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ABSTRACT

With the continuing growth of VLSI technology, special-purpose parallel processors have

become a promising approach in the quest for high performance. Fine-grained processor

arrays have become popular as they are suitable for solving problems with a high degree

of parallelism, and can be inexpensively built using custom designs or commercially avail-

able �eld programmable gate arrays (FPGA). Such specialized designs are often required

in portable computing and communication systems with real-time constraints, as software-

controlled processors often fail to provide the necessary throughput. This thesis addresses

many issues in designing such application-speci�c systems built with �ne-grained processor

arrays for regular recursive uniform dependence algorithms. A uniform dependence algo-

rithm consists of a set of indexed computations and a set of uniform dependence vectors

which are independent of the indices of computations. Many important applications in

signal/image processing, communications, and scienti�c computing can be formulated as

uniform dependence algorithms.

The �rst part of this thesis addresses the problem of designing algorithm-speci�c processor

arrays. A systematic parameter-based method, called the General Parameter Method (GP-

M), to design optimal, lower-dimensional processor arrays for uniform dependence algorithms

has been developed. The GPM can be used to derive optimal arrays for any user-speci�ed

objective expressed in terms of the parameters. The proposed approach employs an e�cient

search technique to explore the design space and arrive at the optimal designs. Equivalence

between the parameter and dependence-based methods [1, 2, 3] can be used to �nd optimal
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designs in the dependence-based approaches. The GPM has also been extended to derive op-

timal two-level pipelined algorithm-speci�c processor arrays. Such two-level pipelined arrays

can be clocked at higher rates than can nonpipelined designs for real-time applications.

The second part of this thesis presents a parallel VLSI architecture for a general-purpose

coprocessor for uniform dependence algorithms. The architecture consists of a linear array

of processors and a linear chain of bu�er memories organized as FIFO queues to store the

bu�ered data. Such an architecture is advantageous from the point of view of scalability and

wafer-level integration. A distinguishing feature is the assumption of a limited-bandwidth

interface to external memory modules for accessing the data. Such an assumption allows the

coprocessor to be integrated easily into existing systems. E�cient techniques to partition

the dependence graph into blocks, sequence the blocks through the bu�er memory to reduce

the number of data accesses to main memory, and map the blocks using GPM have been

developed. An important result obtained is the square-root relationship between clock-

rate reduction and area of the coprocessor under �xed main-memory bandwidth. From the

square-root relationship, it can found that the system yield improves with the area of the

coprocessor when chip yield decreases as the inverse square of the clock frequency. Results

on matrix-product and transitive-closure applications indicate that the coprocessor can be

used to deliver higher speedup or lower clock rate than a reference one-processor design.

Thus, the coprocessor can be used as a general-purpose back-end accelerator for loop-based

matrix algorithms.
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1. INTRODUCTION

In the last decade, the rapid development of VLSI computing techniques has had a signi-

�cant impact on the development of novel computer architectures. One class of architectures,

the so-called systolic arrays, �rst introduced by Kung [8, 9], has gained popularity because

of its ability to exploit massive parallelism and pipelining to achieve high performance.

Informally, a systolic system can be envisaged as an array of synchronized processors (or

processing-elements, abbreviated as PEs) which process data in parallel by passing them

from PE to PE in a regular, rhythmic fashion. Systolic arrays have balanced, uniform,

grid-like architectures of special PEs that process data like an n-dimensional pipeline. In

physiology, the term systolic describes the contraction (systole) of the heart, which regularly

sends blood to all of the cells in the body. Analogously, a systolic computer performs

operations in a repetitive, rhythmic manner.

The fundamental concept behind a systolic architecture is that the von Neumann bottle-

neck is greatly alleviated by repeated use of a fetched data item in a physically distributed

array of processing elements [9]. The regularity of these arrays leads to inexpensive and

dense VLSI implementations, which imply high performance and low cost. Application-

speci�c processor arrays �t naturally into the concept of a hardware library [10], where

functional units are in relation to the host computer as subroutines from a software library

are to production code.

Systolic arrays have been designed for a wide variety of computationally intensive prob-

lems in signal processing, numerical problems, pattern recognition, database and dictionary
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machines, graph algorithms, and automata. To meet the performance requirements of these

applications, it is often necessary to dedicate hardware with parallel processing capabilities

to these specialized operations. Processor arrays or systolic arrays, due to their structural

regularity and consequent suitability for VLSI implementation, are frequently used for this

purpose.

Three factors have contributed to the evolution of systolic arrays into a leading approach

for computationally intensive applications [11]:

� Technology Advances: The growth of VLSI/WSI (Wafer Scale Integration) technology.

Smaller and faster gates allow a higher rate of on-chip communication as data have to

travel a shorter distance. Higher gate densities permit more complex PEs with higher

performance and granularity. Economical design and fabrication processes produce less

expensive systolic chips, even in small quantities. Progress in design tools and simu-

lation techniques ensure that a systolic PE can be fully simulated before fabrication,

reducing the chances that it will fail to work as designed. The regular modular arrays

also decrease time to design and test, as fully tested unique cells can be copied quickly

and arranged into a systolic array. In addition, as VLSI/WSI designs become more

complex, a regular systolic array provides an e�cient way to ensure fault tolerance:

any fault-tolerance mechanism built into one PE is extensible to all PEs. Relatively

new Field Programmable Gate Arrays (FPGA) permit a recon�gurable architecture

in which the architecture of the PE can be programmed to match the computation

required by the algorithm.

� Parallel Processing: E�orts to add concurrency to conventional von Neumann comput-

ers have yielded a variety of techniques such as coprocessors, multiple functional units,

data pipelining (and parallelism), and multiple homogeneous processors. Systolic ar-

rays combine features from all of these architectures in a massively parallel architecture

that can be integrated into existing platforms without a complete redesign. A systolic

array can act as a coprocessor with multiple functional units and/or processors in an

n-dimensional pipeline. The I/O requirements are mitigated using data pipelining by

allowing adjacent PEs to reuse the input data, but a systolic array also has incremental

2



instruction processing or computational pipelining. Each PE computes an incremental

result, and both the input data and partial results ow through the array.

� Demanding Scienti�c Applications: The technology growth in the past three decades

has produced computers that make it feasible to attack scienti�c applications on a

larger scale. New applications requiring increased computational performance have

been developed that were not possible earlier. Examples of these applications include

interactive language (or speech) recognition, text recognition, virtual reality, database

operations, and real-time image and signal processing [12, 13]. These applications

require massive, repetitive parallel processing, and hence, systolic computing.

A number of implementation issues determine a systolic array's performance and e�ciency.

Designers must be able to understand the performance trade-o�s early in the design cycle

to quickly produce economical designs. Some of the issues are

� Algorithm mapping

� Integration into existing systems

� Extensibility

� PE functionality

� Clock synchronization

� Reliability.

The most important aspect in the design of a systolic computer is the mapping of the

algorithm to the processor array. In the systolic paradigm, every algorithm requires a special-

ized systolic design in which communication data streams, PE de�nitions, and input-output

patterns are customized. Consequently, the terms systolic algorithm and systolic array are

often synonymous, and designs are referred to as algorithmically specialized. The early ar-

rays were designed using a \seat-of-the-pants" method, an ad hoc process in which a designer

sits down with a pen and tries to draft data ows until one that works is found. This early

approach was criticized as \black art," and it was clear that if systolic design was to de-

velop and inuence parallel computing, new and more systematic methods of design were
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required. Hence, for the past 10 years, there has been a concerted e�ort to develop a math-

ematical framework based on dependence manipulation and the mapping of loop programs

and recurrences into lattice space. These important developments utilized concepts from

source-to-source program transformation, signal-ow graphs from control engineering, and

formulation of loop computations as uniform or linear recurrence equations [12]. They have

been shown to be useful for a wide class of algorithms in many applications. The theoret-

ical framework has also allowed considerable progress in extending the range of problems

considered.

