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ABSTRACT

Mokhtar Aboelaze. Ph.D., Purdue University. August 1982. Sysiemaric Design
of Systolic Arrays Major Professor: B. W. Wah,

In this thesis we present a comprchensive overview for the design of a
system of systolic arrays, from the VLSI layout level to the system level,

First, we discuss 3-D VLSI layout, where tighter lower and upper bounds
for the volume and maximum wire length for the layout of the different families
of graphs in a 3-D environment were developed. Except in two cases, ali the
bounds for the volume are optimal. The first case is the one-active-layer layout
of the planar graphs, the other is the unrestricted layout for graphs with separa-
tors N ,q = 2/3. A cost modet for reflecting the real cost of the fayout, instead
of taking the volume as a measure of cost, was also developed.

_In Chapter 3, we develop a methodology for designing a systolic array
starting from recurrence equations. The idea of Control Flow Systolic Arrgys to
handle uniform, as well as nonuniform recurrence cquations, will be developed,
This methodology is basically a scarch for a heuristic solution in the space of
all the possible solutions. Because of the unlimited search space, the search

process must be guided for the search to be completed in a reasonable amount

of time

xvi

Chapter 4 introduces the idea of converting the data between two systolic
arrays that were direcily interfaced, instead of using a common memory which
would be & bottleneck for the whole systemn. The minimurn number of buffers
required 1o convert the data berween two given distributions was also calcu-

lated, 2 general purpose converter was also proposed.



Tirevunyam

e Enpoonesal L L. . e Eer |

CHAPTER 1
INTRODUCTION

L1, Intreduction

Recent years have seen parallel processing become a reality as numerous com-
mercial and experimental machines with 8 variety of architectures have been intro-
duced. In terms of functionality these machines span the whole spectrum of paralle]
processing from supercomputers, suck as the Cray X-MP, to special-purpose
applicadon-dependent VLSI arrays. The major driving force behind this achicvement
lies in the grea: advances in VLSI technology. In the 1960°s the average integrated
circuits chip contained tens of wansistors, Using today's technology, hundreds of
thousands of transistors can be implanted on the same chip, thereby leading not only
to more complicated but also less expensive chips,

In order to design a powerful and cost-effective computer system capable of solv-
ing complex problems, one must consider the underlying hardware and software sys-
tem structure and the computing algorithms to be implemented on these computers.
Computers were originally developed, and are stll largely used, for data processing.
Recently, the tendency has been to use computers for knowledge processing instead of
for data processing. For example, a variety of expert systems has been developed for
areas such as medicine, agriculture, of! exploration and manufacturing. This kind of
application is compurationally intensive, making the use of sequential computers
inefficient,

Since the Intematdonal Coaference in Tokyo in October 1981, when Japan
launched its National Fifth Generation Project [TrG82], there has been a growing

belief in the computer architecture community that the traditional sequential control

| - LTE IR
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flow computers will be superseded in the 1990's by a new generation of computers.
One of the lcading candidates for superseding traditional sequential machines is the
VLSI processor arrays. This is true since for the past 15-20 years the number of
transistors on & single chip is being doubled cach one and half (0 two years, years.
There is no indicadon that this trend will swop in the near future. In the rest of this
Chapter, we will briefly review the concept of VLSI processor Arrays.

1.2. VLSI Processor Arrays.

Until recently, computation-intensive tasks in signal and image processing and in
knowledge processing systems have been handled using high-performance general-
purpose computers. These general-purpose computers, use extensive pipelining and
paratle] processing to enhance the performance of the system. Although somewhat
effective, these general-purpose computers are very expensive and difficulr 1o design.
The operating system overhead also impedes the application of these computers in real
time systems, where the speed and the throughput of the system is a crucial factor,
To achicve the speed and throughput required for real time application, new archites-
ture are needed, - )

An important architectural approach made possible by the availability of inex-
pensive special-purpose VLSI circuits is the systolic ammays. Systolic arrays make use
of multiple regularly-connected processing elements to exploit the potential of pipelin-
ing and multiprocessing {Kun82] {Kun80a). In a systolic armay, several data items
flowing along different pipes with the same or different rates may meet and interact.
The major advantage of systolic processing is that each data item once accessed is
used & number of times. Thus a high computational throughput can be achieved with a
modest I/O bandwidth.

There are some constraints on the design of a VLSI chip [MeCB0). The quality
of the chip depends upon the following criteria,

(1) Modularity: Simplicity and regularity have always been major concems in
designing special-purpose VLSI sysiems. Simple and regular interconnections lead to
cheap implementations and high densides [MeC801, and high densities imply both



high performance and low overhead for support components [SuM77]. Another impor-
tant concemn is the cost-cffectivencss. The cost of these special-purpose chips should
be kept low encugh 10 justify their limited applications, The cost of designing
special-purpose Integrated Circuir chips can be reduced if the architecture of thee chip
can be decomposed into regular and simpte modules that will be repeated hundreds or
thousands of times. This is especiaily efficient with chips that contain hundreds of
thousands of transisiors, To cope with complexity simple and regular designs are
essential. VLSI systems based on simple regular layouts are likely to be modular and
adjustable to various performance levels, For this reason we are interested in making
the army us modular as possible. Figure 1.1 shows two differemt kinds of systolic
armays.

(2) Pipelincability: The three levels of pipelincability are the macro level, the
intermediate level, and the micro level JRaK85). .

An array is said to be pipelincable at the macro level, if it can begin processing &
new instance of a problem before it completely finishes processing the previous
instance (when more than one problem instances are being solved at the same time in
a pipelined fashion).

An areay is said to be pipelineable at the intermediate level if for 2 single prob-
lem instance the maximum throughput achievable is independent of the number of
processing elements, n, in the armay for n 2 K, where K is some finite chosen integer.

The array is said to be pipelincable at the micro level if the processing elements
(PE’s) have pipelined adders, multipliers, or any functional devices.

(3) Communication: Communication between the processing elements should be
restricted to immediate neighbors. A modular array of processing elements that res-
tricts communication in this manner will be wrmed a VLSI ammay.

(4) Flexibility: There are two types of VLSI arrays. One type is characterized by
inflexible "hard-wired dedicated processors, the other allows some flexibility, such as
programmability and reconfigurability. The first type is usually dedicated 10 solving
one kind of problem, while the second can be reprogrammed to solve many problems,
A PE in the programmable or reconfigurable array is usually more complicated than a

(a)

(b)

Figure 1.1
Two examples of systolic armys. (a) & lincar systolic ammay (b) a hexagonal sys-
solic array { hope this is too long for one line



PE in the dedicated array, Therefore, the array architect must compromise between the
complexity of the PE and the degree of fiexibitity he wants to introduce into the array,

Not every algorithm is suitable for implementation on a systolic aray. A a
compute-bound algorithm, in which the number of computing operations is larger than
the total number of input and outpur elements is suitable for VLSI implementation For
example, the marrix-matrix multiplication algorithm represents a compute-bound task,
which has O(n®) multiply-add steps, but only O(n2) 1O elements. On the other hand,
1/O bound problems, in which the number of /O operations is jarger than the number
of computations, is not suitable for VLSI implementation. For example, adding two

matrices is an /0 bound problem since there are n? computations and 3n? /O opera-

tions.

The first attempt to formally describe the systolic system was Charles Leiserson
in [Lei83a]. He represented the sysiolic system with a graph, G=(V.E), where n
Moore machines, represented by the vertices V, are interconnected together by an
interconnection specified by E and operating under a common clock. The Moore
machine mode! is used to eliminate the possibility of a combinatorial rippling of the
output of one machine through a sequence of successor machines. Each edge is

labeled by a triplet (u,v,w). The meaning of this wiplet is as follows: the given edge

originates at verex u, ends at vertex v, and is labeled with we 2 +. w identifies the
number of registers (delay) a datum originating at u has 1o pass through before reach-
ing v. Leiserson also proved that this system is systolic if * and only if for each edge
(u,v,w) the weight w is greater than O [Lei82z]. In essence this condition ensures that
in a systolic sysiem, no signal "daw” from a nede can reach another node without
passing through an intermediate buffer. This climinates the possibility of combina-
torial ripples through the nodes of the graph. Two major results which follow from
this systolic criterion are listed below.

Sufficient condition: A systalic system represented as a graph |G, has a syswlic
equivalent if the constraint graph G - | has no negative cycles (G - 1 is obtained from
G by decreasing all the labels w of G by 1)

Necessary Condition: A systolic system represented as a graph G, does not have
any systolic equivalent if the graph G - 1 has 8 negative cycle and a path from some
vertex on this ¢ycle to an input port,

Leiserson and Saxe proved the sufficlent and necessary condition, and introduced
a procedure to convert a non-systolic graph to a systolic one {LeS81]. Although the
conditions of uniformity and locality of communications were not formally introduced
In Lelserson work, they are very important from the manufacturing point of view as
we explained earlier,

Theree are a large number of university and industrial projects on systolic arrays.
One of the early attempts to build a systolic system is the Warp project at Camegie
Mellon University [KuM84]. The Warp consists of an array of ten linearly connected
cells. Each cell in the array is capable of performing 10 million 32-bit foating point
operations per second (10 MFLOPS)

At Motorola, an effort was made 1o design an advanced digital signal processing
systolic array (DSP) [Lee87). The goals of this advanced architecture were

* 1o increase the processing performance by a factor of 16 over that of an exising
Motorela DSP,

* to perform 32-bit floating-point arithmetic for application that require this kind of
precision; and

* w reduce the amount of cffort of software development of this kind of systems.

Motorola based this architecture on processing elements with 32-bit floating point
operations. The processing element swructure is shown in Figure 1.2, Every processing
elerment is composed of a serial floating-point processor, two input registers ,A and B,
and four communication registers. The four communication registers are used to
exchange data with the four neighboring processors directly 1o the east, west, north, or
south of this processing element. Each cell has a unique identifying address.

The scripl floating-point processor takes 50 clock cycles to perform each opera-
tion and can run with a speed of 20 MHz. Since the operation takes 50 clock cycles,

non-neighboring communications are possible. During the normally unusable times
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The architecture of a Motorola DSP [Leef7)

(the clock cycles), data is allowed 1o travet through cells transparently using the nel-
wotk of communication registers in each PE, thus allowing a communication betwesn
rwo PE's that are vp to 50 cells away. Algorithms are implemented direcdy in this
architecture. Every cell is initialized at least once after each power-up. From this
moment on, each PE performs the same operation in every processing cycle. It also
gets its input data from a pre-assigned input cell and deposits its results in a pre-
assigned output cell. This pre-set operation makes it possible to assign the function of

. each cell directly from the signal fiow graph.

Another example of recent VLSI architecture is the Systolic/Cellular sysiem
being designed at Hughes research laboratories {MaP87]. This sysiem consists of a
host and a programmable coprocessor. The coprocessor includes an amay of 16x16
mesh-connected processors, dual port memory, and a controller with & separate pro-
gram memory as shown in Figure 1.3. The program and the data are loaded from the
host to the program memory and the dual port memory, respectively. There are two
modes of operation for this processor, the systolic mode and the cellular mode. In the
ceilular mode of operation the data are loaded to the processors from the dual-post
memory. This mode is useful in convolution, thresholding, FFT, and other transforma-
tions. In the systolic mode of operation, the dara will fiow from the array memory in &
row-by-row fashion through the pracessors, and thep back to the army memory using
the other port, It was found that this kind of operation is useful in marrix operations
like inversion, QR factorization, solution of linear systems of equations, and many
other matrix computations.

The processors in Hughes sysiolic/celtular system are controlled by a single con-
roller, which cperates in an SIMD mode. One instruciion is broadcast by the con-
wroller to be executed by all processors. However, the leftmost processors can be pro-
grammed to perform different operations, and some processors may be disabled by~
using & mask, The instructions set of this array is composed of 30 powerful instruc-
tions, each 112 bits wide. Each instruction has two scparaic ficlds of operations, onc
for the leftmost processors, and the other for the internal processors. The performance
of this machine is in the neighborhood of 450 MOPS.
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Another system is cwrently being built at ESL Ine. is for beamforming for
acoustic signal {Kan87]. The system consists of a special-purpose systolic processor
which is atached to a gencral purpose compuier (DEC 11/750)

In the United Kingdom, an effort was made to define "application specific” sys-
tolic arrays for high performance signal processing computations. As a result, a sys-
tolic array was built that is capable of computing the vector of complex weights
required to form the receiving beam for an adaptive antenna array [McMS7). Another
major project in the United Kingdom is the building 2 state-of-the art digital signal
processing system, which exploits the systolic array concept at the bit level and is
capable of doing convolution, corrclation, discrete Fourier transform and rank order
filtering in real tme,

13. Problem Definition and Thesis Objectives

With the new advances in VLSI rechnology, systolic computations are becoming
more and more attractive, If the trend in VLSI technology is to continve, and there are
no reasons to believe it will not, systolic arrays will beceme a major component in
any real time application that requires both high speed and high throughput.

In this thesis we are interested in synthesizing systolic amays. Any synthesis
process begins with a high level specification of the probiem fo be solved. A final
implementation is then systematically derived from this specifications. u Earlier work
on synthesizing systolic arrays was based on the analysis of the dara dependency of
such initial specifications. These initial specifications are assumed 1o be & system of
recurmence equations. We will continue 1o use the system of recurrence equations as an
initial specification throughout this thesis. Three problems which have a great impact
on the design of systolic arrays are presented in this thesis: 3-D VLSI layout, mapping
& recurrence onto & systolic armay, and pipelining of systolic arrays. The next three

subscctions will bricfly review the importance of these three topics.

10



L3.1L 3D VLSI Layout.

Onc of the major objectives in VLS circuit design is to increase the speed of the

circuit. This objective can be reached in two different ways. The first is to increase the
switching speed of the transistor, However, there are physical limits for this switching
speed Which can not be excecded. The second is to put mote and more transistors on
the chip, since the speed of transmitting a signal between two transistors on the same
chip is at least one order of magnitude less than transmitting & signal between two
chips. When putting more transistors on a single chip, the size of the transisior must
be decreased to maintain 2 reasonable level of yield, Decreasing the wansistor size,
however, will decrease its driving capabilities, which will limit the maximum wire
length on the chip and consequently the number of ransistors on the chip. One solu-
tion to this problem is o use 3-D VLSL 3-D VLSI technology is still in its enfancy,
and there are some technological difficulties to be overcome before it can be accepted
as a standard technology. But, with the work going on now at IBM and Hughes
Research Lab, one can expect 3-D VLSI chips to be an available in the near future.

The advantages of using 3-D VLSI layout are two fold. First, as will be proved
in Chapter 2, using 3-D VLST layout will result in less total volume for any circuit
than its 2-D counterpart. This will lead to more dense chips, Second, 3-D VLSI layout
will result in less maximum wire length, which can lead 10 a faster circuits.

This thesis will study the possibility of 3-D VLSI, and introduce improved fower
and upper bounds for both the volume and the maximum wire length required 1o lay-
out the differcnt families of graphs,

1.3.2. The Design of a Systolic Arrays.

The second .vw: of this thesis is concerned with the design of & systolic array.
Although the use of systolic arrays is increasing, there is as yet no methodology that
c4n map any recurrence into a systolic array. Methodologies presented in current
literature are either dedicated o solving one specific problem, or will take an
exponential time 1o solve the problem. This thesis assumes that the problem is

presented as a set of recurrence equations and that we want o map it into a square

1t

array of processors. The second part of the thesis, introduces the concept of control
flow systolic array. A heuristic methodology for mapping 8 set of recurience equa-
tions into a two dimensional control flow systolic array is also presented.

We chosed to map the recurrence into a 2-D mesh of processors for two main
reasons. The first is that 2-D layout is the predominant technology at the present time.
Second, the work presented here for 2-D arrays can be easily extended to support
three dimensional Ba_sm.e..-as they become available.

1.3.3. Macropipelines of Systolic arrays.

Many applicstions in image and signal processing requires that more than one
sysiolic computations be performed on the daw in & pipeline fashion. Accordingly,
output of one systolic array is fed directly to the input of another array, However, the
output of one array may not be in the required format for input into the next array in
the pipe. The use of a common memory will stow the system and can cause a
boitleneck. The last part of this thesis is concerned with the design of converters to
convert the data from the output format of one array to the required input format for
the next array, in order to directly interface two sysiolic arrays.

14, Organization of the Thesis

“The remaining of this thesis is organized into three chapters. Bach chapter deals
with the interface between Integrated Circuit design and sysiem design, Chapter 2 is
the most theoretical, being concerned with the inherent limitations on our ability to
compute using VLSI. Chapier 3 deals with the design of the sysiolic array 0 solve a
specific problem. Chapter 4 deals with the system level, where we are conceming with
arranging the systolic arrays in a pipeline fashion to solve a certain problems,

Chapter 2 discusses the 3-D layout of VLSI circuits. In this chapter, we examine
the complexities of volume and maximum wire length for mapping circuits
represented as undirected graphs 1o 3-D systems. Tighter bounds than those previ-
ously known are shown for <Ec=m.?a_._.ﬁm of graphs in both the one-active-layer and
the unrestricted layouts. Finally, a cost model is developed to mrflect the cost of

12



implementation in the third dimension in order & optimize the =E=.cn_. of layers 10
minimize the overail cost.

Chapter 3, discusses the design of a systolic array. One of the most important
factors in the design of an armuy is how 1o map the algorithm into the array. Several
methods have been proposed for mapping the uniform recurrence into a systolic amay.
In this chapier, the integration of control flow and dara fiow for mapping nonuniform
recurrences into u systolic armay is presented and a methodology for integrating the
control flow with the data flow is introduced

Chapter 4 discusses the macropipelining of systolic arrays. In a macropipeline of
systolic arrays, outputs of one systolic array in a given format have to be fed as inputs
to another systolic array in & possibly different format. As mentioned before, a com-
mon memory becomes a bottleneck and limits the number of systolic arrays that can
be connected together. In this chapier, the designs of buffers to convent data from one
format to another is studied. The minimum sumber of buffers is determined by a
dynamic-programming algorithm with €(n2) computational complexity, where n is the
problem size. A general-purpose converter to convert data from any distribution to
any other in a subset of the possible data distributions is also proposcd. Finally,
buffer designs for a macropipeline to perform feature exwaction and pauern
classification are used to exemplify the design process.

