consistent with the results already collected and (b) using additional dis-

tribution information (other than the average, Pwin, and Pok) to get a better view of

trade-o�s among di�erent objective measures.
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Later in this thesis, we extend our performance-evaluation process to handle the general

case with more than two HMs. Section 3.6.4 presents an extension to performance evaluation

within each subdomain to deal with the case with more than two HMs in the learning process.

Chapter 5 presents an overview of performance evaluation over the entire problem domain

with more than two HMs.
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3. HEURISTICS-DESIGN PROCESS

In this chapter, we study issues in designing new heuristics used in problem solving. Our

study has been focused on developing knowledge-lean heuristics with nondeterministic per-

formance with an objective of �nding, under resource constraints, a new HM that performs

\better" than existing HMs.

There are �ve potential issues in a heuristics-design process: (1) decomposition of a prob-

lem solver into smaller components and integration of new HMs designed for each component

together, (2) classi�cation of a problem domain into subdomains so that statistical perfor-

mance evaluation can be performed, (3) generation of new and improved HMs based on past

performance information and heuristics generated, (4) evaluation of each HM's performance,

and (5) generalization based on available performance information to �nd HMs that perform

well across the entire problem domain.

Based on the survey of existing methods in machine learning, we have developed the

TEACHER (an acronym for TEchniques for the Automated Creation of HEuRistics) system

using a genetics-based machine learning approach. TEACHER divides the heuristics-design

process into four distinct phases. (1) In the classi�cation phase, TEACHER divides the prob-

lem domain into subspaces (based on user requirements) and problem subdomains (based on

the performance behavior of HMs). (2) In the learning phase, TEACHER generates HMs and

evaluates them under resource constraints so that new and better HMs can be discovered.

(3) In the veri�cation phase, TEACHER evaluates further good HMs from the learning phase

to acquire more accurate and more complete performance information. (4) Finally, in the
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generalization phase, TEACHER selects the HM most likely to provide the best performance

over the entire problem domain based on available performance information.

3.1 Overview of the Design Process

In this section, we present a brief review of the objective and various issues involved in

the heuristics-design process described in Chapter 1.

A heuristics-design process is a process for developing or learning new and \better" HMs

for a problem solver. Our motivation is to design better HMs to be used in a problem solver

so that better and/or less costly solutions for an application can be found. In this thesis, our

objective is to �nd new HMs that perform \better" than existing HMs with respect to some

average objective measures over the entire problem domain.

As stated in Chapter 1, we have focused our research on dealing with problems that �t

the following speci�cations:

� an application with a large problem domain,

� a knowledge-lean problem solver that does not have a good world model to relate

speci�cations of an HM to its performance,

� performance-related heuristics (i.e., the choice of HMs a�ect only the quantitative

performance of the problem solver and/or solution),

� expensive evaluation of an HM on a test case, and

� a large (possibly in�nite) number of possible HMs.

There are �ve major issues that need to be addressed in developing new HMs for a target

application.

(1) Decomposition and Integration of Problem-Solver Components. For a com-

plicated problem solver with many heuristic components, there are many (possibly in�nite)

possible combinations of heuristics that can be used in each component. In many cases, it

is not e�cient to try to develop new heuristics for all components simultaneously.

A possible way to improve a complicated problem solver is to use a piecewise fashion.

This piecewise improvement would involve (a) decomposition of the problem solver into a
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number of groups with a smaller number of components in each group, (b) design of \good"

heuristics for each group, and (c) integration of \good" heuristics from each group so that

the performance of the problem solver can be optimized.

There are several di�culties with this decomposition/integration process. First, it is

di�cult to decide how to group heuristic components so that the �nal result is optimal.

Second, there may be a high degree of interactions needed in designing \good" heuristics

for each group in order for the �nal result to be acceptable. It is di�cult to determine the

appropriate amount of interactions between designing di�erent parts of the problem solver.

For this decomposition/integration process to be e�cient, some domain or expert knowledge

is required.

One simple method that minimizes the interactions among the design of heuristics for

di�erent groups uses a sequential approach. First, new heuristic (HMA) is developed for

group A. Then, a new heuristic is developed for Group B with HMA used in the problem

solver. This process can be repeated until heuristics from all groups have been designed.

(2) Classi�cation of the Problem Domain. When the performance of an HM is

nondeterministic and the cost for evaluating each test case is expensive, only a small number

of test cases are likely to be used in evaluating each heuristic method in the design process.

We have shown in Chapter 2 that the true performance of a heuristic method can be esti-

mated based on a subset of test cases only when the performance values are independent

and identically distributed (IID).

We have also shown in Section 2.5 that di�erent sets of test cases can have di�erent

performance behavior. When this happens, it is necessary to partition the problem domain

into smaller subsets (known as subdomains in this thesis) to be evaluated independently. In

addition, di�erent regions of the problem domain may require di�erent types of heuristics

and di�erent partitions of the problem domain in order to obtain appropriate heuristics for

each region of the problem domain. In this thesis, we refer to the division and partitioning

of the problem domain as the classi�cation problem.
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(3) Generation of Heuristics. To design new and \better" heuristics, it is obviously

necessary for the new heuristics to be generated. The generation of new and \better" heuris-

tics based on performance information obtained so far has been the focus of most studies

in machine learning. The next section contains an overview of previous work related to this

issue.

This generation process is much more di�cult for knowledge-lean problem solvers since

there are no models for relating the speci�cations of the heuristic to its performance. In this

case, the problem solver must be treated as a black box, and heuristics generation must use

weak generation methods that do not depend on domain knowledge.

(4) Evaluation of Heuristics. To obtain \better" heuristics, we must be able to com-

pare the performance of di�erent heuristics. Performance for these heuristics must then be

obtained based on the evaluation of each heuristic method on test cases. When the perfor-

mance of a heuristic is nondeterministic, this evaluation process is more di�cult.

The key issue is to be able to compare performance between di�erent heuristics using

minimal tests. This ability is especially important in our research since we may be dealing

with expensive knowledge-lean problem solvers with nondeterministic and nonstationary

performance values over a large problem domain.

(5) Generalization of Heuristics Learned. When the performance of each heuristic

method is nondeterministic and varies across di�erent test cases, only a subset of test cases

is usually used in evaluating the performance of each heuristic during the design process.

However, the heuristic selected must perform well not only for test cases used during the

design process but also for test cases not seen before. This ability of the selected heuristic

is necessary to ensure that the performance of the selected heuristic on a random test case

within the problem domain will be good (as compared to the best existing heuristic). This

problem is known as the generalization problem.

This generalization issue is more important but more di�cult when there is a large

problem domain and di�erent regions (di�erent subdomains) in the problem domain have

di�erent (and possibly inconsistent) performance behavior.
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A general model of the heuristics-design process that addresses all of these important

issues is presented in Figure 3.1.

Most previous work in an automated heuristics-design process has focused on the issues

of generation and evaluation of new heuristics. These issues are the traditional problems

in learning. We present an overview of this work in the next section. There has also

been some work on the evaluation and generalization issues. This work is discussed in

Chapters 2, 4, and 5 when we present our approaches for dealing with these issues. The

other two issues (decomposition/integration and classi�cation) have been mostly ignored in

the literature since they exist only in complicated design problems. Unfortunately, many

real-world applications may �t into this category, and some solutions to these issues are

required.

For the type of heuristics-design problems on which we have focused, all issues are po-

tentially important. We have already developed a systematic framework that can address

all of these issues except the issue on decomposition and integration. We currently require

the decomposition-and-integration process to be performed manually by users due to the

limitation of our resources. The users can then develop new heuristics for each group in

a sequential approach. This manual process is necessary because the decomposition-and-

integration issue can be studied only after all other issues have been addressed and a good

system for designing new heuristics for each component has been developed. Future research

will incorporate this issue into our learning framework.

Our TEACHER system that implements our heuristics-design process is presented in

Section 3.4. Our system has four di�erent phases of operation. Each phase is isolated to

deal with di�erent design issues. We present an overview of our approach in each phase in

this chapter. The �rst phase deals with the classi�cation issue and is discussed in Section 3.5.

The second phase deals with both the generation and the evaluation issues and is intended

for generating good heuristics for each subdomain (see Section 3.6). The operation in this

phase is the one referred to by most researches as a learning process. Our approach in this

phase is based on the genetics-based machine learning approach presented in Section 3.3.

The third phase also deals with the evaluation issue and is intended for getting more accurate
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Figure 3.1: A general model of the heuristics-design process.
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performance evaluation for the heuristics selected (see Section 3.7). The �nal phase deals

with the issue of generalization and is discussed in Section 3.8.

3.2 Background on Heuristics Learning

In this section, we present a brief survey of previous work in the area of automated design

of new heuristics. The work in learning new heuristics has focused mainly on the issue of

generating and evaluating new and \better" heuristics. We �rst present a classi�cation of

approaches in heuristics learning. We then follow this classi�cation to present examples and

strengths and weaknesses of di�erent learning methods. We then present a summary of how

this work is related to our current research and the type of design problems we have studied.

3.2.1 Classi�cation of heuristics-learning methods

The method for learning heuristics and strategies can be classi�ed as shown in Figure 3.2.

There are two main methods we have selected for classi�cation of existing learning methods.
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The �rst classi�cation is based on the amount of domain knowledge about the target problem

solver and heuristics that can be used in the design process. In this classi�cation, a learning

method can deal with either knowledge-rich or knowledge-lean heuristics [51]. The second

classi�cation is based on the number of heuristics maintained during the design process by

the learning system. In this classi�cation, a learning method can be either point based or

population based [51,66].

Knowledge-Rich Heuristic: As mentioned in Chapter 1, a heuristic method is classi-

�ed as knowledge rich if there exists a good world model for characterizing the relationship

between this heuristic method and its performance.

Knowledge-Lean Heuristic: When a model for characterizing the relationship between

a heuristic method and its performance is unknown, the heuristic method is classi�ed as

knowledge lean. In this research, the heuristics to be learned are knowledge lean.

Point-Based Learning Paradigm: In the point-based learning paradigm, the learning

system maintains one incumbent heuristic method that is modi�ed in place by the learning

system. Since each modi�cation of the HM destroys the original HM, there must be high

con�dence that the new HM would be better than the old one. This learning paradigm works

well for learning knowledge-rich heuristics because the world model can be used to guide the

generation of new HMs [7,67].

Three models for learning HMs in traditional machine-learning studies �t within this

paradigm. Fundamental work in this area was addressed by Mitchell [68,69], Minsky [70], and

Dietterich and Buchanan [71]. The basic principle is based on a generate-and-test paradigm

that generates plausible HMs, performs limited tests, and modi�es the HMs according to

feedback signals obtained. Each of these models are described briey later on in this section.

Many existing machine-learning systems �t one of these models.

The general point-based learning paradigm used by all three point-based models is shown

in Figure 3.3 [51]. The general model includes the Learning Performance Database and

Preprocessor, Credit Assignment unit, and Learning Element. The problem solver and its

initial conditions are shown as components outside the learning system.
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Figure 3.3: A general point-based learning model.

The Learning Performance Database and Preprocessor captures the e�ects of decisions

made by the problem solver on the application environment. The preprocessed data are

then used for credit assignment which include both temporal and structural credit assign-

ments. The Learning Element then modi�es the heuristic method based on recommended

modi�cations from the Credit Assignment unit.

Population-Based Learning Paradigm: In contrast to the point-based approach, the

population-based learning paradigm maintains multiple competing HMs and tries to �nd the

best HM within the pool. During the learning process, new HMs are added to the pool and

poor ones removed. This learning paradigm is useful for learning knowledge-lean heuristics

because we can apply weak methods for generating new heuristics that do not depend on a

good world model [3, 10]. It is not necessary for every new HM to perform well since there

are other alternatives.

One important di�erence between the population-based and the point-based approaches

is the potential need for scheduling available resources among the competing HMs in the

former (see Chapter 4). More details about this paradigm are presented in Sections 3.3 and

3.6.
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3.2.2 Learning knowledge-rich heuristics

Several general methods have been proposed for learning knowledge-rich heuristics. These

methods include analytic methods, learning by examples, and explanation-based learn-

ing. Learning by examples and explanation-based learning are examples of Dietterich and

Buchanan's model of learning.

Analytic Method. An analytic method is based on comprehensive analysis on the

problem solver with respect to its particular representation [72, 73]. This approach requires

a lot of domain knowledge and is very speci�c to a particular application.

Dietterich and Buchanan's Model. This point-based learning model [51,71,74] and

similar models proposed by Smith et al. [75] and Langley [76] belong to a class of models

for learning HMs of target problems with well-de�ned objectives. They learn by supervised

learning with perscriptive feedback that carries explicit information about the desired results

to guide the modi�cation of the HM tested. This learning model �ts within the framework

of the general point-based model shown in Figure 3.3.

Learning by example narrows the scope of possible heuristics by specialization and gen-

eralization [7]. Explanation-based learning exercises domain knowledge to explain the rela-

tionship between a heuristic method and its performance [6,77].

The major problem with learning knowledge-rich heuristics is that extensive domain

knowledge must be available; however, the focus of this research is on learning heuristics

without such knowledge.

3.2.3 Learning knowledge-lean heuristics

Several general methods have been proposed for learning knowledge-lean heuristics. These

include Minsky's learning model, hybrid point-based learning model, genetics-based learning,

and statistical methods.

Minsky's Model. This model [51, 70] is an older and perhaps less restricted model

of point-based learning systems. It applies well for learning HMs for target problems with
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unde�ned objectives in knowledge-lean environments, which tend to produce evaluative and

possibly delayed feedback signals.

An evaluative feedback carries only implicit information about the desired behavior but

explicit evaluation of the observed behavior. Such behavior are intrinsically a posteriori,

being measured or generated after the behavior has occurred. It requires a critic [78] that

has some prior knowledge of the objective function and can assess the goodness of external

states or sequences thereof. Scalar evaluative feedback signals are called reinforcements [70]

and learning from such signals, reinforcement learning.

This model requires the Markovian model to be satis�ed in order to simplify temporal

credit assignment. This condition is not true in most complex applications. Examples of

systems in this class include Klopf's drive reinforcement model [79] and Sutton and Barto's

reinforcement model [80].

Hybrid Learning Model. This point-based learning model [51] combines aspects of

Dietterich and Buchanan's model and Minsky's model. This learning model uses an approx-

imate temporal model instead of the Markovian model. It is intended for dealing with a

knowledge-lean learning environment with an ill-de�ned objective and evaluative feedback

and a non-Markovian temporal scope.

Examples of this type of learning system include EURISKO [81], Samuel's Checker

Player [9, 82], Williams' REINFORCEMENT model [83], classi�er system (the Michigan

approach) [84], and the truck-backer-upper problem of Widrow et al. [85]. This type of

learning does not address the lack of domain knowledge for structural credit assignment.

Genetics-Based Machine Learning. This population-based approach is based on

generate-and-test methods that generate new heuristics to be tested by applying operators

to existing heuristics that perform well [3, 10]. The reproduction operators applied include

crossover and mutation. The new heuristics are potentially good as they are generated based

on good ones. It is based on the application of genetic algorithms [27,28] to machine-learning

problems. More details about this approach are presented in Section 3.3.

Examples of genetics-based machine learning include genetic programming [29] and the

Pittsburgh approach to classi�er system [3].
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Statistical Competition. One form of statistical methods uses statistics to translate

data into concepts so that concept learning can be applied [12]. Another form of statistical

methods uses statistics to decide which heuristics to test more, given a pool of candidate

heuristics [42, 86]. This method is especially useful for learning heuristics whose exact per-

formance cannot be determined by a limited number of tests.

The main shortcoming of the statistical competition approach is the limitation of a �xed

pool of heuristics that excludes introduction of new and improved heuristics based on past

performance information.

3.2.4 Summary

For our target problems of learning knowledge-lean heuristics, genetics-based machine

learning is the most suitable approach. We obviously cannot use methods for learning

knowledge-rich heuristics. The two point-based learning models for learning knowledge-

lean heuristics have too many requirements that cannot be satis�ed by the type of problems

we want to address. Minsky's model requires a Markovian temporal model, and the hybrid

model requires some domain knowledge for structural credit assignment. The statistical

competition approach is limited to deal with a �xed pool of heuristics and does not deal

with incremental improvements through mutations and crossovers.

A genetics-based machine learning approach can generate new heuristics with potential

improvements over existing heuristics based on past performance information and without

requiring a lot of domain knowledge. In our heuristics-design system, we also incorporate

some aspects of the statistical competition approach to improve resource scheduling within

the genetics-based learning framework. In the next section, we examine the genetics-based

approach to machine learning in more detail and identify some key issues that we plan to

improve over existing work.
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3.3 Background on Evolutionary Computing

Genetics-based machine learning, the approach we have selected for our heuristics-design

process, is a part of a bigger �eld called evolutionary computing [87,88].

Evolutionary computing (EC) include genetic algorithms (GAs), evolutionary program-

ming (EP), evolution strategies (ES), classi�er systems (CFSs), genetic programming (GP),

and several other problem-solving strategies. They are based on the following biological

observations: the means of natural selection and the survival of the �ttest and the theories

of evolution [87]. They all share a common starting idea of providing the evolution of in-

dividual structures through the processes of selection, mutation, and reproduction. These

processes depend on the perceived performance of the individual structures as de�ned by an

environment [88].

In this section, we �rst present a brief overview of genetic algorithm (GA) before pro-

ceeding to genetics-based machine learning, an extension of genetic algorithms to machine-

learning problems. Finally, we summarize the key di�erences between our approach to

heuristics-design process (TEACHER) and traditional genetics-based machine learning.

3.3.1 Genetic algorithms

Genetic algorithms (GAs) are adaptive methods that may be used to solve search and

optimization problems. The foundations of GAs have been developed by Holland [84]. Since

then, GAs have been extensively studied [27,31,89]. They are based on the genetic processes

of biological organisms described �rst by Charles Darwin in The Origin of Species. Popu-

lations of competing individuals evolve over many generations according to the principle of

natural selection and \survival of the �ttest."

Genetic algorithms work with a population of \individuals" and a set of biologically

based operators de�ned over the population (such as mutation and recombination through

crossover). Each individual represents a possible solution to a given problem. Based on

the theory of evolution and the survival of the �ttest, only the most suited elements in a

population are likely to survive and generate o�springs [27].
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In GAs, each individual is traditionally represented as a string of �nite-length binary

values (0 or 1). This uniform representation makes GAs more independent of the target

applications and allows various studies to focus more on the properties and problems of the

approach.

A �tness level is assigned to each individual based on how good of a solution to the

problem that individual is. The highly �t individuals (having high �tness levels) are given

opportunities to reproduce by recombining with other individuals in the population. This

reproduction process results in new individuals known as o�springs. An o�spring shares

some features taken from each parent. The least �t members of the population are less likely

to get selected for reproduction and so die out.

A whole new population of individuals (possible solutions) are thus produced by selecting

the best individuals from the current generation and mating them to produce a new set of in-

dividuals. This new generation contains a higher proportion of the characteristics possessed

by good members of the previous generation. Over many generations, good characteristics

are spread throughout the population, being mixed and exchanged with other good charac-

teristics as they go. This process allows the most promising areas of the search space to be

explored [90].

The overall process within GAs can be viewed as iterating over two di�erent steps: (1)

evaluation of individuals of a population in the current generation and assigning �tness levels

to each individual and (2) generation of a new set of individuals (or new population) for a

new generation by (a) selecting existing individuals based on their �tness values and (b) using

selected individuals to reproduce (either by combining and/or modifying these individuals).

This iterative process is shown in Figure 3.4.