This thesis addresses a number of the issues in designing systolic processor arrays. A

major contribution of this thesis is a systematic parameter-based approach to design optimal

processor array for algorithms with uniform dependencies. Section 1.2 provides a precise

characterization of the class of algorithms for which the results obtained in this thesis are

valid. Section 1.1 describes the notation used in this thesis.

1.1 Notations

The general notation used in this thesis is as follows. Vectors are in lower case with

arrows on top, and matrices are in upper-case bold font. The transpose of vector ~v and

matrix M are denoted by ~vt and Mt, respectively. The absolute value of vector ~v de�ned

as the Euclidean norm is denoted by j~vj. Notation ~v � ~u means that every component of

~v is greater than or equal to the corresponding component of ~u. Vector ~0 denotes a row

or column vector whose entries are all zeroes. The dimensions of vector ~0, and whether it

denotes a row or column vector, are implied by the context in which it is used. The scalar

product of two vectors ~v1 and ~v2, and the product of a vector ~v and matrix M are written

(without transposes) as ~v1 �~v2 and ~v �M (orM �~v), respectively. The product of two matrices
M1, M2, and a scalar s and a vector ~v are simply written as M1M2 and s~v without any

dot symbol. The set of integers is denoted by Z, and the cardinality of a set C by jCj.
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1.2 Algorithm Model

Uniform dependence algorithms (or Uniform Recurrence Equations { UREs) are formally

de�ned as follows. A Uniform dependence algorithm is an algorithm that can be described

by an equation of the form

Zi( ~J) = �
h
Z1( ~J � ~d1); Z2( ~J � ~d2); . . . ; Zr( ~J � ~dr)

i
; 1 � i � r ; (1.1)

where the column vector ~J = [j1; j2; . . . ; jn]
t 2 J � Zn is an index point; J is the index set of

the algorithm n is the number of components of ~J, i.e., the algorithm dimension; � is a single-

valued function computed \at index point ~J" in a single unit of time; Zi( ~J); 1 � i � r is the

result of computing the right-hand side of Eq. (1.1); output variables correspond to values

at particular index points ~J; if ~J is not in J , then Zi( ~J) is an input variable; ~dj, j = 1; . . . ; r

are constant vectors independent of ~J called dependences; and matrix D = [~d1~d2 . . . ~dr] is

called the dependence matrix.

Example 1.1 A well-known simple example of an URE is

C(i; j; k) = C(i; j; k � 1) +A(i; k)B(k; j); 1 � i; j; k � N; (1.2)

which describes the computation of an N � N matrix C, as the product of two N � N

matrices A and B. The index set consists of all of the integer points within a 3-D cube with

sides of length N .

Uniform dependence algorithms can be found in many scienti�c computations, digital

signal processing applications and other �elds. However, a much larger class of algorithms

called a�ne dependence algorithms (or A�ne Recurrence Equations { AREs) can also bene�t

from the techniques proposed for UREs. For AREs, Eq. (1.1) is replaced by

Zi(y( ~J)) = �
h
Z1(x1( ~J)); . . . ; Zr(xr( ~J))

i
; 1 � i � r ; (1.3)

where indices y and xi, i = 1; . . . ; r are a�ne functions of ~J, i.e., functions of the formA ~J+~b

where A is a matrix with n columns, and ~b is a constant vector with as many elements as

the number of rows of A.
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There exist many techniques to transform AREs into UREs, or to uniformize AREs. The

basic idea is to select a few integral basis vectors such that all a�ne dependence vectors of

the ARE can be expressed as nonnegative integer linear combinations of the basis vectors.

These vectors correspond to uniform dependences after the uniformization.

Example 1.2 For example, in the URE shown in Eq. (1.2) for matrix multiplication, A(i; k)

(respectively, B(k; j)) are inputs used in several computations to generate C(i; j; k) for all
values of j (respectively, i). This can be shown explicitly as follows:

A(i; j; k) = A(i; 0; k)

B(i; j; k) = B(0; j; k) (1.4)

C(i; j; k) = C(i; j; k � 1) +A(i; j; k)B(i; j; k); 1 � i; j; k � N;

where A(i; 0; k) = A(i; k) and B(0; j; k) = B(k; j). The dependencies for the �rst two

statements are a�ne, i.e., they are [0; j; 0]t and [i; 0; 0]t, respectively. Reusing, or \pipelining"

of these data among di�erent computations can be done as follows (yielding a decomposition

of the a�ne dependencies in terms of uniform basic vectors (0; 1; 0)t and (1; 0; 0)t):

A(i; j; k) = A(i; j � 1; k);

B(i; j; k) = B(i� 1; j; k); (1.5)

C(i; j; k) = C(i; j; k � 1) +A(i; j; k)B(i; j; k); 1 � i; j; k � N:

This simple example illustrates another advantage of uniformization in which broadcasts

of data to many processing elements can be eliminated. In the above uniformized algo-

rithm, distinct variables (which may have identical values) are used to compute distinct

C(i; j; k). Procedures for uniformization and broadcast removal share many similarities and

are discussed in the references [14, 15, 16, 17, 18, 19].

1.2.1 Relation to nested-loop programs

A�ne dependence algorithms are common in image processing, digital signal processing,

and other scienti�c applications in which regular compute-intensive operations are required
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[12, 20, 21]. In practice, many of the algorithms to be executed by processor arrays are

described in a procedural high-level language such as FORTRAN. Nested loops are often

the most time consuming kernels of these programs and are, therefore, targets of hardware

accelerators based on processor arrays. It turns out that a large number of nested loops can

be modeled as a�ne recurrences. For instance, it is relatively easy to relate the following

generic nested loop to a corresponding system of a�ne recurrences:

DO (j1 = l1; u1 ; j2 = l2; u2 ; . . . ; jn = ln; un)

H1( ~J) ;

H2( ~J) ;
...

Ht( ~J) ;

END

where ~J = [j1; j2; . . . ; jn]
t is the index vector and Hi( ~J); i = 1; . . . ; t; are assignment state-

ments of the form of Eq. (1.3), i.e., Zi(y( ~J)) = �
h
Z1(x1( ~J)); . . . ; Zr(xr( ~J))

i
; 1 � i � r:

Each appearance of a variable on the right-hand side may cause a dependence [22]. If all

loop bounds li and ui, i = 1; . . . ; n, are linear functions of index variables j1; . . . ; ji�1, then

the set of all iteration vectors ~J of the loop can be described by a convex polyhedron.

A�ne recurrence equations with a convex polyhedral domain can be used to model the

above program if (i) all loop bounds li and ui are a�ne functions of loop variables j1; . . . ; ji�1;

(ii) indexing functions y() and xk(); k = 1; . . . ; r, are a�ne functions of the form A � ~J + ~d;

and (iii) branch statements are de�ned in terms of the loop variables j1; . . . ; ji�1, and do

not go outside the loop containing the branch statement. Given a nested loop program,

reference [23] describes how to obtain the set of uniform dependencies using the techniques

of uniformization.

Example 1.3 It is easy to see that the following nested-loop program corresponds to the

pipelined version of the matrix multiplication algorithm described in Eq. (1.5).

DO (i = 1; N ; j = 1; N ; k = 1; N)
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A(i; j; k) = A(i; j � 1; k)

B(i; j; k) = B(i� 1; j; k)

C(i; j; k) = C(i; j; k � 1) +A(i; j; k)�B(i; j; k)

END

Intuitively, data Ai;k are pipelined along the j axis, and B(k; j) are pipelined along i axis.

The following example shows the application of pipelining to obtain uniform dependen-

cies to another problem. The set of dependence vectors obtained after uniformization are

equivalent to those of the Warshall-Floyd algorithm of computing the transitive closure of a

N �N matrix in Section 3.1.