13

CHAPTER 2
3D VLSILAYOUT

2.1, Intreduction

The increasing demands for faster processors in scientific as well as commercial
computations indicate the nced for tremendous computing capacity, in terms of %on_
and volume. One way 10 achieve this is to build chips with more active devices. To
increase the number of devices in a single chip while maintaining & reasonable yield,
the transistor size should be decreased. There exist problems with decreasing ransis-
tor size, such as the shori-channel effect and the nonstatistical behavior of transistors
that span only a few hundred or a few thousand silicon atoms [NeESS]. :3..2_,3.
long before these problems become importany, the problem of reduced driving capabil-
ity of smaller wansistors will have an equally profound impact on the leyout of VLSI
chips, since the average wire length grows linearly with the number of ransistors. As
a result, a iimit will be reached at which the size of a wansistor cannot be decreased
any more without affecting its ability to correctly transmit a signal 10 another transis-
tor.

Recently, 3-D VL3I circuits have been shown to be feasible. 3-D VLSI circuits
ire more =nx..En.=..E.. their corresponding 2-D counterpants because wire routing is
easicr and more systematic, the runs of wires are shorter, and the volume of a p
realization may be less [Ros83a). Wisc has demonstrated this phenomenon in & two-
layer layout of the Banyan/FFT networks; however, his work was directed towards the
printed-circuit level rather than the VLSI-chip level [Wis81]). With increased flexibil-
ity of device placement in & 3-D circuit, the complexity of the resulting circuit can be
reduced. Hence, the driving capability of a wansistor and the overall power
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requirement ¢an be reduced. Dr. Gibbons, the president of Texas Instruments,
predicted the feasibility of such chips ia the earlier 1990s [Gib82). Examples of
current implementations include IBM's ‘‘modestly’” three-dimensional Thermal Con-
duction Module (TCM) circuit package [BIB82] and Hughes' 32-by-32 3-D cellular
computer to be finished in 1987 [NuE8S]. Nudd, Etchells, and Grinberg have pro-
posed a cellular machine employing 3-D technology to perform image understanding
operations [GrN84] {NuEBS5).

3-D VLSI technology is still plagued by four major problems. One problem is
the alignment of in successive layers of a chip. Another problem is the creation of
truly cylindrical holes. Due 1o ¢ffects like diffraction, scattering, and nonuniferm
exposure to solvents, the holes tend tw be accentuated at the top or the bottom
[MeC80). Recent work on X-ray beam and refined optical lithography [Ros83a] has
suggesied that this issue will be less of a problem in the future. The third problem is
that the placement of active devices, using MOS technology, deep inside a 3-D
volume requires multiple layers of monecrystalline silicon to be deposited, and subse-
quent processing of the chip would destroy the crystal structure of the monocrystalline
silicon. Recent work at Texas Instuments {LaT80] and IBM [Wei81] has suggested
that full layers of the monocrystalline silicon are ot :onwna. and that transistors can
be fabricated on islands of monocrystalling silicon that reside on a sea of oxide. The
fourth problem is the cooling of such chips. However, the shorter wire lengths in 3-D
circuits gencrates less heat than the corresponding 2-D circuits. Moreover, the prob-
lem is less severe in 3 one-active-layer chip in which active devices exist in only one
layer, with the rest of the volume being used for wire routing [Ros83a] [RosBi).

In this chapter, improved bounds on volume and maximum wire length of 3-D
layouts will be shown, in both the one-active-layer and unrestricted models, Section
2.2, will present a model for 3-D layouts. In Sections 2.3 and 2.4, dghter lower and
upper bounds -on yolume and maximum wire jength will be proposed and ropose lay-
outs for the various families of undirected graphs will be presented, Finally, an

optimization model will be presented to minimize the overall cost of the design,

2.2. A Model of 3-D VLSI Circuits

This section, describes the model used to obtain the lower and upper bounds of
volume and maximum wire length for mapping verious families of undirected graphs
in 3-D circuits. Other attempts in this field will be described briefly.

The model used hers is an extension of Thompson's 2-D model into three dimen-
sions [Tho80]. The model consists of & 3-D grid of width W, length L, and height H
(Figure 2.1). A vertex in this grid, (x,y,2), where 0$xSW, 0SysL, and 0<zgH,
denotes the location where a device may reside. An edge in the grid represents a wire
in the circuit. It is assumed that three mutually perpendicular lines in the grid can
pass through one point without physically 1ouching each o&mﬁ As a special case, the
traditional 2-D circuit with two levels of metalization can be considered as a one-layer
3-D circuit because the two levels of metallic conductor can cross without touching
cach other. It is further assumed that any active device will require a unit volume,
that the cross section of any wire is 2 unit area, and that the separation between the
wires in any dircction is of unit length. These assumptions are not ocoverly restrictive
as it is the order-of-magnitude asymptotic complexities that are under consideration.

To find the upper bounds of volume and maximum wire length for mapping en
undirected graph G=(V, E), where V is a set of vertices and E Is a ser of edges con-
necting the vertices, it is necessary to find a one-to-one mapping between the set of
vertices of the graph and the set of nodes of the grid and, 8t the same time, a one-to-
one mapping between the sct of edges in the graph and the set of disjoint paths of the
grid. The volume of the layout is the minimum volume of a paraliclepiped containing
the layout, while the maximum wire length is the maximum lwngth of a wire between
any two active devices.

Rosenberg has proposed two models of 3-D layouts [Ros81] [Ros83t]. The first
model is the one-active-layer model, in which active devices are attowed to reside in
either the top or the bottom layer, with the other layers used for the routing of wires,
The second model is the unrestricted model in which active devices can be placed
anywhere in the volume. In general, the onc-active-layer model requires more volume

and longer wires than the unrestricted model.
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Figure 2.1
A 3-D grid

i7

Rosenberg proved that there is an unrestricted 3-ID realization of the n-input rear-
rangesble permutation metwork that consumes B(n*?} volume, and that there is
onc-active-layer 3-D reslization of the same network with 8(n**logn) volume’
[Ros81} [Ros83a]. Preparzta has proposed a layout for the cube-connected-cycles
using the unrestricted model. Preparata also developed upper and lower bounds using
the VT°2 and VT measures, where V is the volume, and T is the computation time
[Pre83a). He pointed out that the VT¥/2 measure is suitable for the unrestricted Iny-

out, while the VT measure is suitable for the one-active-layer layour. Leighton and )

Rosenberg have found lower and upper bounds for the layout of various familics of
undirected graphs [LeR83a] [LeR86).

In the next two sections, improved lower and upper bounds to map an undirected
graph to a 3-D grid for the onc-active-layer and the uarestricted layouts will be
presented and compared to previous resulis. The undirecied graphs considered are
classified into families cheracterized by their separators, which define the relationship

-between the area or volume of layout and the connectivity of the graph. An N-node

graph G is said to have f(N) separator if (a) G can be partitioned into two graphs, cach
with N/2 nodes, by cutting no more than f(N) edges; end (b) both of the twe N/2-
node subgraphs have f(N/2) separators, Lipion and Tarjan proved that any N-node
planar graph has O(YN) separstor [LiT772] [LiT777b}. Since the result discussed
above is an upper bound, it is possible for planar graphs to have scparators jess than
B(/N) and possible for non-plenar graphs to have &(VN) separators. The relation-
ship between the separator and the comresponding area of layout was first observed by
Thompson {ThoB80l, who showed that the lower-bound apea lay out a graph with
separator @ is Q(w?). Leighton obtained lower and upper bounds on the area and
maximum wire length for layouts of various familics of grapas with 6(NY) scparator,
where q<1/2, 4=1/2, and ¢>1/2, and the family of planar graphs using 2-D iechnolo-
gies [Lei4],

* 8 indicres the st of fanctione with the same order-of-magninsde cemplesity; () indicates the st of fanctices with

the upper-bound onder-of-magnitade complexity: brﬁiﬂ?.ﬂ&gﬁ-tgﬁngﬂs‘ﬂ.
magnitude cmplenity.
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2.3. Lower Bounds on Volume and Maximum Wire Length

In this section, improved lower bounds on the volume and maximum wire length
are developed for the various families of wndirected graphs in the onc-active-fayer
model. To prove the lower bounds on embedding the various families of undirected
graphs in a 3-D grid, it Is nccessary 1o find a representative graph in each family such
that this graph will have the greatest lower bound, No improvement in lower bounds
for the unrestricted model was found because the existing lower bounds on volume are
equal to the improved upper bounds (Section 2.2), except for graphs with B(NIY
scparator, and hence arc already tight. Table 2.1 summarizes the existing lower
bounds on volume and maximum wire length for the unrestricted model [RosB3a]
(LeRB6] [LeR84].

The following theorem gives the plane arca required when a 3-D cireuit to be
converted into a 2-I2 circuit. This theorem is an improvement over the one proved by
Leighton and Rosenberg [LeR86], showing that the area required is 4BH? instead of
9BH? and that the degree of the graph can be six instead of four.

Theorem 1: Any 3-D layout of volume V, base area B, and height H can be
transformed into & 2-D layout of area A=4BH2, If the maximum wire length in the
3-D layout is Wy, then the maximom wire length in the 2-D layout is
W4 % 2'max(H, 3rWa,.

FProof. Without loss of generality, & 3-D grid of base area B=WL and height H will
be transformed into a 2-D grid of area A=4WLH?, Consider the 3-D grid in Figure
2.2a. Assume that the nodes of this grid are located in the Cartesian coordinates
(xy.z), where 0x<W, Ogy<L, 0<z<H, Point (x.y,7) in the 3-D grid is mapped to
point (x",¥°) in the 2-D grid such that

¥=Hx+z; y '=Hy+z 2.n
Note that the width and length of the 2-D grid are W’ =HW and L'=HL, respectively.

Figure 2.2b shows the mapping of the 3-by-3-by-3 grid into a 9-by-9 grid, where
solid lines represent connections in the first plane in Figure 2.2a, dashed lines

represent connections in the second plane, doted lines represent connectons in the
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Figure 2.2

The mapping of & 3-by-3-by-3 grid into 8 9-by-9 grid. (a) a 3-D grid; (b} 2 mapping
of the 3-D grid in (2} to a 2-D grid; {c) & scction of the 2-D grid with diagonal con-

nections; (d) an expanded section of the 2-D grid without dingonal connections.



Table 2.1, Lower bounds on volume and maximum wire length for the unrestricted
model. (Note that a lower bound is intended 10 mean the largest known
lower bound for a graph ir: the given farnily.)

Graph Maximum
Separator f(N) Volume Wire Length
ONY), 0<q2/3 | fuw) {Ros83a], | QN'S/logN)
(LeR86},[LeR84) [Ros83a}
Planar QN [RosB3a}, | Q(N'?/iogNy
[LeRE6).[LeRB4] [Ros83a)
O(NY), 2/3qs) QIN*2) {Rosi3a] | QN¥2/10gN)
[RosB3a)

third plane, and diagonal lines represent connections across different planes. The
effect of this mapping is that two nodes in 2 smaight line in the x or y dircction in the
3-D grid are mapped into two nodes in a staight line in the same direction in the 2-D
grid, but the distance beiween them is multiplied by H. For cxample, ay, and a; 3 are
separated by a distance of two units and are in the x direction in Figure 2.2a. These
fwo points are scparnted by a distance of six units (H=3) and are also in the x direc-
tion in Figure 2.2b. Note that nodes in a straight line in the 2 direction are mapped 10
nodes in & straight Jine in the diagonal direction in the 2-D plane, Since most models
in 2.D VLSI layouts do not allow connections in the diagonel direction, the problem
can be circomvented by multiplying the area by four and mapping diagenal

11

connections to a sequence of horizontal and verticat connections, Figure 2.2c shows a
generic rode connected w its six neighbors, where the distance berween adjecent
aodes in the x or y direction is unity. Figure 2.2d shows the same set of nodes afrer
doubling the disence betwesn .two nodes and quadrupling the area of each node,
hence, multiplying the 1o1al arca by four. Here, a diagonal connection is altered to be
4 horizontal scgment followed by 4 vertical segment and finaily a horizontal Rn,:!:.
Ag g regult, the ares is

A = 4HW)(HL) = 4WLH?) 22)

To prove the result on the maximum wire length, note that a wire connecting any
two nodes in the 3-D layout is composed of wires running in the x, y, and z direc-
tions, The length of wires in the x or ¥ direction is multiplied by 2H during the
transformation, while the length of wires in the z direction is multiplied by a constant
tess than six. It is straightforwand to show thar

Wag $ 2max(H, 3¥Ws. _ @3

which proves the theorem, D

In the following theorem, the mesh of wees is considered as an example in the
family of graphs with @(VN) scparator, while the wee of meshes is considered as an
example in the family of planar graphs. These two example graphs were used by
Leighton in proving the lower bound of bothe arca snd maximum wire length in 2-D
layours (Lei81).

The mesh of trees is defined as follows [Lei84) [LziB1). Starting with an n-by-n
mawix of nodes (n is assumed to be & power of 2) and adding nodes wherever neces-
sary, & complete binary tree is constrocted using nodes in each row and column of the
matrix as leaves. Hence, cach node in the mesh is 5 leef of two orthogonal binary
trees, one for the binary tree encompassing nodes in the row containing this node and
another for the tree encompassing nodes in the columa, (Orthogonal trees is another
name for the mesh of ees.) An cxample of the mesh of trees is shown in Figure 2.3.



Figure 2.3
A 4-by-4 mesh of trees
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The tree of meshes is defined as follows [Lei81] [Lei84]. In a complete binary
wee, each node is replaced by a mesh and each edge by several edges that connect the
meshes together. The root is replaced by an n-by-n mesh (a is assumed to be a power
of 2). Its children are replaced by n/2-by-n meshes, These meshes' children are
replaced by n/2-by-w2 meshes. This continues until the leaves of the original binary
tree arc replaced by 1-by-1 meshes. Figure 2.4 shows a 4-by-4 tree of meshes.

Theorem 2: (2) Any 3-D one-active-layer layout of the mesh of trees will require
Q(Nlog N} volume and (VN /loglogN) maximum wire length. (2) Any 3-D one-
active-layer layout of the wee of meshes will require Q(NViogN) volume and
(N /log N} maximum wire length,

Proof: These lower bounds will be proved by contradiction. Leighton proved that any
2.D layout of the N-node mesh of trees will require Q(Nlog? N) area, and that this
layout must have Q(YNlog N/ log log N} maximum wire length [Lei84]. He also
proved that any 2-D layout of the N-node tree of meshes will require Q(NlogN) ares,
and that this layout must have Dlﬂ Z_on|z ) maximum wire length.

For the mesh of trees, assume the existence of a 3-D onec-active-layer layout with
& volume V<8(NlogN) and maximum wire length W<8(¥N/loglogN). The base
area of this one-active-layer layout should be Q(N), as it should be large enough to
accommodate the N nodes of the graph. Therefore, the height of this layout is
H<®(logN). According to Theorem 1, this 3-D layout can be imnsformed into & 2-D
layout with area  A<B(NlogN) and maximum  wire length
W4 <8(¥Nlog N/ log log N), which contradict Leighton's results {LeiB4]. Thus, any
3.D one-active-layer layout of the mesh of trees will require (Nlog N) velume and
(VN /log log N) maximum wire length.

For the wwee of meshes, assume the existence of & 3-D one-active-layer layout
with volume <A®Aza y and maximum wire length W<8(¥N/log N). Since the
base of this layout should have S(N) area, the height of this layout is H<8(log N).
Using Theorem 1, this layout can be wansformed into 2 2-D layout with arca
A<B(NlogN) and maximum wirc length Woa<®(NAlogN), ‘which contradict
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Figure 2.4,
A 4-by-4 Tree of meshs
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Leighton's results. Hence, any 3-D one-active-layer layout of the ees of meshes
should have (Nviog N) volume and Q(¥N/log N) maximum wire length. O

The upper-bound volume of the family of undirected graphs with @(NY) scpans-
tor, 1/2<q<1, will be shown in Section 2.4 1o be O(NT"V/2), Ag the base area has
£2(N) complexity, the height of this layout has O(NT'/2) complexity. Leighton has
proved the lower-bound maximum wire length for the family of undirected graphs
with @(N7)} separator, 1/2<gs), in & 2-D layout to be Q(N%) [LciB4). From Theorem
1, the maximum wire length in the 3-D one-active-layer layout should be Way/H =
QNYNT2) = Q(IN).

For the family of graphs with &(N%), separator 0sq<1/2, Paterson, Ruzzo, and
Snyder have proved the lower-bound maximum wire length in a 2-D layout of a
binary wee to be LUVN/ log N) [PaR81]. In a one-active-layer 3-D tayout, a similar
argument can be made such that nodes of a binary tree are in one layer, and that the
maximum distance between two nodes separated by 2logN edges is Q(VN). Hence,
the lower bound in the 3-D case is the same as that of the 2-D case.

Table 2.2 summarizes the lower bounds obtained for the one-sctive-layer layout
and compares them with previous results.

2.4. Upper Bounds

Before introducing the results on upper bounds, some of the mathematical back-
ground behind the theory of layouts should be reviewed. Thompson incoduced the
iden of the minimum bisection width of an undirected graph and proved & relation
between the minimum bisection width and the minimum area required to lay out the
given graph [ThoB0]. Lipton and Tarjan introduced the ides of scparator for a family
of undirected graphs and proved that the family of planar graphs has an O(YN)
scparaior [LIT77). They also proposed a lincar time algorithm to compuie this separa-
tor. Bhatt and Leighton inoduced the ideas of bifurcators and decomposition trees
[BhL84]. An N-node undirected graph has (F,a) bifurcator if it can be decomposed
into two subgraphs, G, and G,, by removing no more than F edges. Both G; and G,
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{LcR36] [LeR86] (N/log )
O<q<1/2 [PaR81]
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can further be decomposed into two subgraphs by removing no more then F/a edges.
In general, any subgraph in level i can be decomposed inte two subgraphs by remov-
ing no more than F/a' edges. This decomposition can be represented by the decom-
position tree in Figure 2.5.
A decomposition tree is said 1o be a fully balanced decomposition tree if
(1) when decomposing any subgraph into two smaller subgraphs, the number of
nodes in the two smaller subgraphs are equal; and
(2) when decomposing any subgraph into two smaller subgraphs, the number of
edges connecting the subgraph to the rest of the original graph is divided into
two equal scts that are distributed in the two decomposed subgraphs.
Bhat and Leighton also proved that any graph with a (F, o) bifurcator has a fully bal-
anced decomposition tree with a {F,o) bifurcator, where F” is related to F by a con-
stant. Leighton showed that if F=N3, then the total number of edges connecting any
subgraph with N/ 2! nodes in level i of the decomposition tree to the rest of the origi-
nal graph is k{N/2))%, where k is a constant [Lei83b]. As a result, a graph with N9
scparator has a (N9, 2%) bifurcator.
In the rest of this section, upper bounds on volume and maximum wire length for
the lauoyt of the various families of undirected graphs in both the one-active-layer and
the unrestricted models will be developed.