In most traditional GAs, the �tness of each individual is exact and can be found with

negligible costs. However, there are cases where there are \noises" in the evaluation process

that result in variations of performance over multiple evaluations and in uncertainties over

the �tness of each individual [91{93]. This condition can signi�cantly increase the amount

of �tness evaluations performed during each generation.
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GAs are used for solving many di�erent problems in areas such as scheduling, combina-

torial optimization, numerical function optimization, image processing and recognition, and

engineering design [27,87,90].

There are many issues in genetic algorithms that have been and continue to be stud-

ied, including issues of representations, population size, evaluation of �tness, selection of

individuals for reproduction, and reproduction methods [88,90,94,95].

3.3.2 Genetics-based machine learning

Genetics-based machine learning is an extension of genetic algorithms (GAs) to machine-

learning problems [27]. This term is used in this thesis to cover the applications of the idea

behind genetic algorithms to develop a \heuristic" or \strategy" that represents a problem-

solving process, instead of developing solutions for each problem directly.

Genetics-based machine learning is still based on the same idea of evolution and natural

selection as in genetic algorithms. A population of individuals is maintained and evaluated

for �tness values. A new population of individuals is then generated by selecting existing

individuals for reproduction based on their �tness values (see Figure 3.4).
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The higher complexities of target problems usually mean that the representation of each

competing individual is more complicated than just a string of 0's and 1's [27, 29]. Some

example representations of an individual in genetics-based machine learning include an if-

then rule [27], a set of rules [96], a Lisp expression [29], or a vector of numbers [36].

Because the structure of each individual can be complex, the reproduction operators such

as mutation and crossover can also be more complex. In addition, more domain knowledge

can be applied to create knowledge-intensive reproduction [27, 94] such as those used in

GIL [96].

Since the goal is to develop a \heuristic" or \strategy" for problem solving, this area of

evolutionary computing also has to deal with \noisy" conditions more often. This condition

means that the �tness of each individual may not be exact, and that multiple applications

of each individual may be necessary.

All of these characteristics �t in with the type of heuristics-design problems we want to

address: more complex applications with more complex representations for each HM and

nondeterministic (noisy) performance.

The cost of evaluating each individual is usually higher in genetics-based machine learning

than in traditional GAs since the target problems are more complex and noisy evaluation

conditions are more common.

Existing work in genetics-based machine learning can be divided into two di�erent ap-

proaches: (a) treating the entire population as the \heuristic" or \strategy" to be developed

and (b) treating each individual as a complete strategy.

(A) Population as Heuristic. This approach treats each individual within the current

population as a contributing component to the overall solution, which is the entire popula-

tion. There must be cooperation among individuals in order to achieve better performance

for the entire population. This approach is known in the genetic algorithm community as

the Michigan approach [89, 97]. This approach requires credit assignments to divide the

credits or debits to various contributing individuals in an episode. The most common credit

assignment strategy is the bucket brigade algorithm [27].
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This case with the entire population as a single solution is more like a point-based learning

approach (using a hybrid model) rather than a population-based approach. It also requires

that all components of a solution be homogeneous. However, this approach can be applied

to improve the problem solver during the problem-solving process (i.e., perform learning

on-line).

Examples of this type of approach include most classi�er systems (CFSs) such as CS-1 [27]

and CFS-C [98].

(B) Individual as Heuristic. This approach treats each individual as a solution (or heuris-

tic method) that competes with other individuals within the population. In this case, each

individual may have to be more complex than with the �rst approach and can contain compo-

nents that are entirely di�erent from one another, i.e., more heterogeneous components. This

approach is known as the Pittsburgh approach in the genetic algorithm community [89,97].

This approach does not require credit assignments to split up credits or debits since each

performance feedback is directed to only one individual. As feedbacks come less often to

each individual, this approach usually requires more evaluations to reach a �nal result.

This population-based approach is more suitable for our problems since our HM is usually

nonuniform, with no good model of interactions among various components of the HM to

allow credit assignments on performance feedback.

Examples of this type of approach include the Pittsburgh approach [89, 97] to classi�er

system (such as LS-1 [99], GABIL [100], and GIL [96]) and genetic programming (GP) [29].

There are some systems that use a hybrid of both approaches by treating each individual

as a potential solution with components that can contribute to the problem-solving pro-

cess. In this case, credit assignments within each individual to assign credits/debits to each

component is useful. SAMUEL [3] is an example of this hybrid approach.

3.3.3 Key characteristics of TEACHER

Our present learning system is aimed towards methods for coping with anomalies in

performance evaluation, general resource scheduling strategies in multi-objective learning,
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and generalization of HMs learned. By combining the following three features, our system

is unique as compared to other genetics-based learning studies.

� Our learning environment is noisy so that the performance of each HM cannot be

evaluated using a single test.

� We consider applications in which HMs behave di�erently under di�erent situations

(subdomains - see Section 2.5). Existing methods generally ignore this problem and

focus on only one set of statistically related test cases.

� We assume that the cost of evaluating an HM on a test case is expensive. This cost

forbids performing extensive tests on each HM. In several applications presented in

Chapter 6, a fast workstation takes a few days to perform one to two thousand tests.

This limited testing is in contrast to many other studies that assume that tests are

inexpensive and that many tests can be performed in the time allowed [29]. For sim-

plicity, we consider logical time in this thesis in which one unit of time is needed for

each test of an HM.

These conditions are more realistic for complicated real-world applications for which we want

to design new heuristics.

The goal of our study is to learn, under limited computational resources, good HMs for

solving application problems and to generalize the HMs learned to unlearned subdomains.

We choose to use the average metric for comparing HMs and examine the spread of per-

formance values when HMs have similar average performance. When there are multiple

objectives in comparing HMs, we constrain all but one objective during learning and opti-

mize the unconstrained objective. In this case, our learning system proposes more than one

HM, showing trade-o�s among these objectives.

3.4 Overview of TEACHER

In this section, we discuss our system for designing heuristics. TEACHER is a genetics-

based learning system that we have developed in the last six years [51]. Preliminary designs
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of the system have been studied with respect to learning process-placement strategies on a

network of workstations [20], learning process-placement strategies on distributed-memory

multicomputers [42], tuning parameters in a stereo-vision algorithm [21], learning smaller

feed-forward neural networks [101], and learning new heuristics for a branch-and-bound

search [102, 103]. We have also studied resource scheduling strategies in genetics-based

learning algorithms [36,42,91,104,105].

The objective in developing TEACHER is to design, under resource constraints, HMs

that are performance related and knowledge lean. The operations of the system are divided

into several distinct phases. The operations in each phase are designed to independently

deal with di�erent issues in the heuristics-design process (see Section 3.1).

There are four phases of operation in designing new HMs using TEACHER: classi�-

cation, learning, veri�cation, and generalization. Currently, the classi�cation phase must

be performed manually while the other three phases are automated [41]. There are plans

for incorporating automated classi�cation and methods for dealing with the decomposi-

tion/integration issue into the TEACHER framework in the future. The overall design

process used by TEACHER is presented in Figure 3.5. We describe the objectives and key

issues of each phase in this section and our solutions for each of these phases in the following

sections.

Classi�cation phase

This �rst phase of the design process partitions test cases in an application into distinct

subsets. There are two steps in this phase.

a) Subspace classi�cation. We will show in Section 3.5 that a problem domain can have

di�erent regions to be solved e�ciently by di�erent HMs. In this case, each region should be

identi�ed whenever possible so that di�erent HMs can be developed for di�erent regions. The

�rst step is then to partition the problem domain into a small number of distinct subspaces

so that new HMs are learned/designed for each. Such partitioning is guided by commonsense

knowledge expressed in the form of decision rules. By applying these rules, we can determine

for a new test case the subspace to which it belongs.
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Figure 3.5: Organization of the heuristics-design process in TEACHER.

b) Subdomain classi�cation. For a problem subspace, we need to partition it into sub-

domains so that the performance of HMs in each subdomain can be statistically estimated

based on a subset of test cases within each subdomain. As we have seen in Section 2.5,

the performance of HMs cannot be compared or combined directly across subdomains in a

learning experiment.

Learning phase

In the learning phase, the goal is to �nd e�ective HMs for each of a limited set of sub-

domains. For each subdomain, the learning phase must operate under resource constraints.

The tasks in the learning, veri�cation, and generalization phases are shown in Figures 3.6

and 3.7, respectively.

To perform learning, the system �rst selects a subdomain, generates good HMs (or uses

existing HMs from users or previous learning experiments) for this subdomain, and schedules
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tests of the HMs based on the available computational resources. Learning phase is the only

phase in the design process where new HMs are introduced. This phase is also the most

complicated phase within the design process. When learning is completed, the resulting HMs

need to be fully veri�ed, as HMs obtained during learning may not be tested adequately.

Note that learning is performed on one subdomain at a time.

There are three key issues in this phase.

a) Heuristics generation. This issue entails the generation of good HMs given the per-

formance information of \empirically good" HMs. As discussed in Section 3.2, we use weak

generation operators from a genetics-based machine-learning approach here [10,29].

b) Performance evaluation. This problem is related to the evaluation of the performance

of HMs during learning, given that there may be multiple performance measures, that there

is no de�ned relationship among them, and that HMs may have di�erent performance across

di�erent subdomains (Chapter 2).

c) Resource scheduling. The issues here are on the selection of HMs for further testing,

the termination of the current generation, and the initiation of the next generation, given

122



performance information of HMs under consideration. These problems are important when

limited computational resources are available and tests of HMs are expensive and noisy. We

schedule computational resources rationally by choosing (i) the number of tests on each HM,

(ii) the number of competing HMs to be maintained at any time, and (iii) the number of

problem subdomains to be used for learning and for generalization. We study in Chapter 4

two related problems in resource scheduling: sample allocation and duration scheduling.

Veri�cation phase

The goal of the veri�cation phase is to obtain more complete performance information

about the set of HMs with the highest performance at the end of the previous learning phases.

As mentioned previously, HMs obtained during learning may not be tested adequately and

the performance of each HM during the learning phase is usually based on incomplete data

over a subset of test cases for the target subdomain. This incomplete information is not

enough for selecting the best and generalized HMs during the generalization phase. The

incomplete performance information is remedied through full evaluation of each HM selected

at the end of each learning phase during each veri�cation phase.

In addition, the �nal generalization phase for evaluating the selected HMs over the entire

problem domain requires performance information for every HM on every subdomain. A

veri�cation phase can evaluate each selected HM fully on all subdomains from all learning

phases and any additional subdomains provided by the users. The main potential issue in

the veri�cation phase is in the scheduling of this full evaluation process.

Generalization phase

The last phase is the generalization phase whose goal is to generalize the performance

of the HMs learned in one or more learning phases to cover the entire problem domain,

including subdomains that may not have been used during the design process. There are

two key issues to be studied.
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a) Performance of HMs across di�erent subdomains. As discussed in Section 2.5, HMs

may have di�erent performance behavior in di�erent subdomains; hence, these values cannot

be combined directly. A de�nite result is possible only for the simplest and most ideal case in

which one HM has the best performance in all subdomains. For other cases, only heuristics

can be used to compare di�erent HMs. We present in Chapter 5 a heuristics method to

evaluate the performance of HMs for a group of subdomains.

b) Cost-quality trade-o�s. This issue involves determining e�cient HMs that perform

well in the application. Should there be multiple HMs to be applied (at a higher total cost

and better quality of results), or should there be one HM that is costly to run but generates

high-quality results? These issues are studied in Chapter 6 when we present experimental

results on learning new HMs for several applications.

3.5 The Classi�cation Phase

The purpose of the classi�cation phase is to partition the target problem domain of a

target application into smaller subsets in order to (a) identify di�erent regions within the

problem domain that require di�erent types of HMs to solve e�ciently and (b) make sure

that performance values from test cases used during each learning phase are representative

and can be used for statistical estimation of the true performance of unseen test cases.

Within an application domain, di�erent regions of the problem domain may have di�erent

characteristics, each of which can best be solved by a unique HM [26]. Since learning

is di�cult when test cases are of di�erent behavior and it is necessary to compare HMs

quantitatively, we need to decompose the problem domain into smaller partitions before

learning begins. In the following we de�ne a problem subspace and a problem subdomain.

Problem subspace

A problem subspace is a user-de�ned partition of a problem domain so that HMs for one

subspace can be learned independently of HMs in other subspaces. Subspace partitioning is

important when test cases in an application have vastly di�erent behavior. However, in some
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cases, it may not be possible to de�ne the attributes needed for partitioning or the number

of attributes may be too large. When this happens, nonparametric clustering methods, such

as those based on neural networks, may have to be used. Another possibility is to always

apply multiple HMs for each test case, resulting in a higher computational cost for a better

solution.

We use two examples from Chapter 2 to demonstrate the idea of problem subspaces.

Example 3.1 For instance, consider solving a vertex-cover problem (see Example 2.2). In

designing a decomposition HM to decide which vertex to be included in the covered set,

previous experience on other optimization problems indicates that HMs for densely connected

graphs are generally di�erent from HMs for sparsely connected ones. Consequently, the

problem domain of all graphs may be partitioned (in an ad hoc fashion) into a small number

of subspaces based on graph connectivities and learned independently.

Example 3.2 As another example, in generating test patterns for VLSI circuits, previous

experience shows that sequential circuits require tests that are di�erent from those of com-

binatorial circuits. As a result, we can partition the problem domain into two subspaces.

However, we are not able to partition the subspace of sequential circuits into smaller sub-

spaces as it is not clear which attributes should be used in this partitioning.

Problem subdomain

We have already de�ned a di�erent type of partitioning of problem domains in Section 2.5.

A problem subdomain in this thesis is a subset of the problem domain (or problem subspace)

whose performance statistic satis�es the independent and identically distributed (IID) prop-

erty over the entire subset. The reason for this partitioning is to allow statistical estimation

of the performance of HMs in a subdomain, which is not possible across subdomains.

In the same way that test cases are partitioned into subspaces, minimal domain knowl-

edge should be used in knowledge-lean applications to partition test cases into subdomains.

In addition, we have identi�ed in Section 2.4.3 several statistical tests for testing the IID
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property. These tests can be used in conjunction with domain knowledge to form problem

subdomains.

Continuing with the example on the vertex-cover problem, we discover in Example 2.12

that a problem subdomain can be de�ned as random graphs with a certain degree of con-

nectivity. As another example, in generating test patterns for testing VLSI circuits, we may

have to treat each circuit as an individual subdomain, as we do not know the best set of

attributes to classify circuits (see Example 2.13).

Current strategy

Currently, subspace classi�cations must be guided by expert or domain knowledge based

on past performance information. Such partitioning is generally guided by commonsense

knowledge or by user experience in solving similar application problems. It requires knowing

one or more attributes to classify test cases and is driven by a set of decision rules that

identify the subspace to which a test case belongs. In most cases, we simply assume that

the entire problem domain is one subspace.

Subdomain classi�cations are currently performed by users. Statistical tests from Sec-

tion 2.4.3 can be used to determine (a) whether a given set of performance data is IID and

(b) whether di�erent sets of IID performance values (based on test cases with di�erent at-

tributes) belong to the same problem subdomain. These results can then be used to form

subdomains. Minimal domain knowledge should be used in this process.

3.6 Architecture for Learning Heuristics in One Subdomain

In this section, we present our approach to learn new HMs under resource constraints for

a single subdomain. Figure 3.8 shows the architecture of our resource-constrained learning

system for one subdomain [51]. This population-based learning system is based on the

genetics-based machine-learning paradigm. There are �ve main components in the system:

(a) Resource Scheduler, which decides on the best way to use the available resources,
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(b) Internal Critic, which provides feedback based on the performance measured to

indicate how well a particular HM has performed,

(c) Population-Based Learning Element, which generates new HMs and maintains a

pool of existing ones and their past performance,

(d) Test-Case Manager, which generates and maintains a database of test cases used

in HM evaluation, and

(e) Problem Solver, which evaluates an HM using a test case.

In this research, we assume that the application-speci�c Problem Solver and Test-Case

Manager are user-supplied. The remaining three components are designed to deal with the

three key issues presented in Section 3.4: heuristics generation, performance evaluation, and

resource scheduling.

3.6.1 Problem Solver

The Problem Solver component is simply the target problem solver whose heuristics we

want to improve. The purpose of the problem solver is to solve a particular test case using

its heuristics. The performance of applying the problem solver on a test case is in terms of

the quality of the solution found and the cost of the problem-solving process.

In our learning strategy, the problem solver must be able to accept (a) the speci�cation

of the HM to be used during the problem-solving process and (b) the test case to be solved.

There must also be a mechanism for the measured performance of the problem-solving process

using the speci�ed HM on a speci�c test case to be fed back into the learning system.

3.6.2 Test-Case Manager

The purpose of the Test-Case Manager is to provide test cases to be used in learning.

These test cases are either generated randomly or retrieved from a database of stored test

cases.

In our current implementation, the Test-Case Manager simply selects from a prede�ned

sequence of a user-supplied pool of test cases. When a test case is requested for a particular
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HM, the Test-Case Manager returns the �rst test case within the sequence that has not yet

been evaluated by the chosen HM, which means that di�erent HMs are evaluated over the

same set of test cases. This fact simpli�es performance comparison between di�erent HMs.

3.6.3 Population-Based Learning Element

The Population-Based Learning Element maintains a pool of active HMs. At the end of

each generation, a new set of HMs is generated to replace existing HMs. Several top active

HMs are usually retained along with the new HMs while other HMs are removed from the

active pool.

In this research, the Population-Based Learning Element generates new HMs using weak

domain-independent operators, such as crossover, mutation, and hill-climbing. These are

traditional operators in genetic algorithms for generating new HMs [10, 31]. The process

for selecting existing HMs for reproduction is also the same as in traditional genetics-based

machine learning.

More advanced methods that usually require additional domain knowledge are left for

future study. They are currently not necessary because the application domains in which

we are interested are knowledge lean, a fact which makes it very di�cult to �nd a powerful

method for generating new HMs. In addition, a more powerful HM generator is likely to be

dependent on the targeted application domain.

3.6.4 Internal Critic

The Internal Critic normalizes the performance value of each test case tested by a candi-

date HM against the performance value of the same test case evaluated by the baseline HM.

It then updates the performance metrics of the candidate HM. Note that this is similar to

updating the �tness values of HMs in classi�er-system learning.

We have extended the performance-evaluation process for two HMs proposed in Chapter 2

to deal with the general case with more than two HMs. We have chosen to use a �xed baseline

HM during each learning phase and compare di�erent HMs based on their estimated average

129



normalized performance. The baseline HM should be the best existing HM that is the target

of improvement whenever possible. There are some potential anomalies due to the usage of

a �xed baseline that will be explained in Chapter 5. However, the ordering of HMs does not

have to be perfect during a learning phase, and a certain degree of uncertainty is acceptable.

In addition, a �xed baseline HM allows constraints in multi-objective optimization to be

applied in a uniform fashion.

In general, the Internal Critic performs credit assignment [106] that apportions credit

and blame on HDEs using results obtained in testing (see Figures 1.1 and 3.3). Credit

assignments can be classi�ed into temporal credit assignment (TCA) and structural credit

assignment (SCA). TCA is the �rst stage in the assimilation of feedback and precedes SCA

during learning. TCA divides up feedback between current and past decisions. Methods for

TCA depend on whether the state space is Markovian: non-Markovian representations often

require more complex TCA procedures. On the other hand, SCA translates the (temporally

local but structurally global) feedback associated with a decision point into modi�cations

associated with various parameters of the decision process.

In knowledge-lean applications that we consider in this thesis, a world model that relates

states, decisions, and feedback signals generated by the learning system or measured in

the environment is missing. As a result, credit assignment has a much weaker inuence

on performance improvement. An example of such a TCA algorithm is the bucket-brigade

algorithm in classi�er-system learning [10]. Note that the lack of a world model for credit

assignment is the main reason for maintaining competing HMs in our learning system.