Example 1.4 Consider the following 3-dimensional (3-D) recurrence with n = 3; r = 5:

Z(k; i; j) = X(k; i)Y(j; k) + Z(k � 1; i+ 1; j + 1) (1.6)

+Z(k � 1; i+ 1; j) + Z(k � 1; i; j + 1): (1.7)

After pipelining and uniformization, Eq. (1.7) becomes

Z(k; i; j) = X (k; i; j � 1)Y(k; i � 1; j) + Z(k � 1; i+ 1; j + 1) + Z(k � 1; i+ 1; j)

+ Z(k � 1; i; j + 1): (1.8)

The dependence vectors collected into a matrix are

D =

2
666664
0 0 1 1 1

0 1 �1 �1 0

1 0 �1 0 �1

3
777775 (1.9)

X Y Z Z Z
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In short, the focus in this work is on algorithms that can be modeled as uniform recur-

rences and a�ne recurrences that can be uniformized. Hence, only the structural information

of the algorithm, i.e., index set J and dependence matrix D, is needed. Note that all compu-

tations are identical in the processor array when uniform recurrences are mapped, and that

inputs/outputs occur at the peripheral boundary of the processor array.

If iteration ~J depends on iteration ~J
0, then this dependence can be described by a de-

pendence vector ~d = ~J � ~J
0, which is the vector di�erence of the index vectors of these two

iterations. The dependencies in the algorithm can be shown by a dependence graph (DG)

over an n-dimensional (n-D) domain (integer lattice), where nodes are labeled by index vec-

tors corresponding to the operations in the innermost loop body, and arcs correspond to the

loop-carried dependencies between two instances of the loop body. Hence, the loop body

for scheduling is the set of statements in loop nests enclosing all of the branch statements.

Thus, the techniques developed in this thesis are applicable to algorithms represented as

dependence graphs with uniform dependencies, and whose domain is de�ned in terms of a

set of problem parameters.

To illustrate the importance of uniform dependence algorithms, a list of some of the

applications is given in Table 1.1.

1.3 Overview of the Thesis

This section gives a brief overview and organization of the di�erent chapters in this

thesis. The thesis is conceptually subdivided into two parts. In the �rst part, consisting of

Chapters 2, 3, and 4, a systematic method of synthesizing optimal algorithm-speci�c systolic

processor arrays from uniform dependence algorithms (UDA) is described. In the second

part, consisting of Chapter 5, the design of a scalable VLSI coprocessor suitable for the class

of recursive loop algorithms in Section 1.2 is presented. Such a class-speci�c coprocessor

can be used as a back-end accelerator for loop algorithms. Figure 1.1 shows the overview of

this thesis. As shown in the �gure, this thesis deals with the problem of mapping recursive,

uniform dependence algorithms described by nested loops to systolic processor arrays with

globally synchronized data ow. The individual chapters describe how the designer can

include di�erent resource constraints and specify di�erent objectives in the design process.
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Table 1.1: A sample of applications that can be represented as uniform dependence algo-
rithms, or can be converted to uniform dependence algorithms

Signal  and
Image  Processing

Matrix Operations
Linear Algebra

2-D tuple comparisonString matching,

Finite impluse response (FIR) filtering

Convolution, Deconvolution

Matrix-matrix, Matrix-vector  products

Triangular linear system

LU, QR, SVD decomposition

Matrix Inversion, Gauss-Jordan Elimination

Algebraic Computations
Interpolation

Binary long multiplication

Pattern Matching
Correlation

Levenstein algorithm

Longest  common subsequence

Graph Applications Shortest paths

2-D routing

Others Sorting

Vector quantization
Discrete transforms (DFT, DCT, DHT)

Template matching, Feature vector computation

SAR beamforming

Polynomial multiplication and division

Transitive closure (Floyd-Warshall algorithm)

Database operations: Join, Cartesian product
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Figure 1.1: Overview and organization of this thesis: Objectives and resource constraints
considered in the design process.
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Figure 1.1 lists a few of the common performance measures that are optimized and

resource constraints considered in this thesis. The resource restrictions considered are

� maximum completion time (including load and drain times),

� maximum computation time (without load and drain times),

� maximum PE-count (number of processors),

� degree of internal pipelining which is the number of stages in the functional units of

the PEs,

� maximum total area which includes area of PEs and area of memory,

� maximum bandwidth to transfer data from the host.

Similarly, the objectives considered are minimizing completion or computation time, min-

imizing PE-count, minimizing total area, minimizing number of data accesses to host to

execute the given algorithm on the VLSI array processor, and minimizing power consump-

tion by minimizing clock rate required for a given performance level. Figure 1.1 also shows

the combination of design objectives and resource constraints considered in the di�erent

chapters of this thesis.

Chapters 2 and 3 describe the development and application of a systematic array synthe-

sis technique, called the General Parameter Method (GPM), for specialized systolic arrays.

Chapter 2 considers how to synthesize a systolic processor array with the input data ows

to solve the given uniform dependence algorithm. The chapter also describes the parameter

de�nitions, constraint equations for valid choice of parameters, and an e�cient polynomial-

time search procedure to �nd the optimal parameter values. The unique feature of GPM is

the ability to synthesize optimal arrays of any lower dimension for a general nonlinear and

nonmonotonic user-speci�ed objective expressed in terms of the parameters in GPM. This is

in contrast to other existing synthesis procedures such as the dependency method (described

in Section 2.1), in which the design problem has been cast as an integer programming prob-

lem with an exponential worst-case complexity to �nd the optimal designs. In addition,

in Chapter 2, equivalence between the GPM and the dependency method (DM) has been

12



presented. This equivalence permits designers familiar with DM to utilize the e�ciency of

GPM to �nd optimal designs.

Chapter 3 discusses the application of the proposed GPM to two important application

problems: �nding the transitive closure of a matrix, and computing the product of two

matrices. This chapter presents the following optimal array designs for the two application

problems.

� Minimizing completion time, computation time and PE-count without any resource

constraints,

� Minimizing PE-count with upper bounds on completion time or computation time,

� Minimizing completion time or computation time with upper bound on PE-count.

The processor-time trade-o�s allow a designer to choose the appropriate architecture when

faced with resource restrictions on processor count or time or both. These processor-time

trade-o�s require the exploration of a large portion of the design space, and is possible

because of the e�ciency of GPM and its search procedure.

In Chapter 4, an extension of GPM to design of two-level pipelined systolic arrays has

been described. Two-level pipelining is a technique of pipelining operations across PEs of

the array, and also pipelining the functional units in the PEs, to achieve higher throughput.

However, its success depends greatly on the ability to design data ows that can fully utilize

the two levels of pipelines. This chapter considers how to synthesize a two-level pipelined

processor array and input data ows to optimize a given objective to solve the given uniform

dependence algorithm.

The enhanced GPM, presented in Chapter 4, is a systematic approach that evaluates

alternative designs and determines data ows that utilize the two-level pipelined structures.

Chapter 4 describes the additional constraints incorporated into GPM for handling pipelined

functional units and presents closed-form results for a class of algorithms represented by n-

dimensional mesh graphs. Also, Chapter 4 presents the application of the enhanced GPM to

matrix product problem by considering the degree of internal pipelining as a user-speci�ed

parameter. Array designs that optimize computation time for a given degree of internal
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pipelining are presented for the matrix-product and transitive-closure applications. In ad-

dition, processor-time tradeo� �gures that can be used by a designer to derive arrays that

minimize computation time given a maximum PE-count, or minimize PE-count given a

maximum computation time, for any given degree of internal pipelining, are presented.

The �rst part of this thesis, Chapters 2, 3, and 4, describes a systematic synthesis method

for a special-purpose or �xed-function systolic architecture designed as a hardware imple-

mentation of a given algorithm. In mass quantities, the production of such �xed-function

arrays is manageable and economical, and thus suited for common applications. Every time

a systolic array is to be used for a new application, the manufacturer has to take the long and

costly process of designing and fabricating the application-speci�c integrated chip (ASIC).

Although the cost and risks of ASIC development have decreased in recent years, budget

constraints have motivated a trend away from unique hardware development except in cases

in which the performance required justi�es the cost of developing such specialized hard-

ware. Consequently, general-purpose or versatile systolic architectures have been a logical

alternative.