24.1. One-Active-Layer Layouts

The following theorems prove the upper bounds on volume and maximum wire
length for the layout of the various families of undirected graphs in the one-active-
layer 3-D layouts. The family of planar grephs is treated in the same way as the fam-
ily of graphs with (YN separator. .

In the following theorem, the upper bounds for graphs with B(VN'} separator are
proved. Although Leighton and Rosenberg have proved the same bounds before, they
have assumed in their proof the exisience of a layout of an n-nede subgraph in which
the ponis of this subgraph “‘are sufficienty sparse that the routing is guaranteed to be
possible”™ [LeR86]. We will assume in the following proof that the poris of a
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Gy 2nd G,, by removing

no more than m edges

Figure 2.5,
Decomposition tree for a graph with (F,a) bifurcator,

subgraph are equally spaced along one side of its layout. In connecting two n-node
subgraphis into a 2n-node subgraph, a complete crossber switch will be used 10 per-
form the routing, and the ports in the resulting subgraph will also be equally spaced
along one side of the resulting layout. The above model allows g better upper bound
on volume for the family of graphs with ©(N) separator to be proved. This will be
shown in Theorem 4.

Theorem 3: Any uadirected graph with 8(YN) separator has a 3-D one-sctive-layer
layout with O(Nlog N) volume and O(VN') maximum wire length,
Progf. Assume that the balanced decomposition tree of the graph is known. The proof
is by induction on & graph with n nodes. The case for n=l is mivial. For the induc-
tion hypothesis, assume that an n-node graph can be mapped into a parallelepiped
with volume V{n), height Hin), and a square base of side L(n)=keVa, where k is a
constant. It is further assumed that the cVn ports to conneet any node in this sub-
graph to another node outside this subgraph are aligned and equally spaced along one
side of the top fayer of this Jayout (see Figure 2.6, where the parts are represented by
circles), In the induction step, consider the volume needed to lay out four n-node sub-
graphs. We will combine these four leyouts to produce one 4n-node layout with
volume V{4n), height H(4n), a square basc of side L{dn}=kc¥an, and that the c¥an
ports of the dn-node subgraph are aligned and equally spaced along one side of the
top leyer. This will be done by first showing that one additional layer is needed to
sccommodate the necessary inlerconnections when two n-node subgraph layouts are
combined to form one 2n-node subgraph layour.

Congider two n-node layouts placed side by side es shown in Figure 2.6. Figure
2.7 shows the additional top layer that is created when the two n-node subgraph lay-
outs are combined. It is necessary to (a) create cv2n ports in the 2n-node subgraph
tayout; and (b} connect a maximum of c¥g ports in one of the n-node subgraphs to a
maximum of ¢V ports in the other n-node subgraph. Since it has been assumed that
the subgraph has a balanced decomposition tree, half of the c¥3n ports in the com-
bined layout will be connected to ports in the first layout, while the other half will be
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Figure 2.6,

Two n-node subgraph layouts with §(y ) scparator. (The eV ports of each lay-

our are represented as circles and are aligned on one side of the iop layer.)
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Figure 2.7
New layer on top is created when two it-node subgraph layouts are combined to
form one 2n-node subgraph layout in the one -active-layer model. (Cincles

represent the Vi ports in each n-node layour. Squares reprosent the Smﬂeoa
in the combined layout.)
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connecied 1o ports in the second layout.

In Figure 2.7, the cvn ports of the two n-node subgraphs are represented by cvin
circles along the sides. The newly created c¥2n ports of the 2n-node subgraph are
represented by squares equally spaced along the top side. The objective is to route the
eV2n ports in the combined layout to ports in the two original layouts and to connect
the 2¢vn ports in the original layouts together. This can be done by creating a track
out of each port in the eriginal layout and extending it across the top layer in the new
layout. These tracks arc represented by the solid horizontal lines in Figure 2.7,
Tracks are also created for each of the ¢V2n ports in the combined layout and
extended across the top tayer. These macks are shown by the dotted vertical lines in
Figure 2.7. These horizontal and vertical wacks allow us to form a complete crossbar
switch that connects any port in the two n-node layouts 1o any port in the combined

layout. To connect the c¥n ports in one of the n-node layouts t the c¥n ports in the -

other n-node layout, a maximum of ¢¥in vertical tracks (represented as dashed lines in
Figure 2.7 are created) to form a complete crossbar switch. The above constrction
process is feasible for k22 in the induction hypathesis because the number of horizon-
tal wacks is 2cVR, which is less than kevl, and the maximum number of vertical
tracks is ?Q+n$._.v. which is less 2keVn.

In combining two n-node subgraph layouts 1o form one 2n-node subgraph layout,
an additional layer is needed. The number of layers in the resulting layout can be

computed from the following recurrence,

H(n)+ 1 n>1
H@n)= ¢ nst (2.4)

Similarly, we can combine two 2p-node subgraph layouts 1o form one 4n-node

subgraph layout. In general, for an N-node subgraph layout, where N is a power of
two,

H(N) = logN (2.5)

Since the base area of an N-node layout is (keVN'Y?, the total volume will be
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ViAL(N) = e Nlog N = O(NIog N) (2.6)

In computing the volume, no constraint Is put on the routing of wires, hence, 2
wire can run along the logN layers in e zig-zag fashion in the worst case. The max-
imum wire length is

logN
= — = QN 2.7
Wia(™) OT m...a _nn)\ . O(N)

According 1o the theory of induction, the theorem is proved. O

Theorem 4: Any undirected graph with O(NY) separator, 1/2<gsl, has 2 3-D one-
active-layer tayout with O{N'/2) volume and O(VN) maximum wire length.

Proof: The proof is similar to that of Theorem 3 except that end edges connect any n-
node subgraph to the rest of the graph. Assume that there are two n-node subgraph
layouts, cach in the form of a parallelepiped with height H(n), square base with side
kevn, and that the cn? ports are arranged in the form of a mctangle of width n%}12
and length evin in the top layer (se¢ Figure 2.8). In forming a 2n-node layout, c(2n)?
new ports must be created and routed to a maximum of 2en? ports of the two n-node
layouts, and the ports of the two a-node layouts must be connected together in & simi-
lar way as in the proof of Thegrem 3. To form a complete 3-D crossbar switch to per-
form the routing between the o(2n)? ports in the combined 2n-node layout and the'
corresponding ports in the two n-node layouts, n'/2 layers are necessary, another
%2 layers are needed 10 form a complete 3-D crossbar switch to connect the ports
in the two n-node layouts,

The height of the layout can be computed from the following recurrence.

H(n) + 203172 |
H(2n) = * 1 gl 2.8
In general, for an N-node layout, where N is a power of 2,
oM [ q-i72
HN)= ¥ 2 > = O(NT ) 29
it
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20917 addicional layers are
added in the combined layout

-

:a“ = k
cn? % kevn

colurans and n* 12 pons

Figure 2.8.
Two n-node-subgraph layouts with 8(N%), 1/2<qsl, SEpanior.

Since the base area of the N-node layout is {(keVN)2, the total volume is
V1AL (M) = O(N-NT 12y = o(verif2) 2.10)

Using the same argument as in the family of graphs with mlﬂ ) separator, the max-
imum wire length is

Wiaz = O(VN) @11

Note that the upper bounds on volume and maximum wire length are optimal because
they are the same as the corresponding lower bounds (ses Table 22). @

Table 2.3 shows the upper bounds in the onc-active-layer model and compares
them with previous results {LeR84] [LeR86). Note that the upper bounds on volume
are tight in all cases except for the family of planar graphs.

24.2. Unrestricted Layouts
The next two theorems give the complexities of layoms in the 3-D unrestricted
model in which devices can be placed anywhere in the 3-D volume.

Theorem 5: Any complete binary tree with N nodes has a 3-D unrestricted layout
NI _
logN |

Proof: Figure 2.9 shows a 3-D H-layout mee, which is a direct extension of the
2-D H-layout wee, with a volume V(N)=O(N), and a maximum wire length
W(N) = N2 where N is the number of nodes in this tee. Notice that the layout has
the shape of a cube, and the maximum wire length is heif the sidelength of the cube.
The technique used in this proof is similar to the 2-D minimax wirelength for the wree
of meshs {CzR88] [RamR2),

Given a 3-D H-layour of a tree of height MogiogN'/?, the number of nodes in
this tree is 278N = 20N nodes, and the volume of this layour is
V =0(log*N'?). In the previous layour (3-D H-layour of a wee of height

aN?
_omz__.a

with Y(N) = O(N) and a maximum wire length W(N) =0 —

3loglogN'® each linear dimension is expanded with a factor i, where p = o
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Table 2.3,
Upper-bound volume and maximum wire length for the 3-D one-active-layer lay-

outs, (The previous and new results may be the same but obtained by different
methods, )

Graph Volume Maximum Wire Length
Separator
0 Previous New Prvigus, L New
B(NY), O(N) [LeR86] wm%a_ O(VN/1ogN) | O(¥N/logN)
0<q<l1/2 [L£R86) [LeR86)
Planar O(Nlog N) O{Nlog N} {0(VN) oI8i))
[LeR86) [LeR36)
B(VN) O{Nlog N) O(Nlog Ny |O(N) o)
[LeR86) fLeR36)
B(NY), OIN¥12 10g Ny | O(NTH2y | OV OWR)
[LeR86}
1/2=qgt [LeR 861

3

\

Figure 2.9
3-D H-layout of a binary tree



is a constant. Each point in this layout is expanded into a cube with side B and
volume #7, and every edge is expanded into a channet of side length P and height p.
A tree of height logN will be embedded into this cxpanded H-layout. First, the root
of this ree is embedded in the center of the layout, with the second level nodes on
cither side and the nodes in the top levels stacked together in a breadth-first manner.

As shown in Figure 2.10, nodes in successive levels are equatly spaced at a disiance
z—.ﬁ )
logN

It is necessary 10 ensure that every channel is wide enough to accommodate the
nodes stacked in it. To do this, assume that alf the nodes in the first k levels arc
stacked together in the same channe). This is an over-cstimation, but suffices for this
proof. In the first k levels, there are 2x2* nodes. it will be proved thay this number is
smatler than the channei side,

apan. Assume that k levels of the tree are embedded in this manner.

Mo 2.12)
substituting the valuc of B we get

k <10gN'? + loga - 1 - loglogN*/3 (2.13)
Soiving for k we get

k = clogN!/? es1 ) 2.19)

The rest of the levels ( logN — clogN'? ) still need to be embedded. This is done in
the leaves of the original H-layour, which became cubes of side B. The condition to be
satisficd is that the total volume of these cubes is not smaller than the number of the
rest of the nodes (in the H-layout, O(N) volume is needed for layout of wee with O(N)
nodes).

B x log® N2 » 208N o olog - clogh'® 215
Qu__uz -
MONIZW.ZI_GI X _QWuZ =N (2.16)

which is satisfied fora 2 1,

The total volume of the layout is B* x log?N'” = o?N. The maximum wire Iength in
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Figure 2.10.
A cross section in the 3-D H-layout of 3 binary mee
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the first stage is bounded by B, and in the second stage by the sidelength of the cube,

N3
logN

a

which is B. The maximum wire length W(N) Oﬁ

Theorem 6: Any undirected graph with ®(N%) separator, 0sqs<t, has 2 3-D
unrestricted layout with voiume

O(N) 0sq<2/3
V(N) = | OMlag®N)  q=273 17
O(N3y 2/3<gst

with maximum wire length

O(N') 0sq<2/3
W) = O(N P ogN) q=2/3 (2.18)
QN2) 2/3<gsg]

Proof: Assume that the balanced decomposition tree of the graph is known. The proof
is by induction on a graph with n nodes. The case for nwl is trivial. For the induc-
tion hypothesis, assume that an n-node layout is in the form of a cube. Further,
assurne that the ¢n? ports of this layout are armanged in the form of a square with side
kVen® in one of the faces of the cube, where k is a constant. In the induction step, it
will be shown that eight n-node subgraphs can be combined into one 8n-node layout
in the form of & cube, with the c(Bn)? ports of this layour arranged in the form of a
square of side waﬂm@lam..

The induction step is proved by first amanging the eight n-node leyouts in the
corners of a larger cube, such that ports of the four upper cubes are directed down-
wards, while ports of the four lower cubes arc directed upwards (see Figure 2.11),
First two n-node subgraph are combined layouts to form one 2n-node layout, It is
necessary to (a) create o{2n)? new ports for the 20-node layout, and (b} connect the
pons in the two n-node layouts, Figure 2,12 shows the 2(cn%) ports of the upper and
lower layouts, each in the form of a square with side E\n:|a. where k is a constant.

By adding 29kVen? layers between the upper and lower cubes in Figure 2.12, a
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Hi(8n]

D(8n)

év

Figure 2.11

Combining eight n-node layouts 1o form one 8n-node layout,



complete 3-D crossbar switch can be created to perform the necessary routing between
the newly created c(2n)¥ pons and any of the 2cn? ports in the two original n-node
layouts, The newly created ¢(2n)? ports are arranged in the form of a rectangle of
length kVen® and width 29%Vend . To perform the necessary connections berween the
two n-node subgraph layouts, cach with a meximum of cn? pors, another compleie
3-D crossbar switch with kVca® layers is created berween the upper and lower lay-
outs, as shown in Figure 2.12.

In a similar way, four 2n-node layouts can be combined to form two dn-node
layouts, and two 4n-nede layouis can be combined into one 8n-node dayout. In each
case, Qcml__dv layers have been addeed between the two layouts concemed. The
height, fength, and width of the 8n-node iayour can be computed from the following

fecurrences,

2Hi(n} + k; Yen® n>1
H(8n) = 1 =1 . (2.19)
2L.(n) + kzYen? >l
L@m =, . @20
WD)+ kVerd o)
D(gm) = { | o 221
where k,, k3, and ky are constants. Solving these equations,
OAZ:uU an <2/3
D(N} = L(N) = H(N) = { O(N'logN)  ¢=2/3 222
O(NY'%) 2/3<g<l .
The volume of the tayout will be
o) 0<q<2/3
V(N) = { O(Nlog’N)  gq=2/3 (223)

OAZM_E.MV 2/3<gsl.
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¢n’ pons of cach
of the two n-node
layouts arranged in &
square with side
kvend

kVen? layers to connest

T a maximum of ca® ports

of each layout wogether

c{2n)d ports of the
2n-node layout
armanged in &
ke n¥2-py-29Kk¥p n¥?
rectangle

Combining two n-node layours to form one 2n-node layout in the unrestricted

model.
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o i 1 gth for the 3-D unrestricted i
i i i i -nod Upper-bound volume and maximum wire length for the 3-D unrestri AyouLs.
For the maximum wire length, note that the maximum wire length of the 8a-node __.Mnav_dio_._u and new results may be the: seme but obuined by a &mﬂ_ga
layout is equal to the maximum wire length of the n-node layout plus aL(8n), where ! method,)
L(8n) is the length of cach side of the &n-node layout, and @ is a constant. (Due to
the crossbar connection, the maximum distange between any two ports is oL(8m)), —
Maximum Wi
The maximum wire length can be computed from the following recurrence. mwﬁwﬂoﬂ. Volume imum Wire Length
. D Preyip New Previgus New, ]
W(B0) = W(n) + GL(N) (2.24) : e ; ”
ONY), | O(N) [LeRa6] o) | oN'®)[LeRs6) | omNt?)
Substiruting L from Eq. (17), , 0sget/2
173 )
om ) 0<g<2/3 Planar  |O(Nlog /2N) oM |oN'PiigN) | o)
W(N)y= { O(N"*10gN)  ¢=2/3 (2.25) [LeR8S) [LeRB6}
O(NYZ 2/3<qsl.
: 8(N)  [|O(NIog*?N) o)  |O(N'ViogN) o'
According 1o the theory of induction, the theorem is proved, O [LeR36) {LeR36)
Table 2.4 shows the upper bounds obtained here for the volume and maximum B(N), Onz.t_a_omubz o) ONVIYIeN) | o)
wire length, and compares them with previous! results [LeR83a) [LeRB6] [LeR84} 2<q2f3 {LeR8S) (LeRS6]
Comparing the upper bounds in Table 2.4 and the lower bounds in Table 2.1, all upper aNE?) JologN) | ONIog®N) | OV Tog I ON'PlogN)
bounds on volume obtained herc arc tight except for the family of graphs with [LeRB6) [LeREE]
mAZQ J separalor,
QAZDV. OAZ&.v_.a“_O@u__uzu OAZENU QZ&G}COL—ONZV OAZ«:GU
2/3«g<l [LeRES) [LeR86)
2.5. (ptimization of Total Cost of Impiementation

Up to this point, the volume occupied by the components of a 3-D VLSI layout
has been considered to be the cost of the layout. In general, the volume is not directly
related to the cost of implementation because the cost of running a wire or placing a
device in a 3-D volume may depend on its location in the chip. In contrast, in a 2-D
impiementarion, the cost of running a wire or placing a device is independent of its
location, and heace, the arca is related to the cost of implementation by a constant,
To compare the wrade-off between 2-D and 3-D implementations, the criterion used
must be based on costs.

In this section, it is assumed that the cost is a function of the number of layers in

the 3-D chip and the total cost, instead of volume, is minimized in a onc-active-layer



layout. In the following discussion, planar graphs are treated in the same way as
graphs with 8(YN) separator, although planar graphs may have separators less than
8N,

Consider the problem of laying out a graph with B({N?) separator, (<g<1/2,
Since the complexities of a 3-D layout are ©(N), which is the same as that of a 2-D
layout {LeiB4], the cost of & 3-D implementation will differ from that of a 2-D imple-
mentation by & constant factor.

