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CHAPTER |I.

LOAD BALANCING ASA STRATEGY-LEARNING TASK

The ineluctable core of intelligence is always in that next thing which
hasn’t yet been programmed.

- Douglas Hof stadter

A. Load Balancing in Distributed Computer Systems

Workstations interconnected by local-area networks (LANS) are the most popular examples of dis-
tributed systems. Recent advances in RISC technology, as well as expected improvements due to super-
scalar architectures in the near future, are major factors behind their growing popularity. Modern
workstation-based distributed computing environments feature microprocessors rated at 10 to 200 MIPS,
interconnected by high-speed LANsrated at 10" to 10 baud. The abstract mode! of distributed systems

considered in this thesis (Figure 1) reflects this trend in distributed computing.

All of the sites in our model have private memory and processing capacity; some have secondary
storage; and al share the communication resource. These resources are architecturally homogeneous
[205], whereby they can service requests issued by programs running at any of the sites. Some of the
resources, such as network and secondary storage, can be shared transparently; others, such as processing
power and virtual memory, can be accessed by local processes only. We do allow for configurational
heter ogeneity [205], whereby different sites may have different processor speeds, memory space, or disk

space.

Users at different sites initiate tasks (or jobs) in a distributed fashion. We restrict our attention to a
simple model of tasks: our tasks are independent (i.e., there are no synchronization or precedence con-

straints) and can be processed at any of the several sites. A task under execution is called a process.
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Figure 1. Our modd of distributed systems.

Our model assumes code compatibility among sites, as well as the availability of an operating system
responsible for local scheduling of processes and management of virtual memory. We further assume that
user files are available at al sites, and the basic mechanisms for remote execution are provided by the
operating system. At the user level, we assume that only independent tasks amenable to migration are
considered for global scheduling.

Processes request and consume resources. The workload of a site consists of the combined demands on
its resources from all of the local processes. The absolute and relative utilizations of various resources at
each site, and of various sites across the network, are highly dynamic quantities. The dynamic nature of
load causes frequent imbalances: certain resources local to a site may be overloaded even as similar
resources at a remote site are underutilized or idle. With increases in the speeds of individual processors,
and with growth in the scale of typical systems, there are concomittant increases in both the magnitude
and the frequency of load imbalances. The desire to exploit such imbalances for improved performance
has fueled much recent work on dynamic load balancing [18], which migrates tasks (and thereby, work-

load) from the heavily-loaded sites to the idle or lightly-loaded ones.



Just as distributed-systems hardware has benefited from technological advances in microprocessors
and networking, so has distributed-systems software come of age because of advances in networked file
systems and user-transparent remote-execution facilities [10, 49, 187]. Irrespective of how efficiently it is
implemented, remote execution incurs overheads due to process migration; naive use of remote-execution

facilities may, therefore, cause degradation rather than improvement in performance!

Several researchers have studied intelligent load-balancing strategies, which determine whether to
execute an incoming task remotely and, if so, at which site. Such strategies come in a variety of flavors
(Figure 2). Centralized strategies limit the information-gathering and decision-making responsibilities to
acentral site; the decentralized ones distribute such resposibilities among the sites. Centralized strategies
are suitable for scheduling interdependent tasks; and decentralized strategies, for scheduling independent
tasks. Also, decentralized strategies are the preferred alternative when tasks can be initiated at any site of
the distributed system. Satic strategies determine ahead of time where to execute each incoming task,
without considering the run-time loading conditions. They are suitable for scheduling tasks having

predictable resource requirements on machines having predictable load variations because they incur no
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Figure 2. Classification of load-balancing strategies

Load-balancing strategies are classified on the basis of (i) the type of information used in scheduling
tasks; (ii) whether tasks once placed can be rescheduled; and (iii) whether information-gathering and
decision-making resposihilities are restricted to a single site. The strategies of interest to us are shown
inside dashed boxes.



information-gathering overheads at run time. Dynamic strategies make scheduling decisions at run time,
using load indices to distinguish between heavily- and lightly-loaded sites. These are more suitable when
little is known about either the tasks being scheduled or the loading conditions prevalent during task exe-
cution. Dynamic strategies may be further classified as either preemptive or non-preemptive; the former
permit migration of tasks that have already begun execution, but the latter do not. If load conditions were
to change drastically during task execution, a preemptive strategy would allow one to rectify bad place-

ments, but a non-preemptive one would not.

The primary function of a load-balancing strategy is to recommend decisions that improve perfor-
mance. The choice of a performance objective for load balancing depends upon the application environ-
ment. For example, if there are dependences between tasks, then the objective should be to minimize the
total time to complete a set of interdependent tasks. Otherwise, if tasks are independent, then the objec-
tive should be to improve either the average- or the worst-case completion time. Often, the performance
of aload-balancing strategy is evaluated with respect to a base strategy; examples include speed-up over
local execution of all tasks, and speed-up over the execution of each task at a randomly determined site.
Speed-ups are preferred as performance objectives because they can be used for comparing a strategy’s
performance across several different sets of tasks. Besides, they offer an easy characterization of poor
strategies — those that yield speed-up values below unity. Speed-up may be computed either separately
for each task or collectively for entire batches. The former approach is used when evaluating the perfor-
mance of load-balancing strategies on a stream of independent tasks; the latter, when evaluating on a
batch of depedent tasks. Either the average or the worst-case speed-up may be maximized. In typical
computing environments, the objective is to improve the average speed-up. Improvements in worst-case

speed-up are desirable only in real-time systems, which require bounds on worst-case completion times.



B. Scope of this Thesis

AsFigure 1 illustrates, our model assumes that tasks are independent and may originate at any site
of the distributed system. Further, we assume the existence of a ‘‘background workload,”” which varies
outside the control of the load-balancing software. Such load may be caused either by site-specific
operating-system functions or by tasks that cannot migrate due to the limitations of remote-execution
software. We assume no prior knowledge of the behavior of the tasks to be scheduled, except that they are
drawn from a large population having stationary (but unknown) mean and variance of relative resource
requirements. Wetreat local execution of every task as the base case, relative to which all other strategies
will be evaluated. Since our model assumes independent tasks, our objective is to maximize the average

speed-up, computed on a task-by-task basis, over local execution.

The existence of a background workload, whose long-term variation cannot be predicted, rules out
static strategies. Further, the lack of knowledge about task length, along with the aforementioned
difficulty of long-term prediction, necessitates preemptive strategies, which can ‘‘undo’’ the effects of
poor initial placements. Finally, the distributed arrival pattern of tasks, as well as the lack of constraining
dependences between them, entails that we prefer the less expensive and more robust decentralized stra-
tegies over the centralized ones. Therefore, the focus of this thesis is on dynamic, decentralized, preemp-

tive load-balancing strategies (Figure 2).

Usually, load-balancing policies are programmed manually. Manually programmed policies are
either overly conservative (to work reasonably well on al instalations), or not portable (because the
optimal setting of policy parameters is installation-dependent). Both these conditions lead to unsatisfac-
tory performance when the configuration of the system changes (due to failures or upgrades) or when new
application programs are run. The thrust of this thesis is on the development of an automated method for
improving the performance of parameterized |oad-balancing strategies. We explore machine learning as a

vehicle for such automation.



Load-balancing strategies have two components [3]: load metrics, which characterize the level of
loading for each site; and decision policies, which determine both the conditions under which a task
should be migrated and the destination of each task. A load-balancing policy provides rules for using
available load metrics to make globa scheduling decisions — such as where to execute a task, and

whether to accept foreign tasks — as well as decisions about priorities of tasks and sites.

Figure 3 shows the parameterized load-balancing policy targeted for improvements in this thesis.
This policy is a generalization of several decentralized dynamic load-balancing policies proposed by
researchers and implementors [17, 108, 204]. Even in a small system having, say, just 4 sites, the above
policy has 16 systemwide parameters. Each site’s policy has 4 parameters — the values of Ref er ence,
0, 64, and 6,. The primitive decision metrics used by this policy are the values of Load, one per site.
Abstract (or derived) decision metrics are exemplified by M nLoad, which denotes the least among all

the Load values.

SENDER- SI DE RULES ('s)
Possi bl e-destinations = { site: Load(site) - Reference(s) < &(s) }
Desti nati on = Randon{ Possi bl e-desti nati ons)
I F Load(s) - Reference(s) > 064(s) THEN Send

RECEI VER- SI DE RULES (r)
| F Load(r) < 65(r) THEN Receive

Figure 3. The load-balancing policy considered in thisthesis

The sender-side rules are applied by the load-balancing software at the site of arrival (s) of a task.
Ref er ence can be either 0 or M nLoad; the other parameters — 9, 6;, and 6, — take non-negative
floating-point values. A remote destination (r) is chosen randomly from Desti nati ons, aset of sites
whose load index falls within a small neighborhood of Ref er ence. If Desti nati ons isthe empty
set, or if the rule for sending fails, then the task is executed locally at s, its site of arrival; otherwise, the
chosen site (r) is requested to receive the task. Upon receiving that request, the remote site applies its
receiver-side rule. If the rule succeeds, the request is accepted, and the task is migrated; otherwise, the
task is executed locally at s, its site of arrival.



C. State of the Art

Traditional approaches to the design of load-balancing strategies require a human designer to
specify aformula for computing Load, the load index, as a function of the current and recent utilization
levels of various resources. Moreover, they require manual setting of all the policy parameters. Not only
are the parameters numerous, but also they are sensitive to installation-specific characteristics of hardware

devices aswell asto the prevalent |oad patterns.

It is aso a common practice in the load-balancing community to use abstract queueing models of
computer systems for analytically deriving load-index functions [58, 60, 203]. Almost universally, imple-
mented systems use a function known as UNIX-style load average (hereafer, load average), which is an
exponentially smoothed average of the total number of processes (including the process in execution)
waiting for CPU. The number of processes (n) is sampled once every 5 seconds. Three different load
averages are updated each time n is sampled: Avg,, the 1-minute moving average which covers 12 sam-
pling intervals; Avgs, the 5-minute moving average which covers 60 intervals, and Avg s, the 15-minute
moving average which covers 180 intervals. Weiillustrate their computation with the formula for Avg:

_1 ;1
Avgy(t)=e 2 -Avg,(t-1)+(1-e 22 )n. (1a)

The other two averages are similarly computed by replacing the constant 12 in the exponents with con-
stants 60 and 180, respectively. These load averages may be used for comparing different loading situa-
tions, either at the same site or across different sites of an (architecturally and configurationally) homo-

geneous distributed system.