3.6.5 Resource Scheduler

The Resource Scheduler schedules tests of HMs based on the available computational

resources. Note that scheduling is critical when tests are computationally expensive. There

are two main problems in scheduling during each learning phase.

The sample-allocation problem involves the scheduling of tests of HMs in a generation,

given a �xed numbers of tests in the generation and HMs to be tested. This problem is known
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in statistics as the (sequential) allocation problem [107, 108] and the scheduler is known as

the local scheduler.

The duration-scheduling problem involves deciding when to terminate an existing gener-

ation and start a new one. The part of the resource scheduler that deals with this problem

is known as the global scheduler.

These two related problems, sample allocation and duration scheduling, as well as the

scheduling of tests under multiple performance objectives, are studied in the next chapter.

3.7 The Veri�cation Phase

Within the veri�cation phase, we want to �nd more complete performance information

about the HMs we have generated during the learning phase(s). The generalization phase

requires performance information on every subdomain used in the heuristics-design process

from each HM selected. However, the performance information obtained during each learning

phase pertains to only one subdomain and is usually incomplete even for that subdomain due

to resource constraints. In the veri�cation phase, we have to evaluate the HMs we consider

good in more detail, which is accomplished through veri�cation of each HM on all problem

subdomains under consideration.

The operations within the veri�cation phase (shown in Figure 3.9) are very similar to the

operations in the learning phase except for a few di�erences. First, there is no generation

of new HMs in the veri�cation phase, and a �xed pool of HMs is maintained. Second, more

than one subdomain of test cases can be used by the Test-Case Manager. Third, performance

from di�erent subdomains is dealt with separately and independently by the Internal Critic.

Fourth, the resource scheduling problem is di�erent from the one in the learning phase.

In the veri�cation phase, a �xed set of HMs is evaluated on test cases from several di�erent

subdomains. The general issue in resource scheduling is in selecting a proper subset of HMs

and in allocating the proper amount of time to each subdomain. The goal is to minimize

uncertainties in the performance of all HMs across all subdomains. At present, we evaluate

each HM in the selected subset fully on each problem subdomain under consideration. This
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process is known as full evaluation, which requires no scheduling. Future work can extend

the strategy by considering resource constraints in the full evaluation process.

Full evaluation ensures that all HMs have the same amount of performance information

such that performance comparisons among HMs can be \fair." Assuming that each subdo-

main �i has a �nite set Ii of test instances, full evaluation ensures that when subdomain �i

is used in a veri�cation phase, all HMs are tested over the entire set Ii of test cases.

3.8 The Generalization Phase

Based on information in Section 2.5, a problem domain (or problem subspace) can contain

many problem subdomains. Each of these subdomains have di�erent performance behavior
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and cannot be combined or compared directly. Although good HMs for a particular subdo-

main can be developed during each learning phase, the objective of the design process is to

�nd a good HM for the entire problem domain.

Generalization is the process of �nding a good HM for solving a randomly chosen test

case in a problem domain so that this HM has a high probability of performing better than

other competing HMs for solving this test case. Since there are in general a large (and

possibly in�nite) number of subdomains in a problem domain, this generalization process is

critical in the overall heuristics-design process.

Example 3.3 To illustrate the concepts presented in this section, we show in this example

the average symmetric speedups of four decomposition HMs used in a branch-and-bound

search to solve vertex-cover problems. (The use of symmetric speedup is de�ned in Eq. (2.8).)

We treat all test cases as belonging to one subspace, and graphs with the same degree of

connectivity are grouped into a subdomain. We apply genetics-based learning to �nd the

�ve best HMs for each of three subdomains with connectivities 0.1, 0.35, and 0.6.

Figure 3.10 shows the performance of the best HMs learned in each subdomain across all

subdomains. We have also identi�ed a single generalized HM among the �fteen HMs learned

and show its performance in Figure 3.10. We �nd that the generalized HM is not the top

HM learned in each subdomain, indicating that the best HM in each subdomain may be too

specialized to the subdomain. We have also found that generalization is possible in terms of

average performance. We must point out that the average performance should not be used

as the sole indicator, as performance variances may di�er from one subdomain to another.

The generalization process is di�cult because (a) performance from di�erent subdomains

must be treated separately and independently and (b) there are usually many more subdo-

mains within the target problem domain (or problem subspace) than the ones used in the

heuristics-design process. Consequently, each subdomain performance must be treated in-

dependently. A de�nite result can then be reached only for the ideal case of having one

HM that performs better than all other selected HMs in all given subdomains. For all other
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cases, the �nal result must be based on some heuristics and should be left for the user to

decide.

It is still possible to provide an educated guess in distinguishing some of the better HMs

within the selected set. We have developed some generalization heuristics for ordering HMs

based on the available performance information so that the user's task can be simpli�ed. We

discuss generalization in detail and present some of these heuristics in Chapter 5.

In some situations, multiple HMs may have to be identi�ed and applied together at a

higher cost to �nd a solution of higher quality. We discuss this issue in Chapter 6.
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3.9 Summary

In this chapter, we have examined issues involved in the heuristics-design process and

have developed a systematic framework for addressing these issues in our heuristics-design

problems.

There are �ve major issues in designing new heuristics.

1. Decomposition and Integration of Problem Solvers. This issue involves breaking down

complex problem solvers into smaller and more manageable components so that a

good HM can be designed for each component. It also involves integration of HMs

from various components together so that the �nal problem solver is as e�cient as

possible.

2. Classi�cation of Problem Domains. This issue involves partitioning a target problem

domain into smaller subdomains so that performance data within each subdomain are

IID. This IID property allows performance of HMs to be statistically estimated based

on a subset of performance values.

3. Generation of New Heuristics. This issue involves the generation of new HMs based

on past performance information with the objective of getting \better" HMs.

4. Evaluation of Heuristics. This issue involves �nding and comparing the performance

of various HMs.

5. Generalization of Heuristics to Unseen Test Cases. This issue involves identifying the

HM that is most likely to give the best performance over the entire problem domain,

based on available performance information.

Our target application problems are characterized as having no world model to relate

heuristics speci�cations to its performance (knowledge lean) and having nondeterministic

performance with expensive tests.

Based on our survey of previous work in machine learning, we have selected to use

genetics-based machine learning, a population-based approach. This method is based on
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applications of an evolution and natural selection process to machine-learning problems and

has its root in the �eld of genetic algorithms. It is also a part of a larger �eld called

evolutionary computing.

TEACHER, our system for designing new HMs, divides the operations in the overall de-

sign process into four distinct phases: classi�cation, learning, veri�cation, and generalization.

Each phase addresses di�erent design issues.

1. The classi�cation phase involves partitioning the problem domain into subdomains

so that the performance behavior within each subdomain is IID. Domain knowledge and

statistical tests for the IID property (see Section 2.4.3) can be used in this process. This

phase must be done before the start of the remaining phases.

2. The learning phase involves developing better HMs for one particular subdomain

under resource constraints. The implementation of this phase is mostly based on traditional

genetics-based machine learning.

There are three main operations within this phase:

(a) generation of new HMs based on traditional genetics-based reproduction methods,

such as crossover and mutation,

(b) performance evaluation (similar to �tness identi�cation in genetic algorithms) based

on the strategy presented in Chapter 2, and

(c) scheduling of HMs for evaluation to optimize system performance based on limited

resources.

The issues involved in resource scheduling and our strategies are presented in Chapter 4.

3. The veri�cation phase involves obtaining more accurate and more complete perfor-

mance information for the best HMs from each learning phase. This veri�cation is necessary

since performance information about each HM during the learning phase is usually based on

a partial subset of test cases for a single subdomain. In contrast, the generalization phase

requires accurate information about the performance of each HM over multiple subdomains.
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4. The generalization phase involves selecting from among the learned HMs the best HM

over the entire problem domain. This process is di�cult because (a) performance informa-

tion about each HM is incomplete even after the veri�cation phase and (b) performance

from di�erent subdomains must be treated separately and independently. Our strategy for

generalization is presented in Chapter 5.
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4. RESOURCE SCHEDULING IN GENETICS-BASED LEARNING

In this chapter, we study the problem of resource scheduling in genetics-based learning.

There are two issues to be addressed in resource scheduling in population-based learning: (a)

allocation of resources among active HMs, known as the sample-allocation problem and (b)

deciding the proper time to start a new generation by generating a new set of HMs, known

as the duration-scheduling problem.

The most common sample-allocation strategy is the static round-robin strategy that

allocates an equal amount of resources to each HM. We have developed a nonparametric

minimum-risk strategy that takes advantage of available performance information without

making any assumptions on performance distribution. In addition, when certain assumptions

on performance distributions are met, we have also developed a minimum-risk strategy that

can take advantage of this information.

We have also developed a dynamic duration-scheduling strategy operating under multiple

performance objectives. This strategy, known as DMDS, is designed to avoid the condition

where all HMs are eliminated from consideration when each HM violates some or all of the

constraints imposed on various performance objectives. DMDS uses an iterative re�nement

approach to develops HMs for harder and harder constraints until all target constraints are

met. Ideally, the amount of time spent to achieve each successive set of constraints should

increase in a geometric fashion.
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Table 4.1: Symmetric speedups of the best HMs based on three di�erent schedules and 150
tests. HMs in each run are selected randomly from a pool of 100 HMs. The

average speedup is evaluated using 15 randomly generated test cases.

Schedule
Sub-

domain

Sym-Speedup of the Best HM
Run 1 Run 2 Run 3

10 HMs of 15 DA -0.56 -2.08 0.01
tests each DB -0.22 -0.16 -0.01

75 HMs of 2 DA 0.01 0.01 0.01

tests each DB -0.03 -0.03 -0.03

20 HMs of 5
DA 0 -0.56 0.01

tests each;
the 5 best HMs

DB 0 -0.16 -0.01
10 times each

4.1 Introduction

Resource scheduling strategies are used for scheduling tests of HMs during each learning

phase, based on the available computational resources. In population-based learning, mul-

tiple active HMs are maintained during learning. The resource scheduler chooses either to

continue learning by allocating available resources among active HMs or to generate a new

set of HMs to be evaluated. Resource scheduling of tests in learning is crucial when tests

are expensive and computational resources are limited.

Example 4.1 To illustrate the importance of scheduling, consider the testing of HMs in the

vertex-cover problem discussed in Chapter 2. Suppose we have identi�ed two subdomains:

DA (with graph connectivity of 0.1) and DB (with graph connectivity of 0.6). To illustrate

the e�ect of scheduling, we randomly generated 100 decomposition HMs and evaluated each

on DA and DB.

Table 4.1 shows the average symmetric speedups of HMs selected under three resource

schedules with respect to those of the conventional HM. The results show that (a) there are

trade-o�s between the number of HMs tested and the performance of the best HM found

and (b) more detailed evaluation of several top HMs at the end of learning is bene�cial.
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In this chapter, we discuss two problems in resource scheduling and their solutions in our

population-based learning system: sample allocation and duration scheduling. The sample-

allocation problem involves the scheduling of tests of HMs in a generation, given a �xed

number of tests in each generation and the HMs to be tested. The duration-scheduling

problem involves deciding when to terminate an existing generation and to start a new one.

In the rest of this chapter, we discuss our model and assumptions on the sample-allocation

and duration-scheduling problems, issues on designing resource scheduling strategies, and our

proposed scheduling algorithms. We also present some methods for estimating parameters

of performance distributions required by various dynamic strategies in order to increase

the e�ciency of these strategies. Finally, we evaluate our resource scheduling strategies by

applying them on some real-world applications.

4.2 Model and Assumptions

We describe in this section a statistical model for scheduling tests in our learning system.

A general comprehensive model is too complex to be analyzed since many parameters are

unknown a priori. Here, we �nd good scheduling strategies based on a simpli�ed model and

apply these strategies as heuristics in practice. We then evaluate empirically these strategies

on the original general model.

We assume that the performance values of HM a over a problem subdomain constitute

a population with a distribution fa(x). Each evaluation of HMa is equivalent to drawing a

performance value from the distribution. We make the following assumptions in our study.

� In multi-objective applications, we assume that there are k + 1 performance measures

J1; :::; Jk; J0. The original objective is assumed to be maximizing the normalized per-

formance for each of these measures. We then transform measure Ji, i = 1; : : : ; k,

into a constrained measure by imposing a minimum level constraint, �i, for each con-

strained measure Ji (see Section 2.3). The objective is then for each HM to satisfy the

constraints for Ji, i = 1; : : : ; k, and to maximize J0, the unconstrained measure to be

optimized.
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� We de�ne �a;i and �̂a;i, respectively, as the expected normalized performance and the

estimated sample-mean performance for HM a on performance measure Ji. Without

loss of generality, we may use �a and �̂a to refer to �a;0 and �̂a;0, respectively. Here,

fa(x) is the distribution of performance measure J0 for HM a.

� Distribution function fa(x) is generally unknown and nonidentical for di�erent HMa's,

and tests drawn from fa(x) may be dependent. In our simpli�ed analysis, we assume

that samples drawn from fa(x) are IID for each HM a.

� The means of populations belong to a distribution that is hard to estimate. Further,

crossovers and mutations applied at the end of a generation may change this distri-

bution in an unknown fashion. For simplicity, we ignore this e�ect in our simpli�ed

model.

� We assume that the time to evaluate one test case using one HM is one unit. That is,

we consider only logical time in our scheduling study.

4.3 Sample-Allocation Problem

Sample allocation entails the scheduling of tests of HMs in a generation, given a �xed

number of tests in the generation and the set of HMs to be tested. This problem is known

in statistics as the (sequential) allocation problem [107, 108] and the scheduler is known as

the local scheduler.

In this section, we �rst briey summarize previous work in this area, which includes the

round-robin strategy, the most commonly used sample-allocation strategy. We then describe

two dynamic sample-allocation strategies we have developed based on di�erent assumptions:

the minimum-risk and the nonparametric minimum-risk strategies.

4.3.1 Previous work

The original sequential allocation problem suggested by Bechhofer [107] is to decide the

optimal allocation of picks, given a �xed total number of picks, assuming that the population
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mean and variance are known. The objective of these strategies is to maximize P (CS), the

probability of correctly selecting the population with the highest population mean when time

is expended. Optimal solutions to problems in this class are unknown, and many extensions

have been proposed to accommodate various trade-o�s and relaxed assumptions.

Existing sample-allocation strategies can be classi�ed into static and dynamic.

Static sample-allocation strategies have a selection sequence �xed ahead of time, inde-

pendent of the values of the picks obtained during selection. They are easier to analyze due

to their simplicity. The most commonly used static strategy is the round-robin strategy.

The round-robin strategy takes samples from each population in turn. It allocates T=n

tests to each population, given T tests and n population, while maximizing the worst-case

P (CS) when all populations have the same variance [109]. Its drawback is that it tests

the worst population to the same extent as the best, an obviously ine�cient way of using

resources. This drawback is important when the amount of resources available is limited.

This strategy is also the most commonly used strategy in genetics-based learning sys-

tems [3, 10, 29]. It is the benchmark to be tested against when any new strategies are

developed.

Dynamic (or adaptive) sample-allocation strategies select the population for testing based

on previous sample values and other run-time information. Although more exible, they are

usually more complicated. One such strategy was developed by Tong and Wetzell to opti-

mize P (CS) when the selection process ends. It focuses on populations with high sample

means but also tests others with smaller means if they were not tested enough [108].

Sample-allocation strategies developed in statistics are not directly applicable in our

learning system because they were developed with di�erent objectives. In statistical sample

allocation, the objective is to maximize P (CS), given a �nite number of populations. In

contrast, our objective is to maximize the expected population-mean value of the population

selected, given in�nitely many populations initially. Since the maximum number of tests in

learning is limited, we are interested in how close the actual performance of the selected HM

is to the maximum performance within a pool of HMs.
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We have previously developed a minimum-risk scheduling strategy [42, 91], which is a

dynamic sample-allocation strategy with the above objective in mind. This strategy is pre-

sented in Section 4.3.2. In our derivation, we assume that the distribution of each population

is normal with a common variance, an obviously restricted assumption for many applications.

4.3.2 Minimum-risk sample-allocation strategy

Theminimum-risk strategy is a dynamic allocation strategy we have previously developed

for minimizing the di�erence in performance of the selected HM from the maximum [42].

This strategy is designed for allocating resources during the learning phase and is based

on decision theoretic methods [110, 111]. Its goal is to minimize the expected value of a

prede�ned loss function (or risk). We have chosen to de�ne the loss function in terms of the

estimated error between the true and the estimated performance level of the best population.

In deriving the strategy, we assume that the distribution of each population (HM i),

fi(x), is normal with population mean �i and variance �2i (N(�i; �
2
i )).

Let K be the number of populations (HMs). Population i (HM i) is characterized by

�i, its population mean; �i, its population standard deviation; �̂i, its sample mean; �̂i, its

unbiased sample standard deviation; and ni, the number of samples tested.

We de�ne the loss function for population i, Li, using the squared-error function:

Li = L(�i; �̂i) � (�i � �̂i)
2 = V ar[�i � �̂i] =

�2i
ni

: (4.1)

The variance of �̂i, �
2
i =ni, can be estimated by ~�2i � �̂2i =ni.

The expected estimation loss (or risk R) due to selection of the population with the

highest sample mean is then expressed as

R = E[L(�(best); �̂(best))] =
KX
i=1

P �
i E[L(�i; �̂i)] ; (4.2)

where P �
i represents the probability that population i has the best population mean based

on the current information.
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For our case in which each population is normally distributed, we can calculate P �
i as

P �
i =

Z 1

�1

2
4Y
j 6=i

�

 
� � �̂j

~�j

!3
5�

 
�� �̂i

~�i

!
d� ; (4.3)

where � and � represent the cdf (cumulative distribution function) and pdf (probability

density function) of the standard normal distribution, respectively.

The scheduling objective can then be formulated as

minimize R subject to
KX
i=1

ni = N ; (4.4)

where N is the total number of tests of all populations at the end of the current generation.

By applying Lagrange multiplier �, we obtain the following equations:

@

@ni

"
KX
i=1

P �
i ~�

2
i � �

KX
i=1

ni

#
= 0 ; i = 1; : : : ;K : (4.5)

Since @P �
i =@ni = 0, it follows that

P �
i

@~�2i
@ni

� � = 0 ; i = 1; : : : ;K : (4.6)

The optimality criteria can then be stated as follows:

�� = P �
i ~�

2
i = P �

j ~�
2
j ; for i 6= j : (4.7)

At any time t, the strategy is to minimize Eq. (4.2) for time (t+ 1), i.e., only one of ni

can be increased by one.

ONE-STAGE POLICY: nj
0 = nj + 1 when max

i
P �
i ~�

2
i = P �

j ~�
2
j : (4.8)

In the usual case, we assume that the value P �
i is changing slowly and P �

i
0 � P �

i .

Since the calculation of P �
i requires complex numerical integration, further simpli�cation

is sometimes desirable to reduce its complexity. We approximate P �
i by w�

i , the probability
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that population i is better than the current best population (or second best, in case that

HM i is the best). Let i be the permutation index where �̂(i) is the i
th estimated mean and

�̂(K) is the largest �̂. Then w�
i is de�ned as

w�
i =

Z 1

�1
�

 
� � �̂j

~�j

!
�

 
� � �̂i

~�i

!
d�

= �

0
@ �̂i � �̂jq

~�2i + ~�2j

1
A ; where j =

8>>>>><
>>>>>:
(K) for i 6= (K)

(K � 1) for i = (K) :

(4.9)

4.3.3 Bayesian estimation

In this subsection, we present a method to improve the performance of the minimum-risk

scheduling strategy by getting more accurate estimations of �i and �i when more information

about each population is available.