The second part of this thesis, Chapter 5, describes the design of a scalable VLSI co-

processor to execute the class of algorithms de�ned in Section 1.2. This chapter describes

the architecture design, partitioning and mapping techniques for a coprocessor to execute

the entire class of uniform dependence algorithms. Such a common retargetable architecture

for the coprocessor allows the processing power to be reused for all of the applications

instead of an algorithm-speci�c design. This chapter deals with the design issues (page 3) of

(i) integration into existing systems, by considering a �xed bandwidth connection to main

memory, and (ii) extensibility, by choosing a modularly expandable parallel architecture.

The architecture consists of a linear array of PEs and bu�er memories (called access-units),

and good performance is achieved by developing e�cient software techniques.

Chapter 5 discusses the architectural issues involved in designing the coprocessor, the

mapping and partitioning techniques, and results on matrix-product and transitive-closure

applications. Constraints on completion time (throughput) and total silicon area are con-

sidered, and trade-o�s between the performance (clock-rate reduction) and cost (silicon area
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index) of the resulting architecture are given for matrix-product and transitive-closure prob-

lems. An important resource limitation is the assumption of a �xed bandwidth to access

data from the external main memory. For large problem sizes, managing large quantities

of data e�ciently through the low-bandwidth connection is critical to achieve good perfor-

mance from the coprocessor. Thus, the objective of minimizing the number of accesses over

the limited bandwidth connection is considered in the mapping process. This is in contrast

to other approaches of building general-purpose systolic computers [24, 25, 26, 27, 7]. Thus,

Chapter 5 discusses design methods under constraints of �xed bandwidth and area, and

objectives of yield (clock frequency) or speedup, and number of accesses.

The mapping process incorporates the General Parameter Method (Chapters 2 and 4) to

map partitioned dependence graphs of the given loop algorithm. The objective of maximizing

the utilization of the processor array is used in GPM. An important result obtained is the

square-root relationship between the clock-rate reduction and the area of the coprocessor

under �xed main-memory bandwidth. From the square-root relationship, it can found that

the system yield improves with the area of the coprocessor when chip yield decreases as the

inverse square of the clock frequency.

Finally, in Chapter 6, we summarize the thesis, and discuss some future avenues of

research.

1.4 Contributions of This Thesis

The following are the main contributions of this thesis:

� General Parameter Method (Chapter 2) [28, 29, 30, 31] A systematic array synthesis

technique for uniform dependence algorithms that can optimize a given user-speci�ed

objective subject to some resource constraints. Chapter 3 presents the application of

GPM to the problems to transitive-closure and matrix-product problems.

� Extension of General Parameter Method [32] (Chapter 4) to design two-level pipelined

processor arrays for uniform dependence algorithms. Results are given for designing

optimal two-level pipelined processor arrays for matrix-product and transitive-closure

applications.
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� Architectural design of a parallel VLSI coprocessor [33] (Chapter 5) for the class of

uniform dependence algorithms. E�cient techniques are given to partition the depen-

dence graph into blocks and sequence the blocks through the �xed size bu�er memory

to reduce data accesses to main memory. Results on the matrix-product and transitive-

closure applications indicate that the coprocessor can be used for higher throughput

or lower clock rate compared to that for a reference 1-PE design. A square-root re-

lationship between the clock-rate reduction and area of the coprocessor under �xed

main-memory bandwidth has been derived. From the square-root relationship, it can

found that the system yield improves with the area of the coprocessor when chip yield

decreases as the inverse square of the clock frequency.
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2. GENERAL PARAMETER METHOD

This chapter presents a systematic parameter-based approach to synthesize algorithm-

speci�c systolic arrays for uniform dependence algorithms. The techniques discussed here

apply to algorithms described as recurrences, either by mathematical expressions or by high-

level-language programs. Section 1.2 provides a precise characterization of the class of algo-

rithms for which our results are valid. The techniques are illustrated by examples involving

linear arrays of processors (1-dimensional processor arrays) (Chapter 3); however, unless

otherwise stated, the results can be extended to processor arrays of arbitrary dimensions.

We choose to study linear arrays because they are easier to build and program than ar-

rays of higher dimension. Hence, several linear arrays have been implemented for speci�c

applications as well as for \general-purpose" computing [34, 35, 24, 25].

The organization of this chapter is as follows. Section 1.2 describes the model of al-

gorithms targeted in this thesis, followed by a discussion of previous and related work in

Section 2.1. Section 2.2 presents the de�nitions of parameters, followed by the constraint

equations for valid systolic processing in Section 2.3. The design method, pruning strategy,

and search procedure for optimal array parameters are given in Sections 2.4, and the chapter

concludes with a summary and comparison to the dependence-based methods in Section 2.5.
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2.1 Previous Work

Initial designs of processor arrays were ad hoc and relied heavily on the designers' skill

and intuition. Since every algorithm requires a specialized design customized to its commu-

nication patterns, a systematic technique for generating processor arrays from the algorithm

description is necessary. Therefore, a great deal of e�ort has been devoted by numerous

researchers to mapping uniform dependence algorithms to processor arrays systematically.

Most of these methods are based on or derived from the dependency method (DM) [36, 37, 38].

An overview of the di�erent methods can be found in the references [39, 12].

In the dependency method (denoted as DM), an algorithm (A) is represented as a 5-tuple

(Jn; C;D;X; Y ), where Jn is a �nite n-dimensional index set of A; C is the set of triples

that represents the set of computations performed; D is the set of dependencies; X is the

set of input variables; and Y is the set of output variables. A feasible design (i.e., mapping

an algorithm to processor array) is obtained by a linear transformation, represented as an

n � n matrix T 2 Zn�n, where Z is the set of integers. Thus,

T =

2
64 ~�

S

3
75

where ~� is 1 � n schedule vector and S is the processor allocation matrix. For any index

point ~J , S�~J denotes the processor at which the computation corresponding to the index

point executes, and ~� � ~J is the time of execution at that processor. Constraints are imposed

on matrix T to ensure valid execution of the algorithm. The design of a systolic array is

then equivalent to determining the n2 parameters of the transformation matrix, T.

This general representation of a feasible design as a particular mapping matrix allows

DM to be applied to uniform as well as nonuniform recurrences. However, in DM, the

generality in representation leads to large search spaces for optimal designs, as the problem

of �nding optimal designs is posed as an integer programming problem [2, 40]. In contrast,

the method presented in this chapter, the General Parameter Method (GPM), is restricted to

uniform recurrences, but can be used to generate optimal designs for user-speci�ed objectives
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(including nonmonotonic and nonlinear ones) using e�cient search techniques of polynomial

complexity.

There have been several earlier attempts to map algorithms onto lower-dimensional arrays

[3, 40, 41]. Important steps towards a formal solution were �rst made by Lee and Kedem

[3]. They presented the concept of data-link collisions (two data tokens contending for

the same link simultaneously) and conditions to avoid collisions. They also presented a

method that analyzes all computations in the domain of the recurrence in order to detect

computational conicts (two computations scheduled to execute simultaneously in the same

processor). To identify feasible designs, they provided necessary and su�cient conditions for

designs that avoid computational and data-link conicts. However, they did not present any

systematic procedure for �nding optimal designs. Subsequently, Shang and Fortes [2] have

developed closed-form conditions for a mapping to be free of computational conicts. These

closed-form conditions also eliminate data-link conicts for active data1 participating in the

computations.

In general, in DM, feasible designs are found heuristically by �rst specifying a \good"

allocation matrix S and then subsequently determining the schedule vector ~� that minimizes

the computation time. Note that the number of choices for matrix S could be very large or

even in�nite, making it di�cult (or impossible) to enumerate over them.

Initial work on parameter-based methods was done by Li and Wah [42] (denoted as OPM

or Original Parameter Method) for a restricted set of uniform recurrences. They considered

speci�cally 3-D and 2-D recurrences and mapped them to 2-D and 1-D processor arrays,

respectively. The structure of the recurrence was such that the dependence vectors were

unit vectors and the dependency matrix, an identity matrix. This research generalizes the

above initial work into a powerful and e�cient array-synthesis technique called the General

Parameter Method (GPM) by making three important and nontrivial extensions.