Table | lists a variety of performance metrics available in a typical workstation-based computing
environment. This table shows that measuring the utilization levels of resources other than the CPU —
memory, disk, and the network — may not require any hardware modifications. However, several of these
statistics are unsuitable for inclusion in a load index because the overhead associated with estimating

their values precludes frequent sampling; such statistics include a variety of process-level metrics, which



Tablel

Typical performance-indicating variables available in UNIX-like operating systems

Performance Metric

Type of information available

Number of context switches

Number of system calls

Number of device interrupts

Number of pages swapped in/out

Total over 1-second period,
Average over 5-second period,
Total since boot

Number of processes swapped in/out

Total over 5-second period, total since boot

Number of processes ready to use the CPU

Number of processes waiting for disk

Number of processes waiting for free memory

Number of swapped-out active processes

Memory pages used by all the processesin core

Memory pages used by active processes only

I nstantaneous value, computed every 5 seconds

Number of free memory pages

I nstantaneous val ue and 60-second average

Number of cache flushes

Tota over 1 second, average over 5 seconds,
and total since boot

Times spent in the different CPU states:
Idle; in OS functions; in user programs;
and, in low-priority user programs

Updated using instantaneous val ues sampled
once every 20 milliseconds

Amount of data transferred on each disk

Total, asynchronously updated at each transfer

Rate of datatransfer

Calculated once every second or slower

Number of characters input/output from/to
terminal devices

Total, asynchronously updated during terminal
input/output operations

Number of packetsinput/output on each
network interface

Total, asynchronously updated at the time of
packet transfer

Number of collisions (for CSMA interfaces)

Total, updated when collisions are detected

Per-process statistics: time spent in user mode,
time spent in system mode, resident-set size,
numbers of messages received and sent,
number of signals received,
number of context switches,
numbers of process swaps and page faults.

Timing statistics sampled once every
milliseconds; the whole interval charged to
the process in control of CPU. Other
statistics updated asynchronously at the
time an event happens.




are sampled only once every 5 seconds. Even if we eliminate these, we are still left with a fairly large set
of mutually dependent variables; for example, disk traffic is affected by the number of page swaps and
process swaps. Others, such as rate of data transfer, are fixed quantities for a given configuration, and
affect only the (fixed) co-efficients of a load index. Ideally, workloads for load balancing should be
characterized by a small set of performance metrics satisfying the following criteria: (i) low overhead of
measurement, which implies that measurements can be performed frequently, yielding up-to-date infor-
mation about load; (ii) represent the loads on al the resources of contention; and (iii) can be measured
and controlled independently of each other. In the past, Zhou [203,204] has considered resource-queue
lengths (the number of processes waiting for CPU, disk, and memory) in designing load indices. How-
ever, these metrics violate the first criterion because their computation involves a search through the
operating system’s process table. The instantaneous utilization levels on the four basic resources — CPU,
memory, disk, and network — constitute a useful set of performance metrics satisfying al three criteria.
These metrics are shown in bold font in Table |; indices derived from these metrics have not been studied

in the past.

1) Problems with the traditional load-index function

Our model allows configurational heterogeneity, whereunder |oad average cannot provide meaning-
ful comparison of loading situations across sites. For instance, consider the comparison between a fast
site having aload average of 3 and a slow site having aload average of 0. Further, assume that a preemp-
tive round-robin scheduling policy [11] is used for local process-level scheduling, and that the fast site is
5 times faster than the slow site. It is likely that an incoming task will require 20% lesser time to com-
plete at the fast site than the time it would require at the low site, despite the former site’s higher load

average!

A more fundamental problem with the traditional load-average function is that it completely ignores

resources other than the CPU. Therefore, while load average may be a reasonable indicator of
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performance for purely compute-bound tasks, its utility is questionable for tasks that use other resources

of contention, such as memory, disk, and network.

The bottom line in any attempt at load balancing should be to obtain a significant speed-up over
local execution. Since each incoming task has a finite set of possible destinations, one would like to use
the load index at each site to compare alternative destinations in terms of their expected speed-ups over

local execution. Thisis not feasible with available load-index functions.

2) Problems with the traditional method of tuning policy parameters

A widely accepted rule of thumb in the load-balancing community is that dynamic policies should
be smple in form, easy to implement, and efficiently applicable [51]. Complex policies incur substan-
tially larger overheads and their benefits are questionable [52]. However, as shown above, even ssimple
policies can have numerous parameters. At design time, little is known about the characteristics of the
hardware and software configurations under which a policy will eventually be used; therefore, the tuning
of policy parameters is often relegated to the end users. The users rarely have enough insight to analyti-
cally optimize policy parameters; they, therefore, resort to trial and error as a means to optimization. The
manual effort spent in such trial-and-error learning is tedious, costly, slow, and often unsystematic.
Manual tuning of policy parameters isimpractical especialy since it may be required each time the sys-

tem is expanded or upgraded.

Since speed-up can be measured only after actually performing an experiment, systematic improve-
ments in policy performance require a systematic trial-and-error approach to parameter tuning. Consider-
ing the large number of possible parameter settings, an exhaustive (unguided) search through the parame-
ter space will be prohibitively time-consuming. Even a guided manual search will require enormous

human effort. Therefore, automated mechanisms are needed for developing a useful load-index function,
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aswell asfor systematically tuning policy parameters.

D. Automated Learning of Load-Balancing Strategies

Automated refinement of metrics and policies based on observed performance may overcome some
of the limitations of manually designed load-balancing strategies. Such refinement is naturally viewed as
strategy learning, gradual improvement in performance of strategies based on experience. There has been
much research on strategy learning, and many general tools and techniques are now available for

automating this process [114].

This view of load balancing as a strategy-learning task immediately suggests how we might tackle
the problem at hand. Since load-balancing strategies comprise indices and policies, the strategy-learning
task can be naturally decomposed into learning of indices and policies. Learning requires data. As we
show below, the collection of such data requires an environment for controlled experimentation. Thus, we
need to address three subproblems: automated learning of load indices, automated tuning of policy
parameters, and the design of a controlled-experimentation environment for data collection. The rest of

this section briefly examines each of these subproblems.

1) Automated learning of load indices

Ideally, given the loading conditions prevailing at the different sites, one would like to rank the sites
by how long an incoming job would take to complete on each of them. However, completion times can
only be known after the job completes, whereas a decision about the job’s destination needs to be made
before it starts. Therefore, we need to somehow predict how long a job will take using only the informa-

tion available before ajob’s execution.

It should be noted that different classes of jobs may sometimes require different load indices. For

example, while the index for memory-intensive jobs may pay more attention to memory availability, the
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one for compute-bound may stress CPU availability. However, using these different load indices presup-
poses knowledge of the class to which each incoming job belongs; such knowledge might be available in
domains where the same programs are used over and over again [44]. However, in our model, we assume
no prior information about jobs; we, therefore, restrict our attention to the case of one load-index function

per site.

The completion time of ajob is not predictable in an absolute sense without prior knowledge of the
job’s requirements on different resources. Obtaining such knowledge requires extensive analysis of pro-
grams, which is complicated by the data-dependent nature of execution traces. Even when such informa-
tion can be obtained, it is not clear how it can be translated into primitive resource requirements on adis-
tributed system. For example, an I/O-intensive job, when run on a client, generates extreme traffic on the
disk as well the network; the same jab, on the file server, generates only disk traffic. Therefore, without

any knowledge of the resource requirements of tasks, we cannot predict absolute task-completion times.

Notice that our goal in designing an index-function for load balancing is merely to compare alterna-
tive destinations for the same job. Therefore, we will attempt to determine only a relative (site-specific
and configuration-specific) measure of completion time. It would, therefore, suffice to predict the relative
completion times of ajob at different sites. We now need a point of reference. Following the example of
Hwang, et al. [85], we choose an idle file server as a point of reference. That is, every site needs to
predict the completion time of an incoming task relative to its completion time on the chosen idle file
server, given only the loading conditions at the time of the job’s arrival. Of course, this prediction will
succeed only if current workload is a good indicator of future workloads. Therefore, we need to assume
that resource-utilization patterns exhibit significant autocorrelations; such correlations may become
insignificant as one predicts further into the future [116]. In Chapter 1V, we identify additional assump-

tions under which relative completion times can be predicted independently of tasks.

Our objective in learning load indices is to choose with high probability a site that will minimize the

completion time of an incoming job (given either the length of the job or the preemption interval). If
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different machines have widely different completion times for the same job, then the accuracy of predic-
tion can be low. On the other hand, if the difference between a task’s completion times on different sites
issmall (relative to its completion time on the idle file server), then the accuracy of prediction needs to be
high. At the outset of learning, it is difficult to predict how much accuracy will suffice. We know that the
accuracy of any convergent, iterative learning procedure improves with training; we, therefore, need to

reformulate our problem so that we will know when the accuracy attained is adequate.

Instead of attempting to predict, for each site, the relative completion time of atask at that site, we
now predict, for each pair of sites, the difference between their relative completion times. Moreover, we
judge the quality of learning by the percentage of correct comparisons. Then, we can stop refining the
individual index functions when the percentage of correct comparisons crosses an acceptance threshold.
We need to make sure that the anti-symmetry of comparison — whenever A is better than B, B is worse
than A — is preserved during learning. This issue of learning to predict differences of relative completion

times is further motivated and resolved in Chapter 1V.

2) Automated tuning of parametrized load-balancing policies

Our goal in tuning the parameters of a given load-balancing policy is to discover a parameter set
that achieves optimal or near-optimal average speed-up over local execution. If there were no overhead
of migrating tasks between sites, then a simple load-balancing policy — one that would always schedule
ajob at the site with minimum load — would suffice for centralized load-balancing schemes. However,
when used in conjunction with a decentralized load-balancing policy, this policy may cause every site to
dump its load on the least-loaded site. If the overhead of migration were much higher than the typical
gains in completion time achieved by executing a job at a remote site with lesser load, then another sim-
ple policy — one that would always schedule each task locally — would suffice. However, typical over-

heads of migration fall somewhere between these extremes [29].
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Once the migration overheads are taken into account, neither of the two simple policies outlined
above will yield optimal performance. Instead, it is expected that the quality of aload-balancing policy
will depend on the setting of its parameters. Dynamic load-balancing policies use thresholds and other
parameters in deciding when to migrate local jobs to remote sites and when to accept remote jobs from
other sites. While it is possible to dynamically adjust thresholds and other parameters in response to
changing workloads [92], our approach is to use policy parameters primarily to accommodate the uncer-
tainty in predicting workloads and in estimating migration overheads. We, therefore, assume that policy
parameters are (tunable) constants that depend upon the relative costs and benefits of migration, but do
not depend upon the loading conditions. Since the relative costs and benefits of migration can only be
known incrementally and a posteriori, the tuning process is a trial-and-error process that needs to be
automated. Moreover, if we only have limited time for learning, the tuning process needs to be rational in

its use of learning time.

There are two general classes of learning techniques. point-based and population-based [1, 185].
Point-based methods systematically modify the parameters of policies using prior knowledge of relation-
ships between policy parameters and policy performance. They maintain one incumbent policy and
modify it to the point of diminishing returns. Often, the behavior of such methods can be viewed as gra-
dient ascent to the nearest local maximum of performance in the parameter space. The quality of stra-
tegies learned using point-based learning is sensitive to the choice of the initial parameter set, as well as
to the quality of the local optimum nearest to the initial set. Population-based methods maintain a popu-
lation of parameter sets, devoting more resources to the more promising sets. They employ a generate-
and-test paradigm, in which new parameter sets are generated either randomly or through selected breed-
ing of the top few current parameter sets. Integrated learning methods combine the advantages of both

by maintaining multiple parameter sets, and modifying the active ones using point-based learning.