To lay out a graph with &(N3) separator, 1/25q<1, Leiserson has proved that the
area required for a 2-D implementation is [Lei80]

A =aND*(N), (2.26)
where
g | -1/
DN =¥ [ Qmn
0 2

@ is a graph-dependent constant, and N is a power of 2. The i'th term in the summa-
tion in Eq. (2.27), (N/2)%2_is the increase in area to connect two (N/ 21)-node sub-
graphs together in a 2-D implementation. Tt was shown in Section 2.1 that
2N/ 212 1ayers are needed in a 3-D implementation to connect two (N/ 2')-node
subgraphs together (one layer will be aeeded if g=0.5). Hence, if the interconnec-
tons of a sct of subgraphs are implemented in the third dimension, then the
comresponding terms in Eq. (2.27) should be eliminated in computing the area of the
base, and the height of the chip will be increased by the sum of the terms eliminated.
Note thar this is an upper bound on the number of layers, since it has been assumed
thai a crossbar connection was used to perform the routing.  Suppose that h layers are
used in the third dimension, then a nuraber of terms will be chosen from Eq. 2.2 w©
sum up to h. The terms chosen wilt depend on the graph concerned and the cost of
implementation in the third dimension. The area of the base of the layout using h

Iayers ig

By, =aN[D(N) - h + 1]2 IshsH, (2.28)

£

where H is the maximum height. The maximum height can be computed from Eg's
{2.5) and (2.9).

H * logN for graphs with 8(YN) scparator
=

P12 for graphs with B(N9), separatori, 1/2<qsl1 @)
where f} is a graph-dependent constant, The volume of this chip is
Vi(N} = By = aN[D(M)~h + 1]2h (2.30)

If c()) is the cost of implanting layer j in a 3-D VLSI fayout, then the total cost of
using h layers is

costy, = N{D(N) ~h + 1)? wn@ 1 <hsH (2.31)
=l

Hence, to minimize the towl cost of implementation, it is necessary to solve the fol-
lowing optimization problem:

. |. | N__.
_ﬁw:: oon.._l _mnu_ﬁ_w_ T.Z_UAZV w...: Wac”. G.uwv

As an illustration, if c(j) is a constant independent of j, then the cost of the cir-
cuit is the same as its volume. The number of layers b should be ser as D(N)
minimize the voiume, and the maximum number of layers will be used.

2,6. Summary

In this chapter, we have developed improved lower and upper bounds on volume
and maximom wire length in both the onc-active-layer and unrestricted Iayouls
[AbWS87]. Optimal complexitics on the volume of layout have been found except for
two cases: the layout of planar graphs in the onc-active-layer model and the fayour of
graphs with ©(N??) separator in the unrestricted model. To compare between 2-D
and 3-D implementations, a simple mode! has been proposed 1o compute the total cost
of layout. Table 2.5 summarizes the results obtained in this chapier.
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Table 2.5.
Summary of 3-D YLSI layouts results.
Graph
Separator Layout Commients
£}
one active | Bounrds on volume and maximum wire length are
layer already tight.
B(NY),
0<q<1/2 | unreswricted § Bounds on volume are already tight. Improved
bounds on maximum wire length, bounds are now
tight.
one active || Improved lower bounds on volume and maximum
layer wire length have been found. Bounds on volume
and maximum wire length are not tght,
Planar
unrestricted (| Improved upper bounds on volume and maximum
wire length have been found. Bounds on volume
are tight.
one zctive | Improved lower bounds on volume and maximum
layer wire length have been found. Bounds on volume
are tight.
B(N)
unrestricted || Improved upper bounds on volume and maximum
wire length have been found. Bounds on volume
are tight,
one active i Improved lower bound on maximum wire length
layer and upper bound on volume have been found.
Bounds on volume and maximum wire length are
tight,
O(NY),
1/2<qsl | unrestricted || Improved upper bounds on volume and maximum

wire length have been found. Boungdg on volume
are tight, except for graphs with ©(N*/") separator,

!
o ervld

CHAPTER 3
THE DESIGN OF SYSTOLIC ARRAYS

3.1. introduction

This chapter focuses on synthesizing systolic arrays. Any synthesis process
begins with & high level specification of the problem to be solved. A final implemen-
tation is then systematically derived from this specifications. Earlier work on syn-
thesizing systolic arrays was based on the analysis of the data dependency of inidal
specifications. The initdal specifications were assumed to be a system of recurrence
equations, This chapter continues 1o use the system of recurrence equations as an ini-
tial specification. As we will sce in Section 3.3, most of the previous methods for
synthesizing systolic amrays are most successful for uniform recurrence equations, but
fall short of expectation in the case of linear or non-uniform recurrence equations,

In this chapter, the idea of a Conrrol Flow Syswlic Array is introduced. The
control flow systolic array is a powerful tool that can solve uniform, linear, or non-
uniform recurrence equations. A methodology for mapping a system of recurrence -
equations Into the control flow systolic amay will be proposed. Section 3.2 briefly
reviews the recurrence equations. Section 3.3 focuses on the previous work in syn-
thesizing systolic arrays. Section 3.4 intoduces the idea of & conmol flow systolic
arrny. Section 3.5 proposes the mode! to be used throughout the rest of the Chapeer.
Secdon 3.6 proposes a methodology to efficiently scarch for & good solution in the
space of all possible solutions. In section 3,7 we usc the methodology 0 implement a
control flow systolic array for both the wansifive closure and dynamic programming
problems, and show an example for a system of recurrences with nonlinear data
dependencies. Section 3.8 discusses some experimental results. Section 3.9 s a



conclusion section,

3.2. Classification of Recurrences

Recumence equations have long been used by mathematicians to express 8 large
¢class of computatons [KaM67) [Raj86] [RaF86]. Thesc compulations involve the
evaluation of & funcrion f at all points in a domain D. The recurrence equation
specifies how the value of f a1 a point p in D depends on the value of £ at other points
in the domain. Based on these dependencics, recurrence equations are classified as
uniform, linear, or non-linear; ene-dimensional or multidimensional.

A simple example is the well known factorial function which is specified by the
following equation,

1 ns(
=) gsgm-1) n>t an

The factorial recurrence is a uniform recusrence with non-constant coefficients. To cal-
culate f(n) we have to know f{n~1), which is a constant distance away from f(n) in the
n hyperspace. However, because n is not a constant, this problem hes non-constant
cocfficients. Notice also that the subscripts in the above example (representing the
domain over which we want to determine ) range over only one index. In other
words, the dornain D is the set of integers. In general, D may be n-dimenstonal (eypi-
cally & subset of the lawice points in Euclidean n-space E® ), and the right hand side
of the equetion may be any non-linear function of the values of the predecessors.

In combinarorial mathematics, where the primary concem Is .Sg_ﬁ recurrence
equations, the probiem can be siated as follows. Given a recurrence reiation describ-
ing f{f) in tcrms of (), dewermine & closed-form expression for £(i), i.c. an expres-
sion of £() that does not involve the value of f at any other points, Our objective
here is somewhat different, We are not interested in finding a closed-form expression
for f. We arc interested in mapping the computation of £(i) onto a systolic architec-
ture, This means that the taxonomy of constant coefficients versus non-constant

coefficients is of no concern to us here. We are interested in the relation between the
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point 7 (at which the function  is 1o be computed) and the other points on which it
depends. The following three definitions, the first two of which are due to Karp and
Miller [KaM67], will be helpful at this point.

Definition 1. A recurrence eijuation Over a domain D is defined as an equation in the

form:
tp) = i@ a - faw)] +¥@ 62

where pe D€ D fori= 1...k @ is a single valued function which is swicily
dependent on cach of its arguments, and 'V represenis the input.

A system of m recurrence equations over a domain D is defined to be a family of
of m mutually recursive equations, where each of the f;'s is defined by an equation of
the form .

fp)=® T. (@).fi,lq)-- . 1 rs.;_ +¥i(p) 33

Definition 2 A. recurrence equation of the form defined above is called & uniform
recurrence equation iff ¢ =p+d; for i=1...k where di's are constant B-
dimensionsl vectors, and n is dimension of the hyperspace (the domain D} in which
the recumence s to be calculaied. An example of & uniform recurrence is the matrix
multplication operation. Multipiying two matrices, A and B, and storing the resuit in
C, can be represented by the following recurrence.

(1.3, K) = CAEk~1) + A(LK) x B(K.D 34
In this case d = (0,0,1). Many problems, such as convolution, FIR filters, numerical
solution of partial differcntial equations, and singular value decomposition, can be
represented as uniform recurrences.

A family of uniform recurrence cqualions may be defined analogously. Consider
the matrix multiplication example mentioned above. Pipelining the two input vari-

ables, results in a system of uniform recurrence equations as follows.

Ca.1.K) = C(1,1LK-1) + AQLK.D) x BK.LD (3.58)

52
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ALK D =AQKJ-1) (3.5b)
B(KJ.I) = B(K,]1,I-1} (3.5¢)

Intuitively, a uniform recurrence equation can define a computation in which the
dependencies are completely described by a finite number of constant vectors d;,
regardless of the size of the domain. This ¢lassification was first proposed and studied
by Karp and Miller [KaM67]

Definition 3. A recurrence equation as defined by Definition I, is said to be = finear
dependency recurrence equation (or lincar recurrence ecquation) if for
i=1...k q;=A;p+b;, where A; is & constant nxn matrix and b; is a constant n-
dimensional vector, The linear recurrence equation has the following form.

1) = [fAsp +b0), KAap + br) .. KA o + b)) +¥(p) 6.6

As with uniform recurrence equations, the definition for a linear recurrence equa-
tion can be extended o a family of m muwally recursive equations. It is obvious
from the previous definition that uniform recurrence equations arc a special case of the
linear recurrence cquations, when A; is the identity magrix. Many problems in image
processing can be formulated as linear recurrences. Examples include the transitive
closure problem, shortest path problem, matching problems, optimal search mwees, and
context free language recogniton.

A good example of & lincar recurrence is the wansidve closure problem. To find
the transitive closure of a matrix C{I,J). the problem is formulated as

C(1LJ,K) = C(LLK-1) ¥ CLK.K~1) A C{K,J,K-1) amn
10 0] 0

AM={010] by=| 0 (3.8)
00 1] -1

and
10 0] 0

Ay= 001 b= 10 (3.9)
00 1] -
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and

001 0
Ay=(010 by={0 (3.10)
001 -1
A system of m recurrence equations can be defincd analogously. Example of a system
of two mumally dependent recurrence equation is as follows,
ALLK) = A(I+], K, K~J) + B{l+K+},K+],K-1)
B(LJ,K) = A(LM+LK-1) + B, J-LK-1) G1n
Definition 4: A recurrence is called a non-linear recurrence if q; ='¥(p;) and the
function ¥ is any non-linear function. Notice that '¥ could be given by a table indicar-
ing for each point p in D the points g; that are needed as arguments. Many problem
in optimization can be formulated as non-linear dynamic programming problem with
non-linear recurrences. An example of non-linear recurrence is the knapsack problem.
In the knapsack problem we are given n objects, where object j has weight &; and
value b; ., The desired goal is to pack a knapsack with a subset of these objects so as
to maximize the value (o7 to minimize the negative of the value) without execeding &
given maximum weight W [AhH74).
One formulation for this problem is as a non-uniform recurrence equation
fKaH6T].

f(0.0)=0

apéuam_., ?.fﬁw G.E
e G

where j) = [ jij<kand (},w=-a,) corresponds to an equivalence class §

A state comresponding to the equivalence class comsists of all sequences
{iy ...} 8 such that i, = k and &, +a;, +...8; = w arc donated as (k, W), and
§ is the set of all sequences ij,iz....i, such thar i; <i; <...<i, and
g, ta, +...8, SW,



Similarly, & set of mutpally dependent non-linicar recurrences can be defined. As

an cxample,

A(LLK) = AR =K, K-1) + B(IxJ,K,K-1)

B(L,K) = A(1,11.K) + B(IK,J,k-1) 313)
are a set of non-linear recurrences.

Many other problems in combinatorial mathematics, such as the traveling sales-
man problem, finding 8 shortest reset sequence, and 1-dimensionat stock cutting, can
be represented as non-linear recurrence equations,

As mentioned earlicr, a recurrence equation can be viewed as defining a depen-
dency graph in which a precedence relation is defined between the evaluation of £ at
various points pe D. According 10 Karp and Miller [KaM67], poini p directly

depends on point q, and is denoted by p .mo q if and only if
{1) pe D and q = p + 4; for the uniform recurrence:
{2)p & D and q = A;p + d; for the linear recurrence;
(3)p € D and g =¥;(p) for the non-linear recurrence.

1 .
Thus p — q if and only if f(g) is one of the argumemts in f(p). t step dependency is

0 1 1 1
%m:&ﬁ?:oigplnﬁauia:soaoa&ﬁ-wﬁa&w-miqg@ni@_n._m

also rue that p 2 q if p l.w q, for some positive integer t.

The objective of this chapter is to reorganize this dependency graph into an alter-
nate configuration that preserves the functionality of the original recurrence and that it
can be mapped directly 1o & systolic array. A graph can be mapped directly to a sys-
tolic array if it is at most two dimensional and if all communications (dependencies)
are between neighboring poinis. In this case a function t(p) is assigned thet indicates
the time at which the compuiation of f(p) will 1ake place. 1(p) must obey certain con-
difions imposed on it by the dependency graph. For example, if p — g, then
«p) 2 t(g), which means that if the computation of f(p) requires f(q) as one of its argu-
ments, then £(p) should be calculated after compuring f(g). Notice that this condition

is necessary but not sufficient. If f(g) was calculated in a non-neighboring processor to
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the one that computes f(p), the time needed to transmis f(q) from where it was ori-
ginated 10 where it is nceded must also be accounted for.

3.3, Previous work

This secton will review previous work in designing sysiolic amays. Table 3.1
shows 19 methods for synthesizing systolic artays and briefiy explains each method. A
complete description for each method can be found elsewhers {FoF88].

Most of the methods shown in Table 3.1 are dedicated to solving one type of
ecurrences, namely, a system of uniform recurrence equations, while few methods are
proposed for general recurrences. Moreover, all of these methods formulate the prob-
lem &s & search in the space of all possible solutions. This space is usually exponential
in size and in some cases is infinite [Mol83).

The next section presents the idea of a control flow systolic array, which praves

ta be effective in solving both linear and non-uniform recurnence equations.

3.4, Control Flow Systolic Arrays

Most of the methods shown in Table 3.1 arc particularly successful in solving
uniform recurrences, The mzin reason for this is that there is a direct relationship
between uniforr recurrences and systolic arrays. In using vniform recurrences w cal-
culate the function at a point p, we need the value of the function at a fixed distance
away from p (usually a distance of +1 or -1 away from p). In systolic amrays . we
allow communications only between neighboring processors On the other hand, for
linear and non-uniform recurrences, where the dependencies between different points
in the domain may not allow ali adjacent points to be mapped to neighboring proces-
sors and may vary with time, it is much more difficult to map this problem into a sys-
tolic array.

In this chapter, the idea of Conirol Flow Systolic Arrays is introduced. A coniol
flow sysiolic array is an ordinary systolic array, with all of she limitations on systofic
arrays such as modularity snd ncarest neighbor cosnections, but with one major

difference. This difference lies in the propagarion of control signals in addition to data
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Table 3.1.

Summary for the previcus work in the design of systolic arrays

Method Description
Li  and Wah|[Starting from a uniform recurrence equation, they defined 3
[Liw83a} parameters for the systolic array, speed of data, period of com-
[LiW33b] putations, and data distdbution. The 3 parameters are com-
{Liw85a] bined to form 2 system of conswained vector cquations. A

solution that minimize a certain criterion is found by systemat-
ically searching the space of all possible solutions

Moldovan  and
Fortes [Mol82]
[Mol83)

Swrting from a high level language algorithm {equivalent to a
non-linear recurrence), they modeled the algorithm as five
tuplets {index set, set of dependencies, set of computations,
input set and output ser), A linear wransformation is used to
wansform the original algorithn imto a computationally
equivalent algorithm with a prespecified set of dependencies.

Stanting from a mathematical expression (equivalent to a uni-
form recurrence), they mapped it directly into a VLSI circuit,
They then improve the design by symbolically manipulating
the original expression to climinate unwanted operations
(simultanecus addition or multiplication) and introduce pipe-
lining,

[FoMB3)
Johnson and
Cohen [JoC8la)
{JoC81b]
[ToW81]
Jagadish, Kailath,
Newkirk and

Mathews [JaKR4]

Starting from a block diagram describing the algorithm
(equivalent to a uniform recurrence equation), Each module is
represented as a graph, The graph is sorted to ensure that there
arc no separator free loops (scparator is a delay node). A
schedule is sought for each separator in the graph, and these
schedules are combined together 10 produce a schedule for the
whole graph.

‘Table 3.1 {continued)

Description

Starting from & do loop or a set of uniform recurrence oqua-
tions, They interpreted the computation process as a graph in
physical space and time, which directly corresponded to a sys-
tolic armay, They embedded the graph vepresemting the dats
flow of the program loop or the recurrence cquation into the
graph representing the computation process.

Staring from a  high-level-problem  specification, they
transformed it into a (possibly non-linear) recurrence equation.
Their procedure began with determining a coarse timing func-
tion for the different computations in the recurrence. The tm-
ing function, together with a subset of the data dependencies,
were used to guide the scarch for an index transformation to
map the computations into the systolic array.

Methed
Miranker  and
Winkler
(MiWE4]
Melhem and
Guerra [MeGBS)
Delosme and

Ipsen [Del85a)
[Del85b)

Starting from a a system of lincar recurrence equations, they
derived a mathematical description for the data dependency of
the recurrence equations. By applying different affine ransfor-
mations, different systolic arrays can be obizined. The problem
of synthesis the arrey is formulated as an integer programming
problem.

Leiserson, Rose,
and Saxe
[LeR83b)
{LeS81}

Starting from 2 graph represemation of the problem
(equivalent 0 a non-linear recurrence), they mapped it directly
into a VLSI armay, which is not necessarily systolic. Transfor-
matons, such as retiming and k-slowdown are used to clim-
inate global communication and convert the array into a sys-
tolic array.
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Table 3.1 (continued)

Method

description

Quinton  (Quig3]
[Quigd)

Starting from a system of (possibly mon-linear} recurrence
equations, & timing function that satisfies the dependency con-
ditions is found. This timing functon, togcther with the
dependency conditions, is ysed to find a spacc mapping func-
tion such thay, if two computations are mapped to the same
time unit, they should be mapped to two different PE’s. Using
these two functions, & Tecurrence equation can be mapped
directly into a systolic aray.

