
AUTOMATED LEARNING OF LOAD-BALANCING STRATEGIES
FOR A DISTRIBUTED COMPUTER SYSTEM

BY

PANKAJ MEHRA

B.Tech., Indian Institute of Technology, Delhi, 1986

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1993

Urbana, Illinois

 Copyright by Pankaj Mehra, 1993

1

CHAPTER I.

LOAD BALANCING AS A STRATEGY-LEARNING TASK

The ineluctable core of intelligence is always in that next thing which

hasn’t yet been programmed.

- Douglas Hofstadter

A. Load Balancing in Distributed Computer Systems

Workstations interconnected by local-area networks (LANs) are the most popular examples of dis-

tributed systems. Recent advances in RISC technology, as well as expected improvements due to super-

scalar architectures in the near future, are major factors behind their growing popularity. Modern

workstation-based distributed computing environments feature microprocessors rated at 10 to 200 MIPS,

interconnected by high-speed LANs rated at 107 to 1010 baud. The abstract model of distributed systems

considered in this thesis (Figure 1) reflects this trend in distributed computing.

All of the sites in our model have private memory and processing capacity; some have secondary

storage; and all share the communication resource. These resources are architecturally homogeneous

[205], whereby they can service requests issued by programs running at any of the sites. Some of the

resources, such as network and secondary storage, can be shared transparently; others, such as processing

power and virtual memory, can be accessed by local processes only. We do allow for configurational

heterogeneity [205], whereby different sites may have different processor speeds, memory space, or disk

space.

Users at different sites initiate tasks (or jobs) in a distributed fashion. We restrict our attention to a

simple model of tasks: our tasks are independent (i.e., there are no synchronization or precedence con-

straints) and can be processed at any of the several sites. A task under execution is called a process.

2

Disk

hhhhhhhhhhhh

hhhhhhhhhhhh

hhhhhhhhhhhh

hhhhhhhhhhhh

hhhhhhhhhhhh

hhhhhhhhhhhh

cc
c
c
c
c
c
c
c
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

cc
c
c
c
c
c
c
chhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Virtual
Memory

Communication
Primitives

Local Scheduling

hhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Remote Execution Support

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Users

Independent
Tasks

hhhhhhhhhhhh

hhhhhhhhhhhh

Network File Server

Local Area Network

Disk

hhhhhhhhhhhhhhhhhhhh

cc
c

hhhhh

cc
c

hhhhhhhhhhhhhhh

cc
c
hhhhhhhhhhhhhhh

cc
chhhhh

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

. .

.

cc
c

. . .

cc
c

Figure 1. Our model of distributed systems.

Our model assumes code compatibility among sites, as well as the availability of an operating system
responsible for local scheduling of processes and management of virtual memory. We further assume that
user files are available at all sites, and the basic mechanisms for remote execution are provided by the
operating system. At the user level, we assume that only independent tasks amenable to migration are
considered for global scheduling.
hh

Processes request and consume resources. The workload of a site consists of the combined demands on

its resources from all of the local processes. The absolute and relative utilizations of various resources at

each site, and of various sites across the network, are highly dynamic quantities. The dynamic nature of

load causes frequent imbalances: certain resources local to a site may be overloaded even as similar

resources at a remote site are underutilized or idle. With increases in the speeds of individual processors,

and with growth in the scale of typical systems, there are concomittant increases in both the magnitude

and the frequency of load imbalances. The desire to exploit such imbalances for improved performance

has fueled much recent work on dynamic load balancing [18], which migrates tasks (and thereby, work-

load) from the heavily-loaded sites to the idle or lightly-loaded ones.

3

Just as distributed-systems hardware has benefited from technological advances in microprocessors

and networking, so has distributed-systems software come of age because of advances in networked file

systems and user-transparent remote-execution facilities [10, 49, 187]. Irrespective of how efficiently it is

implemented, remote execution incurs overheads due to process migration; naive use of remote-execution

facilities may, therefore, cause degradation rather than improvement in performance!

Several researchers have studied intelligent load-balancing strategies, which determine whether to

execute an incoming task remotely and, if so, at which site. Such strategies come in a variety of flavors

(Figure 2). Centralized strategies limit the information-gathering and decision-making responsibilities to

a central site; the decentralized ones distribute such resposibilities among the sites. Centralized strategies

are suitable for scheduling interdependent tasks; and decentralized strategies, for scheduling independent

tasks. Also, decentralized strategies are the preferred alternative when tasks can be initiated at any site of

the distributed system. Static strategies determine ahead of time where to execute each incoming task,

without considering the run-time loading conditions. They are suitable for scheduling tasks having

predictable resource requirements on machines having predictable load variations because they incur no

hh

LOAD BALANCING

DYNAMICSTATIC

PREEMPTIVE NON-PREEMPTIVE

CENTRALIZED DECENTRALIZED

Figure 2. Classification of load-balancing strategies

Load-balancing strategies are classified on the basis of (i) the type of information used in scheduling
tasks; (ii) whether tasks once placed can be rescheduled; and (iii) whether information-gathering and
decision-making resposibilities are restricted to a single site. The strategies of interest to us are shown
inside dashed boxes.

4

information-gathering overheads at run time. Dynamic strategies make scheduling decisions at run time,

using load indices to distinguish between heavily- and lightly-loaded sites. These are more suitable when

little is known about either the tasks being scheduled or the loading conditions prevalent during task exe-

cution. Dynamic strategies may be further classified as either preemptive or non-preemptive; the former

permit migration of tasks that have already begun execution, but the latter do not. If load conditions were

to change drastically during task execution, a preemptive strategy would allow one to rectify bad place-

ments, but a non-preemptive one would not.

The primary function of a load-balancing strategy is to recommend decisions that improve perfor-

mance. The choice of a performance objective for load balancing depends upon the application environ-

ment. For example, if there are dependences between tasks, then the objective should be to minimize the

total time to complete a set of interdependent tasks. Otherwise, if tasks are independent, then the objec-

tive should be to improve either the average- or the worst-case completion time. Often, the performance

of a load-balancing strategy is evaluated with respect to a base strategy; examples include speed-up over

local execution of all tasks, and speed-up over the execution of each task at a randomly determined site.

Speed-ups are preferred as performance objectives because they can be used for comparing a strategy’s

performance across several different sets of tasks. Besides, they offer an easy characterization of poor

strategies — those that yield speed-up values below unity. Speed-up may be computed either separately

for each task or collectively for entire batches. The former approach is used when evaluating the perfor-

mance of load-balancing strategies on a stream of independent tasks; the latter, when evaluating on a

batch of depedent tasks. Either the average or the worst-case speed-up may be maximized. In typical

computing environments, the objective is to improve the average speed-up. Improvements in worst-case

speed-up are desirable only in real-time systems, which require bounds on worst-case completion times.

5

B. Scope of this Thesis

As Figure 1 illustrates, our model assumes that tasks are independent and may originate at any site

of the distributed system. Further, we assume the existence of a ‘‘background workload,’’ which varies

outside the control of the load-balancing software. Such load may be caused either by site-specific

operating-system functions or by tasks that cannot migrate due to the limitations of remote-execution

software. We assume no prior knowledge of the behavior of the tasks to be scheduled, except that they are

drawn from a large population having stationary (but unknown) mean and variance of relative resource

requirements. We treat local execution of every task as the base case, relative to which all other strategies

will be evaluated. Since our model assumes independent tasks, our objective is to maximize the average

speed-up, computed on a task-by-task basis, over local execution.

The existence of a background workload, whose long-term variation cannot be predicted, rules out

static strategies. Further, the lack of knowledge about task length, along with the aforementioned

difficulty of long-term prediction, necessitates preemptive strategies, which can ‘‘undo’’ the effects of

poor initial placements. Finally, the distributed arrival pattern of tasks, as well as the lack of constraining

dependences between them, entails that we prefer the less expensive and more robust decentralized stra-

tegies over the centralized ones. Therefore, the focus of this thesis is on dynamic, decentralized, preemp-

tive load-balancing strategies (Figure 2).

Usually, load-balancing policies are programmed manually. Manually programmed policies are

either overly conservative (to work reasonably well on all installations), or not portable (because the

optimal setting of policy parameters is installation-dependent). Both these conditions lead to unsatisfac-

tory performance when the configuration of the system changes (due to failures or upgrades) or when new

application programs are run. The thrust of this thesis is on the development of an automated method for

improving the performance of parameterized load-balancing strategies. We explore machine learning as a

vehicle for such automation.

6

Load-balancing strategies have two components [3]: load metrics, which characterize the level of

loading for each site; and decision policies, which determine both the conditions under which a task

should be migrated and the destination of each task. A load-balancing policy provides rules for using

available load metrics to make global scheduling decisions — such as where to execute a task, and

whether to accept foreign tasks — as well as decisions about priorities of tasks and sites.

Figure 3 shows the parameterized load-balancing policy targeted for improvements in this thesis.

This policy is a generalization of several decentralized dynamic load-balancing policies proposed by

researchers and implementors [17, 108, 204]. Even in a small system having, say, just 4 sites, the above

policy has 16 systemwide parameters. Each site’s policy has 4 parameters — the values of Reference,

δ, θ1, and θ2. The primitive decision metrics used by this policy are the values of Load, one per site.

Abstract (or derived) decision metrics are exemplified by MinLoad, which denotes the least among all

the Load values.

hh

SENDER-SIDE RULES (s)
Possible-destinations = { site: Load(site) - Reference(s) < δ(s) }
Destination = Random(Possible-destinations)
IF Load(s) - Reference(s) > θ1(s) THEN Send

RECEIVER-SIDE RULES (r)
IF Load(r) < θ2(r) THEN Receive

Figure 3. The load-balancing policy considered in this thesis

The sender-side rules are applied by the load-balancing software at the site of arrival (s) of a task.
Reference can be either 0 or MinLoad; the other parameters — δ, θ1, and θ2 — take non-negative
floating-point values. A remote destination (r) is chosen randomly from Destinations, a set of sites
whose load index falls within a small neighborhood of Reference. If Destinations is the empty
set, or if the rule for sending fails, then the task is executed locally at s, its site of arrival; otherwise, the
chosen site (r) is requested to receive the task. Upon receiving that request, the remote site applies its
receiver-side rule. If the rule succeeds, the request is accepted, and the task is migrated; otherwise, the
task is executed locally at s, its site of arrival.

7

C. State of the Art

Traditional approaches to the design of load-balancing strategies require a human designer to

specify a formula for computing Load, the load index, as a function of the current and recent utilization

levels of various resources. Moreover, they require manual setting of all the policy parameters. Not only

are the parameters numerous, but also they are sensitive to installation-specific characteristics of hardware

devices as well as to the prevalent load patterns.

It is also a common practice in the load-balancing community to use abstract queueing models of

computer systems for analytically deriving load-index functions [58, 60, 203]. Almost universally, imple-

mented systems use a function known as UNIX-style load average (hereafer, load average), which is an

exponentially smoothed average of the total number of processes (including the process in execution)

waiting for CPU. The number of processes (n) is sampled once every 5 seconds. Three different load

averages are updated each time n is sampled: Avg 1, the 1-minute moving average which covers 12 sam-

pling intervals; Avg 5, the 5-minute moving average which covers 60 intervals; and Avg 15, the 15-minute

moving average which covers 180 intervals. We illustrate their computation with the formula for Avg 1:

(1a)Avg 1(t) = e 12
−1hhhh

.Avg 1(t − 1) + (1 − e 12
−1hhhh

).n.

The other two averages are similarly computed by replacing the constant 12 in the exponents with con-

stants 60 and 180, respectively. These load averages may be used for comparing different loading situa-

tions, either at the same site or across different sites of an (architecturally and configurationally) homo-

geneous distributed system.

Table I lists a variety of performance metrics available in a typical workstation-based computing

environment. This table shows that measuring the utilization levels of resources other than the CPU —

memory, disk, and the network — may not require any hardware modifications. However, several of these

statistics are unsuitable for inclusion in a load index because the overhead associated with estimating

their values precludes frequent sampling; such statistics include a variety of process-level metrics, which

8

Table I
Typical performance-indicating variables available in UNIX-like operating systems

Type of information availablePerformance Metric

Number of context switches

Number of system calls

Number of pages swapped in/out

Number of processes swapped in/out

Number of processes ready to use the CPU

Number of processes waiting for disk

Number of device interrupts

Number of processes waiting for free memory

Number of swapped-out active processes

Memory pages used by all the processes in core

Memory pages used by active processes only

Number of cache flushes

Rate of data transfer

Number of characters input/output from/to
terminal devices

Number of collisions (for CSMA interfaces)

Per-process statistics: time spent in user mode,
time spent in system mode, resident-set size,
numbers of messages received and sent,
number of signals received,
number of context switches,
numbers of process swaps and page faults.

Total over 1-second period,
Average over 5-second period,

Total over 5-second period, total since boot

Total since boot

Instantaneous value, computed every 5 seconds

Instantaneous value and 60-second average

Total over 1 second, average over 5 seconds,
and total since boot

Updated using instantaneous values sampled
once every 20 milliseconds

Total, asynchronously updated at each transfer

Calculated once every second or slower

Total, asynchronously updated during terminal
input/output operations

Total, asynchronously updated at the time of
packet transfer

Total, updated when collisions are detected

Timing statistics sampled once every
milliseconds; the whole interval charged to
the process in control of CPU. Other
statistics updated asynchronously at the
time an event happens.

Number of free memory pages

Number of packets input/output on each
network interface

Amount of data transferred on each disk

Times spent in the different CPU states:

and, in low-priority user programs
Idle; in OS functions; in user programs;

9

are sampled only once every 5 seconds. Even if we eliminate these, we are still left with a fairly large set

of mutually dependent variables; for example, disk traffic is affected by the number of page swaps and

process swaps. Others, such as rate of data transfer, are fixed quantities for a given configuration, and

affect only the (fixed) co-efficients of a load index. Ideally, workloads for load balancing should be

characterized by a small set of performance metrics satisfying the following criteria: (i) low overhead of

measurement, which implies that measurements can be performed frequently, yielding up-to-date infor-

mation about load; (ii) represent the loads on all the resources of contention; and (iii) can be measured

and controlled independently of each other. In the past, Zhou [203, 204] has considered resource-queue

lengths (the number of processes waiting for CPU, disk, and memory) in designing load indices. How-

ever, these metrics violate the first criterion because their computation involves a search through the

operating system’s process table. The instantaneous utilization levels on the four basic resources — CPU,

memory, disk, and network — constitute a useful set of performance metrics satisfying all three criteria.

These metrics are shown in bold font in Table I; indices derived from these metrics have not been studied

in the past.

1) Problems with the traditional load-index function

Our model allows configurational heterogeneity, whereunder load average cannot provide meaning-

ful comparison of loading situations across sites. For instance, consider the comparison between a fast

site having a load average of 3 and a slow site having a load average of 0. Further, assume that a preemp-

tive round-robin scheduling policy [11] is used for local process-level scheduling, and that the fast site is

5 times faster than the slow site. It is likely that an incoming task will require 20% lesser time to com-

plete at the fast site than the time it would require at the slow site, despite the former site’s higher load

average!

A more fundamental problem with the traditional load-average function is that it completely ignores

resources other than the CPU. Therefore, while load average may be a reasonable indicator of

10

performance for purely compute-bound tasks, its utility is questionable for tasks that use other resources

of contention, such as memory, disk, and network.

The bottom line in any attempt at load balancing should be to obtain a significant speed-up over

local execution. Since each incoming task has a finite set of possible destinations, one would like to use

the load index at each site to compare alternative destinations in terms of their expected speed-ups over

local execution. This is not feasible with available load-index functions.

2) Problems with the traditional method of tuning policy parameters

A widely accepted rule of thumb in the load-balancing community is that dynamic policies should

be simple in form, easy to implement, and efficiently applicable [51]. Complex policies incur substan-

tially larger overheads and their benefits are questionable [52]. However, as shown above, even simple

policies can have numerous parameters. At design time, little is known about the characteristics of the

hardware and software configurations under which a policy will eventually be used; therefore, the tuning

of policy parameters is often relegated to the end users. The users rarely have enough insight to analyti-

cally optimize policy parameters; they, therefore, resort to trial and error as a means to optimization. The

manual effort spent in such trial-and-error learning is tedious, costly, slow, and often unsystematic.

Manual tuning of policy parameters is impractical especially since it may be required each time the sys-

tem is expanded or upgraded.

Since speed-up can be measured only after actually performing an experiment, systematic improve-

ments in policy performance require a systematic trial-and-error approach to parameter tuning. Consider-

ing the large number of possible parameter settings, an exhaustive (unguided) search through the parame-

ter space will be prohibitively time-consuming. Even a guided manual search will require enormous

human effort. Therefore, automated mechanisms are needed for developing a useful load-index function,

11

as well as for systematically tuning policy parameters.

D. Automated Learning of Load-Balancing Strategies

Automated refinement of metrics and policies based on observed performance may overcome some

of the limitations of manually designed load-balancing strategies. Such refinement is naturally viewed as

strategy learning, gradual improvement in performance of strategies based on experience. There has been

much research on strategy learning, and many general tools and techniques are now available for

automating this process [114].

This view of load balancing as a strategy-learning task immediately suggests how we might tackle

the problem at hand. Since load-balancing strategies comprise indices and policies, the strategy-learning

task can be naturally decomposed into learning of indices and policies. Learning requires data. As we

show below, the collection of such data requires an environment for controlled experimentation. Thus, we

need to address three subproblems: automated learning of load indices, automated tuning of policy

parameters, and the design of a controlled-experimentation environment for data collection. The rest of

this section briefly examines each of these subproblems.

1) Automated learning of load indices

Ideally, given the loading conditions prevailing at the different sites, one would like to rank the sites

by how long an incoming job would take to complete on each of them. However, completion times can

only be known after the job completes, whereas a decision about the job’s destination needs to be made

before it starts. Therefore, we need to somehow predict how long a job will take using only the informa-

tion available before a job’s execution.

It should be noted that different classes of jobs may sometimes require different load indices. For

example, while the index for memory-intensive jobs may pay more attention to memory availability, the

12

one for compute-bound may stress CPU availability. However, using these different load indices presup-

poses knowledge of the class to which each incoming job belongs; such knowledge might be available in

domains where the same programs are used over and over again [44]. However, in our model, we assume

no prior information about jobs; we, therefore, restrict our attention to the case of one load-index function

per site.

The completion time of a job is not predictable in an absolute sense without prior knowledge of the

job’s requirements on different resources. Obtaining such knowledge requires extensive analysis of pro-

grams, which is complicated by the data-dependent nature of execution traces. Even when such informa-

tion can be obtained, it is not clear how it can be translated into primitive resource requirements on a dis-

tributed system. For example, an I/O-intensive job, when run on a client, generates extreme traffic on the

disk as well the network; the same job, on the file server, generates only disk traffic. Therefore, without

any knowledge of the resource requirements of tasks, we cannot predict absolute task-completion times.

Notice that our goal in designing an index-function for load balancing is merely to compare alterna-

tive destinations for the same job. Therefore, we will attempt to determine only a relative (site-specific

and configuration-specific) measure of completion time. It would, therefore, suffice to predict the relative

completion times of a job at different sites. We now need a point of reference. Following the example of

Hwang, et al. [85], we choose an idle file server as a point of reference. That is, every site needs to

predict the completion time of an incoming task relative to its completion time on the chosen idle file

server, given only the loading conditions at the time of the job’s arrival. Of course, this prediction will

succeed only if current workload is a good indicator of future workloads. Therefore, we need to assume

that resource-utilization patterns exhibit significant autocorrelations; such correlations may become

insignificant as one predicts further into the future [116]. In Chapter IV, we identify additional assump-

tions under which relative completion times can be predicted independently of tasks.

Our objective in learning load indices is to choose with high probability a site that will minimize the

completion time of an incoming job (given either the length of the job or the preemption interval). If

13

different machines have widely different completion times for the same job, then the accuracy of predic-

tion can be low. On the other hand, if the difference between a task’s completion times on different sites

is small (relative to its completion time on the idle file server), then the accuracy of prediction needs to be

high. At the outset of learning, it is difficult to predict how much accuracy will suffice. We know that the

accuracy of any convergent, iterative learning procedure improves with training; we, therefore, need to

reformulate our problem so that we will know when the accuracy attained is adequate.

Instead of attempting to predict, for each site, the relative completion time of a task at that site, we

now predict, for each pair of sites, the difference between their relative completion times. Moreover, we

judge the quality of learning by the percentage of correct comparisons. Then, we can stop refining the

individual index functions when the percentage of correct comparisons crosses an acceptance threshold.

We need to make sure that the anti-symmetry of comparison — whenever A is better than B, B is worse

than A — is preserved during learning. This issue of learning to predict differences of relative completion

times is further motivated and resolved in Chapter IV.

2) Automated tuning of parametrized load-balancing policies

Our goal in tuning the parameters of a given load-balancing policy is to discover a parameter set

that achieves optimal or near-optimal average speed-up over local execution. If there were no overhead

of migrating tasks between sites, then a simple load-balancing policy — one that would always schedule

a job at the site with minimum load — would suffice for centralized load-balancing schemes. However,

when used in conjunction with a decentralized load-balancing policy, this policy may cause every site to

dump its load on the least-loaded site. If the overhead of migration were much higher than the typical

gains in completion time achieved by executing a job at a remote site with lesser load, then another sim-

ple policy — one that would always schedule each task locally — would suffice. However, typical over-

heads of migration fall somewhere between these extremes [29].

14

Once the migration overheads are taken into account, neither of the two simple policies outlined

above will yield optimal performance. Instead, it is expected that the quality of a load-balancing policy

will depend on the setting of its parameters. Dynamic load-balancing policies use thresholds and other

parameters in deciding when to migrate local jobs to remote sites and when to accept remote jobs from

other sites. While it is possible to dynamically adjust thresholds and other parameters in response to

changing workloads [92], our approach is to use policy parameters primarily to accommodate the uncer-

tainty in predicting workloads and in estimating migration overheads. We, therefore, assume that policy

parameters are (tunable) constants that depend upon the relative costs and benefits of migration, but do

not depend upon the loading conditions. Since the relative costs and benefits of migration can only be

known incrementally and a posteriori, the tuning process is a trial-and-error process that needs to be

automated. Moreover, if we only have limited time for learning, the tuning process needs to be rational in

its use of learning time.

There are two general classes of learning techniques: point-based and population-based [1, 185].

Point-based methods systematically modify the parameters of policies using prior knowledge of relation-

ships between policy parameters and policy performance. They maintain one incumbent policy and

modify it to the point of diminishing returns. Often, the behavior of such methods can be viewed as gra-

dient ascent to the nearest local maximum of performance in the parameter space. The quality of stra-

tegies learned using point-based learning is sensitive to the choice of the initial parameter set, as well as

to the quality of the local optimum nearest to the initial set. Population-based methods maintain a popu-

lation of parameter sets, devoting more resources to the more promising sets. They employ a generate-

and-test paradigm, in which new parameter sets are generated either randomly or through selected breed-

ing of the top few current parameter sets. Integrated learning methods combine the advantages of both

by maintaining multiple parameter sets, and modifying the active ones using point-based learning.

Certain parameters of load-balancing strategies, especially the thresholds (Figure 3), are amenable

to point-based learning. If the incumbent policy recommends migrating a job to a remote site, and if that

15

migration is subsequently found to perform worse than local execution, then the threshold of sender-side

rules at the source needs to be raised, and the threshold of receiver-side rules at the destination needs to

be lowered. Similar point-based heuristics are applicable under other conditions. However, certain other

parameters, such as Reference (Figure 3), are more amenable to the generate-and-test paradigm used

by population-based learning methods. Therefore, it is desirable that we use an integrated learning

method for tuning the parameter sets of load-balancing policies. This learning problem is further

motivated and resolved in Chapter VI.

3) Collecting data for learning indices and policies

Learning programs, such as the ones used to tackle the two previous problems, may derive their

power from two very different sources: domain knowledge and data. The strategy-learning task in load

balancing is knowledge-lean because neither the exact time-variation of background workload, nor the

exact relationship between load and completion time, is known ahead of time. Thus, empirical methods

of strategy learning [114], which infer the missing relationships from experimental data, are the only

means available to us for the automated learning of load indices and load-balancing policies in a

knowledge-lean environment.

Data for load-index learning take the form of before-after pairs, where the first item is a window of

load levels on local and shared resources, and the second item is the measured completion time of a task

introduced at the end of that window. The associated data-collection task is merely to run each job out of

a sample of representative jobs under a wide variety of realistic loading conditions. In each such experi-

ment, the utilization levels on various resources must be recorded for a certain interval of time, followed

by the initiation of a test job. When the job ends, its completion time must be measured. Both the meas-

urement of load and the measurement of completion time must be achieved with low overhead and high

precision, in order to yield credibility to the data.

16

Data for policy learning require comparative evaluation of different policies. For our purposes, each

policy is evaluated by its average speed-up over local execution, for a given set of jobs and under given

initial loading conditions. Moreover, the policies targeted for improvement in this thesis exhibit two

significant characteristics: (i) since the policy at each site can access neither the pool of jobs at other sites

nor any information about future job arrivals, it schedules jobs one at a time in a distributed fashion; and

(ii) since it is not known what the effect of past scheduling decisions will be on the loads of local and

remote resources, policies make scheduling decisions using only the current and recent loading condi-

tions, but not past decisions. Further, the average speed-up of a load-balancing policy over local execu-

tion can be computed using only the speed-ups of individual test jobs. Therefore, alternative parameter

sets of load-balancing policies can be evaluated separately on each job (or on an interval between two

checkpoints of a job), provided that the loading conditions during evaluation resemble those resulting

from past decisions.

Figure 4 shows two ways of introducing a test job under the loading conditions required of a typical

load-balancing experiment. The traditional approach, shown to the left, is to use a distributed stream of

jobs (shown as ellipses in the figure) [17, 47, 100, 204]. Suppose that there are j jobs in the stream, each

having m checkpoints (where it can be preempted and rescheduled), and that there are N possible sites.

Different parameter sets may lead to different scheduling decisions for each job (or checkpoint); with

respect to this stream of jobs, there can be N jm possible outcomes. Policy-learning experiments require

that we test a large number of different parameter sets; meeting this requirement can be prohibitively

expensive in the traditional set-up, which may entail evaluating a substantial fraction of the exponential

number of outcomes. Even if some parameter sets differ only in their outcomes with respect to a single

test job (Figure 4), the entire experiment needs to be repeated over and over again. Thus, on account of its

intractability and wasteful repetition, the traditional method can only be used for evaluating only small

numbers of different parameter sets for policy learning.

17

TEST JOB

TEST JOB

IDLE

MACHINES

SYNTHETIC

LOAD

Figure 4. Comparison between experimentation environments
hh

The experimental design shown to the right (Figure 4) represents a way of keeping load-balancing

experiments tractable, while still allowing the evaluation of numerous alternative parameter sets for pol-

icy learning under realistic loading conditions. It exploits the aforementioned fact that the speed-up of a

parameter set on a stream of jobs can be expressed as a linear function of the speed-ups of individual jobs.

In this set-up, each experiment involves just one job; the combined effect of all other jobs is captured in a

‘‘background workload.’’ (This is reasonable since independent tasks interact with each other only by

competing for resources.)

For scheduling a single test job, there can only be N outcomes. In order to evaluate all possible

parameter sets with respect to a given test job and background workload, we need only perform N experi-

ments, each time executing the test job at a different site. This requires that we regenerate the same back-

ground workload N times. Workload generation is also required for evaluating parameter sets under

18

realistic loading conditions: resource-utilization patterns of actual system-wide workloads will need to be

recorded and replayed.

During policy learning, point-based learning is employed for performance-driven modification of

thresholds at the sites making scheduling decisions for incoming test jobs of an experiment. If there are

multiple decisions, as in the traditional set-up, the feedback from performance measurements must be dis-

tributed first among the different decisions, and then among the policy parameters leading to each deci-

sion. This is called the credit-assignment problem [125], i.e., how the feedback (credit or blame for

observed policy performance) is distributed among the numerous policy parameters. The two stages of

credit assignment — known, respectively, as the temporal and structural credit-assignment problems

[173] — have been extensively studied in recent years. While good solutions are known for structural

credit assignment [14, 140], temporal credit assignment has so far defied effective general solutions.

Since the experimental design shown to the right (Figure 4) evaluates each decision individually, it alto-

gether avoids the temporal credit-assignment problem!

The burden in our set-up is on the experimentation environment. Not only must it allow us to gen-

erate realistic loading conditions, but also it should allow us to repeat them as often as desired. If these

desiderata were met, then we could perform multiple experiments, each with the same test job but at a

different site. Without knowing anything about the policies to be evaluated, we can collect all the data

necessary for comparing those policies off-line and ahead of time. All we need to do is to first measure an

actual system-wide workload, and then replay it repeatedly, each time introducing a job at precisely the

same time into the experiment but at a different site of the network. If we repeat such experiments with

several different jobs, under several different loading conditions, then we can create a sample large

enough for a realistic comparison of alternative policies. Further details of our experimental set-up can be

found in Chapter III.

19

E. Contributions of this Thesis

This thesis examines several key aspects of dynamic load balancing: from measurement and gen-

eration of computer workloads, to automated refinement of load-balancing policies via machine learning.

This section summarizes our key results, and their anticipated impact on the state of the art.

1) Dynamic workload generation

We present DWG (Dynamic Workload Generator), a program for generating realistic and reprodu-

cible background workloads with high accuracy and high resolution. DWG’s most innovative feature is

its ability to mimic the behavior of a background workload in the presence of a foreground job. The criti-

cal functions for measurement and generation of resource-utilization levels are implemented in each site’s

operating-system kernel, ensuring low overhead. Actual resource-usage patterns of a distributed system

can be captured and replayed with high fidelity, test jobs introduced at precise instants, and their comple-

tion time measured accurately. Such experiments can be repeated, running the job at a different site each

time but under the same background workload. Since a policy’s performance is completely determined by

where it schedules an incoming job, alternative policies can be compared under identical loading condi-

tions. Thus, DWG allows us to perform reproducible load-balancing experiments, a facility hitherto una-

vailable to experimenters in this area.

2) Learning consistent and comparable performance indices

DWG keeps track of the utilization levels of the key resources at each site: computational, primary

memory, secondary storage, and communication. It provides a precise account of the loading conditions

prevalent just before a job begins execution. DWG also measures the completion time of that job when it

finishes execution. These ‘‘before’’ and ‘‘after’’ data suffice for learning to compare alternative destina-

tions for incoming tasks. The problem is one of learning to compare functions of multivariate time series.

20

We have adopted the neural-network architecture used for learning evaluation functions in

Tesauro’s renowned backgammon-playing program [179, 180], and added various smoothing and extra-

polation capabilities to his method of learning to compare multivariate functions. We also present an

innovative learning algorithm that obviates the ‘linking of weights’ [113] required by Tesauro’s original

architecture. This modification allows us to use off-the-shelf neural-network-simulation packages [69].

Extensive statistical tests on the load-index functions learned using our comparator neural network reveal

high positive correlations (at 99% level of significance) between the true ranking of sites and the one

induced by the new index functions. Thus, if load indices were computed right before each decision point,

and if they could be communicated instantly across sites, then we could (with high confidence) select the

destination having the the least completion time for each incoming job.

The comparator neural network transforms the multi-dimensional and highly dynamic measure-

ments provided by DWG into smooth one-dimensional load indices that can be efficiently communicated

over the network, and compared across sites in a meaningful fashion, unlike the traditional load average.

3) Automated tuning of policy parameters

Wah, et al. [186] have developed a domain-independent population-based learning system, called

TEACHER (TEchniques for Automated Creation of HEuRistics), which also accommodates point-based

learning [185]. TEACHER rationally schedules limited learning time between generating new parameter

sets and testing the promising ones in the current population. We have developed a point-based learning

procedure for adjusting the thresholds of the load-balancing policy shown in Figure 3. We have also

developed the domain-specific generation and testing routines required by TEACHER. Generation of new

parameter sets is performed by applying genetic operators [82], such as mutation and crossover.

Mutation is performed by randomly perturbing the Reference parameters of some sites from 0

to MinLoad, or vice versa. Crossover is performed by taking two policies with good recent perfor-

mance, and interchanging their parameters for some randomly chosen sites.

21

We have found that the choice of parameter set is sensitive to the overheads involved in migrating

tasks and communicating load indices from site to site. Further, we report experiments with different

intervals of computation for the load-index function; these affect the average age of load-index values.

Since the quality of a load index degrades with age, the choice of policy parameters is also sensitive to

the interval of load-index computation. In all these cases, the integrated (population- and point-based)

learning system described above is able to quickly determine the appropriate parameter set with high

confidence, given data about the completion times of test jobs, and information about various overheads

and delays. Thus, what used to be an unsystematic, manual, and tedious process of discovering new

parameter sets by trial and error has been replaced by a systematic, automated, and efficient process of

population-based learning. Likewise, what used to be the ad hoc process of setting thresholds of policies

based on human experience has now been replaced by an automated performance-driven process of

point-based learning.

F. Thesis Outline

Chapter II presents an overview of SMALL, a system for automated learning of load-balancing stra-

tegies. Subsequent chapters describe the three major components of SMALL: DWG, the dynamic-

workload-generation package, in Chapter III; the comparator-neural-network architecture for learning

load indices, described in Chapter IV; and our interface with TEACHER, a system for population-based

learning of parameterized load-balancing policies, described in Chapter VI. Each of these three chapters

also includes extensive experimental results from our implementation on a network of SUN 3 worksta-

tions. Chapter V reviews past work on policy learning, and presents a comprehensive taxonomy of issues

and approaches in strategy learning. Chapter VII summarizes our results and defines directions for further

research.

22

CHAPTER II.

SMALL: A SYSTEM FOR LEARNING LOAD-BALANCING STRATEGIES

Small is beautiful.

E. F. Schumacher

In this chapter, we briefly describe our overall approach to the three key issues in learning strategies

for load balancing: workload generation, learning load indices, and tuning policy parameters. Our philo-

sophy in building a system for automated learning of load-balancing strategies was to first develop gen-

eral solutions to each of these subproblems and then integrate them into a working system. This way, les-

sons learnt and tools developed could be applied to other applications having strategy-learning tasks simi-

lar to the one in load balancing. Such spinoffs of our research are discussed in Chapter VII. The rest of

this chapter is organized as follows. Section A describes the overall architecture of SMALL, our learning

system. Section B describes the various phases of operation of SMALL: data collection, load-index

learning, policy learning, and application.

A. Architecture of SMALL

Figure 5 shows a layered view of our learning system. The three key components of SMALL

include a workload generator (DWG), a trainable load-index function (comparator network), and a

mechanism for tuning the parameters of given load-balancing policies (TEACHER). The functions of

DWG, the lowermost layer of SMALL, are: (i) precise measurement of resource-utilization information;

(ii) precise generation of recorded loads; (iii) initiation of foreground test jobs at precise times; and (iv)

measurement of job-completion time. After the raw measurements supplied by DWG have been prepro-

cessed using filtering and extrapolation, they are used by the local load-index function for computing a

load index, a scalar quantity that can be used for comparing alternative destinations for local incoming

23

SYSTEM
LEARNING

COMPARATOR NETWORK

TEACHER

LOAD-BALANCING SYSTEM

NEW LOAD INDEXIMPROVED
PARAMETERS

MIGRATION
DECISIONS

RESOURCE-UTILIZATION
PATTERNS

MEASURED
COMPLETION
TIMES

LOAD CONDITIONS
FOR REPLAY

TEST JOB,

OPERATING SYSTEM

MEASUREMENT &

EVALUATION SYSTEM

(DWG)

Figure 5. Overview of SMALL
hh

jobs. The given load-balancing policies use the load indices, along with other policy parameters, in order

to determine the most appropriate destination for each incoming job.

Both the load-index function and the parameters of load-balancing policies can be modified based

on the completion-time measurements provided by DWG. Such modifications are carried out by the

learning system, which has two components: one to learn a new load-index function for each site, and

another to tune the parameters of a system-wide policy.

24

The load-balancing system implements the policy shown in Figure 3, and converts the primitive

measurements provided by DWG’s measurement facilities into the more meaningful load indices. This

system includes support for communicating the load indices among the sites, as well as for computing

abstract performance metrics such as MinLoad, which denotes the minimum predicted load index.

We assume the existence of a job-execution facility at each site, which can be invoked either locally

or remotely. In the UNIX operating system [11], such functions are provided by shells. We also assume

that the underlying operating system provides support for initiating processes and for detecting their ter-

mination.

Architecturally, therefore, SMALL is implemented in two layers: DWG and the learning system.

(These components of SMALL are shown highlighted in Figure 5.) DWG resides partly inside the

operating-system kernel and partly at the process level, and forms a layer below the given load-balancing

system. The learning system is built on top of the load-balancing system, and has access to its inputs and

outputs; it can also access and modify various policy parameters.

B. Operation of SMALL

SMALL’s operation can be broken into phases of data collection, learning, and application. The

data-collection phase can be subdivided into collection of background workloads and measurement of

task-completion times under those workloads. The learning phase can be subdivided into the learning of

indices and the tuning of policy parameters. Figure 6 shows a schematic view of the overall operation of

SMALL.

Our methodology is based on off-line learning, in which data collected ahead of time are used for

modifying a load-balancing strategy under controlled conditions. The way our experiment is organized,

only the data-collection phase requires dedicated use of the distributed system under consideration; there-

fore, the duration of this phase can be considered ‘down time’ in system managers’ parlance.

25

LEARNING PHASE

APPLICATION PHASE

Phase 1. Phase 2. Phase 3.

Phase 4.Phase 5.

DATA-COLLECTION PHASE (down time)

Collection of
background loads

using DWG

Measurement of
task-completion

times using DWG

Learning of
load indices

using
comparator
networks

Tuning of policy
parameters using

TEACHER

Application of
new indices and

policies

Figure 6. The five phases of SMALL’s operation
hh

Experiments for learning indices and policies depend only upon the data collected during the first

phase; these experiments can be performed at a suitable site either on or off the distributed system whose

policies are being tuned. The first learning phase generates load-index functions, one per site; these can be

used for converting the multivariate and highly dynamic resource-utilization information collected during

the first phase into univariate and slowly-varying load indices. In the second learning phase, these load

indices, along with the completion times measured during the second phase of data collection, are used

for tuning the parameters of given load-balancing policies. After this phase, the new parameter values

found by the policy-learning system can be plugged into the load-balancing policy. When the systems

come back up for the application phase, the effects of earlier phases are visible only in the new load-index

functions and modified policy parameters. Off-line learning incurs no run-time overhead!

26

Off-line learning is the right approach when the loading conditions during the learning phase resem-

ble those that occur during the application phase. This is the case when the short-term characteristics of

load patterns are stationary (do not vary with time). Non-stationary environments may require on-line

learning, and SMALL’s methodology will not be applicable. Just because SMALL operates off line, that

does not mean it is a one-time learning system. On the contrary, it can be used for retraining load-

balancing strategies when new sites are added to the system, and when faster devices or newer operating

systems are installed at existing sites.

The rest of this section describes the various phases of SMALL’s operation in greater detail.

1) Data collection

In the first phase of data collection, background load patterns are recorded for future replay.

SMALL supports two kinds of experiments: (i) recording load patterns that occur naturally on a typical

system; and (ii) recording load patterns that occur at typical decision points during the application phase.

Figure 7 shows the schematic of an experimental set-up for collecting such patterns. The components of

DWG are shown highlighted in this figure.

The experiment begins with the measurement of a system-wide log on an idle system (labelled P(0)

in the figure). Off line, this log is instrumented by certain trap-insertion routines (labelled T in the figure).

These routines make use of global jobfiles (the jobfile for the k’th load pattern is labelled F(k)), which

contain information about the arrival times and execution sites of various jobs used in generating the

background workload patterns. The global jobfiles are partitioned into local jobfiles (the jobfile for site A

is labelled f(k,A)), which are then given to the job-manager processes (labelled J) at each site. Likewise,

local instrumented logs (the log for site A is labelled p(0,A)) are given to the generator processes

(labelled G), which implement a buffered transfer of data from these logs into the kernel. At precisely the

starting times of a site’s jobs, its kernel notifies the local job manager, which initiates test jobs using the

local job-execution facilities. The resulting system-wide load patterns (labelled p(k,A) for site A) are

27

System-wide
log of an
idle system

Global

TRAP
INSERTION

site arrival-time command arguments

MEASUREMENT

Measured
local log

Data
from
kernel

GENERATION

Instrumented
local log

Data
to kernel

Local jobfile

KERNEL INSTRUMENTATION

OPERATING SYSTEM

Command
& arguments

Test processes

Logger Generator
process process

Jobmanager
process

jobfile #k

System-wide
background-load
pattern #k

Test processesMEASUREMENT

Measured
local log

Data
from
kernel

GENERATION

Instrumented
local log

Data
to kernel

Local jobfile

KERNEL INSTRUMENTATION

OPERATING SYSTEM

Command
& arguments

Logger Generator
process process

Jobmanager
process

LOCAL
JOB

EXECUTION

LOCAL
JOB

EXECUTION

P(0) P(k)

T

L G J L G J

F(k)

f(k,A) f(k,B)
p(0,A)p(k,A) p(k,B) p(0,B)

Figure 7. Operation of SMALL: Collection of background-load patterns
hh

recorded by the measurement functions of DWG. Periodically, these records are removed from the kernel

by a logger process (labelled L), which writes them out into a file. These files constitute a system-wide

background-load pattern (the k’th background workload pattern is labelled P(k)).

At the end of the first phase of data collection, there is one system-wide background-load pattern per

global jobfile. The second phase of data collection (Figure 8) is similar to the first, except in three

aspects: (i) the global jobfile (labelled F(j,s)) contains only one test job, j, to be run at some site s; (ii)

instead of using the load pattern of an idle system as a background load, this phase generates background

workload using the load patterns collected during the first phase (labelled P(k) in the figure); and (iii)

when the test job terminates, the logger records not only the resulting load pattern but also the completion

28

TRAP
INSERTION

arrival-time arguments

MEASUREMENT

Measured
local log

Data
from
kernel

GENERATION

Instrumented
local log

Data
to kernel

KERNEL INSTRUMENTATION

OPERATING SYSTEM

Logger Generator
process process

Jobmanager
process

System-wide
background-load
pattern #k

Jobfile for
job j at site s

j

Other sites

System-wide
pattern k.j_s

MEASUREMENT

Measured
local log

Data
from
kernel

GENERATION

Instrumented
local log

Data
to kernel

Local jobfile

KERNEL INSTRUMENTATION

OPERATING SYSTEM

Command
& arguments

Test processes

Logger Generator
process process

Jobmanager
process

LOCAL
JOB

EXECUTION

Site s

s

P(k)

T

p(k,A)

L G J L G J

F(j,s)

p(k,s)
f(j,s)

Measured

time C(j,k,s)
completion

Figure 8. Operation of SMALL: Measurement of completion times
hh

time of the test job (labelled C(j,k,s)).

At the end of the data-collection phase, we have two kinds of records: (i) log patterns, labelled k.j_s

in Figure 8, describing the actual load conditions prevailing when job j is executed at site s under

background-load pattern k; and (ii) the completion time, labelled C(j,k,s) in Figure 8, of job j when it is

executed at site s under load pattern k.

29

2) Off-line learning of load indices

Figure 9 shows a schematic of SMALL during its index-learning phase. Notice that, at any given

instant, the training algorithm simultaneously considers the load-index functions at two different sites.

The reasons for solving a ‘‘learning to compare’’ problem rather than a ‘‘learning to predict’’ problem

were alluded to in Chapter I: essentially, the former approach prevents overtraining by stopping when the

hh

Training
algorithm

New weightsNew weights

output output
Network’sNetwork’s

C(j,0,0)

C(j,k,A) C(j,k,B)

Load-index
function

Load-index
function

Filtering &
Extrapolation

k.j_A

Filtering &
Extrapolation

k.j_B

Site A Site B

Figure 9. Operation of SMALL: Load-index learning

30

accuracy of load-index functions is adequate for comparing alternative destinations for the same job.

Information flows for a typical learning trial are shown in Figure 9. Each trial involves a randomly

selected job (j), a randomly selected load pattern (k), and a randomly selected pair of sites (A and B).

First, the raw utilization patterns recorded earlier by DWG are smoothed using lowpass filters [78].