When we have prior knowledge about the distribution of the population mean, f�(x), we

can improve the computation of its risk value. Assume that we know the distribution of the

population means of population i as hi(�i), where hi(�i) is known as the prior distribution

of population i and represents a priori knowledge about the performance of the population

before it is tested.

We make the following assumptions.

1. The distribution of each population (HM i), fi(x), is normal with population mean �i

and variance �2i (N(�i; �
2
i )).

2. The distribution of the population mean, f� or hi, is normal with population mean ��

and population variance �2� (N(��; �
2
�)).

After population i has been evaluated ni times to get a sequence of performance values

< Si >, with sample mean �̂i and sample variance �̂2i , we can use its prior distribution to
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get a more accurate estimate of its performance distribution using Bayes' theorem [112]:

hi
�(�ij < Si >) =

fSij�i
(< Si > j�i)hi(�i)R

fSij�i
(< Si > j�i)hi(�i)d�i

; (4.10)

where fSij�i
is a pdf of Si with mean value �i. The posterior distribution, h�i (�ij < Si >),

represents the belief or knowledge about the value of �i after population i has been tested,

given the prior distribution, hi(�i).

In our case, the posterior distribution of population i will be

h�i (�j < �̂i; ni >) � N

 
ni�̂i + �i��

ni + �i
;

�2i
ni + �i

!
; �i =

�2i
�2�

(4.11)

��i =
ni�̂i + �i��

ni + �i
; ��i

2 =
�2i

ni + �i
: (4.12)

The Bayesian means and variances are more accurate than the sample means and vari-

ances because prior knowledge is used. However, they require that the given prior knowledge

is correct, i.e., hi is correct.

We can substitute ��i and �
�
i
2 in place of �̂i and ~�2i in calculating the risk values when the

assumptions are met. This substitution would provide a more accurate risk value when hi is

correct and also allows the risk to be computed even after only one test has been performed.

Note that the computation of Bayesian means and variances requires the values of ��,

�2�, and �2i to be known. If we make an additional assumption that population variance,

�2i , is identical for all populations (�2i = �2 for all i), then we can estimate the values of

��, �
2
�, and �2 at the start of each generation. We show two methods for estimating these

parameters in Section 4.5.

4.3.4 Nonparametric minimum-risk sample-allocation strategy

In general, we may not have information on the distributions of performance measures

since they change dynamically and are di�cult to estimate. In this section, we propose
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a nonparametric sample-allocation strategy for determining HMs to be evaluated based on

run-time information of population performance. Our nonparametric minimum-risk strategy

is extended from the parametric minimum-risk method.

The objective of resource scheduling is to �nd the best HMs when all resources are

exhausted. However, this objective cannot be achieved in general since we cannot model

changes in distributions between generations. To cope with this problem, we restrict our

objective on sample allocation within a generation to the following objective: minimize the

risk that the populations selected for generating new HMs when the generation ends are wrong.

Note that this objective is for scheduling within a generation, but not across generations.

Consider a generation of K populations (HMs). Population i (HM i) is characterized

by information such as ni (number of tests performed), �i (unknown population mean), �2i

(unknown population variance), �̂i (sample mean), �̂2i (sample variance), Fi (true �tness

value), and fi (sample �tness value), where Fi � �i� c, fi � �̂i � c, and c is a constant that

is usually set to be the minimum �tness value of all of the populations. Note that fi is an

unbiased estimator of Fi since �̂i and S2
i are unbiased estimators of �i and �2i , respectively.

We de�ne the loss due to believing fi as Li � E[(fi � Fi)
2]. Given �̂i and �i (or �̂i), we

can calculate the value of Li, noting that E[(fi � Fi)
2
] = V ar[fi � Fi], as

Li =
�2i
ni

: (4.13)

The probability that population i will be selected for generating new populations is

de�ned as Pi � fi=
PK

j=1fj [27]. The scheduling problem can be formulated (heuristically) as

follows:

minimize � �
KX
i=1

PiLi

subject to
KX
i=1

ni = N ;

(4.14)
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where N is the number of tests performed in the current generation. By applying Lagrange

multipliers, we have

minimize �̂ � �+ �

 
KX
i=1

ni �N

!
: (4.15)

By equating @�̂=@ni to zero, we have the optimality criteria as follows:

�� =
Pi�

2
i

n2i
=

Pj�
2
j

n2j
; for i 6= j : (4.16)

At any time t, the strategy is to minimize Eq. (4.14) for time (t+1); i.e., only one of the

ni's can be increased by one.

ONE-STAGE POLICY: nj  nj + 1 where max
i

Pi�
2
i

n2i
=

Pj�
2
j

n2j
: (4.17)

Eq. (4.17) says that the population to be tested is one that has a large �tness value (i.e.,

a large probability of being chosen for reproduction in the next generation) and has large

variance (i.e., large uncertainty in its mean). Note that Eq. (4.17) only tries to �nd the

next population to be tested. In this case, Pi generally changes slowly (Pi
0 � Pi) and can be

approximated using information in the current generation.

In our experiments, we use �̂i as an approximation to �i. To estimate �̂i, at least two

tests must be performed on each population (preferably four tests or more). Note that the

Lagrange multiplier procedure is valid only when performance values are continuous values.

Example 4.2 As an example, consider population i with four samples: 0.971, 1.006, 0.988,

and 1.055. In this case, �̂i, Si, and ni are 1.005, 0.036, and 4, respectively. Assuming that

there are a total of 30 populations and that c is 0.910, then the �tness value of population i is

�̂i�0:910 = 0:095. Further, assume the current total �tness of the remaining 29 populations

to be 0.781. Hence, Pi is 0.095/(0.781 + 0.095) = 0.108, and the risk value of this population

is Pi�̂
2
i =n

2
i , (= 8:78 � 10�6).
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Assume that population i has the largest risk value and that a new sample with value

0.920 is drawn from it. With this new sample, �̂i, �̂i, ni, fi, and Pi become 0.988, 0.049, 5,

0.078, and 0.091, respectively, and the new risk value is reduced to 7:59� 10�6.

This example shows that populations with high mean (hence, high Pi) and high �̂2i =ni

are more likely to have high risk values and be tested. Generally, risk values are reduced as

more samples are drawn.

This nonparametric minimum-risk strategy can still be applied when additional informa-

tion about various distributions is available. In fact, Bayesian estimations (��i and ��i
2) can

be used in place of �̂i and �̂2i =ni if the assumptions on distribution information are met.

4.4 Duration-Scheduling Problem

Duration scheduling entails deciding when to terminate an existing generation and start a

new one. The resource scheduler dealing with this problem is the global scheduler. A common

strategy is to allocate a �xed duration to each generation, although better decisions can be

made if past information is used.

In this section, we �rst present a brief survey of previous work on duration scheduling.

We then present duration-scheduling methods for multi-objective applications. As discussed

in Section 2.3, we must constrain all but one objective and optimize the unconstrained

objective.

4.4.1 Previous work

Duration-scheduling strategies can be classi�ed as static and dynamic. A static (or �xed)

duration-scheduling strategy simply sets the duration of each generation to a predetermined

value. This is the most common duration-scheduling strategy in the �eld of evolutionary

computing [3,10,29]. Previous work [92,104] has shown that the most appropriate duration

is dependent on the total time allocated to learning and the target application. To �nd a

proper duration size for a given time limit, experiments with di�erent durations must be

run. The overhead for this approach is deemed too high to be useful.
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A dynamic (or adaptive) strategy, on the other hand, uses run-time information to de-

termine when each generation should end. A new set of HMs should be generated when the

expected improvement from the new HMs is larger than the expected improvement from fur-

ther testing the current set of HMs. There is very little research on this problem in statistics.

One strategy we have studied extends our minimum-risk sample-allocation strategy [42] by

estimating the distribution of new populations to be generated in the next generation using

statistics collected in previous generations [91,105]. (In the �rst generation, samples have to

be drawn to estimate the initial distribution.) The strategy is restrictive because it assumes

that all populations have normal distributions with the same variance.

Another dynamic strategy we have studied is based on Bayesian analysis [91,105], which

results in a strategy that increases the duration size as the variance ratio (ratio of sample

variance to the variance of the �i's) decreases. When the variance of the �i's is large, it is easy

to identify good populations; hence, the duration should be small. In general, the variance

ratio is large when learning begins and decreases as learning proceeds. Consequently, the

duration size should be small initially and should increase gradually. The di�culty with

the Bayesian strategy is that it is di�cult to �nd the correct duration size without making

simplifying assumptions on the distributions.

Instead of varying the duration size, a dual strategy is to �x the duration of a generation

but vary the number of populations in it [42,92,93]. This strategy is less exible because it

is di�cult to adjust the population size dynamically.

The main shortcoming of existing work is that it assumes that HMs generated always

have acceptable performance, even though most HMs may be pruned after a few tests.

This pruning is especially true in multi-objective applications in which we set constraints on

performance measures, and there may not be any acceptable HMs at the end of a generation.

We address this problem in Section 4.4.3.

4.4.2 Constraint handling for multi-objective optimization

Based on the strategy we have developed in Section 2.5.2 for the case with two HMs,

we outline in the following subsection a method for determining the likelihood that an HM

150



satis�es the given constraints using notations de�ned in Section 4.2. It is not possible to

prune every HM a violating one or more constraints (�a;i > �i) on one or more test cases

because (a) �a;i is unknown and the estimated �̂a;i is used instead, (b) there is uncertainty

in determining �̂a;i, and (c) it is not possible to set worst-case performance bounds of an

HM on a test case because by the nature of heuristics, their worst-case behavior may not be

bounded.

We want to penalize HMs based on Pok, the probability of satisfying the given set of

constraints. Since the problems we study have high evaluation cost, we need to prune HMs

that are unlikely to satisfy the constraints (Pok � 0:5). Further, we would like to give a

higher chance for further reproduction and testing to HMs with Pok close to one.

Given the performance values of an HM, HM a, over na test cases with sample mean �̂a;i

and sample variance �̂2a;i for each constrained measure Ji, random variable (�̂a;i��a;i))
p
n=�̂a;i

has Student's t-distribution with n�1 degrees of freedom [44]. Accordingly, we can compute

the probability that this HM satis�es the threshold value �i on Ji as

P (�a;i � �i) = Ft

 
na � 1;

�̂a;i � �i

�̂a;i=
p
na

!
; (4.18)

where Ft(�; x) is the cdf of Student's t-distribution with � degrees of freedom.

When there are multiple constrained measures, the probability that all constraints (�i for

i = 1; : : : ; k) are satis�ed is equal to P (�a;1 � �1 \ : : : \ �a;k � �k). Based on probability

theory, we know that

Y
i

P (�a;i � �i) � Pok = P (�a;1 � �1 \ : : : \ �a;k � �k) � min
i

P (�a;i � �i) : (4.19)

Hence, we use mini P (�a;i � �i) as an approximation to Pok.

4.4.3 Dynamic multi-objective duration-scheduling (DMDS) strategy

Due to constraints under multi-objective optimization, all HMs may be pruned during

learning when constraints are too tight. Applying random generation at that point is not
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helpful because random generation is the weakest of all generation methods, and it is unlikely

that newly generated HMs will satisfy the constraints.

To avoid this undesirable scenario, we must relax our original goal and �nd HMs that

are as close as possible to the desired level of constraints, given the available resources. To

this end, we must �rst start with loose constraints and gradually tighten them as learning

proceeds.

Using the relaxed goal, the learning system iteratively �nds HMs using increasingly harder

constraints instead of trying to �nd HMs that immediately satisfy the �nal target constraints.

The initial set of constraints is selected in such a way that almost all randomly generated

HMs will be accepted. These easy constraints ensure that some HMs will be available for

generating new HMs in the next generation. To set constraints in successive iterations, we

apply an iterative re�nement method that we have developed in a real-time search algo-

rithm for solving time-constrained combinatorial optimization problems [113]. We set new

thresholds so that the times used in learning with successive thresholds grow in a geometric

fashion. In this way, a small portion of the total time is used in all intermediate iterations,

and most of the e�ort is spent in the last iteration.

Using this iterative method, we must set intermediate thresholds on constrained measures

Ji , i = 1; : : : ; k that are easier to achieve than the �nal target thresholds. We de�ne the

jth set of intermediate thresholds on k performance measures as �̂1;j; �̂2;j; : : : ; �̂k;j. Since we

want increasingly tougher constraints, we have the following property:

�1 = �̂i;0 < �̂i;1 < : : : < �̂i;1 = �i i = 1; : : : ; k ; (4.20)

where �i is the �nal target threshold for Ji, and �̂i;0 is the initial threshold at the start of

learning.

To control both the duration of each generation and the values of intermediate thresholds,

we have developed the DMDS strategy. This strategy has two stages: (a) when not all target

thresholds are satis�ed (9Ji with �̂i;j < �i) and (b) when all target thresholds have been

reached (�̂i;j = �i for all i).
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Stage 1: 9Ji with �̂i;j < �i (not all target thresholds are satis�ed). In this stage, DMDS

decides the time for updating constraints and the values of the thresholds. It starts a new

generation and a new set of thresholds when HMs satisfying the current constraints have

been found and most HMs violating the current constraints have been eliminated. DMDS

determines new thresholds based on pro�le data collected on thresholds during learning and

the amount of time spent in �nding acceptable HMs using these thresholds. The thresholds

are set so that the time spent in each iteration to �nd feasible HMs that satisfy the constraints

grows geometrically.

Stage 2: �̂i;j = �i for all i (all target thresholds have been reached). When all of the

performance constraints have been satis�ed in a generation, the learning system �nds the

best HM that satis�es all of the constraints. To do so, good HMs found in this generation

are tested more thoroughly to ascertain if they satisfy the constraints to within a high degree

of certainty before the next generation begins.

We defer until Section 4.6 to show the performance of the various scheduling algorithms

discussed in this section.

4.5 Distribution-Estimation Methods

For all dynamic resource scheduling strategies we have presented, some information

on population variance is required. The population (or sample) variance is used in the

minimum-risk strategy (both with and without Bayesian estimation) and in the nonpara-

metric minimum-risk strategy to compute the risk function. DMDS requires the variance of

the constrained measures in computing Pok.

The sample variance to estimate a population variance is usually inaccurate until at least

four performance values are available, which means that every HM, even the worst one, must

be tested at least four times. This minimum testing is extremely ine�cient since the worst

HM can usually be identi�ed after just one or two tests.

For Bayesian estimation to be applied, additional information about the distribution of

the population means (�� and �2�) is required assuming that the distribution is N(��; �
2
�).
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In this section, we show a method for estimating these parameters (�2i , ��, and �
2
�) at run

time with little overhead so that each population does not have to be evaluated at least four

times. Our methods require the assumption that all population variances must be identical,

i.e., �2i = �i, the common variance, for all i. We can still use this method as a heuristic

by using the estimated common variance for all populations that have not been tested. For

each well-tested population with six or more tests, its sample variance can be calculated and

used directly.

First, we present statistical equations for computing these values from some subset of

performance values. Then, we present two possible ways to acquire these performance values

at run time and the cost associated with each.

4.5.1 Statistical-distribution estimation

We have made the following assumptions:

1. The distribution of each population (HM i), fi(x), is normal with population mean �i

and common variance �2 (N(�i; �
2)).

2. The distribution of population mean, f� or hi, is normal with population mean �� and

population variance �2� (N(��; �
2
�)). This assumption is necessary only for estimating

�� and �2�.

Let K be the number of populations that have been tested. For HM i, let Si;j be the

performance value obtained for test case tj, ni be the number of tests performed, and �̂2i

be the sample variance. Let N be the total number of tests performed on the entire set of

populations,
PK

i=1 ni.

First, we estimate the common variance, �2, using the following equation [114]:

�̂2 =

KX
i=1

(ni � 1)�̂2i

 
KX
i=1

ni

!
�K

; where (ni � 1)�̂2i =
niX
j=1

(Si;j � �̂i)
2 : (4.21)
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Variable (
PK

i=1 ni �K)�̂2=�2 has �2 distribution with degrees of freedom (
PK

i=1 ni �K).

The estimation of �� and �2� is the same as in a two-factor analysis [114]. When ni = n

for all populations, the distribution of the �̂i's is N(��; �
2
� + �2=n). Therefore, �� and �2�

can be estimated as

�̂� =
1

K

KX
i=1

�̂i ;

�̂2� =
1

K(K � 1)

0
@K KX

i=1

(�̂i)
2 �

 
KX
i=1

�̂i

!2
1
A � �̂2

n
:

(4.22)

4.5.2 Pre-sampling

The simplest method for estimating the distribution of population means and population

variances is to allocate some time (usually a certain percentage, such as 10 %, of the total

time) at the start of each generation to test a subset of populations (four or more populations)

in the pool several times (three or more tests). We can then get the estimate for �2, ��, and

�2� using the equations described in the previous section. This process has to be repeated in

every generation since the distribution of the population means is changing in an unknown

fashion in each generation.

With this approach, we can get a good estimate of the population variances and the

distribution of the population means in every generation. However, the method is very costly.

First, it is likely that poor performing populations are tested too many times, in addition

to testing populations that performed well. Since some percentage of time within each

generation is spent doing pre-sampling, less time is available for evaluating other populations

in the pool. This behavior is undesirable since the time required during pre-sampling can

be quite large in order to get the necessary information. Hence, this method should not be

applied in every generation.
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4.5.3 Dynamic update

Within a generation, it is necessary that each population be evaluated at least once before

applying the dynamic allocation strategy. Otherwise, there is not enough information for

the resource scheduler to use in dynamic scheduling. Hence, we can always evaluate each

untested population once at the start of a generation and use this information to estimate

�� and �2�.

However, since each population only provides one sample, �2 cannot be estimated. In

addition, the computation of �2� requires the value of �2. Because of this, it is necessary for

the value of �2 to be estimated di�erently before this method can be used. The simplest

method is to apply pre-sampling during the �rst generation to estimate �2 and then use

dynamic updates in the remaining generations. With this approach, there is only minor

overhead for pre-sampling in the �rst generation. The only potential problem is that �̂2

from the pre-sampling may not be accurate, and there is no way to recompute the value

during learning.

4.6 Experimental Results

In this section, we show some experimental results for comparing various resource schedul-

ing strategies. These results are collected in applying TEACHER to two real-world applica-

tions. The �rst target problem solver is the post-game analysis (PGA) system for mapping

processes on a distributed-memory multicomputer system (see Section 6.1). The second tar-

get problem solver is the branch-and-bound search for solving a vertex-cover problem (see

Section 6.2).

Process mapping on distributed-memory multicomputers

There are two performance measures for post-game HMs: quality of a mapping (process

completion time of the mapping) and cost of �nding the mapping (PGA execution time).
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Figure 4.1: Average quality of HMs selected under a cost constraint of 30% of the original
PGA HM for three resource scheduling strategies: DMDS, MR, and RR. (The
number of HMs retained for full veri�cation is �ve.)

Learning aims to �nd PGA HMs with the minimum completion time and cost within a user-

speci�ed limit. This objective is necessary since PGA has to be run concurrently with the

application program, and a new mapping should be proposed within a time constraint.

We have evaluated three resource scheduling strategies: DMDS with minimum-risk sam-

ple allocation, �xed duration with minimum-risk sample allocation (MR), and �xed duration

with round-robin sample allocation (RR). For each strategy, we performed �ve learning ex-

periments of 800 tests over each of the six subdomains, using a cost constraint of 30% of

the cost of the original PGA HM by Yan and Lundstrom [18, 40]. We studied six cases of

retaining 1, 3, 5, 10, 15, and 20 HMs at the end of learning for full veri�cation and compared

the best and average qualities of the HMs achieved over �ve runs of each scheduling strategy.