Certain parameters of load-balancing strategies, especialy the thresholds (Figure 3), are amenable

to point-based learning. If the incumbent policy recommends migrating a job to aremote site, and if that
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migration is subsequently found to perform worse than local execution, then the threshold of sender-side
rules at the source needs to be raised, and the threshold of receiver-side rules at the destination needs to
be lowered. Similar point-based heuristics are applicable under other conditions. However, certain other
parameters, such as Ref er ence (Figure 3), are more amenable to the generate-and-test paradigm used
by population-based learning methods. Therefore, it is desirable that we use an integrated learning
method for tuning the parameter sets of load-balancing policies. This learning problem is further

motivated and resolved in Chapter V1.

3) Coallecting data for learning indices and policies

Learning programs, such as the ones used to tackle the two previous problems, may derive their
power from two very different sources. domain knowledge and data. The strategy-learning task in load
balancing is knowledge-lean because neither the exact time-variation of background workload, nor the
exact relationship between load and completion time, is known ahead of time. Thus, empirical methods
of strategy learning [114], which infer the missing relationships from experimental data, are the only
means available to us for the automated learning of load indices and load-balancing policies in a

knowledge-lean environment.

Data for load-index learning take the form of before-after pairs, where the first item is a window of
load levels on local and shared resources, and the second item is the measured completion time of atask
introduced at the end of that window. The associated data-collection task is merely to run each job out of
a sample of representative jobs under a wide variety of realistic loading conditions. In each such experi-
ment, the utilization levels on various resources must be recorded for a certain interval of time, followed
by the initiation of a test job. When the job ends, its completion time must be measured. Both the meas-
urement of load and the measurement of completion time must be achieved with low overhead and high

precision, in order to yield credibility to the data.
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Datafor policy learning require comparative evaluation of different policies. For our purposes, each
policy is evaluated by its average speed-up over local execution, for a given set of jobs and under given
initial loading conditions. Moreover, the policies targeted for improvement in this thesis exhibit two
significant characteristics: (i) since the policy at each site can access neither the pool of jobs at other sites
nor any information about future job arrivals, it schedules jobs one at atime in a distributed fashion; and
(ii) since it is not known what the effect of past scheduling decisions will be on the loads of local and
remote resources, policies make scheduling decisions using only the current and recent loading condi-
tions, but not past decisions. Further, the average speed-up of a load-balancing policy over local execu-
tion can be computed using only the speed-ups of individual test jobs. Therefore, aternative parameter
sets of load-balancing policies can be evaluated separately on each job (or on an interva between two
checkpoints of a job), provided that the loading conditions during evaluation resemble those resulting

from past decisions.

Figure 4 shows two ways of introducing atest job under the loading conditions required of a typical
load-balancing experiment. The traditional approach, shown to the left, is to use a distributed stream of
jobs (shown as ellipses in the figure) [17,47,100, 204]. Suppose that there are j jobs in the stream, each
having m checkpoints (where it can be preempted and rescheduled), and that there are N possible sites.
Different parameter sets may lead to different scheduling decisions for each job (or checkpoint); with
respect to this stream of jobs, there can be NI™ possible outcomes. Policy-learning experiments require
that we test a large number of different parameter sets; meeting this requirement can be prohibitively
expensive in the traditional set-up, which may entail evaluating a substantial fraction of the exponential
number of outcomes. Even if some parameter sets differ only in their outcomes with respect to a single
test job (Figure 4), the entire experiment needs to be repeated over and over again. Thus, on account of its
intractability and wasteful repetition, the traditional method can only be used for evaluating only small

numbers of different parameter setsfor policy learning.
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Figur e 4. Comparison between experimentation environments

The experimental design shown to the right (Figure 4) represents a way of keeping load-balancing
experiments tractable, while still allowing the evaluation of numerous aternative parameter sets for pol-
icy learning under realistic loading conditions. It exploits the aforementioned fact that the speed-up of a
parameter set on a stream of jobs can be expressed as alinear function of the speed-ups of individual jobs.
In this set-up, each experiment involves just one job; the combined effect of all other jobsis captured in a
“‘background workload.”” (This is reasonable since independent tasks interact with each other only by

competing for resources.)

For scheduling a single test job, there can only be N outcomes. In order to evaluate al possible
parameter sets with respect to a given test job and background workload, we need only perform N experi-
ments, each time executing the test job at a different site. This requires that we regenerate the same back-

ground workload N times. Workload generation is also required for evaluating parameter sets under
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reaistic loading conditions: resource-utilization patterns of actual system-wide workloads will need to be

recorded and replayed.

During policy learning, point-based learning is employed for performance-driven modification of
thresholds at the sites making scheduling decisions for incoming test jobs of an experiment. If there are
multiple decisions, asin the traditional set-up, the feedback from performance measurements must be dis-
tributed first among the different decisions, and then among the policy parameters leading to each deci-
sion. This is caled the credit-assignment problem [125], i.e., how the feedback (credit or blame for
observed policy performance) is distributed among the numerous policy parameters. The two stages of
credit assignment — known, respectively, as the temporal and structural credit-assignment problems
[173] — have been extensively studied in recent years. While good solutions are known for structural
credit assignment [14, 140], temporal credit assignment has so far defied effective general solutions.
Since the experimental design shown to the right (Figure 4) evaluates each decision individualy, it alto-

gether avoids the temporal credit-assignment problem!

The burden in our set-up is on the experimentation environment. Not only must it allow us to gen-
erate realistic loading conditions, but also it should allow us to repeat them as often as desired. If these
desiderata were met, then we could perform multiple experiments, each with the same test job but at a
different site. Without knowing anything about the policies to be evaluated, we can collect al the data
necessary for comparing those policies off-line and ahead of time. All we need to do is to first measure an
actual system-wide workload, and then replay it repeatedly, each time introducing a job at precisely the
same time into the experiment but at a different site of the network. If we repeat such experiments with
several different jobs, under several different loading conditions, then we can create a sample large
enough for arealistic comparison of aternative policies. Further details of our experimental set-up can be

found in Chapter I11.
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E. Contributions of this Thesis

This thesis examines several key aspects of dynamic load balancing: from measurement and gen-
eration of computer workloads, to automated refinement of |oad-balancing policies via machine learning.

This section summarizes our key results, and their anticipated impact on the state of the art.

1) Dynamic workload generation

We present DWG (Dynamic Workload Generator), a program for generating realistic and reprodu-
cible background workloads with high accuracy and high resolution. DWG’s most innovative feature is
its ability to mimic the behavior of a background workload in the presence of a foreground job. The criti-
cal functions for measurement and generation of resource-utilization levels are implemented in each site's
operating-system kernel, ensuring low overhead. Actual resource-usage patterns of a distributed system
can be captured and replayed with high fidelity, test jobs introduced at precise instants, and their comple-
tion time measured accurately. Such experiments can be repeated, running the job at a different site each
time but under the same background workload. Since a policy’s performance is completely determined by
where it schedules an incoming job, alternative policies can be compared under identical loading condi-
tions. Thus, DWG alows us to perform reproducible load-balancing experiments, a facility hitherto una-

vailable to experimentersin this area.

2) Learning consistent and comparable performance indices

DWG keeps track of the utilization levels of the key resources at each site: computational, primary
memory, secondary storage, and communication. It provides a precise account of the loading conditions
prevalent just before ajob begins execution. DWG also measures the completion time of that job when it
finishes execution. These ‘‘before’” and *‘after’” data suffice for learning to compare alternative destina-

tions for incoming tasks. The problem is one of learning to compare functions of multivariate time series.
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We have adopted the neural-network architecture used for learning evaluation functions in
Tesauro’'s renowned backgammon-playing program [179, 180], and added various smoothing and extra-
polation capabilities to his method of learning to compare multivariate functions. We also present an
innovative learning algorithm that obviates the ‘linking of weights' [113] required by Tesauro’'s original
architecture. This modification allows us to use off-the-shelf neural-network-simulation packages [69].
Extensive statistical tests on the load-index functions learned using our comparator neural network reveal
high positive correlations (at 99% level of significance) between the true ranking of sites and the one
induced by the new index functions. Thus, if load indices were computed right before each decision point,
and if they could be communicated instantly across sites, then we could (with high confidence) select the

destination having the the least completion time for each incoming job.

The comparator neural network transforms the multi-dimensional and highly dynamic measure-
ments provided by DWG into smooth one-dimensional load indices that can be efficiently communicated

over the network, and compared across sites in ameaningful fashion, unlike the traditional 1oad average.

3) Automated tuning of policy parameters

Wah, et al. [186] have developed a domain-independent population-based learning system, called
TEACHER (TEchniques for Automated Creation of HEuURIstics), which also accommodates point-based
learning [185]. TEACHER rationally schedules limited learning time between generating new parameter
sets and testing the promising ones in the current population. We have developed a point-based learning
procedure for adjusting the thresholds of the load-balancing policy shown in Figure 3. We have also
devel oped the domain-specific generation and testing routines required by TEACHER. Generation of new

parameter setsis performed by applying genetic operators [82], such as mutation and crossover.

Mutation is performed by randomly perturbing the Ref er ence parameters of some sites from 0
to M nLoad, or vice versa. Crossover is performed by taking two policies with good recent perfor-

mance, and interchanging their parameters for some randomly chosen sites.
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We have found that the choice of parameter set is sensitive to the overheads involved in migrating
tasks and communicating load indices from site to site. Further, we report experiments with different
intervals of computation for the load-index function; these affect the average age of load-index values.
Since the quality of aload index degrades with age, the choice of policy parameters is also sensitive to
the interval of load-index computation. In all these cases, the integrated (population- and point-based)
learning system described above is able to quickly determine the appropriate parameter set with high
confidence, given data about the completion times of test jobs, and information about various overheads
and delays. Thus, what used to be an unsystematic, manual, and tedious process of discovering new
parameter sets by trial and error has been replaced by a systematic, automated, and efficient process of
population-based learning. Likewise, what used to be the ad hoc process of setting thresholds of policies
based on human experience has now been replaced by an automated performance-driven process of

point-based |earning.

F. ThesisOutline

Chapter 11 presents an overview of SMALL, a system for automated learning of load-balancing stra-
tegies. Subsequent chapters describe the three major components of SMALL: DWG, the dynamic-
workload-generation package, in Chapter IlI; the comparator-neural-network architecture for learning
load indices, described in Chapter IV; and our interface with TEACHER, a system for popul ation-based
learning of parameterized |oad-balancing policies, described in Chapter VI. Each of these three chapters
also includes extensive experimental results from our implementation on a network of SUN 3 worksta-
tions. Chapter V reviews past work on policy learning, and presents a comprehensive taxonomy of issues
and approachesin strategy learning. Chapter VII summarizes our results and defines directions for further

research.
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CHAPTER II.