Smoothing helps in detection of trend; the smaller the cutoff frequency of the lowpass filter, the greater is

the degree of smoothing, and the longer is the interval to which the trend can be extrapolated. Trends are

extracted from filtered patterns by means of linear and exponential extrapolation. The former fits a

straight line to a recent window of smoothed values, and extrapolates using that line; the latter fits an

exponentially growing/decaying function. The extracted trend information is fed into a parameterized

load-index function. The outputs of load-index functions are then compared. Based on this comparison,

the training algorithm suggests new parameters (weights) for the two functions involved. The training

algorithm uses the completion times C(j,k,A) and C(j,k,B), measured by DWG during the data-collection

phase; its goal is to drive the difference between the outputs of the two load-index functions toward the

true relative difference,
C (j, 0,0)

C (j,k,A) − C (j,k,B)hhhhhhhhhhhhhhhhh, where C(j,0,0) is the completion time of job j on a chosen

idle file server. Our configuration, shown in Figure 9, simultaneous trains multiple comparable functions;

we refer to this as the comparator configuration.

Details of the learning experiment can be found in Chapter IV. Suffices it to say that after repeated

trials with different jobs, sites, and load patterns, the error of comparison between different sites begins to

converge. If this error is acceptably small, then the current set of load-index functions is selected. Other-

wise, one needs to repeat this phase with a different set of random initial parameters for the load-index

functions.

31

3) Off-line tuning of policy parameters

By off-line tuning, we mean that the decisions made by a policy are evaluated not by actually send-

ing test jobs to an operational load-balancing system, but by simulating the application of that policy on

loading conditions and test jobs. Each loading situation is represented by the load indices of different

sites at the time of the test job’s arrival. Policy decisions are computed by applying the sender-side and

receiver-side rules shown in Figure 3. Evaluation of decisions requires information about completion

times of various test jobs under different loading conditions. All the policy-learning experiments are

planned ahead of time so that the completion times necessary for evaluating policy decisions can be

measured (ahead of time) using DWG; such measurements are carried out during the second phase of

data collection described above.

Given the large number of parameters and the possibly many values each parameter can take, an

uncontrolled search for a good parameter set for the given load-balancing policies could take an exorbi-

tant amount of time. Figure 10 shows the schematic of our policy-learning system, including information

flows between it and the scheduling system. Each policy has the form shown in Figure 3. The next section

describes how the policies are instantiated when a new job arrives. Our only concern in this section is

with the inputs and outputs of the load-balancing policy.

The inputs of a load-balancing policy are described by a test-case (Figure 10), which includes infor-

mation about the job (j) that needs to be scheduled, the background-load pattern (k) being simulated, and

the site (s) at which the job arrives. The different test-cases to be used during this second learning phase

are managed by a Test-case Manager.

Before commencing the experiment, the learning system sets all the policy parameters using the

corresponding values from a selected parameter set, p. It then uses the information contained in the test-

case to compute the load index of each site at the time of job j’s arrival. Thus, given the values of policy

parameters, as well as the values of primitive and abstract decision metrics, one can determine the

32

TEST-CASE
MANAGER

SCHEDULER

GENERATOR

POOL OF
PARAMETER

SETS

Time left

site of execution, r

New parameter set(s)

Selected parameter set, p

EVALUATOR OF
POLICY

PERFORMANCE

POINT-BASED
LEARNING

Modified p

Overall performance

Performance on
current test-case

LOAD-BALANCING POLICIES

TABLE LOOK-UP

Load
indices Completion

times
Migration
overheads

<job j, load k, arrival-site s>

Figure 10. Operation of SMALL: Policy learning
hh

policy’s decision for the chosen test job. This decision involves the choice of a remote destination (r)

where the incoming job j should be executed.

Given the information contained in the test-case, and knowing the decision (r) of the policy, the per-

formance of the policy parameterized by p can be computed as follows. First, the record C(j,k,r) — the

completion time of job j at site r under load-pattern k — is consulted. Next, if the chosen destination r is

not the same as the site of arrival s, then an overhead of migration is added to the completion time. The

total represents the completion time of a job under remote execution, including overhead. From the data

collected in the first phase, we also know C(j,k,s), the completion time under local execution. Using these

numbers, the speed-up achieved by parameter set p for the given testcase can be calculated.

33

The Evaluator of Policy Performance (Figure 10) computes the overall performance of each param-

eter set on a population of test cases. Using information about the recent performance of different parame-

ter sets, and knowing how much time is available for learning, the Scheduler determines whether to gen-

erate new parameter sets or to continue testing from the current pool. The theory and implementation of

the Scheduler were developed by Wah, et al. [185, 186].

Our learning system not only develops new parameter sets by the population-based learning process

described above, but also refines existing parameter sets after each learning trial. It does so using point-

based learning, a parameter-modification procedure that reduces the likelihood of decisions causing low

speed-ups, by suitably altering policy thresholds.

Details of the policy-learning phase are presented in Chapter VI. At the end of this phase, one can

select a (possibly new) parameter set that, with high likelihood, will have the best performance of all

parameter sets tested, on future test-cases drawn from the same population as the given pool of test-cases.

4) Application phase

With the new load-index functions and the selected policy parameters in place, the scheduling sys-

tem is now ready for application. Figure 11 shows the information flows during the application phase. At

the site of arrival (site j) of an incoming job, the sender-side rules of site j are instantiated. This figure

shows the case when a remote destination (site i) is selected by the sender-side rules of site j. A request is

made to site i, which instantiates its receiver-side rules. If the receiver-side rules at site i succeed, then the

site of arrival (site j) initiates a job transfer by remotely invoking the job-execution facilities at site i.

Implementing the application phase requires that the filtering and extrapolation facilities, as well as

the computation of the load-index functions, be made on line. Since our present experimental set-up does

not implement these functions on line, we can only simulate the application phase by table look-up, as

34

Sender-side
rule (SSR)

Receiver-side
rule (RSR)

Send
out

Execute
locally

Transfer

LOAD-BALANCING STRATEGY

Sender-side
rule (SSR)

Receiver-side
rule (RSR)

Send
out

Execute
locally

Transfer

LOAD-BALANCING STRATEGY

request

reply

Network

LOCAL JOB
EXECUTION

LOAD-INDEX
FUNCTION

FILTERING &
EXTRAPOLATION

LOCAL JOB
EXECUTION

LOAD-INDEX
FUNCTION

FILTERING &
EXTRAPOLATION

Remote
loads

Remote
loads

MEASUREMENT MEASUREMENT

Site i Site j

Local load (site i) Local load (site j)

Figure 11. Operation of SMALL: Application phase
hh

illustrated in the previous subsection.

C. Summary

Table II summarizes the times required by different phases of SMALL, our automated system for

learning load-balancing strategies. The typical times reported in the rightmost column are based on our

35

Table II
Times required by different phases of SMALL’s operation

ii
Event Work Required Typical time†Formula for

time neededii
Down time for
data collection
(phase I)

Recording p different background load patterns,
each l time units long

l (p + 1) 61⁄4 hours

ii
Down time for
data collection
(phase II)

Measurement of completion times of n different
benchmark jobs under p patterns, each l time
units long, on d configurationally-distinct sites

ndpl 10 days

ii
Learning times
for load-index
learning (phase
III)

Learning to compare the completion times of N
different checkpoints of benchmark programs,
measured under p different load patterns, on d
distinct sites; each comparison takes c time units
and the iterative learning procedure requires e
passes through the data.

Ndpce (p + d − 2) 15 hours

ii
Time for tuning
the parameters
of load-
balancing
policies (phase
IV)

Learning new parameter sets for load-balancing
policies under s different delay models; many
different policies are tried, but at least k of them
are expected to undergo full evaluation on f
different test-cases. Each test-case can be
evaluated within t time units. Each of the s
policy-learning experiment must finish within a
deadline of T time units

s .max (T,fkt) 3 hours

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

ii
Data collection 10 days downtimeiii
Retraining comparator networks off line 15 hoursiii

New sites, new
configuration,
or OS upgrade Tuning policy parameters off line 3 hoursii
Removal of a
site, or new
load-balancing
software

Tuning policy parameters off-line 3 hours

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

ii
† Values used in estimating typical times are: n = 10, p = 24, d = 4, l = 15 minutes, N = 60, c = 0.06 seconds,
e = 6, T = 15 minutes, s = 12, f = 1,000, k = 4, and t = 0.2 seconds.iic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

experience with data collection on a network of four Sun 3 workstations, and off-line learning on a Sun

Sparcstation 10, Model 20. We now explain briefly our derivation of the formulae for times required. In

phase I, first an idle load pattern needs to be measured and then p others. Since each is l time units long,

we get the formula shown. In phase II, n jobs need to be run on d different sites under p different load pat-

terns. Once again, since each experiment takes l time units, we get the formula shown for phase II. In

36

phase III, one needs to compare, for each checkpoint of a benchmark program, both different loading

situations at the same site and loading situations across different sites at the same time. The numbers of

such comparisons are, respectively, Np (p − 1)d and Npd (d − 1). Since each comparison takes c time units,

and since learning requires e passes through the data, we obtain the formula shown for phase III. Finally,

in phase IV, an experiment can (and often does) use up all the time available (T units) for evaluating dif-

ferent parameter sets on different test-cases; alternatively, one can stop when k different parameter sets

have been fully evaluated on f test-cases. Since population-based learning will not go through with

evaluation for poor-quality parameter sets, these k sets are likely to be good. Also, the time spent on poor

parameter sets is usually negligible compared to the time for full evaluation of good candidates. The

entire learning experiment may need to be repeated if there is a change in the nature of either the migra-

tion overheads or the age of the load index; s different delay models are considered. Since the evaluation

of each parameter set on one test-case requires t time units, we obtain the formula shown for phase IV.

In this chapter, we have outlined our approach to the automated learning of load-balancing stra-

tegies for the distributed-system model described in Chapter I. Subsequent chapters present details of our

approach: Chapter III describes the implementation of DWG; Chapter IV, our algorithm for learning load

indices using comparator neural networks; and Chapter VI, our approach to tuning policy parameters

using integrated (population-based cum point-based) learning. Unlike physical-level workload generation

and load-index learning, strategy learning is a well-researched area; therefore, in Chapter V, we identify

key issues in strategy learning and classify strategy-learning tasks and techniques on the basis of these

issues, and further justify our choice of an integrated learning model.

37

CHAPTER III.

DWG: A TOOL FOR SYNTHETIC WORKLOAD GENERATION

It is a capital mistake to theorize before one has data.

- Sir Arthur Conan Doyle

This chapter describes DWG [117], a generator of realistic and reproducible workloads. DWG

employs synthetic workload generation, a technique that uses artificial programs to mimic the resource-

utilization patterns of real workloads. DWG accurately replays system-wide load patterns recorded by it

earlier, providing an ideal setting for load-balancing experiments. Since DWG is implemented inside the

operating-system kernel, it has complete control over the utilization levels of local resources. It controls

the utilization levels of four key resources: CPU, memory, disk, and network. In order to accurately

reproduce the behavior of the process population generating the measured load, DWG gives up a fraction

of its resources in response to the arrival of new jobs, and reclaims these resources when the jobs ter-

minate. Section B describes our objectives and constraints in designing an experimentation environment

for load balancing. Section C describes DWG’s architecture and Section D, its operation. Section E com-

pares different settings for DWG’s parameters, and evaluates the synthetic workloads generated using

DWG against true workloads observed in corresponding control experiments.

A. Design Goals

Our primary goal is to create an experimentation environment that will allow us evaluate alternative

load-balancing policies. In order to compare alternative policies, we need to perform several experi-

ments, each with the same background workload pattern but with a different site of execution for the fore-

ground job. (Afterall, two policies differ in their performance only when they schedule an incoming job at

different sites. No matter how many policies we need to compare, the number of possible destinations for

38

an incoming job is finite and equals the number of sites in the distributed system.) Our secondary goal is

evaluate alternative policies under realistic loading conditions. In particular, we wish to be able to record

and replay workloads that arise in interactive environments: i.e., workloads that are highly dynamic and

include the resource-utilization patterns caused by a variety of asynchronous events, such as mouse and

keyboard interrupts. The problem of recording and replaying workloads, called the workload-generation

problem, is addressed in this chapter.

Test jobs and background workloads affect each other by competing for resources. For real work-

loads, such competition is resolved by a resource scheduler, which allocates resources among competing

processes. While a background load pattern is being recorded, the process population generating that load

has complete control over a site’s resources. If a test job were introduced on top of such a workload, it

would take away some resources from the background process population, thus altering its resource-

utilization pattern. Therefore, when test jobs are introduced on top of generated workloads, their impact

on the workload generator needs to be carefully considered. Such an interaction amounts to a feedback

path from the experiment to the experimentation environment; it is an important characteristic of the

workload-generation problem considered in this chapter.

Since the performance of the test job under a given background workload depends solely on the

resources utilized by that workload, it is natural to represent workloads by their resource-utilization pat-

terns. This is called the physical-level view of a workload [59]. However, in order to model the feedback

from a test job to the generated workload, one needs to adopt a process-level view. Representing asyn-

chronous events such as keyboard interrupts and context switches at the process level entails (i) recording

complete resource-utilization information for a large number of processes; (ii) modelling all the complex

interactions between processes and interrupt-handling routines of the operating system; and (iii) precisely

recording the timings of interrupts and context switches, and replaying them at the same fine grain.

Obtaining and regenerating such process-level workloads is prohibitively expensive because it entails

costly hardware instrumentation for collecting information and high-resolution timers for driving the

39

generator.

It follows from the above that there is an incompatibility between the grain of the resource-

scheduler and the grain at which workload needs to be recorded and replayed. The constraints of our

problem dictate that we represent and regenerate workloads at the physical level, without recreating the

entire process population. In this case, we need to artificially model the process-level interactions

between the recorded load and test jobs, and use our model to (dynamically) adjust the amount of gen-

erated load while there are active foreground test jobs on top of the replayed workload.

B. Previous Work

1) Workload generation without feedback

The design of a workload generator depends on the purpose it is used for. There are several prob-

lems in performance evaluation of computer systems where there is no feedback from the mechanism or

policy being evaluated to the experimentation environment. For example, in evaluating alternative imple-

mentations of file systems, it can be assumed that the file-access patterns of a user are implementation-

independent [23, 44, 93]. Another example is in the evaluation and refinement of virtual-memory algo-

rithms using traces of memory references. Once again, the memory-access patterns of programs can be

assumed to be independent of (say) the particular cache-coherence protocol being evaluated. Figure 12

shows the schematic of a workload generator without feedback. In this case, the workload generated does

not depend upon the mechanism being measured or modeled. Most existing synthetic workload genera-

tors follow this paradigm [48, 63, 74, 98, 139, 168]. While adequate for their specific applications, such

generators are not appropriate for our workload-generation problem because of the feedback between test

jobs and background workload.

40

RESOURCE-
SCHEDULING
ALGORITHM

MECHANISM
MEASURED OR

MODELED

SYNTHETIC
WORKLOAD
GENERATOR

Figure 12. Workload generation without feedback
hh

2) Workload generation with feedback

The traditional approach to developing experimentation environments for load balancing uses a

stream of real user commands to create the workload: earlier jobs form the background workload for later

jobs [19, 47, 204]. Since this approach generates and represents workloads at the process level, it is inca-

pable of modelling asynchronous events, such as arrival of electronic mail and mouse interrupts, on

account of its large granularity. Since foreground-background interactions are handled by the resource

scheduler (Figure 13), no adjustment in generated load is required. The key problem with this approach is

hh

WORKLOAD
GENERATOR

TEST JOB RUNNING
ON BACKGROUND

WORKLOAD

RESOURCE
SCHEDULER

PROCESS-LEVEL

(PROCESS-BASED)

Figure 13. Workload generation with feedback using real workloads

41

that real workloads cannot be precisely represented using only user-level programs and commands.

One possible way to combine the expressiveness of physical-level workloads with the correct

scheduling behavior of process-level workloads is to model the physical-level behavior of all the

processes, including system processes. This amounts to recreating an entire process population. (See Fig-

ure 14.) As already discussed, the quantity and the rate of information necessary for reproducing such a

workload precludes feasible implementation in software alone. Even if hardware support for measurement

is available, it is non-trivial to model a large process population with complex interactions.

Our approach (shown in Figure 15) is to represent and regenerate workloads only at the physical

level. In order to simulate foreground-background interactions, we consider a simplified model of the

resource scheduler, and collect information during measurement and generation to drive this model. The

simplified model requires that process counts be recorded with the recorded load, and that the generator

keep track of the number of test jobs introduced on top of the workload being replayed. Using these

hh

TEST JOB RUNNING
ON BACKGROUND

WORKLOAD

RESOURCE
SCHEDULER

PROCESS-LEVEL

DEVICE-LEVEL
SCHEDULING
ALGORITHM

SYNTHETIC
WORKLOAD
GENERATOR

(MODEL-BASED)

Figure 14. Workload generation with feedback using synthetic processes

42

TEST JOB RUNNING
ON BACKGROUND

WORKLOAD

SYNTHETIC
WORKLOAD
GENERATOR

(PHYSICAL-LEVEL,

DEVICE-LEVEL
SCHEDULING
ALGORITHM

TRACE-BASED)

RESOURCE
SCHEDULER

PROCESS-LEVEL PSEUDO
SCHEDULER
(DOCTORING

RULES)

Figure 15. Workload generation with feedback using dynamic doctoring
hh

counts, the model provides a way to dynamically alter generated loads in response to initiation or termi-

nation of test jobs; formulae for computing load reductions are encoded in doctoring rules, which make

the workload generator behave as though it were under the control of the resource scheduler even when it

is not. The architecture and operation of our generator are described next.

C. Architecture of DWG: A Dynamic Workload Generator

Figure 16 shows the basic architecture of DWG. The components of DWG include processes

(shown as unshaded dark boxes in the figure), callable kernel routines (shown as shaded dark boxes), and

certain buffers and files (shown as boxes with rounded corners). These include mechanisms for (i) meas-

urement and generation (box labelled K); (ii) data transfer in and out of the kernel (boxes labelled L and

G); (iii) asynchronous event management using traps (boxes labelled H and J); and (iv) dynamic determi-

nation of generated load levels (box labelled D). These mechanisms are organized into layers of software.

The lowest of these layers (shown second from right in the figure) comprises functions implemented

43

Operating

System

clock_intr:

measure()

{

}

generate()

{

}

buffer

pairs Trap

handling

CPU

disk

network

memory

status

On-line
components

...

Dynamic
doctoring

use

use

fill

Start,Stop,DataOut

Data-available

Start,Stop,DataIn

Data-wanted

StartJob,KillJob

JobFinished

usage

empty

local processes

system-wide
log

buffer/file

Off-line
components

Devices

Trap Insertion

global
jobfile jobfile

local

process

process

manager

D

T

L

G

J

K

H

DWG processes

DWG routines

KEY

Logging

Generating

Job

Figure 16. Architectural description of DWG
hh

inside the operating-system kernel. The next higher layer comprises user-level processes that control the

kernel-level functions. The topmost layer (shown leftmost in the figure) comprises off-line mechanisms

for controlling the initiation and termination of foreground jobs.

1) Functions implemented inside the kernel

The core of DWG consists of its measurement and generation routines (boxes labelled K in Figure

16); these, respectively, measure and control the utilization levels of resources, such as CPU, memory,

disk, and network. At every clock interrupt, the measurement routines estimate the current utilization as

follows. If the CPU was busy (under the control of a user process) when the clock interrupted, then it is

assumed to have been busy for c percent of the time since last interrupt, where c is a tunable parameter of

DWG. For the memory, the number of free pages is recorded. For the disk, the number of blocks

44

transferred since the previous interrupt and, for the network, the number of packets received or transmit-

ted since the previous interrupt, are recorded. Also recorded is the number of user processes contributing

to the measured load at any given time.

At every clock interrupt, the generation routines determine how much workload needs to be gen-

erated for each resource. For the CPU, the amount of work to be done is expressed as a fraction of the

interval between successive interrupts. For the memory resource, the work to be done is expressed as the

number of pages to be occupied until the next interrupt. For the disk and network resources, the number

of disk transfers and the number of network packets, respectively, are computed.

When there are foreground processes, the computation of generated load employs certain rules,

known as dynamic doctoring rules (box labelled D in Figure 16), in order to compensate for foreground-

background interactions. The amount of reduction caused by these rules depends upon the relative sizes

of the foreground and background process populations. The trap-handling routines of DWG keep track of

the foreground population size. (The size of the foreground process population equals the number of test

jobs introduced on top of the background workload being replayed.) The size of the background process

population is already recorded in the log being replayed.

While CPU and memory loads are generated inside the kernel, requests for generation of disk and

network traffic are passed on to external processes. CPU load is generated by repeatedly executing a seg-

ment of pure computational code. Memory load is generated by taking pages out of the pool of free

virtual-memory pages, thereby making them unavailable to user processes. The external process responsi-

ble for generating disk and network traffic does so by, respectively, performing unbuffered output to a file

and broadcasting synthetic packets over the local-area network. CPU and memory loads are generated at

each site; disk traffic, only at diskful sites; and network traffic, only at a selected site on the network.

The measurement and generation routines switch buffers upon reaching the end of the current

buffer. (See Figure 16.) While switching buffers, they signal their respective external processes (the

45

logger process, labelled L in the figure, and the generator process, labelled G) in order to initiate data

transfer. While the kernel is busy with the other buffers, the external processes load/unload the idle

buffers. Buffer sizes are chosen large enough that data transfers happen only a few times a minute, and

yet small enough that the memory overhead of synthetic workload generation is at worst two or three

pages. (This is small overhead compared to the hundreds of pages occupied by typical operating-system

kernels.)

2) Functions implemented at the process level

DWG requires three processes at each site: (i) the logging process (labelled L in Figure 16), which

transfers measurements out of the kernel into the log file; (ii) the generating process (labelled G), which

transfers data from past logs (possibly instrumented with traps) into the kernel; and (iii) the job manager

(labelled J), which initiates and terminates test jobs upon receiving signals from the trap-handling rou-

tines (labelled H) of the kernel, as well as measures the completion time of test jobs. The interface

between these processes and the kernel-based functions is via a system call.

In addition to the functions described above, the generating process is signalled by the kernel when

there is some disk or network traffic to be generated. It determines how much traffic to generate and does

the necessary input/output. The logging and generating processes are also responsible for starting and

stopping measurement and generation, respectively, inside the kernel.

In DWG, it is possible to synchronize measurement and generation so that measurement begins and

ends exactly when generation does. This capability allows us to compare actual and generated loads, as

explained in Section E, and allows us to translate the time of occurrence of an experimental event into the

offsets of the corresponding codeword in a log file. Figure 17 shows the typical format of a DWG log,

including the formats for encoding resource-utilization information in codewords, and for managing asyn-

chronous events using trap commands. (Traps are data bytes in a special format.) Upon hitting the trap

command, the trap-handling functions of DWG (labelled H in Figure 16) queue up the trapped requests,

46

C D M R TN

Width of each codeword = 32 bits

CPU
(1 bit)

Disk
(6 bits)

Network
(6 bits)

Memory
(12 bits)

Ready processes
(5 bits)

Trap
(1 bit)

0

0

0

1

1

Trap command Argument 1 Argument 2 Argument 3

First codeword following a trap sequence

1Ordinary codeword

LOG FILE

Codeword followed by a trap sequence

Figure 17. Format of DWG log files
hh

and signal the local job-manager process (labelled J in Figure 16) to carry out the appropriate requests. If

the trap command entails a change in the size of the foreground process population, then these routines

also alter the process-population counts appropriately.

47

3) Off-line functions of DWG

These components come into play after a system-wide log has been measured but before it can be

replayed. An initial log contains no traps. The trap-insertion routines (labelled T in Figure 16) insert traps

at suitable offsets into each log file; each log is instrumented so that test processes can be started or

stopped at precise moments relative to the start of the experiment.

Traps allow the dynamic doctoring routines (labelled D in Figure 16) to maintain a count of

processes that exist during generation but did not exist at the time of measurement. The presence of such

processes warrants a reduction in generated load; the amount of reduction depends upon the number of

foreground processes. Since that number changes only when either a new process starts or an old process

finishes, traps can trigger an update of process counts inside the generator precisely when the size of the

competing process population changes. Thus, before measured data are given back to the kernel for

replay, traps are inserted at the starting and (if known) stopping points of jobs. If the stopping point of a

job is unknown, then the job manager notifies the kernel dynamically when such a job stops.

In determining where to insert traps in the pre-recorded system-wide logs, the trap-insertion routines

use global jobfiles. These contain information about: (i) the site at which a job will be executed; (ii) start-

ing time of the job; (iii) stopping time of the job, if known; (otherwise, upon noticing job termination, the

job manager makes a system call that has exactly the same effect as a job-stop trap;) and (iv) the com-

mand and arguments needed for starting the job. The trap-insertion routines associate a unique global

identifier with each job, and partition the global jobfiles into local jobfiles, which are passed on by the

generating process to the individual job managers at each site.

D. Operation of DWG

The overall operation of DWG can be described in three phases: measurement, trap insertion, and

generation. In the first phase, utilization levels of four key resources — CPU, memory, disk, and network

48

— are recorded at each clock interrupt. (In our implementation, there are 50 interrupts per second.) In the

second phase, which is performed off-line, provisions are made for running test jobs on top of the

recorded load. This is done by inserting traps, or data items in a special format, at appropriate points in

the recorded data. During the generation phase, at each clock interrupt, DWG dynamically determines

the amount of load to generate for each resource. It does so either by reading the instrumented log or by

assessing the work left pending from previous interrupts. It then generates the requisite load by issuing

synthetic resource-usage instructions. While reading the instrumented log, if DWG encounters a trap,

then it decodes the trap and carries out the corresponding functions — such as updating process-

population counts, and signalling the local job manager to perform appropriate job-control functions.

When a test job started by the job manager finishes, the job manager records its completion time. Thus,

background loads are replayed, test jobs introduced at precise instants, and their completion time meas-

ured under controlled loading conditions. The rest of this section describes the three phases of DWG’s

operation.

1) Workload measurement

The measure() routine of the kernel is periodically invoked by a clock interrupt. It samples the

system’s state and records (i) whether or not the CPU is busy; (ii) the number of free memory pages; (iii)

the number of disk transfers since the previous interrupt; and (iv) the number of packets active on the net-

work since the previous interrupt. Also recorded with each data item are the number of local and global

processes generating the current load. Since the interrupts can occur several tens of times per second, the

measured data can grow at a phenomenal rate. We keep such growth in check through efficient coding of

information and periodic removal of data from the kernel by an external process. Similarly, during gen-

eration, information needs to be transferred into the kernel at the rate of a few hundred bytes per second.

In order to keep the number of data transfers to a minimum, buffer pairs are allocated inside the kernel.

Data transfer can proceed using the idle buffer while the kernel is busy reading/writing the other buffer.

49

Buffer sizes are chosen large enough that there are at most only a few transfers per minute.

2) Trap insertion

The trap-insertion routines essentially perform an event-driven simulation, using the offset into the

logged data as simulated time. The events in jobfiles are sorted, first, by their starting times, and, second,

by their stopping times (if known). The intuition is that stop events (if any) for the same job must neces-

sarily follow the corresponding start events. The trap-insertion routines maintain two event-lists headed

by, respectively, the next job to start, and the next job to stop (if its stopping time is non-zero). At every

instant, lists of ‘fired’ events are computed. Every event results in at least one trap at the associated job’s

site of execution, and possibly others at sites generating disk and network traffic. This phase ends with the

creation of instrumented logs, one per site; the traps inserted into these logs contain instructions for the

kernel, which executes those instructions upon hitting these traps during the generation phase.

3) Generation

The processes generating the real workload are subject to scheduling. In UNIX and related operat-

ing systems [11], the scheduler maintains queues of ready-to-run processes, each queue corresponding to

a priority level. It allocates resources to these processes in a round-robin fashion within each queue, and

in order of priority among the queues. Processes having low priority can be preempted by the ones hav-

ing higher priory. Priorties are recomputed periodically, thus causing processes to move between queues.

In contrast, the generating process is not subject to scheduling; it behaves like a high-priority real process.

If the generator were to always reproduce the measured load exactly, test jobs introduced into the system

would encounter greater delays under a generated load than under the corresponding real workload.

Therefore, synthetic workload amounts read from the log file need to be adjusted (or ‘doctored’) dynami-

cally in order to have the same effect as real workloads.

50

Ideally, the generator would need to implement the entire queueing discipline in order to emulate

the true behavior of the recorded load in the presence of an additional process. If the starting and stopping

times of all test jobs were known ahead of time, such emulation could possibly be done off-line in a

fashion similar to the trap-insertion process. However, stopping times of test jobs are usually unknown,

and are, in fact, load-dependent. Therefore, an ideal generator would need to implement the process

scheduler’s queueing discipline on-line! That would be prohibitively expensive computationally. As a

compromise, DWG makes certain simplifying assumptions about the scheduler’s queueing discipline;

these assumptions allow it to compute the altered behaviors dynamically without incurring too much

computational overhead. This component of our generator, containing rules for altering the generated

load in the presence of competing test jobs, constitutes its doctoring rules. These rules, and the assump-

tions on which they are based, are described below.

Rule 1: Reduction in generated load due to foreground processes. We assume, first, that all

the processes (measured and new) have the same priority and that resources are allocated to them in a

round-robin fashion; and, second, that the amounts of different resources consumed by a background pro-

cess are reduced by the same proportion when it faces competition from one or more foreground

processes. For example, a 15% reduction in CPU usage warrants a 15% reduction in memory occupancy,

and so on. Also, we model CPU and memory as constrained resources whose usage levels are bounded

by, respectively, 100% busy and 100% occupied. In practice, all resources have physical limits on utili-

zation levels. The logical limits on disk and network appear to be infinite because requests for their use

can be buffered in memory space; such buffers do not exist for the CPU and memory resources. There-

fore, CPU and memory usage need to be explicitly spread out (see Figure 18) over time by buffering

unfulfilled requests as pending work in the generator.

We assume that the load levels on private resources (CPU and memory) are affected only by the

local process population, and those on shared resources (disk and network), by the system-wide process

population. (For shared-memory systems, memory would also be treated like a shared resource.) The

51

Generated load without test process

Test process under no load

Generated load with test process

Test process under the generated load

Figure 18. The need for dynamic doctoring of generated load

Consider a recorded load pattern shown to the top left of the figure, and a test job whose resource-
utilization pattern is shown to the bottom left. The load patterns on the right illustrate the ‘‘smearing’’
effect: because of the foreground-background interaction, both the background and the foreground loads
take longer to complete.
hh

treatment of disk as a shared resource is specific to the client-server model of distributed file systems; in

other models, disk may be treated as a private resource. Under these assumptions, the reduction in gen-

erated load can be computed as a ratio between the process-population sizes at the times of measurement

and generation, respectively. Let b be the number of background processes, as recorded in the log being

replayed; and f, the number of foreground processes, as maintained by the trap-handling routines of

DWG. Then, the percentage of the needs can be satisfied at each clock interrupt is at most

(3a)p 1 =
b + f
100.bhhhhhh .

Further, the visible capacities of constrained resources (CPU and memory) are reduced to p 1 percent of

their maximum values.

Rule 2: Principle of conservation of work. Plain reduction in load levels is insufficient for

reproducing the true behavior of the measured process population. The processes constituting that popula-

tion, when deprived of the full use of resources, would have taken longer to finish. Therefore, whenever

52

the generator fails to achieve the recordeded load levels, either due to competing processes or due to

reduced resource capacities, it should carry over the difference between recorded and generated loads as

pending work for subsequent cycles.

When a foreground process remains active for a few consecutive cycles of generation, the pressure

of pending work may overwhelm the generator to such an extent that, instead of getting new work from

the log, it will be forced to spend one or more cycles just getting rid of pending work. This happens when

the pending loads on constrained resources (CPU and memory) exceed the corresponding resource capa-

cities. DWG is said to be ‘on hold’ when in this mode. Holding allows us to slow down the replay of a

recorded log; the rate of this slowdown is governed by the first rule. When on hold, the generator deter-

mines the maximally constrained resource. It then computes, with respect to that resource, the fraction of

pending work that can be accommodated in the current generation interval. The same fraction of pending

loads on other resources is then added to their respective load levels.

During generation, priority is given to pending work. For constrained resources, the rest of the

(possibly reduced) capacity is allocated to (possibly reduced) background workload from the current

interval. The combination of new and pending workloads for a resource may exceed its visible capacity;

when that happens, the overflow is simply added to the pending work for future cycles.

E. Evaluation, Parameterization and Tuning of Generation Mechanisms

The generation mechanisms described in the previous section allow us to record and replay work-

loads generated by a population of test jobs, and replace the background process populations used in trad-

itional experiments with synthetic workloads. However, we still need to assess how well the generated

patterns approximate those caused by real workloads. In order to achieve high-quality generation, we

need to first parameterize the generation mechanisms, then experiment with many different parameter

sets, and finally select the best one for the data-collection phase of SMALL. The following subsections

53

address evaluation, parameterization, and tuning of genertion mechanisms.

1) Evaluation of generated loads

In order to evaluate DWG, we designed an experiment to compare the workloads generated by it

against workloads generated by real processes. In this experiment, we use certain test jobs that have been

instrumented to produce checkpoints when they reach certain preset points in their program codes. The

measurement functionality and the system-call interface of DWG were expanded to include mechanisms

for recording the most recent checkpoint of every active job, be it in the foreground or the background.

An overview of our experiment is shown in Figure 19. Each experiment involves one pair of jobs, and

proceeds as follows. First, the two jobs are executed in the foreground on top of an idle background load;

hh

JOB B
(FOREGROUND)

5 6 8 8 9 101 2 5 5 8 8 9 9

JOB B
(FOREGROUND)

1 2 3 4 4 5 5 6 7 8 9 9 9 9

JOB A
(FOREGROUND)

1 1 2 2 2 3 3 5 5 8 8 9 9 9

JOB A
(BACKGROUND)

1 1 1 2 3 3 4 4 6 7 7 8 9 9

+3 (5, -2)

20 ms (interval between interrupts of real-time clock)

CONTROL

EXPERIMENT

GENERATION

EXPERIMENT

Figure 19. Measuring the accuracy of generated loads

Suppose that we perform a control experiment in which two jobs, A and B, are run in the foreground, and
that the checkpoints of the two jobs occur as shown on the top two time lines. (Each of the uniformly
spaced ticks on a time line shows the most recent checkpoint of the corresponding job.) Next, suppose
that another experiment is performed with the load pattern for job A in the background and with job B in
the foreground, and that the checkpoints of the two jobs occur as shown on the bottom two time lines.
Errors can be computed for individual checkpoints: e.g., for checkpoint 5 of job B, the signed error is +3
(it occurs 3 ticks too late with respect to the control experiment). Likewise, errors can be computed for
segments of each job: e.g., for job B, the segment that begins at checkpoint 6 and ends at checkpoint 9
takes 5 clock intervals to complete in the control experiment, but only 3 clock intervals in the generation
experiment.

54

at each clock interrupt, the most recent checkpoint of each job is recorded in the resulting log. This is our

control experiment. Next, only the first of these jobs is executed on top of an idle load and the resulting

load pattern (including checkpoint timings), recorded. In the final step, the recorded log of the first job is

replayed using DWG while the second job is run in the foreground. Once again, the resulting log (now

including the checkpoint times of both the foreground and the background jobs) is recorded by the meas-

urement routines. This is our generation experiment. As illustrated in Figure 19, the quality of generation

can be assessed using the errors between offsets of corresponding checkpoints in the logs of control and

generation experiments.

Suppose that checkpoints ci and cj of a job occur at times ti and tj , respectively, in the control

experiment. Further suppose that the same checkpoints occur at times Ti and Tj in the generation experi-

ment. Then, the error ei of the ith checkpoint is given by

(3b)ei = Ti − ti;

and the error for the job segment contained between the ith and jth checkpoints, by

(3c)eij = (Tj − Ti) − (tj − ti).

Both signed and absolute values of errors were considered.

In our experiments, we used seven different benchmark jobs; these are described in Table III. They

include three jobs of UNIX sort utility with different file sizes and memory requirements, two jobs of

Table III
Benchmark programs used in evaluation and tuning of DWGii

Name Descriptionii
Sort1 Sorting a small file by multiple fields with unlimited memoryii
Sort2 Sorting a large file by a single field with unlimited memoryii
Sort3 Sorting a small file by a single field with limited memoryii
UC1 Uncompressing a compressed file (#1)ii
UC2 Uncompressing a compressed file (#2)ii
W.TF The Perfect Club benchmark FLO52Q — solving Euler equationsii
W.TI The Perfect Club benchmark TRFD — two-electron integral transformationiic

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

55

the UNIX uncompress program, and two Perfect Club benchmarks [22]. Since each experiment

involves two jobs, we made sure that the selected combinations represented a variety of foreground-

background combinations. We allotted fifteen minutes for each experiment. The data for the benchmark

programs were chosen such that idle completion times would be close to five minutes on the slowest site.

Each benchmark was instrumented to produce checkpoints at certain fixed points in their execution. For

this purpose, additional functionality was added to the kernel-based components of DWG; at each check-

point, the benchmark programs incremented a checkpoint identifier and notified DWG of the

checkpoint’s occurrence by making a system call. Each benchmark program was instrumented to produce

approximately 200 checkpoints at almost regular intervals during its execution. (While we inserted check-

points manually, certain automated utilities are now available that can be suitably modified for automatic

insertion of checkpoints [109].) Each benchmark program was also assigned a unique job identifier so

that its checkpoints could be distinguished from those of another (concurrently active) program.

2) Parameterization of generation mechanisms

DWG’s behavior is significantly affected by two components: the formula for computing p 1 in the

first doctoring rule (Equation 3a); and c, the percentage of clock interval consumed by the CPU generator

when the recorded log shows that the CPU was busy in that interval. We can parameterize the doctoring

rule as:

p 1 =
b + f .x
100.bhhhhhh ,

where the parameter x controls the relative importance of processes generating the foreground load with

respect to the processes that generated the recorded load that is now being replayed in the background.

Table IV shows nine different parameter sets for DWG. In this table, both x and c are expressed as per-

centages. For example, x = 100 means that foreground and background processes are given equal weight;

and x = 110, that foreground processes are given more weight than background processes. The latter may

be appropriate when the count of background processes includes some inactive (operating system)

56

Table IV
Parameter sets for doctoring rulesiiiiiiiiiiiiiiiiiiii

Set No. x cc cc cii
1 100 80iiiiiiiiiiiiiiiiiiii
2 95 80iiiiiiiiiiiiiiiiiiii
3 110 90iiiiiiiiiiiiiiiiiiii
4 100 90iiiiiiiiiiiiiiiiiiii
5 95 90iiiiiiiiiiiiiiiiiiii
6 110 80iiiiiiiiiiiiiiiiiiii
7 110 70iiiiiiiiiiiiiiiiiiii
8 100 70iiiiiiiiiiiiiiiiiiii
9 95 70iiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

processes. Continuing the example, c = 70 means that CPU-load generation can use up to 70% of the

clock interval.

Other parameter sets are possible. However, since we do not have automated mechanisms for

parameter selection at the current time, we have chosen to limit our attention to the parameter sets

described in Table IV. Our goal is to first evaluate each of these parameter sets using the experiments

described in the previous section, and then select the best one among them for the data-collection phase

of SMALL.

3) Results of comparing different parameter sets

Each of the parameter sets described in Section III.E.2 was evaluated using the method described in

Section III.E.1. We performed seventeen experiments involving different combinations of foreground and

background jobs. For each experiment, and for each job, we computed the following statistics (also see

Equation 3b):

(3d)Es =
i =1
Σ
c

c

(ei − ei −1)hhhhhhhhh

and

57

(3e)Eu =
i =1
Σ
c

c

| ei−ei −1 |hhhhhhhhh ,

where c is the total number of checkpoints of the foreground job. Es is the average signed delay incurred

by a checkpoint in the generation experiment, relative to the control experiment. Positive values of Es

indicate that, on the average, checkpoints in generation experiment are delayed with respect to their ‘true’

timings from the control experiment, and negative values, that they occur too soon in the generation

experiment. Since positive and negative errors can sometimes cancel out, it is necessary to consider the

absolute delays as well; Eu is the average (unsigned) error between the times at which the same check-

point occurs in the generation and control experiments. We refer to Es and Eu as, respectively, the signed

and the unsigned errors due to generation. These statistics were computed for both jobs of each evaluation

experiment. Tables V and VI show, respectively, the signed and unsigned errors for seventeen different

evaluation experiments using the benchmarks described in the previous subsection. Each column presents

the errors for one parameter set from Table IV. Two values are reported for each experiment: the top

value is the error for the background job, and the bottom value, the corresponding error for the foreground

job. Errors are in units of clock intervals, each of which spans 1/50 seconds. Parameter sets 3, 4, and 5

have unacceptable performance on experiments 9, 11, and 12, especially in terms of absolute errors

(Table VI). Parameter sets 1 and 7 appear to have no unacceptably large errors, but there is no clear

winner.

Because of the way benchmarks are instrumented, each pair of checkpoints describes a program

segment. With preemptive load-balancing policies (Chapter I), both complete jobs and program segments

can be scheduled. The size of the scheduled segments depends upon the preemption interval of the policy:

the longer the preemption interval, the longer is the maximum size of a scheduled program segment.