Figure 4.1 shows the average speedups (quality) of HMs achieved by the three scheduling

strategies over the six subdomains. Since the cost constraint is tight and all performance

values represent slowdowns, we do not use symmetric speedups here. All of these HMs have

signi�cantly lower costs and slightly worse qualities than those of the original PGA HM.
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Further, DMDS performs the best in four out of six subdomains and the second best in the

two other subdomains. The other results are similar, with smaller di�erences in quality as

the number of HMs retained for veri�cation increases.

DMDS also consistently �nds acceptable HMs more often than the two �xed-duration

scheduling strategies when the cost constraint is tight. Of the 30 experiments performed

under a 30% cost constraint, DMDS failed once when the �ve best HMs were retained for

veri�cation (RR failed �ve times and MR failed four times). When the cost constraint is

loose, DMDS does not perform better than the other scheduling strategies.

Branch-and-bound search

There is one objective measure for a branch-and-bound search. The normalized cost of

an HM is de�ned in terms of its average symmetric speedup (see Eq. (2.8)), which is related

to the number of nodes expanded by a B&B search using the baseline HM and by a B&B

search using the new HM.

Our experiments here study the e�ects of �xed-duration strategies (RR and MR) on

learning. DMDS was not used because there is only one objective measure. Figure 4.2 shows

the quality of HMs found as a function of learning time for the two scheduling strategies.

Each point on the graph was obtained by averaging the symmetric speedups of the HMs

selected as if learning had been stopped at that point.

Figure 4.2 shows that MR outperforms RR, that MR is more likely to identify the top

HM, and that MR requires fewer HMs to be retained for full veri�cation at the end of

learning. For this reason, we have used the �xed-duration MR scheduling strategy in the

remaining results in this thesis. Figure 4.2 also shows that verifying more HMs at the end

leads to better HMs (albeit a higher veri�cation cost).

4.7 Summary

In this chapter, we have examined the two main actions in resource scheduling in genetics-

based machine learning: sample allocation and duration scheduling.
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The sample-allocation problem involves the scheduling of tests of HMs in a generation,

given a �xed number of tests in each generation and a given pool of HMs to be tested. The

most common sample-allocation strategy is the static round-robin strategy that allocates an

equal amount of resources to each HM. We have developed two dynamic sample-allocation

strategies that can take advantage of available performance information. The nonparametric

minimum-risk strategy does not require any assumption on performance distribution. The

minimum-risk strategy requires that the performance distribution of each HM be Gaussian

(normal).

A dynamic strategy (preferably nonparametric minimum-risk) should be used unless the

performance variance of each HM is very high or the objective is not based on the average

normalized performance. In these cases, the round-robin strategy should be used.

The duration-scheduling problem involves deciding when to terminate an existing gener-

ation and to start a new one. The most common sample-allocation strategy is to use a �xed

duration for the entire learning process. We have developed a dynamic strategy, DMDS, for

dealing with the case when there are constraints imposed by multiple performance objectives.

This strategy uses iterative re�nement to �nd acceptable HMs. Constraints are tightened

until the target constraints have been reached. This iterative approach is intended to avoid

having all HMs pruned due to constraint violations.

When dealing with multi-objective optimization and constraints imposed on these objec-

tives, DMDS should be used unless the constraints are relatively easy to satisfy. In all other

cases, �xed-duration scheduling should be used.
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5. STATISTICAL GENERALIZATION OF HEURISTIC METHODS LEARNED

In this chapter, we study the statistical generalization process for determining the perfor-

mance of a given set of HMs found in the heuristics-design process over the entire problem

domain. Note that the performance of HMs found in learning is incomplete as HMs are

tested on a small subset of test cases. The objective of generalization is to �rst �nd a subset

of HMs that performs better than the current incumbent HM over the entire problem domain,

followed by selecting the best HM among this subset.

When a problem domain contains di�erent regions with di�erent statistical performance

behavior, we propose to partition this domain into subdomains so that performance within

each subdomain is IID (independent and identically distributed). The generalization process

can then be divided into two parts: generalization of performance within each subdomain

and generalization of performance across all subdomains.

Within each subdomain, all performance values should be normalized with respect to that

of the incumbent HM as the baseline. The sample-mean value of each HM in a subdomain can

be used as a statistical estimate of its true average performance over the entire subdomain

due to the IID property. An HM can be considered better than the incumbent HM in a

subdomain when all constraints are satis�ed (Pok > 0:5), and the average performance for

the unconstrained optimization objective is better than the baseline performance with a

certain degree of certainty (�̂ > BL and Pwin > 0:5 + �).

161



Across the entire problem domain, the performance from di�erent subdomains must be

treated independently and equally. The performance of each HM over the entire problem

domain can be represented by its worst-case performance over the selected set of subdomains.

The HM that provides the best worst-case Pwin and that satis�es all constraints is the most

likely HM to be better than the incumbent HM. When there is no acceptable incumbent

HM, the objective can be transformed into �nding the HM with the best worst-case average

normalized performance for the unconstrained optimization objective.

5.1 Introduction

The term \generalization" usually refers to the process of making or choosing an element

that is more general than the elements before the start of the process. In the context of

the heuristics design, generalization is the process of �nding or estimating the performance

of a given set of HMs over the entire problem domain based on incomplete performance

information found during the design process. This generalization is necessary and important

since only an incomplete subset of test cases is used for performance evaluation during the

heuristics-design process. This generalization concept is shown in Figure 5.1.

The primary objective of the generalization process is to �nd the HM that performs the

\best" over the entire problem domain among the given set of HMs. In general, there is also

a secondary objective. When it is not possible to distinguish the \best" HM with respect to

an existing HM already in use, it is desirable to �nd HM(s) that consistently \outperform"

this existing HM over the entire problem domain.

The generalization process is simpli�ed when the performance of each HM shares common

statistical characteristics, such as the independent and identically distributed (IID) property,

for the entire problem domain. In this case, performance over a subset of test cases can

be statistically generalized to represent the performance of the entire problem domain. For

example, the sample-mean performance from a subset of test cases can represent and predict

the population mean over the entire problem domain. However, this IID condition is usually

not true in complex real-world applications. There are usually many di�erent regions within

the problem domain with di�erent performance behavior. In this situation, we propose to
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divide the problem domain into smaller subsets called subdomains so that the performance

of each HM within each subdomain is IID.

The generalization process with multiple subdomains in the target problem domain is

more di�cult because performance from di�erent subdomains has di�erent statistical char-

acteristics and cannot be combined or compared. Performance evaluation for each subdomain

must be dealt with separately and independently from other subdomains.

For example, in testing two heuristic methods HM1 and HM 2 on two sets of test cases

TC1 and TC2, we �nd the average performance for HM 1 to be f10, 100g and for HM 2 to

be f150, 5g. It will be di�cult to say whether HM 1 is better than HM2 and which HM

should be used as a general HM for other test cases.

When there are many more subdomains than what can be evaluated during the heuristics-

design process, generalization is even more di�cult. Unfortunately, this is the case for many

applications.

The problem of generalization with multiple subdomains can be divided into two parts.

First, the performance of each HM within each subdomain must be determined and com-

pared. Second, the performance over the entire problem domain must be determined or

estimated based on the performance indicators by which each HM is evaluated in a problem

subdomain.

In Chapter 2, we have developed a strategy for statistical performance evaluation of two

HMs. This strategy can be applied to address both parts of the generalization process when

only two HMs are considered. In this chapter, we extend the statistical generalization process

to the more general case when there are more than two HMs. When there is no clear winner,

we propose heuristics that help determine the best HM in our generalization process.

We �rst present a brief overview of the generalization process commonly used in existing

genetics-based machine-learning systems. We then present our extended strategy to handle

generalization within one subdomain and over multiple subdomains.
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5.2 Previous Work

In heuristics design under \noisy" evaluation data, i.e., when performance of each HM

cannot be obtained completely or accurately from a single evaluation, generalization is an

important phase of the design process. This condition is true because time for learning is

often limited, and only a small set of test cases can be evaluated during learning.

Generalization has not been emphasized in most existing genetics-based machine-learning

systems [28, 29, 115]. In general, these systems implicitly assume that all performance val-

ues from each HM share common statistical characteristics, i.e., performance values during

the design process are representative of all possible performance values. In this case, the

estimated performance level (i.e., the �tness value) of each HM (usually in the form of the

sample mean) can be used as a statistical estimator of its true performance level (popula-

tion mean) over the entire problem domain. These systems can then simply validate this

assumption by evaluating their learned HMs on a new set of test cases.

The inherent uncertainty of the estimated performance is usually ignored by existing

genetics-based machine-learning systems. This uncertainty is more acute when performance

evaluation is costly and HMs are evaluated less during learning. In Section 5.3, we present

a method to deal with this uncertainty.

This implicit statistical generalization is not adequate when there are multiple subdo-

mains and when no single subset of test cases can be representative of the entire problem

domain. Implicit statistical generalization is still necessary within each subdomain as shown

in Section 5.3. However, it is necessary to perform generalization across multiple subdo-

mains when performance across subdomains is not totally correlated. We explore this issue

in Section 5.4.

Note that in this thesis we are dealing with statistical generalization of each HM's per-

formance to get some representative performance over the entire problem domain. We do

not modify an HM in order to make it applicable to wider (and more general) conditions.

This is the type of generalization studied in arti�cial intelligence [96], which requires more

domain knowledge speci�c to a particular application and problem solver.

165



5.3 Performance Evaluation Within One Subdomain

In this section, we �rst review the performance-evaluation strategy we have developed

in Chapter 2 for dealing with two HMs and one subdomain. We then explore the potential

problems in extending this strategy to more general cases with more than two HMs. Finally,

we present the strategy we have developed for general performance evaluation within a single

subdomain.

5.3.1 Strategy for evaluating two HMs

In this subsection, we review the strategy for evaluating the performance of two HMs in

one subdomain. This strategy has been developed under the following assumptions:

1. The normalized performance values of each HM within a subdomain are IID.

2. The average performance of each HM is the objective metric to optimize.

The overall strategy can be divided into three steps.

(1) Normalize the performance values in order to (a) obtain the relative performance

between the two given HMs on each test case and (b) reduce the di�erence in magnitude of

the performance values among di�erent test cases. One of the two given HMs is used as the

baseline HM in the normalization process.

To avoid anomalies (inconsistent ordering) due to the choice of the baseline HM, nor-

malization methods used should satisfy the symmetric-normalization condition discussed in

Chapter 2. The symmetric-improvement method in Section 2.2.3 is an example of such a

normalization method.

(2) When there are multiple performance measures corresponding to multiple objectives,

constrain the average performance of all but one objective measure. This modi�ed goal helps

to �nd the best HM among possible HMs that satis�es all of the constraints based on a

single unconstrained objective. With this approach, each performance measure is dealt with

independently from other measures.
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(3) Evaluate the performance of each HM within each subdomain. Due to the IID prop-

erty in each subdomain, the performance of each HM within a given subdomain can be

estimated based on a subset of test cases. The sample-mean values are statistical estima-

tions of the population mean values and can be used in deciding (a) whether an HM satis�es

or violates a given set of constraints and (b) whether an HM has higher performance for the

single unconstrained optimization objective.

However, there is uncertainty involved in using estimated sample means to make decisions.

Probabilistic analysis can be used to determine the degree of certainty involved in using the

sample-mean values in a decision-making process. This analysis results in Pok for checking

constraint satisfaction and Pwin for ordering heuristics according to their average performance

of the single unconstrained optimization objective. These probabilistic measures can be

applied to increase the degree of con�dence in the performance estimation in each subdomain.

Assume that in subdomain �, HM a has the following performance characteristics for

performance measure Ji: sample mean �̂a;i, sample variance �̂
2
a;i, number of test cases na, and

baseline performance (i.e., performance of the baseline HM,HMB),BLi. From Section 2.5.2,

we have derived the following equation for Pwin:

Pwin(X;Ji) = Ft

0
@nX � 1;

�̂X;i �BLiq
�̂2X;i=nX

1
A ; (5.1)

where Ft(�; x) is the cdf of Student's t-distribution with � degrees of freedom, and Pwin(a; Ji)

is the probability that the true performance (population mean) of HM a for performance

measure Ji is better than that of the baseline HM, HMB. When n!1, we have

Pwin(X;Ji) � �

0
@ �̂X;i �BLiq

�̂2X;i=nX

1
A ; (5.2)

where � is the standard cumulative normal distribution function [44]. Usually, J0 is used to

denote the single unconstrained optimization measure.

167



We de�ne Pok(a), the probability that HM a satis�es a given set of constraints (minimum

level constraints �j for each constrained measure Jj, j = 1; : : : ; k), as follows:

Pok(X) � min
j

P (�X;j � �j) ; (5.3)

P (�X;j � �j) = Ft

0
@nX � 1;

�̂X;j � �jq
�̂2X;j=nX

1
A ; (5.4)

where Ft(�; x) is the cdf of Student's t-distribution with � degrees of freedom.

To take the uncertainty into consideration, an HM is considered in violation of a given

set of constraints when Pok is less than 0:5 � �. During learning, HMs should not be

eliminated too easily; hence, � can be as high as 0.25. During generalization, more accurate

performance information is available; consequently, HMs should be eliminated with � = 0.

For ordering HMs based on the unconstrained optimization objective, Pwin is a measure

of certainty in ordering an HM as being better than the baseline HM. In this case, HM a

is considered to have better normalized performance than the baseline HM when Pwin(a) >

0:5 +� for some � � 0. A high � leads to a higher degree of certainty that HM can satisfy

this condition. However, when � is too high, an HM that is actually better than the baseline

HM may also be eliminated.

5.3.2 Potential performance anomalies with more than two HMs

There are two possible approaches for extending the above performance-evaluation strat-

egy for two HMs to the general case with more than two HMs. The �rst approach is to

perform pair-wise comparison for every possible pair of HMs. The second approach is to

compare all HMs based on their normalized performance with respect to a single baseline

HM. In this subsection, we present potential problems that can arise with these approaches.

Pair-wise evaluation

With this approach, each pair of HMs can be compared using the strategy described in

Section 5.3.1. This approach allows the ordering between each pair of HMs to be determined.
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Table 5.1: Summary of raw performance values for four HMs.

Test

Case

HM ID

HM75 HM 76 HM 86 HM 99

t1 30.19 30.31 26.21 40.61

t2 43.12 43.34 34.09 24.65

t3 71.93 72.49 104.51 98.41

Unfortunately, the orderings are not transitive, which means that when HM 1 is better than

HM 2 and HM 2 is better than HM 3, there are no guarantee that HM 1 is better than

HM 3. Consequently, there can be cycles in ordering with HM 1! HM 2! HM3 ! HM1,

where HM a ! HM b denotes HM a being better than HM b in a pair-wise comparison. This

circular ordering is demonstrated in the following example.

Example 5.1 Table 5.1 shows performance values of four HMs on three di�erent test cases.

In this example, an HM represents a computer system, and a test case represents a benchmark

program. Each performance value is the time for executing a benchmark program on a

computer system. The objective is to minimize this execution time.

Using the symmetric-improvement method (Ssym+ | see Eq. (2.8)), we can compute the

average normalized performance for each HM with di�erent HMs as the baseline. These

average normalized performance values are shown in Table 5.2. The baseline performance

for this normalization method (BL) is zero.

From this table, we observe that HM 75! HM86 and HM86 ! HM 99 when the orders

are based on the average normalized performance. However, we also observe that HM99 !
HM 75, creating a cycle, HM75 ! HM 86 ! HM 99 ! HM 75, as shown in Figure 5.2. Note

that Pwin for each ordering is close to 0.5, meaning a high degree of uncertainty for each.

Due to possible cycles in pair-wise orderings of HMs, it is not always possible to determine

the best HM over a subdomain from a given set of HMs. It is also di�cult to determine the

total ordering of all HMs with this approach.
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Table 5.2: Summary of the average normalized symmetric improvement for four HMs with
di�erent HMs as the baseline (BL = 0).

HM

ID

Baseline HM ID

HM75 HM76 HM86 HM 99

�̂ Pwin �̂ Pwin �̂ Pwin �̂ Pwin

HM75 0:000 � 0:006 0.981 0:012 0.519 �0:012 0.489

HM76 �0:006 0.019 0:000 � 0:005 0.507 �0:020 0.481

HM86 �0:012 0.481 �0:005 0.493 0:000 � 0:035 0.545

HM99 0:012 0.511 0:020 0.519 �0:035 0.455 0:000 �

HM75 HM HM86 99
0.012 > 0 0.035 > 0

Pwin = 0.511

Pwin= 0.545Pwin = 0.519

0.012 > 0

Figure 5.2: Example of a cycle in pair-wise ordering of HMs (based on data in Table 5.2).
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Figure 5.3: Orderings of HMs based on average normalized performance with di�erent HMs
as the baseline HM (based on the data in Table 5.2).

Using a single �xed baseline HM

A di�erent approach for evaluating multiple HMs is to normalize each HM with respect to

a single �xed baseline HM. All HMs can then be ordered based on their average normalized

performance. Unfortunately, the ordering of these HMs can be dependent on the choice of the

baseline HM, i.e., di�erent baseline HMs can lead to di�erent orderings. These anomalies

are due to the choice of the baseline HM in ordering more than two HMs. They can be

illustrated in the following example.

Example 5.2 Based on the data in Example 5.1, we plot in Figure 5.3 the orderings of the

four HMs when a di�erent HM is used as the baseline. From this �gure, we observe that

the ordering with HM75 as the baseline HM is di�erent from the ordering with HM 86 as

the baseline HM. In fact, there are three di�erent orderings, depending on the choice of the

baseline HM. It is obvious that by using this approach, it is di�cult to determine which HM

is the best among the four given HMs.

Due to the anomalies that may happen when di�erent HMs are used as the baseline HM,

it is di�cult to determine the best HM over a subdomain. We may discover di�erent \best"

HMs using di�erent HMs as the baseline.
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5.3.3 Proposed strategy for general performance evaluation

In the previous subsection, we have presented potential inconsistencies in obtaining a total

ordering of a given set of HMs within a given subdomain. There are no existing methods that

can guarantee a correct ordering of these HMs based on incomplete performance information.

This inconsistency means that the primary generalization objective, i.e., selecting the \best"

HM from a given set of HMs, is not always possible. In this case, the secondary objective of

obtaining an HM that is \better" than the best existing HM becomes the main goal of the

generalization process.

To accomplish this secondary objective, it is reasonable to use the best existing HM as

the baseline. This approach should be used consistently throughout all learning, veri�cation,

and generalization phases of the design process. There are three advantages to using the

approach based on a single baseline HM.

First, this approach is equivalent to obtaining pair-wise comparisons between the best

existing HM (the baseline HM) and all other HMs in the given set. This equivalence means

that the ordering between any single HM and the best existing HM can be obtained by

comparing the HM's sample-mean value to the baseline level, BL.

Similarly, the uncertainty in the ordering between any one of these HMs and the incum-

bent HM can be determined based on Pwin de�ned in Eqs. (5.1) or (5.2). The Pwin value of

an HM determines the degree of certainty that the given HM is better than the baseline HM.

The closer Pwin is to 1, the higher is the degree of certainty. In this case, Pwin determines

the likelihood that an HM is better than the current incumbent HM. Only HMs that satisfy

all constraints (Pok > 0:5) for all subdomains should be considered. The degree of certainty

in determining whether an HM is better than the current incumbent HM can be controlled

by requiring Pwin to be greater than 0:5 + � for some � > 0.