SMALL: A SYSTEM FOR LEARNING LOAD-BALANCING STRATEGIES

Small is beautiful.

E. F. Schumacher

In this chapter, we briefly describe our overall approach to the three key issuesin learning strategies
for load balancing: workload generation, learning load indices, and tuning policy parameters. Our philo-
sophy in building a system for automated learning of load-balancing strategies was to first develop gen-
eral solutions to each of these subproblems and then integrate them into a working system. Thisway, les-
sons learnt and tools developed could be applied to other applications having strategy-learning tasks simi-
lar to the one in load balancing. Such spinoffs of our research are discussed in Chapter VII. The rest of
this chapter is organized as follows. Section A describes the overall architecture of SMALL, our learning
system. Section B describes the various phases of operation of SMALL: data collection, load-index

learning, policy learning, and application.

A. Architecture of SMALL

Figure 5 shows a layered view of our learning system. The three key components of SMALL
include a workload generator (DWG), a trainable load-index function (comparator network), and a
mechanism for tuning the parameters of given load-balancing policies (TEACHER). The functions of
DWG, the lowermost layer of SMALL, are: (i) precise measurement of resource-utilization information;
(i) precise generation of recorded loads; (iii) initiation of foreground test jobs at precise times; and (iv)
measurement of job-completion time. After the raw measurements supplied by DWG have been prepro-
cessed using filtering and extrapolation, they are used by the local load-index function for computing a

load index, a scalar quantity that can be used for comparing alternative destinations for local incoming
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Figure5. Overview of SMALL

jobs. The given load-balancing policies use the load indices, along with other policy parameters, in order

to determine the most appropriate destination for each incoming job.

Both the load-index function and the parameters of load-balancing policies can be modified based
on the completion-time measurements provided by DWG. Such modifications are carried out by the
learning system, which has two components: one to learn a new load-index function for each site, and

another to tune the parameters of a system-wide policy.
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The load-balancing system implements the policy shown in Figure 3, and converts the primitive
measurements provided by DWG’s measurement facilities into the more meaningful load indices. This
system includes support for communicating the load indices among the sites, as well as for computing

abstract performance metrics such as M nLoad, which denotes the minimum predicted load index.

We assume the existence of ajob-execution facility at each site, which can be invoked either locally
or remotely. In the UNIX operating system [11], such functions are provided by shells. We also assume
that the underlying operating system provides support for initiating processes and for detecting their ter-

mination.

Architecturaly, therefore, SMALL is implemented in two layers: DWG and the learning system.
(These components of SMALL are shown highlighted in Figure 5.) DWG resides partly inside the
operating-system kernel and partly at the process level, and forms a layer below the given load-balancing
system. The learning system is built on top of the load-balancing system, and has access to its inputs and

outputs; it can also access and modify various policy parameters.

B. Operation of SMALL

SMALL'’s operation can be broken into phases of data collection, learning, and application. The
data-collection phase can be subdivided into collection of background workloads and measurement of
task-completion times under those workloads. The learning phase can be subdivided into the learning of
indices and the tuning of policy parameters. Figure 6 shows a schematic view of the overall operation of

SMALL.

Our methodology is based on off-line learning, in which data collected ahead of time are used for
modifying a load-balancing strategy under controlled conditions. The way our experiment is organized,
only the data-collection phase requires dedicated use of the distributed system under consideration; there-

fore, the duration of this phase can be considered ‘down time’ in system managers’ parlance.
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Figure 6. The five phases of SMALL’s operation

Experiments for learning indices and policies depend only upon the data collected during the first
phase; these experiments can be performed at a suitable site either on or off the distributed system whose
policies are being tuned. Thefirst learning phase generates load-index functions, one per site; these can be
used for converting the multivariate and highly dynamic resource-utilization information collected during
the first phase into univariate and slowly-varying load indices. In the second learning phase, these load
indices, along with the completion times measured during the second phase of data collection, are used
for tuning the parameters of given load-balancing policies. After this phase, the new parameter values
found by the policy-learning system can be plugged into the load-balancing policy. When the systems
come back up for the application phase, the effects of earlier phases are visible only in the new load-index

functions and modified policy parameters. Off-line learning incurs no run-time over head!
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Off-line learning is the right approach when the loading conditions during the learning phase resem-
ble those that occur during the application phase. This is the case when the short-term characteristics of
load patterns are stationary (do not vary with time). Non-stationary environments may require on-line
learning, and SMALL’s methodology will not be applicable. Just because SMALL operates off line, that
does not mean it is a one-time learning system. On the contrary, it can be used for retraining load-
balancing strategies when new sites are added to the system, and when faster devices or newer operating

systems are installed at existing sites.

Therest of this section describes the various phases of SMALL’ s operation in greater detail.

1) Datacollection

In the first phase of data collection, background load patterns are recorded for future replay.
SMALL supports two kinds of experiments: (i) recording load patterns that occur naturally on a typical
system; and (ii) recording load patterns that occur at typical decision points during the application phase.
Figure 7 shows the schematic of an experimental set-up for collecting such patterns. The components of

DWG are shown highlighted in this figure.

The experiment begins with the measurement of a system-wide log on an idle system (labelled P(0)
in the figure). Off line, thislog isinstrumented by certain trap-insertion routines (labelled T in the figure).
These routines make use of global jobfiles (the jobfile for the k'th load pattern is labelled F(k)), which
contain information about the arrival times and execution sites of various jobs used in generating the
background workload patterns. The global jobfiles are partitioned into local jobfiles (the jobfile for site A
is labelled f(k,A)), which are then given to the job-manager processes (labelled J) at each site. Likewise,
local instrumented logs (the log for site A is labelled p(0,A)) are given to the generator processes
(labelled G), which implement a buffered transfer of data from these logs into the kernel. At precisely the
starting times of a site€’sjobs, its kernel notifies the local job manager, which initiates test jobs using the

local job-execution facilities. The resulting system-wide load patterns (labelled p(k,A) for site A) are
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Figure 7. Operation of SMALL: Collection of background-load patterns

recorded by the measurement functions of DWG. Periodically, these records are removed from the kernel

by alogger process (labelled L), which writes them out into a file. These files congtitute a system-wide

background-load pattern (the k’ th background workload pattern is labelled P(k)).

At the end of the first phase of data collection, there is one system-wide background-load pattern per

global jobfile. The second phase of data collection (Figure 8) is similar to the first, except in three

aspects: (i) the global jobfile (labelled F(j,s)) contains only one test job, j, to be run at some site s; (ii)

instead of using the load pattern of an idle system as a background load, this phase generates background

workload using the load patterns collected during the first phase (labelled P(k) in the figure); and (iii)

when the test job terminates, the logger records not only the resulting load pattern but also the completion
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time of the test job (labelled C(j k,9).

At the end of the data-collection phase, we have two kinds of records: (i) log patterns, labelled k.j_s

in Figure 8, describing the actual load conditions prevailing when job j is executed at site s under

background-load pattern k; and (ii) the completion time, labelled C(j k,s) in Figure 8, of job j when it is

executed at site s under load pattern k.
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2) Off-linelearning of load indices

Figure 9 shows a schematic of SMALL during its index-learning phase. Notice that, at any given
instant, the training algorithm simultaneously considers the load-index functions at two different sites.
The reasons for solving a ‘‘learning to compare’’ problem rather than a ‘‘learning to predict’”’ problem

were aluded to in Chapter |: essentially, the former approach prevents overtraining by stopping when the

C(j,0,0)

C(j.k,A) C(j,k,B)

Training
algorithm

New weights New weights
etwork’s Network
L oad-index L oad-index
function function
Site A SiteB
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Figure 9. Operation of SMALL: Load-index learning
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accuracy of load-index functionsis adequate for comparing alternative destinations for the same job.

Information flows for atypical learning trial are shown in Figure 9. Each tria involves a randomly
selected job (j), a randomly selected load pattern (k), and a randomly selected pair of sites (A and B).
First, the raw utilization patterns recorded earlier by DWG are smoothed using lowpass filters [78].
Smoothing helps in detection of trend; the smaller the cutoff frequency of the lowpass filter, the greater is
the degree of smoothing, and the longer is the interval to which the trend can be extrapolated. Trends are
extracted from filtered patterns by means of linear and exponential extrapolation. The former fits a
straight line to a recent window of smoothed values, and extrapolates using that line; the latter fits an
exponentialy growing/decaying function. The extracted trend information is fed into a parameterized
load-index function. The outputs of load-index functions are then compared. Based on this comparison,
the training algorithm suggests new parameters (weights) for the two functions involved. The training
algorithm uses the completion times C(j,k,A) and C(j,k,B), measured by DWG during the data-collection

phase; its goa is to drive the difference between the outputs of the two load-index functions toward the

C(j,kA)-C(j,k,B)
C(j,0,0

true relative difference, , where C(j,0,0) is the completion time of job j on a chosen

idle file server. Our configuration, shown in Figure 9, simultaneous trains multiple comparable functions;

we refer to this as the comparator configuration.

Details of the learning experiment can be found in Chapter 1V. Sufficesit to say that after repeated
trials with different jobs, sites, and load patterns, the error of comparison between different sites beginsto
converge. If this error is acceptably small, then the current set of load-index functions is selected. Other-
wise, one needs to repeat this phase with a different set of random initial parameters for the load-index

functions.



31

3) Off-linetuning of policy parameters

By off-line tuning, we mean that the decisions made by a policy are evaluated not by actually send-
ing test jobs to an operationa load-balancing system, but by simulating the application of that policy on
loading conditions and test jobs. Each loading situation is represented by the load indices of different
sites at the time of the test job’s arrival. Policy decisions are computed by applying the sender-side and
receiver-side rules shown in Figure 3. Evaluation of decisions requires information about completion
times of various test jobs under different loading conditions. All the policy-learning experiments are
planned ahead of time so that the completion times necessary for evaluating policy decisions can be
measured (ahead of time) using DWG; such measurements are carried out during the second phase of

data collection described above.

Given the large number of parameters and the possibly many values each parameter can take, an
uncontrolled search for a good parameter set for the given load-balancing policies could take an exorbi-
tant amount of time. Figure 10 shows the schematic of our policy-learning system, including information
flows between it and the scheduling system. Each policy has the form shown in Figure 3. The next section
describes how the policies are instantiated when a new job arrives. Our only concern in this section is

with the inputs and outputs of the load-balancing policy.

The inputs of aload-balancing policy are described by atest-case (Figure 10), which includes infor-
mation about the job (j) that needs to be scheduled, the background-load pattern (k) being simulated, and
the site (s) at which the job arrives. The different test-cases to be used during this second learning phase

are managed by a Test-case Manager.