Since it is expected that the generator will incur larger errors for longer jobs, we wish to study the rela-

tionship between errors and preemption intervals. To this end, let us consider all pairs of checkpoints in

the foreground job of each experiment, and for the program segment between the ith and jth checkpoints,

let us create a data-pair <lij ,eij>, where lij = (tj − ti) represents the true running time of that segment, and

58

Table V
Signed errors due to generation for different parameter sets

1 2 3 4 5 6 7 8 9Parameter Set # ->

Experiment #1
BG=Sort1 FG=UC1

BG=Sort1 FG=W.TF

BG=Sort1 FG=Sort3

BG=Sort2 FG=UC2

BG=Sort2 FG=W.TI

BG=Sort2 FG=Sort3

BG=Sort3 FG=UC1

BG=Sort3 FG=Sort1

BG=UC2 FG=W.TF

BG=UC2 FG=Sort1

BG=UC2 FG=Sort2

BG=UC2 FG=Sort3

BG=W.TI FG=UC1

BG=W.TI FG=Sort1

BG=W.TI FG=Sort2

BG=W.TI FG=Sort3

Experiment #2

Experiment #3

Experiment #4

Experiment #5

Experiment #6

Experiment #7

Experiment #8

Experiment #9

Experiment #10

Experiment #11

Experiment #12

Experiment #13

Experiment #14

Experiment #15

Experiment #16

Experiment #17

BG=Sort3 FG=W.TF

-14.7 -15.6 -4.1 -14.7 -15.3 -5.5 -14.7 -15.7
-8.9 -6.5 9.2 4.3 3.9

-7.0
-4.9 -5.8 -9.1 -10.1

-16.6 -14.9 2.1 -6.1 -6.8 -12.9 -13.1 -16.6 -17.1
-13.8 -11.5 7.1 6.6 6.6 -12.9 -14.1 -13.8 -13.9

-11.8 -10.1 6.2 -4.4 -5.1 -8.0 -8.2 -11.9 -12.3
-2.0 0.5 13.4 12.5 12.2 -1.4 -2.3 -2.1 -0.6

-7.8 -8.5 -0.2 -7.9 -8.4 -5.3 -5.2 -8.3 -8.9
-0.2 9.5 27.4 20.6 20.4 -1.4 -2.7 -2.8 -19.7

2.4 3.2 11.4 3.9 3.5 5.2 5.6 2.1 2.3
-3.2 5.5 15.8 16.5 16.7 -2.0 -2.0 -3.3 -2.2

-7.1 -5.3 3.3 -4.0 -4.6 -4.7 -4.7 -7.1 -7.7
-1.3 2.2 14.5 11.4 11.1 -1.4 -2.0 -1.2 -1.5

-4.0 -4.4 1.4 -4.0 -4.2 -0.1 0.6 -4.0 -4.5
-1.0 1.2 14.8 10.0 10.3 2.0 1.9 1.1 -1.5

1.8 1.4 7.1 1.8 1.5 3.5 3.9 1.6 1.3
-4.8 -1.4 14.8 18.5 16.1 -5.6 -5.3 -5.9 -5.8

-3.6 -4.0 1.7 -3.5 -3.7 0.7 1.1 -3.6 -2.2
-2.0 2.4 20.7 15.6 18.8 6.9 6.0 0.2 2.1

6.9 4.6 1.8 6.9 5.2 12.5 12.6 6.9 4.1
1.3 10.9 23.0 23.2 22.3 0.6 -0.2 1.7 -0.0

-7.5 -9.8 4.0 -7.4 -9.1 1.1 2.7 -7.4 -9.8
2.3 10.3 24.3 20.7 19.4 11.1 8.0 6.0 3.9

-16.4 -18.0 -4.4 -16.9 -18.2 -8.6 -5.8 -13.8 -19.7
-0.8 5.0 14.8 12.1 11.6 3.6 2.8 1.3 2.1

-0.2 -2.4 11.1 -0.1 -1.8 8.2 9.6 -0.1 -2.9
5.1 7.8 15.1 9.1 11.9 5.1 4.2 4.7 4.0

-10.8 -10.8 -4.4 -10.8 -10.8 -6.2 -5.3 -10.8
-7.2 -6.7 10.1 5.4 5.2 -3.6 -3.5 -7.3 -6.7

-8.9 -8.8 -2.5 -8.9 -9.0 -4.4 -3.3 -8.8 9.0

-10.8

-1.0 -1.5 21.1 16.2 17.8 4.8 5.0 2.0 0.8

-10.1 -10.1 -3.3 -10.1 -9.5 -3.0 -2.5 -7.2 -6.8
2.2 3.3 18.1 14.3 14.1 5.0 4.1 3.7 4.7

-6.6 -6.6 -0.2 -6.6 -6.6 -2.1 -1.1 -6.6 -6.6
-0.8 -0.9 13.6 12.7 12.3 -0.3 -0.6 -0.7 -0.6

59

Table VI
Unsigned errors due to generation for different parameter sets

1 2 3 4 5 6 7 8 9Parameter Set # ->

Experiment #1
BG=Sort1 FG=UC1

BG=Sort1 FG=W.TF

BG=Sort1 FG=Sort3

BG=Sort2 FG=UC2

BG=Sort2 FG=W.TI

BG=Sort2 FG=Sort3

BG=Sort3 FG=UC1

BG=Sort3 FG=Sort1

BG=UC2 FG=W.TF

BG=UC2 FG=Sort1

BG=UC2 FG=Sort2

BG=UC2 FG=Sort3

BG=W.TI FG=UC1

BG=W.TI FG=Sort1

BG=W.TI FG=Sort2

BG=W.TI FG=Sort3

Experiment #2

Experiment #3

Experiment #4

Experiment #5

Experiment #6

Experiment #7

Experiment #8

Experiment #9

Experiment #10

Experiment #11

Experiment #12

Experiment #13

Experiment #14

Experiment #15

Experiment #16

Experiment #17

BG=Sort3 FG=W.TF

24.0

21.8
16.0

21.1
12.9

17.9
31.3

26.4
34.6

9.2
8.8

11.0

6.6
10.7

14.7
16.0

7.4
21.5

9.5
26.8

10.5
17.0

16.3
40.5

11.3
16.8

9.8
14.2

16.5
44.1

21.2
14.2

28.2
20.2

18.1
57.0

27.0
62.5

7.9
18.7

9.9
33.2

6.6
19.2

17.8
26.9

7.5
46.5

9.6
70.4

9.6
29.2

16.6
79.7

11.3
41.6

9.9
53.8

7.0
15.5

12.0
23.6

25.1
15.0

16.3
13.4

13.1
27.9

26.8
36.7

9.7
11.5

12.7
15.9

6.7
19.0

10.3
32.8

18.3
16.9

17.3
47.0

6.8
15.2

5.9
17.4

3.2
7.5

15.9

10.5

7.0
7.3

16.6
28.0

19.6
15.4

23.8
14.4

18.1
40.0

7.7
15.2

17.3
17.3

7.5
25.5

6.5
17.3

9.5
34.2

9.3
21.8

16.6
57.9

28.0
43.3

9.7
18.4

9.9
24.3

11.3
17.2

9.7
15.3

10.5
12.6

7.0
7.4

11.9
41.8

23.0
15.0

27.1
17.3

16.5
51.5

13.3
16.8

18.0
24.0

6.8
43.6

9.5
17.1

10.2
62.0

19.4
26.4

18.1
71.2

28.6
54.5

14.0
29.1

5.1
39.1

4.4
45.2

4.7
32.0

3.0
14.3

15.9
43.9

21.5

28.2
20.9

18.0
56.7

8.2
17.2

17.6
26.4

7.4
45.6

6.6
21.4

9.6
57.6

10.6
28.2

16.2
80.7

26.4
61.6

9.8
22.0

11.3
40.9

9.8
49.7

10.5
34.1

7.0
16.7

14.5

9.8
31.5

13.7
8.0

4.4
11.7

12.2
16.7

11.8
22.2

26.1
16.1

15.0
13.1

14.5

4.9
9.3

10.3
10.8

13.4
15.3

6.6
17.9

10.1
30.5

20.2
16.9

17.6
40.2

5.9
13.9

5.0
15.3

3.1
7.3

12.6
27.4

32.8
27.5

9.9

13.1
15.9

15.9
23.8

13.3

17.4
28.3

28.7
36.81

9.3
9.7

7.6
12.1

6.8
11.5

14.7
15.7

7.4
21.2

9.5
30.5

10.6
17.2

16.3
48.3

11.3
16.3

9.7
20.5

6.9
7.3

16.8
24.3

21.2

21.9
13.3

8.1
7.5

7.2
12.6

6.5
11.3

15.4
15.8

7.5
20.8

10.7
32.1

9.0
16.8

16.9
45.9

11.3
17.1

9.9
18.5

7.0
7.1

21.7
15.8

21.0

9.7
17.9

16.0

29.5
18.4

27.0
39.1

10.0
18.5

60

eij represents the net delay in the execution of that segment due to generation (Equation 3c).

Considering that each job produces close to 200 checkpoints during its execution, the information

about all pairs of checkpoints is too voluminous to be meaningfully visualized; therefore, we group dif-

ferent data pairs into frequency classes. Let us consider a resolution of 12 seconds along the l-axis, and 4

seconds along the e-axis. For notational convenience, let us refer to each frequency class as <E,L>,

where both E and L denote ranges: E represents a 4-second range along the e-axis, and L, a 12-second

range along the l-axis. Let fE
L denote the number of data points whose l and e values lie within these

ranges; i.e.,

(3f)fE
L = | {<l,e > such that l ∈ L and e ∈ E} | .

Further, let R(E) denote a super-range formed by including all the ranges to the left of (and including) E

on the e-axis. The, we can compute the cumulative probability of error:

(3g)pE
L =

E
ΣfE

L

fR (E)
L

hhhhh .

pE
L represents the probability that jobs whose length lies inside the range L will incur an error that lies

either inside or to the left of the range E.

Figure 20 shows contour plots of pE
L in the e-l space. Each contour connects points with equal

cumulative probability of error. Since the line of zero error is a vertical line right down the middle of the

contour plot, we can see why parameter sets 3, 4, and 5 are so bad: almost all the errors are large for any

interval of reasonable size. This figure also shows that most of the contours for parameter set 7 lie close to

the line of zero error; this parameter set was selected for use in the data-collection phase of our experi-

ments.

A detailed view of the contour plot for parameter set 7 is shown in Figure 21. The Y-axis represents

length of possible preemption interval in seconds; the X-axis represents possible delays (also in seconds).

Parameter set 7 was selected from the nine sets shown in Figure 20 because its contours are clustered

tightly around the line of zero error. The nineteen contours divide the space into twenty regions of equal

61

-60 -20 20 60 100

120

240

360

480

600

-60 -20 20 60 100

120

240

360

480

600

-60 -20 20 60 100

120

240

360

480

600

(1) (2) (3)

-60 -20 20 60 100

120

240

360

480

600

-60 -20 20 60 100

120

240

360

480

600

-60 -20 20 60 100

120

240

360

480

600

(4) (5) (6)

-60 -20 20 60 100

120

240

360

480

600

-60 -20 20 60 100

120

240

360

480

600

-60 -20 20 60 100

120

240

360

480

600

(7) (8) (9)
Figure 20. Contour plots of cumulative probability of error with nine different parameter sets

Each contour connects points with equal cumulative probability of error. The Y-axis represents possible
lengths (in seconds) of the preemption interval; and the X-axis, errors due to generation (also in seconds).
There are twenty regions of equal probability: the leftmost region corresponds to cumulative probabilities
of error between 0 and 0.05; the one to its right, between 0.05 and 0.1; and the rightmost one, between
0.95 and 1.

62

LENGTH OF
MIGRATION
INTERVAL
(SECONDS)

ERRORS DUE TO GENERATION (SECONDS)

90% CONIFDENCE
INTERVAL

LINE OF ZERO ERROR

-60 -20 20 60 100

120

240

360

480

600

Figure 21. Contour plot of cumulative probability of error for the selected parameter set (7)
hh

probability; thus, if we omit the leftmost and rightmost regions, then we can say (with 90% confidence)

that all the errors for a preemption interval of 6 minutes (360 seconds) will lie in the range [-60,+32]

seconds. Further, we believe that the somewhat larger errors along the middle of the Y-axis are due to

repeated inclusion of a few small intervals having large errors. Even so, Figure 21 shows that there is

63

room for improvement in both the parameterization and parameter-selection of DWG. Perhaps, better

modeling of the process-level scheduling algorithm and better parameterization of the generation process

will bring DWG even closer to perfect generation.

We performed additional experiments in which no foreground jobs were introduced, in order to

evaluate DWG’s behavior in the absence of foreground jobs. In all such experiments, DWG was able to

reproduce the checkpoint timings exactly, with zero error.

4) Comparison of recorded and reproduced loads

For the selected parameter set (7), we compared the load patterns of individual resources from the

control experiment against the corresponding load patterns from the generation experiment. Figures 22

and 23 show, respectively, the comparison for experiments #15 and #17 (also see Tables V and VI). Visu-

ally, we can confirm that the generator reproduces the utilization patterns rather well when the doctoring

rules use the selected parameter set.

F. Chapter Summary

Physical-level synthetic workload generation is vital for load-balancing experiments. We have

described DWG, a workload-generation tool that accurately replays measured workloads in the presence

of competing tasks. To do so, it needs to compensate for foreground-background interactions using

dynamic-doctoring rules. Perfect doctoring of generated loads is precluded by the impracticality of

exactly modelling process-level scheduling policies. DWG performs reasonably even though it main-

tains only a few scalar items of information about pending work. Completion-time measurements

obtained using DWG are used for learning new load indices (Chapter IV) as well as new load-balancing

policies (Chapter VI).

64

0

0.2

0.4

0.6

0.8

1

250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

250 300 350 400 450 500

CPU (control experiment) CPU (generation experiment)

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

Disk (control experiment) Disk (generation experiment)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600 700 800

Network (control experiment) Network (generation experiment)

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800

Memory (control experiment) Memory (generation experiment)

Figure 22. Comparison of true and generated resource-utilization patterns (Expt. #17)

This figure shows the true utilization patterns of various resources to the left; and the generated ones, to
the right. For CPU, the Y-value is either 0 or 1, indicating whether CPU was busy; the X-axis represents
time (1 unit = 20 ms). For the remaining resources, sampled plots are shown, with 100 samples per
minute. The X-axes in these cases show time (1 unit = 1/100 min.). The Y-axes show: for disk, transfers
per tick; for network, packets per tick; and, for memory, the number of free pages.

65

0

0.2

0.4

0.6

0.8

1

250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

250 300 350 400 450 500

CPU (control experiment) CPU (generation experiment)

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

Disk (control experiment) Disk (generation experiment)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600 700 800

Network (control experiment) Network (generation experiment)

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800

Memory (control experiment) Memory (generation experiment)

Figure 23. Comparison of true and generated resource-utilization patterns (Expt. #15)

This figure shows the true utilization patterns of various resources to the left; and the generated ones, to
the right. For CPU, the Y-value is either 0 or 1, indicating whether CPU was busy; the X-axis represents
time (1 unit = 20 ms). For the remaining resources, sampled plots are shown, with 100 samples per
minute. The X-axes in these cases show time (1 unit = 1/100 min.). The Y-axes show: for disk, transfers
per tick; for network, packets per tick; and, for memory, the number of free pages.

66

CHAPTER IV.

COMPARATOR NEURAL NETWORKS FOR LEARNING LOAD INDICES

O! this learning, what a thing it is.

- William Shakespeare

This chapter presents the details of our approach to off-line learning of load indices. In Section A,

we formally state our learning task: learning to compare functions of multivariate time series. In Section

B, we present the comparator-network architecture and its associated learning algorithms. Section C

describes how the raw measurements collected using DWG are smoothed using digital lowpass filters,

and short-term trends in resource-utilization extracted using linear and exponential extrapolation. Section

D presents the learning curves for the comparator networks; and Section E, methods for the statistical

assessment of new load indices. Section F concludes this chapter, and illustrates how the index functions

learnt by our method convert raw measurements collected by DWG into load indices suitable for use by

load-balancing policies.

A. Design Goals

Overheads of communication preclude transmission of large quantities of status information among

sites. This limitation applies to both the number of items transmitted and the rate of transmission. Raw

utilization levels of resources are highly dynamic vector quantities, whose communication would incur

too much overhead; they are, therefore, not suitable for communicating load information among sites.

Sites need this information in order to compare alternative destinations (or loading conditions) for an

incoming job. Since different loading conditions lead to different completion times, and since our objec-

tive in load balancing is to find the destination that leads to minimum completion time for an incoming

job, the comparison of different loading situations should be consistent with the comparison of their com-

67

pletion times for the incoming job.

Completion times of jobs are unknown at their time of arrival. Given our lack of information about

the resource-intensities of different jobs, and unavailability of models relating resource-utilization pat-

terns to job-completion times, we have two options: (i) we can attempt to model various characteristics of

tasks and resources, and then analytically compute completion times using these models; or (ii) we can

directly estimate the completion times of tasks using functions statistically estimated from data. The first

approach is complicated by the data-dependence and program-dependence of task models; the informa-

tion necessary for constructing such models cannot be obtained without some prior knowledge of the rela-

tionships between the input data and program behavior.

The data for the second approach, direct estimation of completion times, can be easily obtained

using DWG, our synthetic workload generator. These data contain information about (i) the utilization

patterns of different resources prior to the arrival of a test job; and (ii) completion times of that job at

each of the alternative destinations. As far as tasks are concerned, the second approach suffers from the

same lack of information as the first approach. However, for resources, the problem with the second

approach is the overabundance of information, rather than the lack of it. Ignorance of task models may be

overcome by estimating load-index functions that apply reasonably well to data collected for many dif-

ferent jobs representing different kinds and different levels of resource intensities. Overabundant infor-

mation can be handled by load-index functions that make predictions using only a small number of

resource-utilization values simultaneously.

The information content of utilization patterns along the time dimension can be reduced by using

smoothing techniques, such as moving averages [25] and lowpass filtering [78]. Trends can be extracted

from these smoothed patterns and used for estimating the average utilization of a resource in the near

future. Further reduction in information can be achieved by combining the information from multiple

resources into a scalar load index.

68

Utilization levels are available for only the resources local to a computer — CPU, memory, and

(only at diskful sites) disk — and the (shared) network resource. Therefore, the scalar load indices should

not depend on the utilization of resources at remote sites (such as remote disks).

Our goal in load-index learning, therefore, is to estimate functions Fs , one per site, such that (i) the

functions do not assume any prior information about the job being scheduled; (ii) they depend only on

(smoothed, or otherwise processed) local resource-utilization values; and (iii) the ranking induced on

alternative destinations by these functions is consistent with the ranking induced on those same destina-

tions by the true completion times.

Let FA
W(k) denote the value site A’s load-index function, where k identifies the background load pat-

tern and W denotes the current values of the weights (or parameters) of FA . k refers to a vector of values

derived from the recent behavior of loads on different locally accessible resources. Whenever it is obvi-

ous, we will omit the superscript W from our equations. In this context, the objective of load-index learn-

ing (Figure 9) can be formulated as:

(4a)FA(k.j_A) − FB(k.j_B) =
C (j, 0,0)

C (j,k,A) − C (j,k,B)hhhhhhhhhhhhhhhhh,

for all jobs j, for all background load patterns k, and for all pairs (A,B) of sites. The right-hand side of this

equation denotes the difference of relative completion times. As to why we do not, instead, predict the

absolute difference in completion times, C (j,k,A) − C (j,k,B), the reason is the lack of information about

the resource intensities of job j; without knowing these, there is no way to estimate (in absolute terms)

how long a job will run under any loading conditions.

It is enlightening to examine the conditions under which the value of the expression on the right-

hand side of Equation (4a) will not depend on the job j being scheduled. Let us consider the expression

C (j, 0,A)
C (j,k,A)hhhhhhhhh , which is the ratio of the completion time under load to the idle completion time for the same

job and the same site. This ratio is known as stretch factor [58], and its denominator, as the service time

69

of job j at site A; the latter depends only upon the job and the site, but not on the load. Further, the com-

pletion time C (j,k,A) can be expressed as a sum of service time and waiting time:

(4b)C (j,k,A) = C (j, 0,A) + W (j,k,A),

where W (j,k,A) is the time spent by job j waiting for resources. When the operating system employs

round-robin scheduling policies at the process level, the waiting time W (j,k,A) of job j grows linearly

with its service time; that is, the longer the job, the more time it spends waiting for resources. The rate of

(linear) growth depends upon the load: when the load is high, even short jobs can take a long time to

complete. Therefore, we can rewrite Equation (4b) as:

(4c)C (j,k,A) = C (j, 0,A)[1 + G (k,A)],

where G (k,A) is a site-specific function that increases monotonically with load.

Under the model of completion times described above, the stretch factor
C (j, 0,A)
C (j,k,A)hhhhhhhhh depends only

upon the load k and site A, but not on the job j. If we further assume that the different sites of our distri-

buted system come from the same architecture family and differ only in their raw speeds, then

(4d)C (j, 0,A) = K (A)C (j, 0,0),

where K (A) is some site-specific constant; that is, the service times of a job at different sites are constant

multiples of each other. Now, we can rewrite Equation (4a) as

(4e)FA(k.j_A) − FB(k.j_B) = K (A)[1 + G (k,A)] − K (B)[1 + G (k,B)].

Notice that the right hand side does not depend upon the job j being scheduled. Therefore, under the

assumptions described above, the objectives described by Equation (4a) are achievable without prior

knowledge of the job being scheduled. This should not come as a surprise since stretch factors have been

used previously as load indices in computer systems [60].

The two assumptions required for the just-proved independence between the characteristics of a job

j and the right-hand side of equation (4a) are: (i) waiting time grows linearly with service time; and (ii)

different sites come from the same architecture family. The first of these assumptions is a reasonable

70

requirement of any fair scheduling policy, and is approximately true of UNIX-related operating systems

that employ variants of round-robin scheduling. The second assumption is generally true of workstation-

based computing environments, because even workstations from different vendors often employ the same

microprocessor architecture.

Given the objectives described in Equation (4a), we have two options. We can either solve the

learning-to-predict problem whose objectives can be defined as

(4f)FA(k.j_A) = K (A)[1 + G (k,A)],

or we can solve the learning-to-compare problem whose objectives are defined by Equation (4a). As we

argue in Chapter I, we prefer the latter problem because it is more naturally related to our overall objec-

tive of comparing alternative destinations for an incoming job.

How well the objective described by Equation (4a) can be satisfied depends upon several factors.

Let us denote by W the space of all parameter values for functions Fs , and let F = {F W: W ∈ W}. The

load-index function we shall learn must belong to the family of functions F. Even when the best function

from this family is used, the error between the left and right sides of Equation (4a) may not be zero for all

data points; such errors contribute to the approximation error of a learning approach. Approximation

errors are defined independently of the learning algorithm used for adjusting the weights W.

A given training algorithm may not be capable of finding the optimal weights W in reasonable

amount of time. The error incurred due to suboptimality of weights W is called estimation error; it

depends upon the particular training algorithm used.

We need an approach that reduces both the approximation error as well as the estimation error.

More importantly, we need to examine how exactly we compute errors. For example, we could minimize

the sum of errors (or the sum of squared errors) between the left and right sides of Equation (4e). Notice,

however, that the problem we are solving is one of obtaining accurate comparison in most situations; we

would like both the left and right sides of Equation (4a) to have the same sign, without worrying about

71

the magnitude of the difference. Our goal, therefore, is to learn load-index functions that, when compared

across sites, correctly predict (for most test-cases) the site with the lower relative completion time. Since

our point of reference (completion time on idle fileserver) is fixed for any given job, the site that has

lower relative completion time will also have the lower absolute completion time.

We have a database of test-cases, each of which contains loading information and completion-time

measurements for the same job on a pair of sites. We used a total of ten test jobs: the seven jobs shown in

Table III, and three additional benchmarks from the Perfect Club suite [22]: (i) QCD (quantum chromo-

dynamics); (ii) TRACK (target tracking); and (iii) DYFESM (structure analysis). Each benchmark was

instrumented to produce approximately 200 checkpoints during its execution. The Perfect Club bench-

marks were modified so that they could complete within five minutes on an idle Sun 3/50 workstation.

The period from the beginning of an instrumented benchmark to one of its checkpoints was treated like an

independent job. The basic idea here is to simulate short jobs that might result if the test job were

preempted and rescheduled at some point during its execution. Even though this technique creates a

larger set of test-cases, it also creates an approximation effect since two jobs corresponding to different

checkpoints of the same benchmark program may have similar resource requirements. In order to avoid

choosing checkpoints too close to each other, we created our final database by selecting the first check-

point of each benchmark and thereafter, the next checkpoint that took at least 5% longer than the one

selected before it. In addition, the final checkpoint of each job was always included. We ended up with a

total of only 58 jobs, with about five checkpoints per program being selected; each of these jobs was run

at each of the four sites and under about 24 different load patterns, for a total of 5,324 test-cases.

Of the 24 background load patterns used in our experiments, 20 were created using the procedure

described in Section II.B.1, by running jobfiles created randomly from the pool of 10 test-jobs described

above. The remaining 4 load patterns were designed to create suprises for the load-index function. We

started with an actual, heavy, system-wide workload and patched together pieces of it and the idle work-

load pattern P(0), such that the resulting load patterns would frequently contain loading conditions just

72

the opposite of those prior to the job’s arrival. Since the load index has access only to the loading condi-

tion before a job’s arrival, its predictions would falter under these ‘surprising’ loading conditions. Since

real workloads often have unpredictable changes in workload, whose likelihood increases with the length

of the load pattern, we packed more surprises near the end of the load pattern. We expect that, because of

these load patterns, the performance (speed-up over local execution) attained by a task at the site with the

least load-index function will tend to drop with the length of the task, approaching the performance of

random choice for very long tasks.

We partitioned the final database into a training set and a test set. We used the training set to tune

the weights of the load-index functions, and the test set to evaluate the trained functions. Suppose that

the test set T = {t (j,k,A,B) | j ∈ J; k ∈ K; A, B ∈ S ; A≠B}, where J is the set of test jobs, K is the set of

load patterns, and S is the set of sites. Each test-case t (j,k,A,B) is a 5-tuple <k.j_A, C(j,k,A), k.j_B,

C(j,k,B), C(j,0,0)>. The objective function for load-index learning can be formally defined as shown in

Figure 24. Our goal is, therefore, to learn those load-index functions from data that maximize the number

(and, thereby, the percentage) of correct comparisons.

hh

Minimize
t∈T
Σ E (t) ,

where

E (t (j,k,A,B)) =
I
K
L1
0

otherwise

if (FA(k.j_A) − FB(k.j_B)).(C (j,k,A) − C (j,k,B)) > 0

Figure 24. The objective function for load-index learning

The objective function shown above counts the number of test-cases for which the comparison of load-
index functions does not give the same answer as the comparison of actual completion times. For any
given test set, minimizing the above function is tantamount to maximizing the percentage of correct
comparisons.
hh

73

B. The Comparator Network: Architecture and Learning Algorithms

A variety of methods are available for learning functions from data, such as regression [50], induc-

tive learning [148], and feedforward neural networks [56, 154]. In comparison, little is known about the

problem of learning to compare functions. One exception is the work of Tesauro [179], who invented the

comparator-neural-network architecture for learning to compare alternative moves for the game of back-

gammon. His approach does not directly carry over to the problem of comparing functions of time series.

Our approach, described in this section, was motivated by Tesauro’s work; however, in adopting his work

to the index-learning problem, we have made significant departures from both his network configurations

and training algorithms.

Figure 25 shows a schematic of our comparator neural network. Compare this figure with Figure 9.

The new figure shows the details of the training algorithm, and the flow of information during a typical

hh

Current value
from left trace

Current value
from right trace

Delay
element

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh.....

hhhhhhhhhhhh

hhhhhhhhhhhh
hhhhhhhhhhhh

hhhhhhhhhhhh

hhhhhhhhhhhh

hhhhhhhhhhhh

....

.....

hhhhhhhhhhhh

hhhhhhhhhhhh
hhhhhhhhhhhh

hhhhhhhhhhhh

hhhhhhhhhhhh

hhhhhhhhhhhh

....

hhhhhh

hhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhh

hhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhh

....

....

LEFT
SUBNET

RIGHT
SUBNET

OR

OL

+1

-1
IR

IL

FILTERING
[& PREDICTION]

OL
D = OL − 2η(OL − OR − OD)

OR
D = OR + 2η(OL − OR − OD)

ODOA

Figure 25. A typical episode in training a comparator neural network

74

learning trial. Each learning trial involves one test-case from the training set: first, the resource-utilization

information from a randomly selected test-case is presented at the inputs (to the left); then the actual out-

puts of the two index functions are computed; based on these outputs, the training algorithm computes the

desired outputs for each of the index-functions; finally, the two index functions are modified so that

future presentations of similar inputs will generate outputs closer to their respective desired outputs. The

rest of this section is devoted to the derivation of the training algorithm.

Raw utilization patterns enter from the left of Figure 25; the delay elements create a window of

recent values; the traces from each window are smoothed using lowpass filtering and a measure of future

resource utilization predicted by extrapolating the smoothed trace (see next section for details). Vectors of

these predictions constitute the inputs IL and IR of the load-index functions (shown as triangles in Figure

25).

We implemented load-index functions using feed-forward neural networks [118]. Each network

comprises three layers of units: an input layer, a hidden layer, and an output layer. The output layer has

only one unit called the output unit. Units are interconnected by links. Links are uni-directional, and can

connect either a unit in the input layer to a hidden unit or the output unit, or a unit in the hidden layer to

the output unit. Associated with each link is a parameter called the weight of that link. The weight on a

link going from the ith unit to the jth unit of the network is denoted wji . Our networks are fully con-

nected; that is, every unit in the input layer is connected to every unit of the hidden and output layers, and

every unit in the hidden layer is connected to every unit in the output layer. Figure 26 shows the

schematic of such a feed-forward neural network. The set of parameters W for the load-index function at a

site consists of all the wji values, where i and j are units in the feed-forward network for that site.

There are a number of reasons for using feed-forward networks to implement empirical learning of

functions from data. Of these, the most compelling is a theorem of Cybenko [39]: When the output of

each unit of a feed-forward network is given by the sigmoidal function of its net input, then a network

having the structure shown in Figure 26 can approximate any [continuous] function [defined on a unit

75

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

Figure 26. Schematic of a feed-forward neural network
hh

cube in the space of inputs] with arbitrary accuracy, provided that the network has sufficiently many units

in the hidden layer. The sigmoidal function is defined as follows:

(sigmoidal function)f (x) =
1 + e −x

1hhhhhhh .

A second important reason for using feed-forward neural network is the common availabilty of

several supervised learning methods [80]; given the actual and desired outputs for a feed-forward neural

network, these methods can determine the appropriate modifications to the weights of that network. Of

these, the most popular is the generalized delta rule (also known as the ‘‘back-propagation algorithm’’) of

Rumelhart, et al. [154]. While other better (more accurate and more efficient) learning procedures are

known [33, 55, 56], we chose to use the ‘vanilla’ back-propagation algorithm because of its availability in

a public-domain simulation package [69].

76

The outputs of input-layer units are set at the beginning of each learning trial using filtered and

extrapolated resource-utilization values, which are in turn derived from information contained in the test-

case chosen for that trial. The outputs of hidden-layer and output-layer units depend upon their net inputs.

The net input of unit i (in the hidden or output layer) is given by
j
Σwjioj , where oj denotes the output of

unit j.

Let us denote by OL the output of the only unit in the output layer of the left subnet; and,

correspondingly, OR , of the right subnet. In order to use the back-propagation learning procedure for

training the subnets, we need to determine their desired outputs for every input. Let us denote by OL
D the

desired output of the left subnet; and, correspondingly, OR
D , of the right subnet. Further, let us denote by

OA the actual output of the comparator network; that is,

OA = OL − OR.

Given our objectives stated in Equation (4a), OA corresponds to the left-hand side of that equation. There-

fore, the desired output of the comparator network (denoted OD) is given by the right-hand side of Equa-

tion (4a). That is,

OD =
C (j, 0,0)

C (j,k,A) − C (j,k,B)hhhhhhhhhhhhhhhhh.

The value of the objective function shown in Figure 24 will be reduced if both OA and OD have the same

sign. That can be achived by driving their values closer together. Let us denote by ELMS the sum (over all

test-cases in the training set) of squared errors between the actual and the desired outputs of the compara-

tor. That is,

ELMS =
t
Σ(O − OD)2 .

We can minimize ELMS by performing gradient descent [188]; that is, by adjusting the outputs of the left

and right subnets along their respective partial derivatives of error:

∆OL ∝ −
∂OL

∂ELMShhhhhh ,

77

∆OR ∝ −
∂OR

∂ELMShhhhhh .

Introducing a constant of proportionality, η, also known as the learning rate, we obtain:

∆OL = −η
∂OL

∂ELMShhhhhh ,

∆OR = −η
∂OR

∂ELMShhhhhh .

Hence, we obtain the desired outputs for the left and right subnets:

(Training algorithm)OL
D = OL − 2η(OL − OR − OD),

OR
D = OR + 2η(OL − OR − OD).

One final detail needs to be worked out: ensuring the anti-symmetry of comparison. We resolve this

problem by biasing the order of presentation of test-cases to the comparator. Test-cases are presented in

pairs, one after another. If the first test-case in the pair is t 1(j,k,A,B), then the second test-case must be

t 2(j,k,B,A). Thus, whenever index-functions are forced to predict that one completion time will be larger

than another, they must (in the very next learning trial) predict that the latter will be smaller than the

former. Such an order of presentation should improve the consistency of comparison, while obviating cer-

tain architectural constraints imposed by Tesauro [179] in his original design for solving the same (con-

sistency) problem. Tesauro’s design achieves consistency between left and right subnets by sharing (or

linking [113]) the corresponding weights of the left and right subnets.

C. Data Preprocessing

During actual operation, the preprocessing stage precedes the training stage. In this stage, informa-

tion about short-term trends of resource-utilization patterns is extracted from the raw measurements made

by DWG just before a test job was introduced. This is the best possible scenario as far as communication

among sites is concerned; i.e., all sites have the most up-to-date information. Effects due to overhead of

communicating this information between sites, as well as those due to the interval of computation (age)

78

of the load index, will be accounted for in the load-balancing policies.

Smoothing removes high-frequency variations from signals and exposes (short-term as well as

long-term) trends in data. Trends exist in resource-usage patterns because of locality in the behavior of

programs that generate resource requests. The nature of the trend exposed depends upon the degree of

smoothing. Lowpass filtering and moving averages are equivalent ways of smoothing [25, 78]. We

prefer the filtering formulation because it allows precise specification of the degree of smoothing. In a

lowpass filter, the degree of smoothing is controlled by the cutoff frequency of the filter, which (for our

purposes) is that fraction of the maximum frequency in the frequency-domain representation of the signal

beyond which attenuation is almost total. (We use the symbol F
max

to denote the maximum frequency.)

The lower the cutoff frequency, the greater is the degree of smoothing, and the longer is the interval over

which the trend of the smoothed signal can be extrapolated. Figure 27 illustrates the effects of five dif-

ferent cutoff frequencies on the disk-utilization pattern shown in Figure 22, Chapter III. Notice how the

pattern at the bottom right of the figure (generated from the raw signal by filtering out 99% of its fre-

quency content) contains just the very long-term trend of disk usage. In comparison, the one above it con-

tains a little more short-term trend because it attenuates only 95% of the frequency content. We imple-

mented our smoothing algorithm using Butterworth filters [78], which are easy to design and implement,

and have good BIBO (bounded input/bounded output) stability. The accuracy with which a Butterworth

filter approaches complete attenuation beyond the cutoff frequency depends upon its order. Larger orders

give sharper cutoff but introduce greater delays at the output.

A priori, it is not clear how much smoothing will be adequate. One solution to this problem is the

use of adaptive filters [198], which adapt their parameters in response to errors at their output. However,

unlike Butterworth filters, adaptive filters cannot be reliably implemented using off-the-shelf techniques.

Therefore, we chose to use a bank of Butterworth filters, covering a reasonable range of cutoff frequen-

cies. Specifically, we chose the five cutoff frequencies illustrated in Figure 27: 1%, 5%, 10%, 25%, and

50%. All our filters were of order 7, which is large enough to get a sharp cutoff and yet small enough that

79

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

(Raw data) (Cutoff at 10% of Fmax)

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

(Cutoff at 50% of Fmax) (Cutoff at 5% of Fmax)

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800

(Cutoff at 25% of Fmax) (Cutoff at 1% of Fmax)

Figure 27. Effects of lowpass filters of order 7 with different cutoff frequencies
hh

it does not incur too much delay. Any other reasonable choice of cutoff frequencies and filter order should

work equally well.

80

Trends in resource usage are useful because they are indicative of the competition an incoming job

could face from the (background) processes generating the pattern observed just before the incoming

job’s arrival. The amount of work that the background processes will create for the incoming job can be

represented by the area under the true resource-utilization curve. However, the true curve is not known at

the time of computing the load index; instead, we can estimate the amount of future background workload

by extrapolating the current trends and computing the areas under the extrapolated curves.

In our implementation, trends are detected by fitting a parametric curve to a window of recent

(filtered) resource-utilization values. Two types of trends are considered: linear and exponential. Other

parameteric forms are possible; however, our experience suggests that resource-utilization patterns of typ-

ical real workloads are adequately represented by a combination of linear and exponential forms. Figure

28 illustrates our approach with a schematic diagram of the fitting process. First, we use (dynamic)

regression [123] to fit the parameteric form to a moving window of recent filtered values. (In our imple-

mentation, we used windows containing 250 uniformly-spaced samples 20 milliseconds apart.) Next, we

compute the areas under each fitted curve. Since there are 5 different filters and 2 different extrapolation

hh

Job’s time of arrival

filtered
load
patterns

Linear fitting

Exponential fitting

Predicted
areas

Figure 28. Trend extraction via linear and exponential fitting

81

techniques, we obtain 10 values of predicted areas per resource. Since each site has access to four

resources — CPU, memory, network, and disk — each load pattern on a site yields 40 areas just before

the job’s arrival. (Disk utilization is set to zero for diskless sites.) A vector containing the areas of a site’s

local and shared resources is applied at the input layer of that site’s feed-forward network. The function

computed by the network becomes the predicted value of that site’s load index.

Numerous alternatives are available for smoothing and extrapolation. For example, one can use (i)

adaptive filters [198] instead of a bank of pre-designed filters; (ii) singular-value decomposition [70] to

identify the recent utilization values useful for prediction of relative completion time; or, (iii) recurrent

neural networks [192], which consider only the current input at any given time. The approach we have

chosen is pragmatic and off-the-shelf tools and techniques can be used to implement it. Most importantly,

our preprocessing methods achieve their purpose with low overhead and, in that respect, are at least as

good as any other alternative we could have implemented.

D. Empirical Results

This section presents our results on learning load indices for a system containing four sites. Each

test-case contains 40 extrapolated values of areas under extrapolated resource-utilization patterns and two

additional fields, C (j,k,A), and C (j, 0,0), where j identifies the job, k identifies the background load pat-

tern, and A the site at which j was executed.

The training algorithm described in Section B was applied to 40×40×1 networks (i.e., networks con-

taining 40 hidden units each). In determining the number of hidden units, we used the popular rule of

thumb that a network must contain approximately half as many weights as there are training patterns. The

learning parameter η was set to 0.001, and the momentum parameter of the back-propagation algorithm

was set to 0.99.

82

We begin by randomly assigning 10 percent of the jobs to the test set and, the remaining 90 percent,

to the training set. The networks are trained using the training set, and their accuracy measured on the test

set. Partitioning data between training set and test set is the usual way to prevent biasing of the index-

functions to the training set. Training and testing alternate; during each epoch of training, the networks

are trained on 1,000 randomly chosen comparisons from the training set, and tested on 100 randomly

chosen comparisons from the test set. Each comparison involves two loading situations for the same job.

Training is done in two stages. Stage 1 starts with two identical networks (with random initial weights)

for each site; these are trained to compare different loading conditions for the same job at the same site.

In Stage 2, just the left networks from each site are further trained to compare different sites for the same

job under the same system-wide load pattern. Unlike in Stage 1, the roles of the left and the right load-

index functions (Figure 25) cannot be reversed during Stage 2.

If we were solely interested in the four-processor system that we measured, Stage 1 would be

unnecessary. However, as explained in Chapter VI, we can simulate larger systems by ‘cloning’ sites. In

cloning, the loading conditions for a clone at any given time are selected randomly from the loading con-

ditions of its parent at all times. Without getting into the details of cloning, we would like to note that

comparisons between clones (or between clones and their parents) are tantamount to comparisons

between differrent loading situations for the same job at the same site.

Figures 29 and 30 show the learning curves for Stages 1 and 2, respectively. These figures show that

(i) accuracy improves with training; and (ii) almost 90% accuracy is attained within only a few epochs.

Stage 1 starts with near-50% accuracy because initial weights are set are randomly. (Comparisons using

random weights should be about as accurate as those using the toss of a fair coin.) Stage 2 starts with net-

works already trained to compare different loading conditions for the same site; therefore, its learning

curve exhibits (i) initial accuracy higher than 50%; and (ii) steeper growth than Stage 1’s curve.

83

40

45

50

55

60

65

70

75

80

85

90

95

0 5 10 15 20 25 30 35

%

c
o
r
r
e
c
t

o
n

t
e
s
t

s
e
t

training time (epochs)

Figure 29. Learning curves for within-site comparisons

60

65

70

75

80

85

90

0 5 10 15 20 25 30 35

%

c
o
r
r
e
c
t

o
n

t
e
s
t

s
e
t

training time (epochs)

Figure 30. Learning curves for across-site comparisons

84

E. Evaluation of Load Indices Learned using Comparator Networks

Our overall goal in training comparator networks is to learn load-index functions using which alter-

native sites for an incoming job can be ranked as though by their (as yet unknown) relative completion

times. If we rank all available test-cases (all the different sites and loading patterns) of a job by their load

indices, then we would like this ranking to have high correlation with the true ranking of these test-cases.

The true ranking is, of course, the one induced by the measured completion times, C (j,k,A).

One way to measure the correlation between two different rankings of the same data is to compute

the rank-correlation coefficient [122], defined as:

r = 1 −
n(n 2 − 1)

6.
i
Σdi

2

hhhhhhhh,

where di is the difference between the two different ranks of the ith test-case, and n is the number of test-

cases ranked. The value of r ranges between -1 and +1, where -1 indicates strong disagreement between

rankings, 0 indicates no correlation, and +1 indicates strong agreement. This coefficient can be computed

for each of the 56 jobs in our test-case database.

If there is no relationship between the two rankings, then the sampling distribution of r can be

approximated with a normal distribution N(0, σ), where σ, the standard deviation, equals (n − 1)−0.5 [122].

If we let z = r/σ, then z will be distributed according to the two-sided standard normal distribution N(0,1).

Using this fact, we can set up the following null hypothesis:

[H0] There is no relationship between the true ranking and the ranking induced by the load-index func-

tions learnt using comparator networks.

We would like to reject H0 with high confidence. Given a confidence level α, we can look up the table of

standard normal distribution to find an A such that

Pr(| z | ≤A) ≥
2

1 − αhhhhh .

85

In particular, A takes on the values 2.58, 1.96, 1.65, and 1.15, respectively, for corresponding α values of

0.01 (99% confidence), 0.05 (95%), 0.1 (90%), and 0.25 (75%). Knowing A and n, we can determine

significance levels for r. If, for instance, the absolute value of r exceeds its 99% significance level, then

H0 can be rejected with 99% confidence. Tables VII and VIII show, for each test-job, the number of

test-cases n of that job, the associated σ value, and the measured rank-correlation coefficient r. The four

Table VII
Significance test for coefficient of rank-correlation (I)ii

Job Significance levelsiiiiiiiiii iii
j c

n σσ r
99% 95% 90% 75%ii

0 1 96 0.102598 0.7113 0.264702* 0.201092 0.169286 0.117988ii
0 2 96 0.102598 0.754341 0.264702* 0.201092 0.169286 0.117988ii
0 4 96 0.102598 0.786096 0.264702* 0.201092 0.169286 0.117988ii
0 8 96 0.102598 0.809441 0.264702* 0.201092 0.169286 0.117988ii
0 17 96 0.102598 0.818218 0.264702* 0.201092 0.169286 0.117988ii
0 35 96 0.102598 0.781009 0.264702* 0.201092 0.169286 0.117988ii
0 77 96 0.102598 0.782976 0.264702* 0.201092 0.169286 0.117988ii
0 168 92 0.104828 0.818612 0.270457* 0.205464 0.172967 0.120553ii
0 999 96 0.102598 0.818638 0.264702* 0.201092 0.169286 0.117988ii
1 1 96 0.102598 0.667797 0.264702* 0.201092 0.169286 0.117988ii
1 2 96 0.102598 0.735879 0.264702* 0.201092 0.169286 0.117988ii
1 4 96 0.102598 0.759251 0.264702* 0.201092 0.169286 0.117988ii
1 9 96 0.102598 0.790505 0.264702* 0.201092 0.169286 0.117988ii
1 18 96 0.102598 0.805195 0.264702* 0.201092 0.169286 0.117988ii
1 39 96 0.102598 0.767512 0.264702* 0.201092 0.169286 0.117988ii
1 81 96 0.102598 0.778608 0.264702* 0.201092 0.169286 0.117988ii
1 999 96 0.102598 0.7906 0.264702* 0.201092 0.169286 0.117988ii
2 1 84 0.109764 0.780622 0.283192* 0.215138 0.181111 0.126229ii
2 46 84 0.109764 0.744882 0.283192* 0.215138 0.181111 0.126229ii
2 115 84 0.109764 0.803402 0.283192* 0.215138 0.181111 0.126229ii
2 999 96 0.102598 0.786367 0.264702* 0.201092 0.169286 0.117988ii
3 1 96 0.102598 0.502957 0.264702* 0.201092 0.169286 0.117988ii
3 13 96 0.102598 0.663714 0.264702* 0.201092 0.169286 0.117988ii
3 999 96 0.102598 0.785106 0.264702* 0.201092 0.169286 0.117988ii
4 1 96 0.102598 0.831823 0.264702* 0.201092 0.169286 0.117988ii
4 37 96 0.102598 0.786069 0.264702* 0.201092 0.169286 0.117988ii
4 139 92 0.104828 0.7905 0.270457* 0.205464 0.172967 0.120553ii
4 999 96 0.102598 0.779748 0.264702* 0.201092 0.169286 0.117988iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

86

Table VIII
Significance test for coefficient of rank-correlation (II)ii

Job Significance levelsiiiiiiiiii iii
j c

n σσ r
99% 95% 90% 75%ii

5 1 96 0.102598 0.84589 0.264702* 0.201092 0.169286 0.117988ii
5 37 92 0.104828 0.789066 0.270457* 0.205464 0.172967 0.120553ii
5 116 92 0.104828 0.736634 0.270457* 0.205464 0.172967 0.120553ii
5 999 96 0.102598 0.732311 0.264702* 0.201092 0.169286 0.117988ii
6 1 96 0.102598 0.617906 0.264702* 0.201092 0.169286 0.117988ii
6 4 96 0.102598 0.588009 0.264702* 0.201092 0.169286 0.117988ii
6 11 96 0.102598 0.566793 0.264702* 0.201092 0.169286 0.117988ii
6 25 96 0.102598 0.574986 0.264702* 0.201092 0.169286 0.117988ii
6 55 96 0.102598 0.543652 0.264702* 0.201092 0.169286 0.117988ii
6 135 96 0.102598 0.45898 0.264702* 0.201092 0.169286 0.117988ii
6 999 96 0.102598 0.526614 0.264702* 0.201092 0.169286 0.117988ii
7 1 96 0.102598 0.595496 0.264702* 0.201092 0.169286 0.117988ii
7 3 96 0.102598 0.688565 0.264702* 0.201092 0.169286 0.117988ii
7 7 96 0.102598 0.73923 0.264702* 0.201092 0.169286 0.117988ii
7 16 96 0.102598 0.768557 0.264702* 0.201092 0.169286 0.117988ii
7 31 96 0.102598 0.799267 0.264702* 0.201092 0.169286 0.117988ii
7 60 96 0.102598 0.777767 0.264702* 0.201092 0.169286 0.117988ii
7 122 96 0.102598 0.768421 0.264702* 0.201092 0.169286 0.117988ii
7 999 96 0.102598 0.770062 0.264702* 0.201092 0.169286 0.117988ii
8 1 96 0.102598 0.78615 0.264702* 0.201092 0.169286 0.117988ii
8 41 96 0.102598 0.776492 0.264702* 0.201092 0.169286 0.117988ii
8 195 96 0.102598 0.776207 0.264702* 0.201092 0.169286 0.117988ii
8 999 96 0.102598 0.779965 0.264702* 0.201092 0.169286 0.117988ii
9 1 96 0.102598 0.801845 0.264702* 0.201092 0.169286 0.117988ii
9 29 96 0.102598 0.804164 0.264702* 0.201092 0.169286 0.117988ii
9 67 96 0.102598 0.793977 0.264702* 0.201092 0.169286 0.117988ii
9 148 96 0.102598 0.802686 0.264702* 0.201092 0.169286 0.117988ii
9 999 96 0.102598 0.804164 0.264702* 0.201092 0.169286 0.117988iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

rightmost columns of each table show the four significance levels. Each job is identified by a tuple <j,c>,

where j identifies the benchmark and c identifies a selected checkpoint within that benchmark. Complete

benchmarks are denoted by a c value of 999. The significance level achieved in rejecting H0 is identified

by an asterisk in the corresponding column for each test-job. We conclude from these tables that the null

hypothesis can be rejected with 99% confidence.