Example 5.3 We continue to use the data in Example 5.1 as a running example. In this

example, we assume that HM 76 is the best existing HM to be improved upon, i.e., the

incumbent. Hence, we consider the performance of all HMs with HM 76 as the baseline HM.

172



From Table 5.2 and Figure 5.3, we observe that both HM 75 and HM 99 have better average

normalized performance values than HM 76 (and so have Pwin > 0:5).

If � = 0, then both HMs would be acceptable based on their probability-of-win values. If

our comparison is based only on each HM's sample-mean value, thenHM 99 will be considered

a better HM. In contrast, if the selection between the two HMs is based on Pwin (i.e., the

degree of certainty of being better than the baseline HM), then HM 75 with the higher Pwin

value is a better choice.

If 0:4 > � > 0:05, then only HM 75 (Pwin = 0:981) can be considered better than HM 76

because the Pwin of HM 99 (Pwin � 0:519) is too low. In short, for the objective of �nding a

better HM than HM76, HM75 is the most robust choice among the given set of HMs.

The second advantage of using a �xed baseline is that all normalized performance values

of all HMs are computed with respect to the same baseline HM in all subdomains. This

approach allows performance constraints to be applied consistently over all subdomains.

The third advantage in this approach is that the average normalized performance value of

an HM is an indication of the likelihood that the corresponding HM can satisfy the objective

of being better than the baseline HM. The total ordering of a given set of HMs based on

their average normalized performance can then be used during learning when performance

information of each HM is usually incomplete and when a certain degree of inaccuracy is

acceptable. Although this ordering is probably not totally \correct," it can be used during

learning to distinguish between desirable and undesirable HMs. These average normalized

performance values can also be used as �tness values in the selection/reproduction process

during each learning experiment.

Finally, we consider some special cases of performance evaluation and generalization due

to the unavailability of an incumbent HM. First, when the best existing HM does not satisfy

a given set of constraints, the incumbent HM should still be used as the baseline HM in

computing normalized performance. The constraints applied in each subdomain during the

design process would then be consistent, relative to the performance of the incumbent HM

in each subdomain. This case is discussed further in Section 5.4.1.
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Second, when there is no incumbent HM upon which to be improved, the generalization

process is less clearly de�ned since we do not have a secondary objective. One possible

approach here is to choose one HM (either randomly or based on the user's choice) to �ll

the role of the incumbent HM upon which to be improved.

Another possible approach is to use the median performance value for each test case

as the baseline performance for that test case. This approach has the advantage of not

relying on treating one HM in a special fashion. We discuss this approach in more detail in

Section 5.4.2.

5.4 Generalization Across Multiple Subdomains

In this section, we study the problem of statistical generalization over a problem domain

that has multiple subdomains. Because di�erent subdomains have di�erent statistical behav-

ior, performance from di�erent subdomains cannot be combined or compared. Performance

from each subdomain must then be treated independently and separately from that of any

other subdomains.

The ideal case for generalization is when a single HM is considered the best in every

subdomain under consideration (see the previous section). In this case, this HM can be

selected as the new HM to be applied in the problem solver. Unfortunately, this case is

unlikely in most cases.

In this section, we assume that the set of subdomains used in the design process is

representative of other subdomains. In other words, other subdomains are assumed to behave

in a similar fashion to one or more of the subdomains used in learning and in generalization.

Since there is no way to determine the relative importance of performance behavior in

each selected subdomain, all selected subdomains are treated equally. One general approach

is to ensure a minimum level of performance of the selected HM by optimizing the worst-case

performance among the selected set of subdomains. Performance of the selected HM in new

subdomains should likely be no worse than the worst performance among the selected set of

subdomains.
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We have divided our generalization strategy into two parts to deal with di�erent condi-

tions. First, we present our generalization strategy when there is an incumbent HM upon

which to be improved. Second, we present a generalization strategy for the case when there

is no incumbent HM.

5.4.1 Generalization with the best existing HM as the baseline

In this subsection, we consider the generalization process when there is an existing HM

upon which to be improved. In this case, the objective of our generalization process is to �nd

an HM that is better than the incumbent HM over the entire problem domain. When there

are multiple such HMs, any of these HMs can be selected. However, the selection procedure

should attempt to maximize the likelihood for selecting the best HM among the given set.

Based on the strategy in Section 5.3.3, the performance of an HM in a subdomain must

be normalized with respect to the incumbent HM as the baseline. An HM is considered

better than the incumbent HM in one subdomain when its Pwin is greater than 0:5 + � for

that subdomain, while satisfying all other performance constraints (Pok > 0:5). The value �

controls the degree of certainty of this ordering. An HM can then be considered better than

the incumbent HM for the entire problem domain when it is better than the incumbent HM

in all selected subdomains.

There are several di�erent scenarios that must be dealt with depending on the number

of HMs that are better than the incumbent HM in all selected subdomains (none, one, or

more than one). In addition, there is a special case when the incumbent HM is considered

an unacceptable choice due to the set of constraints imposed. This situation happens when

there are multiple objective measures, and it is desirable to have a performance trade-o�

di�erent from the one provided by the incumbent HM.

We enumerate our generalization strategy for each possible scenario.

CASE 1: One HM is better than the incumbent HM in all subdomains. This case is

the most ideal case. The one HM that is better than the incumbent HM in all selected

subdomains can replace the incumbent HM in the target problem solver.
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CASE 2: Multiple HMs are better than the incumbent HM in all subdomains. In this

case, there are multiple acceptable HMs. The selection among these acceptable HMs should

be based on maximizing the likelihood of the HM actually being better than the incumbent

for the entire problem domain. This procedure corresponds to increasing the degree of

con�dence on the �nal HM selected, which can be achieved by enforcing a higher degree of

certainty, i.e., higher Pwin within each subdomain, by increasing �. The � can be gradually

increased until only one HM is considered superior to the incumbent in all subdomains. This

generalization strategy is equivalent to optimizing the worst-case Pwin over the selected set

of subdomains.

An alternative approach is to perform selection based on maximizing the likelihood of

the HM providing the best performance over the problem domain. This selection procedure

can be based on optimizing the worst-case normalized average performance (�̂) over the

selected set of subdomains. In this alternative approach, the set of acceptable HMs under

consideration should have Pwin that satis�es a fairly high level of � in order to provide

robustness with respect to achieving the generalization objective.

CASE 3: No HM is better than the incumbent HM in all subdomains. In this case, there

is no HM that can be considered clearly superior to the incumbent HM. The target problem

solver should continue to use the incumbent HM in its problem-solving process.

However, due to the uncertainty in performance evaluation, some of the HMs in the given

set may actually perform better than the incumbent HM. It is then desirable to �nd this

HM and that the Pwin of this HM should be as high as possible in all selected subdomains.

When � > 0 and no better HM is found, either � should be decreased until it reaches

zero, or we should �nd an HM that is better than the incumbent HM in all selected sub-

domains. In this latter case, the selected HM is better than the incumbent HM at a lower

degree of con�dence than what is desired.

When � = 0 and there is still no better HM, then � can be reduced below zero until such

an HM can be found, which is also equivalent to �nding an HM with the highest worst-case

Pwin among the given set of HMs. When � < 0, the selected HM is likely to be inferior to

the incumbent HM.
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CASE 4: The incumbent HM violates some constraints. In this case, the incumbent

HM cannot satisfy the desired performance trade-o�s, which implies that any HM that

satis�es the given constraints would perform better than the incumbent HM on some but

not necessarily all performance measure(s).

In general, most HMs that satisfy all performance constraints would likely perform worse

than the incumbent on the unconstrained optimization objective. Among HMs that satisfy

the constraints, we must select the HM that provides the highest level of performance for

the unconstrained optimization objective.

When di�erent HMs in the set of acceptable HMs (satisfying all constraints in all sub-

domains) have the highest average performance for the unconstrained measure in di�erent

subdomains, we cannot easily select the best HM for the entire problem domain. We can

use the lowest average performance (for the unconstrained measure) of each HM over the

selected set of subdomains as the criteria for ordering the acceptable HMs. We can treat the

average performance from di�erent subdomains in an identical fashion since all performance

values in all subdomains are normalized with respect to the same incumbent HM. The HM

with the highest worst-case performance is then selected as the best among the available

HMs.

We do not use Pwin as the criterion in this case since it is not necessary for the selected

HM to be better than the incumbent HM.

5.4.2 Generalization without an incumbent HM

In this subsection, we consider the generalization procedure when there is no incumbent

HM. As previously stated in Section 5.3.3, we can pick an HM to act as the incumbent and

apply the generalization process discussed in the previous subsection. However, the results

of generalization in this case may not be meaningful because the selection of the incumbent

is somewhat heuristic.

This situation is somewhat similar to Case 4 in the previous subsection in the sense that

there is no acceptable incumbent HM. Unfortunately, in the current case with no existing

incumbent HM, it is di�cult to choose a proper HM to act as the baseline for normalization
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in all subdomains. We have already shown in Section 5.3.2 that vastly di�erent results can

be reached when di�erent HMs are used as the baseline HM.

To avoid potential anomalies, we propose a di�erent method for computing normalization

performance values for a �xed set of HMs. Instead of using a single �xed baseline HM to

compute normalized performance, we can use the median performance value for each test

case as the baseline performance for that test case. The usage of the median performance

value avoids the pitfall of choosing one HM as the baseline and still provides normalized

performance values that can be treated similarly in all subdomains.

After obtaining the normalized performance based on this new approach, we can select

the best HM in a fashion similar to that in Case 4 in the previous subsection. We can use

the lowest average normalized performance metric in the unconstrained objective of each

HM over the selected set of subdomains as the criteria for ordering HMs. The HM with

the highest worst-case performance is then selected as the best HM for the entire problem

domain.

A potential problem for this approach is the unavailability of the true median performance

value for each test case. We have to estimate this true median of each test case with

the sample median. During learning, the estimated median values are inaccurate due to

insu�cient performance data and are sensitive to the set of HMs under consideration. Since

constraints are applied relative to the median values with this approach, inaccurate median

values can cause inconsistencies for these constraints in di�erent subdomains.

5.5 Summary

In this chapter, we study the statistical generalization process for estimating the perfor-

mance of an HM over the entire problem domain based on its performance on a subset of

test cases evaluated in the design process. This generalization process is essential because it

is necessary to assert the performance of the selected HM on the entire problem domain, but

only an incomplete subset of test cases can be tested during the design process.
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The objective of statistical generalization is to determine the \best" HM from among a

given set of HMs based on each HM's performance over the entire problem domain. When

there is an incumbent HM already in use in the target problem solver, a secondary objective is

to �nd an HM(s) that outperforms the incumbent HM over the entire problem domain. Due

to the di�culty in correctly determining the true \best" HM, the generalization objective in

this thesis is based on �nding a subset of HMs that is better than the incumbent HM and on

selecting the best HM among this subset.

When there are multiple subdomains in the target problem domain, i.e., there are regions

with di�erent performance behavior, the generalization process can be divided into two parts.

First, the true performance in each subdomain is determined based on statistical estimation.

Second, the true performance across all subdomains is determined based on the performance

of each HM in the selected set of subdomains. We assume that the selected set of subdomains

is representative of all possible subdomains in the target problem domain.

(1) Generalization Within a Subdomain. When there is an existing incumbent HM, all

performance values of all HMs are �rst normalized with respect to that of the incumbent

HM as the baseline HM. The sample-mean value of each HM and each objective measure

can then be used as statistical estimates of the true average performance over a subdomain.

This statistical estimation is only possible when all normalized performance values within a

subdomain are IID.

Because the incumbent HM is used as the baseline, an HM can be considered better than

the incumbent HM in a subdomain when all constraints are satis�ed (Pok > 0:5) and the

average normalized performance is judged to be above the baseline level (�̂ > BL) with a

certain degree of con�dence (Pwin > 0:5 + �).

(2) Generalization Across Subdomains. Since performance from di�erent subdomains

has di�erent behavior and the relative importance of each selected subdomain is unknown,

each subdomain must be treated equally. The performance of each HM over a selected set of

subdomains can then be represented by its worst-case performance among these subdomains.

By optimizing the worst-case performance, the true performance over the entire problem

domain can be bounded above this minimum level.
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There are three main cases in dealing with generalization across subdomains.

(a) There is an acceptable incumbent HM. In this case, the goal is to �nd the HM most

likely to provide better performance than the incumbent HM. The objective is then to

maximize the worst-case Pwin over the selected subdomains.

When minimum Pwin < 0:5 + �min, the selected HM may or may not actually be

superior to the incumbent HM. More detailed performance evaluation is necessary

before this new HM can replace the incumbent HM in the problem solver.

When minimum Pwin � 0:5 + �min, then there is a high degree of con�dence that the

selected HM is actually better than the incumbent HM over the problem domain. In

this case, the new HM can replace the incumbent HM in the problem solver. However,

some performance validation should still be performed (see Section 2.6).

(b) The incumbent HM exists but violates some constraints. In this case, it is not neces-

sary for the selected HM to be better than the incumbent HM for the unconstrained

optimization objective. It is still desirable for the selected HM to perform better rela-

tive to the incumbent HM. The objective is then to maximize the worst-case average

normalized performance (�̂) on the unconstrained optimization objective (J0) over the

selected subdomains. Note that only HMs that satisfy all constraints (Pok > 0:5) in

all subdomains should be considered.

(c) There is no incumbent HM. In this case, it is di�cult to provide consistent normal-

ization across all subdomains so that the worst-case performance over the selected

subdomains can be compared meaningfully.

There are two possible alternatives here. First, an HM can be designated as the �xed

baseline HM to be used throughout all subdomains. The di�culty with this alterna-

tive is in selecting the appropriate HM so that the generalization result is meaningful.

Second, we can use the median performance value of each test case as the baseline for

normalization of that test case. There is a potential problem related to the applica-

tion of constraints with this normalization method during learning. In addition, this
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normalization method is more di�cult to apply during learning when we do not have

su�cient tests on each HM to estimate the medians accurately.

The objective in this case is the same as the case in case (b), i.e., optimizing the

worst-case average normalized performance for J0 when all constraints are satis�ed.
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6. RESULTS ON REAL-WORLD APPLICATIONS

In this chapter, we present experimental results based on applications of our TEACHER

heuristics-design system to develop new HMs for several real-world problem solvers. The

target problem solvers include (a) process mapping using PGA, (b) branch-and-bound search

on several combinatorial optimization problems, (c) CRIS and GATEST for generating test-

patterns for VLSI circuits, (d) TimberWolf for the placement and routing of VLSI circuits,

and (e) blind equalization using a gradient-descent approach.

The parameters used during learning for each application are summarized in Table 6.1.

6.1 Process Mapping on Distributed-Memory Multicomputers

The �rst target application is the process mapping problem. Process mapping involves

placing a set of communicating processes on a multicomputer system so that the completion

time of the processes is minimized. The problem is characterized by nondeterministic (data-

dependent) execution times between inter-process communications and by the amount of

data communicated between processes. It can be solved as a deterministic optimization

problem using average execution times and data volumes; however, the solution is inaccurate

when execution and communication activities change with time. Further, a deterministic

model does not account for delays incurred due to blocked messages. Such unpredictable

delays can only be found when the processes are actually executed or simulated.
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Table 6.1: Genetic-algorithm parameters used in our learning system. (Num. Active HMs

is the number of active HMs in each generation, New HMs is the number of new

HMs generated at the beginning of each generation, and HMs Ver. is the number
of HMs selected for veri�cation at the end of the last generation.)

Num. Dur. Num. New Cross. Mut. Rand. HMs
Application of of a Active HMs Rate Rate Gen. Ver.

Gen. Gen. HMs Rate

PGA 10 80 30 20 0.40 0.40 0.20 20

B&B 10 160 40 30 0.50 0.17 0.33 20

CRIS 10 100 30 20 0.45 0.35 0.20 20

GATEST 10 160 40 30 0.50 0.17 0.33 20

TimberWolf 10 100 30 20 0.45 0.35 0.20 20

Blind Equalizer 10 160 30 20 0.35 0.20 0.25 20

In this section, we use post-game analysis (PGA) [18,39,40] as the target problem solver.

This problem solver is described in Section 6.1.1. We then present results obtained by

applying TEACHER to improve the HMs in PGA.

6.1.1 Post-game analysis heuristics

Yan and Lundstrom proposed post-game analysis (PGA) [18, 39, 40], a simulation-based

method for �nding good mappings. Their system collects an execution trace consisting

of actual execution times in between communications and amounts of data sent between

processes and uses them in a simulation system to �nd the actual completion time of a speci�c

mapping. It then applies heuristics to propose a new mapping, evaluating the e�ectiveness

of the new mapping through the simulation system. This iterative re�nement is repeated

until no further improvement is possible. PGA can be applied in practice by repeatedly

collecting a trace for a short period of time, optimizing the mapping by PGA on a di�erent

computer while the original application program is running, and proposing a new mapping

for the application program to use.

There are four components of the heuristics used in PGA:
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(a) proposal-generation heuristics for generating proposals to perturb a mapping based

on independent optimization subgoals,

(b) priority-assessment heuristics for prioritizing each site and process,

(c) transformation-generation heuristics for generating possible transformations from

the ordered list of sites and processes, and

(d) feasibility heuristics for checking the feasibility of a move.

These heuristics are represented as expressions (or heuristic decision elements { HDEs) that

combine values collected during program execution and are applied to make decisions.

These four heuristics interact extensively in proposing alternative mappings. Conse-

quently, we cannot isolate each set of heuristics and learn them independently. Instead, we

consider the four components that make up a PGA HM, and learning aims to �nd the best

collection of HDEs and the proper value for each threshold. PGA HMs used in learning are

generated randomly, as well as by crossovers and mutations.

PGA HMs are evaluated by two performance measures: the quality of a mapping (process

completion time of the mapping) and the cost of �nding the mapping (PGA execution time).

Learning aims to �nd PGA HMs with the minimum completion time and cost within a user-

speci�ed limit. This objective is necessary since PGA has to be run concurrently with the

application program, and a new mapping should be proposed within a time constraint.

6.1.2 Experimental results

In designing PGA HMs, we chose an application based on a divide-and-conquer algorithm:

each process computes for a random amount of time, sends a message to each of its child

processes to start their computation, and waits for the results from its descendents before

reporting to its parent. We used three machine architectures (3-by-3, 4-by-4, and 5-by-5

meshes) and two process sizes (200 and 300 processes), resulting in six subdomains. All

subdomains were assumed to belong to one problem domain. Each PGA test case speci�es

the number of processes in the divide-and-conquer tree, the execution time of each node

of the tree, one of the machine architectures, and an initial mapping of the processes on

the architecture. All experiments were performed on a Sun SparcStation 10/30. For the

184



applications we have used, testing a PGA HM on one test case is time consuming: a small

learning experiment with 6,400 evaluations (6 subdomains, each with 800 tests for learning

and 400 tests for �nal veri�cation) took between 7 to 11 days of CPU time. Our experiments

address the generalization of the HMs learned. (See Section 4.6 for scheduling results.) We

used three subdomains (a 3-by-3 mesh with 100 and 200 processes and a 5-by-5 mesh with 200

processes) for learning and generalized the HMs learned to the remaining three subdomains.

In learning, 800 tests were performed for each subdomain, and the best �ve HMs that satis�ed

the cost constraint were selected for full veri�cation. We considered two cost constraints:

30% and 100% of the cost of the original PGA HM by Yan and Lundstrom [18,40].