(a) We consider the recurrence model as a general n-D recurrence with arbitrary constant

dependence vectors instead of a speci�c 3-D one. The target processor arrays are also allowed

1The lifetime of a data token in the processor array can be viewed as consisting of an active phase, in

which the token is involved in its chain of computations, and a passive phase, in which the token is moving

from the input peripheral processor to become active or is moving to an output peripheral processor after

its active phase.
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to be of any lower dimension m, where 1 � m � n. We provide new necessary conditions

to guarantee the correctness of systolic processing in mapping high-dimensional recurrences

to lower-dimensional processor arrays. These conditions de�ne a search space, whose size is

polynomial with respect to the size of the recurrence to be mapped. In contrast, previous

methods for �nding optimal designs are based on integer linear programming with a search

space of exponential complexity.

(b) We extend our search method to handle general nonlinear objectives that may vary

nonmonotonically with the parameters, and introduce new pruning strategies to prune sub-

optimal designs in the search space so that optimal designs can be found e�ciently. We

show (i) optimal designs that include load and drain times in the objective (which introduce

nonlinearity in the objective function and constraints), and (ii) optimal designs with con-

straints on number of allowable processing elements and/or completion time. Such designs

cannot be found by previous methods.

(c) We show the equivalence between DM and GPM by providing necessary equations

to transform parameters used in DM to those used in GPM, and vice versa. The DM can

be considered as a mapping problem in the Cartesian coordinate system with unit vectors

as basis vectors, whereas GPM can be considered as mapping in a possibly nonorthogonal

coordinate system with dependence vectors as basis vectors. The equivalence allows the

designers familiar with DM to utilize the e�ciency of GPM to �nd optimal designs.

The potential simplicity of GPM over DM described in (c) is explained by observing

that in mapping an n-D algorithm to an m-D processor array, the number of variables to be

determined in DM is (m+1)�n, whereas the number of parameters in GPM is (m+1)� g,
where g = rank(D). Since g � n (as D is an n � r matrix), the number of variables in

GPM is often less than that in DM, and is at worst equal to the number of variables in

DM. Hence, there is potential reduction in complexity by performing the transformation,

especially if there are only a few dependence vectors in a high-dimensional space.

Our transformation between GPM and DM extends the work of O'Keefe, Fortes and

Wah [43], who showed the equivalence between DM and GPM for 2-D and 3-D uniform

recurrences. Our transformation also allows e�cient search strategies developed in GPM

to be used to �nd optimal designs in DM. Consequently, designers familiar with DM can
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Figure 2.1: Application of GPM to �nd optimal designs in DM.

obtain better (or optimal) array designs using GPM. Referring to Figure 2.1, after de�ning

the objective (possibly nonlinear and nonmonotonic) in terms of the representation chosen

(i.e., ~� and S), the designer converts the objective in terms of the parameters of GPM using

the equivalence given in Eqs. (2.2) and (2.4) (p. 22 and p. 23 in the next section). Once

the objective and variables have been converted, GPM is used to generate optimal arrays

e�ciently. The solutions obtained by GPM are then converted to ~� and S in DM again

using Eqs. (2.2) and (2.4). This step involves solving two sets of simultaneous equations for

~� and S from the periods and displacements in GPM, and has a worst-case complexity of

O(n3).

The next three sections describe the parameters used in GPM, the constraints that must

be satis�ed for correct operation, the speci�cation of the objective function, and the search

strategy. We assume that the processing elements are equally spaced in m dimensions

with unit distance between directly connected processing elements, and that bu�ers between

directly connected processing elements, if any, are assumed to be equally spaced along the

link.

2.2 General Parameter Method: Parameters

The intuition behind GPM is as follows. It is known that the semantics of processor

arrays can be formally described by uniform recurrence equations, i.e., processor arrays are

21



isomorphic to uniform recurrences. This implies that as long as the computations de�ned

by the UREs are well-formed, there is a direct mapping from the recurrence to the processor

array. In fact, this mapping is equivalent to a linear transformation of the index set. Hence,

for a linear mapping, the time (respectively, the distance) is constant between execution

of any two points ~I1 and ~I2 in the index set separated by a dependence vector ~d, where

~I1 = ~I2+ ~d. This constant is equal to ~� � ~d (respectively, S � ~d) independent of index points ~I1

and ~I2. For recurrences with uniform indexing functions (i.e., UREs and uniformized AREs),

the dependences are constant vectors and homogeneous (i.e., the set of dependence vectors at

any point in the index set is the same as any other in the index set). Thus, the computation

of the recurrence on the processor array is periodic in time and space along dependence

vectors in the index space. This periodicity is succinctly captured and exploited in GPM,

which considers the mapping problems in a possibly nonorthogonal coordinate system with

dependence vectors as basis vectors. In other words, in GPM, a representation that captures

the above periodicity is used, which allows the optimal target array to be found e�ciently.

In GPM, the characterization of the behavior, correctness, and performance of a processor

array is de�ned in terms of a set of scalar and vector parameters. When a uniform recurrence

is executed on a processor array, the computations are periodic and equally spaced in the

processor array. The GPM captures this periodicity through a minimal set of parameters

de�ned as follows.

Parameter 1: Periods. These capture the time between execution of the computations

corresponding to the source and sink index points of a dependence vector. Suppose that the

time at which an index point ~I (de�ned for the uniform recurrence equation) is executed

is given by function �c(~I), then the period of computation tj along dependence vector ~dj is

de�ned as

tj = �c(~I + ~dj)� �c(~I); j = 1; 2; � � � ; r: (2.1)

The number of periods de�ned is equal to r, the number of dependencies in the algorithm.

In terms of DM, period tj is related to ~�, the schedule vector in DM, as follows [31]:

tj = ~� � ~dj : (2.2)
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Parameter 2: Velocity. ~Vj , velocity of a datum along a dependence vector ~dj , for

j = 1; 2; � � � ; r, is de�ned as the directional distance passed during a clock cycle. Since

PEs are at unit distance from their neighbors, and bu�ers (if present) must be equally spa-

ced between PEs, the magnitude of the velocity must be a rational number of the form x=y,

where x and y are integers and x � y (to prevent broadcasting). This implies that in y

clock cycles, a datum propagates through x PEs and y � x bu�ers. All tokens of the same

variable have the same velocity (both in speed and direction) which is constant during the

execution in the processor array. The total number of velocity parameters is r (one for each

dependence vector) with each velocity an m-element vector, where m is the dimension of the

processor array. Hence, velocity ~Vj is given by

~Vj =
~kj

tj
; j = 1; 2; � � � ; r; (2.3)

where ~kj is the (vector) distance between the execution locations of the source and sink

index points of ~dj . In the notation of DM, S, the allocation matrix, is related to ~kj and ~dj

as follows:

~kj = S � ~dj : (2.4)

Parameter 3: Spacing or Data distribution. Consider variable 
i pipelined along

dependence vector ~di, 1 � i � r. Consider an index point ~I where 
i is used in the

computation. Data token 
i(~I� ~di) is also used at index points ~I+ t ~di, t = � � � ;�1; 0; 1; � � �,
in computing the recurrence. In other words, this token moves through the processors that

use datum 
i at index points (~I + t ~di). Consider another token 
i(~I � ~dj) of the same

variable 
i that is used at index points (~I � ~dj + t ~di); j 6= i. The directional distance in the

processor space from token 
i(~I� ~dj) to 
i(~I� ~di) is de�ned as spacing parameter ~Si;j. Since

there are r variables 
i; 1 � i � r, each associated with dependence vector ~di, there are r�1

nontrivial spacing parameters for each variable and one trivial spacing parameter, ~Si;i = ~0.