87

One final detail that needs to be worked out involves the sensitivity of our load index to job size.

While pairwise comparisons of loading conditions may form the basis of comparator-network’s opera-

tion, its eventual application involves comparison of multiple sites. In this context, the load indices output

by comparator networks at different sites are compared in order to determine the least-loaded site. Keep-

ing in mind the objectives of load balancing (maximum speed-up over local execution), we can assess the

quality of the new load-index functions by the speed-up attained if each incoming job were scheduled at

the least-loaded site. It does not matter too much whether the site with the least load index is also the site

with the least completion time, so long as the speed-up achieved by scheduling at the least-loaded site is

close to the optimal speed-up. In Figure 31, we show in the top four boxes the load indices (due to the

background loading pattern only) of the various sites of our four-processor system. Test jobs are intro-

duced on top of these background workloads 2252 time units into the experiment, each time at a different

site. The completion times of all the jobs and their checkpoints are recorded. Two policies are compared:

(i) opt, which always places the incoming job at the site with the optimum (least) completion time; (ii)

min, which always schedules an incoming task at the site with the smallest load index. Assuming no

overhead of remote execution, we calculate, for each test-case, the speed-up over local execution

achieved using these policies. In the bottom part of Figure 31, these speed-up values are plotted against

the time at which a job completes. This plot shows that while the site having the least load index behaves

as well as the optimal site for short jobs, its performance drops below optimal for long jobs. The top

curve in this plot indicates the optimal site (’e’ for elaine, and ’v’ for ’vyasa’) and the corresponding

optimum speed-up for each test-job. The policy min runs all the jobs at elaine, the site with the least load

index at the time of arrival; therefore, its performance is sub-optimal only when a site other than elaine is

the optimal destination. Since the load pattern used in this experiment is one of the four we designed

(artificially) to have poor locality, we can conclude that the effects of poor locality in background work-

loads (which become worse for longer jobs) cannot be counteracted by a smart load index. Instead,

preemptive process migration should be used for long jobs, so that the near-optimal short-term perfor-

mance of the load index can be exploited during rescheduling.

88

0

0.2

0.4

0.6

0.8

1

1000 1500 2000 2500 3000 3500 4000 4500 5000

L
o
a
d

i
n
d
e
x

Time since start of experiment (1/50 sec.)

vyasa

0

0.2

0.4

0.6

0.8

1

1000 1500 2000 2500 3000 3500 4000 4500 5000

L
o
a
d

i
n
d
e
x

Time since start of experiment (1/50 sec.)

calvin

0

0.2

0.4

0.6

0.8

1

1000 1500 2000 2500 3000 3500 4000 4500 5000

L
o
a
d

i
n
d
e
x

Time since start of experiment (1/50 sec.)

rhea

0

0.2

0.4

0.6

0.8

1

1000 1500 2000 2500 3000 3500 4000 4500 5000

L
o
a
d

i
n
d
e
x

Time since start of experiment (1/50 sec.)

elaine

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

3000 4000 5000

Sp
ee
d-
up
 o
ve
r
lo
ca
l
ex
ec
ut
io
n

Time of completion of test job (1/50 sec.)

e

v

e v
v

e

v

v
v

v
e

e

e

eee

v
v

v

e

v

e

v v

v

ve
v

opt
min

Figure 31. Performance of all test-jobs under load #23; policies: opt, min

89

Figure 32 compares (once again using speed-up over local execution) the performance of four dif-

ferent strategies for the load pattern and arrival time shown in Figure 31. This time, the speed-ups are

plotted against job lengths. Besides min and opt, two additional policies are considered: (i) rnd, which

randomly chooses one of the four destinations with equal probability; and (ii) max, which places each

incoming job at the site with the worst (maximum) completion time. The figure shows that opt and max

determine the bounds on speed-up, and that min consistently outperforms rnd for short jobs. As the length

of the job increases, the performance of min drops to the same level as rnd.

Figure 33 shows the performance of the same four policies under one of the load patterns created

using test jobs during the first phase of data collection. Since this load pattern has relatively fewer

surprises, the speed-up of min is the same as that of opt, except for one or two long jobs. This load pattern

is also more typical of the load patterns used in our experiments. We find that when loads exhibit locality

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 10 100 1000

Sp
ee

d-
up

 o
ve

r
lo

ca
l
ex
ec
ut
io
n

Completion time of job (seconds)

’rnd’
’opt’
’max’
’min’

Figure 32. Performance of all test-jobs under load #23; policies: opt, min, rnd, and max

90

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 10 100 1000

Sp
ee
d-
up
 o
ve
r
lo
ca
l
ex
ec
ut
io
n

Completion time of job (seconds)

’rnd’
’max’
’opt’
’min’

Figure 33. Performance of all test-jobs under load #11; policies: opt, min, rnd, and max
hh

then the indices learnt using comparator networks work well even for long jobs.

We now describe our experiments for comprehensive evaluation of min, the policy that always

picks the site having the minimum of load indices predicted by comparator networks at different sites. We

evaluated this policy on all test-jobs under all 24 load patterns collected in phase I of data collection. In

order to study the relationship between the length of a job and the speed-up achieved for that job, we

created data-pairs <li ,ei>, where the first item of each pair is the length of the job and the second, the

corresponding speed-up over local execution. (We continue to ignore the age of load indices due to over-

head of communication and due to the periodic nature of load-index computation.)

Figure 34 shows a contour plot of the probability of achieving certain speed-up for jobs of certain

length. The values along the X-axis represent speed-up over local execution, and those along the Y-axis,

91

Speed-up over local
execution

Length of
job (sec.)

1.28 1.73 2.18 2.63 3.08 3.53 3.98 4.43

1.32

2.94

6.83

15.27

35.43

79.27

183.86

411.33

Figure 34. Contour plot of cumulative probability of speed-up; policy: min; no overheads or delays
hh

the length of the job in seconds. Y-values (job lengths) range from 0.66 seconds to 439.94 seconds. X-

values (observed speed-ups) range between 0.924524 and 4.92187. Since there are many more short jobs

than there are long ones, we used logarithmic scaling for the Y-axis. Nineteen contours, each connecting

92

X-Y points having equal cumulative probability of speed-up, are shown in the figure; they divide up the

space into twenty regions of equal (5%) probability. While speed-ups higher than 1.5 (more than 50%

improvement over local execution) occur quite frequently for short jobs, they almost never occur for jobs

that take more than 3 minutes to complete.

Before concluding this section, we would like to emphasize the importance of DWG in effective

evaluation of load indices. Suppose we did not have a synthetic workload generator. We could still meas-

ure (real) load patterns, introduce test jobs, and measure their completion times. However, since real pat-

terns do not repeat in a predictable fashion, we could only measure the completion time of a test-job

under a particular loading pattern for only one site. Then, there would be no way to compare the load

indices at different sites with respect to the same job and the same system-wide loading pattern. Thus,

synthetic workload generation is necessary for effective evaluation of load-indices meant for use in load-

balancing experiments.

The weights of the trained networks are dumped into a file. We have developed software that

automatically generates a C function from these weight dumps. Given a vector of 40 inputs, the new func-

tion produces exactly the same output as the dumped network. This load-index function can be linked

with any program, including the operating-system kernel. Given the projected resource-utilization values

produced by the filtering and extrapolation utilities, this function computes a load index. Thus, we have

fully automated the process of creating meaningful load indices for our distributed computer system.

Our results, both from this section and the preceding one, demonstrate that the comparator network

learns quickly and effectively. The indices learnt by it induce meaningful rankings on loading conditions

across the system, as well as on loading conditions for the same system at different times.

93

F. Chapter Summary

We have achieved our goal of learning meaningful load-index functions from data. Using the data

collected by DWG, we are able to train comparator networks to effectively compare alternative loading

conditions for an incoming job. The training process is fully automated and requires no down time

because it is performed off line. Further work is needed to fully integrate the learnt load-index function

into the operating-system kernel; this will involve the development of on-line utilities for filtering and

extrapolation.

As a final illustration of load-index learning, we show in Figure 35 the raw utilization patterns and

the associated load patterns for rhea, a diskless Sun 3/60 client with 24 megabytes of main memory,

which is part of our four-processor system. The load index is sensitive not only to the CPU but also to

0

1

0 2000 4000 6000 8000 10000

C
P
U

b
u
s
y

Time since start of experiment (1/50 seconds)

20

40

60

80

100

120

140

160

180

200

220

0 2000 4000 6000 8000 10000

F
r
e
e

m
e
m
o
r
y

p
a
g
e
s

Time since start of experiment (1/50 seconds)

0

1

2

3

4

5

6

7

8

9

0 2000 4000 6000 8000 10000

P
a
c
k
e
t
s

i
n

t
h
e

l
a
s
t

1
/
5
0

s
e
c
o
n
d
s

Time since start of experiment (1/50 seconds)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2000 4000 6000 8000 10000

L
o
a
d

i
n
d
e
x

o
f

r
h
e
a

Time since start of experiment (1/50 sec.)

Figure 35. Raw resource-utilization patterns and their load index

94

network traffic and memory. Just after 4,000 time units into the experiment, there is a period of low net-

work traffic and high memory availability. Despite the fact that CPU stays busy through this period, the

load index registers a noticeable drop. Around 8,000 time units into the experiment, there is a lull in CPU

activity and plenty of memory is available; however, the load index registers a drop only after network

traffic quiets down as well. Furthermore, the load index shows its highest stable value at about 2,000 time

units into the experiments, when CPU is busy, memory is unavailable, and network trafic is high.

95

CHAPTER V.

STRATEGY LEARNING: A SURVEY OF ISSUES AND APPROACHES

Knowledge is the small part of intelligence that we arrange and classify.

- Ambrose Bierce

In this chapter, we identify the key issues in strategy learning and characterize their complexity in

terms of various attributes of learning tasks. We survey existing approaches to these issues, and group

strategy-learning systems by the commonality of their approaches into four general architectures. We

also address practical issues in implementation and comparative evaluation of strategy-learning tech-

niques.

A. Introduction

Much recent work in machine learning has targeted sequential problems in decision, control, and

optimization. Sequential problems abound in robotics, navigation, tracking, and dynamic scheduling.

They require the problem solver to make multiple choices or initiate multiple actions, one after another,

in order to reach and/or maintain a ‘‘desired state.’’ Such a sequence of choices or actions constitutes a

solution; the knowledge used for generating it is a strategy. Problem solvers employ strategies to sys-

tematically generate solutions to given problem instances. This survey addresses automated learning of

such strategies.

1) State of the art

Traditionally, strategies have been designed by experts using prior knowledge, and refined manually

using trial and error. Recent attempts to automate these processes have produced strategy-learning sys-

tems that run the gamut of applications from dynamic load balancing to symbolic reasoning and

96

combinatorial optimization. Despite its volume and diversity, the literature on strategy-learning systems

lacks a systematic characterization of the relationship between applications, algorithms, and architectures.

Prior surveys [96, 104, 131, 169] have focused on well-defined symbolic learning tasks characterized by

simple feedback schemes and knowledge-rich learning environments.

Time is an important parameter of sequential behavior. When strategy-learning systems are applied

to sequential problems, several temporal problems arise. These generally involve projection for character-

izing the state of a system either into the future or in the past; the former are called prediction (or forward

projection) problems, and the latter, backward projection. The state of a system may evolve under the

influence of either the problem solver’s decisions (causal dynamics), or the passage of time (natural

dynamics), or both. Difficult projection problems result in the last case. Learning systems developed by

artificial intelligence (AI) researchers have limited success in coping with natural dynamics

[6, 7, 28, 31, 37, 43, 53, 99, 130, 136, 142, 147, 150, 152].

When learning strategies by trial and error, a learning system may experiment with multiple stra-

tegies (candidates). The measured performance of tested candidates provides feedback for guiding both

the selection of candidates for future tests and the modification of incumbents toward improved perfor-

mance. The translation of feedback into strategy modifications is called credit assignment [125]. In

sequential decision making, several decisions may be evaluated at once; credit/blame for observed perfor-

mance must be distributed first among decisions and then among the (heuristic) rules leading to each

decision. These two stages give rise to, respectively, the temporal and structural credit-assignment prob-

lems [173]. Credit assignment requires extensive knowledge of the problem domain. The temporal

credit-assignment problem (like the projection problems described above) is complicated by time-varying

states. Existing systems solve this problem using either ad hoc schemes [132, 199], prior knowledge [43],

or Markovian representations (future states may depend on only the current state but not on any past

state) [15]. There is no general yet rational solution to this problem.

97

In the absence of closed-form objective functions, strategy-learning systems are forced to optimize

measured performance. They need to transform such (ill-posed) problems into well-defined ones, which

the problem solver can solve. This is usually achieved by inducing a model of the true objective function

from data. Several existing systems can learn evaluation functions (mappings from the state space to

scalar performance metrics) [37, 106, 161, 178]; however, the learning of mappings from state sequences

to scalar metrics has not been addressed in the literature, especially for non-Markovian representations.

The challenging problems in strategy learning are, therefore, the development of techniques to cope

with time-varying parameters (natural dynamics), non-Markovian representations, and ill-defined objec-

tive functions.

2) Overview of the chapter

We first introduce attributes for classifying the applications, methods, and architectures of strategy-

learning systems. We use the term strategy-learning task to denote a triple (P, PS, E), comprising a per-

formance task (P), a problem solver (PS), and a learning environment (E) (Table IX). Various aspects of

P, PS, and E dictate the form and complexity of learning algorithms and system architectures. Studying

these aspects is important for both characterizing the limitations of existing systems and finding an

appropriate learning system for a given application.

Figure 36 shows a coarse classification of strategy-learning tasks. Broadly, learning tasks can be

classified as either well-posed or ill-posed on the basis of the objective functions of their performance

tasks. Ill-posed learning tasks have performance tasks with ill-defined objective functions; that is, the

objective functions are not specified as closed-form functions of the problem solver’s inputs. Ill-defined

objective functions can be further classified as either measurable or unknown. Orthogonally, one may

classify learning tasks on the basis of the feedback structure of their learning environments. Here, learn-

ing environments can be classified as either reactive (those that produce feedback) or non-reactive (those

that don’t). Further, feedback may be immediate (which occurs regularly after each decision) or delayed

98

Table IX
Components of strategy-learning tasksii

Component Descriptionii
Performance Task Defines a class of problems whose instances are to be solved.iii
Problem Solver Solves instances of performance task using strategies to decide what operation(s) to perform at each

decision point.iii
Learning
Environment

Reacts to problem solver’s actions by providing feedback; may also provide prior knowledge of
problem domain.iicc

c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

cc
c
c
c
c
c
c

Ill-posed tasks

987

654

321

Measureable

Well-defined tasks

environment
Non-reactive

Reactive
environment

objectives objectives
Unknown

feedback
Delayed

feedback
Immediate

Figure 36. Classification of strategy-learning tasks
Shaded areas in this figure indicate classes of strategy-learning tasks addressed in this thesis. A
problem with unknown objective may be solved either by finding an optimal solution to the
same problem with a user-specified objective function (as shown by the dashed arrows), or by
finding a feasible solution to the same problem with additional constraints.

Table X
Examples of strategy-learning tasksiii

Class Target Problem Class Target Problemii
1 6The monkey-and-banana problem [57] Dynamic load balancing to minimize completion

time [116]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Shooting distant targets Foraging for food and mates [189]ii

2 7Controlling a robotic arm to reach around obstacles
using visual feedback [120]

Numeric optimization [110]
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Tracking/chasing an unpredictable moving target Solving the 15-puzzle problem in the fewest movesii

3 8Determining action/inaction probabilities from rewards
[140]

‘‘Blackbox’’ optimization [1]
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Planning patrol routes for policing a territory Maximizing fault coverage in digital VLSI circuits by

adaptive selection of test patterns [182]ii
4 9Symbolic integration [131] Iterative stereo vision [164]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Adaptive routing and congestion-control in packet-
switched networks [170]

Designing neural networks to optimize complexity as
well as accuracy [184]ii

5 Balancing a pole by moving it left or right [14]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Backing a trailer-truck to a loading dock [143]iiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

99

(which occurs intermittently). Table X illustrates the resulting classification with examples of strategy-

learning tasks.

Our foucs in this thesis is on the classes of strategy-learning tasks shown shaded in Figure 36.

These problems are characterized by slow reactive learning environments and performance tasks having

ill-defined but measurable objective functions. The unshaded boxes in the third column of Figure 36

correspond to problems with one or more unknown objective functions in their performance tasks. For

these problems, it is not clear at the outset which objective to optimize. A common technique to solve a

problem in this class is to transform it into another with either a well-defined or an ill-defined but measur-

able objective function This transformation is indicated by the dashed arrows in the figure. Another com-

mon technique is to add constraints to the problem and to solve for a feasible solution in the constrained

problem. Finally, the unshaded boxes in column 1 represent well-posed problems with immediate feed-

back as well as those without feedback. Such problems have been studied extensively and can be learned

by existing learning techniques in AI [121].

In Section B, we analyze the structure of strategy-learning tasks. In Section C, we identify the key

issues in strategy learning and characterize their complexity in terms of the various attributes of learning

tasks. Section D describes techniques for addressing these issues, and Section E compares four different

architectures of strategy-learning systems. Problems of implementation and evaluation are addressed in

Section F.

B. Structure of strategy-learning tasks

In this section, we elaborate on our view of strategy-learning tasks as triples (P, PS, E), comprising

a performance task (P), a problem solver (PS), and a learning environment (E). P defines a class of prob-

lems whose instances are presented to PS. An instance is defined by an initial assignment of values to the

input variables of P. When presented an instance of P, PS responds by instantiating the decision vari-

100

System
Learning
Strategy

Decisions/Actions

Constraints

E

P PS

knowledge
Background

Selected/modified
strategies

Feedback and

Variables,
Objectives,

Figure 37. Typical information flow in a strategy-learning system
hh

ables of P. Such instantiation results in action via operator application, transforming both the external

state of E and the internal state of PS. E responds to operator application by modifying the values of

some input variables, and sometimes with feedback that indicates the quality of the current and the recent

external states. PS reacts to the new external state by either applying another operator or stopping; it

uses strategies to decide what operator to apply next. The role of a strategy-learning system (Figure 37) is

to use the feedback received from E in order to improve the strategies used by PS in such a fashion that

i) future actions will produce more favorable feedback, and ii) optimal or near-optimal stopping states (if

any) will be reached quickly.

Besides selecting and modifying existing strategies, a learning system can improve the problem

solver in several other ways. For example, it can learn a model of the objective function, or learn to

predict future states, or learn to predict the performance resulting from a proposed action. The first of

these is critical for ill-posed tasks; the second, for coping with natural dynamics; and the third, for coping

with causal dynamics. Whether or not a strategy-learning task will be ill-posed depends on the objective

function of P; similarly, whether or not it will have natural dynamics depends on the input variables of P.

A strategy-learning system will need learning to predict future states only if a causal model of PS is not

provided as background knowledge by E. Thus, the specific issues that a learning system must address

101

depend on the type of components a learning task has. With this in mind, we delve further into the ana-

tomy of learning tasks in order to identify the characteristics of P, PS, and E that determine the pertinent

issues of a given learning task.

We now introduce several strategy-learning tasks drawn from diverse domains. We use these as run-

ning examples throughout this chapter to characterize strategy-learning tasks, techniques, and architec-

tures.

Example 1. Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii The performance task P in load balancing is to schedule jobs

arriving at various sites of a distributed computer system. Each job can be run either locally at its site of origin, or

remotely at another site with lighter load. PS, the problem solver, determines where to execute each incoming job,

based on the job’s characteristics as well as information about the past, current, and projected loads at various

sites. E, the learning environment, provides feedback in the form of measured improvements in completion time due

to load balancing relative to the case of local execution.

A variety of problem formulations are possible, with varying degrees of realism. Abstract formulations assume

that i) load at sites does not change outside the control of PS (no natural dynamics), and ii) E provides background

knowledge relating scheduling decisions with measured performance. More realistic formulations drop both of

these assumptions. `

Example 2. Learning to Steer a Ship.iiiiiiiiiiiiiiiiiiiii The performance task P is to steer a ship in a variety of (simulated) training

scenarios, eventually getting as close as possible to a specified target position, which may be different for different

scenarios. A scenario is described by the current coordinates of the ship relative to the target as well as current

velocity vectors. Using these values, the problem solver PS must determine the direction and amount of turn at

each decision point. In contrast to load balancing, the learning environment E provides PS with rudimentary

operator-application rules and some general domain knowledge. `

Example 3. Learning to Balance a Pole.iiiiiiiiiiiiiiiiiiiiiii The controller PS aims to balance a pole fixed at one end to a mobile cart

with one degree of freedom. At any decision point, it can move the cart left or right by applying a fixed amount of

force. The cart is mounted on a rail of fixed length and is constrained to not go off the ends of the rail.

This performance task P exemplifies the class of control problems [16, 26]. Other examples in this class

102

include: i) regulation, in which the objective is to keep the external environment close to a ‘‘desired state,’’ ii) track-

ing, in which the objective is to make certain decision variables follow the same sequence as their corresponding

problem variables, iii) optimal-path problems, in which the objective is to get the external environment in a desired

state at a desired time, and iv) minimum-time optimal control, in which the objective is to get the external environ-

ment in a desired state in minimum time.

Control problems can be knowledge-intensive or knowledge-lean; the latter are classified under adaptive con-

trol. Knowledge-intensive versions assume well-defined objective functions and complete knowledge of environmen-

tal changes (modulo noise) resulting from operator application; these tend to use static strategies called open-loop

control. Knowledge-lean versions assume measurability over instants (in agreement with the assumption of the

Markovian property, which is considered a defining trait of control problems); these tend to use dynamic strategies

also known as closed-loop control. `

Example 4. Learning Strategies for the Towers of Hanoi Problem.ii The scenario consists of three towers, of which

the first is surrounded by rings whose diameter decreases from bottom to top. The objective is to get all the rings on

the third tower in the same order. The only operator available is one of lifting a ring from the top of one tower and

placing it on top of another. The constraints are that a ring can never be placed over a smaller ring.

This performance task exemplifies the class of symbolic problems that have been studied in cognitive science

and AI [32, 131]. These problems feature input variables that do not vary outside the control of the PS. `

1) Performance Task

A performance task P can be specified in terms of its objectives, constraints, and variables (Table

XI). Objectives may be specified either explicitly as functions to be optimized, or implicitly using scalar

metrics of solution quality; the former are called well-defined objectives and the latter, ill-defined. Simi-

larly, constraints may be defined either explicitly as truth-valued expressions of variables, or implicitly

using scalar metrics of solution feasibility; the former are called well-defined constraints and the latter,

ill-defined.

103

Table XI
Components of a performance task

ii
Component Descriptionii

Variables Represent observed state (primitive problem variables), abstract state descriptions (abstract
problem variables), and the controls activated, or operators instantiated, by the problem solver
(decision variables).iii

Objectives Represent goals of problem solving and, therefore, strategy learning. They are defined as either
functions to be optimized or conditions to be achieved by solutions (assignments of values to
decision variables).iii

Constraints Define the space of feasible solutions over which the application problem can be solved. Together
with objective functions, these constitute a performance standard against which strategies may be
evaluated.iic

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

Constant Symbolic Numeric Static Dynamic Hard SoftTime-
varying

Measured
at instants

Measured
over intervals

Well-
defined

Ill-
defined

Unknown Exactness Specification

Time-
dependence

Data
type

Problem
variables

Decision
variables

Well-
defined

Ill-
defined

Variables Constraints

Performance Task

Objectives

Figure 38. Attributes for classifying performance tasks
hh

Variables are used to either represent or influence the external environment’s state. They and their

respective values constitute the (internal) state of the problem solver. The space of all possible assign-

ments of values to variables is called the state space. An assignment of values to the set of decision vari-

ables is called a solution. States satisfying all the constraints of a performance task define the space of

feasible solutions. For optimization objectives, the feasible states that satisfy the optimization criterion

define the set of optimal solutions. In general, states satisfying both the objectives and constraints are

called goal states. Sometimes, the term solution also denotes a state-space path from the initial state for a

given instance to some goal state of that instance.

104

The objectives and constraints of a problem define measures of quality and feasibility, respectively,

on its state space. Together, they constitute a performance standard [45] against which strategies for a

given performance task may be judged. Problem solvers may add new constraints (such as deadlines or

limits on memory usage), or may refine the objective function by trading between quality and complexity

of solutions. Even so, the objectives of performance tasks are the prime drivers of problem solving and

strategy learning.

Various properties of variables, objectives, and constraints determine the complexity of strategy

learning; these are useful attributes for classifying strategy-learning tasks (Figure 38).

Example 1 (contd.). Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Variables of the load-balancing problem include

status variables (utilization of site-specific resources, such as CPU and memory, and shared resources, such as disk

devices and interconnection network), job descriptors (absolute and/or relative amounts of service required by the

job from various resources), and placement variables (where the current job will be sent for execution).

A variety of objective functions are possible: maximizing the number of jobs completed per unit time

(throughput), minimizing the average completion time of all jobs in the system, minimizing the average completion

time of jobs at each site, and minimizing the completion time for each job independent of other jobs. All these

objectives are functions of completion time. In the absence of background knowledge about the relationship between

variables and completion time, these objective functions are ill-defined. Certain other objectives, such as equalizing

the load across all sites, are well-defined when ‘‘load’’ is a measured quantity. However, when status variables are

the only problem variables, even the equalization of load is an ill-defined objective.

Constraints may include precedence constraints (a job cannot start unless certain others complete execution),

size constraints (a job may require a site with a certain minimum amount of physical memory), and placement con-

straints (for instance, a site may not allow more than one foreign job to execute at any instant). These are examples

of well-defined constraints. Others, such as a requirement that communicating jobs should preferably be located at

the same site, are ill-defined if the communication behavior of jobs is not known beforehand. `

Variables. The variables of a performance task represent either quantities used by the problem solver to

represent states of the external environment, or quantities set by it to control the environment. The

105

former are called problem variables, and the latter, decision variables; they serve, respectively, as the

inputs and outputs of the problem solver.

Example 1 (contd.). Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Status variables and job descriptors serve as prob-

lem variables of load balancing; placements, as decision variables. `

Problem Variables.iiiiiiiiiiiiiiii These are used for specifying problem instances as well as for representing

states of the external environment. While some of these represent primitive natural aspects of the exter-

nal environment, others are abstract quantities derived from the primitive ones by operations such as

aggregation and smoothing. While primitive variables are easily measured, and therefore considered

given, derived quantities are sometimes costly to estimate. For example, status variables and job descrip-

tors of load balancing are primitive variables, whereas ‘‘load’’ is an abstract quantity derived from these.

A strategy-learning system, having seen only training instances, must generalize from experience in

order to solve new unseen instances. It can do so only if it can detect and use some similarity between old

and new instances. Since instances are defined using problem variables, similarity between different

instances is defined by the similarity of their assignments of values to problem variables. Properties of

problem variables that affect strategy learning are as follows.

a) Temporal dependence. When problem variables vary with time, outside a problem solver’s con-

trol, strategies need to track their values in order to produce actions that will lead to optimal or near-

optimal external states. Without such temporal dependence, the external state varies only under the prob-

lem solver’s control; future states are relatively easy to predict, enumerate, and evaluate. With temporal

dependence, concerns such as the rate of sampling (for primitive problem variables) and the interval of

aggregation (for aggregated problem variables) become significant issues.

b) Type of Values. Problem variables can be either numeric or symbolic. Symbolic variables can

have internal structure and assume discrete values. Unlike numerical values, symbolic values are difficult

to generalize; hence, learning is generally more complex. On the other hand, symbolic values are

106

amenable to enumerative search techniques and associative learning algorithms, which use efficient tabu-

lar representation of strategies.

c) Measurability. While primitive variables are easily measured, abstract and derived ones are often

estimated, especially when they involve time-varying quantities. Derived quantities such as proportions

require large amounts of data for accurate measurement; others, such as moving averages, delay the input

to the problem solver. On the other hand, derived quantities simplify strategies by reducing the number of

potential variables.

Example 1 (contd.). Learning Strategies for Load balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Status variables and job descriptors are the problem

variables. While status variables are numeric time-varying, job descriptors are usually numeric constants. `

Decision Variables.iiiiiiiiiiiiiiii The goals of problem solving are specified as functions and formulae of deci-

sion variables. A problem solver instantiates (assigns values to) decision variables during decision mak-

ing. The final assignment of values constitutes a solution state. Frequently, decision variables represent

actions and their arguments. Certain actions affect future inputs (the values of problem variables) to a

problem solver while others do not; the former are called dynamic decision variables, and the latter,

static.

a) Static Decision Variables. When decision making does not affect the state of the external

environment, future values of problem variables are not affected by the current decisions. Temporal

dependence is the only source of variation for such problems (called static decision problems). With

static decision variables, the context of strategy learning can be limited to one decision point at a time.

b) Dynamic Decision Variables. When affected by decision making, the external state evolves

under the combined influence of both its own natural dynamics and the problem solver’s actions. Prob-

lems with dynamic decision variables are called dynamic decision problems. With dynamic variables,

complex interactions among decisions need to be considered, resulting in complex strategy-learning

tasks.

107

Example 1 (contd.). Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Usually, the PS employs a dynamic load-balancing

strategy that decides placements based on values of status variables. When a job is migrated from one site to

another, its net effects are reduced load on resources local to the originating site and increased load on resources

local to the remote site. Therefore, status variables evolve under the effect of placements, making this a dynamic

decision problem.

However, there exist formulations of this problem in which all the jobs to be placed are available at the outset,

and placements do not depend on status variables. Such strategies are appropriately called static load-balancing

strategies. In these, job descriptors are the only problem variables and do not evolve under the effect of placements,

making this a static decision problem. The context of strategy learning includes only one decision point: the one at

the initial state, although the decision of simultaneously placing all the jobs tends to be complex. `

Objectives. Figure 38 shows that varying degrees of precision are possible in specifying the objectives

of a performance task. Traditionally, problem solvers have attempted only performance tasks for which a

closed-form objective function is specified. Realistic applications frequently involve ill-posed tasks

whose objective functions are either unknown or empirically determined. Strategy-learning tasks can be

classified according to the degree of well-posedness of their objective functions as follows.

Well-defined Objectives.iiiiiiiiiiiiiiiiiiiii Several performance tasks have implicit or explicit well-defined objec-

tives. Examples include special-purpose problem solvers, such as classifiers, and general-purpose prob-

lem solvers, such as planners. Sometimes a well-defined objective function is built into the problem-

solving strategy, and some parameters of such a strategy may be made available for tuning via strategy

learning.

Example 1 (contd.). Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Objectives such as equalizing the load across all

sites are well-defined provided ‘load’ itself is a well-defined entity. In abstract formulations of the problem, popular

with queueing theorists, CPU is the only resource of contention, and the level of CPU utilization is considered the

sole determinant of the overall load. The objective is well defined because load can be defined easily in terms of the

available inputs (CPU utilization). `

108

Ill-defined Objectives.iiiiiiiiiiiiiiiiii In this case, a closed-form functional specification of the objective is una-

vailable, but states can be evaluated either individually or collectively. The major difference with the

well-defined case is that in order to get evaluated, a state must occur during a problem-solving episode.

Therefore, the quality of solution can be measured a posteriori. For these problems, it is essential to

develop some models or learning methods so that alternative strategies can be compared.

An objective function may be ill-defined if it is an unknown but measurable function of either

known or unknown variables. Ill-defined objective functions may evaluate states either individually or

collectively. Two cases can be distinguished.

a) Instantaneous Measurability. This implies that states are evaluated individually, and the

objective-function value of a solution can be decomposed with respect to any state. That is, the path from

the initial state to a chosen state can be optimized independent of the path from the chosen state to a goal

state. One can induce an evaluation function using statistical regression techniques; such a function can

then be used in place of a well-defined objective function. The case involving unknown problem vari-

ables is more complex, requiring testing of possible variables for inclusion and estimation of the objective

function.

b) Interval Measurability. This implies that evaluations are not always available for every state and,

when available, represent the collective evaluation of a sequence of successive states. The evaluation of a

state depends upon the path to it from the initial state. As a result, evaluations must be sensitive not only

to the current state but also to some past states. Two types of evaluation-function models are possible: i)

those using a finite window of past states; and ii) those modeling evaluations as recurrences on state

space.

Example 1 (contd.). Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Usually, the objectives of load balancing are defined

in terms of job completion times. Without extensive knowledge of hardware architecture and the operating system’s

scheduling policy, completion-time-based objective functions are ill-defined. Automata theorists [128] choose to

109

formulate completion time as a function of only the current values of status variables; this results in an ill-defined

objective function measurable at instants. In this case, a deterministic evaluation function can be learned by

regressing job completion time onto the values of status variables at the time of starting the job.

In reality, the completion time of a job depends on past, current, and future values of status variables [115],

which makes it an ill-defined function measurable over intervals. If window-based methods are used, then the

number of past status variables to consider needs to be determined so that regression is kept simple. On the other

hand, if recurrent models are assumed, then the coefficients of the model must be determined using the relatively

complex time-series regression techniques. `

Unknown Objectives.iiiiiiiiiiiiiiiiii When no objective function is given and no measurements are available, the

problem solver may use some prior knowledge to induce an objective function either analytically or

empirically, thus reducing this case to one of the previous cases. This problem boils down to one of pro-

posing a set of objectives and asking the user to select one subjectively. Alternatively, additional con-

straints may be imposed on the original problem; the problem becomes one of finding any feasible solu-

tion in the constrained problem space.

Example 1 (contd.). Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii A number of alternative objectives are possible for

the load-balancing problem. For instance, if throughput (number of jobs processed per unit time) is to be maxim-

ized, then it does not matter whether or not specific jobs complete sooner with load balancing than without it. This

objective is valid for users who submit jobs in batches (groups), and only the performance of the batch is relevant.

On the other hand, when scheduling independent jobs, it may be important to have a high probability of speeding up

each individual job. In this case, good performance on large jobs cannot compensate for poor performance on small

jobs. A learning system starting without knowing a specific objective must compare alternative proposals and

choose the one whose predicted value matches the actual feedback from the user. `

Constraints. Constraints are used for specifying a space of feasible solutions over which optimization is

performed. They may either be explicitly specified, or be built into the problem solver’s strategy, or be

part of the objective function. Constraints can be classified on the basis of their exactness (as hard or

soft), as well as their specification (as well-defined or ill-defined) (Figure 38).

110

Hard versus Soft Constraints.iiiiiiiiiiiiiiiiiiiiiiii Hard constraints impose sharp boundaries on the state space, demar-

cating feasible solutions from infeasible ones. They curtail syntactic generalization (syntactically similar

problems having similar solutions) and are usually enforced by a move generator in the problem solver.

Problems with hard constraints are sometimes solved by first solving relaxed versions of the original

problems in order to obtain an approximate solution, which is then used as an initial state for an exact

solution. On the other hand, problems with soft constraints are associated with a large space of feasible

solutions. These constraints are usually transformed into penalty terms that are added to the objective

function.

Well-defined versus Ill-defined Constraints.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Well-defined constraints are defined as truth-valued

functions of a performance task’s variables; hence, one can determine whether a solution is feasible or not

by testing whether it satisfies the constraints. In contrast, ill-defined constraints are either unknown or too

complex to be modeled as functions of problem and decision variables. As a result, the constraints cannot

be formulated as truth-valued functions. A common solution is to induce a model of the feasible region

from empirical observation of feasibility and infeasibility of various states. The model (like soft con-

straints) may then be incorporated as penalty terms in the objective function. In some cases, ill-defined

constraints become well-defined during the course of problem solving and are incorporated in the prob-

lem solver. For instance, if a robot is attempting to fit a projection on one part into a slot in another, and

it does not have geometric models of the two parts, then the only way it can discover infeasible moves is

by testing whether the move is feasible and by hypothesizing a model of infeasible regions. If the robot

knew that all slots are square in shape and aligned parallel to some known coordinate system, then it may

find out the exact coordinates of the slot after a few trials.

Example 1 (contd.). Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Graph theoretic formulations of load balancing take

into account explicit precedence and placement constraints, which are hard well-defined constraints. System

engineers, on the other hand, either ignore these dependences or enforce them procedurally in the problem solver.

Size constraints in load balancing are examples of soft ill-defined constraints because the memory requirements of a

111

Table XII
Examples of performance tasks in strategy learning

iii
Example Performance Task P Commentsii
Load
Balancing

To schedule incoming jobs Problem variables (indicators of background workload, job characteristics) are
numeric and time-varying; decision variables (placements), dynamic.ii

Ship
Steering

To decide when and how
much to turn

Problem variables (position and velocity) are time-varying; and the decision
variables (amount of turn), dynamic. The objective function (navigating the
ship along a trajectory) is ill-defined, measurable over intervals.ii

Pole
Balancing

To balance an inverted
pendulum

The problem variables (the pole’s angle of inclination and angular velocity, and
the cart’s position and linear velocity) are numeric time-varying; and the
decision variables (direction of applied force), dynamic. The objective is ill-
defined, measurable over instants.ii

Towers
of Hanoi

To achieve a desired
configuration of disks on the
towers

The problem variables (specifying which of the three towers each disk is on)
are symbolic and constant; and the decision variables (which disk to move
where), dynamic. The objective (to achieve a desired configuration) is well-
defined; and the constraints (no disk can be placed over another of smaller
diameter), exact.iiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Representation

Problem Solver

Operators Strategy

States Objectives Indirect Decision RulesDecision Making

Static Dynamic Deterministic StochasticGeneralSpecific

Direct

Markovian
Markovian

Non-

Figure 39. Components of problem solvers and their properties
hh

job are usually data-dependent and cannot be modeled by closed-form formulae. Too large a job for a small physi-

cal memory causes thrashing, which causes only a gradual degradation in performance. Thus, there is no sharp

divide between feasible and infeasible states. Because of this ‘softness,’ such constraints are often expressed as

preferences, thus becoming part of the objective function. `

Table XII illustrates the structure of P for the four strategy-learning tasks described earlier.

112

2) Problem Solver

A problem solver employs a representation scheme to internally represent problems and solutions;

it also has a repertoire of operators which it uses to transform initial states into goal states. (A sequence

or a partial order on the set of operators constitutes a solution.) The problem solver uses parameters that

may be tuned via learning as well as others that are constrained in its design. In this section, we identify

the aspects of problem solvers’ representations, operators, and strategies that influence the design of

strategy-learning systems. The components of problem solvers and their properties are shown in Figure

39.

Representation. States and objective functions are significant components of strategy-learning tasks;

their representation determines the type of strategy-learning technique used. Following are the key pro-

perties of states and objective functions that affect strategy learning.

Markovian versus Non-Markovian State Space.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii If each state carries enough information to permit

optimal decision making without considering past states or past decisions, then the state space is called

Markovian. For such state spaces, past states and past decisions do not influence current decisions. Other-

wise, a history of past states and/or past decisions needs to be retained for use in making future decisions.

Often in the former case, large state vectors may be needed to capture all the useful information in one

state. When the number of problem variables is large, one may choose to track only a few significant vari-

ables rather than retain the entire state vector. Such representations are inherently non-Markovian.

General versus Specific Objectives.iiiiiiiiiiiiiiiiiiiiiiiiiiiii A problem-solver may be either general-purpose or specialized,

depending on whether it can represent and solve a class of problems rather than a single problem. General

problem solvers need to index their strategies by the structure and the content of their objective functions.

Unlike specialized problem solvers, their ability to represent and manipulate explicitly represented objec-

tives is paramount in this case. Specialized problem solvers are common in the literature on control [26],

whereas generalized problem solvers are common in the literature on planning and problem solving

113

[151]. Strategy-learning systems for general-purpose problem solving face the problem of generalizing

across tasks; that is, the experience from one problem may need to be generalized to a different problem.

For specialized problem solvers, strategy learning merely warrants generalizing across instances of the

same problem.

Direct versus indirect operators. Problem solvers transform their internal and external states by the

application of operators. Operators can be either direct or indirect. Direct operators act independently on

the objective function without interfering with other instances of operator application. The effects of

direct operators combine in simple ways, satisfying criteria such as additivity and superposition [34]. On

the other hand, the effects of indirect operators combine in complex ways, such as through causal chains

or AND-OR graphs [144]. In this sense, strategies involving indirect operators have more ‘structure.’

Numerous examples exist, especially in planning [156], of problems that require such indirect problem-

solving capability. Strategies using indirect operators require complex methods of generation.

Problem-solving strategies. A problem solver should have an internal bias towards more preferable

problem-solving strategies. A problem solver without any preference would be horribly inefficient for

most practical applications, despite its tremendous generality. Another reason for bias is that expert

knowledge may be available only in the form of time-tested procedures. For efficiency and practicality,

such procedures should be built into problem solvers as skeletal strategies, which are further refined and

extended by strategy learning. In addition to the bias, problem-solving strategies can be classified on the

basis of their stochastic and dynamic behavior.

Deterministic versus Stochastic Strategies.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii A deterministic strategy always recommends the same

operator for an external state in a given context, no matter how many times this state recurs. Stochastic

strategies, on the other hand, explore multiple alternative decisions at those decision points where a

choice cannot be made a priori. Extra knowledge for guiding such a search may take the form of rules for

assessing either the probability that a particular alternative will be explored, or the order in which alterna-

114

tives will be explored. Stochastic strategies have the potential for producing better solutions at the cost of

extra computations.

Static versus Dynamic Strategies.iiiiiiiiiiiiiiiiiiiiiiiiiii While certain strategies make decisions based on the specific state

associated with each decision point, others recommend a series of decisions based on just the initial state.

The former are called dynamic strategies; and the latter, static strategies. Static strategies are faster but

inappropriate for problems whose variables cannot be predicted accurately or efficiently a priori. Design-

ing static strategies requires complete and accurate model of the external environment; dynamic stra-

tegies, because they make decisions about one or a few actions, require less prior knowledge and are

simpler to design. However, dynamic strategies are computationally more expensive to apply than static

ones because they warrant run-time information gathering and inference.