Based on our experimental results, we have found that under a 0.3 cost constraint, there

are two subspaces (subspace 1 contains three subdomains with 100 processes, and subspace

2 contains the remaining three subdomains with 200 processes). In this case, the PGA

HMs learned do not generalize well and are biased towards the number of processes in the

application program. Table 6.2 shows the costs and qualities of the generalized HMs for

the case with one subspace and for the case with two subspaces. These HMs are obtained

using the strategy described in Case 4 in Section 5.4.1. Note that the generalized HM for

the one-subspace case is the same as the generalized HM for the 100-process subspace in the

two-subspace case. In this case, there are other HMs that perform better for the 200-process

subspace, but violate constraints for the 100-process subspace.

Table 6.3 shows the costs and qualities of the generalized HMs as compared to those of

the learned HMs. We see that both have similar costs and qualities. In contrast, the cost of

learning is around 500 times higher than that of the generalized HMs.

Next, we have found that under the 1.0 cost constraint, all subdomains should belong to

one subspace and can be evaluated by one HM. In the case with two subspaces, the same HM

is the best HM for both subspaces. Table 6.4 shows the costs and qualities of the generalized

HMs. This HM is obtained by optimizing the worst-case Pwin (see Section 5.4.1) since the

incumbent HM is acceptable in this case. Although this HM actually has worse qualities in

two subdomains, it also has signi�cantly smaller costs than the incumbent HM. In addition,

it outperforms the incumbent HM in four subdomains at signi�cantly smaller costs.

185



Table 6.2: Quality-cost comparison of generalized HMs using a cost constraint of 30% of
the original PGA cost with one and two subspaces. Subdomains with \*" are

learned; subdomains with \+" are generalized from subdomains with the same
number of processes. (Subdomains 1-3 belong to one subspace, and subdomains

4-6 belong to another in the two-subspace case.)

Subdomain Generalized HM(s)

Two Subspaces One Subspace

ID Architecture Processes Quality Cost Quality Cost

1 * 3-by-3 mesh 100 0.934 0.251 0.934 0.251

2 + 4-by-4 mesh 100 0.933 0.231 0.933 0.231

3 + 5-by-5 mesh 100 0.954 0.235 0.954 0.235

4 * 3-by-3 mesh 200 0.993 0.283 0.978 0.195

5 + 4-by-4 mesh 200 0.986 0.244 0.943 0.088

6 * 5-by-5 mesh 200 0.964 0.274 0.913 0.144

Table 6.3: Quality-cost comparison of learned and generalized HMs using a cost constraint
of 30% of the original PGA cost. Subdomains with \*" are learned; subdomains
with \+" are generalized from subdomains with the same number of processes.
(Subdomains 1-3 belong to one subspace, and subdomains 4-6 belong to another.)
The cost of learning is the sum of normalized execution times with respect to the
baseline HM.

Subdomain Generalized HM(s) Learned HM(s) Normalized

ID Architecture Processes Quality Cost Quality Cost Learning Cost

1 * 3-by-3 mesh 100 0.934 0.251 0.934 0.251 583.3

2 + 4-by-4 mesh 100 0.933 0.231 0.948 0.277 349.9

3 + 5-by-5 mesh 100 0.954 0.235 0.951 0.230 428.8

4 * 3-by-3 mesh 200 0.993 0.283 0.993 0.283 505.8

5 + 4-by-4 mesh 200 0.986 0.244 0.993 0.274 348.0

6 * 5-by-5 mesh 200 0.964 0.274 0.961 0.269 416.9
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Table 6.4: Quality-cost comparison of generalized HMs using a cost constraint of 100% of
the original PGA cost. Subdomains with \*" are learned; subdomains with \+"

are generalized from subdomains with the same number of processes.

Subdomain Generalized HM

ID Architecture Processes Quality Cost Pwin

1 * 3-by-3 mesh 100 0.998 0.538 0.388

2 + 4-by-4 mesh 100 1.013 0.389 0.795

3 + 5-by-5 mesh 100 0.992 0.380 0.356

4 * 3-by-3 mesh 200 1.006 0.750 0.850

5 + 4-by-4 mesh 200 1.012 0.645 0.968

6 * 5-by-5 mesh 200 1.031 0.681 0.981

Next, we show the performance of learned PGA HMs when generalized across the three

multicomputer architectures under various combinations of cost constraints and number of

processes in the application program. As discussed in Sections 2.3 and 2.6.2, performance

values related to each objective in a multi-objective application need to be considered inde-

pendently in order to avoid inconsistencies in evaluation.

To this end, we plot in a two-dimensional graph the distribution of the normalized quality

of an HM on a test case and the corresponding normalized cost of the same HM and test

case. Using a method we have presented earlier in Section 2.6.2 to show cost-quality trade-

o�s, we identi�ed a 90% constant probability contour for each HM after removing outliers,

checking for bivariate normality, and �nding the 90% constant probability-density contour

of the bivariate distribution.

Figure 6.1 shows the cost-quality of generalized PGA HMs on various architectural con-

�gurations and the number of nodes in the divide-and-conquer tree. Each of these four

graphs represents the performance of one HM obtained by learning in one subdomain and

generalizing to two other subdomains.

The HM used in Figure 6.1(a) was obtained by generalizing HMs learned under a 1.0 cost

constraint on three subdomains (see Table 6.4) to the other three subdomains. Likewise, the

HM used in Figure 6.1(b) (resp., 6.1(c)) are HM1 (resp., HM4) in Table 6.3. In learning
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Figure 6.1: Performance of PGA HMs learned for a 3-by-3 mesh architecture.
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the HMs, the �xed-duration minimum-risk strategy (resp., DMDS minimum-risk strategy)

was used in Figure 6.1(a) (resp., Figure 6.1(b) and 6.1(c)). We see in Figure 6.1(a) that

all of the contour plots are clustered together, implying that the PGA HMs selected under

the 1.0 cost constraint generalize well to other subdomains. Further, these HMs have lower

costs than the original HM (normalized to one) while having qualities close to or better than

the original HM. In Figure 6.1(b) and 6.1(c), we �nd both generalized HMs to have similar

quality levels, but the HM generalized from the 100-process subdomains have higher costs

than those from the 200-process subdomains. In this case, HMs that perform well for the

200-process subdomains would violate the cost constraint for the 100-process subdomains.

This di�erence in cost happens because the achievable cost for each subdomain in the 0.3

cost-constraint case is lower; for larger test cases, there is more room for improvement in

terms of cost, and a lower relative cost can be achieved.

6.2 Branch-and-Bound Search

In this section, we study the application of TEACHER to improve heuristics in a branch-

and-bound-search problem solver. This problem-solving approach has been applied to solve

many combinatorial optimization applications, with di�erent sets of heuristics for di�erent

applications. In this section, we develop the decomposition heuristics in a branch-and-bound

search for three di�erent target applications.

6.2.1 Application descriptions

A branch-and-bound (B&B) search algorithm is a systematic method for traversing a

search tree or search graph in order to �nd a solution that optimizes a given objective

while satisfying given constraints [50]. It decomposes a problem into smaller subproblems

and repeatedly decomposes them until a solution is found or infeasibility is proved. Each

subproblem is represented by a node in the search tree/graph. The algorithm has four sets

of HMs:
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Table 6.5: Generation of 12 subdomains of test cases for testing decomposition HMs in a
B&B search.

Appl. Subdomain Attributes

VC

� Connectivity of vertices is (0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,

0.5, 0.55, or 0.6)
� Number of vertices is between 16 and 45

TSP

� Distributions of 8-18 cities (uniformly distributed between 0-100 on both

the X and Y axes, uniformly distributed on one axis and normally dis-
tributed on another, or normally distributed on both axes)

� Graph connectivity of cities is (0.1, 0.2, 0.3, or 1.0)

KS

� Range of both pro�ts and weights is (100-1000), (100-200), and (100-105)
� Variance of pro�t/weight ratio is (1.05, 1.5, 10, and 100)
� 13-60 objects in the knapsack

(a) the selection HM for selecting a search node for expansion based on a sequence of

selection keys for ordering search nodes,

(b) the decomposition HM (or branching mechanism) for expanding a search node

into descendents using operators to expand (or transform) a search node into

child nodes,

(c) the pruning HM for pruning inferior nodes in order to trim potentially poor sub-

trees, and

(d) the termination HM for determining when to stop.

In this thesis, we apply learning to �nd only new decomposition HMs; preliminary results

on learning of selection and pruning HMs can be found in [25]. We consider optimization

search, which involves �nding the optimal solution and proving its optimality.

We illustrate our method on three applications: traveling salesman problems on incom-

pletely connected graphs mapped on a two-dimension plane (TSP), vertex-cover problems

(VC), and knapsack problems (KS). Table 6.5 shows the parameters used to generate a test

case in each application. All subdomains are assumed to belong to one problem subspace.
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Table 6.6: Original and generalized decomposition HMs used in a B&B search. (The new
HM learned for VC can be interpreted as follows: l is the primary key, and n��l
is the secondary key.)

Application and Variables Used Orig. Gen.

in Constructing HMs HM HM

Vertex-Cover Problem

l

1000l
+n

��l

l = live degree of vertex (uncovered edges)
d = dead degree of vertex (covered edges)

n = average live degree of all neighbors

�l = di�erence between l from parent
node to current node

Traveling Salesman Problem

c m � c

c = length of current partial tour

m = min. length to complete current tour
a = avg. length to complete current tour
l = number of neighboring cities not yet

visited
d = number of neighbor already visited

Knapsack Problem

p=w p=w

p, w = pro�t/weight of object

s = weight slack = weight limit

� current weight
pmax, pmin = max./min. pro�t of

unselected object
wmax, wmin = max./min. weight of

unselected object

The problem solver here is a B&B algorithm, and a test case is considered solved when

its optimal solution is found. Note that the decomposition HM is a component of the B&B

algorithm. We use well-known decomposition HMs developed for these applications as our

baseline HMs (see Table 6.6). The normalized cost of a candidate decomposition HM is

de�ned in terms of its average symmetric speedup (see Eq. (2.8)), which is related to the

number of nodes expanded by a B&B search using the baseline HM and by a B&B search

using the new HM. Note that we do not need to measure quality, as both the new and

existing HMs when applied in a B&B search look for the optimal solution.
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6.2.2 Experimental results

First, we develop a generalized HM for each target application using TEACHER. In each

application, we selected six subdomains and performed learning on each using 1,600 tests.

We then selected the top �ve HMs from each learned subdomain, fully veri�ed them on all

of the learned subdomains, and selected one �nal HM to be used across all subdomains.

Table 6.7 summarizes the learning, generalization, and validation results. For learning, we

show the average symmetric speedup of the top HM learned in each subdomain and the

normalized cost of learning, where the latter was computed as the ratio of the total CPU

time for learning to the harmonic mean of the CPU time required by the baseline HM on

test cases used in learning. The results show that a new HM learned for a subdomain has

approximately 1-35% improvement in its average symmetric speedups and 3,000-16,000 times

increment in learning costs.

Table 6.7 also shows the average symmetric speedups of the generalized HMs. We picked

six subdomains randomly for learning. After learning and full veri�cation of the top �ve

HMs in each subdomain, we identify the generalized HM across all twelve subdomains. Our

results show that the generalized HMs have between 0-8% improvement in average symmetric

speedups (using 30 test cases in each subdomain). Note that these results are worse than

those obtained by learning and that the baseline HM is the best HM in solving the knapsack

problem.

The bottom part of Table 6.7 shows the average symmetric speedups when we validate

the generalized HMs on larger test cases. These test cases generally require 10-50 times more

nodes expanded than those used earlier. Surprisingly, our results show better improvement

(9-23% using 15 test cases in each subdomain). Furthermore, six of the twelve subdomains

with a high degree of connectivity in the vertex-cover problem have slowdowns. This result

is a clear indication that these subdomains should be grouped in a di�erent subspace and

learned separately.

Table 6.6 shows the new decomposition HMs learned for the three applications. We list

the variables that were supplied to the learning system. In addition to these variables, we

have also included constants that can be used by the heuristics generator. An example of
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Figure 6.2: Distribution of performance values of the generalized decomposition HM to solve
VC normalized on a case-by-case basis with respect to those of the original HM
(performance values are for the 30 test cases used during the design process).

such a constant is shown in the HM learned for the vertex-cover problem. This formula

can be interpreted as using l as the primary key for deciding which node to be included in

the covered set. If the l's of two alternatives are di�erent, then the remaining terms in the

formula (n��l) are insigni�cant. In contrast, when the l's are the same, then we use n��l
as a tie breaker.

Finally, Figure 6.2 plots the distribution of symmetric speedups of the generalized HM

for VC with respect to the original HM using test cases in our generalization database. It

shows performance improvements of each test case with respect to that of the original HM.

It further shows that performance is fairly evenly distributed above and below the average

value without unnatural compression of ranges. This observation con�rms that symmetric

speedup is a proper normalization measure in this case. This plot also shows the di�erence
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in performance distribution across di�erent subdomains, indicating the need to use a range-

independent measure such as the probability of win.

In short, our results show that reasonable improvements can be obtained by learning and

by generalization. We anticipate further improvements by (a) learning and generalizing new

pruning HMs in a depth-�rst search, (b) partitioning the problem space into a number of

subspaces and learning a new HM for each, and (c) identifying attributes that help explain

why one HM performs well in some subdomains.

6.3 Test Generation for VLSI Circuits

The next application is based on CRIS [15] and GATEST [35], two genetic-algorithm

software packages for generating patterns to test sequential VLSI circuits. In our experi-

ments, we used sequential circuits from the ISCAS89 benchmarks [116] plus several other

larger circuits. Since these circuits are from di�erent applications, it is di�cult to classify

them by some common features. Consequently, we treat each circuit as an individual sub-

domain. As we like to �nd one common HM for all circuits, we assume that all circuits are

from one subspace.

6.3.1 CRIS

CRIS [15] is based on continuous mutations of a given input test sequence and on an-

alyzing the mutated vectors for selecting a test set. Hierarchical simulation techniques are

used in the system to reduce the memory requirements, thereby allowing test generations

for large VLSI circuits. The package has been applied successfully to generate test patterns

with high fault coverages for large combinatorial and sequential circuits.

CRIS in our experiments is treated as a problem solver in a black box, as we have minimal

knowledge in its design. An HM targeted for improvement is a set of eight parameters used

in CRIS (see Table 6.8). Note that parameter P8 is a random seed, implying that CRIS can

be run multiple times using di�erent random seeds in order to obtain better fault coverages.

(In our experiments, we used a �xed sequence of ten random seeds from Table 6.9.)
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Table 6.8: Parameters in CRIS treated as an HM in learning and in generalization. (The
type, range, and step of each parameter were recommended to us by the de-

signer of CRIS. The default parameters were not given to us as they are circuit
dependent.)

Parameter Type Range Step De�nition Learned
Value

P1 integer 1-10 1 related to the number of stages in a ip-op 1

P2 integer 1-40 1 related to the sensitivity of changes of state of a
ip-op (number of times a ip-op changes its
state in a test sequence)

12

P3 integer 1-40 1 selection criterion | related to the survival rate of
a candidate test sequence in the next generation

38

P4 oat 0.1-10.0 0.1 related to the number of test vectors concatenated
to form a new test sequence

7.06

P5 integer 50-800 10 related to the number of useless trials before
quitting

623

P6 integer 1-20 1 number of generations 1

P7 oat 0.1-1.0 0.1 how genes are spliced in the genetic algorithm 0.1

P8 integer any 1 seed for the random number generator -

Table 6.9: Sequence of random seeds used in learning experiments for CRIS, GATEST, and

TimberWolf.

Sequence of Random Seeds

61801 98052 15213 48823 55414 60203 43212 08540 94702 92715
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A major problem in using the original CRIS is that it is hard to �nd proper values for

the seven parameters (excluding the random seed) for a particular circuit. The designer of

CRIS manually tuned these parameters for each circuit, resulting in HMs that are hard to

generalize. This tuning was done because the designer wanted to obtain the highest possible

fault coverage for each circuit, and computation cost was only a secondary consideration.

Note that the times for manual tuning were exceedingly high and were not reported in [15].

Our goal is to develop one common HM that can be applied across all the benchmark

circuits and that has similar or better fault coverages as compared to those of the original

CRIS. The advantage of having one HM is that it can be applied to new circuits without

further manual tuning.

6.3.2 GATEST

GATEST [35] is another test-pattern generation package based on genetic algorithms. It

augments existing techniques in order to reduce execution times and to improve fault cover-

ages. The genetic-algorithm component evolves candidate test vectors and sequences, using

a fault simulator to compute the �tness of each candidate test. To improve performance,

the designers manually tuned various genetic-algorithm parameters in the package, includ-

ing alphabet size, �tness function, generation gap, population size, and mutation rate as

well as selection and crossover schemes. High fault coverages were obtained for most of the

ISCAS89 sequential benchmark circuits [116], and execution times were signi�cantly lower

in most cases than those obtained by HITEC [117], a deterministic test-pattern generator.

The entire genetic-algorithm process was divided into four phases, each with its own

�tness function that had been manually tuned by the designers. The designers also told

us that Phase 2 has the largest impact on performance and recommended that we improve

it �rst. As a result, we treat GATEST as our problem solver, and the �tness function (a

symbolic formula) in Phase 2 as our HM. The original form of this �tness function is

fitness2 = # faults detected +
# faults propagated to flip flops

(# faults)(# flip flops)
: (6.1)
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In learning a new �tness function, we have used the following variables as possible ar-

guments of the function: # ip ops, # faults detected, # faults propagated to ip ops,

# faults, # circuit nodes, and sequence length. The operators allowed to compose new

�tness functions include +; �; �; and =.

6.3.3 Experimental results

In our experiments, we chose �ve circuits as our learning subdomains. In each of these

subdomains, we used TEACHER to test CRIS 1000 times with di�erent HMs, each repre-

sented as the �rst seven parameters in Table 6.8. At the end of learning, we picked the top

20 HMs and evaluated them fully by initializing CRIS by ten di�erent random seeds (P8 in

Table 6.8 with values from Table 6.9). We then selected the top �ve HMs from each subdo-

main, resulting in a total of 25 HMs supplied to the generalization phase. We evaluated the

25 HMs fully (each with ten random seeds) on the �ve subdomains used in learning and �ve

new subdomains. We then selected one generalized HM to be used across all ten circuits.

Since there is no incumbent HM, we use the generalization strategy from Section 5.4.2 in

this case. The elements of the generalized HM found are shown in Table 6.8.

For GATEST, we applied learning to �nd good HMs for six circuits (s298, s386, s526,

s820, s1196, and s1488 in the ISCAS89 benchmark). We then generalized the best 30 HMs

(�ve from each subdomain) by �rst evaluating them fully (each with ten random seeds from

Table 6.9) on the six subdomains and by selecting one generalized HM for all circuits. Since

there is an incumbent HM, we use the usual generalization strategy from Section 5.4.1 in

this case. The �nal �tness function we got after generalization is

fitness2 = 2�# faults propagated to flip flops � # faults detected : (6.2)

Table 6.10 shows the results after generalization for CRIS and GATEST. For each circuit,

we present the average and maximum fault coverages (over ten random seeds) and the cor-

responding computational costs. These fault coverages are compared against the published

fault coverages of CRIS [15] and GATEST [35] as well as those of HITEC [117]. Note that

the maximum fault coverages reported in Table 6.10 were based on ten runs of the underlying

problem solver, implying that the computational cost is ten times the average cost.
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Table 6.11: Summary of results comparing the performance of our generalized HMs with
respect to those of HITEC, CRIS, and GATEST. (The �rst number in each

entry shows the number of wins out of all applicable circuits, the second, the
number of ties, and the third, the number of losses. A second number in the

entry on wins indicates the number of circuits in which the test e�ciency is
already 100%. For these circuits, no further improvement is possible.)