These denote the r distances for variable i: 
i(~I � ~dj) �! 
i(~I � ~di); j = 1; 2; � � � ; r. Each

spacing parameter ~Si;j is an m-D vector, where m is the dimension of the processor array.
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The notation ~Si;j denotes that it is the j-th spacing parameter of the i-th variable. A total

of r(r � 1) nontrivial spacing parameters are de�ned. In the notation of DM, we have

~Si;j = ~Vj tj � ~Vi tj (from Theorem 2.1, p. 25, Section 2.3.1)

= ~kj � ~Vi tj (from Eq. (2.3))

= S � ~dj �
~ki
ti
tj (from Eqs. (2.3) and (2.4))

= S � ~di �
~��~dj
~��~di

S � ~di (from Eqs. (2.2) and (2.4)):

(2.5)

The total number of parameters de�ned is r� (r+ 2) of which r parameters are periods

(scalars); the remaining r2 + r parameters are m-D vectors, of which r parameters are

velocities and r2 parameters are spacings (r of these spacings are trivially zero).

Example 2.1 For the recurrence in Eq. (1.5), there are 3 periods t1, t2, t3 and 3 veloci-

ties ~V1, ~V2, ~V3. There are 9 spacing parameters ~Si;j; i; j = 1; 2; 3, of which ~Si;i = ~0. For

instance, for variable C, ~S1;2, ~S1;3 de�ne distances between (C(i; j) ! C(i; j + 1)), (C(i; j)

! C(i+ 1; j)), respectively.

Example 2.2 For the recurrence in Eq. (1.8) the parameters de�ned are as follows. There

are 5 periods t1, t2, t3, t4, t5, and 5 velocities ~V1, ~V2, ~V3, ~V4, ~V5. There are 25 spacing param-

eters ~Si;j; i; j = 1; 2; 3; 4; 5, where ~Si;i = ~0. For instance, for variable X , ~S1;2; ~S1;3; ~S1;4; ~S1;5
de�ne distances (X(k; i)! X(k; i�1)); (X(k; i)! X(k�1; i+1)); (X(k; i)! X(k�1; i+1)),
and (X(k; i)! X(k � 1; i)), respectively.

2.3 General Parameter Method: Constraint Equations

In Section 2.2, a set of r2 + r parameters has been introduced to de�ne a mapping

on the target processor array. The assignment of values to the parameters de�nes a speci�c

processor array with a particular number of processors, bu�ers, and data-input pattern. It is
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also easy to see that all processor arrays that solve a given algorithm (or uniform recurrence)

correspond to some assignment of values to the parameters. Hence, choosing di�erent values

for these parameters leads to di�erent array con�gurations with di�erent performance, and

the problem of array design has been reduced to that of choosing appropriate parameter

values.

In this section, constraint equations relating the parameters are given such that the set

of values for the parameters is meaningful and de�nes a valid processor array. Theorems 2.1

and 2.2 provide the fundamental space-time relationship that must be satis�ed by the pa-

rameters for correct systolic processing. Computational and data-link conicts are avoided

by enforcing the condition in Theorem 2.3.

The following notation is introduced to simplify the presentation of the theorems. Let

~T = [t1; t2; � � � ; tr]t be a vector composed of periods, and let K =
h
~k1; ~k2; � � � ; ~kr

i
be a matrix

(of size m� r, where m is the dimension of the processor array) composed of displacements

~ki = ~Vi ti. Note that ~T is an r � 1 column vector, and that ~ki is an m � 1 column vector.

Given the periods ti, choosing ~ki immediately determines the velocity ~Vi and vice versa. In

searching for parameter values, we choose to consider ~ki and not ~Vi.

2.3.1 Constraints for correct systolic processing

The following theorem relates the parameters de�ned in GPM for correct systolic pro-

cessing of the given uniform dependence algorithm.

Theorem 2.1 The parameters velocities, spacings, and periods must satisfy the following

constraint equations for correct systolic processing of the given uniform recurrence equations

(Eq. (1.1)):

~Vi ti = ~Vj ti + ~Sj;i; i; j = 1; 2; � � � ; r : (2.6)

Proof. Consider the execution of index point ~I at PA A as shown in Figure 2.2. Eq. (2.6)

can be proved by considering the movement of data tokens of variables i and j to PE A.

Without loss of generality, let i = 1 and j = 2. Consider the movement of data token

Z1(~I � ~d1) of the �rst variable to PE A. Let B be the PE where it was generated. In time

25



(a)

C

A

D

B

(b)

A

C

D

B

p = 1

Z2(~I � ~d2)
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~V1 � t1

~V2 � (t1 � t2)

~V2 � t2

~S2;1

Figure 2.2: Proof of Theorem 1: Data movement between variables 1 and 2. For p > 1,

token Z2(~I � p ~d2) becomes Z2(~I � ~d2) as it travels towards PE A.

t1, when Z1(~I � ~d1) moves from PE B to PE A, the other r� 1 data tokens must move from

their respective locations to PE A.

When Z1(~I� ~d1) was generated at PE B, Z2(~I� ~d1) also resides at PE B. However, when

Z1(~I� ~d1) was generated, Z2(~I� ~d2) might not exist in the array. Let Z2(~I�p~d2); p � 1, be

the value available in the dependence chain along direction ~d2 passing through index point

~I, when Z1(~I � ~d1) is generated at PE B. Therefore, if t2, the period along dependence ~d2,

is greater than t1, then p = 1, else p > 1.

Case 1: p = 1 (refer to Figure 2.2(a)). By de�nition, ~S2;1 denotes the distance between

Z2(~I � ~d1) and Z2(~I � ~d2). By vector composition, we have ~BA = ~BC + ~CA which leads to

Eq. (2.6).

Case 2: p > 1 (refer to Figure 2.2(b)). The distance between Z2(~I� ~d1) and Z2(~I�p~d2)

(or ~BD) is needed to prove the theorem. The key observation is that token Z2(~I�p~d2) refers
to the same element of variable 2 for all p. This is true because variable 2 is pipelined along

~d2 in the index space and propagates through the array between the execution of indices dif-

fering by ~d2. Hence, irrespective of the value of p, ~BD = ~S2;1. Again, by vector composition,

the theorem is proved.

26



The constraints in Eq. (2.6) ensure that in computing an index point ~I at any processor

in the array, all of the participating data tokens are present at the processor at the same

time, moving from their respective processors where they were used earlier. A total of r2

vector constraints are obtained from Theorem 2.1.

2.3.2 Constraints for linearly dependent dependence vectors

Let S =
h
~Si;j
i
; i; j = 1; 2; � � � ; r; be an r � r \matrix" (actually, a matrix of vectors) of

spacings such that the (i; j)-th element of the matrix is ~Si;j. Note by de�nition that ~Si;i = 0.

Let Si be the i-th \row" of S, i.e., Si =
h
~Si;1~Si;2 � � � ~Si;r

i
(where Si is an m� r matrix). Since

~Si;j = ~Vjtj � ~Vitj = ~kj � ~Vitj from Theorem 2.1, Si can be written in matrix form as

Si = K� ~Vi 
 ~T; (2.7)

where ~T is a vector composed of periods and 
 is the outer product or tensor product, i.e.,

~a
~b = ~a~bt = [aibj].

The next theorem characterizes the constraints on the periods and displacements if the

dependence vectors in the recurrence are not linearly independent.

Let g be the rank of dependency matrix D. Therefore, N, the null space of D, has r� g
basis vectors (as D has r columns). Let N = [~�1 ~�2 � � � ~�r�g] be an r � (r � g) matrix,

where ~�i; i = 1; 2; � � � (r � g), are the basis vectors of the null space of D. Hence,

D � ~�i = 0; 1 � i � (r � g) : (2.8)

Theorem 2.2 The periods ti and the displacements ~ki are related as follows:

~T �N = ~0 (2.9)

KN = ~0 (2.10)

where N is the matrix consisting of the basis vectors of the null space of D.