Strategies generated by conventional planning methods of AI [65] are static, whereas those gen-

erated by conventional dynamic programming methods of control and optimization [21] are dynamic.

There exist numerous variants of conventional planning that use dynamic strategies; these are called reac-

tive planning methods [2, 66, 91, 111, 145, 162] in AI.

Example 1 (contd.). Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Two types of problem solvers represent, respectively,

the analytical and software-based approaches to the load-balancing problem. Both are designed for specific objec-

tives and employ Markovian representations, using only the current state in making load-balancing decisions.

Because the status variables do not directly permit such representation, these problem solvers use ‘load indices,’

which are abstract variables computed as moving averages of computation load. Often, the coefficients of moving

averages are chosen ad hoc. An alternative (considered in Chapter IV) is to employ non-Markovian representations

and learn the relative importance of past and current values of status variables for predicting speed-ups of tasks.

The problem solvers designed for handling precedence constraints often employ indirect operators in which a

number of different operators contribute to the reward state(s) of the external environment. Solutions in this case

are said to be structured. Others generally use the simpler direct operators such as sending a job to a remote site

and accepting a job sent by a remote site. Analytical solutions often employ stochastic strategies [27, 62, 128],

115

Table XIII
Examples of problem solvers in strategy-learning tasks

iii
Example Problem Solver PS Commentsii
Load
Balancing

Process migration software Representation of states is non-Markovian; of objectives, specific. The
operators (process migration) are direct. Practical strategies employ dynamic
decision making and either deterministic or stochastic decision rules.ii

Ship
Steering

A navigation program Representation of states is non-Markovian; of objectives, general. The
operators (turning actions) are direct. The strategy is static, and the decision
rules, deterministic.ii

Pole
Balancing

A controller to apply a fixed
force left or right

The controller employs Markovian representations for states, and works for a
specific objective. The operators (applying the force) are direct. The controller
uses stochastic strategies.ii

Towers
of Hanoi

A program for partitioning
objectives and for searching
among moves

The problem solver employs a Markovian representation of states and is able to
handle general-purpose goals because multiple goals are generated for each
problem instance. Its operators (moving disks) are indirect, and its strategies,
deterministic and static.iiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

KnowledgeKnowledge
lean

Prior Knowledge

Learning Environment

Feedback

intensive

Structurally Temporally Timing Information

GlobalLocal Local Global Synchro-
nous

Asynchro
nous

Prescriptive Evaluative

Figure 40. Components of a learning environment
hh

although deterministic strategies are more common [17, 108].

Dynamic load balancing strategies take into account the load average at each site in deciding where to send

the next job, whereas static strategies schedule jobs according to a predetermined criterion unaffected by the

dynamic variations of workloads. While static strategies avoid frequent communication of status information among

sites, they fail to exploit dynamic imbalances in load whose occurrence cannot be predicted ahead of time. `

Table XIII illustrates the structure of PS for the four strategy-learning tasks described earlier.

116

3) Learning Environment

The interface between a strategy-learning system and the external world is called the learning

environment. Environments that generate feedback are called reactive environments. These include

human trainers and/or programs that generate feedback for the learning system, as well as sources exter-

nal to the learning system that provide prior knowledge relating problem variables and decision variables

to feedback. If the environment is not reactive but the objective function is measurable (Figure 36), then

the measurements can be used in feedback generation. In this case, certain additional issues such as the

standard-of-comparison problem (Section C) need to be addressed. The components of a learning

environment are shown in Figure 40.

Feedback. The nature of feedback is the single most important determinant of the form and complexity

of strategy-learning algorithms. Feedback may take many forms: either a corrective error signal or a

scalar evaluation signal, covering either one or more decision points, and generated either periodically or

intermittently. For well-defined and measurable objective functions, feedback can be generated internally

in the learning system even when little or no external feedback is available. We now consider the impact

of the type of feedback on strategy learning.

Prescriptive versus Evaluative Feedback.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Feedback signals carry certain explicit and implicit infor-

mation useful for altering the behavior of a problem solver. Signals that carry more explicit information

require simpler learning rules but a more informed source than those that carry more implicit information.

Based on the amount of explicit information, one can distinguish between prescriptive and evaluative

feedback.

Prescriptive feedback carries explicit information about the desired operators and/or states; the

learning system can use it for computing an error signal to be minimized via strategy modification. How-

ever, generating such feedback requires a teacher who knows what the correct outcome should be. Learn-

ing from a teacher is called supervised learning [80].

117

Evaluative feedback carries only implicit information about the desired behavior but explicit evalua-

tion of the observed behavior. Such feedback is intrinsically a posteriori, being measured or generated

after the behavior has occurred. It requires only a critic [197] who has some prior knowledge of the objec-

tive function and can assess the goodness of external states or sequences thereof. Scalar evaluative feed-

back signals are called reinforcements [125] and learning from such signals, reinforcement learning.

Structural Locality of Feedback.iiiiiiiiiiiiiiiiiiiiiiiiii The goal of learning is to modify either the decision rules or cer-

tain parameters thereof. Many rules or parameters may be involved at each decision point; these may be

evaluated either individually or collectively: if individually, feedback is termed structurally local; other-

wise, global. Usually, feedback is structurally global (the external environment evaluates decisions but

not individual rules), and the evaluation of individual rules is left to the learning system. Translation of

structurally global feedback into a structurally local one is called structural credit assignment [173]. In

one case, some component (a human or a program) isolates the individual effects of various rules and

feeds the information to the problem solver; in another, the rules operate on independent aspects of a

problem, each associated with its own feedback signal.

Temporal Locality of Feedback.iiiiiiiiiiiiiiiiiiiiiiiiii The environment produces feedback in response to the problem

solver’s decisions. Feedback may evaluate decisions either individually or collectively: if collectively,

several decision points may elapse before feedback becomes available. Such feedback is called delayed

feedback; it contains the combined evaluation of several decisions. Delayed feedback explicitly evaluates

the current state and implicitly evaluates past states and decisions, especially for dynamic decision prob-

lems. Based on the temporal properties of feedback, one can distinguish between temporally local and

temporally global feedback.

Temporally local feedback applies to decisions individually. In solving a large and complex prob-

lem, a problem solver may make many decisions; temporal locality requires that the environment should

produce an explicit reaction to every decision. The burden of disentangling the interdependences among

decisions is on the environment rather than on the learning system. Therefore, systems that learn from

118

temporally local feedback are easier to design than the ones that learn from temporally global feedback.

Temporally global feedback applies to decisions collectively. Resolution of interdependence

between decisions shifts from the environment to the learning system, which must distribute the feedback

between decisions using knowledge of cause-effect relationships between decisions and feedback. Trans-

lation of temporally global feedback into temporally local feedback is called temporal credit assignment

[173].

Synchronous versus Asynchronous Feedback.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii The timing of feedback dictates the ease with which a

learning system can partition its data into episodes or trials. When feedback occurs at predictable stages

of problem solving, learning is episodic. Both the structural and temporal credit-assignment problems dis-

cussed above are simplified when feedback distribution is confined within episode boundaries. Such feed-

back is called synchronous. When the time of occurrence of feedback is not easily predictable, the learn-

ing system is responsible for bounding the scope of feedback distribution. Only a finite number of past

decisions and/or states can be retained between successive occurrences of feedback, and the learning sys-

tem is responsible for their storage and temporal credit assignment.

Prior knowledge. A strategy-learning system performs credit assignment using a world model to

capture the relationships among states, decisions, and feedback signals. When such knowledge is

not given, it must somehow be inferred before performing strategy modification via credit

assignment. Environments that provide an explicit world model to the learning system are called

knowledge-rich; those that do not, knowledge-lean.

In knowledge-rich environments, credit assignment is a deductive process. The learning system can

explicitly construct proof trees or other computational structures relating decisions and feedback. In

knowledge-lean environments, the learner is forced to induce a world model from the states observed

between making a decision and receiving feedback. Interleaving such induction with problem solving and

strategy modification places extra burden on the learning system.

119

Table XIV
Examples of environments for strategy learning

iii
Example Learning Environment E Commentsii
Load
Balancing

Measurements and models of
completion time

Feedback is a function of measured completion time. It is delayed, evaluative,
asynchronous, and structurally global. Effect of placement decisions on the
external state is unknown, as well as models of tasks and their inter-arrival
times.iii

Ship
Steering

Measurement of target
displacement and models of
steering actions

Feedback (error between actual and desired trajectories) is structurally global,
delayed, evaluative, and synchronous. Prior knowledge of the effects of
steering actions, as well as the natural dynamics (based on momentum and
acceleration), are available as closed-form rules.iii

Pole
Balancing

Sensors to detect a fallen pole Feedback (signal indicating a fallen pole) is delayed, evaluative, structurally
global, and asynchronous. Dynamics of the system can be made available as a
reference in training.iii

Towers
of Hanoi

Knowledge of a ‘‘desired
state’’ and effects of various
moves

Precise knowledge of the effect of each move on the external state is available a
priori. Prior knowledge for partitioning the objective function is also available.
Feedback is structurally global, delayed, evaluative, and synchronous.iiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

In knowledge-rich environments, the uncertainty about the future states, given the current state and

action, is much less than that in knowledge-lean environments. Strategy-learning tasks in such environ-

ments, therefore, prefer learning the faster static strategies rather than the slower but more robust dynamic

strategies.

Example 1 (contd.). Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii The feedback to the learning system depends on the

formulation adopted. Analytical formulations based on combinatorial search are common for scheduling task

graphs under zero natural dynamics for load; here, multiple alternatives can be evaluated and prescriptive feedback

generated. In the case of empirical formulations, feedback is evaluative. Depending on the objective function, feed-

back may be available either after the completion of each job or after the completion of a batch of jobs.

The dependence of feedback on completion time introduces a delay between the occurrence of a decision and

the arrival of feedback signal(s) evaluating it. In the interim, several other jobs may have arrived and been

scheduled. This makes the feedback signal structurally and temporally global. Feedback is asynchronous because

the time to complete a job (and generate the feedback) cannot be predicted.

Apart from systems that use the scheduling formulation, load-balancing software is usually knowledge-lean.

The effects of migrating jobs to remote sites cannot be predicted precisely. `

120

Table XIV illustrates the concepts of this section on the strategy-learning tasks described in Section

B.

C. Issues in strategy learning

Certain key issues are common to a large number of strategy-learning tasks, and their relevance

depends upon the type of task given. For instance, prediction and temporal credit assignment are relevant

to tasks having time-varying problem variables. Identification of such issues will allow us to abstract

task-specific details. Further, an issue-based treatment of strategy learning will allow us to consider those

techniques that are conventionally not used in strategy learning but are nevertheless appropriate for

addressing these common issues. Each of the following subsections discusses a key issue in strategy

learning as well as the relevant properties of the strategy-learning tasks. Section D surveys various

approaches to some of the issues discussed in this section. Table XV lists these issues, characterizes the

factors governing their relevance, and provides pointers to the pertinent approach(es).

1) Ill-posedness of objectives

For learning tasks with ill-defined objective functions, the goals of learning and problem solving are

not clear at the outset; they must be inferred using either prior knowledge or goal-related information

implicit in the feedback. For tasks with non-reactive learning environments but measurable and ill-

defined objectives (class 8 of Figure 36), feedback must be generated internally by the learning system.

The following issues arise in learning strategies for performance tasks with ill-defined objective func-

tions.

a) Standard-of-Comparison Problem.iiiiiiiiiiiiiiiiiiiiiiiiiiii This problem, first recognized by Ackley [1], concerns the

method for assessing feedback. When the objective function is ill-defined, it is difficult to assess the solu-

tion quality, and alternative operators can only be evaluated relative to each other. In environments hav-

121

Table XV
Issues, tasks, and approaches of strategy learningiii

Issue Characteristics of learning task Approachii
Standard-of
-comparison
problem

Ill-defined objective functions and
evaluative feedback

Learning from relative evaluation

ii
Objective-
function learning

ill-defined but measurable objective
functions

Statistical regression when objective function is ill-
defined, measured over instants; time-series regression,
when measured over intervalsii

Ill−posedness
of objectives

Learning while
searching

Stochastic strategies, knowledge-lean
learning environment, and asynchronous
feedback

Learning models of reward-generation mechanisms and
learning to predict improvements; must address trade-
off between exploration and convergenceii

Structural Structurally global feedback Error-reducing approaches; problem-solver-specific
implementationsii

Credit
assignment Temporal Temporally global (delayed) feedback Complex general solutions, requiring reasoning with

causal and temporal models; reduced complexity due to
the Markovian propertyii

Predicting future
states

Time-varying problem variables and/or
dynamic decision variables, especially
difficult in knowledge-lean environments

Approaches based on projection and time-series
analysis

ii
Prediction

Predicting future
feedback

Temporally global (delayed) evaluative
feedback and/or ill-defined objective
functions measurable over intervals

Modeling of the feedback-generation mechanism and
approaches based on projection and time-series analysis

ii
Violation of the
Markovian Property

Using past states
and decisions in
current decision

Non-Markovian representation of states in
the problem solver, or lagged correlations
in time-varying problem variables

Explicit storage of past decisions and explicit modeling
of inter-decision relationships for temporal credit
assignmentc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

ii
Constraint handling Exact well-defined constraints on

solutions produced by strategies learned
Constraint satisfaction and constraint incorporation

ii
Storing past decisions Non-Markovian representation of states in

the problem solver, especially important
with delayed feedback

Either on-line incorporation of feedback, or temporary
storage of episodes; methods for limiting the size of
temporal scopesii

Managing multiple objectives Learning strategies for general problem
solving; complexity of learning depends
on the size of targeted problem class

Symbolic representation of problem spaces and
general-purpose learning techniques

ii
Dynamic decision making Dynamic strategies and dynamic decision

variables; complexity increased by time-
varying problem variables, violation of
Markov property, and lack of prior
knowledge of causal models

Dynamic programming and its variants used for
Markovian representations; no general solutions known
for the non-Markovian case

ii
Handling structured solutions Indirect operators in the problem solver

(usually with static strategies); especially
complex in knowledge-lean environments

Preference for static strategies that consider multiple
decisions at the same time; explicit representation of
structured solutions during credit assignmentii

Controlling
nondeterminism

Large search
spaces for each
instance
prohibit search
of multiple
alternatives

The small number of operators in
knowledge-lean environments and the
generality of operator preconditions in
knowledge-intensive environments;
indirect nature of operators (thereby, the
depth of solutions)

Preference for stochastic strategies that elegantly
represent varying amounts of nondeterminism as
randomness in search; learning while searching to limit
episode size

iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

122

ing prescriptive feedback, the standard-of-comparison problem is relegated outside the learning system to

the teacher. However, for evaluative feedback, it must be addressed by the learning system.

Example 1 (contd.). Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii To solve the problem of choosing a standard of com-

parison in the evaluation of load-balancing strategies, one approach is to use the case with no load balancing as a

point of reference. However, this requires that two sets of experiments should be performed using exactly the same

set of jobs and loading conditions: once with, and once without, load balancing. `

b) Learning an Objective Function.iiiiiiiiiiiiiiiiiiiiiiiiiii When an objective function is ill-posed, information about the

goals of problem solving is implicit in the feedback associated with each state. Note that the feedback is

generated only after the state has been traversed. Two cases need to be considered. First, when states can

be evaluated independently and the Markovian property holds, one can tabulate evaluations as

<state,feedback> pairs. The problem of making the learning task well-posed then reduces to one of fitting

a function to the tabulated data. Second, when the objective-function value depends on several states or

when it is measurable only over intervals, states cannot be evaluated independently. In order to learn

objective functions from such data, one can regress either a simple function upon the current and past

values of problem variables, or an autoregressive (recursively defined) function on just the current values.

Example 1 (contd.). Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Completion time is not a well-defined function of

status variables alone, and job descriptors are rarely available at the time of decision making. Not only are the

completion-time based objective functions ill-defined, but also they can be evaluated only over intervals

(corresponding to the duration of job execution). When queueing models of computers and jobs are available and

applicable, objective functions are well-defined, and the queue sizes on various resources of contention [60, 204]

can be shown to be useful for predicting completion time. In practice, the applicability of these models is question-

able, and objective functions should be learned from data relating the completion times of jobs to the load condi-

tions at the time of decision making. `

c) Learning while Searching.iiiiiiiiiiiiiiiiiiiiii This is also known as within-trial learning: the nondeterminism in

later stages of search is reduced using information about states visited in earlier stages. It is especially

123

useful for learning stochastic strategies which, depending on the amount of prior knowledge available,

may start with a random search and eventually converge to an almost deterministic search [14]. Learning

while searching is also useful for problem solvers employing deterministic strategies to expand large

search spaces [157, 158]. For learning with asynchronous feedback, which precludes identification of

clean learning episodes, as well as for learning in changing environments, learning while searching is the

only tractable way to learn. Learning while searching requires the learning algorithm to have low over-

head because learning occurs at each decision point.

Example 3 (contd.). Learning to Balance a Pole.iiiiiiiiiiiiiiiiiiiiiii As the learning system gets better at balancing, the episodes

become longer and no external feedback is generated. In order to limit memory usage, the learning system must

learn within trials. One way to do this is for the learning system to predict future feedback, and use its own predic-

tions in place of the real feedback. Whenever external feedback does become available, it can be used to train the

internal feedback-generation mechanism. `

2) Credit Assignment

Translation of environmental feedback (F) into strategy modifications is called credit assignment. It

is a problem in inverse modeling of both the environment and the problem solver: the learning system

attempts to determine what changes in the decision process will bring about desirable feedback on similar

instances in the future. The division of the credit-assignment process into the temporal and structural sub-

problems is due to Sutton [173]; these two subproblems are described next.

a) Structural Credit Assignment (SCA).iiiiiiiiiiiiiiiiiiiiiiiiiiiiii When the rules encoding a decision maker’s strategy com-

bine in predictable and well-defined ways at every decision point, one can associate a ‘structure’ with the

decision process. For instance, a proof tree might be used for representing a symbolic decision process, as

in explanation-based learning [43]. Structures such as proof trees are generated dynamically. Examples

of static decision structures include feedforward neural networks, as in Anderson’s pole-balancing system

[5]. In either case, the goal of SCA is to translate the (temporally local but structurally global) feedback

124

associated with a decision point into modifications associated with various parameters of the decision

process.

When a problem solver encodes its strategy using algorithms rather than rules, the ‘structure’ of the

decision process is not obvious. Here, SCA must either be avoided entirely or be used from decision-

process parameters to average feedback. For instance, certain problem solvers for load balancing [87] use

parameterized decision procedures rather than a rule base [108] to represent their strategies. In these, SCA

is used merely to associate the average completion time over a set of test jobs with every tested set of

parameter values; such SCA procedures perform selection among alternative strategies rather than

modification of an incumbent strategy.

When F is prescriptive and the strategy S used by PS deterministic, SCA is relatively easy: it

involves reduction of the difference between the observed and the desired values of the decision vari-

ables. For instance, in problems of tracking and trajectory planning [143], as well as in the ship-steering

task discussed earlier (Example 2), the desired final state is explicitly known. On the other hand, when S

used by PS is stochastic, SCA involves estimation and optimization of the probability of producing the

desired outcome. For instance, in load balancing (Example 1), if the learning system forms internal

models of jobs using Markov chains [74], then it must adjust the transition probabilities of its model to

match those of the job being executed.

When F is evaluative, it is not clear what the desired values of the decision variables should be, nor

are the direction and magnitude of parameter modifications obvious. In this case, SCA requires assump-

tions about how the feedback signals evaluate the current strategy. SCA can be simplified when the deci-

sion process involves only a small number (say two or three) of discrete outcomes [140]. For instance,

one might compare the current evaluation against a moving average of past evaluations in order to deter-

mine whether the probability of the observed outcome should be increased or decreased [1]: if the differ-

ence is favorable (positive for maximization of evaluation), the probability of producing the observed out-

come is made closer to 1, and that of the remaining outcomes reduced accordingly; and vice versa.

125

SCA with evaluative feedback always involves search among alternatives. Stochastic strategies

[14, 140] perform such search implicitly, and deterministic strategies [147], explicitly. At each decision

point, the decision process chooses an operator to apply. When the decision process selects the operator

producing the best evaluation, the values of decision parameters are treated as positive examples; other-

wise, negative examples. SCA attempts to create decision regions in the space of problem variables so

that each region has associated with it the best expected outcome for instances falling in that region. In

general, there is a tradeoff between exploration (via search) and testing (repeatedly applying the decision

process to new instances in order to gain confidence in the quality of the moves selected by the decision

process).

b) Temporal Credit Assignment (TCA).iiiiiiiiiiiiiiiiiiiiiiiiiiiiii TCA is the first stage in the assimilation of feedback and

precedes SCA during learning. It divides up the feedback F between current and past decisions. If the

state space is Markovian, then F can be modeled as a function of only the current state; as a result, recent

decisions (which directly contribute to the current state) are more eligible for feedback than past decisions

(which contribute only indirectly through intervening decisions and states). In particular, with direct

operators (which independently cause the evaluation), it suffices to have a discount factor (less than 1)

[175] for determining the relative importance of each decision with respect to its immediate predecessors.

Example 3 (contd.). Learning to Balance a Pole.iiiiiiiiiiiiiiiiiiiiiii Since the state of the system following a left/right move is com-

pletely determined by the knowledge of its current state and the proposed move, the state space is Markovian, and

the interaction between states decays exponentially with respect to time [25]. Such exponential decays can be com-

puted dynamically as discount factors [84]. Efficient procedures [176] proven to work for Markovian representa-

tions are known for this and related problems. `

Non-Markovian representations and indirect operators require more complex TCA procedures

[181]. Past decisions and/or states may need to be retained because they may influence feedback F

independent of the current state. Ill-defined objective functions that can only be measured over intervals

also require the retention of past states and/or decisions. Determination of the relative importance of

126

successive decisions may involve more than just a simple discount factor. Instead, the interdependence

between different decisions may need to be captured explicitly using dependence graphs.

Example 2 (contd.). Learning Strategies for the Towers of Hanoi Problem.ii The operators are indirect but the state

space is Markovian. Feedback is delayed with respect to decisions; hence, TCA must be addressed. Because of the

causal connections between decisions and states, solutions are structured. In this case, TCA separates essential

states (those on the path from the initial to the desired state) from non-essential ones. SCA is then applied to gen-

eralize the reduced solution structure so it can be used for solving similar problem instances in the future [43]. `

In general, TCA can be posed as the computation of eligibility of a stored decision to receive a por-

tion of the feedback signal [14]. Two factors contribute to such eligibility: the causal as well as the tem-

poral relationships between it and F. Thus, TCA amounts to resolving i) whether a decision could have

caused the feedback, and ii) whether its effects were still persistent at the time of feedback generation

[115].

3) Prediction

Prediction can be classified with respect to future states and future feedback. Predicting future

states is important in knowledge-lean learning environments because the problem solver needs to com-

pare the eventual relative merits of different states resulting from the application of different operators in

the current state. On the other hand, predicting future feedback is important when feedback is delayed;

here, the learning system needs to estimate future feedback in order to determine the magnitude and

direction of parameter modification.

a) Predicting Future States.iiiiiiiiiiiiiiiiiiii The external environment changes under the influence of a problem

solver’s decisions as well as under the natural dynamics of problem variables. Whereas changes of the

first sort can be determined by reasoning with causal models of the problem solver’s operators, determin-

ing the latter requires a model of the natural dynamics of the external environment. Such may be the case,

127

for instance, in tracking the position and velocity variables of a projectile. A problem solver’s strategy

must include — explicitly or otherwise — some way of estimating the future states of the external

environment.

Example 2 (contd.). Learning to Steer a Ship.iiiiiiiiiiiiiiiiiiiii Given the knowledge of the effects of steering, the problem solver

can predict where the ship will be after a few time steps if it maintains its current speed and direction. Preconditions

and postconditions on steering operations are adequate for qualitative prediction of immediate changes to the ship’s

trajectory under the influence of the problem solver’s actions. Here, the theory of knowledge-based prediction is

available [40] as well as applicable. `

b) Predicting Future Feedback.iiiiiiiiiiiiiiiiiiiiiii When the environment produces immediate prescriptive feedback,

the learning system simply attempts to reduce the error between the observed and the desired values of

decision variables. However, when the feedback is evaluative, the learning system must learn to predict

the externally generated feedback signals using its own internal state. Especially when feedback is tem-

porally global, or when the objective function is ill-defined and measured over intervals, it is not obvious

which states will lead to better feedback. While prior prediction of future feedback is useful for decision

making, a posteriori association of feedback and states (as in the TCA problem) is useful for learning.

Example 3 (contd.). Learning to Balance a Pole.iiiiiiiiiiiiiiiiiiiiiii This task features delayed and evaluative feedback. The length of

episodes grows with experience because the problem solver can keep the pole balanced longer. To continue to learn

within episodes, the learning system needs to predict future feedback so that it can substitute its prediction in place

of the (missing) immediate feedback for each decision. The key (for Markovian representations only) is to express

the total error of prediction as a sum of differences between successive predictions [175]. `

Example 1 (contd.). Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Status variables in load balancing vary with time;

predicting their variation as well as their effects on future values of feedback are the central issues in learning

load-balancing strategies. Prediction of feedback is complicated by the violation of the Markovian property. As the

states evolve with time under their natural dynamics as well as under the influence of load-balancing decisions,

more effort is spent on the tractable backward projection of credit assignment, and less on the forward projection of

128

predicting future states or future feedback signals. `

4) Violation of the Markovian property

The Markovian property asserts that the future behavior of a system is not affected by past states,

given the current state [81]. Its manifestation in decision making is the path-independence axiom:

optimal decision in a state does not depend on the state-space path leading to that state [21].

Violation of the Markovian property is especially easy to verify for systems having time-varying

problem variables. One can study the partial autocorrelations [25] of the time series generated by problem

variables: nonzero correlations at lags greater than one are the simplest evidence for the violation of the

Markovian property. This entails the incorporation of past states and decisions into the current decision

point: a history of past decisions needs to be maintained for both decision making and TCA. Corollary

issues, such as how to ‘forget’ old or unimportant decisions, must also be addressed [181]. The problem

is particularly acute for tasks with time-varying problem variables because past states and decisions may

carry information useful at future decision points.

Example 1 (contd.). Learning Strategies for Load Balancingiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii The violation of the Markovian property is shown by

significant partial autocorrelations in temporal variation of status variables at lags of two or more [115]. `

5) Constraint Handling

Constraints limit the solution space for decision variables on the one hand, and impose restrictions

on generalization by the learning system on the other. Soft constraints can often be incorporated as (posi-

tive) penalty terms added to the objective function of a (minimization) problem [188]. Unknown or ill-

defined soft constraints are handled just as unknown or ill-defined objectives. In contrast, hard con-

straints must be modeled explicitly [8] so that the learning system does not over-generalize from limited

experience. Techniques such as Lagrange multipliers [188] are useful for incorporating hard constraints

129

into objective functions during problem solving. However, they increase the effective problem size and,

therefore, the complexity of the problem.

Example 4 (contd.). Learning Strategies for the Towers of Hanoi Problem.ii This task has one significant hard con-

straint, namely, that no disk can ever be placed on another of smaller diameter. When generalizing from solutions to

specific subgoals to strategies for achieving more general goals, the learning system must ensure that the strategies

it learns do not violate this constraint. `

6) Storing Past Decisions

The violation of the Markovian property and the consequent importance of past decisions during

TCA entail retaining past decisions and possibly even the states in which these decisions were taken. This

raises a twofold problem: managing the storage of these state vectors, and optimizing the time for distri-

buting credit among them. Not all the information in a state vector is relevant, nor is it feasible to go

through the entire history each time a feedback signal is received. Determination of the past information

to be retained then becomes important.

The first issue in maintaining such a history is that of size. Even with non-Markovian state spaces,

and especially with time-varying problem variables, the effects of decisions become insignificantly small

after a certain time interval; such decisions should be ‘forgotten’ or deleted from the history.

The second issue concerns the extraction of relevant information from past history so that when

feedback becomes available, it can be distributed among decisions in proportion to their contribution to

the state(s) being evaluated by the current feedback signal. Sutton [175] proposes the use of a scalar ‘eli-

gibility’ value for each modifiable parameter of the decision maker. Holland [83] maintains a ‘strength’

parameter with each rule, which represents the average credit received by that rule over several problem

instances. Thus, scalar indicators of eligibility can be associated with either individual parameters or

rules. Yet another option is to associate such indicators with each decision stored in the history [114].

130

When past state information is the trace of a time-varying problem parameter, time-series methods simi-

lar to those used for learning objective functions may be employed for automatically constructing abstract

problem variables, which can then be used in decision making [116]. The naive alternative — to main-

tain the full state vector and associated decision variables and to process feedback signals using prior

knowledge — is both expensive and unsuitable for knowledge-lean environments.

Example 1 (contd.). Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii The violation of the Markovian property entails the

storage of past states. The effect of past states on future decisions is exercised through abstract decision metrics

(called load averages) that are used in decision rules instead of status variables. The formulae for computing load

averages can either be user supplied [61] or be induced from completion-time measurements (Chapter IV). `

7) Managing Multiple and General Objectives

This requires representation schemes that bring out the internal structure of objectives as well as the

techniques for achieving general goals. When multiple objectives are present, the learning system may

need to use general-purpose reasoning techniques [101, 102]. In this case, the procedural component of

the knowledge stored should be reduced to a minimum; such reduction in procedural knowledge may

slow down learning as well as problem solving. A more important consequence is that the learning sys-

tem may need to acquire multiple strategies for meeting the multiple objectives. This raises the need for

efficient indexing of strategies by goals [12].

8) Dynamic Decision Making

Most problems in planning and control involve dynamic decision variables because the environment

changes state in response to the problem solver’s actions. Dynamic decision variables require causal

models for representing the interdependence between decisions and states. Briefly, a causal model is

defined as a set of rules for determining the new state given an old state and a decision. It must be stressed

that for tasks with time-varying problem variables, the new state has a causal component (due to

131

decision-making) as well as a temporal component (due to the natural dynamics of the external state).

If the Markovian property is satisfied, then dynamic decision making can be addressed using

dynamic programming [21] (in knowledge-rich environments) or heuristic dynamic programming [193]

(in knowledge-lean environments); otherwise, there are two alternatives: (i) to develop new techniques

that are suitable for non-Markovian representations [116]; and (ii) to somehow transform the given

dynamic decision problem into a static decision problem, and thereby avoid TCA entirely (Figure 4).

9) Handling Structured Solutions

A solution is structured when a number of indirect operators contribute to the reward state(s) of the

external environment. Indirect operators, in conjunction with hard constraints and symbolic problem

variables, characterizes some of the most complex learning tasks. For generating structured solutions,

static strategies are preferred over dynamic ones because static strategies can simultaneously consider

multiple (interdependent) decision points.

Static strategies are possible in knowledge-rich applications in which the strategy-learning system

exploits the structure of the solutions already tested in order to find solutions for problems not seen

before. Such learning requires substantial deductive reasoning as well as inductive generalization of solu-

tions. Static strategies are not possible in knowledge-lean applications because there is not enough prior

knowledge to guide the design of such strategies. In this case, new knowledge acquired during learning

must be incorporated into new strategies in the system, causing considerable overhead during learning.

Example 1 (contd.). Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Since placement is a direct operator, balancing tasks

without precedence constraints result in unstructured solutions. On the other hand, the placement of dependent

tasks requires (indirect) operators for matching, sorting, and assignment, which combine into structured solutions.

For efficiency reasons, dependent tasks can be scheduled using static strategies in which the complete mapping of

all the jobs must be determined before executing any one of them [200]. `

132

10) Nondeterminism

Several problems discussed earlier — standard-of-comparison and learning-while-searching — are

related to the basic problem of nondeterminism in problem solving. When a problem solver is forced to

choose between alternatives, it must attempt to reduce the nondeterminism by limiting the number of

alternatives actually explored. The challenge of nondeterminism is for the strategy learner to discover

heuristic rules that allow it to choose the ‘best’ alternative without having to explore all of them. In

knowledge-lean environments, alternatives cannot be compared because there is insufficient information.

Further, exploration of an alternative may have an unpredictable effect on the external state, especially for

time-varying problem variables. In this case, the learning system may sustain nondeterminism by intro-

ducing a controlled element of randomness in decision making. Only one randomly selected alternative

is explored on each visit to a state but several different alternatives may be explored if each state is visited

several times. Such strategies, also known as stochastic strategies, are popular in strategy-learning sys-

tems for knowledge-lean environments [14, 196].

Example 1 (contd.). Learning to Balance a Pole.iiiiiiiiiiiiiiiiiiiiiii Instead of computing the value of the decision variable directly,

the controller PS computes the probabilities of the left and the right moves at each decision point [5]. The actual

assignment of a value to the decision variable is performed randomly using these probabilities. This approach is

easily extended to the case with multiple alternative actions at each decision point [140]. As the probabilities of

selection become more and more biased in favor of positive alternatives, nondeterminism is reduced. `

Table XVI summarizes issues relevant to the tasks listed at the beginning of Section B. The next

section surveys methods for resolving each of these issues.

D. Techniques for strategy learning

Strategy-learning techniques have been developed by researchers working in many different areas:

machine learning, neural networks, cognitive science, and decision theory. In order to clearly bring out

their commonalities and differences, it is important to understand how these techniques may be used for

133

Table XVI
Examples of issues in strategy learning

iii
Example Task Relevant Issuesii
Load Balancing
(Example 1)

‘‘Minimum-completion-time’’ objective ill-defined, measurable over intervals [115];

Standard-of-comparison problem due to lack of absolute evaluations [85];

SCA over process-migration rules [87];

TCA over interacting sequences of placement operations, complicated by a violation of the
Markovian property [115];

Prediction of future values of status variables [74];

Capturing the effects of past states and decisions by learning abstract decision metrics (load
averages) [115].ii

Steering a Ship
(Example 2)

SCA on preconditions of operators [43];

TCA over solution structures comprising indirect operators [45];

Prediction of trajectory under the influence of time-varying parameters as well as the
controller’s actions [9];

General problem-solving and learning capabilities for diverse scenarios [101];

Reduction of nondeterminism by macro-operator formation [99].ii
Pole Balancing
(Example 3)

‘‘Balanced-pole’’ objective ill-defined but measurable over instants [5];

Within-trial learning warranted by episode length and asynchronous timing of feedback [5];

TCA over sequences of balancing operations; history maintenance and eligibility
computation simplified by the Markovian property [173];

SCA over probabilities of applying ‘‘move-left’’ and ‘‘move-right’’ operations [14];

Prediction of future feedback signals necessary for within-trial learning [175].ii
Towers of
Hanoi
(Example 4)

General problem solving warranted by recursive transformation of the original goal into
subgoals [102];

SCA over heuristics for move selection [43];

TCA over explicitly stored structured solutions due to indirect operators;

Explicit modeling of hard constraints [8];

Controlling nondeterminism by macro-operator formation [99].iiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

resolving the issues presented in the previous section. (See Table XV for a quick overview of the methods

presented in this section.) The rest of this section presents an issue-based survey of strategy-learning tech-

niques.

1) Tackling Ill-Posed Objectives

A strategy-learning task is ill-posed when it lacks either a complete and accurate specification of its

objective function or an appropriate way to combine multiple objectives. Consequently, it does not have

134

a performance standard for choosing among the operators available at each decision point. The methods

we describe in this section use past experience with problem solving to either model the objective func-

tion or learn other strategic information that will help the problem solver to compare the relative utilities

of alternative moves.

Any of the methods described in this section can be adopted for learning while searching, provided

that it addresses the tradeoff between exploration and convergence. While exploration demands that the

system should sample a large number of states (usually by having a stochastic strategy), convergence

demands that it should converge quickly to the true model of the objective function, and thence to the

strategy that optimizes the function. A number of approaches for addressing this tradeoff rationally are

now available in the literature [16, 72].

There are two general techniques for making a problem with an ill-defined objective function well-

posed: learning from absolute evaluation, and learning from relative evaluation. Both assume that the

objective function is ill-defined and measurable over instants. Only the latter addresses the standard-of-

comparison problem.

Learning from absolute evaluation. This technique assumes that the feedback signal F is directly

related to the (unknown) objective function. It is useful for learning evaluation functions, which can be

used for predicting the true (or expected) objective-function value of states. We now describe two

methods: the first is applicable when feedback is immediate, prescriptive, and available for each state; the

second, when it is immediate, evaluative, and (possibly) unavailable for some states.

a) Learning the Objective-Function Value of States.ii This approach treats states as independent data

points and associates an evaluation with each state [37, 106]. This is equivalent to assuming a Markovian

representation for states. For example, in the game of checkers, the value of a board position is a function

of the current board configuration irrespective of the moves made to reach that configuration. Therefore,

several researchers [149, 157, 158] have designed systems that learn evaluation functions for this game.

135

Another approach associates evaluations with state sequences, and performs time-series regression

[129, 159] of measured objective-function values using recorded values of problem variables. Most exist-

ing work on strategy learning considers only problems satisfying the Markovian property; therefore, this

approach has not been used in the literature. However, in learning strategies for load balancing (Example

1), if the job descriptors were available for prediction, completion-time-based objective functions can be

characterized in terms of the job descriptors’ current values as well as the time series corresponding to

status variables.

b) Modeling the Reward-Generation Mechanism.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii When external feedback is available only inter-

mittently, an internal model — which characterizes feedback as a function of current and past values of

problem variables — can be used for generating an internal feedback. Such a feedback signal can be used

for evaluating the states not immediately followed by an external feedback signal [125, 137]. This

approach works with evaluative feedback. However, in order to learn strategies from such feedback sig-

nals, the learner should know the relative importance of current and future signals, as well as whether

feedback is to be minimized or maximized. Since learning from evaluative feedback is called reinforce-

ment learning, internal generation of missing reinforcement is termed secondary reinforcement learning

[125].

Example 3 (contd.). Learning to Balance a Pole.iiiiiiiiiiiiiiiiiiiiiii Barto, et al. [14] describe an approach using neural networks to

learn a model of external feedback. Their approach performs learning while searching. It learns to predict the

‘pole-fallen’ signal, but, more importantly, it is able to provide evaluations for states not evaluated by external feed-

back. Anderson [5] extends this work further using the more powerful multi-layered networks of nonlinear sig-

moidal units [154] to perform nonlinear regression. `

Learning from relative evaluation. The approaches described above do not address the standard-of-

comparison problem [1] for learning from evaluative feedback in knowledge-lean environments. The

methods we describe next can be used when neither the sign nor the absolute value of evaluation is

important. Methods that learn from absolute evaluation can be thought of as value-based: they induce a

136

model that can predict the objective-function value for any given state. The methods described below can

then be thought of as direction-based: they estimate the slope of the objective function. These methods

assume only that the relative magnitude of evaluations is proportional to the relative goodness of solu-

tions. They learn a restricted class of dominance relations [146, 201], which can be applied to either a

state and its siblings, or a state and its ancestors, in order to select states for further exploration.

a) Using Past States as Points of Reference.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Certain methods target improvement rather than optimi-

zation, and are useful when the degree of optimality of a solution cannot be computed easily. In this case,

the current state is evaluated against either an incumbent (the best evaluation so far) or an average of

recent values [68]. Thus, even though the original objective was ill-defined, the goal of learning is well-

defined, namely, to improve upon the incumbent.

Example 3 (contd.). Learning to Balance a Pole.iiiiiiiiiiiiiiiiiiiiiii An interesting approach to this problem is illustrated by the work

of Morgan, et al. [134] who use structurally local, immediate, evaluative feedback. They generate positive feed-

back for the part of the decision maker favoring ‘move right’ and negative feedback for the part favoring ‘move

left,’ when the pole is to the right of vertical; and vice versa. The implicit goal of each part is to minimize feedback,

which is generated when the pole either changes the side to which it leans, or changes significantly its angle of

incline. When the feedback is received, the system uses only the immediately preceding state as a point of reference

in order to improve the balance. `

b) Using Alternative States as Points of Reference.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii For certain problems, especially those with

objective functions measurable only over intervals, it is not clear how to define a point of reference using

past states. However if relative evaluations for alternative moves can be obtained, then the strategy

learned should choose the move that has the best (relative) evaluation. Producing relative evaluations

requires a mechanism that learns to compare consistently. For example, Tesauro [179] uses neural net-

works for learning to perform pairwise comparison of board configurations in learning strategies for the

game of backgammon.

137

Example 1 (contd.). Learning Strategies for Load Balancingiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Completion time of jobs are important in determining

the objective-function values for the load-balancing problem. Completion time is a function of both the time series

generated by status variables and the current value of job-descriptor variables. The latter are unavailable for pred-

iction, but their common effect can be ignored in comparing alternative operators that represent the migrations of

the same job to alternative sites for execution. In order to perform a sensible comparison of alternatives, a refer-

ence state — characterized by no load on this site — is used as a common point of reference. Regression or time-

series regression, whichever is appropriate, is used for learning to compare the relative completion times of the

same job under different loads. (Also see Chapter IV.) `

2) Solving the Credit-Assignment Problem

Exact and efficient algorithms for structural credit assignment are available for a variety of decision

structures; however, approaches to the temporal credit-assignment problem tend to be ad hoc and biased.

Solutions to structural credit assignment. The eventual goal of SCA is to modify the decision

processes so that the error between the actual and the expected outputs is reduced. Methods to achieve

this goal need to consider the representations of solutions and strategies. Existing SCA algorithms adopt

one of the following three representation techniques.

a) Explicit Representation of Structured Solutions.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii When the decision variables are dynamic and the

problem solver’s operators indirect, solutions are structured and consist of interdependent operator appli-

cations. This is particularly true of symbolic problem variables because decision rules are instantiated

differently in different contexts. SCA for such tasks uses explicit representation of solutions, and distri-

butes feedback backwards from the more recent decisions to the less recent ones. An example of such

techniques is goal regression (pp. 300 of [64]), which is particularly suitable for learning from prescrip-

tive feedback in knowledge-rich environments. In knowledge-lean environments, an approximation tech-

nique called experimental goal-regression [147] is more appropriate. Both techniques use the regression

step, wherein new subgoals are derived from the unsatisfied preconditions of an operator, whose known

138

postconditions match the current goal. If operator application leads to success, the preconditions of the

operator are generalized either analytically (as in Explanation-Based Learning, or EBL [43, 126, 133]) or

experimentally as in experimental goal-regression.

Example 5. Learning to Solve Simultaneous Equations.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Porter and Kibler [147] use experimental goal-regression

in learning heuristics for solving simultaneous linear equations. The objective is to minimize the number of terms in

the equations. The problem solver has operators that, for example, combine terms containing the same variable,

combine constant terms, cancel zero-valued terms, substitute one equation into another, or replace an equation by

its difference with another equation. The symbolic nature of terms and the indirect nature of operators give rise to

structured solutions.

In this system, strategies are represented as preconditions for applying operator; these preconditions are ini-

tially set to some general test that always succeeds. Therefore, the problem solver initially finds solutions to given

instances by search. When a solution is found, its specific facts become the preconditions for applying the operators

involved. Parts of this solution structure may be found useful for solving another problem instance in the future;

when that happens, the preconditions are generalized to accommodate both instances. The feedback signals merely

indicate the applicability of operators, and SCA uses them to modify the existing strategy so that operators involved

will apply correctly to a greater number of future instances. `

A problem that complicates SCA with symbolic variables is the combinatorial complexity of the

interactions among the variables to be considered. In this case, strategy learning can benefit from factor-

ing the set of problem variables into groups of related variables; the simplified algorithm is called

independent credit assignment (ICA) [64]. ICA is useful for learning from structurally local feedback.

b) Explicit Representation of Decision Structures.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii When solutions lack structure, a commonly used

method for SCA is to represent explicitly, in richly connected networks, all possible ways in which

decision-making rules can be combined. SCA in such structures consists of recording the level of activity

for various components at the time of making a decision and then modifying either the components, their

interconnections, or both.