Our HM wins/ties/loses CRIS Generalized HM GATEST Generalized HM

with respect to
Total Max. FC Avg. FC Total Max. FC Avg. FC

the following systems

HITEC 22 6, 2, 14 4, 0, 18 19 5+2, 2, 10 4+2, 1, 12

Original CRIS 21 16, 1, 4 11, 0, 10 18 18, 0, 0 17, 0, 1

Original GATEST 19 4, 3, 12 3, 0, 16 19 7+2, 7, 3 7+2, 8, 2

Both HITEC and CRIS 21 5, 2, 14 3, 0, 18 18 5+2, 1, 10 3+2, 1, 13

Both HITEC and GATEST 19 3, 3, 13 1, 0, 18 19 3+2, 4, 10 2+2, 2, 13

All HITEC, CRIS, and GATEST 18 2, 3, 13 1, 0, 17 18 3+2, 3, 10 1+2, 1, 14

Table 6.11 summarizes the improvements of our learned and generalized HMs as compared

to the published results of CRIS, GATEST, and HITEC. Each entry of the table shows the

number of times our HM wins, ties, and loses in terms of fault coverages with respect to the

method(s) in the �rst column. Our results show that our generalized HM based on CRIS

as the problem solver is better than the original CRIS in 16 out of 21 circuits in terms of

the maximum fault coverage and better than 11 out of 21 circuits in terms of the average

fault coverage. Furthermore, our generalized HM based on GATEST as the problem solver

is better than the original GATEST in 7 out of 19 circuits in terms of both the average and

maximum fault coverages. Note that the average fault coverages of our generalized HM are

better than or equal to the original GATEST in all subdomains used in the heuristics-design

process. Our results show that our generalization procedure can discover good HMs that

work better than the original HMs.

Table 6.11 also indicates that HITEC is still better than our new generalized HM for

CRIS in most of the circuits (in 14 out of 21 in terms of the maximal fault coverage and in

17 out of 21 in terms of the average fault coverage). This poor performance happens because

our generalized HM is bounded by the limitations in CRIS and by our HM generator for
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Figure 6.3: Distribution of normalized symmetric fault coverages of our generalized HM
with respect to average fault coverages of the original CRIS on 20 benchmark
circuits (s298, s344, s382, s386, s400, s444, s526, s641, s713, s820, s832, s1196,
s1238, s1488, s1494, s1423, s5378, am2910, div16, and tc100 in that order).

CRIS. Such limitations cannot be overcome without generating more powerful HMs in our

HM generator or without using better test-pattern generators like HITEC as our baseline

problem solver.

Finally, we plot the distributions of symmetric fault coverages of our generalized HMs

normalized with respect to average fault coverages of the original CRIS (Figure 6.3) and

GATEST (Figure 6.4). These plots clearly demonstrate improvements over the original

systems.
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Figure 6.4: Distribution of normalized symmetric fault coverages of our generalized HM with
respect to average fault coverages of the original GATEST on 19 benchmark

circuits (s298, s344, s349, s382, s386, s400, s444, s526, s641, s713, s820, s832,
s1196, s1238, s1488, s1494, s1423, s5378, and s35932 in that order).
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6.4 Placement and Routing of VLSI Circuits

In this section, we choose TimberWolf [118] as our target problem solver for the VLSI

placement-and-routing application. We �rst describe the target application and problem

solver. We then present our results in designing new HMs for TimberWolf.

6.4.1 TimberWolf

TimberWolf is a software package based on simulated annealing [119] to place and route

various components (transistors, resistors, capacitors, wires, etc.) on a piece of silicon. Its

goal is to minimize the chip area needed while satisfying constraints such as the number

of layers of poly-silicon for routing and the maximum signal delay through the paths. Its

operations can be divided into three steps: placement, global routing, and detailed routing.

The placement and routing problem is NP-hard; hence, heuristics are generally used.

Simulated annealing (SA) used in TimberWolf is an e�cient method to randomly search the

space of possible placements. Although in theory SA converges asymptotically to the global

optimum with probability one, the results generated in �nite time are usually suboptimal.

As a result, there is a trade-o� between quality of a result and cost (or computational time)

of obtaining it. In TimberWolf version 6.0, the version we have studied in this subsection,

there are two parameters to control the running time (which indirectly control the quality of

the result): fast-n and slow-n. The larger the fast-n is, the shorter amount of time SA will

run. In contrast, the larger the slow-n is, the longer amount of time SA will run. Of course,

only one of these parameters can be used in a single experiment to control the running time.

TimberWolf has six major components: cost function, generate function, initial tempera-

ture, temperature decrement, equilibrium condition, and stopping criterion. Many parameters

in these components have been tuned manually. However, their settings are generally heuris-

tic because we lack domain knowledge for setting them optimally. In Table 6.12, we list the

parameters we have focused on in our experiments. Our goal is to illustrate the power of

our learning and generalization procedures and to show improved quality and reduced cost
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Table 6.12: Parameters in TimberWolf (version 6) used in our HM in learning and in gen-
eralization.

Param. Range Step Meaning Default Learned

P1 0.1 - 2.5 0.1 vertical path weight for estimating the cost

function

1.0 0.9584

P2 0.1 - 2.5 0.1 vertical wire weight for estimating the cost

function

1.0 0.2315

P3 3 - 10 1 orientation ratio 6 10

P4 0.33 - 2.0 0.1 range limiter window change ratio 1.0 1.2987

P5 10.0 - 35.0 1.0 high temperature �nishing point 23.0 10.0416

P6 50.0 - 99.0 1.0 intermediate temperature �nishing point 81.0 63.6962

P7 100.0 - 150.0 1.0 low temperature �nishing point 125.0 125.5509

P8 130.0 - 180.0 1.0 �nal iteration temperature 155.0 147.9912

P9 0.29 - 0.59 0.01 critical ratio that determines acceptance

probability

0.44 0.3325

P10 0.01 - 0.12 0.01 temperature for controller turn o� 0.06 0.1124

P11 integer 1 seed for the random number generator see Table 6.9

for the placement and routing of large circuits, despite the fact that only small circuits were

used in learning and in generalization.

6.4.2 Experimental results

In our experiments, we used seven benchmark circuits [120] whose speci�cations are

shown in Table 6.13. Here, we have only studied the application of TimberWolf to standard-

cell placement, though other kinds of placement (such as macro/custom-cell placement and

gate-array placement) can be studied in a similar fashion. In our experiments, we used fast-

n values of 1, 5, and 10, respectively. We �rst applied TEACHER to learn good HMs for

circuits s298 with fast-n of 1, s420 with fast-n of 5, and primary1 with fast-n of 10, each of

which was taken as a learning subdomain. We used a �xed sequence of ten random seeds

(P11 in Table 6.12 with values from Table 6.9) in each subdomain to �nd the statistical

performance of an HM. Each learning experiment involved 1000 applications of TimberWolf

divided into ten generations. Based on the best 30 HMs (ten from each subdomain), we
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Table 6.13: Benchmark circuits used in our experiments [120].

Cell Name Cells Nets Pins Implicit Feedthru

fract 124 163 454 0

s298 133 138 741 98

s420 211 233 1488 112

primary1 766 1172 5534 0

struct 1888 1920 5407 0

primary2 3014 3817 12014 0

industrial1 2271 2597 | |

applied our generalization procedure from Section 5.4.1 to obtain one generalized HM. This

generalized HM and the default HM are shown in Table 6.12.

Table 6.14 compares the quality (average/maximum area of chip) and cost (average ex-

ecution time) between the generalized HM and the default HM on all seven circuits with

fast-n values of 1, 5, and 10, respectively. (The cost for �nding the minimum area is ten

times the average cost.)

Figure 6.5 plots the quality (higher quality in the y-axis means reduced chip area av-

eraged over ten runs using the de�ned random seeds) and cost (average execution time of

TimberWolf) between the generalized HM and the default HM on all seven circuits with

fast-n values of 1, 5, and 10, respectively. Note that all performance values in Figure 6.5

are normalized with respect to those of a fast-n of 10 and that the positive (resp., negative)

portion of the x-axes shows the fractional improvement (resp., degradation) in computa-

tional cost with respect to the baseline HM using a fast-n of 10 for the same circuit. Each

arrow in this �gure points from the average performance of the default HM to the average

performance of the generalized HM.

Among the 21 test cases, the generalized HM has worse quality than that of the default

in only two instances (both for circuit fract) and has worse cost in 4 out of 21 cases. We see

in Figure 6.5 that most of the arrows point in a left-upward direction, implying improved

quality and reduced cost. Note that these experiments are meant to illustrate the power
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Table 6.14: Comparison of cost-quality trade-o�s between our generalized HM and the de-
fault HM on seven benchmark circuits and three fast-n values over ten runs.

(All performance values except the defaults with fast-n=10 are in the form
of symmetric improvements with respect to the default performance values of

fast-n=10. Percentage improvement in quality means percentage decrease in
chip area. Boldface indicates performance values worse than the corresponding

values of the default HM.)

Circuit
Performance fast-n=10 fast-n=5 fast-n=1
Measure Default Generalized Default Generalized Default Generalized

s298

Avg. Quality 655706 0.021 0.008 0.038 0.021 0.049
Max. Quality 640668 0.037 0.038 0.060 0.032 0.064
Avg. Cost 30.05 �0.062 0.392 0.361 3.284 3.205

s420

Avg. Quality 858110 0.027 0.012 0.040 0.033 0.066
Max. Quality 850662 0.071 0.030 0.067 0.046 0.078
Avg. Cost 44.59 �0.091 0.420 0.307 3.268 3.069

fract

Avg. Quality 87524 0.065 0.058 0.029 0.096 0.084

Max. Quality 77248 0.177 0.162 0.114 0.183 0.201
Avg. Cost 32.65 �0.040 0.346 0.313 2.502 2.424

primary1
Avg. Quality 3542722 0.108 0.075 0.156 0.155 0.191
Max. Quality 3413835 0.150 0.106 0.184 0.187 0.244

Avg. Cost 300.08 �0.045 0.267 0.197 2.525 2.501

struct

Avg. Quality 2029258 0.299 0.226 0.581 0.666 1.020
Max. Quality 1894878 0.368 0.293 0.728 0.774 1.179

Avg. Cost 1174.23 �0.266 0.044 �0.136 1.505 1.286

primary2

Avg. Quality 17930315 0.089 0.142 0.209 0.280 0.334

Max. Quality 17111600 0.167 0.200 0.287 0.329 0.363

Avg. Cost 2291.71 0.111 0.192 0.218 2.210 2.044

industry1

Avg. Quality 16337967 0.021 0.037 0.057 0.065 0.076

Max. Quality 15855016 0.048 0.052 0.077 0.078 0.088
Avg. Cost 1676.05 0.117 0.276 0.191 2.375 2.408
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Figure 6.6: Blind equalization process for recovering the input data stream for an nth order

channel and an mth order �lter.

of our generalization procedure. We expect to see more improvement as we learn other

functions and parameters in TimberWolf.

6.5 Blind Equalization

The �nal problem solver is a gradient descent algorithm to �nd a set of weights of an FIR

�lter in order to minimize convergence time, number of accumulated errors, and complexity

of the �lter [19]. The heuristics involved are the initial weights of the descent algorithm and

the cost function de�ned in the weight space for the descent algorithm.

We have applied our TEACHER system to design the cost function for blind equalization.

The goal is to minimize the number of accumulated errors for a sequence of input data

corrupted in transmission (Figure 6.6). The equalization process is equivalent to adjusting

the weights of an FIR �lter in order to minimize the value of a cost function (by gradient

descent). In our experiments, the cost function is de�ned in terms of the weights of the �lter

and the current output of the �lter.
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Table 6.15: Summary of third-order channels used in our blind equalization experiment.
Note that the channel weights can be in any order for a given subdomain.

Channel
Channel Weight Speci�cation
A B C

1 0.8704 0:3482 0:3482

2 0.8704 0:3482 �0:3482
3 0.8193 0:4916 0:2950

4 0.8193 �0:4916 0:2950

5 0.7893 0:4341 0:4341

6 0.7893 0:4341 �0:4341
7 0.7908 0:5140 0:3322

8 0.7908 0:5140 �0:3322
9 0.5774 0:5774 0:5774

10 0.5774 0:5774 �0:5774

In this application, we de�ne a test case as multiple random sequences of data of �xed

length passing through a �xed channel and a blind equalizer with a �xed set of random

initial weights. Each sequence of data is generated by a random number generator with an

equal probability of each data value being zero or one. Each test case speci�es a random

seed for generating the �rst data value for the �rst sequence.

We further de�ne all test cases with the same channel speci�cation as belonging to one

subdomain. In our experiments, we attempt to cover the entire spectrum of all possible

third-order channels from relatively easy ones (jaij >
P

i6=j jajj where ai is the i
th weight

of the channel) to the hardest one (ai = aj for all i and j). All ten channels used in our

experiment are shown in Table 6.15.

Table 6.16 shows the average symmetric improvement in terms of the number of accu-

mulated errors, HM base (CMA 2-2) [19], and the new HM found after learning and general-

ization.
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Table 6.16: Summary of average symmetric improvements in terms of the number of ac-
cumulated errors for the learned cost function over ten subdomains. (bi in

Figure 6.6 is the instantaneous value of b.)

Average Sym. Improvement Orig. New

Avg. Std. Dev. Max. Min. HM HM

0.153 0.395 0.694 �0:465 b3 � b 4b3 �2b2Sign(b) �b

6.6 Summary

In this chapter, we have applied our automated system for designing knowledge-lean

heuristics to several real-world applications. The targeted problem solvers include:

(a) process mapping using PGA,

(b) branch-and-bound search on several combinatorial optimization problems,

(c) CRIS and GATEST for generating test-patterns for VLSI circuits,

(d) TimberWolf for placement and routing of VLSI circuits, and

(e) blind equalization using gradient descent approach.

The experiments shown in this section cover a wide variety of situations. The forms of

HMs include a set of numerical parameters (CRIS and TimberWolf), a symbolic function

(blind equalizer, GATEST �tness function, and B&B decomposition heuristic), and a set of

symbolic rules with numerical threshold values (PGA). Both single-objective and multiple-

objective cases are covered in our experiments. We also study the case in which the target

problem solver has an incumbent HM and the less frequent case in which the target problem

solver does not have an incumbent HM.

Our results consistently show the e�ectiveness of our heuristics-design system for pro-

viding new HMs that improve the performance of their problem solvers. For all of the

applications, we have discovered HMs that are comparable or are better than the incumbent

HM (when it exists). Our results are especially signi�cant when we consider the fact that

incumbent HMs for these problem solvers have been extensively hand-tuned and have been

applied to solve many application problems.
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7. CONCLUSIONS AND FUTURE WORK

7.1 Summary of Work Accomplished

In this thesis, we have developed an automated system for designing heuristics for

knowledge-lean problem solvers using genetics-based machine-learning methods. There are

many applications and problem solvers that �t the characteristics targeted by our system.

The heuristics for these applications and problem solvers are relatively di�cult to design

and can have a large impact on the problem-solving process.

To summarize, we have made the following contributions in this thesis:

� We have identi�ed �ve key issues that must be addressed in the development of an

automated system for designing knowledge-lean heuristics. These issues include: the

decomposition and integration of problem-solving components, the classi�cation of

a problem domain, the generation of new heuristics, the performance evaluation of

heuristics, and the statistical generalization of learned heuristics (Chapter 3).

� We have developed and implemented a systematic framework for designing knowledge-

lean heuristics using various strategies to address the above key issues. This frame-

work is modular so that each key issue is addressed independently. In addition, we

have isolated the functionalities that are application and problem-solver dependent so

that we can easily interface our framework to new applications and problem solvers.
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TEACHER, the implementation of our heuristics-design framework, has been applied

to develop new heuristics for several applications (Chapter 3).

� We have developed a method for partitioning a problem domain into smaller subsets,

called subdomains, when there is di�erent statistical performance behavior in di�erent

parts of the problem domain. Within each subdomain, all performance values are inde-

pendent and identically distributed (IID) and can be combined and compared with one

another. Across di�erent subdomains, performance values must be treated separately

and independently (Chapters 2 and 3).

� We have identi�ed the various problems that must be addressed in the performance

evaluation of heuristics within a subdomain and have developed a systematic approach

to address these issues. First, a normalization method can be applied to reduce per-

formance variations and provide relative performance measures. Second, when there

are multiple performance measures, all but one measure should be transformed into

constrained measures. Third, the true performance of each HM over a subdomain is

statistically estimated, based on sample means and an incomplete subset of test cases.

The uncertainty involved in this statistical estimation can also be computed using the

probability-of-win (Pwin) measure (Chapters 2 and 5).

� We have studied methods to �nd good HMs that can generalize to the entire problem

domain, including unlearned subdomains. Using a range-independent measure called

probability of win for comparing against the current incumbent HM, we can compare

and order heuristics across problem subdomains in a uniform manner. The worst-case

performance of an HM over a given set of subdomains has been selected as an indicator

of that HM's performance over the entire problem domain (Chapter 5).

� We have studied strategies to schedule resources for tests in the heuristics-design pro-

cess. An improvement over previous strategies is that our strategy is nonparametric

and does not rely on the underlying performance distribution of heuristics. We have

also proposed a scheduling strategy to cope with one or more learning objectives. Our

results show that scheduling is important when tests are expensive and test results are

noisy (Chapter 4).
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� Using TEACHER, we have found better heuristics for process mapping, branch-and-

bound search, test-pattern generation in circuit testing, VLSI cell placement and rout-

ing, and blind equalization. These experiments cover many di�erent situations includ-

ing di�erent forms of HMs (e.g., a set of numerical parameters, a symbolic function, and

a set of symbolic rules), multiple performance objectives, and whether an incumbent

HM exists for the target problem solver (Chapter 6).

7.2 Future Work

In this section, we present some possible avenues for research in the future.

� Decomposition and Integration of Problem-Solver Components. We plan to integrate

this issue into our framework for designing knowledge-lean heuristics. The investi-

gation of this issue is �nally possible after we have developed e�ective solutions to

the other issues in the heuristics-design process. We plan to study various methods

for decomposing the problem solver into smaller groups and their interactions when

heuristics for each group are learned sequentially.

� Classi�cation of Problem Domains. An automated method for identifying problem

subdomains for learning and subspaces for generalization is desirable. Since such de-

marcation is generally vague and imprecise, we plan to apply fuzzy sets to help de�ne

subdomains and subspaces. Fuzzy logic can also help identify heuristics that can be

generalized, especially when there are multiple objectives in the application.

� Generation of New HMs. Better and possibly domain-dependent methods for gen-

erating new HMs should be investigated and integrated into TEACHER. Studies on

di�erent methods for selection will also be investigated.

� Evaluation of HMs. We plan to develop a better normalization method that can avoid

anomalies when more than two HMs are considered. In addition, we plan to study other

metrics for performance evaluation besides the average metrics studied in this thesis.

One such metric is the median metric, which is more robust to extreme performance

values and less sensitive to normalization methods.
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� Generalization of Learned HMs. We need to �nd better generalization strategies when

there is no incumbent HM or when the incumbent HM is not acceptable. Using the

worst normalized performance values over multiple subdomains may not be meaning-

ful since di�erent subdomains may have entirely di�erent ranges of normalized perfor-

mance values. In addition, we must investigate the robustness of our probability-of-win

measure, Pwin.

� Applications of TEACHER. Finally, we plan to carry out learning on more applications.

The merits of our system, of course, lie in �nding better heuristics for real-world

problems, which may involve many contradicting objectives. Our experience in this

thesis is on an application with two objectives. To cope with applications with many

objectives, we need to extend our scheduling and generalization strategies.
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