Before commencing the experiment, the learning system sets al the policy parameters using the
corresponding values from a selected parameter set, p. It then uses the information contained in the test-
case to compute the load index of each site at the time of job j’sarrival. Thus, given the values of policy

parameters, as well as the values of primitive and abstract decision metrics, one can determine the
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Figure 10. Operation of SMALL: Policy learning

policy’s decision for the chosen test job. This decision involves the choice of a remote destination (r)

where the incoming job j should be executed.

Given the information contained in the test-case, and knowing the decision (r) of the policy, the per-
formance of the policy parameterized by p can be computed as follows. First, the record C(j,k,r) — the
completion time of job j at site r under load-pattern k — is consulted. Next, if the chosen destination r is
not the same as the site of arrival s, then an overhead of migration is added to the completion time. The
total represents the completion time of ajob under remote execution, including overhead. From the data
collected in the first phase, we al'so know C(j,k,s), the completion time under local execution. Using these

numbers, the speed-up achieved by parameter set p for the given testcase can be calculated.
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The Evaluator of Policy Performance (Figure 10) computes the overall performance of each param-
eter set on a population of test cases. Using information about the recent performance of different parame-
ter sets, and knowing how much time is available for learning, the Scheduler determines whether to gen-
erate new parameter sets or to continue testing from the current pool. The theory and implementation of

the Scheduler were developed by Wah, et al. [185, 186].

Our learning system not only develops new parameter sets by the popul ation-based learning process
described above, but also refines existing parameter sets after each learning trial. It does so using point-
based learning, a parameter-modification procedure that reduces the likelihood of decisions causing low

speed-ups, by suitably altering policy thresholds.

Details of the policy-learning phase are presented in Chapter V1. At the end of this phase, one can
select a (possibly new) parameter set that, with high likelihood, will have the best performance of all

parameter sets tested, on future test-cases drawn from the same population as the given pool of test-cases.

4) Application phase

With the new load-index functions and the selected policy parameters in place, the scheduling sys-
tem is now ready for application. Figure 11 shows the information flows during the application phase. At
the site of arrival (site j) of an incoming job, the sender-side rules of site j are instantiated. This figure
shows the case when aremote destination (site i) is selected by the sender-side rules of sitej. A request is
made to site i, which instantiates its receiver-side rules. If the receiver-side rules at site i succeed, then the

site of arrival (sitej) initiates ajob transfer by remotely invoking the job-execution facilities at sitei.

Implementing the application phase requires that the filtering and extrapolation facilities, as well as
the computation of the load-index functions, be made on line. Since our present experimental set-up does

not implement these functions on line, we can only simulate the application phase by table look-up, as
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illustrated in the previous subsection.

C. Summary

Table 1l summarizes the times required by different phases of SMALL, our automated system for

learning load-balancing strategies. The typical times reported in the rightmost column are based on our
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Tablell
Times required by different phases of SMALL’s operation
Event Work Required Formula for Typical time'
time needed

Down time for Recording p different background load patterns, I(p+21) 6% hours
data collection each | time unitslong
(phasel)
Down time for Measurement of completion times of n different ndpl 10 days
data collection benchmark jobs under p patterns, each | time
(phase I1) units long, on d configurationally-distinct sites
Learning times Learning to compare the completion times of N Ndpce(p+d-2) | 15hours
for load-index different checkpoints of benchmark programs,
learning (phase measured under p different load patterns, on d
) distinct sites; each comparison takes c time units

and the iterative learning procedure requires e

passes through the data.
Time for tuning Learning new parameter sets for load-balancing s'max (T, fkt) 3 hours
the parameters policies under s different delay models; many
of load- different policies are tried, but at least k of them
balancing are expected to undergo full evaluation on f
policies (phase different test-cases. Each test-case can be
V) evaluated within t time units. Each of the s

policy-learning experiment must finish within a

deadline of T time units

New sites, new

Data collection

10 days downtime

configuration, Retraining comparator networks off line 15 hours
or OS upgrade Tuning policy parameters off line 3 hours
Removal of a Tuning policy parameters off-line 3 hours
site, or new

load-balancing

software

TValues used in estimating typical timesare: n =10, p =24, d =4, | =15 minutes, N =60, ¢ =0.06 seconds,
e=6, T=15minutes, s=12, f =1,000, k =4, and t =0.2 seconds.

experience with data collection on a network of four Sun 3 workstations, and off-line learning on a Sun
Sparcstation 10, Model 20. We now explain briefly our derivation of the formulae for times required. In
phase |, first an idle load pattern needs to be measured and then p others. Since each is| time units long,
we get the formula shown. In phase I1, n jobs need to be run on d different sites under p different load pat-

terns. Once again, since each experiment takes | time units, we get the formula shown for phase 1. In
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phase 111, one needs to compare, for each checkpoint of a benchmark program, both different loading
situations at the same site and loading situations across different sites at the same time. The numbers of
such comparisons are, respectively, Np (p — 1)d and Npd (d — 1). Since each comparison takes ¢ time units,
and since learning requires e passes through the data, we obtain the formula shown for phase 1. Finally,
in phase IV, an experiment can (and often does) use up all the time available (T units) for evaluating dif-
ferent parameter sets on different test-cases; aternatively, one can stop when k different parameter sets
have been fully evaluated on f test-cases. Since population-based learning will not go through with
evaluation for poor-quality parameter sets, these k sets are likely to be good. Also, the time spent on poor
parameter sets is usualy negligible compared to the time for full evaluation of good candidates. The
entire learning experiment may need to be repeated if there is a change in the nature of either the migra-
tion overheads or the age of the load index; s different delay models are considered. Since the evaluation

of each parameter set on one test-case requirest time units, we obtain the formula shown for phase I V.

In this chapter, we have outlined our approach to the automated learning of load-balancing stra-
tegies for the distributed-system model described in Chapter |. Subsequent chapters present details of our
approach: Chapter 111 describes the implementation of DWG; Chapter IV, our algorithm for learning load
indices using comparator neural networks; and Chapter VI, our approach to tuning policy parameters
using integrated (population-based cum point-based) learning. Unlike physical-level workload generation
and load-index learning, strategy learning is a well-researched area; therefore, in Chapter V, we identify
key issues in strategy learning and classify strategy-learning tasks and techniques on the basis of these

issues, and further justify our choice of an integrated learning model.
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CHAPTER I1I.

DWG: ATOOL FOR SYNTHETIC WORKLOAD GENERATION

It is a capital mistake to theorize before one has data.

- Sir Arthur Conan Doyle

This chapter describes DWG [117], a generator of realistic and reproducible workloads. DWG
employs synthetic workload generation, a technique that uses artificial programs to mimic the resource-
utilization patterns of real workloads. DWG accurately replays system-wide load patterns recorded by it
earlier, providing an ideal setting for load-balancing experiments. Since DWG is implemented inside the
operating-system kernel, it has complete control over the utilization levels of local resources. It controls
the utilization levels of four key resources. CPU, memory, disk, and network. In order to accurately
reproduce the behavior of the process population generating the measured load, DWG gives up afraction
of its resources in response to the arrival of new jobs, and reclaims these resources when the jobs ter-
minate. Section B describes our objectives and constraints in designing an experimentation environment
for load balancing. Section C describes DWG' s architecture and Section D, its operation. Section E com-
pares different settings for DWG’s parameters, and evaluates the synthetic workloads generated using

DWG against true workloads observed in corresponding control experiments.

A. Design Goals

Our primary goal isto create an experimentation environment that will allow us evaluate aternative
load-balancing policies. In order to compare aternative policies, we need to perform several experi-
ments, each with the same background workload pattern but with a different site of execution for the fore-
ground job. (Afterall, two policies differ in their performance only when they schedule an incoming job at

different sites. No matter how many policies we need to compare, the number of possible destinations for
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an incoming job is finite and equals the number of sites in the distributed system.) Our secondary goal is
evaluate alternative policies under realistic loading conditions. In particular, we wish to be able to record
and replay workloads that arise in interactive environments: i.e., workloads that are highly dynamic and
include the resource-utilization patterns caused by a variety of asynchronous events, such as mouse and
keyboard interrupts. The problem of recording and replaying workloads, called the workload-generation

problem, is addressed in this chapter.

Test jobs and background workloads affect each other by competing for resources. For real work-
loads, such competition is resolved by a resource scheduler, which allocates resources among competing
processes. While a background load pattern is being recorded, the process population generating that 1oad
has complete control over a site’'s resources. If a test job were introduced on top of such a workload, it
would take away some resources from the background process population, thus atering its resource-
utilization pattern. Therefore, when test jobs are introduced on top of generated workloads, their impact
on the workload generator needs to be carefully considered. Such an interaction amounts to a feedback
path from the experiment to the experimentation environment; it is an important characteristic of the

workload-generation problem considered in this chapter.

Since the performance of the test job under a given background workload depends solely on the
resources utilized by that workload, it is natural to represent workloads by their resource-utilization pat-
terns. Thisis called the physical-level view of aworkload [59]. However, in order to model the feedback
from a test job to the generated workload, one needs to adopt a process-level view. Representing asyn-
chronous events such as keyboard interrupts and context switches at the process level entails (i) recording
complete resource-utilization information for alarge number of processes; (ii) modelling all the complex
interactions between processes and interrupt-handling routines of the operating system; and (iii) precisely
recording the timings of interrupts and context switches, and replaying them at the same fine grain.
Obtaining and regenerating such process-level workloads is prohibitively expensive because it entails

costly hardware instrumentation for collecting information and high-resolution timers for driving the
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generator.

It follows from the above that there is an incompatibility between the grain of the resource-
scheduler and the grain at which workload needs to be recorded and replayed. The constraints of our
problem dictate that we represent and regenerate workloads at the physical level, without recreating the
entire process population. In this case, we need to artificially model the process-level interactions
between the recorded load and test jobs, and use our model to (dynamically) adjust the amount of gen-

erated load while there are active foreground test jobs on top of the replayed workload.

B. Previous Work

1) Workload generation without feedback

The design of a workload generator depends on the purpose it is used for. There are several prob-
lems in performance evaluation of computer systems where there is no feedback from the mechanism or
policy being evaluated to the experimentation environment. For example, in evaluating alternative imple-
mentations of file systems, it can be assumed that the file-access patterns of a user are implementation-
independent [23,44,93]. Another example is in the evaluation and refinement of virtual-memory ago-
rithms using traces of memory references. Once again, the memory-access patterns of programs can be
assumed to be independent of (say) the particular cache-coherence protocol being evaluated. Figure 12
shows the schematic of aworkload generator without feedback. In this case, the workload generated does
not depend upon the mechanism being measured or modeled. Most existing synthetic workload genera-
tors follow this paradigm [48, 63, 74,98, 139, 168]. While adequate for their specific applications, such
generators are not appropriate for our workload-generation problem because of the feedback between test

jobs and background workload.
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Figure 12. Workload generation without feedback

2) Workload generation with feedback

The traditional approach to developing experimentation environments for load balancing uses a
stream of real user commands to create the workload: earlier jobs form the background workload for later
jobs[19,47,204]. Since this approach generates and represents workloads at the process level, it isinca
pable of modelling asynchronous events, such as arrival of electronic mail and mouse interrupts, on
account of its large granularity. Since foreground-background interactions are handled by the resource

scheduler (Figure 13), no adjustment in generated load is required. The key problem with this approach is
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Figure 13. Workload generation with feedback using real workloads
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that real workloads cannot be precisely represented using only user-level programs and commands.