139

Example 3 (contd.). Learning to Balance a Pole.iiiiiiiiiiiiiiiiiiiiiii Anderson [5] uses a feedforward neural network [154] to

represent explicitly the decision structure of his pole-balancing system. Even though multiple decisions are made

using the same network, all information used for credit assignment is stored as eligibility values with weights of the

network. Weights are modified in the direction of more positive feedback, which constitutes a change of strategy. `

c) SCA with Decision Procedures.iiiiiiiiiiiiiiiiiiiiiiiiii Sometimes structural credit assignment is not possible because

decisions are made in algorithms, and even though the algorithms may have modifiable parameters, the

role of these parameters in decision making is not explicit. For example, in learning strategies for load

balancing (Example 1), if the migration policy were implemented procedurally, and if the thresholds and

weights used by it were available for modification, then some way other than traditional credit assignment

must be found for altering the policy. One possibility is to model the effect of various parameters on

(measured) performance. Using this model, SCA may be carried out as before. Another possibility is to

have a population of candidate strategies that can be tested on different sets of instances. The best one can

be selected based on measured average performance. Systems that simultaneously test multiple alterna-

tive strategies are said to be population based [185]. Population-based learning has been found to be a

viable alternative to structural credit assignment, and its applicability is characterized mainly by the

nature of its episodes. It has been applied to learn new heuristics for process mapping [87, 88] and for

designing suitable neural-network configurations [184].

Solutions to temporal credit assignment. TCA is responsible for disentangling the interrelationships

between decisions and feedback. When solutions are structured, the decisions are causally related to one

another. Explicit representation of such causal relationships can, therefore, simplify TCA; however, form-

ing such representations requires complete and accurate knowledge of the consequences of applying each

operator. In knowledge-rich learning environments, such knowledge is available to the learning system in

the form of causal models. In knowledge-lean environments, there are two possibilities: the first is to

determine heuristically causal connections between decisions [105]; the second, to learn causal models in

the course of problem solving [174]. While the first of these approaches introduces errors and biases into

140

the learning process, the second incurs overhead during learning as well as problem solving. In general,

the quality of knowledge-lean TCA procedures is somewhat suspect. Where possible, TCA should be

avoided in knowledge-lean learning environments.

When problem variables vary with time, TCA requires not only a causal model but also a temporal

model specifying the natural dynamics of the external state. Existing systems [95, 135] often make simpli-

fying assumptions about these dynamics in order to simplify the model. For instance, Dean and

Kanezawa [40, 41] classify operators into those that support the truth of a problem variable and those that

do not. In their model, the probability of a Boolean variable being true increases exponentially towards

one following a supporting action, and decays exponentially to zero following an interfering action.

Exponential or memoryless dynamics are tantamount to assuming Markovian representations.

TCA resolves the causal and temporal dependences between decisions and feedback. For example,

in the pole-balancing task, there is a causal dependence between a balancing decision and the state fol-

lowing it. There is also a temporal dependence, namely, the effect of a decision on a state decays

exponentially with time. Typically, the causal component is used in an all-or-none fashion, to determine

which decisions are at all eligible to receive feedback. On the other hand, the temporal model is used in

the actual division of feedback because it provides a numerical eligibility value for each decision. Exist-

ing TCA algorithms follow three general schemes for representing and for resolving decision interactions

and are described next.

a) Explicit Representation of Causal Dependence.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Whenever a problem solver produces structured

solutions, i.e., a number of different operators contribute to the rewarded state(s) of the external environ-

ment, TCA can use the causal dependence to identify candidate decisions for receiving a share of the

feedback signal. In certain cases [199], the depth of a decision in the causal chain, as well as its distance

from the current state, are used for computing a numerical eligibility value.

141

Example 5 (contd.). Learning to Solve Simultaneous Equations.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii A solution to a given set of equations comprises

numerous operators applied one after another. Initially applicable operators, such as substitution and differencing,

lead to states in which later operators, such as operators for combining variables and constants, can be applied.

The causal dependences between earlier and later operators do not necessarily apply to all pairs of operators in the

sequence. Structured representations, such as trees and graphs, are better at capturing the necessary causal rela-

tionships. More importantly, unlike the aforementioned sequence, these do not imply any unnecessary dependen-

cies. The feedback for a solution can be distributed either equally to all decisions that are causally connected to it

[132], or proportionately based on the distance from the decision to the final state [147]. `

b) Explicit Representation of Decision Structures.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii In systems with common algorithms for SCA and

TCA [4, 160], learning can be simplified if the solutions do not have an internal structure. As noted

above, such systems represent their decision structure explicitly, which includes all plausible interactions

among decision rules. The algorithms proposed for computing the eligibilities of parameters in these

rules are variants of Sutton’s TD procedure [175], which have been shown to be rational for tasks satisfy-

ing the Markovian property.

Example 3 (contd.). Learning to Balance a Pole.iiiiiiiiiiiiiiiiiiiiiii Barto, et al. [14] use a simple neural network as the PS com-

ponent of their learning system for pole balancing. Neural networks without feedback are explicit decision struc-

tures. (Certain other control architectures [90] employ recurrent networks, which cannot be considered explicit

decision structures because the full context of decision making is not stored in such a structure.) Because of the

Markovian nature of the representation, the temporal dependence between decisions and feedback follows an

exponentially decaying pattern. Sutton [175] has shown that, for Markovian representations, eligibility can be

updated incrementally. Since no additional information from past states and/or decisions is required, the eligibility

values stored with each weight contain sufficient information for TCA. `

c) Scoping of Decisions.iiiiiiiiiiiiiiiiii This approach is characterized by a dynamic history of past decisions

[115] and is especially suitable for tasks having either multiple or structured objectives and time-varying

problem variables. Like the first approach above, it keeps an explicit record of decision making; and like

the second, it computes numerical eligibility values. However, instead of associating eligibility values

142

with decision parameters, it associates them with decisions themselves.

The essential information with each decision is its scope: if a feedback signal falls within a

decision’s scope, then this decision is eligible to receive a portion of the signal. Two types of scope infor-

mation are used.

Causal Scope can be used for separating decisions pertinent to each component or objective when

multiple objectives are measured or evaluated, or when several components of an objective function can

be computed independently. When feedback results from the natural dynamics of the external state,

causal scoping can prevent decisions from receiving a share of such feedback.

Example 1 (contd.). Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii The decision to migrate a job has the effect of reduc-

ing the load at the originating site and of increasing the load at the destination site. Only the decisions made using

information about the load at either the source or the destination site are in the causal scope of a migration deci-

sion. When a job finishes, its completion time is evaluated against the case without load balancing, and an evalua-

tion of the scheduling decisions generated based on such evaluation. A decision is eligible to receive a share of the

feedback when its causal scope includes placement or migration decisions regarding the completed job. `

Temporal Scope (or Extent). A state or a decision is said to be in the temporal extent of another

(earlier) decision if the effects of the latter persist until the occurrence of the former. When the external

state of the environment is fully controlled by the problem solver (closed-world assumption), decisions

can have an infinite extent. More often though, decisions have a finite temporal scope and can be dis-

carded from the history of past decisions without affecting learning. In addition, the learner can model the

persistence of each decision (the degree to which a decision affects a feedback signal that occurs within

the decision’s extent). Such a temporal model may take several forms. When objective functions evaluate

states independently (usually for Markovian representations), and when decisions affect the external state

immediately, a temporal model specifying an exponentially decaying persistence is quite adequate. In

more complex environments, where objective functions are evaluated over intervals, or where decisions

take effect after an initial delay, more complicated temporal models may be needed.

143

Example 1 (contd.). Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Migration of a job causes load changes at both the

site of origin and the destination site. The effects are felt while the job is executing; after a job finishes execution,

future decisions are not affected by the migration decision in question. In this sense, migration decisions have finite

temporal scopes. Within its temporal scope, a decision’s persistence initially increases while the job is being

migrated, then stays high during the job’s lifetime, and drops quickly to zero again upon completion. When a

migration decision is determined using causal scope to be a candidate for receiving feedback, it is given a portion of

the feedback signal proportional to its persistence at the time of feedback. `

3) Prediction

Prediction problems are inherent to tasks having time-varying problem parameters. A number of

approaches, each with its own advantages and disadvantages, are available in the literature. Various fac-

tors affecting the choice between these include i) on-line versus off-line learning, ii) numeric versus sym-

bolic variables, and iii) dynamic versus static decision variables.

a) Temporal Difference Methods

Temporal difference (TD) methods originated in early literature on dynamic programming and

problem solving, and methods related to learning were studied formally by Sutton [175]. The essential

idea of these on-line methods is to rewrite the total error of prediction as a sum of differences between

successive predictions. If the problem solver uses Markovian representations, numeric problem variables,

and direct objectives, then the error of prediction can be minimized by reducing the error between succes-

sive predictions [176, 181].

Example 3 (contd.). Learning to Balance a Pole.iiiiiiiiiiiiiiiiiiiiiii A popular class of strategy-learning algorithms, known as

ACE/ASE [14, 124], use TD methods to predict the discounted sum of all future evaluations at each time step while

simultaneously using the difference between successive predictions to modify the predictor. (In the computation of

this ‘discounted’ sum [84], immediate evaluations are given exponentially greater weight than their successors.)

144

The predicted sum of future evaluations can be used instead of missing external evaluations as the internal feed-

back, thereby solving the TCA problem. The error of prediction is divided between prediction decisions using a

recency weighting [175]: older predictions incur exponentially smaller errors than recent predictions when com-

puting the current difference between successive predictions. This is a justifiable heuristic for Markovian represen-

tations and instant-evaluated feedback, both of which are true of the pole-balancing task. `

Time-series analysis. This refers a large class of approaches that build models using sequential periodic

(therefore, synchronous) observations of time-varying parameters, and predict based on these models.

Time-series methods have been developed by researchers in statistics, neural networks, and control. In

general, these are useful for predicting future states of learning tasks having numeric problem variables

and static decision variables.

Time-series models developed by statisticians [97, 191] comprise i) trends: linear, polynomial, and

exponential dependence on time; ii) periodic components: as found by frequency-domain analysis of a

signal; and iii) random or unmodeled dynamics of environmental processes. Statistical time-series

analysis techniques tend to be off-line and require more complex computations than on-line ones, such as

the TD method described above.

Nonlinear recurrent neural networks [192] can be used for time-series prediction. However, they

have not been popular in strategy-learning systems due to the unresolved problems of instability, poor

convergence, and chaotic behavior. Somewhat more success has been obtained with TDNNs (time-delay

neural networks) [103], which are non-recurrent but examine simultaneously several delayed values of

problem variables along with their current values. Both recurrent and non-recurrent neural networks are

capable of on-line learning.

While the methods described above are applicable to prediction in the absence of prior knowledge,

tasks with numeric time-varying parameters, Markovian representation, dynamic decision variables, and

knowledge-rich environment can be solved using Kalman filtering [119]. Kalman filtering is an example

of state-space methods developed by control theorists [73]. Its predictions as well as its model of

145

environmental dynamics can be updated on-line in straightforward steps.

Example 1 (contd.). Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii The status variables in load balancing, namely, the

levels of utilization on various resources, vary with time and often exhibit periodic (stationary with time) behavior

as well as local trends (nonstationary behavior). These characteristics are due to the fact that the background load

is generated by a process population whose rate of change is slower than the sampling rate of status variables. Sta-

tistical time-series methods such as ARIMA modeling [25] are useful for identifying trends in these series, which

can then be used in making short-term predictions of future load. `

Projection. Methods of temporal projection were developed as part of temporal-reasoning systems in AI.

These employ a technique called forward chaining: the current state of the world and a set of rules that

fire therein generate new facts that characterize a possible next state of the world. Using these new

worlds, one can continue to reason and to get a two-step-ahead prediction, and so on [41, 79]. Heuristics

of preference [40, 95, 135] are needed for narrowing down the space of possible worlds. Time, being a

continuous quantity, does not easily lend itself to modeling with discrete event-based symbolic represen-

tations except when problem variables do not change outside the control of the problem solver. Projec-

tion methods are, therefore, applicable to symbolic (but not time-varying) problem variables and dynamic

decision variables. Dean and Siegle [42] have recently proposed approaches that can reason symbolically

about natural dynamics specified using differential equations.

Strategy-learning systems for symbolic problem variables and dynamic decision variables in time-

varying environments commonly use reactive rather than pro-active approaches. Such methods are known

as reactive planning [2, 66, 145, 162] and learning from failure [5, 35, 36]. In some sense, these

approaches ignore the natural dynamics of environmental processes and predict (using chaining) only the

causal dynamics of the process.

Example 2 (contd.). Learning to Steer a Ship.iiiiiiiiiiiiiiiiiiiii Although the ship-steering task involves decision-making with time-

varying problem variables, there is little time for the problem solver to search in the space of solutions. Instead, the

problem solver uses a causal model that relates its control inputs and resultant states. The model is learned from

146

observation by relating patterns in recent control actions with patterns (trajectories) in state variables following

these actions. It is then used in chaining to determine action sequences that will reach a desired state from the

current state. `

4) Exploiting the Markovian Property

Markovian representations often accompany objective functions that are either well-defined or ill-

defined and measured over instants. Some of these well-defined functions satisfy the path-independence

axiom; for these, in the presence of deterministic strategies, immediate feedback, and complete

knowledge of state transitions (knowledge-rich environment), the optimal solution can be computed using

dynamic programming [21, 195]. Similarly, for ill-defined functions, the objective of maximizing the

(possibly discounted) sum of future evaluations is also amenable to dynamic programming [84]. Variants

of this procedure exist for knowledge-lean environments as well as for problem solvers with stochastic

strategies. In this section, we discuss three different dynamic-programming formulations for strategy

learning. Note that these formulations are limited by their requirement of a finite number of states and

their high complexity in the presence of a large state space.

Dynamic programming (DP). Approaches based on pure DP are suitable for knowledge-rich environ-

ments, symbolic or discrete problem variables, and Markovian representations. When the assumptions of

DP are satisfied, the optimal strategy can be computed given the objective function (defined either as util-

ity or as cost) and a causal model of the environment. However, without additional heuristics to restrict

the space of possible solutions, DP is too complex to be practical. One way to harness this complexity is

by learning dominance relations between states [202], which can be used to prune moves leading to

suboptimal states.

Example 4 (contd.). Learning Strategies for the Towers of Hanoi Problem.ii Dynamic programming can be applied

when the objective is to find a solution that transforms the initial state to the goal state in the minimum number of

moves. Since operators applied result in deterministic changes to the problem state, DP can be used. (For

147

probabilistic transitions, the SDP algorithm described next can be used.) The first step is to set up the functional

equations of dynamic programming [86], which define recursively the optimum cost of the final state(s) in terms of

the optimum costs of the preceding states. In the Towers of Hanoi problem, there are two possible preceding states:

either the smallest disk was moved from the leftmost tower or the middle tower. The optimum cost of each of these

states can again be computed using similar recursive equations. Depending on which precedingstate achieves the

minimum cost in the recurrence, the optimal solution can be constructed. The major drawback of dynamic program-

ming is that it requires computations exponential in the number of problem variables. `

Dynamic programming can aid strategy learning by generating complete optimal solutions to cer-

tain specific instances; one can then use credit-assignment procedures [104] or generalization techniques

[9] to generalize these solutions to new goal states as well as new instances.

Stochastic dynamic programming. When a problem solver’s strategy is stochastic, so is the evaluation

of the solution. In this case, it is not possible to say whether one policy is better than another for a given

instance; instead, one needs to consider the expected evaluation of the policy rather than its exact evalua-

tion [15, 153]. Methods analogous to deterministic DP can be used to compute the optimal strategy. Sto-

chastic dominance relations between states [146] compare their expected evaluations rather than the exact

ones, and help to limit the complexity of SDP. Their use leads directly to a method for refining strategies

called policy iteration [84]. However, like DP, SDP also requires extensive knowledge of the environ-

ment and a well-defined objective function.

Example 6. Learning the Optimal Route to a Goal around Barriers on a Grid.iii This is the route-finding task dis-

cussed by Barto, et al. [15] in their review of exact and approximate methods for SDP. The performance task has

an ill-defined but measurable objective of reaching a target location on a two-dimensional grid, starting from a

given location on the grid. It also has an ill-defined constraint that the path should not cross certain initially

unknown barrier locations. The environment produces an immediate feedback signal whose value is −1 for all states

except the goal state. The problem solver has four operators (whose preconditions are unknown but effects are

known): one each for moving up, down, left, and right. The problem solver’s state includes information about the

current location on the grid. The state space is Markovian; and the operators, direct. The problem solver’s strategy

148

is stochastic, associating a probability of applying an operator with each state. Equivalently, the strategy defines a

Markov chain on the state space, where transitions are possible from each state to one of its four neighbors. No

transitions are possible out of the goal state.

With each strategy, SDP associates an evaluation function that allows one to compute, for each state, the

expected number of steps to the target using the current strategy. As in deterministic DP, one can translate the

optimality of strategies into the optimality of their respective evaluation functions [153]. SDP also permits one to

set up a recurrence equation for computing the optimal path length with a k-step lookahead in terms of the optimal

length for (k −1)-step lookahead. Once the optimal evaluation function is computed by solving this recurrence, the

optimal strategy simply picks the action that optimizes this evaluation function at each step. `

Heuristic dynamic programming (HDP). HDP [16, 193, 194] is applicable in knowledge-lean

environments where a complete model of state transitions is unavailable. As discussed before, DP

derives an optimal strategy by first deriving an optimal evaluation function from a partial enumeration of

the search space. HDP, on the other hand, works for problems with ill-defined objective functions by

estimating an optimal evaluation function and an optimal strategy. In the absence of extensive

knowledge of state transitions, the learned evaluation function and strategy can only approximate the

optimal ones.

Example 3 (contd.). Learning to Balance a Pole.iiiiiiiiiiiiiiiiiiiiiii The basic idea of HDP is to use a generalization of temporal

difference methods to predict the sum of all future reinforcements. At any point in time, the prediction process is

adapted so it will predict correctly the sum of the next state’s prediction (using the current predictor), the external

feedback received in that state, and an appropriate negative constant (to keep the sum of future reinforcements

finite) [194]. The prediction at the next state using the current set of weights becomes the apportioned feedback for

the current decision. The necessary strategy modifications for SCA can then be carried out using this feedback. `

5) Constraint Handling

Problem solvers take two distinct approaches to constraints: i) by satisfying them explicitly, and ii)

by incorporating them into the solution procedures. Accordingly, the strategy-learning systems can

149

modify either the operator-selection procedure or the objective function in order to prefer moves that gen-

erate valid states rather than those that generate invalid ones.

Constraint satisfaction. Constraint-satisfaction procedures for learning with symbolic (discrete) prob-

lem variables are typified by explanation-based learning (EBL) methods in which generalization is per-

formed by retaining the structure of a known solution and by relaxing the conditions under which the

structure applies. In this case, constraint satisfaction can reduce the space of solutions significantly. Gen-

eral techniques for finding feasible solutions for constrained problems with discrete-valued problem vari-

ables are surveyed by Nadel [138]. Techniques based on truth maintenance can be used to enforce sym-

bolic constraints during decision making and learning. (See reference [112] for an overview.)

Constraint-satisfaction approaches for learning with continuous variables induce a model of the

feasible region and use it to perform constrained optimization during both decision-making and learning.

Examples include explicit search for feasible solutions, and subsequent training of decision makers using

such solutions as examples [120]. Methods for constrained optimization of continuous functions are

reviewed by Walsh [188] and use projection of infeasible solutions to the nearest point in the feasible

region. Such methods are applicable only with well-defined constraints, but allow great flexibility for the

strategy learner.

Example 4 (contd.). Learning Strategies for the Towers of Hanoi Problem.ii The constraint, that if a disk A is on top

of another disk B then A must be smaller than B, is part of the domain theory. New states are generated by applying

operators; those that violate this constraint are simply inconsistent with the domain theory. Upon detecting that the

state resulting from the application of an operator meets all other constraints except this one, the problem solver

may postpone applying this operator until the constraint can be satisfied. In the meanwhile, the problem solver may

attempt to satisfy this constraint by setting up alternative subgoals [9]. `

Constraint incorporation. When the problem variables are numeric, constraints can be incorporated

into the objective functions as penalty terms. Jordan [90] describes one approach for incorporating con-

straints into the SCA process and another for incorporating constraints into the cost function. His

150

approaches work for a variety of numerical constraints in both knowledge-rich (constraints are explicit)

and knowledge-lean (constraints are available implicitly by random sampling) environments. Similar

approaches are discussed under the rubric of knowledge compilation. An example is the test-

incorporation approach of Dietterich and Bennett [46]. The drawback of methods in this class is that dif-

ferent relative importance given to the objective function and constraint terms leads to different optimal

solutions.

Example 6 (contd.). Learning the Optimal Route to a Goal around Barriers on a Grid.iii In this case, the constraints

are ill-defined in the sense that their violation can be detected only when the problem solver attempts to move into

the barrier. The net effect of constraint violation is the increased cost of solutions because infeasible moves cause

no change in state and are, therefore, wasted. Thus, by optimizing the cost function, the problem solver learns to

avoid barriers automatically. `

6) Managing a History of Recent Decisions

Available solutions to this problem use either the episode structure of problem instances [43, 132] or

the Markovian property [5, 177] to limit the amount of information stored. When the problem variables

do not vary with time, the state of the external environment does not change outside the control of the

problem solver; in this case, the episode ends when the final feedback signal related to this instance is

received. This feedback is used either for modifying the decision process via credit assignment, or for

assessing the importance of the current solution path. In some cases, entire solution paths, or generaliza-

tions thereof, are retained for solving similar problem instances in the future. Examples include analogi-

cal learning systems [30, 75] that retrieve and transform deductively old solutions for solving new prob-

lem instances.

When the problem variables vary with time but their distributions are stationary, a learning system

may still be able to converge to an optimal control strategy in either an absolute sense (for deterministic

variation) or an average sense (for stochastic variation). One may consider such convergence as the end of

151

an episode. Frequently though, either the length of episodes or the nonstationarity in the environment pre-

clude storage of complete solutions. When the Markovian property is violated, new states and decisions

must be added or removed continuously from the history. No general approaches for such dynamic

management of history are known.

Example 1 (contd.). Learning Strategies for Load Balancing.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii As discussed in Section 4.2.2, load-balancing deci-

sions have finite temporal scopes. Because the learning task is non-Markovian, it is essential to keep decisions

around until feedback is received. Decisions whose temporal scope has expired are no longer eligible for feedback

and can be deleted [116]. `

7) General Problem Solving and Learning

Systems for general problem solving requires symbolic-reasoning capabilities, irrespective of the

nature of problem variables. Such systems are capable of general strategy learning, although extensive

amounts of explicitly stated task-specific knowledge are needed. The techniques used by such systems

include knowledge-compilation methods, such as macro-operator formation [9], chunking [107, 152], and

procedure learning [141]. The archetypical system in this class is SOAR [172] which can learn strategies

associated with arbitrary problem spaces defined by objectives and constraints using symbolic variables.

Example 7. SAGE.2: A General Learning System.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Langley [104] demonstrates his SAGE.2 system on the Towers of

Hanoi (Example 4) and five other learning tasks. This program employs some general-purpose learning rules that

allow it to characterize good solutions in many domains. For instance, one such rule takes a complete solution tree

and characterizes the states on the path from the initial state to the goal state as good, while characterizing all other

states as bad. Yet another general learning technique specializes preconditions of operator-application rules so that

a rule will fire only when its firing does not result in a bad state. The same general rule is shown useful in learning

strategies for several diverse tasks. `

The techniques described in this section resolve most of the issues raised in Section C. Tables XV

and XVI together describe how to handle the issues relevant to our running examples. Consider, for

152

instance, the load-balancing problem. Knowing that its objective function is ill-defined and measurable

over intervals and that absolute evaluations are unavailable, we should apply time-series regression using

an alternative state as a point of reference in order to address the ill-defined nature of its objective func-

tion. For the ship-steering task, which requires symbolic prediction of the ship’s trajectory, the

temporal-projection methods of AI are the appropriate technique.

To summarize, we have presented in Sections B through D a general method for identifying the

issues and techniques relevant to any given strategy-learning task. We have described the applications in

terms of the various attributes of its performance task, problem solver, and learning environment (Section

B). We have identified the relevant issues based on the nature of the learning task (Section C). Finally,

we have discussed appropriate technique(s) for addressing these issues (Section D).

E. Architecture of strategy-learning systems

This section reviews four strategy-learning architectures by describing their internal structure and

operation. Their basic information flow follows the pattern shown in Figure 37. Depending on the

assumptions made, an architecture may be more suitable for a given learning scenario than another.

1) Dietterich and Buchanan’s Model

Learning systems developed in the areas of cognitive science and artificial intelligence tend to have

knowledge-rich learning environments. The common features of such systems are represented well by

Dietterich and Buchanan’s model [13, 45], which is suitable for learning tasks with well-defined objec-

tives and prescriptive feedback (Figure N). Other models of learning systems, such as those proposed by

Langley [104] and Smith et al. [166], also fit into this general framework.

The problem solver of this model solves given instances using a causal model relating states, opera-

tors, and effects. Strategies are usually represented as preconditions of either operators or operator

153

P

Sequence of
decisions

Constraints

Background
Strategy-Learning System

Modified strategy

Feedback and
E: Knowledge-intensive,

provides prescriptive

feedback

PS: Performs deductive

reasoning using

causal models

knowledge TCA: Identify possible
causes; heuristically
distribute feedback
among decisions in
solution sequence

Store complete
episodes of problem
solving

SCA: Identify operator-

Unify recommended changes

and edit the knowledge base
into feasible modifications

preconditions to specialize/
generalize based on

prescriptive feedback

Variables,
Objectives,

Figure 41. Dietterich and Buchanan’s model of learning systems

P

knowledge

Constraints

Background

Single
decision

Adaptive criticTCA:
E: Knowledge-lean,

provides evaluative

feedback

PS: Applying fixed decision

structures in response

to run-time states

Feedback and

Modified strategy
Variables,
Objectives,

Strategy-Learning System

predicts delayed

feedback

Maintain an eligibility
value per decision-rule

parameter

Local additive changes to

decision-rule parameters

SCA: Associative learning

of correlations between

action and reward

Figure 42. Minsky’s model of learning systems

P

knowledge

Constraints

BackgroundE: Knowledge-lean,
provides evaluative

feedback

on non-Markovian states

Run-time decision making

PS:

Variables,
Objectives, Modified strategy

decision
Single

Strategy-Learning System

eligible decisions
models to identify

causal and temporal
Use heuristicTCA:

actions and feedback

of correlations between

Associative learningSCA:

Local additive changes to

decision-process parameters

Dynamically manage
history information

using temporal scopes

Feedback and

Figure 43. The hybrid point-based model of learning systems

154

sequences. The learning system contains a critic and a learning element, the former handling the seman-

tic problems such as credit assignment, and the latter, syntactic problems such as parsing, unification, and

eventual modification of the knowledge base. The credit-assignment modules make extensive use of

stored knowledge both to relate the external feedback to objectives and to determine the preconditions of

operators responsible for the current feedback. The learning system uses an internal model of the prob-

lem solver to edit strategies.

Retention of complete solutions permits the use of symbolic learning techniques, such as syntactic

generalization of stored solutions and formation of macro-operators. Syntactic generalization techniques

are particularly apt when the problem solver employs static strategies, and the feedback is delayed,

prescriptive, and synchronous,

Syntactic generalization and credit assignment based on abductive reasoning permit systems based

on this model to generalize substantially from each example. Rule schemata, which can be derived using

only a few episodes of successful problem solving, capture the common structure of observed solutions;

their preconditions are the maximally general conditions under which the operators of the common struc-

ture may be applied.

The chief advantages of this model are i) its generality — powerful symbolic representations allow

the application of the same general learning principles to multiple performance tasks and problem

solvers; and ii) its ease of debugging — extensive use of knowledge during credit assignment produces

justifications for each generalization or specialization step. Its disadvantages are that i) it works only for

problems with well-defined objectives; ii) it works only with prescriptive feedback; iii) it relies on prior

knowledge of causal models; and iv) it cannot handle time-varying problem variables. Dietterich and

Buchanan’s model is efficient in that it requires a small number of examples, but inefficient in the time

required to learn from each.

155

2) Minsky’s Model

Learning tasks in the areas of control and decision theory tend to have knowledge-lean learning

environments. Techniques developed in these areas generally employ statistical methods to identify

models, and estimate their missing parameters. Knowledge-lean environments usually produce evaluative

feedback which, in the presence of time-varying problem variables, makes TCA the principal problem.

The common characteristics of systems employing statistical methods for learning are well represented by

Minsky’s model [125] (Figure 42). This model is characterized by its use of feedback predictors (also

known as adaptive critics or secondary reinforcement devices), which learn to produce internal feedback

whenever the external feedback is delayed.

Systems based on Minsky’s model generally operates continuously using dynamic strategies, and

respond to ongoing changes in the external environment. In these systems, it is hard to identify episodes,

and is nearly impossible to retain complete solutions. As a result, the eligibility of decision-making

parameters is computed on-line without storing an explicit performance trace. Existing examples of this

architecture invariably assume Markovian representations; hence, they lack the mechanisms for maintain-

ing a history of old states and decisions, as well as the machinery for the associated TCA problems.

Since eligibility values are computed on-line and correspond directly to the parameters of decisions mak-

ing, this model provides efficient solutions to the credit-assignment problem, often integrating both SCA

and TCA in the same learning algorithm.

Statistical methods are useful as ways to bootstrap learning without prior knowledge, but such

(associative) learning techniques require a large number of problem-solving episodes. The amount of

information extracted from each example is small relative to Dietterich and Buchanan’s model. That

causes slowness of learning, which is an important factor behind several recent proposals for hybrid archi-

tectures [177, 196].

156

Accurate and efficient estimation of strategic knowledge using statistical techniques requires resolu-

tion of the exploration-convergence dilemma. Systems based on Minsky’s model work only with prob-

lem solvers employing stochastic strategies: the randomness of such strategies is a natural way to imple-

ment search or exploration of alternatives; convergence, on the other hand, can be achieved by reducing

such randomness.

The advantages of Minsky’s model are that: i) it is suitable for learning in knowledge-lean environ-

ments; ii) it can handle ill-defined objective functions; iii) it can learn from delayed, evaluative feedback;

iv) it solves efficiently the credit-assignment problem; and v) it learns dynamic strategies that work better

than static ones for problems with time-varying parameters. The disadvantages of this model are i) its

reliance on Markovian representations, and the associated lack of mechanisms for using and for storing

past decisions; ii) its difficulty of debugging due to the use of complex statistical models; and iii) its lack

of generality due to poor transfer of learning across performance tasks. As a result, learning with

Minsky’s model requires a large number of examples, each taking a small amount of time.

3) Hybrid Point-Based Learning Model

The hybrid point-based learning model [114-116] (Figure 43) was motivated by non-Markovian

strategy-learning tasks in knowledge-lean environments. Minsky’s model is not directly applicable to

such problems because it lacks both the knowledge and the reasoning mechanisms necessary for distribut-

ing credit among explicitly stored past decisions. Usually, knowledge-lean environments are accom-

panied by ill-defined objectives and evaluative feedback, both of which preclude the use of Dietterich’s

model.

In the hybrid model, the states and decisions are recorded in a dynamically managed history as deci-

sions are made. Temporal models, containing information about persistence and temporal scopes, are

used in history management as well as in temporal credit assignment. Causal models are used only to

identify candidate decisions during TCA. Relative to Dietterich and Buchanan’s model, the causal model

157

used here can be heuristic and less detailed. Unlike Minsky’s model, the hybrid model cannot combine

solutions for TCA and SCA: instead of associating eligibility values with modifiable parameters of the

problem-solver’s strategies, it associates eligibility values with individual decisions in the history.

When feedback becomes available, the candidate decisions are first identified using the heuristic

causal model; the eligibilities of individual decisions are then used for proportional assignment of

credit/blame among decisions. SCA is performed on the explicitly stored portions of solutions. Examples

of systems employing the hybrid model include Samuel’s Checker Player [158], Widrow, et al.’s truck-

backer-upper system [143], and learning systems based on genetic algorithms [24, 167].

The hybrid model compromises the generality of Dietterich’s model and the efficiency of Minsky’s

model. It is like Minsky’s model with additional functionality for maintaining history information and

performing TCA on stored decisions. Such added functionality allows the hybrid model to work with

problem solvers employing non-Markovian representations. Alternatively, the hybrid model can be

viewed as Dietterich and Buchanan’s model with additional functionality for tackling time-varying prob-

lem variables, ill-defined objective functions, dynamic strategies, and evaluative feedback.

4) TEACHER: A Population-Based Learning Model

All the models described above employ point-based search in the space of strategies, using credit

assignment to modify the incumbent strategy based on feedback, and either stochastic strategies or expli-

cit perturbations to explore the search space. The fundamental idea in TEACHER [185] (Figure 44) is to

use population-based methods for probing the strategy space at several points simultaneously. Starting

with an initial pool of candidates, TEACHER admits several ways of generating new candidates: i)

grammar-based, in which problem-solving strategies are generated as leaves of a phrase-structured gram-

mar; ii) perturbation-based, in which random or systematic perturbations are applied to the incumbent

strategy to obtain new candidate strategies; and iii) performance-based, in which credit assignment is

158

Variables,
Objectives,
Constraints

P:

Knowledge-lean,
provide evaluative
feedback

E:
Modified

Candidate

Single
decision

Feedback (measured performance)

Test cases (selected problem instances)

generation, testing and
modification

strategy and maintain partial order
of aggregate performance
of candidates

Heuristics Manager:

Normalize and record per-

Compute aggregate per-
formance of candidates

Performance Computation:

Improved
Policies

and candidate strategy

Run-time decision
making on non-
Markovian states

PS:

Generate new strategies

formance of candidates;Perform tradeoffs between

Resource Scheduler:

Learning Module
Point-Based

based on the
hybrid model

INTEGRATED STRATEGY LEARNING SYSTEM

Figure 44. The TEACHER model of learning systems
hh

used either for modifying the incumbent or for updating the probability of selecting one of the candidates

generated.

TEACHER is characterized by its resource scheduler, which rationally divides learning time

between generation, testing, and modification. TEACHER honors deadlines on learning time. In order to

make rational and effective use of the limited time, it uses the theory of sequential selection from statisti-

cal decision theory [67]. However, this theory applies under certain restrictive assumptions on the distri-

butions of objective-function values over the populations of problem instances.

Three significant advantages of TEACHER accrue from its use of a population-based approach: i)

parallelism — a number of different strategies can be tested in parallel; ii) global search of strategy space

— while point-based methods explore only some neighborhood of the initial strategy, converging to the

nearest locally best strategy, TEACHER performs a multi-pronged search and is more likely to hit a glo-

bally best strategy given enough time; and iii) it is able to learn with decision procedures whereas point-

based methods fail when not given access to the internal model of the problem solver’s decision process.

Thus, TEACHER has all the power of the hybrid model plus the added functionality for resource-

constrained learning.

159

Table XVII
Architectural models characterized by their approachii

Model† Issue Approachii
Credit Assignment Knowledge-based algorithms using ICA (Sec. 4.2.1); explicitly represented

structured solutions; well-defined objective functionsiii
Prediction Projection of symbolic variables using explicit causal modeliii

D General Problem Solving,
Non-Markovian Representations,
Indirect Operators,
Multiple General Objectives,
Storing Past Decisions

Using powerful symbolic representations, prior knowledge of general purpose
problem-solving techniques, static strategies in problem solvers, and explicit
storage of structured solutions

ii
Ill−Posed Objective Functions Interleaved learning of instant-evaluated objective functions and dynamic

strategies; learning from absolute evaluation and (delayed) evaluative feedback.iii
Credit Assignment Complex TCA problems in knowledge-lean environments solved using on-line

learning of reward-generation mechanism; SCA interleaved with TCA; not
suitable for non-Markovian representationsiii

Prediction Learning to predict future feedback as a function of current and recent inputs
by temporal difference methods; projection to future states not attempted due to
lack of causal modelsiii

Dynamic Decision Making Using dynamic programming and its variants to learn dynamic strategies from
evaluative feedback for Markovian representationsiii

M

Nondeterminism Controlled using stochastic strategiesii
Ill−posed Objective Functions Off-line learning of interval-evaluated objective functions from absolute or

relative evaluationiii
H Credit Assignment,

Storing Past Decisions,
Non-Markovian Representations

Off-line learning of causal and temporal models, explicit storage of past
decisions (with size limited by temporal scopes), and combination of causal and
temporal scopes; valid even for non-Markovian representationsii

Credit Assignment Maintenance of a population of competing strategies, and use of credit
assignment only to alter probability of selection but not necessarily to improve
the incumbent strategy; avoidance of structural credit assignment entirely,
hence, suitable for decision proceduresiii

Resource Constraints Using statistical theory of sequential selection to resolve the exploration-
convergence dilemmaiii

T

Efficiency Amenable to parallel implementation on multiprocessorscc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

ii
†D: Dietterich and Buchanan’s Model (Fig. 41); M: Minsky’s Model (Fig. 42); H: Hybrid Model (Fig. 43); TEACHER Model (Fig. 44)iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table XVII summarizes the characteristic features of the four architectural models. Table XVIII

reviews their applicability to the strategy-learning tasks described at the end of Section B.

F. Practicality of strategy learning

In this section, we examine practical issues in the design of strategy-learning systems. A practical

system should be easy to debug, efficient at learning, able to tackle unseen instances, and able to produce

160

Table XVIII
Examples of strategy-learning tasks and architectures

ii
Example Model† Commentsii

D Knowledge-based critic needs a well-defined performance standard, which is not available.
This model lacks mechanisms for predicting future values of time-varying status variables because it
assumes that nothing changes outside the problem solver’s control.ii

M The adaptive critic attempts to compute eligibility on-line, which does not work for non-Markovian
representations.
The adaptive performance element is efficient for learning stochastic strategies from evaluative feedback.ii

H The model is suitable for non-Markovian states and time-varying status variables.
It is difficult to find a persistence model that properly accounts for feedback delays.ii

T

Load
Balancing

The model obviates the credit-assignment problem.
Population-based learning allows multi-pronged performance-directed search in strategy space.
If background knowledge were available, it can be used in intelligent generation of new strategies.ii

D A good match because of well-defined objective function, static strategies, and knowledge of operator
semantics.ii

M The model is unsuitable because of non-Markovian representations, complex decision rules, and
deterministic strategies.ii

H Unnecessary overhead is incurred due to the additional functionality for handling dynamic strategies and
dynamic history management using temporal scopes.ii

T

Ship
Steering

The functionality for simultaneous testing of multiple strategies is not needed for this problem.
Sufficient background knowledge is available so that point-based learning using Dietterich and Buchanan’s
model requires only a few problem-solving episodes.ii

D Knowledge-based learning is not applicable to the ill-defined objective function and time-varying problem
variables.ii

M A perfect match for this problem due to the Markovian representation, ill-defined objective function
measurable at instants, knowledge-lean environment, and evaluative feedback.ii

H This model works but fails to exploit the Markovian property for efficient solutions to SCA and TCA.ii
T

Pole
Balancing

Point-based learning suffices since the Markovian property is satisfied and TCA can be solved efficiently.ii
D Perfect match for this model due to its ability to handle multiple, general objectives.

Syntactic generalization techniques of this model work well for constrained generalization of observed
solutions.ii

M The model lacks mechanisms for handling hard constraints and learning from complete solutions.ii
H Since the Markovian property is satisfied, the extra functionality of this model is not used.ii
T

Towers
of
Hanoi

Lengthy test-cases preclude the application of population-based learning.cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

ii
†D: Dietterich and Buchanan’s Model (Fig. 41); M: Minsky’s Model (Fig. 42); H: Hybrid Model (Fig. 43); T: TEACHER Model (Fig. 44).iic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

strategies that generate solutions of acceptable quality in a reasonable amount of time. These issues have

traditionally been either ignored or solved using ad hoc techniques. They represent important dimensions

along which strategy-learning will evolve in the future. Table XIX illustrates such practical issues using

the examples developed in Section B.

161

Table XIX
Examples of practical issues in strategy learning

iii
Example Issue Commentsii

Resource
Constraint

The problem is too complex to test all the strategies exhaustively; rational division of time
between competing placement heuristics is essential.iii

Debugging It is difficult to design and debug a system to predict completion time using statistical methods.iii
Efficiency Stochastic strategies and evaluative feedback require large number of instances but less time

per instance.iii
Quality Optimality is provably intractable; the design should aim only to improve speed-up over a

reference case (such as one without load balancing).iii
Generality

Load
Balancing

It is difficult to extend the strategies learned and tested on a small network to larger networks;
there is no generalization across problems.ii

Resource
Constraint

Symbolic events and complex rules limit episode size, effectively removing resource
limitations on learning.iii

Debugging Explanatory trace from knowledge-rich strategy learner simplifies debugging.iii
Efficiency Knowledge of causal models and temporal variations reduces the number of learning episodes

but increases the time per episode.iii
Quality Quality is judged by the solution length; chunking (collapsing rule sequences) produces near-

optimal solutions.iii
Generality

Steering
a Ship

With only a few task-specific rules, the system is extremely brittle; with additional rules
describing common-sense physical laws, generality can be increased at the cost of efficiency.ii

Resource
Constraint

Given deadlines, learning should limit exploration and converge faster, at the risk of learning a
suboptimal strategy.iii

Debugging Strategies learned using statistical (associative learning) methods are difficult for humans to
interpret and modify.iii

Efficiency Learning requires too many trials; the amount of work per trial is small; therefore, this
application is suitable for on-line learning.iii

Quality Asymptotic convergence to the optimal strategy is guaranteed when convergence is sufficiently
slow.iii

Generality

Pole
Balancing

Generalization to similar instances is spontaneous; to new problems, difficult because of
inflexible decision structures.ii

Resource
Constraint

Episodes of this provably complex problem can be lengthy; these force consideration of the
exploration-convergence trade-off.iii

Debugging Symbolic representations are analyzed easily by humans, but not necessarily by the algorithms
used by the problem solver.iii

Efficiency Symbolic generalization requires relatively few trials, but each trial may be quite complex.iii
Quality Quality is judged by the number of states explored relative to the incumbent strategy.iii
Generality

Towers
of
Hanoi

Powerful heuristics are problem-specific but not instance-specific.iiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

1) Implementation issues

Designers of learning systems must take into account realistic constraints on time and other compu-

tational resources in developing, debugging, and testing computer programs for strategy learning. This

section reviews the prevalent approaches to these problems.

162

a) Resource Constraints.iiiiiiiiiiiiiiiiii Table XIX shows that resources for strategy learning might be subjected to

a variety of constraints. For example, in the load-balancing task (Example 1), a large amount of testing

time is required for each test case, which comprises multiple jobs and testing a strategy on multiple test

cases. Such learners must sample the space of alternatives intelligently, ensuring that alternatives yield-

ing high-quality solutions are given more time while simultaneously attempting to explore a large number

of alternatives to gain confidence in the strategies learned. At an abstract level, this may force the strategy

learner to first form estimates of eventual execution cost and solution quality, and then trade between

these to learn a good strategy with high confidence.

The TEACHER architecture of Wah et al. [87, 164, 184] addresses resource-constrained strategy

learning; it includes a resource scheduler that trades between quality and cost. Formal models for the

design of resource-constrained rational learning agents, using decision analysis to estimate the utility and

cost of alternatives, have been proposed by Etzioni [54], and Russell et al. [155, 190].

b) Analysis and Debugging.iiiiiiiiiiiiiiiiiiiii No general-purpose debugging tools for strategy-learning systems are

available yet. Even so, it is easier to design knowledge-based learning systems. These systems often pro-

duce intelligible traces of their behavior, which include justifications for proposed actions and explana-

tion of unanticipated errors. Their representations are human readable, simplifying their interpretation

and debugging. Dietterich and Buchanan’s architecture, owing to its use of knowledge-based learning, is

the winner on this issue. This architecture can be used in learning strategies for both the ship-steering

(Example 2) and the Towers of Hanoi (Example 4) problems (see Table XIX). However, it is difficult to

evaluate statistically the performance of knowledge-based systems on account of their brittleness (poor

generalization). Complex analytical techniques are needed for proving that such systems can indeed learn

strategies for all the instances of a problem.

On the other extreme, systems based on Minsky’s model do not usually produce detailed explana-

tions of their behavior. This architecture can be used in learning strategies for load balancing (Example 1)

and pole balancing (Example 3). (See Table XIX.) The performance of such systems can, however, be

163

analyzeded using techniques from decision analysis and computational learning theory.

c) Parallel Implementation.iiiiiiiiiiiiiiiiiiii Two of the four architectures described in the previous section —

Minsky’s model and the TEACHER model — lend themselves to parallel implementation. Systems based

on Minsky’s model, especially those based on neural networks [4, 173], are characterized by fine-grained

local computations and can be carried out efficiently on regular massively parallel computers [38]. Sys-

tems based on TEACHER yield a somewhat coarser grain of parallelism, which is suitable for implemen-

tation on distributed-memory systems [89].