Cappelio and
Steiglitz [CaS81]
{CaS5384]

Starting from an algebraic equation (equivalent of uniform
recurrence equaiion), the concept of time is introduced to pro-
duce a recurrence equation. A space transformation and a dime
Jiranstormation are used o map the recurrence into 8 systolic
array. A geometnc transformation is then used to wansform
the systolic array 1o a different, but compuiationally
equivalent, systolic array. This process is repeated undl a sats-
factory design is found.

Rao and Kailath
[RaK85]

Their model is a linear systolic array with each PE represented
as a transfer or scatiering mairix. Starting from a mathematical

13@3&3 (equivalent 10 2 uniform recurrcace), they showed

how to sysiematically map the expression into the model ammay.

Barmwell
[ScBB4]

Schartz andj}Starting from an algorithm described by shift-invariant flow

graph (cquivalent to a uniform recurfence squation), their
method consists of applying a set of rules to the flow graph
that sysiematically maniputate the flow graph into a systolic
form, which can be mapped directly into a systolic array.

3%

‘Fabte 3.1 (continued)

Method description

[JoKa4] (cquivalent to & uniform vecurrence), they introduced the

notion of Line of Code (LOC). The LOC represents & strcam

of values in different stages of computation. Since the LOC in

a graph is not unique, they searched for the LOC that satisfies

some desirable properties. Knowing a LOC determines the

ﬂu_-o& of the data, the rate of pipelineability, the input rate, and
the output Tate of the systolic armay.

Jover and E_S*mﬁnan from a graph that represents certain computations

{LaM83] they applied some software transformation so as (© obtain &n
algorithm  suisable for systolic implementation. This
wansformed algorithm is the input to a program called SYS,
which decomposes the algorithm into two parts: primitive code
segments and conwol and data-access information. SYS
designs a systolic implementation based on the control strug-
wre and dai access pamem. The high level language is

g-i!cmsimﬁ.m%ncawzws_oﬁ_ %onwmnnmoa:.mw_._s.o:ﬁwﬁm&.
equivalent 1o a non-lincar recumence.

H, T. Xung andiStarting from an algebraic representation {cquivalent (o a uni-

Lin [KuL83} form recurrence), algebraic transfonmation similar to the
iransfocmations used in linear algebra arc used to generale
sltemative but computationally equivalent designs satisfying
some desirablic properties. :

§. Y, Kung§Staring from a signal flow graph (equivalent 1o & non-lincar

[Xuni4] recurrence), a methodology is proposed to convert @ Signat
Flow Graph into a synchrogous systolic array or & dara-driven
arTay.
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Method

description

Rajopadhye and
Fujimoto
(RaF83] [RaF86}

Starting from a linear recurrence equation, they determined a
timing function and an allocation function to map the
recurrence into a systolic array, They presented a technique to
determine such two functions. They also presented a technique
called explicit pipelining which allows them to derive a sys-
tolic implementation for any efine recurrence equation.

Kung, Lo, and
Lewis [KuL87b]

Starting from & linear recurrence equation, which defines a
dependency graph, they mapped the recurrence directly into a
two dimensional systolic array. A wansformation is then used

to reindex the nodes of the dependency graph o eliminate any
global communication.

Chen  [Che86]
[Che&3a)
[Che85b]
[Che&5c]

The initial specification of the problem is in the language
Crystal, (equivalent to a non-linear recurrence) The language
is a general purpose language for parallel programming. The
synthesis process is decomposed inio two transformations, The
first transformation limits the degree of fan in and fan out for
the different computations. The sccond transformation incor-
porates pipelining into the design to fully wtilize the hardware
resources. Using these two transformatons, a systolic algo-

rithm can be systematically derived for any problem,

in the systolic array. There are two major ways to incorporate control signals in a sys-
wlic array, The first is to continuously execute a microprogram stored at each PE. No
global information is available except for the address of the PE (the address of a PE is
a pair (i,j) which indicates the Cartesian coordinares of the PE in 4 mesh of proces-
sors, or & number i to indicate the position of the PE in a lincar array). The control in
this case is implicit, as the information needed for the control is propagated as date,
The second form of control is in the form of additional controf bits traveling with the
data, either at the same speed or at a different specd. The action taken at cach proces-
sor depends on the control signals that reach the PE.

3.5. The Model

The mode! we use throughout the rest of this chapter is a square {or linear) array
of processors. The architecture of the individual processing element will be discussed
later. We will also study the effect of various control strategies (different control stra-
tegies wii be discussed later) on the complexity of the processor element.

The model is & squarc mesh of processors with nearest neighbor conncction as
shown in Figure 3.1, There arc three reasons for choosing this architecture.

(1) Modularity: The square mesh of processors is modular. This makes it suitable
for VLSI implementation.

(2) Balancing /O and compurations: The square array of processors is the best for
batancing the YO bandwidth and the computation time for a great variety of problems.

(3} Reconfiguration: The square armay of processors can casily be reconfigured into
o linear array {LeL82} [LeL85], thus achieving all the benefits of linear arrays, such as
fault tolerance, minimal clock skews [FiK83a], and limited I/O requirements.

Figure 3.1 shows a schematic diagram for the systolic system. n* Processor Ele-
ments (PE) are connected together as a mesh. “n global buses, one for each row, are
connected together by one global bus to the main controller. The host controls both
the main conwoller and the mesh of PE's. The internal architecture of the PE is shown

in Figure 3.2.
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The internat architecture of a PE (dashed lines represents
data paths, while dotted line represents control paths)
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Each PE is composed of:

(1) Each PE is connccted by four communication registers to each of its four neigh-
bors. R; and R, are connected 1o the two processors in the same row. R; of a cer-
tain PE will be connected to Ry, of the next PE. Ry represents the input row regis-
ter for this PE. This is the register that receives the data from a neighboring PE
and makes it available for use in this PE. R, is the output register of this PE.
This is the register that holds the output data to be received by R; of the nexs PE.
These functions will be served by C; and C, for connected PE's in neighboring
rows. Notice that R; and R, are not fixed. They are interchangeable according to
the direction of the data flow, If the data are waveling from lcft (0 right, the left
register will be R; and the right register R,,. If the daia are raveling from right to
teft, the right register will be R;, and the left register will be Ry,

(2) The ALU is the pant of the processor responsible for the actual computation. It is
capable of performing simple arithmetic and logical operations. The ALU also
containg an accumulator to store the output of the last operation performed in the
PE. It can receive its input from-R; and C; or from the storage umit, Similarly, it
can direer its output 1o R, or C,, or it can store the output in the storage unit,
The ALU is also capable of transferring 2 piece of data from the storage uait to
either C; or Ry. The ALU is controlled by the microprogram unit,

(3) The storage unit is composed of registers to hold intermediate results and to
introduce delay into the data waveling across rows or columns, The number of
the registers is very important in the design of the array. As will be seen later in
this chapter, some algorithms require a constant number of buffers, while others
require O(n) buffers, where n is the size of the problem.

(4) The microprogram unit conains the microinstructions to be executed by the ALU
during the solution of a problem. The microprogram is loaded from the the main
controller before the beginning of the solution process. It is capable of recogniz-
ing the PE address, where the PE address is taken to be the position of the PE in
the mesh, (i.e. (ij)). If the same microprogram is to be executed at all PE's, the

main controller will broadcast it with a specific address mask which will be
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accepted by all PE's in the mesh. Otherwise, each microprogram will be sentto a
specific PE according 1o its address (i,j). The microprogram unit should be capa-
ble of executing instructions, such as, get data from R; or €, load data to R, or
C,, Store contents of accumulator in buffers, and load data from buffers to the
accumulator.

3.6, The Methodology

A considerable amount of rescarch has been dedicated 10 the design of sysiematic
methods for synthesizing specified systolic arrays [FoF86). Most of the methods are
most successful in solving either uniform recurrence equations or program segments
that can be represented as uniform recurrence equations. Moldovan [Mol82,Mol83)
has shown that finding the optimal transformation to map & uniform recurrence into a
systolic afrays can be solved as nxm diophontine equations with n? variables. This
requires exponential complexity, where n is the dimensions of the space in which the
recurrence equation is to be solved, and m is the number of datz dependencies. Very
few metheds that can be used with lincar or non-uniform recurence equations have
been proposed. - This chapter is concemed with the development of a heuristic metho-
dology that can handle both uniform and non-uniform recurrences, and do the design
in & reasonable amount of time.

The basic idea behind the following methodology is to develop a relationship
between the data dependencies of the recurrence and the hardware model t be used.
The complexity of the solution and the time required 10 solve a given problem will
both depend on the complexity of the hardware in the Processor Element (PE) and the
complexity of the instruction sct of the microprogrammed unit. A very simple case is
when there is only onc buffer for any PE, and the PE uses FIFQ control strategy. The
more complicated PE architectures contain a variable number of buffers and random-
access buffer capabilities.

This methodology will be implemented in the form of a procedure. The input of
this procedure is the given recurrence. The o.:GE is a complete timing function that

gives the location and time of the different computations, The output will also contzin



complete information about the verisbles that is broadcase, and the location of these
variables,

The rules developed in this chapter are not intended to be the complete set of
rufes for solving any recurrence. We will begin with approximately 10 tules. Combi-
nation of these rules can lead to approximately 30 different designs, although some of
these designs may not be feasible. As we gain experience in solving more problems,
more powerful rules will be discovered. These rules can be added 10 improve the
capabilities of our procedure io solve additional problems.

The solution for & specific problem is implemented as a search operation in the
space of all different sotutions. Finding the solution for a specific problem can be
represented by a search in the space of all combination for a solution that optimizes a
cennin criterion, A large amount of dme is required for the procedure to go through
all of the different combinations for solving a given problem. It is known, for
instance, that it will take exponential time to explore all combinations for simple cases
invalving uniform recurrences. In addition, increasing the number of rules will lead to
an even larger number of combinations. As the space of all possible solutions grows,
it will not be practical to search through all the possibilities. In this case the search
operation maust search a subspace of the whole space to find the best solution within
this subspace. Becausc Gme is limited, and because the procedure searches in a sub-
space of the solution space, the search must be ordered in such & way that the pans of
the space that will mos: probably contain the best sofution are searched first.

To order the search, the recurrences are divided according to distinguishing
fearares into ¢ groups, G;, where 15} 3 0. The different rules are then given different

weights where
W, IsisL,tsjse where L =the number of rules (3.14)

W, ;. then, is the weight of Rule i with respect to Group j, or the cffectiveness of Rule

i when applied to a problem which belongs to Group j. When the procedure considers

a problem in Group j, it applics Rule k first, where Wy j = min W, ;. It then tries the
1

tule with the next smallest W, ; and so on, until the allowed time for computation is
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over. After completing the search process, the procedure orders the solutions obtained
actording 10 & cenain criterion from the best to the worst, and gives & weight ay; 0
the solution produced by Rule i The rule that produced the best solution is given a
weight of L. The rule producing the second best solution is given & weight of 2, and
so on. The ordering of rules may change after cach subspace iy searched.
Modifications arc made to reflect the cxpericnce learned from each solution,

W =W +Pxay  where fisaconsanc<] (3.1%)

W, ; should then be normalized to prevent unlimited growth of Wi

i
wy=—=l  whae B =min Wy (.16)

The two tnain difficulties in mapping a non-uniform recurrence into a systolic
array are non-peighboring comwnunications, and communications that change with
time. For both of these situations, pipelining of variables to communicatc between
non-neighboring processors will be used. The rules that will be used arc grouped into
three major groups: (1) projecton, (2) pipelining, and (3) delay and fiming calculs--
tions.

Projection: In calculating & recursive function f(p), the valucs of f at all points
of a hyperspace D must be calculated, The casiest way to do this is to assign a PE w0
each point in the domain D. If the dimension of D is n. Then, the value of f at point
(iyrizy - - .o dp) will be calculawed at PE {iy,iz, . ... iy). This will not be an efficient
way to calculaw the recurrence for two reasons. Firss, if the dimension of D is more
than 2, the resulting armay will be complicated and érregutar, Second, each PE will per-
form one computation for one time unit and will be idie for the rest of the time
needed 10 complete the computation.

An alternative way to calculate the recursive functions on a two dimensional
ammay is by projecting the hyperspace into a8 two dimensional space
Gigsize «+ . o im) =¥ (X,¥), Where m is the dimension of the hyperspace (domain) in
which the recurrence is to be solved. The most siraightforward way to map the m

dimensional hyperspace onto a two-dimensional space is 1o chose x =14 and y =1;.



Lram e et

Although more complicated mappings exists [Mol83], we will not investigate them in
this thesis. In our methodology, the number of ways to project computations into
two-dimensional array is m{m~1)/2. {equal 10 choosing 2 out of m dimensions).

Pipelining. Pipelining is one way to overcome communication difficulties
berween non-neighboring processors. In principle, it involves feeding data through a
pipeline of neighbering processors.

Assume that we have a recurrence relation of the form:
(i s i) = [z o) am

where (j1.j2 ..., in) Is any function of (iy,iz ..., iy). If we project on iy, i;, then
the left hand side of the previous recurrence is to be calculated at PE {iy,i3), and the
right hand side is caleulated at PE (jy,j7). If (i).i3) and (j;,j2) are not neighboring
PE’s, then the result gencrated at PE (3;,j) must be sent to PE (i;,i). This could be
done using processors along the rows and columns of the array. In cases where diago-
nal connections are allowed, data can be sent along the diagonal connectons directly.

Timing and delay calculations: In the rest of this section, the different control
strategies are described.

Control Strategy 1. This is the fastest strategy for solving any recurrence. It is
assumed that there is an unlimited number of buffers in each PE, and that each PE can
randomnly access any data item in its buffers. The only restriction is that in calculating
the recurtence at any point p, it is necessary for ail g;'s that have already been com-
puted to be transmitted from where they were computed to where f(p) is being com-
puted.

Assume that we have a recurrence of the form,
fliydgs ooy i) =@ | o ...y .ﬂav_ (3.18)

and that this recurrence is projected on the ij,iz directions. (This Is not a constraint
on the solution, since the order of the index variables inside the recurrence can be
changed to project in any chosen direction). Denote the time at which
f(iy.dz, ..., iy} is calculated by t(fy.ia, ..., ). Let

&9

(1) ity ta.d1,02, -+« » Jm): the time at which the broadcast message originating
from f(j;.j2. . . - » jm) has reached the row input register of PE (ij.iz):

{2) woiy.iz.j1.d2s - -+ Jm) be the time at which the broadcast message originat-
ing from £(1.d2. . » . + Jm) reaches the row output register of PE (iy.ia):

(3} teifiyaigedt - o jm) be the time at which the broadcast message originating
from f(j1.i2 + .+ + jn} has reached the column input register of PE (y,i2);

{4) teoli;,igji « - .+ jm) be the time at which the broadcast message originating
from £(j;.j2 - . . » jm) has reached the column output register of PE (i,iz),

The conditions to guarantee a cosrect execution are:

Wiz, .., im) uB._pu iy daudye o o0 Jmds POLIEZY+1 [ 3.19)

where p(i;.i;) is an amay that holds the time of the last cperation performed at PE
{i;,iy), and the maximum is taken over all the arguments of the original recurrence in
Eq. 3.18

trofiy,iz=Ljt ... Jm) + 1 i2>j2
il doure -2 o Jm) = | maxlteolinizdida - o0 Jmd MLi2) + 1) iy =7y (3.20)
woliy,izrljs ooy jmd + 1 iz <jz

where £(i,}) is an array that holds the dme of the last data item that was sent through
the row direction of PE (i;.i3). Fortci(ij.iz.jis ...» Jm)e

tcofiy—Ligji v evn Jmd + 1 iy >y
teilipigare oo v o Jmd = ) max(eQy,iz ..., i), (g} + 1) =i (G2
HODA:...—L“LT ey .____._.v +1 mu Aw_.

where c{i;,i;) is an array holding the dme of the last data item that was sent through
the column direction of PE (iy,iz),

woli gy « v oo Jmd = tridiydzedy 200 jm) s . 3.2

Coliaizdt -+ o dm) = WHnadzadt e+ drad - 3.23)
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Natice that in this siwategy the only constraint for calculating the function at a
certain point (iy,iz ..., im) is that its arguments must have already been calculated
and transmitted to the PE where the point £,z ..., im) is being calculaied. By
solving this system of recumence cquations, we get the values of 1(i),iz, ..., imh
wiliy ez - s dmb @ilidedz s fed welininiii oo ) and
1o{iyigaioda - - o dm) 8t @il poims in the domain D. From: these values we can
determine the maximtum number of buffers in each PE and the delay encountered by
each dam element ot any given PE. The maximum number of buffers necded in each
PE can be catculated using tig.ig, . .., in). Which represents the time at which the
computations of Ei;, ..., ig) takes place at PE (iy,iz), and mi(iy g.rdz -+ -0 Jmks
which represents the time at which f(j.j2- . . JJe } arTives PE (iy.ip).

The boundary conditions for these recurrences represent the input or the initial
conditions for the original problem. For cxample, if wc assume that
Wige.... i1 ,0)=0, then we arc assuming that all of the initial conditions of
f{iy ..., im1,0) arc stored before the beginning of the computations in PE (iy,ia).
Alternatively, if we assume that iy, ..., im-.0) =1, then, we are assuming that the
{nitial conditions are pipelined through the first Tow to the rest of the array.