One possible way to combine the expressiveness of physical-level workloads with the correct
scheduling behavior of process-level workloads is to model the physical-level behavior of all the
processes, including system processes. This amounts to recreating an entire process population. (See Fig-
ure 14.) As already discussed, the quantity and the rate of information necessary for reproducing such a
workload precludes feasible implementation in software alone. Even if hardware support for measurement

isavailable, it is non-trivial to model alarge process population with complex interactions.

Our approach (shown in Figure 15) is to represent and regenerate workloads only at the physical
level. In order to simulate foreground-background interactions, we consider a simplified model of the
resource scheduler, and collect information during measurement and generation to drive this model. The
simplified model requires that process counts be recorded with the recorded load, and that the generator

keep track of the number of test jobs introduced on top of the workload being replayed. Using these
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Figure 14. Workload generation with feedback using synthetic processes
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Figure 15. Workload generation with feedback using dynamic doctoring

counts, the model provides a way to dynamically alter generated loads in response to initiation or termi-
nation of test jobs; formulae for computing load reductions are encoded in doctoring rules, which make
the workload generator behave as though it were under the control of the resource scheduler even when it

is not. The architecture and operation of our generator are described next.

C. Architecture of DWG: A Dynamic Workload Generator

Figure 16 shows the basic architecture of DWG. The components of DWG include processes
(shown as unshaded dark boxes in the figure), callable kernel routines (shown as shaded dark boxes), and
certain buffers and files (shown as boxes with rounded corners). These include mechanisms for (i) meas-
urement and generation (box labelled K); (ii) data transfer in and out of the kernel (boxes labelled L and
G); (iii) asynchronous event management using traps (boxes labelled H and J); and (iv) dynamic determi-
nation of generated load levels (box labelled D). These mechanisms are organized into layers of software.

The lowest of these layers (shown second from right in the figure) comprises functions implemented
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Figure 16. Architectural description of DWG

inside the operating-system kernel. The next higher layer comprises user-level processes that control the
kernel-level functions. The topmost layer (shown leftmost in the figure) comprises off-line mechanisms

for controlling the initiation and termination of foreground jobs.

1) Functionsimplemented inside the kernel

The core of DWG consists of its measurement and generation routines (boxes labelled K in Figure
16); these, respectively, measure and control the utilization levels of resources, such as CPU, memory,
disk, and network. At every clock interrupt, the measurement routines estimate the current utilization as
follows. If the CPU was busy (under the control of a user process) when the clock interrupted, then it is
assumed to have been busy for ¢ percent of the time since last interrupt, where ¢ is a tunable parameter of

DWG. For the memory, the number of free pages is recorded. For the disk, the number of blocks



transferred since the previous interrupt and, for the network, the number of packets received or transmit-
ted since the previous interrupt, are recorded. Also recorded is the number of user processes contributing

to the measured load at any given time.

At every clock interrupt, the generation routines determine how much workload needs to be gen-
erated for each resource. For the CPU, the amount of work to be done is expressed as a fraction of the
interval between successive interrupts. For the memory resource, the work to be done is expressed as the
number of pages to be occupied until the next interrupt. For the disk and network resources, the number

of disk transfers and the number of network packets, respectively, are computed.

When there are foreground processes, the computation of generated load employs certain rules,
known as dynamic doctoring rules (box labelled D in Figure 16), in order to compensate for foreground-
background interactions. The amount of reduction caused by these rules depends upon the relative sizes
of the foreground and background process populations. The trap-handling routines of DWG keep track of
the foreground population size. (The size of the foreground process population equals the number of test
jobs introduced on top of the background workload being replayed.) The size of the background process

population is already recorded in the log being replayed.

While CPU and memory loads are generated inside the kernel, requests for generation of disk and
network traffic are passed on to external processes. CPU load is generated by repeatedly executing a seg-
ment of pure computational code. Memory load is generated by taking pages out of the pool of free
virtual-memory pages, thereby making them unavailable to user processes. The externa process responsi-
ble for generating disk and network traffic does so by, respectively, performing unbuffered output to afile
and broadcasting synthetic packets over the local-area network. CPU and memory loads are generated at

each site; disk traffic, only at diskful sites; and network traffic, only at a selected site on the network.

The measurement and generation routines switch buffers upon reaching the end of the current

buffer. (See Figure 16.) While switching buffers, they signal their respective external processes (the
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logger process, labelled L in the figure, and the generator process, labelled G) in order to initiate data
transfer. While the kernel is busy with the other buffers, the external processes load/unload the idle
buffers. Buffer sizes are chosen large enough that data transfers happen only a few times a minute, and
yet small enough that the memory overhead of synthetic workload generation is at worst two or three
pages. (Thisis small overhead compared to the hundreds of pages occupied by typical operating-system

kernels.)

2) Functions implemented at the process level

DWG requires three processes at each site: (i) the logging process (labelled L in Figure 16), which
transfers measurements out of the kernel into the log file; (ii) the generating process (labelled G), which
transfers data from past logs (possibly instrumented with traps) into the kernel; and (iii) the job manager
(labelled J), which initiates and terminates test jobs upon receiving signals from the trap-handling rou-
tines (labelled H) of the kernel, as well as measures the completion time of test jobs. The interface

between these processes and the kernel-based functions is via a system call.

In addition to the functions described above, the generating processis signalled by the kernel when
there is some disk or network traffic to be generated. It determines how much traffic to generate and does
the necessary input/output. The logging and generating processes are also responsible for starting and

stopping measurement and generation, respectively, inside the kernel.

In DWG, it is possible to synchronize measurement and generation so that measurement begins and
ends exactly when generation does. This capability allows us to compare actual and generated loads, as
explained in Section E, and allows us to trandlate the time of occurrence of an experimental event into the
offsets of the corresponding codeword in a log file. Figure 17 shows the typical format of a DWG log,
including the formats for encoding resource-utilization information in codewords, and for managing asyn-
chronous events using trap commands. (Traps are data bytes in a special format.) Upon hitting the trap

command, the trap-handling functions of DWG (labelled H in Figure 16) queue up the trapped requests,
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Figure 17. Format of DWG log files

and signal the local job-manager process (labelled J in Figure 16) to carry out the appropriate requests. If
the trap command entails a change in the size of the foreground process population, then these routines

also alter the process-population counts appropriately.
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3) Off-line functions of DWG

These components come into play after a system-wide log has been measured but before it can be
replayed. Aninitial log contains no traps. The trap-insertion routines (labelled T in Figure 16) insert traps
a suitable offsets into each log file; each log is instrumented so that test processes can be started or

stopped at precise moments relative to the start of the experiment.

Traps allow the dynamic doctoring routines (labelled D in Figure 16) to maintain a count of
processes that exist during generation but did not exist at the time of measurement. The presence of such
processes warrants a reduction in generated load; the amount of reduction depends upon the number of
foreground processes. Since that number changes only when either a new process starts or an old process
finishes, traps can trigger an update of process counts inside the generator precisely when the size of the
competing process population changes. Thus, before measured data are given back to the kernel for
replay, traps are inserted at the starting and (if known) stopping points of jobs. If the stopping point of a

job is unknown, then the job manager notifies the kernel dynamically when such ajob stops.

In determining where to insert traps in the pre-recorded system-wide logs, the trap-insertion routines
use global jobfiles. These contain information about: (i) the site at which a job will be executed; (ii) start-
ing time of the job; (iii) stopping time of the job, if known; (otherwise, upon noticing job termination, the
job manager makes a system call that has exactly the same effect as a job-stop trap;) and (iv) the com-
mand and arguments needed for starting the job. The trap-insertion routines associate a unique global
identifier with each job, and partition the global jobfiles into local jobfiles, which are passed on by the

generating process to the individual job managers at each site.

D. Operation of DWG

The overal operation of DWG can be described in three phases: measurement, trap insertion, and

generation. In the first phase, utilization levels of four key resources — CPU, memory, disk, and network
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— arerecorded at each clock interrupt. (In our implementation, there are 50 interrupts per second.) In the
second phase, which is performed off-line, provisions are made for running test jobs on top of the
recorded load. This is done by inserting traps, or data items in a special format, at appropriate points in
the recorded data. During the generation phase, at each clock interrupt, DWG dynamically determines
the amount of load to generate for each resource. It does so either by reading the instrumented log or by
assessing the work left pending from previous interrupts. It then generates the requisite load by issuing
synthetic resource-usage instructions. While reading the instrumented log, if DWG encounters a trap,
then it decodes the trap and carries out the corresponding functions — such as updating process-
population counts, and signalling the local job manager to perform appropriate job-control functions.
When atest job started by the job manager finishes, the job manager records its completion time. Thus,
background loads are replayed, test jobs introduced at precise instants, and their completion time meas-
ured under controlled loading conditions. The rest of this section describes the three phases of DWG's

operation.

1) Workload measurement

The measur e() routine of the kernel is periodically invoked by a clock interrupt. It samples the
system’s state and records (i) whether or not the CPU is busy; (ii) the number of free memory pages; (iii)
the number of disk transfers since the previous interrupt; and (iv) the number of packets active on the net-
work since the previous interrupt. Also recorded with each data item are the number of local and global
processes generating the current load. Since the interrupts can occur several tens of times per second, the
measured data can grow at a phenomenal rate. We keep such growth in check through efficient coding of
information and periodic removal of data from the kernel by an external process. Similarly, during gen-
eration, information needs to be transferred into the kernel at the rate of afew hundred bytes per second.
In order to keep the number of data transfers to a minimum, buffer pairs are allocated inside the kernel.

Data transfer can proceed using the idle buffer while the kernel is busy reading/writing the other buffer.
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Buffer sizes are chosen large enough that there are at most only afew transfers per minute.

2) Trapinsertion

The trap-insertion routines essentially perform an event-driven smulation, using the offset into the
logged data as simulated time. The events in jobfiles are sorted, first, by their starting times, and, second,
by their stopping times (if known). The intuition is that stop events (if any) for the same job must neces-
sarily follow the corresponding start events. The trap-insertion routines maintain two event-lists headed
by, respectively, the next job to start, and the next job to stop (if its stopping time is non-zero). At every
instant, lists of ‘fired’ events are computed. Every event resultsin at least one trap at the associated job’s
site of execution, and possibly others at sites generating disk and network traffic. This phase ends with the
creation of instrumented logs, one per site; the traps inserted into these logs contain instructions for the

kernel, which executes those instructions upon hitting these traps during the generation phase.