2) Evaluation of strategy-learning systems

We have seen in the foregoing that the choice of a learning system depends upon various aspects of

the given strategy-learning task. However, problems can be reformulated; problem-solving strategies and

operators, redesigned; and the feedback structure of the learning environment, changed. Realistically,

therefore, an application engineer may have a choice between several designs for a strategy-learning sys-

tem. One may compare strategy-learning systems on the basis of their efficiency, quality, and generality.

a) Efficiency.iiiiiiiii The efficiency of a strategy-learning system is defined by both the number of

instances needed for learning and the time taken per instance. For general-purpose learning systems

based on Dietterich and Buchanan’s model, inefficiency is a problem due to the need for symbolic mani-

pulations (which are slower than numerical ones), as well as the need for matching new instances against

a database of goal-indexed solutions. These systems take too much time per instance but are able to learn

using fewer instances. Table XIX illustrates this fact for the ship steering (Example 2) and the Towers of

Hanoi (Example 4) tasks. On the other hand, systems based on Minsky’s model use stochastic strategies

to learn from evaluative feedback; they require too many training instances to converge, but require only

simple computational steps per instance. Table XIX illustrates this property for the load-balancing

(Example 1) and the pole-balancing (Example 3) tasks. In between are systems that learn from prescrip-

tive feedback, which apply error-correction or gradient descent to compute changes to the various strategy

164

parameters; they need less time per sample than knowledge-based learners, and fewer samples than sto-

chastic ones.

Recent attempts to overcome inefficiency include the incorporation of look-ahead mechanisms in

stochastic search [177, 196], as well as reductions in the cost of symbolic matching [76, 127]. Systematic

improvements in efficiency can also be obtained by goal-directed partitioning of the state space into

regions of similar utility [150]. Moreover, one can learn dominance rules that prune out suboptimal illus-

trates this property for the load-balancing (Example 1) and the pole-balancing (Example 3) tasks. In

between are systems that learn from prescriptive feedback, which apply error-correction or gradient des-

cent to compute changes to the various strategy parameters; they need less time per sample than

knowledge-based learners, and fewer samples than stochastic ones.

Recent attempts to overcome inefficiency include the incorporation of look-ahead mechanisms in

stochastic search [177, 196], as well as reductions in the cost of symbolic matching [76, 127]. Systematic

improvements in efficiency can also be obtained by goal-directed partitioning of the state space into

regions of similar utility [150]. Moreover, one can learn dominance rules that prune out suboptimal alter-

native strategies [54, 202].

b) Quality.iiiiiii The quality of strategy learning is judged by the quality of solutions produced by the

strategies learned. For optimization problems, the quality of solutions is judged by the degree of optimal-

ity as well as the length of the solution; that of satisficing problems (where the objective is a truth-valued

function), by the length of the solution alone. Table XIX shows that the load-balancing (Example 1) and

the pole-balancing (Example 3) tasks are of the first type; and the ship-steering (Example 2) task, of the

second type. Techniques such as dynamic programming and its variants can often produce optimal or

near-optimal strategies for learning from evaluative feedback when the Markovian property holds. In

general, there is a trade-off between quality and efficiency of strategy learning: producing strategies of

high quality requires large sample sizes. This trade-off is critical to strategy-learning systems under

resource constraints, where learning must be combined with intelligent sampling in order to efficiently

165

learn strategies of high quality.

A key problem in assessing the relative quality of alternative strategies is that of normalization

[185]. One possibility is to compare alternatives on a case-by-case basis; this approach yields a large

number of comparisons that need to be aggregated in order to produce a scalar performance metric.

Another is to compare the aggregate performance of one alternative on a large number of cases against

the aggregate performance of another on the same set of cases. Of these two, the first is a better indicator

of expected relative improvement in solving an unseen random problem instance. When both cost and

quality need to be compared, it is best to compare them separately. In optimization problems, one may be

interested in finding the best solution within certain bounds on cost; in satisficing problems, one may only

be interested in a solution of satisfiable quality in the shortest possible time. Both these desiderata can be

accommodated by a normalization scheme that separately normalizes cost and quality on a case-by-case

basis.

c) Generality.iiiiiiiii Every learning system is expected to generalize what it learns during training to

instances it has not seen before. Strategy-learning systems for general problem solving must generalize

not only to new instances but also to new problems. There is a sharp divide on this account between sys-

tems based on Minsky’s model on the one hand, and those based on Dietterich and Buchanan’s model on

the other. While the former generalize spontaneously to new instances, their generality to new problems

is severely limited by their static representation; on the other hand, the latter are brittle in terms of gen-

eralizing to new instances, even though they are somewhat better at generalizing to new problems. Table

XIX shows that typical symbolic problem solvers, such as the ones in the ship-steering (Example 2) and

the Towers-of-Hanoi (Example 4) tasks, are capable of generalizing across tasks provided that they are

given sufficient general knowledge.

Designers of strategy-learning systems need to address practical considerations such as resource

constraints, ease of debugging, and fast learning. It is likely that future systems will employ hybrid rea-

soning and representation techniques in order to combine the benefits of knowledge-based and statistical

166

methods.

G. Chapter summary

A strategy-learning task is a triple comprising a performance task, a problem solver, and a learning

environment. Performance tasks are characterized by their variables, objectives, and constraints; problem

solvers, by their representations, operators, and strategies; and learning environments, by their feedback

and knowledge-intensity. Strategy-learning tasks drawn from diverse fields can be classified using this

taxonomy.

The issues of interest to the designers of a strategy-learning system are functions of the structure of

its learning task. Complex learning tasks are characterized by ill-posed objective functions, delayed feed-

back, violation of the Markovian property, dynamic decision making, time-varying problem variables,

and knowledge-lean domain.

A clean separation of issues from applications allows us to address techniques for strategy learning

independent of the specific learning systems. General-purpose approaches, such as dynamic program-

ming, regression, and time-series analysis, are shown to be useful. Non-Markovian tasks, for which no

general purpose techniques are known, require new approaches to update dynamically history information

and perform rational credit assignment on stored solutions. The concepts of causal and temporal scopes

are introduced as prerequisites for general-purpose credit-assignment procedures.

The numerous issues and approaches can be abstracted into four general architectures: Dietterich

and Buchanan’s model, Minsky’s model, the hybrid model and the TEACHER model. The first is useful

for learning static strategies in knowledge-rich environments; the second, for learning dynamic strategies

for Markovian problems in knowledge-lean environments; the third, for learning dynamic strategies for

non-Markovian problems; and the fourth, for resource-constrained learning of procedurally encoded stra-

tegies using generate-and-test approaches.

167

To develop more powerful strategy-learning systems, we need to address practical issues regarding

implementation, such as limited resources and efficacy of design, and those regarding evaluation, such as

methods for characterizing the quality, efficiency, and generality of the techniques. Some issues are

specific with specific techniques, such as the slowness of reinforcement learning, the difficulty in general-

izing the structure of strategies in explanation-based learning, and methods for nonlinear prediction and

regression.

168

CHAPTER VI.

POPULATION-BASED LEARNING OF LOAD-BALANCING POLICIES

Experience is one thing you can’t get for nothing.

- Oscar Wilde

A. The policy-learning problem

Figure 3 (Chapter I) shows the sender-side and receiver-side rules for the load-balancing policies

considered in this thesis. There is one set of rules per site. The rules are parameterized; the number of

parameters depends upon the number of sites in the distributed system. Let N denote the number of sites.

The sender-side rules (SSRs) of each site have 3 parameters: two thresholds — θ1 and δ — and the

Reference parameter. The receiver-side rules (RSRs) of each site have 1 parameter: the threshold θ2.

Altogether, there are 4 parameters per site, or 4N parameters for the whole system. In this chapter, we use

the term heuristic method (HM) [185] to denote a set of system-wide parameters.

Figure 45 shows our representation of HMs. Later in the chapter, we show that genetic operators,

such as mutation and crossover, can be applied to such representations in order to generate new HMs

from a population of existing HMs.

hh

Reference (N), θ1(N), δ(N), θ2(N)

...
Reference (2), θ1(2), δ(2), θ2(2)

Reference (1), θ1(1), δ(1), θ2(1)

hh

Figure 45. Representation of heuristic methods

169

The load-balancing policies are applied in a distributed fashion. When a job arrives at a site i, it

triggers that site’s SSRs. Using the information about the local and remote load indices, the SSRs deter-

mine a set of possible destinations, which includes all sites whose load indices lie within a δ(i)-

neighborhood of Reference(i). Out of these, one destination (say, j) is picked at random. Depending

upon the value of Reference(i), the SSRs compare either the absolute or the relative value of

Load(i) against the threshold θ1(i). If Load(i) is large enough, then the rule for sending succeeds, and

the SSRs invoke the RSRs at site j; otherwise, the job is executed locally at site i. The RSRs at site j

compare Load(j) against the threshold θ2(j). The request from the SSRs at site i is turned down if

Load(j) is too high; in this case, the job is executed locally at site i. Otherwise, the request is accepted,

and the remote site (i) is given permission to migrate its job. Thus, successful migration requires, first,

that the SSRs at the site of arrival succeed, and, second, that the RSRs at the chosen remote destination

also succeed. Also see Figure 11 and the discussion of the policy-learning and application phases in

Chapter II.

Randomization in selection of remote destinations avoids instability in distributed scheduling algo-

rithms [171]. The threshold θ1 in SSRs prevents migration when the expected gains in completion time

are not large enough to offset the overheads of migration. The threshold θ2 in RSRs is less critical, but it

can help counter bad decisions by senders who overestimate their own load.

Because of the measurements conducted during the application phase, the completion time of each

incoming test job is known ahead of time for all possible destinations. Further, by applying the load-index

functions, we can obtain, for each load pattern, a complete system-wide trace of load indices up to the

job’s time of arrival. Given the load indices, we can determine the destination of each incoming job by

simulating the application of the load-balancing policy. As described above, first the SSRs are evaluated

at the site of arrival; then, if necessary, the RSRs are evaluated for some remote destination. Since meas-

ured completion times are already known for both local execution and remote execution, the improve-

ment in completion time due to migration can be determined immediately.

170

The total completion time of a migrated task equals the sum of the overhead and the remote com-

pletion time. The ratio of total completion time to the local completion time gives the speed-up with

respect to local execution. Such speed-ups are the basic units of an HM’s performance.

We organize the data collected ahead of time into test-cases. Each test-case carries information

about one incoming job, its time of arrival, and the load indices of different sites at the time of arrival; it

also carries information about the measured completion time of that job at each of the N sites. We use the

word test in this chapter to denote the evaluation of a selected HM on one test-case. Since our experi-

ments are performed off-line, we assume that each test takes unit time.

The test-cases of an application constitute the test database, which represents a sample from the

space of problem instances. (For the load-balancing domain, each instance describes the incoming job

and the background loading pattern.) Associated with each HM is a population of performance values,

one value per test-case. The space of HMs can be viewed as a population of populations. Our goal of

optimizing average speed-up over local execution can be reformulated as one of choosing the HM whose

population has the highest mean.

Given the large number of parameters, many of them real-valued, the space of possible HMs is quite

large. We must search this space intelligently and in limited time (i.e., by performing only a limited

number of tests). If we had unlimited time, we could test every HM on every test-case, and then choose

the one with the highest mean. In limited time, however, only a limited number of HMs may be tested,

and only a few tests can be performed per HM. Therefore, the policy-learning system must possess

bounded rationality [165]: it must schedule tests intelligently. This scheduling problem is the crux of

policy learning; the theory for this problem was developed by Wah, et al. [185, 186], whose TEACHER

(TEchniques for Automated Creation of HEuRistics) system [88, 185] provides a domain-independent

approach to rational scheduling of limited learning time between generation and testing.

171

B. Brief overview of TEACHER

We use the TEACHER system for the policy-learning phase of SMALL. This section first describes

TEACHER and then the interface between it and SMALL.

1) Architecture and operation of TEACHER

Figure 46 shows the overall architecture of TEACHER. The key component of TEACHER is the

scheduler, which decides whether to generate new HMs or continue testing the ones already in the pool.

The advantage of generation is that if a large number of HMs are tested before selecting the HM with the

largest sample mean, then the likelihood of missing the population with the largest mean is reduced. On

the other hand, when tests are spread across several different HMs, each one can be tested on only a few

problem instances; even though the quality (sample mean) of an HM may be high, our confidence in that

quality will be low. The advantage of continuing to test existing HMs is that our estimate of their quality

hh

TEST-CASE
MANAGER

SCHEDULER

GENERATOR

EVALUATOR OF
POLICY

PERFORMANCE

POINT-BASED
LEARNING

Test-case to
problem solver

HM (Heuristic Method) or
parameter set to the problem
solver

Performance on
test-case from
problem solver

Overall performance of selected HM

Performance of selected HM
on current test-case

New HMs

Modified HM

Time left

POOL OF
HMs

Figure 46. The architecture of TEACHER

172

improves with the number of tests. TEACHER divides up its total learning time into generations. At the

beginning of each generation, it calls the generator to generate new HMs based on the past performance

(if any) of the existing HMs. Then, until the end of the generation, it continues to test the new HMs (as

well as some old HMs that have been retained from previous generations). At the end of the final genera-

tion, the HM with the highest sample mean is chosen for the application phase.

Within each generation, tests need to be allocated rationally between different HMs. The traditional

method of solving this problem is to apply decision-theoretic sampling techniques developed for the rank-

ing and selection problems [20, 77, 183]. However, these techniques have several limitations: (i) they

only work with a small (and known) number of populations, whereas the number of possible HMs is large

and unknown ahead of time; (ii) they do not accommodate generation of new HMs; and (iii) they optim-

ize the probability of finding the best population, rather than finding a population whose mean is within a

certain range of the optimal mean. TEACHER offers a suite of test-allocation strategies that overcome

the aforementioned limitations.

Besides supporting generation and tesing of HMs, TEACHER also accommodates point-based

methods, in which an HM is refined each time it is tested; such refinement is based on prior knowledge of

relationships between the problem solver’s inputs and outputs. Since we have only limited prior

knowledge of the load-balancing domain, refinement by point-based learning can only be applied to some

of the parameters.

For operational details of the policy-learning phase, please refer to Chapter II. The rest of this sec-

tion describes the domain-dependent functions of SMALL, which are required by the TEACHER system.

These include (i) genetic operators for generation of new candidates; (ii) an algorithm for point-based

modification of thresholds; and (iii) mechanisms for simulating the problem solver, thereby providing

performance information useful for evaluation of test-cases.

173

2) Operators for population-based learning

Figures 47 and 48 illustrate the genetic operators used in the generation of new HMs from existing

ones. The initial HMs can either be generated randomly or provided by the designer. There are three

operators in our system: (i) Mutation: the Reference value of a randomly chosen site is changed from

0 to MinLoad, or vice versa; (ii) Crossover-1: given a pair of HMs, two new HMs are generated by

interchanging the substrings (of the old HMs) containing the parameters of a randomly chosen site; (iii)

Crossover-half: similar to Crossover-1, except that the exchange involves N/2 sites.

hh

SITENAME Reference Θ Θ δ
1 2

calvin 0 0.394 0.720 0.459

vyasa 0.051 0.411 0.088

....

elaine 0 0.77 0.722 0.316

SITENAME Reference Θ Θ δ
1 2

calvin 0 0.394 0.720 0.459

vyasa 0.051 0.411 0.088

....

elaine 0 0.77 0.722 0.316

minload 0

Figure 47. An example of mutation applied to an HM

calvin 0 0.394 0.720 0.459

....

elaine 0 0.77 0.722 0.316

vyasa minload 0.051 0.411 0.088

SITENAME Reference Θ Θ δ
1 2

calvin 0 0.394 0.720 0.459

....

elaine 0 0.77 0.722 0.316

calvin

....

elaine

minload

minload

0.131

0.325

0.809

0.879

0.071

0.023

vyasa minload 0.093 0.655 0.065 vyasa minload 0.051 0.411 0.088

calvin

....

elaine

vyasa

minload

minload

0.131

0.325

0.809

0.879

0.071

0.023

minload 0.093 0.655 0.065

Figure 48. An illustration of the crossover operation

174

Following the customary practice in genetic search [71], we make the more destructive operators

less likely, and, the less destructive ones, more likely. In our experiments, we used the probabilities of

0.1, 0.85, and 0.05, respectively, for the three operators described above.

3) Algorithm for point-based learning

Since the completion times and overheads for all possible destinations are known ahead of time, the

learning system knows the optimal decision for every decision point. Therefore, it knows whether remote

execution was optimal and, if so, then at which site. It can thereby infer what destination should have

been included in the set of possible destinations. If the optimal destination was not included in that set,

the point-based learning algorithm raises the threshold δ by a small amount. Likewise, if a destination

causing sub-optimal speed-up is selected, then the threshold δ is decremented by a small amount provided

such a decrement will not exclude the optimal destination as well.

When the destination chosen randomly by the first two SSRs is rejected either by the RSRs or by

the third SSR, then the behavior of the point-based learning algorithm depends upon the performance of

that destination. If the chosen destination would have given better speed-up than 1, then the threshold of

the offending rule is adjusted. If the third SSR caused the rejection, then its θ1 is lowered; and if the RSR

caused the rejection, then θ2 is raised.

When the destination selected by the SSRs and accepted by the RSRs yields sub-optimal speed-up,

then the θ1 threshold for the offending SSRs is raised, and the θ2 for the offending RSRs is lowered.

Thus, all the thresholds governing the behavior of the load-balancing policy can be adjusted using

the performance information for just the current test-case. The rules of point-based learning are summar-

ized in Figure 49.

175

Adjustment of δ:

g If optimal destination was not in the set of possible destinations, then let ε1 be the amount by which
δ should be raised at the site of arrival (i) in order to include the optimal site.

g If some sub-optimal destination having load index higher than that of the optimal site was included
in the set of destinations, then let ε2 be the amount by which δ should be lowered at the site of
arrival (i) in order to exclude the sub-optimal site.

g IF (optimal destination not in set of possible destinations) THEN
δ(i) ← δ(i) + η.ε1

ELSE
δ(i) ← δ(i) − η.ε2.

Adjustment of θ1(i):

g WHEN (AND send-optimal (NOT send-occurred))
θ1(i) ← θ1(i) + η(Load(i) - Reference(i) - θ1(i)).

g WHEN (AND send-occurred (NOT send-optima))
θ1(i) ← θ1(i) − η(θ1(i) - Load(i) + Reference(i)).

Adjustment of θ2(j) [j was the destination chosen by SSRs(i)]:

g WHEN (AND receive-occurred (NOT receive-optimal))
θ2(j) ← θ2(j) + η(Load(j) - θ2(j)).

g WHEN (AND receive-optimal (NOT receive-occurred))
θ2(j) ← θ2(j) − η(θ2(j) - Load(j)).

Figure 49. Rules for point-based learning
hh

C. Data Preparation

The sole purpose of the data-preparation phase of policy learning is to replace an actual problem

solver with a table-lookup routine, as shown in Figure 10. Given the names of a job and a background

load pattern, as well as the job’s site and time of arrival, the look-up routine must supply the values of

load indices at each of the sites, the completion time of that job at all possible destinations, as well as the

respective migration overheads of each destination.

The advantage of off-line data collection using DWG is really obvious here. The learning system

may try hundreds of different policies, but with respect to each given test-case, these policies must fall

176

into N equivalence classes, each corresponding to one destination. All policies within an equivalence

class are indistinguishable with respect to the given test-case. Each test-case contains information about

one test-job and one background-load pattern; therefore, in order to to have information sufficient for

evaluating all possible policies over all the test-cases, we should have data about the completion times of

all the test-jobs run under all possible loading patterns and on each of the possible destinations. Such data

are collected during the second phase of data collection; they can be used for evaluating any set of policy

parameters considered by the policy-learning system.

An even greater advantage of our learning method is the facility it affords us for simulating (i)

scaled-up systems; (ii) the effect of migration overheads; (iii) the effect of packet-transmission delays;

and (iv) the effect of periodic computation of load averages. The following subsections address these

issues in greater detail.

1) Cloning: A method for simulating larger systems

All our sites are assumed to be architecturally homogeneous; however, we do allow configurational

heterogeneity. As explained in Chapter II, only configurationally distinct sites need to be measured, for

configurationally identical sites behave identically. The load patterns for the same site at different times

can be used to simulate a load pattern on multiple copies of that site. This method of simulating new sites

is called cloning: it creates load patterns distributed in space from load patterns distributed in time. Test

jobs behave identically across different clones under the same loading pattern; therefore, completion-time

measurements need not be repeated.

By increasing the scale of systems, cloning creates greater opportunities for load imbalance and,

therefore, higher optimal speed-ups. Thus, the ability of the learning system to discover HMs with near-

optimal performance can be tested more thoroughly with cloning than without.

177

2) Modeling of overheads and delays

Figure 50 shows on top a trace of the load-index function at the arrival site of an incoming job and,

at the bottom the corresponding trace at a remote site where the job is to be executed. The letters ‘A’ and

‘C’ indicate the most recent local load-index values; the letter ‘B’ indicates the most recent load-index

value of the remote site available at the site of arrival. The delays ∆1 and ∆3 depend upon the interval of

computation of load-index function. Such delays affect the currency of both the local and the remote load

indices. The delay ∆2 includes both the delay in computing the load index at the remote site and the delay

hh

Arrival time
of test job (T)

Load index at
site of arrival

Load index at
a remote site

time

time

A

B C

∆1

∆2

∆3

∆4 Start of remote
execution

Figure 50. Overheads and delays in load balancing

178

in propagating that value to site of arrival. Finally, the delay ∆4 represents the overhead of migration.

It is not enough to add ∆4 to the completion time of every test job, for in our (off-line) data-

collection phase, we did not run the test job at the remote site starting at T + ∆4; rather, we always started

the test job at time T into the experiment. Thus, the job would have run under a slightly different load

with an on-line experiment; the difference between on-line (actual) and off-line (simulated) cases is pro-

portional to ∆4. If ∆4 is large, the load could have been very different; if small, then less so. The effect of

migration overhead is simulated by adding ∆4 to the age of the remote load index.

Consider a typical load-index function. If the feed-forward network computing it had 40 hidden

units, then the computation of this function requires 1680 (40 × 40 + 40 + 40) floating-point multiplica-

tion operations. Computing this function at every clock interrupt would incur too much overhead. There-

fore, such a function can be computed only periodically. Let τ be the period between successive computa-

tions; then, the delays ∆1 and ∆3 are random variables distributed uniformly over the interval [0,τ].

One final factor that needs to be considered is ∆2, the delay including the time for propagation of

load values to remote sites. Assuming that load values are transmitted over the network each time they

are computed, the propagation delay can be modeled by half the round-trip time of a short packet.

Round-trip times can be measured off-line for a network. Delays in propagation of load indices affect the

values of only the remote load indices at any decision point.

Since the comparator network at each site gives us a complete trace of the load index at that site

upto the decision point, the effects of delays due to computation and communication of load indices can

be simulated by using older values of load indices, rather than their values at time T.

We conducted several learning experiments involving various combination of these factors. The

next section presents our results.

179

D. Empirical Results

Using the data for our four-processor system, we created a total of nine clones (3 each for the two

diskless clients, 2 for the diskful client, and 1 for the fileserver). This gave us a total of 13 sites. Policies

for this scaled-up system were learned using TEACHER under a variety of assumptions about overheads

and delays.

As indicated in the previous section, three types of delays contribute to the age of a load index.

After measuring packet turn-around times on our network, we found it adequate to assume that load infor-

mation from remote sites can be received within 20 milliseconds (P=20) of being broadcast. We studied

four different migration overheads (M): (i) small, 100 milliseconds; (ii) medium, 500 milliseconds; (iii)

moderately large, 2000 milliseconds; and (iv) large, 5000 milliseconds. In addition, we considered three

different intervals (I) of load-index computation: (i) small, 100 milliseconds; (ii) medium, 500 mil-

liseconds; and (iii) large, 1000 milliseconds. Table XX shows the values of M and I in the left two

columns. For each combination of M, I, and P values, a different set of data are prepared as follows. To

Table XX
Performance of policies learned under different assumptionsiii

Migration overhead
(M) (ms)

Interval (I) of load-
index computation
(ms)

Average performance
(speed-up over local
execution) of policy
learned

Standard deviation of
speed-up

ii
100 1.73743 0.226114iii
500 1.49916 0.219608iii100

1000 1.50908 0.203219ii
100 1.50156 0.179138iii
500 1.53047 0.152211iii500

1000 1.6004 0.17311ii
100 1.2397 0.0694498iii
500 1.15947 0.112387iii2000

1000 1.17821 0.124843ii
100 1.25181 0.128558iii
500 1.19149 0.14072iii5000

1000 1.31023 0.134078iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

180

the age of each load index, we add a random delay uniformly distributed between 0 and I. Only for the

remote load indices, we add the factors M and P. The load indices are determined using load-average

traces similar to those shown in Chapter IV (Figures 31 and 35).

TEACHER is allowed 30 minutes learning time for each experiment on a Sparcstation 10, Model

20. Twelve experiments are performed, one for each parameter set described in Table XX. The best pol-

icy found by TEACHER after 30 minutes is fully evaluated on all the test-cases. The average speed-up of

that policy and the corresponding standard deviation are shown in the third and fourth columns of Table

XX. The best policy is found when both M and I are small. While performance appears to decrease with

increasing migration overheads, no such effect is visible for the interval of load-index computation. Fig-

ure 51 shows a contour plot of the best policy learned. (The contour plots of this chapter include migra-

tion overheads, unlike those of the policy min, in Chapter IV. The axes and contours should be interpreted

in a similar fashion as before.) This figure shows that the best speed-up values are achieved for jobs that

are neither too long nor too short. As shown in Chapter IV, the quality of our indices drops with the

length of the job; therefore, long jobs cannot be speeded up by one-time placement; they need preemptive

process migration. The speed-up of short jobs is adversely affected by the magnitude of migration over-

heads relative to the gains in completion time achievable using remote execution.

Figure 52 shows the behavior of policies learned under high migration overheads but small interval

of load-index computation. Relative to Figure 51, high speed-up values are less probable when migration

overhead is significant. Figure 53 shows the case when migration overheads are small but the interval of

load-index computation is long. High speed-up values, close to 3.0, for medium-length jobs are not as

likely as in Figure XX, but they are much more likely than in the case of high migration overheads.

We conclude (i) that TEACHER discovers policies with significant speed-ups over local execution

under a variety of assumptions about overheads and delays; (ii) the quality of policies learned by

TEACHER is adversely affected by both large migration overheads and long intervals of load-index com-

putation; and (iii) migration overhead is the dominant factor affecting the quality of policies learned.

181

Speed-up over local
execution

Length of
job (sec.)

1.2 2.13 3.07 4.01 4.95 5.89 6.82 7.76

1.34

3.06

6.93

15.86

35.98

82.27

186.74

426.91

Figure 51. Contour plot of cumulative probability of speed-up; M=100,I=100,P=20

182

Speed-up over local
execution

Length of
job (sec.)

1.0 1.8 2.6 3.4 4.2 5.0 5.8 6.6

2.18

5.00

11.34

25.93

58.84

134.52

305.33

Figure 52. Contour plot of cumulative probability of speed-up; M=5000,I=100,P=20

183

Speed-up over local
execution

Length of
job (sec.)

1.09 2.03 2.97 3.90 4.84 5.78 6.71 7.65

1.29

2.94

6.68

15.28

34.67

79.27

179.92

411.33

Figure 53. Contour plot of cumulative probability of speed-up; M=100,I=1000,P=20

184

Finally, we note that the best policy found by pure point-based learning (starting with one randomly

generated parameter set) had a speed-up of only 1.37 for the case M=100,I=100. Considering that

TEACHER finds a policy with a speed-up of 1.73, we can appreciate the utility of integrated learning.

E. Chapter Summary

Parameter sets of load-balancing policies can be generated using genetic operators and modified

systematically using point-based learning. Selective breeding of well-performing parameter sets at the

end of each generation, and rational allocation of tests among the generated parameter sets during each

generation, are the key functions supported by the TEACHER system. Using our integrated (population-

based cum point-based) approach, good parameter sets for load-balancing policies can be discovered

quickly and in an automated fashion.

185

CHAPTER VII.

CONCLUSIONS

We have successfully demonstrated an automated process for improving the performance of

parameterized load-balancing strategies. Our learning system, SMALL, discovers new load indices that

can be meaningfully compared across the sites of a configurationally heterogeneous but architecturally

homogeneous distributed system.

SMALL’s experimentation environment represents a significant departure from the traditional way

of conducting load-balancing experiments. The new set-up substantially limits both the duration of each

experiment and the number of experiments needed for off-line evaluation of competing policies.

During policy learning, we evaluate each decision in isolation. At an abstract level, we have con-

verted dynamic load balancing from a dynamic decision problem into a static decision problem. This

transformation obviates temporal credit assignment, an important unsolved problem in strategy learning.

The centerpiece of our research is DWG, a synthetic workload generator that allows the measure-

ment of task-completion times under precisely controlled and reproducible loading conditions. In order

to gain precision, we had to implement DWG inside the operating-system kernel. In doing so, we faced a

problem of modeling the interactions between foreground and background workloads. We solved this

problem using dynamic doctoring, a systematic method for reducing the generated load in the presence of

foreground processes while simultaneously honoring the principle of conservation of work.

By posing performance-driven adaptation of load-balancing as a strategy-learning task, we are able

to (i) study its characteristics; (ii) isolate clean, general issues; and (iii) either develop, adopt, or borrow

general techniques for addressing these issues. An important characteristic of our system is that it was put

together using the following general tools that work equally well for related applications.

186

Comparator neural networks. The comparator configuration represents a natural learning solution

to problems involving comparison between functions of multivariate time series. Its precursor, the origi-

nal comparator network, was a champion at selecting moves for the game of backgammon [180]; how-

ever, the original version considered only the current state in making comparisons. Our architecture and

learning algorithm are suitable for problems that involve comparison of traces. One such problem arises

in population-based design of neural networks [184], where one would like to predict which out of several

competing network configurations will converge faster, based only on their error traces. The architecture

and training algorithm reported in Chapter IV, when applied to this problem, easily achieved scores

exceeding 75% correct, thus providing an effective means for pruning out unpromising configurations. In

the future, we plan to apply the comparator architecture for early detection of bottlenecks on massively

parallel computers, based on workload traces of different sites.

TEACHER. We have added dynamic load balancing to TEACHER’s growing list of strategy-learning

applications. In the past, this system was used for tuning the parameters of stereo-vision algorithms [163],

and in learning heuristics for mapping communicating processes on distributed systems [88].

DWG. Synthetic workload generation is useful not only in scheduling of independent tasks, but also in

object-oriented systems, where the problem is to study the behavior of object-placement policies under a

variety of background workloads [94].

Our comprehensive survey of strategy learning shows that learning tasks from diverse domains may

sometimes exhibit similar characteristics. General techniques developed for one learning task should

carry over to the others having similar components: performance tasks, problem solvers, or learning

environments. In the future, we plan to use our experience with load balancing to develop automated

mechanisms for learning (i) page-prefetching strategies in distributed memory hierarchies; and (ii)

instruction-level scheduling strategies in pipelined supercomputers.

187

REFERENCES

[1] D. H. Ackley, A Connectionist Machine for Genetic Hillclimbing, Kluwer Academic Pub., Boston,
MA, 1987.

[2] P. E. Agre and D. Chapman, ‘‘PENGI: An Implementation of a Theory of Activity,’’ Proc. National
Conf. Artificial Intelligence, pp. 268-272, Morgan Kaufman, Palo Alto, CA, June 1987.

[3] R. Alonso, ‘‘The Design of Load Balancing Strategies for Distributed Systems,’’ Future Directions
in Computer Architecture and Software Workshop, pp. 1-6, Seabrook Island, SC, May 5-7, 1986.

[4] C. W. Anderson, Learning and Problem Solving with Multilayer Connectionist Systems, Ph.D.
Thesis, Univ. of Massachusetts, Amherst, MA, 1986.

[5] C. W. Anderson, ‘‘Strategy Learning with Multilayer Connectionist Representations,’’ Proc. Fourth
Int’l. Workshop on Machine Learning, pp. 103-114, Morgan Kaufmann, June 1987.

[6] J. R. Anderson, J. G. Greeno, P. J. Kline, and D. M. Neves, ‘‘Acquisition of Problem-Solving
Skill,’’ in Cognitive Skills and their Acquisition, ed. J. R. Anderson, Lawrence Erlbaum Associates,
Hillsdale, NJ, 1981.

[7] J. R. Anderson, ‘‘Knowledge Compilation: The General Learning Mechanism,’’ in Machine Learn-
ing: An Artificial Intelligence Approach, ed. Michalski, et al., Morgan Kaufmann, 1986.

[8] P. M. Andreae, ‘‘Constraint Limited Generalization: Acquiring Procedures from Examples,’’ Proc.
National Conf. Artificial Intelligence, pp. 6-10, AAAI, Inc., Austin, TX, 1984.

[9] Y. Anzai, ‘‘Doing, Understanding, and Learning in Problem Solving,’’ in Production System
Models of Learning and Development, ed. Klahr, et al., MIT Press, Cambridge, MA, 1987.

[10] Y. Artsy (ed.), ‘‘Special Issue on Process Migration,’’ Operating Systems Technical Committee
Newsletter, vol. 3, no. 1, pp. 4-34, IEEE Computer Society, Winter 1989.

[11] M. J. Bach, The Design of the UNIX Operating System, Prentice-Hall, Englewood Cliffs, NJ, 1986.

[12] R. Barletta and R. Kerber, ‘‘Improving Explanation-Based Indexing with Empirical Learning,’’
Machine Learning, pp. 84-86, Kluwer Academic Pub., Boston, MA, 1989.

[13] A. Barr and E. A. Feigenbaum, The Handbook of Artificial Intelligence, vol. 1, 2, and 3, William
Kaufmann, Los Altos, CA, 1981, 1982.

[14] A. G. Barto, R. S. Sutton, and C. W. Anderson, ‘‘Neuronlike Adaptive Elements that can Solve
Difficult Learning Control Problems,’’ Trans. on Systems, Man and Cybernetics, vol. SMC-13, no.
5, pp. 834-846, IEEE, 1983.

[15] A. G. Barto, R. S. Sutton, and C. J. C. H. Watkins, ‘‘Learning and Sequential Decision Making,’’
pp. 539-602 in Learning and Computational Neuroscience: Foundations of Adaptive Networks, ed.
M. Gabriel and J. Moore, MIT Press, Cambridge, MA, 1990.

[16] A. G. Barto, S. J. Bradtke, and S. P. Singh, Real-Time Learning and Control using Asynchronous
Dynamic Programming, Tech. report 91-57, Dept. of Computer Sc., Univ. of Massachusetts,

188

Amherst, MA, 1991.

[17] K. Baumgartner and B. W. Wah, ‘‘GAMMON: A Load Balancing Strategy for a Local Computer
System with a Multiaccess Network,’’ Trans. on Computers, vol. 38, no. 8, pp. 1098-1109, IEEE,
Aug. 1989.

[18] K. Baumgartner and B. W. Wah, ‘‘Computer Scheduling Algorithms: Past, Present and Future,’’
Information Sciences, vol. 57 & 58, pp. 319-345, Elsevier Science Pub. Co., Inc., New York, NY,
Sept.-Dec. 1991.

[19] K. M. Baumgartner, Resource Allocation on Distributed Computer Systems, Ph.D. Thesis, School of
Electrical Engineering, Purdue Univ., West Lafayette, IN, May, 1988.

[20] R. E. Bechhofer, ‘‘A Single-Sample Multiple Decision Procedure for Ranking Means of Normal
Populations with Known Variances,’’ Ann. Math. Statist., vol. 25, no. 1, pp. 16-39, Institute of
Mathematical Statistics, Ann Arbor, MI, March 1954.

[21] R. Bellman and S. Dreyfus, Applied Dynamic Programming, Princeton Univ. Press, Princeton, NJ,
1962.

[22] M. Berry et al., ‘‘The Perfect Club Benchmarks: Effective Performance Evaluation of Supercom-
puters,’’ International Journal of Supercomputing Applications, vol. 3, no. 3, pp. 5-40, 1989.

[23] R. B. Bodnarchuk and R. B. Bunt, ‘‘A Synthetic Workload Model for a Distributed File Server,’’
Proc. SIGMETRICS Conf. on Measurement and Modeling of Computer Systems, pp. 50-59, ACM,
1991.

[24] L. B. Booker, D. E. Goldberg, and J. H. Holland, ‘‘Classifier Systems and Genetic Algorithms ,’’ in
Machine Learning: Paradigm and Methods, ed. J. Carbonell, MIT press, 1990.

[25] G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control, 2nd ed., Holden-
Day, San Francisco, 1976.

[26] W. L. Brogan, Modern Control Theory, Prentice-Hall, Englewood Cliffs, NJ, 1985.

[27] R. M. Bryant and R. A. Finkel, ‘‘A Stable Distributed Scheduling Algorithm,’’ Proc. 1st Int’l Conf.
on Distributed Computing Systems, pp. 314-323, IEEE, 1981.

[28] B. G. Buchanan and T. M. Mitchell, ‘‘Model-Directed Learning of Production Rules,’’ in Pattern-
Directed Inference Systems, ed. D. A. Waterman and F. Hayes-Roth, Academic Press, New York,
NY, 1978.

[29] L-F. Cabrera, ‘‘The Influence of Workload on Load Balancing Strategies,’’ USENIX Conf.
Proceedings, pp. 446-458, 1986.

[30] J. G. Carbonell, ‘‘Learning by Analogy: Formulating and Generalizing Plans from Past Experi-
ences,’’ in Machine Learning, ed. R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Tioga, 1983.

[31] J. G. Carbonell and Y. Gil, ‘‘Learning by Experimentation,’’ Machine Learning, pp. 256-266,
Kluwer Academic Pub., Boston, MA, 1987.

[32] B. Chandrasekaran, ‘‘Towards a Taxonomy of Problem Solving Types,’’ AI magazine, pp. 9-17,
Winter/Spring 1983.

[33] Y. Chauvin, ‘‘A Back-Propagation Algorithm with Optimal Use of Hidden Units,’’ pp. 519-526 in
Proc. Neural Information Processing Systems, ed. D. Z. Anderson, American Inst. of Physics, New

189

York, 1988.

[34] C.-T. Chen, Linear System Theory and Design, Holt, Rinehart and Winston, Inc., New York, 1970.

[35] S. A. Chien, ‘‘Learning by Analyzing Fortuitous Occurances,’’ Machine Learning, pp. 249-251,
Kluwer Academic Pub., Boston, MA, 1989.

[36] S. A. Chien, An Explanation-Based Learning Approach to Incremental Planning, Ph.D. thesis,
Dept. of Computer Science, Univ. of Illinois, Urbana, IL, 1991.

[37] J. Christensen and R. E. Korf, ‘‘A Unified Theory of Heuristic Evaluation Functions and its Appli-
cation to Learning,’’ Proc. National Conf. on Artificial Intelligence, pp. 148-152, AAAI, Inc., 1986.

[38] L.-C. Chu and B. W. Wah, ‘‘Optimal Mapping of Neural-Network Simulations on Message-Passing
Multicomputers,’’ J. of Parallel and Distributed Computing, vol. 14, no. 3, pp. 319-339, Academic
Press, March 1992.

[39] G. Cybenko, ‘‘Approximation by Superpositions of a Sigmoidal Function,’’ Mathematics of Con-
trol, Signals, and Systems, vol. 2, no. 4, pp. 303-314, Springer International, New York, 1989.

[40] T. Dean and K. Kanazawa, ‘‘Probabilistic Temporal Reasoning,’’ Proc. National Conf. on Artificial
Intelligence AAAI-88, pp. 524-528, 1988.

[41] T. Dean and K. Kanazawa, ‘‘A Model for Reasoning about Persistence and Causation,’’ Compua-
tional Intelligence, vol. 5, no. 3, pp. 142-150, National Research Council Canada, Toronto, 1989.

[42] T. Dean and G. Siegle, ‘‘An Approach to Reasoning about Continuous Change for Applications in
Planning,’’ Proc. 8th Natl. Conf. Artificial Intelligence, pp. 132-137, AAAI, Inc., Seattle, Washing-
ton, 1990.

[43] G. F. DeJong and R. J. Mooney, ‘‘Explanation-Based Learning: An Alternative View,’’ Machine
Learning, vol. 1, no. 2, pp. 145-176, Kluwer Academic Pub., 1986.

[44] M. Devarakonda and R. K. Iyer, ‘‘Predictability of Process Resource Usage: A Measurement-Based
Study of UNIX,’’ Trans. on Software Engineering, vol. 15, no. 12, IEEE, Dec. 1989.

[45] T. G. Dietterich and B. G. Buchanan, The Role of Critic in Learning Systems, Tech. Rep. STAN-
CS-81-891, Stanford Univ., CA, Dec. 1981.

[46] T. G. Dietterich and J. S. Bennett, ‘‘The Test Incorporation Theory of Problem Solving,’’ Proc.
Workshop on Knowledge Compilation, pp. 145-159, Dept. of Computer Science, Oregon State
Univ.,, Sept. 1986.

[47] P. Dikshit, S. K. Tripathi, and P. Jalote, ‘‘SAHAYOG: A Test Bed for Evaluating Dynamic Load-
Sharing Policies,’’ Software — Practice and Experience, vol. 19, no. 5, pp. 411-435, John Wiley
and Sons, Ltd., May 1989.

[48] R. T. Dimpsey and R. K. Iyer, ‘‘Performance Prediction and Tuning on a Multiprocessor,’’ Proc.
Int’l. Symp. Computer Architecture, pp. 190-199, ACM/IEEE, 1991.

[49] F. Douglis and J. Ousterhout, ‘‘Transparent process migration: Design alternatives and the Sprite
implementation,’’ Software — Practice and Experience, vol. 21, no. 8, pp. 757-785, 1991.

[50] N. R. Draper and H. Smith, ‘‘An Introduction to Nonlinear Estimation,’’ in Applied Regression
Analysis, Wiley, New York, 1981.

190

[51] D. L. Eager, E. D. Lazowska, and J. Zahorjan, ‘‘Adaptive Load Sharing in Homogeneous Distri-
buted Systems,’’ Trans. on Software Engineering, vol. SE-12, pp. 662-675, IEEE, May 1986.

[52] D. L. Eager, E. D. Lazowska, and J. Zahorjan, ‘‘The Limited Performance Benefits of Migrating
Active Processes for Load Sharing,’’ Proc. ACM SIGMETRICS Conf. on Measurement and Model-
ing of Computer Systems, pp. 63-72, 1988.

[53] G. W. Ernst and M. M. Goldstein, ‘‘Mechanical Discovery of Classes of Problem-Solving Stra-
tegies,’’ J. of the ACM, vol. 29, no. 1, pp. 1-23, Jan. 1982.

[54] O. Etzioni, ‘‘Embedding Decision-Analytic Control in a Learning Architecture,’’ Artificial Intelli-
gence, vol. 49, pp. 129-159, Elsevier, Amsterdam, 1991.

[55] S. E. Fahlman, ‘‘Faster-Learning Variations on Back-Propagation: An Empirical Study,’’ Proc.
Connectionist Models Summer School, pp. 38-51, Morgan Kaufmann, Palo Alto, CA, 1988.

[56] S. E. Fahlman and Christian Lebiere, ‘‘The Cascade-Correlation Learning Architecture,’’ pp.
524-532 in Advances in Neural Information Processing Systems 2, ed. D. S. Touretzky, Morgan
Kaufmann, San Mateo, 1990.

[57] J. A. Feldman and R. F. Sproull, ‘‘Decision Theory and Artificial Intelligence II: The Hungry Mon-
key,’’ Cognitive Science, vol. 1, pp. 158-192, Ablex, Norwood, NJ, 1977.

[58] D. Ferrari, G. Serazzi, and A. Zeigner, Measurement and Tuning of Computer Systems, Prentice-
Hall, Englewood Cliffs, NJ, 1983.