Control Strategy 2. The second control strategy assumes that the PE is capable
of randomly accessing any buffer of its memory and that the number of buffers is
bounded by ¢. In this case, a PE cannot store more than  data items at the same time.
Because of this limit on the number of buffers, no PE can accept & new variable
unless it has cleared the same variable from ¢ ltcvations ago. Assume that
£0,.04.. .., ¢4) is the variable used in calculating Ki).i, . . -, 1m) 0 iterations ago. In

this case, we have

tcoliy—1,iz,jy corjm) + 1 iy >§)

t6iiy izt veenim) = | ML Cigsigfynfm) o €Griid + 3 B =h (.24
teoliy+1,igsj1veenim) + 1 it <1
troliy ig—bjy cerjm)} + 1 b >

iy 101 s eerfm) = | MAxf ©0dig,izjyrm) - linaiz) + 1} iy =j (.25
wofiy, izt L j eod ) + 1 i<y

Tt

woliy iz fye i) ® 3-:*59.#.&.:..&5“ . woli,iz, 0y - dm) + #W (3.26)
teoliy, iz jirenim) = uﬁx*ﬁ? dgsfrseadm)  wliydg, 0y 0 Op) 4+ ; 3

Control Strategy 3. In the third coniol sirategy, each PE has an unlimited
number of buffers but can access these buffers in a FIFO order only. This accessing
scheme gremly simplifies the PE design and results in a smaller number of microin-
structions. In essence this sirategy means that if PE (iy,ip) needs fky ks....ky) before
it needs fjy.ja-sjm) then PE (iy,in) cannot accept the brosdcast message
£(is dgsj1oaendm)s unless it has already accepied the broudcast package
f(iy iz Ky Kankm). 1 PE (iy,ig) nmeeds fkyky,.... ky) before it needs
(1sd2s - - -+ jm) then

ro(iy.ds=1.jy - v es Jm) + 1 ia >j2
iy indt - - oo ) = § max {woliyinudids - -0 dm) Wiz} + 1) =32 328)
woliy izt - - - jm) +1 i <ja
tooliy—Lizjy +vvs fmd+1 iy >y
willdzjis - - jmd = | max (tipdz ...y imds ey} + 1} h=jh (29
teoliy+hizjr, . o0 jmd 1 i <h
WOGi1 2,11 vvoem) = aﬁT?.i_......t cwiliy sk, ) H * (.30}
tc0(iy, i3t renedn) = 5-;59.&._._ veerim) + Wi L2, -, Kig) +; 33D

Controf Strategy 4. The fourth control strategy employs a limited number of
buffers, ¢, and FIFQ access capabilities. This is a combination of Strategy 2 and Sea-
tegy 4. The equations for this control strategy are;

eofiy— L.z Jyemim) + 1 iy > jy
teiliy ig.jivadm) = | maxfe(ip iz im), i)+ 1) fy=h (3.32)
teo(iy+1,i.1 s ondm} + 1 i) <y

T2
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iy b2 jieenjm) = unhk__pnoﬁm_.mnrm?..._wav , Hip,iz) + 1} h=h (333
ﬂdnm..mw.w..—_u._.:._._._:u +1 : A.:

gnw#.wn.uu.:.:uav = Bmxmiﬁn.mn._.n.:._h_.;v ' q_.A.:..wN-o—. LR e:.u +1 '

i 12Ky o0, k) 4 11(3.34)

and
10001 32,1 1owufm) = DAX(ECHGE1 21 0ewnfen) o €T, 0000 0 os On) + 1,

tei(l pizki. o k) + 1X3.35)

where f(0y . ..., ¢q) and f(k;, ..., k) have the same meaning as in Strategies 2
and 3.

3.7. Examples

To illustrate the methodology, it will be applied to implement systolic amrays for
the ransitive closure and the dynamic programming problems,

375 The ,_._.u:uEﬁ,o_caE.m Problem

Consider a directed graph G(V,E), where V is a set of vertices, and E is a set of
directed edges. The graph G*(V,E"), which has the same vertex set V as graph G, and
has an edge from v to u if and only if there is a path from v to u in G, is called the
reflective and transitive closure of G {ARH74]. This graph G can be represented by its
adjacency mamrix A, whose elements a;j = 1 if there is an edge from venex i to vertex
ji otherwise a;; = 0. The transitive closure problem requires computations of the ran-
sitive closure matrix A*, whose clements a*;; = 1 if there is a path of length zero or
more from vertex i to vertex j. The shortest path problem can be stated in the same
way if a;; Tepresents the distance berween veriex § and vertex j and is equal to w=; if
thers is no edge between i and j, then a*yj is equal to the shonest distance between

vertex i and vertex j, and a*;; equal to e if there is no path from vertex 1 1o veriex §

e . e ezt o
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The Warshal-Floyd Algorithm uses A as an input matrix and produces At as the
output. This algorithm is given below, where x(1.5,0) = ag;. and x(, . N) =274 2

fork<—1wN
fori<— 11N
forje—1twN
x(Lj,Kk) = x(Lj,k-1) + x(.k.k-1) x x(k.j.k—-1)

Notice that + represents the Boolean OR, and x represents the Boolean AND, If + is
changed to the minimum operation and x to the addition operation, we get the shortest
path problem.

A number of other tesearchers have proposed systolic armays for the tansitive
closure problem. All of these proposals use approximately N? PE's to perform the
computations in O(N) time, and all require some control signals 10 temporarily phase
the PE's (phasing the PE means each PE will perform one or more functions accord-
ing 1o a specific control signal waveling with the data).

The first systolic array developed for the transitive closure problem was a three-
pass mesh connected array described by Guibas, Kung, and Thompson (GuK79). This
stracture is relatively slow and requires wrap arcund interconnection. Hexagonal
arrays have been proposed by Kung and Lo [KuL85] (Liw$5), by Rote {Rod35], by
Robert and Trystram [RoT85), and by Kung, Lo and Lewis [KuL87b}

The following section uses the methodology described in this thesis to design a
systolic array for the transitive closure problem. The resulting design is faster than its
predecessors.

The first step in designing such an army is to choose the axes that we will project
on. In this case, the k axis wil serve as a first trial. Figure 3.3 shows the data depen-
dency for the transitive closure problem, where n=4, The different i<} planes arc drawn
scparately, and the ammows indicate the data movements berween the different PE's. It
is obvious that there is communication between non-neighboring processors, More-

over, the data dependency changes as k changes (ie., the datz dependency changes
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k=3 k=4

Figure 3.3
Data dependency graph of the ransitive closure problem

with time). Using strategy 1, which puts no limits on the number of buffers or access-
ing of the buffers,

oi,j k) = E* midi,j,i,%.k-1) , wifi,j,k.j,.k-1), RE.WIS* (3.36)
wol,j+1,in i ki) + 1 J<h

wili.}iduka) = ETR_.“.:._..R: . z.i.* i=h (337
trofi, j-1,i.jikg ) + 1 j<iy
]

trofi,Juiyqgo k) = wiCLgdeagiaky) (3.38)
woli+L.jvig.rky) + 1 behy

teidi, f i by ke ) = max *AE.: Jukid. na:L i=i (339
reo(i-L.j. i1, ik} + 1 i<t
]

and

teoli,j,ig.ds.d0 ) = t6iG.ji5.01.k0) - . (3.40)

Figure 3.4 shows the modified data dependencies after pipelining the broadcast
variables through the different rows and columns, By solving these equations, assum-
ing the initial conditions i,j,0) = 6, we get a solution for the mansiive closure prob-
lem. .

Figure 3.5 shows the army used 1o solve this problem, where the PE's in Figure

3.6 are replaced by the times at which the different computations will take place.
Notice that the initial conditions is 1(1,],0) = 0 which means that the 8;; was storcd at
PE (i,j) before computations begin. Naotice that in iteradon k, the k-th row and the
k-th column will act as source nodes to broadcast the content of its accumulator in

both directions. This can be achieved with a singie control bit that travels across the

%
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Data dependency for the transitive closure problem after pipelining



pows and the columns, signaling 1o each PE when 1o broadeast the content of its accu-
mulator. The rest of the PE’s will use a handshaking mechanism, where each PE will
wait until it receives the two data items through its input row and column regisiers to
complete its computation. The time for this solution, SN ~ 7, is faster than any previ-
ous solution. Because for any i,j u(i,j, k) < tmi(i, j,iy,j1.1 ). the maximum number of
buffers nceded in each PE is one.

If Strategy 3, which allows one buffer in each PE, is considered, the equations
are the same, except that 1co has the following fonn

1(i,j.k; +1) .—Hw._. and i;=k;+1
ol j,ipgr k) =

(Ci(ij,iy.jrdyy  Otherwise (341}

Figure 3.6 shows the array used to solve this problem, where the PE’s in Figure
3.6 are replaced by the times at which the different computations takes place. The
time is SN — 6, which is faster than the array propesed by Kung and Lois [KuL87b].

3.7.2. Dynamic Programming Problem

Many problems in computer science can be solved by using dynamic program-
ming lechniques; including shortest path, optimal parenthesization, partition and
matching problems. For a fuiler discussion of this spectram see the review article by
K. Brown [Bro78] and the references mentioned therein. The following example on
the optimal parenthesization problem, which can be formutated as
g = inﬁ c(i.k) + e(k.j) * (3.42)

ickej

This in turn, can be transiated 1o
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The time of the different computations for the transitive closure problem using

strategy 3 (n=d)
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fori <— 1twon-1
forj«—i+lton

for k <110 j~i

ofi.jk) = el j.k=1) + miny elilk~1) , elk,j,k=j}

Any direct implementation of this recurrence will lead to a solution with time O(m®).
Figure 3.7 shows the data dependency for the dynamic programming problem, pro-
jected on the k axis, where node (i,j) represents the computations of c(i,j,k). Close
examination of Figure 3.7 shows that to calculate ¢(i,j) the first available terms are
¢(i,j/2) and ¢{i/2,j). A beuer algorithim, then, is

for i <= 1 to n~1

for j «— i+l ©on

for k <— 110 |0

2
c(i,ik) = e(i.j.k=1) + min{c(i,i+#m—k+1, k) , ei+m—k+1,j,kz) (3.43)
where 1y = [EELE (i

By applying the rules in Strategy 1, we get

. .. Figure 3.7
11, k) = max el jk—EHL, oiCijidsaddke) s widi jzada o) (3.44)
Data dependency graph for dynamic programming problem
where
f1—
=1, jo=itmkel, k= .,I:% .
o .. jrh
i = i+mek+1, jz=i k 2= [—|



woli,j-1ij.k) + 1 j> i

qmﬂ.»...:.__.rr: = gnnﬂim.w.,—_..‘_.rﬁv N —.Q.h.v ._ H.m_ nw.&uv
trofl, j+ Lipjki) + 1 j<i

wolt.j.iy.du k) = widi, iy, 1.kq) (3.46)
Hoﬁwl_..b.m_.w_.ruu +1 ixiy

wili,jindyky) = {max(i,jui ik, ¢ i=h (347
wol-1,],i.0; k) + 1 i<iy

and

teoli,j, by, j1.¥ ) = il jiip.jik e S (3.48)

Solving these equations results in the array shown in Figure 3.8. This drray is similar
to the array proposed by Guibes, Kung, and Thompson {GiK79]. The time it takes to
solve a problem of size » is 2{n-3). Table 3.2 shows the movement of
¢(1,2),¢(1,3),¢e(1,4),¢(1,5),¢(1,6) assuming that n = 12. Notice that each data clement
will travel with a speed of 1 until it will be used by any computation, Then it will
travel with a speed of 1/2 except in some prespecified processors (PE(L,3) andPE(1,9)}
which will always have a speed of 1. This means that each PE has iwo buses, one
with a delay of 1 for the unused data, and the ather with a delay of 2 for the data that
was used by this m.m. except for processors PE(1,3) and PE (1,9) which has a defay of
1 for the two buses. Table 3.3 shows the movement of the same elements acconding
10 the design Guibas, Kung, and Thompson design [GuKT79].

3.7.3. Examples with non-linear Data Dependencies

In this section, we discuss in detail two cxamples. The first, although has no
physical meaning, was chosen because it has a very complicated data dependency. It
shows the power of this method in dealing with complicated data dependencies. The
second example is to show how this method can be applicd in a case of non-linear

data dependencies.
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Figure 3.8
Systolic array for the dynamic programming problem
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Table 3.2, Table 3.3.
The time at which e(i,j) will reach PE (i,j) The time at which e{ij) will reach PE(ij}
using our proposed design using Guibas, Kung, and Thompsan design [GuK79]
PE PE

cigy (12} L3 | L4 (1516 L7819 1,16 L1 | 1,12 eij) L2113 | 14| L5 | 1617|1819 LI10] 3,11} 1,12
c(1,2) | 2 3 4 6 7 9 11| 13 14 16 18 (L) || 2 3 5 7 o |13 15 17 19 2

(1.3 3 4 5 6 8 10 | 12 13 15 17 ¢(1,3) 4 5 6 8 0] 12§ 14| 16 13 20
¢(1,4) 4 5 6 7 9 11 12 14 16 ‘ o(1,4) 6 7 8 L 1] 13] 15 17 19
(1,5} 6 7 8 9 10 11 13 15 ¢{1,5) 8 9 1041112 14 16 18

c(1,6) 7 8 9 1 11 12 14 ¢(1,6) 10} 111213 14 15 17




Example; Soive the following recurrence on a mesh connected systolic array.
(i, §. k) = f(ivk, jHi~k, k=i) + f{i-1, j-i. k-1) (3.49)

Assume that we projected on the & axis. Figure 3.9 shows the data dependency of
recurrence equation 3.49 when n=3 in the [-J plane. Applying Strategy | 1o this equa-
tion, we get the solution in Figure 3.10 in whick the systolic array is drawn for
different values of k, and the time at which the caleulations of f(i,j.k) is shown in the
I-] plane.

Figure 3.11 shows the same siruation applying Strategy 2, with the maximum
numaber of buifers ¢ setto 1.

Exampie: Solve the following system of recurrences using a mesh connected

control flow systolic amay.

f,.0.5) = @, ?T_.sac.e.a.f: , E.:aé.o.TL (3.50)
20.0.0) =D, TE._.TT«..W.T: i .mmlm...hmw.w.:* (3.51)

where u(x) is the unit siep function.

First, we map this system into a 2-dimensional systolic array using the mapping
(i.},0,k) — (L.j). which means that each PE will perform n? computacional steps to
compute n® values of f and g. The data dependency represented as & graph is too com-
plicated to be presented here. Using Semtegy 1, and 1% i,jul,k <4 we get a the systolic
array shown in Figure 3.12 where the wple (x,y} shows the time to calculate (i.},1,k)
and g(i.j.1.k) for | S i,j,Lk <4,

3.8. Experimental Results
In this section we show some experimental results for the running dme of this
method on randomly chosen samples of system of linear recurrences. We investigate

equations on the form.

f;(p) =@, Tﬂ}iﬂ + Ur..b*

87

1
{
2

3

4

21

k=3

Figure 3.9
Data dependency for recorrence 3.49
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Systolic armay for solving equation 3.49 using stategy 1
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where | represents the number of equations in the system, | represents the number of
arguments for a single equations, p= (.57, and 0<x,y,2510. To do this, we
randomly generated the matrix Ay and the vector by j, and we ran the program for a
large number of inputs untl we got a 0% imerval confidence (the number of runs is
bettween 10 and 50). Table 3.3 shows the time to run this method on a VAX 11/780
fori=1,2,5 and j=2,3,4, 5, In this table | represents the averzge time to nun the
program, and E represents the margin of ermors to guarantee a 90% confidence (ie.
when running this program for a certain number of arguments and functions, we are

9% confident that it will take time between j~ E and L + E),

3.9, Conclusion ,
In this chapter, we have studied Control Flow Systolic Array which is capable of

soiving more complicated problems than the ordinary systolic amays. We have also

introduced & methedology to map the recurrence into the Centrol Flow Sysiolic Amray.

Finally we illustrate the power of this methodology by designing an array for the man-

sitive closure problem. The resulting amay is faster than any previousiy known arrays.

i i Y L L L
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Table 34

The time needed to run our proposed method on a randemley
choosen set of linear dependency recurrence equations

#of on.:wmu_a 2 arguments | 3 arguments | 4 arguments | 5 arguments
pe.620 p=0.900 p=1.120 p=1.700
1
E=0.008 B=0.0622 E=0.009 E=(.017
p=1.770 u=3.690 p=3.930 p=7.430
2
E=»(.025 E=0.077 E={(.249 E=0.301
u=17.200 p=11.540 u=15.480 p=19.350
5
E=0.197 E=1.583 E=1907 B=1.195




CHAPTER 8
BUFFERING IN MACROPIPELINES
OF SYSTOLIC ARRAYS

4.1, Introduction -

This chapter will consider the architecture of a large system of systolic arrays, in
which more than one systolic array cooporate together to solve a specific problem.

In  large system, especially in real-time applicarions, & pool of systolic armays of
different types can be configured into a macropipeline to solve a given problem. A
macropipeline is a pipelinc of sysiolic arvays with the outputs of onc amuy acting as
inputs to another array in the pipe. Each stage of the pipe is a systolic amray that per-
forms one operation, such as mawix addition or multiplication, This structure of
macropipelines characterizes most image-processing algorithms [Nudg0], [NuN83).
Examples include real-ime vision systems {NiH79), analysis of motion [AgV80].
image reconstruction from projections [Far78], radar signal processing [Amm79}, air
waffic control [Han73], paitern enalysis and imege database management (FuHRS),
recursive filtering [ScK85], and panemn recognition [HwS83). The Programmable
Systolic Chip [FiK84] and the Warp array processor [KuM84] are examples of
reconfigurable systolic arrays dedicated to handiing compute-bound problems in image
and digital signal processing. A nomber of these arrays can be used in a pipelined
fashion to perform the various tasks in image and signal processing.

A data dissribution of a systolic array is cither the format of inputs fed into the
systolic array or the format of outputs exiting the systolic armray. The input data distri-
bution of one systelic array may be different from the output data distribution of

another. Hence, when two systolic armays are connected together, it may be necessary
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to convert the outputs of the systolic array that feeds data 10 the other array into thw
required input data distribution form. A conventional approach for this problem is to
use a common memory to buffer the ontputs of the systolic amays. This becomes a
bottleneck, however, when many systolic arrays are sharing the common memuory.
Another approach is 10 design the systolic ammys such that the output format of one
amay is the same as the input format of the next amey in the macropipeline and 10
connect the systolic arays direcily. This may not be always vowmz,u_n. especially when
the macropipeline is reconfigurable. ‘A thind approach is to design a converter
between two steges of the macropipeline, which consisis of muliple buffers and »
control unit to select the appropriate buffers for inpuis and outputs [BrF82]. This
approach is exemplified by MOSAIC [LiS86], a project carried out at ESL Inc. The
system consists of a statically scheduled crossbar switch that connecss multiple Warp
processors, each with local memory maodules, into a macropipeline. The local
memory modules are used to store input data and o restructure them into the required
input format. Since Warp processors are reconfigurable general-purpose systolic
arrays, the memory requircment for each module is not defined at design time, Hence,
all memory modules are of the same size.