3) Generation

The processes generating the real workload are subject to scheduling. In UNIX and related operat-
ing systems [11], the scheduler maintains queues of ready-to-run processes, each queue corresponding to
apriority level. It allocates resources to these processes in a round-robin fashion within each queue, and
in order of priority among the queues. Processes having low priority can be preempted by the ones hav-
ing higher priory. Priorties are recomputed periodically, thus causing processes to move between gqueues.
In contrast, the generating processis not subject to scheduling; it behaves like a high-priority real process.
If the generator were to always reproduce the measured load exactly, test jobs introduced into the system
would encounter greater delays under a generated load than under the corresponding real workload.
Therefore, synthetic workload amounts read from the log file need to be adjusted (or ‘doctored’) dynami-

cally in order to have the same effect as real workloads.
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Ideally, the generator would need to implement the entire queueing discipline in order to emulate
the true behavior of the recorded load in the presence of an additional process. If the starting and stopping
times of all test jobs were known ahead of time, such emulation could possibly be done off-line in a
fashion similar to the trap-insertion process. However, stopping times of test jobs are usually unknown,
and are, in fact, load-dependent. Therefore, an ideal generator would need to implement the process
scheduler’s queueing discipline on-line! That would be prohibitively expensive computationally. As a
compromise, DWG makes certain simplifying assumptions about the scheduler’s queueing discipline;
these assumptions allow it to compute the atered behaviors dynamically without incurring too much
computational overhead. This component of our generator, containing rules for atering the generated
load in the presence of competing test jobs, constitutes its doctoring rules. These rules, and the assump-

tions on which they are based, are described below.

Rule 1: Reduction in generated load due to foreground processes. We assume, first, that all
the processes (measured and new) have the same priority and that resources are allocated to them in a
round-robin fashion; and, second, that the amounts of different resources consumed by a background pro-
cess are reduced by the same proportion when it faces competition from one or more foreground
processes. For example, a 15% reduction in CPU usage warrants a 15% reduction in memory occupancy,
and so on. Also, we model CPU and memory as constrained resources whose usage levels are bounded
by, respectively, 100% busy and 100% occupied. In practice, all resources have physical limits on utili-
zation levels. The logical limits on disk and network appear to be infinite because requests for their use
can be buffered in memory space; such buffers do not exist for the CPU and memory resources. There-
fore, CPU and memory usage need to be explicitly spread out (see Figure 18) over time by buffering

unfulfilled requests as pending work in the generator.

We assume that the load levels on private resources (CPU and memory) are affected only by the
local process population, and those on shared resources (disk and network), by the system-wide process

population. (For shared-memory systems, memory would also be treated like a shared resource.) The
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Generated load without test process Generated load with test process

Test process under no load Test process under the generated load
Figure 18. The need for dynamic doctoring of generated |oad

Consider a recorded load pattern shown to the top left of the figure, and a test job whose resource-
utilization pattern is shown to the bottom left. The load patterns on the right illustrate the **smearing’’
effect: because of the foreground-background interaction, both the background and the foreground loads
take longer to complete.

treatment of disk as a shared resource is specific to the client-server model of distributed file systems; in
other models, disk may be treated as a private resource. Under these assumptions, the reduction in gen-
erated load can be computed as a ratio between the process-population sizes at the times of measurement
and generation, respectively. Let b be the number of background processes, as recorded in the log being
replayed; and f, the number of foreground processes, as maintained by the trap-handling routines of

DWG. Then, the percentage of the needs can be satisfied at each clock interrupt is at most

_100b
b+f"
Further, the visible capacities of constrained resources (CPU and memory) are reduced to p, percent of

P1 (39)

their maximum values.

Rule 2: Principle of conservation of work. Plain reduction in load levels is insufficient for
reproducing the true behavior of the measured process population. The processes constituting that popula-

tion, when deprived of the full use of resources, would have taken longer to finish. Therefore, whenever
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the generator fails to achieve the recordeded load levels, either due to competing processes or due to
reduced resource capacities, it should carry over the difference between recorded and generated loads as

pending work for subsequent cycles.

When a foreground process remains active for a few consecutive cycles of generation, the pressure
of pending work may overwhelm the generator to such an extent that, instead of getting new work from
the log, it will be forced to spend one or more cycles just getting rid of pending work. This happens when
the pending loads on constrained resources (CPU and memory) exceed the corresponding resource capa
cities. DWG is said to be ‘on hold” when in this mode. Holding allows us to ow down the replay of a
recorded log; the rate of this slowdown is governed by the first rule. When on hold, the generator deter-
mines the maximally constrained resource. It then computes, with respect to that resource, the fraction of
pending work that can be accommodated in the current generation interval. The same fraction of pending

loads on other resources is then added to their respective load levels.

During generation, priority is given to pending work. For constrained resources, the rest of the
(possibly reduced) capacity is allocated to (possibly reduced) background workload from the current
interval. The combination of new and pending workloads for a resource may exceed its visible capacity;

when that happens, the overflow is simply added to the pending work for future cycles.

E. Evaluation, Parameterization and Tuning of Generation Mechanisms

The generation mechanisms described in the previous section alow us to record and replay work-
loads generated by a population of test jobs, and replace the background process populations used in trad-
itional experiments with synthetic workloads. However, we still need to assess how well the generated
patterns approximate those caused by real workloads. In order to achieve high-quality generation, we
need to first parameterize the generation mechanisms, then experiment with many different parameter

sets, and finally select the best one for the data-collection phase of SMALL. The following subsections
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address evaluation, parameterization, and tuning of genertion mechanisms.

1) Evaluation of generated |oads

In order to evaluate DWG, we designed an experiment to compare the workloads generated by it
against workloads generated by real processes. In this experiment, we use certain test jobs that have been
instrumented to produce checkpoints when they reach certain preset points in their program codes. The
measurement functionality and the system-call interface of DWG were expanded to include mechanisms
for recording the most recent checkpoint of every active job, be it in the foreground or the background.
An overview of our experiment is shown in Figure 19. Each experiment involves one pair of jobs, and

proceeds asfollows. First, the two jobs are executed in the foreground on top of an idle background load;

20 ms (interval between interrupts of real-time clock)
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Figure 19. Measuring the accuracy of generated loads

Suppose that we perform a control experiment in which two jobs, A and B, are run in the foreground, and
that the checkpoints of the two jobs occur as shown on the top two time lines. (Each of the uniformly
spaced ticks on a time line shows the most recent checkpoint of the corresponding job.) Next, suppose
that another experiment is performed with the load pattern for job A in the background and with job B in
the foreground, and that the checkpoints of the two jobs occur as shown on the bottom two time lines.
Errors can be computed for individual checkpoints: e.g., for checkpoint 5 of job B, the signed error is +3
(it occurs 3 ticks too late with respect to the control experiment). Likewise, errors can be computed for
segments of each job: e.g., for job B, the segment that begins at checkpoint 6 and ends at checkpoint 9
takes 5 clock intervals to complete in the control experiment, but only 3 clock intervals in the generation
experiment.



at each clock interrupt, the most recent checkpoint of each job is recorded in the resulting log. Thisis our
control experiment. Next, only the first of these jobs is executed on top of an idle load and the resulting
load pattern (including checkpoint timings), recorded. In the final step, the recorded log of the first job is
replayed using DWG while the second job is run in the foreground. Once again, the resulting log (now
including the checkpoint times of both the foreground and the background jobs) is recorded by the meas-
urement routines. Thisis our generation experiment. Asillustrated in Figure 19, the quality of generation
can be assessed using the errors between offsets of corresponding checkpoints in the logs of control and

generation experiments.

Suppose that checkpoints ¢; and ¢; of a job occur at times t; and t;, respectively, in the control
experiment. Further suppose that the same checkpoints occur at times T; and T; in the generation experi-
ment. Then, the error g of the ith checkpoint is given by

& =T —t; (3b)
and the error for the job segment contained between the ith and jth checkpoints, by

&;j =(Tj T —(f —t). (30)
Both signed and absolute values of errors were considered.

In our experiments, we used seven different benchmark jobs; these are described in Table I11. They

include three jobs of UNIX sort utility with different file sizes and memory requirements, two jobs of

Tablelll
Benchmark programs used in evaluation and tuning of DWG

Name Description

Sortl Sorting asmall file by multiple fields with unlimited memory

Sort2 Sorting alarge file by asingle field with unlimited memory

Sort3 Sorting asmall file by asingle field with limited memory

UCl1 Uncompressing a compressed file (#1)

ucC2 Uncompressing a compressed file (#2)
W.TF The Perfect Club benchmark FLO52Q — solving Euler equations

W.TI The Perfect Club benchmark TRFD — two-electron integral transformation
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the UNIX unconpress program, and two Perfect Club benchmarks [22]. Since each experiment
involves two jobs, we made sure that the selected combinations represented a variety of foreground-
background combinations. We allotted fifteen minutes for each experiment. The data for the benchmark
programs were chosen such that idle completion times would be close to five minutes on the sowest site.
Each benchmark was instrumented to produce checkpoints at certain fixed points in their execution. For
this purpose, additional functionality was added to the kernel-based components of DWG; at each check-
point, the benchmark programs incremented a checkpoint identifier and notified DWG of the
checkpoint’s occurrence by making a system call. Each benchmark program was instrumented to produce
approximately 200 checkpoints at almost regular intervals during its execution. (While we inserted check-
points manually, certain automated utilities are now available that can be suitably modified for automatic
insertion of checkpoints [109]. ) Each benchmark program was also assigned a unique job identifier so

that its checkpoints could be distinguished from those of another (concurrently active) program.

2) Parameterization of generation mechanisms

DWG'’s behavior is significantly affected by two components: the formula for computing p4 in the
first doctoring rule (Equation 3a); and c, the percentage of clock interval consumed by the CPU generator
when the recorded log shows that the CPU was busy in that interval. We can parameterize the doctoring

rule as:

_ 100-b
b+fx’

where the parameter x controls the relative importance of processes generating the foreground load with

P1

respect to the processes that generated the recorded load that is now being replayed in the background.
Table 1V shows nine different parameter sets for DWG. In this table, both x and ¢ are expressed as per-
centages. For example, x =100 means that foreground and background processes are given equal weight;
and x =110, that foreground processes are given more weight than background processes. The latter may

be appropriate when the count of background processes includes some inactive (operating system)
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TablelV
Parameter sets for doctoring rules

SetNo. | x || ¢
1 100 | 80
2 9 | 80
3 110 | 90
4 100 | 90
5 95 | 90
6 110 | 80
7 110 | 70
8 100 | 70
9 95 | 70

processes. Continuing the example, ¢ =70 means that CPU-load generation can use up to 70% of the

clock interval.

Other parameter sets are possible. However, since we do not have automated mechanisms for
parameter selection at the current time, we have chosen to limit our attention to the parameter sets
described in Table IV. Our goal is to first evaluate each of these parameter sets using the experiments
described in the previous section, and then select the best one among them for the data-collection phase

of SMALL.