[59] D. Ferrari, ‘‘On the foundations of artificial workload design,’’ Proc. ACM SIGMETRICS conf. on
Measurement and Modeling of Computer Systems, pp. 8-14, 1984.

[60] D. Ferrari, ‘‘A Study of Load Indices for Load Balancing Schemes,’’ pp. 91-99 in Workload Char-
acterization of Computer Systems and Computer Networks, ed. G. Serazzi, Elsevier Science,
Amsterdam, Netherlands, 1986.

[61] D. Ferrari and S. Zhou, ‘‘A Load Index for Dynamic Load Balancing,’’ Proc. Fall Joint Computer
Conf., pp. 684-690, ACM/IEEE, Nov. 1986.

[62] C. Gao, J. W. S. Liu, and M. Railey, ‘‘Load Balancing Algorithms in Homogeneous Distributed
Systems,’’ Proc. Int’l Conf. Parallel Processing, pp. 302-306, IEEE, Aug. 1984.

[63] J. Geers, ‘‘A New Generation of Benchmarking,’’ MIPS Magazine, pp. 92-98, Feb. 1989.

[64] M. R. Genesereth and N. J. Nilsson, Logical Foundations of Artificial Intelligence, Morgan Kauf-
mann, Los Altos, CA, 1987.

[65] M. P. Georgeff, ‘‘Planning,’’ pp. 359-400 in Annual Review of Computer Science, Annual Reviews
Inc., Palo Alto, CA, 1987.

[66] M. P. Georgeff and A. L. Lansky, ‘‘Reactive Reasoning and Planning,’’ Proc. National Conf. on
Artificial Intelligence, pp. 677-82, AAAI, Inc., Seattle, Washington, June 1987.

[67] B. K. Ghosh and P. K. Sen (ed.), Handbook of Sequential Analysis, Marcel Dekker, Inc., New York,
NY, 1991.

[68] M. Gluck, D. B. Parker, and E. S. Reifsnider, ‘‘Learning with Temporal Deivatives in Pulse-Coded
Neuronal Systems,’’ in Proc. Neural Information Processing Systems, ed. D. Z. Anderson, Ameri-
can Inst. of Physics, New York, 1988.

191

[69] N. H. Goddard, K. J. Lynne, T. Mintz, and L. Bukys, Rochester Connectionist Simulator, Tech.
Rep., Univ. of Rochester, Rochester, NY, Oct. 1989.

[70] S. D. D. Goggin, K. E. Gustafson, and K. M. Johonson, ‘‘An Asymptotic Singular Value Decompo-
sition Analysis of Nonlinear Multilayer Neural Networks,’’ Int’l Joint Conf. on Neural Networks,
Seattle, WA, July 1991.

[71] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-
Wesley Pub. Co., 1989.

[72] D. E. Goldberg, ‘‘Probability Matching, the Magnitude of Reinforcement, and Classifier System
Bidding,’’ Machine Learning, vol. 5, pp. 407-425, Kluwer Academic Pub., Boston, MA, 1990.

[73] G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and Control, Prentice-Hall, Englewood
Cliffs, NJ, 1984.

[74] K. K. Goswami and R. K. Iyer, Dynamic Load-Sharing Using Predicted Process Resource Require-
ments, Tech. Rep. UILU-ENG-90-2224, Coordinated Sci. Lab., Univ. of Illinois, Urbana, 1990.

[75] R. Greiner, ‘‘Learning by Understanding Analogies,’’ Machine Learning, pp. 50-52, Kluwer
Academic Pub., 1985.

[76] R. Greiner, ‘‘Towards a Formal Analysis of EBL,’’ Machine Learning, pp. 450-453, Kluwer
Academic Pub., Boston, MA, 1989.

[77] S. S. Gupta and S. Panchapakesan, ‘‘Sequential Ranking and Selection Procedures,’’ pp. 363-380 in
Handbook of Sequential Analysis, ed. P. K. Sen, Dekker, NY, 1991.

[78] R. W. Hamming, Digital Filters, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[79] S. Hanks, ‘‘Practical Temporal Projection,’’ Proc. 8th Natl. Conf. Artificial Intelligence, pp. 158-
163, AAAI, Inc., Seattle, Washington, 1990.

[80] G. E. Hinton, ‘‘Connectionist Learning Procedures,’’ Artificial Intelligence, vol. 40, pp. 185-234,
Elsevier Science Pub., New York, 1989.

[81] P. G. Hoel, S. Port, and C. J. Stone, Introduction to Stochastic Processes, Houghton Mifflin Co.,
Atlanta, GA, 1972.

[82] J. H. Holland, Adaptation in Natural and Artificial Systems, Univ. of Michigan Press, Ann Arbor,
MI, 1975.

[83] J. H. Holland, ‘‘Properties of the Bucket Brigade Algorithm,’’ Proc. Int’l. Conf. Genetic Algorithms
and Their Applications, pp. 1-7, The Robotics Inst. of Carnegie-Mellon Univ., Pittsburgh, PA, 1985.

[84] R. A. Howard, Dynamic Programming and Markov Processes, Jon Wiley, London, 1960.

[85] K. Hwang, W. J. Croft, G. H. Goble, B. W. Wah, F. A. Briggs, W. R. Simmons, and C. L. Coates,
‘‘A UNIX-based Local Computer Network with Load Balancing,’’ Computer, vol. 15, no. 4, pp.
55-66, IEEE, April 1982.

[86] T. Ibaraki, ‘‘Enumerative Approach to Combinatorial Optimization,’’ Annals of Operations
Research, Scientific Pub. Co., Basel, Switzerland, 1988.

[87] A. Ieumwananonthachai, A. N. Aizawa, S. R. Schwartz, B. W. Wah, and J. C. Yan, ‘‘Intelligent
Mapping of Communicating Processes in Distributed Computing Systems,’’ Proc. Supercomputing

192

91, pp. 512-521, ACM/IEEE, Albuquerque, NM, Nov. 1991.

[88] A. Ieumwananonthachai, A. Aizawa, S. R. Schwartz, B. W. Wah, and J. C. Yan, ‘‘Intelligent Pro-
cess Mapping Through Systematic Improvement of Heuristics,’’ J. of Parallel and Distributed
Computing, vol. 15, pp. 118-142, Academic Press, June 1992.

[89] A. Ieumwananonthachai and B. W. Wah, ‘‘Parallel Statistical Selection in Multiprocessors,’’ Proc.
Int’l Conf. on Parallel Processing, vol. III, pp. 190-194, Pennsylvania State Univ. Press, University
Park, PA, Aug. 1992.

[90] M. I. Jordan, ‘‘Supervised Learning and Systems with Excess Degrees of Freedom,’’ Proc. Connec-
tionist Models Summer School, pp. 62-75, Morgan Kaufmann, Palo Alto, CA, 1988.

[91] L. Kaebling, ‘‘An Architecture for Intelligent Reactive Systems,’’ in Reasoning about Actions and
Plans, ed. M. Georgeff and A. Lansky, Morgan Kaufmann, Los Altos, CA, 1987.

[92] L. V. Kale, ‘‘Comparing the Performance of Two Dynamic Load Distribution Methods,’’ Proc.
Int’l Conf. on Parallel Processing, vol. 1, pp. 8-11, University Park, PA, Aug. 1988.

[93] W-L. Kao and R. K. Iyer, ‘‘A User-Oriented Synthetic Workload Generator,’’ Proc. 12th Int’l.
Conf. on Distributed Computing Systems, pp. 270-277, IEEE, 1992.

[94] V. Karamcheti and B. W. Wah, Using the ES-Kit as a Testbed for Load Balancing Experiments,
Research Report CRHC-01-26, Center for Reliable and High Performance Computing, Coordinated
Science Laboratory, Univ. of Illinois, Urbana, IL 61801, July 1991.

[95] H. A. Kautz, ‘‘The Logic of Persistence,’’ Proc. National Conf. on Artificial Intelligence, p. 401,
Morgan Kaufman, 1986.

[96] R. M. Keller, A Survey of Research in Strategy Acquisition, Tech. Rep. DCS-TR-115, Dept. of
Computer Science, Rutgers Univ., New Brunswick, NJ, May 1982.

[97] M. Kendall and J. K. Ord, Time Series, 3rd ed., I Edward Arnold, London, 1990.

[98] D. L. Kiskis, M. H. Woodbury, and K. G. Shin, Design, Implementation and Application of Syn-
thetic Workload Generators for Real-time Systems, Tech. Rep. CSE-TR-25-89, Computer Science
and Engineering Division, Univ. of Michigan, Ann Arbor, MI, 1989.

[99] R. E. Korf, ‘‘Macro-Operators: A Weak Method for Learning,’’ Artificial Intelligence, vol. 26, pp.
35-77, North-Holland, 1985.

[100]T. Kunz, ‘‘The Influence of Different Workload Descriptions on a Heuristic Load Balancing
Scheme,’’ IEEE Trans. Software Engineering, vol. 17, no. 7, July 1991.

[101]J.E. Laird, P.S. Rosenbloom, and A. Newell, ‘‘Chunking in SOAR: The Anatomy of a General
Learning Mechanism,’’ Machine Learning, vol. 1, no. 1, pp. 11-46, Kluwer Academic Pub., Boston,
MA, 1986.

[102]J. E. Laird, P. S. Rosenbloom, and A. Newell, ‘‘Soar: An Architecture for General Intelligence,’’
Artificial Intelligence, vol. 33, no. 1, pp. 1-64, Elsevier Science Pub., New York, 1987.

[103]K. J. Lang and G. E. Hinton, A Time-Delay Neural Network Architecture for Speech Recognition,
CMU-CS-88-152, Dept. of Computer Science, Carnegie Mellon Univ., Pittsburgh, PA, 1988.

[104]P. Langley, ‘‘Learning to Search: From Weak Methods to Domain-Specific Heuristics,’’ Cognitive
Science, vol. 9, pp. 217-260, Ablex Pub. Co., Norwood, NJ, 1985.

193

[105]M. Lebowitz, ‘‘Integrated Learning: Controlling Explanation,’’ Cognitive Science, pp. 219-240,
Ablex Pub. Co., Norwood, NJ, 1986.

[106]K. F. Lee and S. Mahajan, ‘‘A Pattern Classification Approach to Evaluation Function Learning,’’
Artificial Intelligence, vol. 36, pp. 1-25, North-Holland, 1988.

[107]C. Lewis, ‘‘Composition of Productions,’’ in Production System Models of Learning and Develop-
ment, ed. Klahr, et al., MIT Press, Cambridge, MA, 1987.

[108]M. L. Litzkow, M. Livny, and M. W. Mutka, ‘‘Condor - A Hunter of Idle Workstations,’’ Proc. 8th
Int’l. Conf. Distributed Computer Systems, pp. 104-111, IEEE, 1988.

[109]J. Long, W. K. Fuchs, and J. A. Abraham, Compiler-Assisted Static Checkpoint Insertion, Coordi-
nated Science Laboratory, Univ. of Illinois, Urbana, IL, (submitted) 1992.

[110]M. B. Lowrie and B. W. Wah, ‘‘Learning Heuristic Functions for Numeric Optimization Prob-
lems,’’ Proc. Computer Software and Applications Conf., pp. 443-450, IEEE, Chicago, IL, Oct.
1988.

[111]P. Maes, ‘‘How to do the Right Thing,’’ Connection Science, vol. 1, no. 3, pp. 291-323, 1989.

[112]D. McAllester, ‘‘Truth Maintenance,’’ Proc. 8th Natl. Conf. Artificial Intelligence, pp. 1109-16,
AAAI, Inc., Seattle, Washington, 1990.

[113]J. L McClelland and D. E. Rumelhart, Explorations in Parallel Distributed Processing: A Hand-
book of Models, Programs, and Exercises, MIT Press, Cambridge, MA, 1988.

[114]P. Mehra and B. W. Wah, ‘‘Architectures for Strategy Learning,’’ pp. 395-468 in Computer Archi-
tectures for Artificial Intelligence Applications, ed. B. Wah and C. Ramamoorthy, Wiley, New
York, NY, 1990.

[115]P. Mehra and B. W. Wah, ‘‘Learning Load-Balancing Strategies using Artificial Neural Networks,’’
pp. 855-860 in Intelligent Engineering Systems through Artificial Neural Networks (Proc. Int’l
Conf. on Artificial Neural Networks in Engineering), ed. C. H. Dagli, et al., ASME Press, New
York, 1991.

[116]P. Mehra and B. W. Wah, ‘‘Adaptive Load-Balancing Strategies for Distributed Systems,’’ Proc.
2nd Int’l Conf. on Systems Integration, pp. 666-675, IEEE Computer Society, Morristown, NJ, June
1992.

[117]P. Mehra and B. W. Wah, ‘‘Physical-Level Synthetic Workload Generation for Load-Balancing
Experiments,’’ Proc. First Symposium on High Performance Distributed Computing, pp. 208-217,
IEEE, Syracuse, NY, Sept. 1992.

[118]P. Mehra and B. W. Wah (ed.), Artificial Neural Networks: Concepts and Theory, IEEE Computer
Society Press, Los Alamitos, CA, 1992.

[119]R. K. Mehra, ‘‘Kalman Filters and their Applications to Forecasting,’’ TIMS Studies in Management
Sciences, vol. 12, pp. 75-94, North-Holland, Amsterdam, 1979.

[120]B. W. Mel, ‘‘MURPHY: A Robot that Learns by Doing,’’ pp. 544-553 in Neural Information Pro-
cessing Systems, ed. D. Z. Anderson, American Institute of Physics, New York, NY, 1988.

[121]R. S. Michalski, J. G. Carbonell, and T. M. Mitchell (ed.), Machine Learning: An Artificial Intelli-
gence Approach, William Kaufmann, Los Altos, CA, 1983, 1985.

194

[122]I. Miller and J. E. Freund, Probability and Statistics for Engineers (second edition), Prentice-Hall,
Englewood Cliffs, NJ, 1977.

[123]R. B. Miller and D. W. Wichern, Intermediate Business Statistics: Analysis of Variance, Regression,
and Time Series, Holt, Rinehart and Winston, New York, 1977.

[124]T. K. Miller III, R. S. Sutton, and P. J. Werbos (eds.), Neural Networks for Control, MIT Press,
Cambridge, MA, 1990.

[125]M. Minsky, ‘‘Steps Toward Artificial Intelligence,’’ pp. 406-450 in Computers and Thought, ed. E.
A. Feigenbaum and J. Feldman, McGraw-Hill, New York, 1963.

[126]S. Minton, J. G. Carbonell, C. A. Knoblock, D. Kuokka, and H. Nordin, ‘‘Improving the Effective-
ness of Explanation Based Learning,’’ Proc. Workshop on Knowledge Compilation, pp. 77-87,
Computer Science Dept., Oregon State Univ., 1986.

[127]S. Minton, ‘‘Quantitative Results Concerning the Utility of Explanation-Based Learning,’’ Artificial
Intelligence, vol. 42, pp. 363-391, Elsevier, Amsterdam, 1990.

[128]R. Mirchandaney and J. A. Stankovic, ‘‘Using Stochastic Learning Automata for Job Scheduling in
Distributed Processing Systems,’’ J. Parallel and Distributed Computing, pp. 527-552, Academic
Press, 1986.

[129]T. W. Mirer, Economic Statistics and Econometrics, Macmillan, New York, 1983.

[130]T. M. Mitchell, P. E. Utgoff, B. Nudel, and R. Benerji, ‘‘Learning Problem-Solving Heuristics
Through Practice,’’ Proc. 7th Int’l Joint Conf. on Artificial Intelligence, pp. 127-134, William Kauf-
man, Los Altos, CA, 1981.

[131]T. M. Mitchell, ‘‘Learning and Problem Solving,’’ Proc. 8th Int’l Joint Conf. on Artificial
Intelligence, pp. 1139-1151, William Kaufman, Los Altos, CA, Aug. 1983.

[132]T. M. Mitchell, ‘‘Toward Combining Empirical and Analytical Methods for Inferring,’’ pp. 81-103
in Artificial and Human Intelligence, ed. Banerji and Elithorn, Elsevier, New York, 1984.

[133]T.M. Mitchell, R.M. Keller, and S.T. Kedar-Cabelli, ‘‘Explanation-Based Generalization: A Unify-
ing View,’’ Machine Learning, vol. 1, no. 1, pp. 47-80, Kluwer Academic Pub., Boston, MA, 1986.

[134]J. S. Morgan, E. C. Patterson, and A. H. Klopf, ‘‘Drive-Reinforcement Learning: A Self-Supervised
Model for Adaptive Control,’’ Network: Computation in Neural Systems, vol. 1, pp. 439-448, IOP
Pub. Ltd., UK, 1990.

[135]L. Morgenstern and L. A. Stein, ‘‘Why Things Go Wrong: A Formal Theory of Causal Reasoning,’’
Proc. National Conf. on Artificial Intelligence AAAI-88, pp. 518-523, 1988.

[136]D. J. Mostow, ‘‘Machine Transformation of Advice into a Heuristic Search Procedure,’’ pp.
367-404 in Machine Learning: An Artificial Intelligence Approach, ed. R. S. Michalski, et al., Mor-
gan Kaufmann, Los Altos, CA, 1983.

[137]P. Munro, ‘‘A Dual Back-Propagation Scheme for Scalar Reward Learning,’’ Proc. Ninth Annual
Conf. of the Cognitive Science Society, pp. 165-176, Lawrence Erlbaum Associates, Hillsdale, NJ,
1987.

[138]B. A. Nadel, ‘‘Constraint Saisfaction Algorithms,’’ Computational Intelligence, vol. 5, pp. 188-224,
National Research Council Canada, Toronto, 1989.

195

[139]A. K. Nanda, H. Shing, T-H. Tzen, and L. M. Ni, ‘‘A Replicated Workload Framework to Study
Performance Degradation in Shared-Memory Multiprocessors,’’ Proc. Int’l. Conf. Parallel Process-
ing, vol. I, pp. 161-168, IEEE, 1990.

[140]K. Narendra and M. A. L. Thathachar, Learning Automata: An Introduction, Prentice Hall, Engle-
wood Cliffs, NJ, 1989.

[141]R. Neches, ‘‘Learning through Incremental Refinement of Procedures,’’ in Production System
Models of Learning and Development, ed. Klahr, et al., MIT Press, Cambridge, MA, 1987.

[142]D. M. Neves, ‘‘Learning Procedures from Examples and by Doing,’’ Proc. Int’l Joint Conf. on
Artificial Intelligence, pp. 624-30, Morgan Kaufman, 1983.

[143]D. Nguyen and B. Widrow, ‘‘The Truck Backer-Upper: An Example of Self-Learning in Neural
Networks,’’ Proc. Int’l Joint Conf. on Neural Networks, vol. II, pp. 357-363, IEEE, 1989.

[144]N. J. Nilsson, Principles of Artificial Intelligence, Tioga, 1980.

[145]P. S. Ow, S. F. Smith, and A. Thiriez, ‘‘Reactive Plan Revision,’’ Proc. Tenth National Conf. on
Artificial Intelligence AAAI-88, vol. 1, pp. 77-82, Saint Paul, MN, 1988.

[146]J. Pearl, Heuristics--Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley,
Reading, MA, 1984.

[147]B.W. Porter and D.F. Kibler, ‘‘Experimental Goal Regression: A Method for Learning Problem-
solving Heuristics,’’ Machine Learning, vol. 1, no. 3, pp. 249-286, Kluwer Academic Pub., Boston,
MA, 1986.

[148]L. Rendell, ‘‘A General Framework for Induction and a Study of Selective Induction,’’ Machine
Learning, vol. 1, no. 2, pp. 177-226, Kluwer Academic Pub., Boston, MA, 1986.

[149]L. A. Rendell, An Adaptive Plan for State-Space Problems, Tech. Rep. CS-81-13, Univ. of Water-
loo, Ontario, Canada, March 1981.

[150]L. A. Rendell, ‘‘A New Basis for State-Space Learning Systems and a Successful Implementation,’’
Artificial Intelligence, vol. 20, pp. 369-392, North-Holland, 1983.

[151]E. Rich and K. Knight, Artificial Intelligence, McGraw Hill, New York, 1991.

[152]P. Rosenbloom and A. Newell, ‘‘Learning by Chunking: A Production System Model of Practice,’’
in Production System Models of Learning and Development, ed. Klahr, et al., MIT Press, Cam-
bridge, MA, 1987.

[153]S. Ross, Introduction to Stochastic Dynamic Programming, Academic Press, New York, 1983.

[154]D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning Internal Representations by Error
Propagation,’’ pp. 318-362 in Parallel Distributed Processing: Explorations in the Microstructure
of Cognition, ed. D. E. Rumelhart, J. L McClelland and the PDP Research Group, MIT Press, Cam-
bridge, MA, 1986.

[155]S. Russell and E. Wefald, ‘‘Principles of Metareasoning,’’ Artificial Intelligence, vol. 49, pp. 361-
395, Elsevier, Amsterdam, 1991.

[156]E.D. Sacerdoti, ‘‘The Nonlinear Nature of Plans,’’ pp. 206-214 in Reasoning about Actions and
Plans, ed. Georgeff and Lansky, 1987.

196

[157]A. L. Samuel, ‘‘Some Studies in Machine Learning Using the Game of Checkers,’’ IBM J. Research
and Development, vol. 3, pp. 210-229, IBM, 1959.

[158]A. L. Samuel, ‘‘Some Studies in Machine Learing Using the Game of Checkers II--Recent Pro-
gress,’’ J. of Research and Development, vol. 11, no. 6, pp. 601-617, IBM, 1967.

[159]SAS Institute, Inc., SAS/ETS User’s Guide, Version 5 Edition, Cary, NC, 1984.

[160]J. H. Schmidhuber, Making the World Differentiable,, Tech. Rep. FKI-126-90, Technical Univ. of
Munich, Munich, Germany, 1990.

[161]P. Schooley, ‘‘Learning State Evaluation Functions,’’ Machine Learning, pp. 177-179, Kluwer
Academic Pub., 1985.

[162]M. J. Schoppers, Representation and Automatic Synthesis of Reaction Plans, Ph.D. Thesis, Dept. of
Computer Science, Univ. of Illinois, Urbana, IL., 1988.

[163]S. R. Schwartz, Resource Constrained Parameter Tuning Applied to Stereo Vision, M.Sc. Thesis,
Dept. of Electrical and Computer Engineering, Univ. of Illinois, Urbana, IL, Aug. 1991.

[164]S. R. Schwartz and B. W. Wah, ‘‘Automated Parameter Tuning in Stereo Vision Under Time Con-
straints,’’ Proc. Int’l Conf. on Tools for Artificial Intelligence, IEEE, (accepted to appear) Nov.
1992.

[165]H. Simon, The Sciences of the Artificial, The MIT Press, Cambridge, MA, 1982.

[166]R. G. Smith, T. M. Mitchell, R. A. Chestek, and B. G. Buchanan, ‘‘A Model for Learning Sys-
tems,’’ Proc. 5th Int’l Joint Conf. on Artificial Intelligence, pp. 338-343, William Kaufman, Los
Altos, CA, Aug. 1977.

[167]S. F. Smith, ‘‘Flexible Learning of Problem Solving Heuristics through Adaptive Search,’’ Proc.
Int’l Joint Conf. on Artificial Intelligence, pp. 422-5, Morgan Kaufman, 1983.

[168]K. Sreenivasan and A. J. Kleinman, ‘‘On the Construction of a Representative Synthetic Work-
load,’’ Communications of the ACM, vol. 17, no. 3, pp. 127-132, ACM, 1974.

[169]N. S. Sridharan and J. L. Bresina, Exploration of Problem Reformulation and Strategy Acquisition:
A Proposal, Tech. Rep. LCSR-TR-53, Lab. Computer Science Research, Rutgers Univ., New
Brunswick, NJ, March 1984.

[170]W. Stallings, Data and Computer Communications, Macmillan Pub. Co., New York, 1988.

[171]J. A. Stankovic, ‘‘Stability and Distributed Scheduling Algorithms,’’ Trans. on Software Engineer-
ing, vol. SE-11, pp. 1141-1152, IEEE, Oct. 1985.

[172]D.M. Steier, J.E. Laird, A. Newell, and P.S. Rosenbloom, ‘‘Varieties of Learning in SOAR: 1987,’’
Machine Learning, pp. 300-311, Kluwer Academic Pub., Boston, MA, 1987.

[173]R. S. Sutton, Temporal Credit Assignment in Reinforcement Learning, Ph.D. Thesis, Univ. of Mas-
sachusetts, Amherst, MA, Feb. 1984.

[174]R. S. Sutton and B. Pinette, ‘‘The Learning of World Models by Connectionist Networks,’’ Proc.
Seventh Ann. Conf. Cognitive Science Soc., pp. 54-64, Lawrence Erlbaum Associates, Hillsdale, NJ,
1985.

197

[175]R. S. Sutton, ‘‘Learning to Predict by the Methods of Temporal Differences,’’ Machine Learning,
vol. 3, pp. 9-44, Kluwer Academic Pub., Aug. 1988.

[176]R. S. Sutton, ‘‘Convergence Theory for a New Kind of Prediction Learning,’’ Proc. 1988 Workshop
on Computational Learning Theory, pp. 421-422, Morgan Kaufmann, Palo Alto, CA, 1988.

[177]R. S. Sutton, ‘‘Integrated Architectures for Learning, Planning, and Reacting Based on Approximat-
ing Dynamic Programming,’’ Proc. 7th Int’l. Conf. Machine Learning, pp. 216-224, Morgan Kauf-
mann, Palo Alto, CA, 1990.

[178]G. Tesauro, ‘‘Connectionist Learning of Expert Backgammon Evaluations,’’ Machine Learning, pp.
200-206, Kluwer Academic Pub., Boston, MA, 1988.

[179]G. Tesauro and T. J. Sejnowski, ‘‘A Parallel Network that Learns to Play Backgammon,’’ Artificial
Intelligence, vol. 39, pp. 357-390, Elsevier Science Pub., New York, 1989.

[180]G. Tesauro, ‘‘Neurogammon Wins Computer Olympiad,’’ Neural Computation, vol. 1, no. 3, pp.
321-323, MIT Press, Cambridge, MA, 1989.

[181]G. Tesauro, ‘‘Practical Issues in Temporal Difference Learning,’’ Machine Learning, vol. 8, no. 3/4
(Special Issue on Reinforcement Learning), pp. 257-278, Kluwer Academic Publishers, Boston,
MA, 1991.

[182]K. H. Thearling, Techniques for Automatic Test Knowledge Extraction from Compiled Circuits,
Ph.D. thesis, Dept. of Electrical Engineering, Univ. of Illinois, Urbana, IL, 1990.

[183]Y. L. Tong and D. E. Wetzell, ‘‘Allocation of Observations for Selecting the Best Normal Popula-
tion,’’ pp. 213-224 in Design of Experiments: Ranking and Selection, ed. T. J. Santner and A. C.
Tamhane, Marcel Dekker, New York, NY, 1984.

[184]B. W. Wah and H. Kriplani, ‘‘Resource Constrained Design of Artificial Neural Networks,’’ Proc.
Int’l Joint Conf. on Neural Networks, vol. III, pp. 269-279, IEEE, June 1990.

[185]B. W. Wah, ‘‘Population-Based Learning: A New Method for Learning from Examples under
Resource Constraints,’’ Trans. on Knowledge and Data Engineering, vol. 4, no. 5, pp. 454-474,
IEEE, Oct. 1992.

[186]B. W. Wah, A. Aizawa, and A. Ieumwananonthachai, ‘‘Real-Time Learning of Heuristics,’’ Trans.
on Knowledge and Data Engineering, IEEE, (accepted to appear) Dec. 1992.

[187]B. Walker, G. Popek, R. English, C. Kline, and G. Thiel, ‘‘The LOCUS Distributed Operating Sys-
tem,’’ Proc. Nineth Symp. on Operating System Principles, pp. 49-70, ACM, 1983.

[188]G. R. Walsh, Methods of Optimization, Wiley, London, England, 1977.

[189]C. J. C. H. Watkins, Learning from Delayed Rewards, Ph.D. Thesis, King’s College, London, May
1989.

[190]E.H. Wefald and S.J. Russell, ‘‘Adaptive Learning of Decision-Theoretic Search Control
Knowledge,’’ Machine Learning, pp. 408-411, Kluwer Academic Pub., Boston, MA, 1989.

[191]W. W. S. Wei, Time Series Analysis, Addison-Wesley, Redwood City, CA, 1990.

[192]A. S. Weigend, B. A. Huberman, and D. E. Rumelhart, ‘‘Predicting the Future: A Connectionist
Approach,’’ Int’l. J. of Neural Systems, vol. 1, no. 3, p. 209, World Scientific Pub., New Jersey,
1990.

198

[193]P. J. Werbos, ‘‘Consistency of HDP Applied to a Simple Reinforcement Learning Problem,’’
Neural Networks, vol. 3, pp. 179-189, Pergamon Press, Elmsford, NY, 1990.

[194]P. J. Werbos, ‘‘A Menu of Designs for Reinforcement Learning over Time,’’ pp. 67-96 in Neural
Networks for Control, ed. Miller et al., MIT Press, Cambridge, MA, 1990.

[195]D. White, Dynamic Programming, Oliver and Boyd, Edinburgh, UK, 1969.

[196]S.D. Whitehead and D.H. Ballard, ‘‘A Role for Anticipation in Reactive Systems that Learn,’’ Proc.
6th Int’l. Workshop on Machine Learning, pp. 354-357, Morgan Kaufmann, San Mateo, CA, 1989.

[197]B. Widrow, N. K. Gupta, and S. Maitra, ‘‘Punish/Reward: Learning with a Critic in Adaptive Thres-
hold Systems,’’ Trans. Systems, Man, and Cybernetics, vol. SMC-3, no. 5, pp. 455-465, IEEE,
1973.

[198]B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice-Hall, Englewood Cliffs, NJ,
1985.

[199]S. W. Wilson, ‘‘Hierarchical Credit Allocation in Classifier Systems,’’ in Genetic Algorithms and
Simulated Annealing, ed. L. Davis, Pitman, London, 1987.

[200]J. C. Yan and S. F. Lundstrom, ‘‘The Post-Game Analysis Framework--Developing Resource
Management Strategies for Concurrent Systems,’’ Trans. on Knowledge and Data Engineering, vol.
1, no. 3, pp. 293-309, IEEE, Sept. 1989.

[201]C. F. Yu, Efficient Combinatorial Search Algorithms, Ph.D. Thesis, School of Electrical Engineer-
ing, Purdue Univ., West Lafayette, IN, Dec. 1986.

[202]C. F. Yu and B. W. Wah, ‘‘Learning Dominance Relations in Combinatorial Search Problems,’’
Trans. on Software Engineering, vol. SE-14, no. 8, pp. 1155-1175, IEEE, Aug. 1988.

[203]S. Zhou, ‘‘An Experimental Assessment of Resource Queue Lengths as Load Indices,’’ Proc.
Winter USENIX Conf., pp. 73-82, 1987.

[204]S. Zhou, Performance Studies of Dynamic Load Balancing in Distributed Systems, Tech. Rep.
UCB/CSD 87/376 (Ph.D. Dissertation), Computer Science Division, Univ. of California, Berkeley,
CA, 1987.

[205]S. Zhou, X. Zheng, Z. Jingwen, and P. Delisle, UTOPIA: A Load Sharing Facility for Large,
Heterogeneous Distributed Computer Systems, Tech. report CSRI-257, Computer Systems Research
Institute, University of Toronto, April 1992.

199

VITA

Pankaj Mehra received his B.Tech. degree in Computer Science and Engineering from the Indian Institute

of Technology, Delhi, in 1986. He is currently a candidate for the Ph.D. degree in Computer Science at

the University of Illinois at Urbana-Champaign. After completing his doctoral dissertation, he will take

up a position as a Computer Scientist with Recom Technologies, Inc., working on the Parallel Systems

Diagnosis and Visualization Project within the Computational Research Systems Branch at NASA-Ames

Research Center.

Mr. Mehra is the co-editor of Artificial Neural Networks: Concepts and Theory, a tutorial published

by the IEEE Computer Society Press in 1992. He has presented papers at various conferences on distri-

buted computing, artificial intelligence, machine learning, and neural networks. His research interests

include computer-workload characterization, computational learning theory, and intelligent resource-

scheduling algorithms.

AUTOMATED LEARNING OF LOAD-BALANCING STRATEGIES
FOR A DISTRIBUTED COMPUTER SYSTEM

Pankaj Mehra, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1993
B. W. Wah, Advisor

Workstations interconnected by a local-area network are the most common examples of distributed sys-

tems. The performance of such systems can be improved via load balancing, which migrates tasks from

the heavily loaded sites to the lightly loaded ones. Load-balancing strategies have two components: load

indices and migration policies. This thesis presents SMALL (Systematic Method for Automated Learning

of Load-balancing strategies), a system that learns new load indices and tunes the parameters of given

migration policies. The key component of SMALL is DWG, a dynamic workload generator that allows

off-line measurement of task-completion times under a wide variety of precisely controlled loading con-

ditions. The data collected using DWG are used for training comparator neural networks, a novel archi-

tecture for learning to compare functions of time series. After training, the outputs of these networks can

be used as load indices. Finally, the load-index traces generated by the comparator networks are used for

tuning the parameters of given load-balancing policies. In this final phase, SMALL interfaces with the

TEACHER system of Wah, et al. in order to search the space of possible parameters using a combination

of point-based and population-based approaches. Together, the components of SMALL constitute an

automated strategy-learning system for performance-driven improvement of existing load-balancing

software.

iii

AUTOMATED LEARNING OF LOAD-BALANCING STRATEGIES
FOR A DISTRIBUTED COMPUTER SYSTEM

Pankaj Mehra, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1993
B. W. Wah, Advisor

Workstations interconnected by a local-area network are the most common examples of distributed sys-

tems. The performance of such systems can be improved via load balancing, which migrates tasks from

the heavily loaded sites to the lightly loaded ones. Load-balancing strategies have two components: load

indices and migration policies. This thesis presents SMALL (Systematic Method for Automated Learning

of Load-balancing strategies), a system that learns new load indices and tunes the parameters of given

migration policies. The key component of SMALL is DWG, a dynamic workload generator that allows

off-line measurement of task-completion times under a wide variety of precisely controlled loading con-

ditions. The data collected using DWG are used for training comparator neural networks, a novel archi-

tecture for learning to compare functions of time series. After training, the outputs of these networks can

be used as load indices. Finally, the load-index traces generated by the comparator networks are used for

tuning the parameters of given load-balancing policies. In this final phase, SMALL interfaces with the

TEACHER system of Wah, et al. in order to search the space of possible parameters using a combination

of point-based and population-based approaches. Together, the components of SMALL constitute an

automated strategy-learning system for performance-driven improvement of existing load-balancing

software.

iv

To the people of India

v

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Benjamin Wah, for his advice and support. If this thesis

amounts to something, it is probably so because of his perfectionism and attention for detail. I would also

like to thank current and former members of my committee — Professors Andrew Barron, Geneva Bel-

ford, Ravi Iyer, Kwei-Jay Lin, Tony Ng, and Larry Rendell — for their comments and suggestions on my

work. Further thanks are due to Drs. Jerry Yan and Henry Lum for helpful discussions that shaped my

research during the summers of 1987 through 1990, when I was visiting NASA-Ames Research Center.

I would also like to thank my current and former colleagues — Albert Yu, Kate Baumgartner, Mark

Gooley, Lon-Chan Chu, Kumar Ganapathy, Arthur Ieumwananonthachai, Vijay Karamcheti, Tanay Kar-

nik, Akiko Aizawa, and Chin-Chi Teng — for helpful discussions about ideas presented in this thesis. I

have gained valuable insights about machine learning and neural networks from discussions with several

friends, colleagues, and faculty members at the University of Illinois: Subutai Ahmad, Bob Horst, Darrell

Hougen, Gerry Tesauro, Raj Seshu, Chris Matheus, Larry Rendell, P. R. Kumar, Kevin Buescher, Bob

Stepp, Steve Chien, Steve Omohundro, Ray Mooney, and Ryszard Michalski. I wish to especially thank

Rich Sutton for indulging me in long-distance discussion through e-mail.

The workload-generation experiments reported in this thesis were conducted on SUN 3/50,

SUN3/60, and SUN 3/260 workstations running the SunOS operating system. Comparator networks were

simulated using the Rochester Connectionist Simulator. The contour plots of Chapter III were drawn

using Mathematica 2.1. The TEACHER software used for tuning policy parameters was written by Arthur

Ieumwananonthachai, based on earlier versions by Steve Schwartz. Tanay Karnik provided initial ver-

sions of the programs for linear and exponential extrapolation, which are used in Chapter IV for extract-

ing trends from filtered load patterns. The filters were designed using Mathematica 2.1. I also used the

UNIXSTAT programs, written by Gary Perlman, for computing statistics and analyzing data.

vi

To the many friends who helped me cope with the pressures and frustrations of graduate school —

Munindar Singh, Sanjay and Vinita Bhansali, Harish Kriplani, Abhay and Tanuja, Kanth and Shaku,

Samir Mathur, S. Keshav, Inderpal Mumick, Milt Epstein, Ram Charan and family, George and Caroline

Badger, Uncle Myron and Aunt Emmie — thanks for your encouragement and support! I wish to thank

Donna Guzy not only for her help with paperwork and travel arrangements but also for her delicious

cakes and pies.

Among my family members, I first wish to thank my mother and father, whose love and sacrifices

have brought me this far. I want to thank my sisters Suman and Juhi, whose loving care once saved my

life, and my wife Ranjana, who has suffered with me through the worst of it. Other friends and relatives

— Pratap and Prabha Mehra, Professor J. N. Kapur, and Y. A. Shetty — have motivated, supported and

encouraged me through the past six years.

I wish to acknowledge the support of National Aeronautics and Space Administration, under Con-

tract NCC-2-481, the National Science Foundation, under grant MIP 88-10584, and Sumitomo Electric

Industries, Yokohama, Japan. Finally, I wish to thank the people of India, whose unselfish support of

academic excellence and scholarship paved my way to a higher education. It is to them that I dedicate this

thesis.

vii

TABLE OF CONTENTS

Chapter Page

I. LOAD BALANCING AS A STRATEGY-LEARNING TASK ... 1
A. Load Balancing in Distributed Computer Systems ... 1
B. Scope of this Thesis .. 5
C. State of the Art .. 7
D. Automated Learning of Load-Balancing Strategies ... 11
E. Contributions of this Thesis .. 19
F. Thesis Outline .. 21

II. SMALL: A SYSTEM FOR LEARNING LOAD-BALANCING STRATEGIES 22
A. Architecture of SMALL .. 22
B. Operation of SMALL .. 24
C. Summary ... 34

III. DWG: A TOOL FOR SYNTHETIC WORKLOAD GENERATION .. 37
A. Design Goals ... 37
B. Previous Work ... 39
C. Architecture of DWG: A Dynamic Workload Generator ... 42
D. Operation of DWG ... 47
E. Evaluation, Parameterization and Tuning of Generation Mechanisms 52
F. Chapter Summary .. 63

IV. COMPARATOR NEURAL NETWORKS FOR LEARNING LOAD INDICES 66
A. Design Goals ... 66
B. The Comparator Network: Architecture and Learning Algorithms 73
C. Data Preprocessing .. 77
D. Empirical Results .. 81
E. Evaluation of Load Indices Learned using Comparator Networks 84
F. Chapter Summary .. 93

V. STRATEGY LEARNING: A SURVEY OF ISSUES AND APPROACHES 95
A. Introduction ... 95
B. Structure of strategy-learning tasks ... 99
C. Issues in strategy learning ... 120
D. Techniques for strategy learning ... 132
E. Architecture of strategy-learning systems ... 152
F. Practicality of strategy learning ... 159
G. Chapter summary .. 166

viii

VI. POPULATION-BASED LEARNING OF LOAD-BALANCING POLICIES 168
A. The policy-learning problem ... 168
B. Brief overview of TEACHER ... 171
C. Data Preparation .. 175
D. Empirical Results .. 179
E. Chapter Summary .. 184

VII. CONCLUSIONS ... 185

REFERENCES .. 187

VITA .. 199

ix

LIST OF TABLES

Table Page
I. Typical performance-indicating variables available in UNIX-like operating systems 8
II. Times required by different phases of SMALL’s operation ... 35
III. Benchmark programs used in evaluation and tuning of DWG .. 54
IV. Parameter sets for doctoring rules ... 56
V. Signed errors due to generation for different parameter sets .. 58
VI. Unsigned errors due to generation for different parameter sets ... 59
VII. Significance test for coefficient of rank-correlation (I) .. 85
VIII. Significance test for coefficient of rank-correlation (II) ... 86
IX. Components of strategy-learning tasks .. 98
X. Examples of strategy-learning tasks ... 98
XI. Components of a performance task ... 103
XII. Examples of performance tasks in strategy learning .. 111
XIII. Examples of problem solvers in strategy-learning tasks ... 115
XIV. Examples of environments for strategy learning .. 119
XV. Issues, tasks, and approaches of strategy learning ... 121
XVI. Examples of issues in strategy learning .. 133
XVII. Architectural models characterized by their approach .. 159
XVIII. Examples of strategy-learning tasks and architectures .. 160
XIX. Examples of practical issues in strategy learning ... 161
XX. Performance of policies learned under different assumptions ... 179

x

LIST OF FIGURES

Figure Page
1. Our model of distributed systems. .. 2
2. Classification of load-balancing strategies .. 3
3. The load-balancing policy considered in this thesis .. 6
4. Comparison between experimentation environments .. 17
5. Overview of SMALL ... 23
6. The five phases of SMALL’s operation ... 25
7. Operation of SMALL: Collection of background-load patterns .. 27
8. Operation of SMALL: Measurement of completion times .. 28
9. Operation of SMALL: Load-index learning .. 29
10. Operation of SMALL: Policy learning .. 32
11. Operation of SMALL: Application phase .. 34
12. Workload generation without feedback ... 40
13. Workload generation with feedback using real workloads .. 40
14. Workload generation with feedback using synthetic processes ... 41
15. Workload generation with feedback using dynamic doctoring ... 42
16. Architectural description of DWG .. 43
17. Format of DWG log files ... 46
18. The need for dynamic doctoring of generated load ... 51
19. Measuring the accuracy of generated loads ... 53
20. Contour plots of cumulative probability of error with nine different parameter sets 61
21. Contour plot of cumulative probability of error for the selected parameter set (7) 62
22. Comparison of true and generated resource-utilization patterns (Expt. #17) 64
23. Comparison of true and generated resource-utilization patterns (Expt. #15) 65
24. The objective function for load-index learning ... 72
25. A typical episode in training a comparator neural network ... 73
26. Schematic of a feed-forward neural network ... 75
27. Effects of lowpass filters of order 7 with different cutoff frequencies .. 79
28. Trend extraction via linear and exponential fitting .. 80
29. Learning curves for within-site comparisons ... 83
30. Learning curves for across-site comparisons ... 83
31. Performance of all test-jobs under load #23; policies: opt, min ... 88
32. Performance of all test-jobs under load #23; policies: opt, min, rnd, and max 89
33. Performance of all test-jobs under load #11; policies: opt, min, rnd, and max 90
34. Contour plot of cumulative probability of speed-up; policy: min; no overheads or delays 91
35. Raw resource-utilization patterns and their load index ... 93
36. Classification of strategy-learning tasks .. 98
37. Typical information flow in a strategy-learning system .. 100
38. Attributes for classifying performance tasks ... 103

xi

39. Components of problem solvers and their properties .. 111
40. Components of a learning environment ... 115
41. Dietterich and Buchanan’s model of learning systems .. 153
42. Minsky’s model of learning systems ... 153
43. The hybrid point-based model of learning systems ... 153
44. The TEACHER model of learning systems ... 158
45. Representation of heuristic methods .. 168
46. The architecture of TEACHER .. 171
47. An example of mutation applied to an HM ... 173
48. An illustration of the crossover operation .. 173
49. Rules for point-based learning ... 175
50. Overheads and delays in load balancing .. 177
51. Contour plot of cumulative probability of speed-up; M=100,I=100,P=20 181
52. Contour plot of cumulative probability of speed-up; M=5000,I=100,P=20 182
53. Contour plot of cumulative probability of speed-up; M=100,I=1000,P=20 183