The concept of using buffers 1o perform data conversion is illustrated in Figure
4.1a. €, and C; are converters used to convert the output data into the required input
formats. Figure 4.1b shows this conversion. To conver: dam from distribution D; to
I3,, at least six buffers are needed. The first column of D, cannot be output until the
third cobumn of D, has arrived. Six buffers are nesded 10 store the data in Dy such
thei elements in the first column of D, are available in the buffers. Likewise, five
buffers are needed for the second column, and three buffers are needed for the last.
Note that the inpul and ourput rates may not be the same when the minimum number
of buffers are used. .

In a previous work by Wah and Shang {WaS85) the minimum number of buffers
required to convert between any twe distributions was calculated. this work will be
exiended in this chaoter to find the necessary transformations to convert the data

between any two given distributions. The design of converters to interface systolic
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Macropipelining of systolic arrays. (3) A macropipeline of systolic arrays. (b)

Conversion of gata from one distribution to another.

arrays in a macropipeline will also be studied. This design depends on the type of
macropipeline. A static macropipeline consists of a fixed pipeline of syswlic arrays
with a fixed function in each array. The conversion of data distributions between adfa-
cent stages is fixed as well, and special-purpose converters are needed. In contrast, in
& dynamic macropipeline, a subset of systolic arrays are selected from the pool and
configured into 8 pipeline depending on the application. Sinc the configuration of a
dynamic macropipeline may not be fixed and data of different formats may be fed into
a given army, general-purpose converters are needed here.

The objective of this chapter is to provide a methodology to design an efficient
converter for given input and outpur distributions. It is assumed that both the inputs
and the outputs are two-dimensional armays in which the elements are equally-spaced
along the rows and columns in the data disuributions, that there are no duplicated date
in the distribution, and tha: data can be described by two vecters to be discussed in
Section 4.3.1. The macropipeline is asynchronous, and the interarrival times of dara
may be different for different systolic arrays. In the remaining sections, we will study
the minimum number of buffers for a given conversion [WaS85] (WaA388], propose
design procedures for general-purpose and special-purpose converiers, and exemplify
the design process.

4.2. Minimum Number of Buffers

A converter is made up of buffers, the interconnections among the buffers, and
the necessary control hardware that issucs signals to buffers to accept or send data mt
the proper times. B, is defined as the minimum number of buffers in a converter to
buffer incoming data before they are output. In this section, an algorithm wili be
presented to find Bpyy, for given input and output distributions,

42,1, Data Distributions

To describe different data distributions, two vectors are intreduced in [LiWESa).
Suppose that the row and column indices of X are i and j, respectively. The row vec-
tor of X is defined as the directional distance between x; ; and xy, ; and is denoted by
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Similariy, the column vector of X, denoted w«ﬂ is defined as the directional dis-
tance between x;; and x; ;. A data distribution with vectors T and J is denoted by
D{, 5. Two data distributions are illustrated in Figure 4.2,

The geometric layout of a dara distribution can be described in the Cartesian
plane. Without loss of generality, it is assumed that Xy for both the input and cutput
distributions is placed at the origin, that x, ; is among the data items 1o be inpnt and
output first, and that data is moving in the direction of the positive x-axis. Vectors T
and 7 sre used to define 2 data disribution and to determine the locations of s ele-
ments uniquely. Cy(1,j) and Cy(i,j) denote the x and y coordinates of element x,j. I,
and J, are the projections of vectors [ and 7 on the x-axis. Likewise, I, end J; arc the
corresponding projections on the y-axis. Therfors,

Gl jp=Gi-11 + (j~1)J, 4.1}
Gyl =G-1ly +(G-1)], " @2
Note that if I, Jy, 1y, and 3 are intcgers, then the coordinates will be intcgers.

In the Carwesian-coordinate representation we have adopted, the x-coordinate
indicates timing. That is, elemenis with the same x-coordinate amrive at {or depan
from) the converter ar the same time, Data with the smalless x-coordinates arrive at
{or depart from) the converter first, while data with the largest x-coondinates arrive (or

depart} tast. The i'th (input of ougpus) step is defined as the ser of elements in the
{input or output) distribution with the x-coordinate cqual to i.

4.2.2, Finding the Minimum Nsmber of Buffers

In this secton a dynamic-programming formulation is developed to find By,
the minimum number of buffers to convert the data diswibution from D, to D,,. Let b
be the number of buffers needed afier the (i-1)"th output step has been camried out and
before the i'th step of D, can be ourput, while the necessary data to output in the i'th
output step have been received. In deriving by, it is assumed that all input data items
are buffered before they can be output. Funher, let B; be the maximum number of
buffers needed when the i'th step of D, is output, and the boundary conditions are

X3
X2 Xa 6 T 7
X33  Xn X X3 X231 X
xn X2 X33 %32 X132
N
X3 X33 Xn i
Figure 4.2

Two data distributions and their comesponding vectors. (The first &B. distribu-
tion has three streams of dataflow, and the second one has five streams, assuming

that data are moving from left to right)
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Bg=0. For the example in Figure 4.1, before xy,1, x),2, and xy,3 can be output, by {=
6) buffers are needed to buffer the first three columns of Dy, Before the second output
step of D, can be carricd out, data in the first four input steps with eight daw items
must have been received. Hence, by is five assuming that the first output step has
been completed. Similarly, by = 3. As & resuit,

By =0; (4.32)
B; =mex {b;, B, i i=1,2,3 (4.3h)
Boin = B3 = max {b, max (by, max (b, Bo}}} = by =6. (44

Note that in deriving the minimum number of buffers, the input and ourpur clocks
may be running at different rates.

To allow a more precise formulation, two partitions on the data set X =
{xij:1%i,j<n} and a partial ordering of these partitions are inroduced.

An input partition partitions the input array X into N; disjoint subsets, I
1<psN,, where

P

b= { x| G = G-DUE G-I =), p=l,.a N, (4.5)

and N; is the number of inpur steps. lmg Ea.”.x are the row and column vectors of the
input distributicn, respectively, and Ii and Ji are the corresponding projections on the
x-axis. I, represents the set of input elements with the same x-coordinate B, I is
the set of input data that arrive at the converter first, and I, is the p'th arrival set.

An emtput partition pariitions the output array X into N, disjoint subsets Oy,
[<k<N,, where

Ok = { x4 G = G=DIgHG-DIF =8}, k=L, Ny, @6

and N, is the number of output steps for the output distribution. T md T are the
vectors of the output distribution, respectively, and I and J§ are the corresponding
projections on the x-axis. Oy represents ourput elements with the same x-coordinate
. Oy represents the set of data thar departs from the converter first, and Oy is the
k’th departure set.
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Figure 4,3a shows D, and D, of & 3-by-3 array X, Since X arrives in three steps,
there are three input partiions (i.e., Ny=3). Similarly, there are seven ovtpat pard-
tons (l.e., N, =7) because the outputs depart in seven steps. Let S and O be the sets
of input and output partitions and [T be their union.

§ = (1 | 15p<N;) @7
0= (0 | 15ksN, | 48
=50 49

For meT], In;l represents the number of elements in x;. The corresponding input and
output partitions in Figure 4.3a are shown in Figure 4.3b.

The example in Figure 4.3 shows that there exists a relationship between the Oys
and L s. A partial ordering “'—'" can be defined on 1T as follows. If Iy =1, then
data in I, will arrive carlier than that of Iy, If Oy —+ Oy, then dats in O will leave
carlier than that of Ok. Further, if Oy — I, then data in Ip must arrive before dat in
Oy can depart. To output the elements in Op, all elements in Ips such that
Oy I #@ must have arrived at the converter. In short,

1) K-l if k>p;
2y Ox— 0, if k>p;
3) Oy} if either Oy~ »@ or there exists an integer q such that
IOy »@ and that I, — L,
The above definitons  imply that if Og—=I, then

Ox—=l =l — - =L The integer q=p such that Oy — L, and that
O - Ipyy is defined as the key number for Oy. Note that all the relarionships among
the I,s and O, will be known once qy is found. The partial ordering of the paritions
can be represented in a lawice. Figure 4.3c shows the lattice of the partial ordering for
the example in Figure 4.3a. For instance, g3 =2 is the key number for O since
O3Iz = {x32.1 ], and O3 can be output once elements in I; have arrived.
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X3 '
-
I X3z
X3 X1 X X33 X3
m T
X32 X1z X x22
X33 X3 X3 L 7%) X
12
X3
{a)
S={h.I;, is} 0={0;...., 07}

L =[x, 0.2. 53 O = {x31}, Oz = [x 2},
By = [x3y. x22. %3k O3 = {x35. %3}, Og = {x22}.
Iy = (x3,, %32, %3)  Op = [x3,1, 523}

Q4 = [x32), 07 = {x33)

(b)

OO +—OQre——Qre—Qy—0s—0

Figure 4.3
Partitioning and partial ordering. (a) Input distribution D; and output distribution
U,o. {b) Input and output partiticns. (c) Lattice for the partial ordering (transi-
tive arcs are not shown).

To use dynamic programming 10 find Brir, Gy, 03, .., Oy 2re examined sequen-
tially. It is assumed that the inputs and ouiputs may be driven by different clocks.
That is, the minimum amount of data are input to gencrate the necessery outputs. If
ax i3 the key number for Oy, then Iy, |y, ... Iy, must have arrived at the converter
before elements in O, can depant. The reason is that either I, 1<p$qx, contains
data in Oy, or Iy does not contein data in Oy but Iy, = 1. Therefore, elements in the
set Iyl * <+ kg, that remain after I, has asvived and Oy bas lefi must be
buffered. In other words, the number of buffers necded,by, is
n=3 -5 |

1 =1
By the Principle of Optimality, which states that an optimsl sequence of decisions has
the property that whatever the initial state and decision sre, the remaining decisions
must constitute an optimal decision sequence with regand to the state resulting from

the first decision, we can formulate the problem in dynamic programming as follows.

bo=C  |On=0 go=0; @1
P
Bembey = 1Okt T |k =l..N {4.11b)
o+l
Ba=0; 4.120)
By = max(by, By.1) kK =L..N, (4.12b)

Note that the summation in equation 4.11h is zero if the lower limit is greater than the
upper limit.

To establish the partial ordering of partitions, & counter is used 10 count the
number of elemenis in each partition, and the key number q; is kept for each Oy.
Cii,j) and C2(3,f) are computed for every clement x; in the input and owtpus distri-
butions. 1f x;; is in Oy and I, then Oy-lp, and the counters for Oy and 1, e
incremented. g is updated to p if p is larger than the previous value of q;. The algo-
rithm o compute the partial ordering is shown in Figure 4.4, The computational

T 04 k=l..N (4.10y
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procedure compute_partial _ordering;

f* Inputs: T Eauwu vectors for input diseribution;
Ci(L,1) = C3(1,1) = 0, and alf Ci(i,j) and C2(L.j) are integers;
T® and 7°: vectors for output distribution;
Nj: number of input steps;
N,: number of ourput steps;
Outputs:  Three arrays ©(Ng), Q(Ng), S(N;), where
Gcc = “Or“. the number of elements in Qy;

Q(k) = g, the key number for Qy;
3(p) = __HL. the number of elements in Iy, */
(1) Inidalize &, Q, and $ to zeroes.
(2) fori=ltondo|
for j=1 tondo{
K= O+l =M+
p=Clip+l S =SE)+1
Q(i) = max (Q(k), p}

Figure 4.4

Algorithm to compute the partial ordering of partitions.
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complexity of the algorithm is O(n?), since all elements in B and Dy, must be con-
sidered. A better algorithm with & computational complexity of O(max([N;, Ny} *
min{1y, J71) can be devised but will not be presented here. .

The example in Figure 4.3a is used to illustrate the algorithm. Initally, all key
numbers are initialized to zevoes, N;=3, and N,=7. Since C2(1,1)=0, and
Ci{1,1)=0. x;,;€0; and xyyely, q; and the couners for O, and I, are updated to
ones. Similarly, it is found that x; 3 € Oy and xy 3 € I;. The counters for O and Iy
are incremented, and qy is set to one. For xpy, it is found that x;,€¥; and that
%2,1€03. The counters for Oy and Iy are incremented, and g4 is set to max{q;, 2} =
2. Likewise, the remaining clements in X can be examined. The results of applying
the algorithm in Figure 4.4 are

®={1,1L21,2,4L1; Q=([,122333; § =[53.33

Applying equation 4.11 resubts in [by] = [3,2,4,2,4,2,1]. From equation 4.12, we
obtain By=4,

4.3. Combingtions Of Data Distributions

In this section, we will discuss some properties of data distibutions that are use-
ful for designing the converters. As mentioned before, a data dismibution is character-
ized by two non-parallel vectors. Two data distributions, D{T",7*) and D%, 7%), are
said to be equivalent {or belong to the same equivalence class) if
=1} and J!=J? and {4.138)
MQI-1131r 0313121 >0 (4.13b)
where I} {resp. J1) is the projection of T (resp. J') on the x-axis. The first condition
{equation 4.13a) ensures that the data distributions have the same projections on the
x-axis. Consequently, the orders in which data arrive at the systolic array for the two
data diswributions are identical. The second condition (equation 4.13b) ensures tha
the data ariving at the systolic armay at the same time have the same permutations.
Note that for two <onsa.1_+§aN if B is the angle in a clockwise direction 58%8%.
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then sin(8) = (L, J,~LJ,}/( 1+ (T1). The number of streams of data flowing into the
systolic array for two equivalent data diswibutions may not be equal and can range
from n to (2n-1). As an example, the two data distribudens in Figure 4.2 are
equivalent, but have different number of streams of dataflow.

The following theorem shows the number of possible equivalence classes of data

disaributions.

Theorem: There are (U(2") equivalence classes of data distributions for an n-by-n
array of data,

Proof: In proving the number of cquivalence classes, only the projections of the vec-
tors on the x-axis have o be coasidered. Without loss of generality, pssume 924?«
not orthogonal 1o the x-axis. From the x-projections of the first row of dat, C,(1,1),
Cy(1,2), .oy C4(1,n), it is necessary to determine the number of possible x-projections
for the remaining rows. Consider the x-projection of x3. Assuming that
Ce(2,1)2C,(1,1), there are 2n possible positons for C,(2,1), namely, C,(2.1) =
Ca(Ld), =1, ... 0, Cy(L1) « Co(2,1) < Co(L,i+1), i=L, ..., n~1, and C,(2,1) > C,(1,n).
Suppose that C;(1,1) < C,(2,1) < C5(1,2). In this case there are three possibilities for
Cy(3,1), namely, C,(3,1) = C,(1,2), Cy(2,1) < Cy(3,1) < C4(1,2), and C,(1,2) <
Ci(3,1} < Cy(1,3) (see Figure 4.5). When C,(3,1) = C,(1,2), the positions of the
remaining eclements are determined. However, when oE..n.. C,(2,1) < C(3,1) <
Ca(l,2) or Cy(1,2) < C(3,1) < Cp(1,3), then C,(4,1) can fall in three possible
ranges, as shown on the second level of the tree in Figure 4.5. The same argument
can be applied 1o the remaining levels of the ee for xg54, ... X,). In lovel ¢,
t<0<a-3, there are 2*~} icrminals, whilc in level n—2, there are 327 terminals.
The total number of terminals is

n3

,m_uﬁ_..m +3273 = 14370 = 400 ) {4.14)
A similar argument can be made when €, (1,1) > C,(2, 1) or Gy (2,1) > C,(1,2). Since
each of the above data distributions belong to a distinct equivalence class, the total
number of possible data distributions is Q(2%). O
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Level 0 Cu(L 1)< Cr(2,1) < Ty (1,2)
.1
Level 1 C(2,1) < C(3.1) C.(3.1) C, (1.2 < C,(3.1)
3,1 <C (1.2 = C(1,2) <C ((1,3)
Level2 C,(3,1) C,4,1) G2 C,Ga.Nn G4l C,(1.3)
K1 <Gdl)  =CG(LYD <G4 <C41) =C(L3) <Cy{d,1)
<C,(1,2) <G (1,3 <Cy(L3) <Cy(l.4)
Figure 4.5

' Possible positions for Xz 1., X3.s e Kn, -
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Tt is practically impossible to design a general-purpose converter to perform all
the possible daia wransformations, Some restrictions are necessary to reduce the space
of data distributions,

If <86a|~v§m.wﬂo restricted to have only unitary or zero projections on the x-
and y-axis, then there will be eight _u.oma.c_o directions .,.o_,levomsmam at 0%, 45°, 90°,
135°, 1807, 225", 2707, and 315". For each direction R.uq.v there are six possible direc-
tons N.Q..w excluding the cases in which [ E.i‘wEd pointing in the same or opposite
directions. Thus, there are 8x6=48 possible combinations of data dismributions (Figure
4.6a). Out of these 48 cases, there are only 16 equivalence classes (distributions in
the same column of Figure 4.6a belong to the same equivalence class).” Data distribu-
tions in class i, 151’8, can further be combined with the corresponding data distribu-
tions in class i, 1i<8, into a new equivalence class if a reversal &35». is available 1o
reverse the order of data amiving simultancously st the converter, The resuldng eight
standard distributions are shown in Figure 4.6b.

4.4. General-Purpose Converters

In this section, we discuss the design of a general-purpose converter that can
convert data from any distribution to any other diswribution provided that the vectors
fepresenting the dat distributions have zero or unitary projections on the x- and y-
axes, We will give the mathematical representation of this converter as a series of
transformations applied to the input data distribution to produce the required output
diswribution. It is assumed thar vector T is represented by the corresponding projec-

tons on the x and y axes, That i,

T= 1,0+ 1Y = 0, 117 415

.wnms be represented similarly. The data-distribution vectors are represented as a 2-
by-2 matrix D= ml_Tm A wansformation process T is a two- by-two marrix, and a

= Note that alements in each equivalence ciats are nos Bnique according 10 Eq. (4.13b). Figure 4.60 thows one of the
postible sets of equivalence classes.
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(1) (L)(2) (27)03) (3 16y (a')(5) (S*)(6) (6'¥(7)(2')(8) (8')
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(x) All poasible combinations of data distritntions,

(A] (9) (c) (9} (£) (F) (G) (#)

AR <A

(b) Eigbt standard output data distributions.

Figure 4.6
Possible data distribution iro:.mvgn.w__ncn either zero or uitary projections on the

x- and y- axis




wansformation on a data distribution is the product of the transformation matrix and
the corresponding matrix representation of the data-dismribution vectors. It is further
assumned that the input distribution U.ﬁ...? and the output distribution Uo@e H} are
given, and that they belong to one of the 48 deta distributions in Figure 4,63, Figure
4.7 shows the transformation process.