3) Results of comparing different parameter sets

Each of the parameter sets described in Section 111.E.2 was evaluated using the method described in
Section I11.E.1. We performed seventeen experiments involving different combinations of foreground and

background jobs. For each experiment, and for each job, we computed the following statistics (also see

Equation 3b):
c (6-&-1)
E=3 o (3
i=1

and
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c le—e-1|
EU:Z C 1] (36)
i=1

where c is the total number of checkpoints of the foreground job. Eg isthe average signed delay incurred
by a checkpoint in the generation experiment, relative to the control experiment. Positive values of Eg
indicate that, on the average, checkpoints in generation experiment are delayed with respect to their ‘true’
timings from the control experiment, and negative values, that they occur too soon in the generation
experiment. Since positive and negative errors can sometimes cancel out, it is necessary to consider the
absolute delays as well; E, is the average (unsigned) error between the times at which the same check-
point occurs in the generation and control experiments. We refer to E5 and E;, as, respectively, the signed
and the unsigned errors due to generation. These statistics were computed for both jobs of each evaluation
experiment. Tables V and VI show, respectively, the signed and unsigned errors for seventeen different
evaluation experiments using the benchmarks described in the previous subsection. Each column presents
the errors for one parameter set from Table IV. Two values are reported for each experiment: the top
value is the error for the background job, and the bottom value, the corresponding error for the foreground
job. Errors are in units of clock intervals, each of which spans 1/50 seconds. Parameter sets 3, 4, and 5
have unacceptable performance on experiments 9, 11, and 12, especially in terms of absolute errors
(Table VI1). Parameter sets 1 and 7 appear to have no unacceptably large errors, but there is no clear

winner.

Because of the way benchmarks are instrumented, each pair of checkpoints describes a program
segment. With preemptive load-balancing policies (Chapter 1), both complete jobs and program segments
can be scheduled. The size of the scheduled segments depends upon the preemption interval of the policy:
the longer the preemption interval, the longer is the maximum size of a scheduled program segment.
Since it is expected that the generator will incur larger errors for longer jobs, we wish to study the rela-
tionship between errors and preemption intervals. To this end, let us consider all pairs of checkpointsin
the foreground job of each experiment, and for the program segment between the ith and jth checkpoints,

let us create a data-pair <l;;,&;>, where lj; =(t; —t;) represents the true running time of that segment, and
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TableV
Signed errors due to generation for different parameter sets
Parameter Set # -> 1 2 3 4 5 6 8 9

Experiment #1 -147| -156 41| -147| -153 -7.0 55| -147| -157
BG=Sort1 FG=UC1 89| -65 9.2 43| 39| 49| 8| -91| -101
Experiment #2 -16.6| -14.9 21 6.1 -6.8 12.9 1311 -16.6 -17.1
BG=Sortl FG=W.TF -138| -115 7.1 6.6 6.6 12.9 141 -138 | -139

Experiment #3 -11.8| -101 6.2 4.4 5.1 -8.0 82| -11.9 -12.3
BG=Sort1 FG=Sort3 -2.0 0.5 13.4 125 12.2 -14 2.3 21| -06
Experiment #4 7.8 -85 -0.2 7.9 -84 53 52 83| -89
BG=Sort2 FG=UC2 0.2 95 27.4 206| 204 -14 27 28| -19.7
Experiment #5 24 32 11.4 39 35 5.2 5.6 2.1 2.3
BG=Sort2 FG=W.T!I 32 55 15.8 16.5 16.7 2.0 2.0 33| 22
Experiment #6 74 -5.3 33 -4.0 -4.6 -A7 -A7 74| 77
BG=Sort2 FG=Sort3 -13 2.2 145 11.4 1.1 -14 2.0 -1.2 -15
Experiment #7 -4.0 -4.4 14 -4.0 -4.2 01 0.6 40| -45
BG=Sort3 FG=UC1 -10 12| 148| 100| 103 2.0 19 11| -15
Experiment #38 1.8 14 7.1 1.8 15 35 39 1.6 13
BG=Sort3 FG=W.TF -4.8 -14 14.8 185 16.1 -5.6 5.3 -59| -58
Experiment #9 -36 -4.0 1.7 -35 37 0.7 11 36| 22
BG=Sort3 FG=Sort1 -2.0 2.4 20.7 15.6 18.8 6.9 6.0 0.2 2.1
Experiment #10 6.9 46 1.8 6.9 5.2 12.5 12.6 6.9 41
BG=UC2FG=W.TF 13 10.9 23.0 23.2 22.3 0.6 -0.2 17 -0.0
Experiment #11 75 -9.8 4.0 7.4 9.1 11 2.7 74| -98
BG=UC2 FG=Sort1 2.3 10.3 24.3 20.7 19.4 11.1 8.0 6.0 39
Experiment #12 -164| -18.0 44| -169| -182 -8.6 58| -138| -19.7
BG=UC2 FG=Sort2 -0.8 5.0 14.8 12.1 11.6 36 2.8 1.3 2.1
Experiment #13 -0.2 24 11.1 -0.1 -1.8 8.2 9.6 -0.1 29
BG=UC2 FG=Sort3 5.1 7.8 15.1 9.1 119 5.1 42 47 4.0
Experiment #14 -108| -108 44| -108| -108 6.2 53| -108| -108
BG=W.TI FG=UC1 7.2 -6.7 10.1 5.4 5.2 -36 -35 73| -67
Experiment #15 -89 -8.8 25 -89 -9.0 -4.4 -33 -8.8 9.0
BG=W.T| FG=Sort1 -1.0 -15 21.1 16.2 17.8 48 5.0 2.0 0.8
Experiment #16 -101| -101 -33|  -101 -95 -3.0 -25 72| -68
BG=W.T| FG=Sort2 22 33 18.1 143 14.1 5.0 4.1 37 4.7
Experiment #17 -6.6 -6.6 -0.2 -6.6 -6.6 21 -11 66| -66
BG=W.TI FG=Sort3 -0.8 -0.9 13.6 12.7 12.3 -0.3 -0.6 07| -06




59

Table VI
Unsigned errors due to generation for different parameter sets
Parameter Set # -> 1 2 3 4 5 6 8 9
Experiment #1 15.9 16.6 11.9 15.9 16.5 12.0 11.8 15.9 16.8
BG=Sort1 FG=UC1 240| 280| 418| a39| aa1| 236 22| 238| 243
Experiment #2 21.8 19.6 23.0 215 21.2 25.1 26.1 21.7 21.2
BG=Sortl FG=W.TF 16.0 154 15.0 145 142 15.0 16.1 15.8 16.0
Experiment #3 21.1 23.8 27.1 28.2 28.2 16.3 15.0 21.0 21.9
BG=Sortl FG=Sort3 12.9 14.4 17.3 20.9 20.2 134 13.1 13.3 13.3
Experiment #4 17.9 18.1 16.5 18.0 18.1 13.1 12.6 17.4 18.4
BG=Sort2 FG=UC2 313 40.0 515 56.7 57.0 27.9 27.4 28.3 29.5
Experiment #5 9.2 7.7 13.3 8.2 7.9 13.7 145 9.3 8.1
BG=Sort2 FG=W.T]I 8.8 15.2 16.8 17.2 18.7 8.0 9.9 9.7 75
Experiment #6 14.7 17.3 18.0 17.6 17.8 12.7 13.4 14.7 15.4
BG=Sort2 FG=Sort3 16.0 17.3 24.0 26.4 26.9 15.9 15.3 15.7 15.8
Experiment #7 74 75 6.8 74 75 6.7 6.6 74 75
BG=Sort3 FG=UC1 215| 255| 436 456 465| 190| 179| 212| 208
Experiment #8 6.6 6.5 95 6.6 6.6 9.7 10.3 6.8 6.5
BG=Sort3 FG=W.TF 10.7 17.3 17.1 21.4 19.2 115 10.8 115 11.3
Experiment #9 95 95 10.2 9.6 9.6 10.3 10.1 95 10.7
BG=Sort3 FG=Sort1 26.8 342 62.0 57.6 70.4 32.8 305 305 321
Experiment #10 105 9.3 194 10.6 9.6 18.3 20.2 10.6 9.0
BG=UC2FG=W.TF 17.0 21.8 26.4 28.2 29.2 16.9 16.9 17.2 16.8
Experiment #11 16.3 16.6 18.1 16.2 16.6 17.3 17.6 16.3 16.9
BG=UC2 FG=Sort1 405 57.9 71.2 80.7 79.7 470 402 483 45.9
Experiment #12 26.4 28.0 28.6 26.4 27.0 26.8 275 28.7 27.0
BG=UC2 FG=Sort2 34.6 433 545 61.6 62.5 36.7 328 36.81 30.1
Experiment #13 9.7 9.9 14.0 9.8 9.8 12.2 13.1 9.7 10.0
BG=UC2 FG=Sort3 18.4 24.3 29.1 22.0 315 16.7 15.9 17.9 185
Experiment #14 11.3 11.3 5.1 11.3 11.3 6.8 5.9 113 11.3
BG=W.T| FG=UC1 16.8 17.2 39.1 409| 416 15.2 13.9 16.3 171
Experiment #15 9.8 9.7 4.4 9.8 9.9 5.9 5.0 9.7 9.9
BG=W.T| FG=Sort1 14.2 15.3 452 49.7 53.8 17.4 15.3 20.5 185
Experiment #16 10.5 105 4.7 105 9.9 44 49 7.6 7.2
BG=W.T| EG=Sort2 11.0 12.6 32.0 34.1 332 11.7 9.3 12.1 12.6
Experiment #17 7.0 7.0 30 7.0 7.0 3.2 31 6.9 7.0
BG=W.T| FG=Sort3 7.3 7.4 14.3 16.7 155 75 7.3 7.3 7.1
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& represents the net delay in the execution of that segment due to generation (Equation 3c).

Considering that each job produces close to 200 checkpoints during its execution, the information
about al pairs of checkpoints is too voluminous to be meaningfully visualized; therefore, we group dif-
ferent data pairs into frequency classes. Let us consider a resolution of 12 seconds along the I-axis, and 4
seconds along the e-axis. For notational convenience, let us refer to each frequency class as <E,L>,
where both E and L denote ranges. E represents a 4-second range along the e-axis, and L, a 12-second
range along the I-axis. Let fE denote the number of data points whose | and e values lie within these
ranges, i.e.,

fk = |{<l,e> suchthat| OL ande OE}|. (3f)
Further, let R(E) denote a super-range formed by including all the ranges to the left of (and including) E
on the e-axis. The, we can compute the cumulative probability of error:

fReE)
S’ (39)
E

PE =

PE represents the probability that jobs whose length lies inside the range L will incur an error that lies

either inside or to the left of the range E.

Figure 20 shows contour plots of pk in the el space. Each contour connects points with equa