Proof. Consider some column ~�i of matrixN. To prove the theorem, we show that ~T �~�i = 0

and K � ~�i = 0. If the recurrence is computable, i.e., the DG is acyclic, then vector ~�i should
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Figure 2.3: The dependency loop:
Pr

j=1 �i;j
~dj = 0 or

Pj1
j=1(��i;j) ~dj =

Pr
j1+1

�i;j ~dj .

have at least one negative component, i.e., �i;j < 0 for some j; 1 � j � r. Let j1 be the

number of negative components of basis vector ~�i. Without loss of generality, assume that

the �rst j1 components of ~�i are negative, i.e., �i;j < 0; j = 1; . . . ; j1. Since ~�i is a vector

in the null space of D,
Pr

j=1 �i;j
~dj = 0, which leads to

Pj1
j=1(��i;j) ~dj =

Pr
j=j1+1

�i;j ~dj .

Consider the execution locations of indices ~I; ~I + d1; � � � ; ~I +
Pr

j=1 �i;j
~dj = 0 as shown

in Figure 2.3. Let PE P execute index ~I, and PE Q, index ~I +
Pj1

j=1(��i;j) ~dj . Since

Pj1
j=1(��i;j) ~dj =

Pr
j=j1+1

�i;j ~dj, there are two distinct paths from PE P to PE Q: path 1

composed of ~d1 . . . ~dj1 ; and path 2 composed of ~dj1+1 . . . ~dr.

The time elapsed between the execution of the index point ~I at PE P and the corre-

sponding index point at PE Q must be the same along paths 1 and 2. Therefore,

�c

0
@~I + j1X

j=1

(��i;j) ~dj

1
A� �c(~I) =

Pj1
j=1(��i;j) tj =

rX
j=j1

�i;j tj

(path 1) (path 2)

=)
rX

j=1

�i;j tj = 0 =) ~T � ~�i = 0;
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Similarly, by considering the displacement between P and Q along paths 1 and 2, we have

K � ~�i = 0.

Theorem 2.2, therefore, provides a total of 2(r� g) constraints: (r� g) scalar constraints
and (r � g) vector constraints.

The following corollary shows the constraints on spacings that follow from Theorem 2.2.

In fact, these constraints can be shown to be equivalent to those in Theorem 2.2. The

implication of this corollary is that, of the r spacing parameters for each variable, only

g � 1 of them are independent, one of them is zero, and the rest can be expressed as linear

combinations of the g � 1 independent ones.

Corollary 2.1 The spacing parameters Si =
h
~Si;1 � � � ~Si;r

i
are constrained by the equations

SiN = 0; i = 1; 2; � � � ; r, where N is the matrix consisting of the basis vectors of the null

space of D.

Proof. From Eq. (2.7), we know that Si = K � ~Vi 
 ~T . Using the property of outer

products that (~a
~b) � ~c = (~b � ~c) ~a, we have

Si � ~�i = K � ~�i � (~T � ~�i) ~Vi = 0

for any column ~�i of matrix N. The corollary is proved by applying Theorem 2.2.

Example 2.3 For the recurrence in Eq. (1.5), the following constraint equations can be

obtained by applying Theorem 2.1:

~V1t1 = ~V2t1 + ~S2;1 = ~V3t1 + ~S3;1

~V2t2 = ~V1t2 + ~S1;2 = ~V3t2 + ~S3;2

~V3t3 = ~V2t2 + ~S2;3 = ~V3t2 + ~S1;3:

Since D is an identity matrix with full rank, matrix N has only one all-zero vector ~0, and

Theorem 2.2 is trivially satis�ed.
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Example 2.4 From Theorem 2.1, the constraint equations for the recurrence in Eq. (1.7)

(excluding the trivial constraint ~V1 t1 = ~V1 t1 + ~S1;1) are

~V1t1 = ~V2t1 + ~S2;1 = ~V3t1 + ~S3;1 = ~V4t1 + ~S4;1 = ~V5t1 + ~S5;1:

Similarly, there are 16 additional equations related to ~V2t2, ~V3t3, ~V4t4, and ~V5t5.

The rank of D de�ned in Eq. (1.9) is 3. Hence, N is comprised of two basis vectors.

N =

2
6666666666664

1 1

0 1

1 1

�1 0

0 �1

3
7777777777775
:

From Theorem 2.2, the additional constraints are

t4 = t1 + t3 t5 = t2 + t3 (2.11)

~k4 = ~k1 + ~k3 ~k5 = ~k2 + ~k3: (2.12)

In this example, there are a total of 27 vector constraints and 2 scalar constraints.

To summarize, a total of r2 + r vector parameters and r scalar parameters have been

de�ned whose values have to be determined. Theorems 2.1 and 2.2 give a total of r2+(r�g)
vector constraints and (r� g) scalar constraints. Hence, g of the scalar parameters (periods)
and g of the vector parameters have to be chosen such that the other (r�g) scalar parameters
and r2+(r�g) vector parameter values can be determined from the chosen scalar and vector

parameters. Since the performance of the design can naturally be expressed in terms of the

periods and displacements, our strategy is to choose the g periods and g displacements to

optimize a given performance criterion. The remaining (r�g) periods, (r�g) displacements,
and all of the spacings can be determined from Theorems 2.1 and 2.2. All of the vector

equations are solved in m-D space in order to obtain m-D vector parameters.
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2.3.3 Constraints to govern valid space-time mappings

The validity of a space-time mapping is governed by the following fundamental conditions:

1. Precedence Constraints. An index point should be executed only after all of the

index points on which it depends on have been executed. In DM, ~� �D > 0.

2. Avoidance of Computational Conicts. No two index points should be executed

on the same processor at the same time. In DM, ~� � ~I1 = ~� � ~I2, implying that

S � ~I1 6= S � ~I2.

3. Avoidance of Data-Link Conicts. No two data tokens should contend for a given

link at the same time.

Having established the parameters and the basic relationships among them in Theorems 2.1

and 2.2, we show how the fundamental conditions for valid space-time mappings are satis�ed

in GPM.

By de�nition, periods denote the time di�erence between the source and sink of depen-

dencies. Hence, the precedence constraint is satis�ed by simply enforcing ti � 1; i = 1; � � � ; r.
In the array model, all tokens of the same variable move with the same velocity. Hence, data-

link conicts can exist if and only if two tokens of a variable are input at the same time

into the same processor and travel together contending for links. This condition is called a

data-input conict in GPM, as two data tokens are in the same physical location and conict

with each other as they move through the processors together.

It is important to note that in GPM, computational conicts can exist if and only if

data-input conicts occur. This can be seen by the following simple argument. If two

index points are evaluated in the same processor at the same time, then for each variable,

at least two distinct tokens exist together in the same processor. Hence, if there is at

least one nonstationary variable, then there are data-input conicts for the tokens of that

variable. Otherwise, all variables are stationary, and the entire computation is executed

in one processor, i.e., there is no processor array. Hence, by enforcing that no data-input

conicts exist, both computational and data-link conicts are avoided. Theorem 2.3 presents

conditions under which data-input conicts can be eliminated.
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Consider the spacings of variable i. Let S
0

i be an m� (g � 1) matrix:

S
0

i =
h
~Si;1~Si;2 � � � ~Si;g�1

i
(2.13)

where ~Si;1~Si;2; . . . ; ~Si;g�1 are the g�1 independent spacings. Let ~�; ~�;~ be vectors with g�1
integral elements. Let Lj ; Uj; j = 1; 2; � � � ; g � 1, be de�ned such that the distance of any

token of the input matrix from a reference element (usually the �rst element) is equal to

Pg�1
j=1

~Si;j�j, where Lj � �j � Uj, and Lj and Uj are functions of the size of the input matrix.

Theorem 2.3 Data-input conicts occur in the input matrix of nonstationary input i if and

only if S
0

i � ~� = ~0, where ~� = [�1; �2; . . . ; �g�1]
t 6= ~0, and �i 2 [(Li � Ui); . . . ; (Li + Ui)] for

all i such that 1 � i � g � 1.