The first ransformation is on reducing the number of data streams from the our-
puts of the provious stage of the macropipeline. It is assumed that the input matrix
enters the converter in n streams, that is, the distributions in the first row or columns
(5) thru (8”) in the third row of Figure 4.6a arc used. 1f the output data from the pre-
vious stage require more than n streams, then both vectors I and 7 of this data distri-
bution must have nonzero x and y projections, that s, the distribution belongs to those
in the second row or columns (1) thru (4”) in the third row of Figure 4.6a. In this
case, the outpur data are multiplexed info n streams using n B_._E____oxn.ﬁ before they
are ourput from the previous stage (Figure 4.8a). This multiplexing is equivalent to a
linear transformation T;.

_tr o
Ti= T_ u;.
which changes the datz diswibution in the second row or columns (1) thru (4°) in the

third row of Figure 4.6a into that of the first row or columns (5) thru {8%) in the thind
row. The data distribution afier multiplexing can be represented by U_mw.ﬂ ).

(4.16)

—1i)i [
% =T B i g g

3 L L3 H Iy LI, 050

up
wm=--L, py=1 iF18=0. Tig0 i

10 IF14=0, 150, Jis0

Uu = .H— ._Um where 1 @1
- 8= ; o i

a==yr Pt if 1e0, 1}+0, Ji=0
Q_HO. ﬂ_ﬂ— ise

!

D; Dy D; D D, Dy D,

et Ty frd Ty P Ty jidl Ty = Ts |t Tg |

Multiplexing Staggering  Rotation  Staggering  Reversal Demultiplexing
datainto  dataimo  byangle dataoutof ofdaa  daainto
n streams  the mesh o the mesh slice  2n-1 streams

Figure 4.7

The sequence of ransformations in the conversion process.
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Muliiplexer Demultiplexer

(a) (3]

T Multiplexer
™~

~

¥

© @

Figue 4.8
Architecture of the general-purpose convester (nwd). (a) Multiplexing data from- (In—1} streams into n
sireams using o multpleares (¥=3) (b) Demultiplexing data (rom 1 sireams into (2n~1) swreams using

n demuluptexers (1a3) (c) 3-by-3 mesh of buffers {d) Reversal network

The o-by-n amay of data is routed into an n-by-n mesh of buffers with four-
neightor connections until they are filled (Figure 4.8¢c). If the data distribution
belongs to one of those in columns (5) thru (87) in rows | and 3 of Figure 4,62, then it
needs to be transformed into one of the data distributions in column (1) thru {4 in
row 1, which is the distribution of data that can be stored in the mesh of buffers. This
transformation is represented by Ty,

Ty = Tmﬂ i (4.13)

which transforms U_m. H_J into Uumw.luav.

1 i .
o=, P«.&.m. if1)=0
__u_ ¥
Un = .HN.U_ where 1 ﬁa.umv
1 & .
Qnuj. wuulpu.4 if1,=0
x) b

The wwo-dimensiona! interconnections in the buffers allow data to be shified in
one of the four directions. Data are input in one direction and feay come our from
any one of the four directions. Accessing data in one of the four directions can be
represented as a rotation of 4863%“5@%3 an angle 63, where 8y is 0°, 90%, 180",
or 270°. ‘This rotation can be represented as transformation Ty,

—sin(By
Ty = WH%NW SmaL 83=0", 50", 180", 270, (4.20)

which transforms Dy (%, 7%) into Dy, ).
D3 =Ty Dy, (421

where
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90" (14, 19=0and I3=12) or (1, I]=0 and J §=-I{) or
(2, 3¢=0and J ?=-13) or (U}, 13=0 and 13=-1})
160" if (19=-17 and 1}=0 and 1 $1= U}}) or
B3 = ] (19=-12 and J2=0 and 1 }i = L5 (4.22)
700 if 0 Ip=0and I3=17) or (12, I3=0and J $=I) or
0L 3=0and 12=13) or (J 3, 18=0 and 13=12)
_c. otherwise.

Ty is equivalent 10 transforming one of the distributions (1) thru (4') in the first row
of Figure 4.6a to another on¢ in the same set.

In conjunction with the rotation, the shifts of data from the buffers may be con-
trolled by differemt clocks 1o allow staggering of data in different rows. This is
equivalent 1o transforming one of the distributions (1) thru (4°} in the first row of Fig-
ure 4.6a into one of the distributions in columns (5) thra (8’) ir rows 1 and 3. This
Euumon:m.ng,nm: be represented by Ty,

Ty = Tw i . 1)

where By is the time difference between the output of the first element in row i and

the first element in row (i+1). T, transforms Uumw.luwv into U.m.« .I_J.

=103, BuIRI; 130

Di =Ty'Dy where Q&ﬂuu\.—w. ﬂb"mnhw i —wu&.

4.24)

Note that if the distributions are limited to those in Figure 4.6a, then Py=0o0r £1.
However, T, can also be applied to more general data distributions that will be dis-
cussed in Section 4.6.

Next, data may be routed shrough a reversal network to obtain the proper permu-
tation (Figure 4.8d). The reversal network maps data with output disiribution (i) into
that of (i) in Figure 4.6a. This can be represented by a transformation Ts,
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Ts= T .& “25)

which maps Dy(, %) into Ds . 7).

i}

ded if 3§20

_._a_ | 4ol

eiN]

Uu n.m.u.Ua where g = —.- e Ahhmv

o S 1320

T4l Vol ¥

T ]

Before data exit the converter and are sent into the systolic array in the macro-
pipeline, they may be demuliiplexed by n derultiplexers from a streams into {2n-1)
streams as shown in Figure 4.8b. This can be represented as a wransformation Tg.

Ty = T, _ﬂ , (427

which maps _uum._a UJ into the output distribution Ue@.a .MJ.

It 4 s
Enm,w... w.n_..namﬂ i 1;=0
D, = TeDs where H“ _w (4.28)
nou...m.. Pe=t-as— if13=0
IH IH

The transformations described above arc sufficient to iransform any one of the 48
distributions in Figure 4.6a to any other distribudon in the same figure. By Pm:u
multiplexers (T} ) and by controlling the viming of different rows of data input intc the
mesh of buffers (T3), any one of the 48 diswibutions in Figure 4.6a can be
wansformed into a distribution represented by vectors in the x and y directions only.
Note that these distributions belong to cne of those in columns (1} thru (4°) in row 1
of Figure 4.6a. To wansform between any two disuiburions represented by vectors in
the x and y directions, a rotation of angle 8, where 6 is 0°, 90°, 180", or 270", is
needed. This can be achicved by selecting the direction te output the data in the mesh

116



of buffers (Ty) and a reversal network (Ts), Likewise, by using demultiplexers (Tg)
and by controlling the timing of the different rows of data output from the mesh of
buffers (T4}, one of the data distributions in columns (1) thru (4"} in row 1 of Figure
4.6a can be ransformed into any one of the 48 distributions.

The above design requires the entire matrix to be stored in the buffers before
they are output. This simplifies the control but increases the delay. An alternative
design uses demultiplexers to input data into selected buffers other than those on the
perimeter. n demultiplexers, d;, dy, .., d,, are added to the n rows of buffers in Fig-
ure 4.8c. In the resulting design shown in Figure 4.9, dy and d,, are two-way demulti-
plexers, while the rest are four-way demultiplexers. For buffers in row i, I<i<n, the
four output lings of d; are connected to cells 1, i, {n—i+!1), and n, Thess connections
are used to adjust the dataflow by outputting data as soon as possible and to obtain
qutput distributions in columns (5) thru (8”) in rows 1 and 3 of Figure 4.6a. Note that
this is equivalent 10 applying Ty to the data distribution with Bs = 1, if we route d; to
cell (n~i+1} and with iy = -1 if we route d; to celt i, For example, to convert from
input distribution (1) to output distribution (5) in the first row of Figure 4.6a, demuli-
plexer d; is connected to cell (n-i+1), 1Sign. Elements in the first row will stay in the
buffers for one tme unit, while elements in the i'th row will go through i buffers and,
hence, will stay in the buffers for i time units. Dam will be ourput in the eastern
direction,

4.5, Special-Purpose Converters

This section will discuss the heuristic design of special-purpose converters. An
opimal design of these converters is difficult because they are problem dependent.

The conversion between any pair of the eight standard distributions in Figure
4.6b is swaightforward and is illustrated in the following examples. To convert from
distribution {A) 1o distributions (B), {C), or (D), n® buffers are needed, The input data
are propagated from left to right and are output in the western, southemn, or northem
direction after the buffers are filled. To convert from distribution {A) to (B), n(n+1)/2
buffers are amanged as shown in Figure 4.10a. The conversion from distribution {A)

Ao P [ - : IR el oo

1

PO
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Imvlﬁ! (row 1)

Figure 4.9

Organization of buffers for the modified general-purpose converter,
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Figure 4.10
Special-purpose converier. (a) Conversion from data distribution (A) te (E) (n=3).
{b) Conversion from data distribution (E} to (A) {(n=3).

10 (F) needs n® buffers. Data are ourput from the west aficr the buffers are filled,
Data in row i are output one step ahead of that of row (i+1). The conversion from {A)
1o (G} is similar 10 that from (A) 10 (E), and that from (A) to (H) is similar to that
from (A) 10 (F). The conversion from distribution (E) 10 (A) requires n(n+1)/2
buffers (Figure 4.10b). For the conversions from distribution (E) 1o (B) or (C), u?
buffers arc needed. The conversion from (E) 1o (D} is similar to that in Figure 4.1b,
The conversion from (E) to (F) requires n* buffers, and date in row | are output one
step ahead of data in row (i+1). The conversions from (E) to (G) or (H) are similar o
that from (E) to {F).

The design of a special-purpose convener between data distributions not defined
in Figure 4.6 may be complicated, and a heuristic procedure is proposed here. First,
Brine the minimum number of buffers, is found by the algorithm in Scction 4.2. A
feasible control circuit with By, buffers is then searched. The control circuis containg
demaltiplexers that ere individually controlled by stored microprogram. If a feasible
solution cannot be found easily or if the control circuit is o complex, then more
buffers are added, and the procedure is repeated.

4.6. Data Conversion In Feature Extraction and Pattern Classifications

This section, contains an exampie of interfacing the systolic .5&3 in a macro~
pipeline using converiers. The specific problem to be discussed are pattern
classification [ScK&5] (HwS83).

Given an m’-by-one input vector x, a feature exiractor has to produce a set of m’
transformation vectors, D = {41 i=1, ..., m’}, using 8, a set of waining samples with
known classes, where d; is an n-by-one column vector, m, is the sample mean of class
8, and ¥} is the jth training featare vector of class s. The output of the extractor is
the feature vector y=Dx. Figure 4.11a shows the schematic design of a VLSI
featurc extractor, which has a macropipeline of matrix multiplication, LU decomposi-
tion, and triangular-matrix inversion.

For the pattern classifier, it is necessary 10 compute the feature offset vector

M=y —R, , solve the lincar system ﬂo.....n._ ¥V =m for the discriminant vector V,
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P e ————— - and use V to compute the discriminant function F(y) and classify the vector y, Figure

4.11b shows a schematic diagram for the VLS fearure classifier, which has a macro-

pipeline of matrix multiplication, LU decomposition, and triangular-system solver.

Figure 4.12 shows & fast systolic array to multiply two n-by-n matrices in & pipe-
lined fashion (n=4), The outputs of the systolic army exit in (2n-1) streams and are

LU decomposition [Kun80a] and the associated input and output data formats,
Although the cutputs of the matrix-maltiplication systolic array are in the same format

as the inputs of the LU-decomposition systolic array, the outputs of the multiplication

systolic amray are multiplexed from (2n-1) streams into n streams to decrease the

tumber of connections between the two chips. Hence, it is necessary to demultiplex
the input data into (2n-1) streams in the LU-decomposition array. Notwe that this

conversion is not needed if the 1wo systolic arrays are on the same chip,

Figure 4.14 shows the triangular-matrix invener and the associated input and out-
put data disuibutions [LiW85a). Figure 4.15 shows the conversion of the output
matrix U from the LU-decomposition systolic array (Figure 4.3) into the inputs of the
matrix-inverter amay (Figure 4.14). Figures 4.15b and 4.15f show the dawa-
distribution vectors of the inputs and outputs of the converter, respeciively. Although
the input distribution in Figure 4.15b is not one of the 48 standard date distributions
in Figure 4.6a, it can be converted by n multiplexers into the data distribution in Fig-
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ure 4.15¢, These multiplexers are an implemeatation of the transformation process T,

in equation 4.16 with @;=1/3 and [,=2/3. The dama distribution in Figure 4.15 is

then convenied into that of Figure 4.15d by entering the data into the n-by-n mesh of

Figure 4.11 buffers until they are filled. This is an implementation of transformation Ty in equa-
Applications of macropipelining in image processing and pattern recognition, (a) tion 4.18 with a2=1/2 and By=~1/2. The daw are output from the north side of the
Feature exiractor. array, which is equivalent to & rotation of 270", The resulting diswibution i5 shown in
Figure 4.15¢. Finelly, n demultiplexers are used to convert the data distribution in

Figure 4.15¢ 10 that of Figure 4.15f, which is ransformation Ty in equation 4.28 with

as=Ps=1. The conversion for the wriangular armay L can be dane similarly.
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Figure 4.16 shows the conversion from the outputs of the matrix inverter (Figure
4.14) to the inpurs of the marrix-multiplication systolic armmay (Figure 4.12). Figure
4.16b shows the data distribution of the outputs of the matrix inverter, which can be
wransformed by n multiplexers into the data distribution in Figure 4.16¢c. Onfy n of the
(2n—1} inputs 1o the multiplexers are nsed since the input matrix is an upper triangular
matrix. The data will fill the n-by-n mesh of buffers and will be output in a staggered
fashion to obtain the resulting data distribution in Figure 4.16d. This corresponds o
wansformation T, with 0y =2 and fiy=1. Finaily, the data distribution in Figure
4,164 is converted into that of Figure 4.16¢ by a reversal network. This corresponds
to Ts with a5 =-1,

Similar operations are used in the pattern classifier except that it is necessary o
solve the system L-U-v={ after the LU decomposition A=L-U. This is done by first
solving L'E={ and then U-v=E to get the solution vector v. Figure 4.17 shows a
special-purpose converter to transform the cutpur matrix L of the LU-decomposition
array (Figure 4.13) into the inputs required by the linear-system solver [Kun80al. The
superscript in an input element indicates the number of time units that this data item
will stay in the buffers. n multiplexers will route a data item to the appropriate row in
the buffers, which cause the necessary delay, and n demultiplexers will convert the
data to the required format of the linear-sysiem solver. The conversion of array U

in1o the required format is done similarly.

4.7. Conclusion

Macropipelining of systolic arrays can be used in a wide range of applications,
especially in signal and image processing. This chapter studied synchronization of the
dataflow in 2 macropipeline of systolic armays. To avoid the bottleneck of a commeon
MEemOry, CONYEriers Are necessary to convert the output data from a systolic array into
the required input data format of the next systolic array in the pipeline. An efficient
algorithm was also developed to find the minimum number of buffers for any conver-
sion. By smudying a special subset of frequently used conversions, a methodology for
designing a general purpose converter was presented. Methods to design special
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purpose converters were also examined. The proposed design methods are exemplified
by the design of converters for macropipelines in feawre extraciion and patern

classification.

48. SUMMARY

This Chapter, focused on the macropipelines of systolic arrays. Macropipelines
of systolic arrays can be used in a wide range of applications, especiatly in signal and
image processing. To synchronize the dataflows in a macropipleline and 1o aveid the
bortleneck of 2 cOMMON MEMOTY, CONVETICTS are necessary to convert the output data
from one systolic array into the required input data format of the next systolic array in
the pipeline. In 2 previous work {WaS85), an efficicnt algorithm was developed to find
the minimum number of buffers for any conversion. By studying a special subsct of
frequently used conversions, a methodology to design a gencral-purpose converter was
presented. Methods to design special-purpose converters have also been examined.
The proposed design methods have been exemplified by the design of converters for

macropipelines in feature extraction and panemn classification.
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CHAPTER §
CONCLUSIONS AND FUTURE RESEARCH

$.1. Concluslons

“[his thesis, has introduced a comprehensive overview for the design of & system

of systolic arrays, from the VLS layout level 1o the sysiem level.,

Chapier 2 discussed 3-D VLSI layout, where tighter lower and upper bounds for
the volume and maximum wire length for the layout of the different families of graphs
in 2 34 environment were discussed. Except in two cases, all ihe bounds for the
volume are optimal. The first case is the one-active-layer layout of the planar graphs,
the other is the unrestricted layout for graphs with separators N1 ,q=2/3. A cost
E&n__.ﬂaaa&=u9¢aaooa.&9o_s§rmseﬂno‘.ﬁmun&oi—ﬁna-
measure of cost, was also developed.

In Chapter 3, 8 methodology was developed for designing & systolic array start-
ing from recumence cquations. The idea of Coniral Flow Systolic Arrays w handie
uniform, as well as nonuniform recumrence equations, was also nn..a_omop This
methodology is basically e scarch for a heuristic solution in the space of all the possi-
ble solutions. Becsuse of the unlimited search space, the scarch process must be
guided for the search to be completed in a reasonable amount of time

Chapter 4 inwoducéd the ides of converting the dar between fwo systolic arays
that were directly interfaced, instead of using a common memoTy which would be a
boitieneck for the whole system. The minimum number of buffers required to convert
the data between two given distributons was also calculaicd, » general purpose con-

verter was also praposed.
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£.2, Future Research

Two main areas for future rescarch are proposed here.
The first s in 3-D layout. Although optimal layouts for volume have been developed
in this thesis, there is still much work to be done in minimizing the maximum wire
length, which directly affect the speed of the circuit. The tree of meshes angd the mesh
of trees are very good graphs to embody the different families of graphs for 2-D VLSI
layout, However in 3-D layout, these graphs lead to inferior results. Graphs for 3-D
that are analogous to the mesh of trees and the wree of meshes and will lead to an
optimal wire length in 3-D VLSI have yet to be found.

The second major area for future research is in the design of systolic arrays. In
this thesis, when solving a recurrence equation in a domain D, the points of D have
been projecied on twe indices iy and i3. The question of how the recurrences govern-

ing the different strategies will look when using more complicated projections is still
open.
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