Proof. The position of any element of input i can be described as S
0

i � ~�, where ~� =

[�1; . . . ; �g�1] and Li � �i � Ui. Therefore,

Data-input conicts () S
0

i � ~� = S
0

i � ~; where ~� 6= ~ and Li � ~i; �i � Ui

() S
0

i � (~� � ~) = ~0

() S
0

i � ~� = ~0; where~� = ~� � ~ 6= ~0; �i 2 [(Li � Ui); . . . ; (Li + Ui)] :

Note that in Theorem 2.3, we have de�ned conservative bounds on �i. Better estimates

can be obtained [44] and will result in less overhead when the conditions in Theorem 2.3 are

checked in the design process.

Example 2.5 For the recurrence in Eq. (1.7), if the array sought is 1-D, then the spacing

parameters are all scalars. Let ~S1;2; ~S1;5 be the two independent spacings for input X, and we

choose the values of L1 = L2 = 1 and U1 = U2 = N . According to Theorem 2.3, data-input

conicts occur in input X if and only if

h
~S1;2 ~S1;5

i 264 �1

�2

3
75 = 0 (2.14)
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where �(N � 1) � �1; �2 � (N � 1) and �1; �2 6= 0. For instance, if N = 5, ~S1;2 = 6,

and ~S1;5 = 4, then �1 = 2 and �2 = �3 satisfys Eq. (2.14). (In one dimension, the vector

spacings are positive or negative numbers.) Hence, there are data-input conicts in input

X.

2.3.4 Constraints in preloaded data

If the velocity of a variable is zero, then the data corresponding to the variable have to

be preloaded in the processors before computation begins. This problem involves designing

a schedule that can overlap as much as possible the preloading of data with the systolic

computations without delaying these computations. A general approach is to decide when a

particular stationary datum is to be used in its �rst computation and to develop a preloading

schedule so that the bandwidth constraint of the processor array is satis�ed and that the

�rst computation can begin with the minimum delay. We like to point out (a) that data do

not have to be preloaded in any order governed by a dependence relation (as in systolic pro-

cessing) as long as they do not conict in using the interprocessor links, and the bandwidth

of the input ports is not exceeded; (b) that the optimal preloading schedule may depend

on the velocities and data distributions of the moving data; and (c) that preloading data

may result in problem-size-dependent memory in each processor (a design alternative often

disallowed in systolic arrays).

Since, the preloading schedule is problem-dependent, Section 3.1 will discuss how the

e�ect of preloading is taken into account to �nd optimal designs for matrix product and

transitive closure problems.

2.4 Design Method

2.4.1 Formulation of the search problem

The design of a feasible processor array is equivalent to choosing an appropriate set of

parameters that satisfy the constraints imposed by dependency and application requirements
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for a speci�c uniform recurrence equation and a speci�c problem size N . The search for the

\best" design can be represented by the following optimization problem.

Minimize b(N; t1; . . . ; tr; ~k1; . . . ; ~kr) (2.15)

Subject To:

8>>>>>>>><
>>>>>>>>:

1 � ti; i = 1; . . . ; r;

0 �
���~ki��� � ti; i = 1; . . . ; r

constraints de�ned in Theorems 2.1, 2.2 and 2.3

#PE � #PEUB and Tc � TUB
c :

(2.16)

The objective function b de�ned in Eq. (2.15) is expressed in terms of attributes such as

Tcomp, computation time of the algorithm, Tload, load time for the initial inputs, Tdrain, drain

time for the �nal results, and #PE, number of processing elements in the design. Note that

the completion time of evaluating a recurrence is

Tc = Tcomp + Tload + Tdrain: (2.17)

All of the attributes are then expressed in terms of the parameters de�ned in GPM.

The �rst two constraints in Eq. (2.16) follow directly from the de�nition of the parameters

in GPM. Since the target array is systolic, displacement
���~ki��� should not exceed period ti in

order to prevent data broadcasting (velocities should not exceed one). In addition, the

constraints ti � 1, i = 1; 2; . . . ; r, mean that precedence constraints are satis�ed.

The third constraint indicates that the recurrence is evaluated correctly by the processor

array, satisfying dependency requirements (Theorems 2.1 and 2.2) and be free of data-link

and computational conicts (Theorem 2.3).

The fourth constraint indicates bounds on Tc and #PE imposed on the design to be

obtained. For instance, the following are two possible formulations of the optimization

problem:

� Minimize Tc for a design with a maximum bound on #PE, #PEUB;

� Minimize #PE for a design with a maximum bound on Tc, TUB
c .
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Both of these formulations represent trade-o�s between T and #PE.

The optimal design for the formulation given by Eqs. (2.15) and (2.16) is found by a

search algorithm. Since, in general, the objective function is nonlinear, involving functions

such as ceiling, oor, and maximum/minimum of a set of terms, it is di�cult to describe a

comprehensive algorithm that covers all possible cases. In the rest of this section, we �rst

describe a pruning strategy used in our search algorithm, followed by a discussion on searches

with objectives that are functions of Tc, Tcomp, Tdrain, and #PE. We then present the search

algorithm and show its application for special cases of optimizing Tc and #PE.

2.4.2 Pruning strategy

The search space de�ned by the constraints in Eq. (2.16) results in a worst-case size of

O

 
gX

i=1

(tmax
i )2

!
= O

�
(T seq

comp)
2g
�
; (2.18)

where T seq
comp is the time needed to process the recurrence sequentially, and tmax

i is the max-

imum value of period ti such that the computation time Tcomp � T seq
comp. Eq. (2.18) is true

because we iterate in the worst case all combinations of ti and
���~ki��� � ti, i = 1; . . . ; r. Note

that the size of this search space is polynomial in terms of the parameters in GPM and the

size of the URE to be evaluated.

To reduce this search space, we have to develop e�ective pruning strategies so that

suboptimal designs do not have to be evaluated. In this section, we present one such strategy

that prunes based on incumbent designs obtained in the search. Our pruning strategy takes

the objective function b (assuming to be minimized) and decomposes it as follows:

b(N; t1; . . . ; tr; ~k1; . . . ; ~kr) = f
�
t1; . . . ; tr; ~k1; . . . ; ~kr; e(t1; . . . ; tr; ~k1; . . . ; ~kr)

�
; (2.19)

where N is not represented explicitly since it is a constant in the optimization. The decom-

position is done in such a way that e()2 is a monotonic function of its variables, which may

be a subset of t1; . . . ; tr; ~k1; . . . ; ~kr. The intuition behind this decomposition is as follows.

2For notational ease, we denote functions without their arguments
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If the objective function b(t1; . . . ; tr; ~k1; . . . ; ~kr) is a monotone function of its variables,

then the optimal value of the parameters can be found by enumerating combinations of values

of variables from their smallest permissible values (given by Eq. (2.16)) until a feasible design

that satis�es Theorems 2.1, 2.2 and 2.3 is found. Since b() is monotonic, the �rst feasible

design obtained is also the optimal design.

The above idea of enumerating values of a monotone function can be extended to the

general case of nonmonotonic objective functions. This is done by �rst identifying e(),

a monotonic component of the objective that can be enumerated e�ciently. The search

proceeds by enumerating designs so that values of e() grow monotonically. (The combination

of parameter values used in e() are substituted into Eq. (2.16), and the constraint equations

are solved to see if there exists a feasible design.) Whenever a feasible design is obtained,

an upper bound on e() is computed by setting variables in b() that are not included in e()

to their extremum values. (This upper bound means that no optimal design will have an

objective value whose monotonic component e() is larger than the upper bound.) The search

is then repeated, re�ning the upper bound each time a feasible design is found. It stops when

the upper bound on e() is smaller than or equal to e() of the best feasible design.

From the above description, it is clear that the search strategy is an adaptation of a

general branch-and-bound search. The monotonic component e() corresponds to the vari-

ables searched in the branch-and-bound process, and bounding is performed by evaluating

the lower bound every time a feasible solution is found.

For complex objective functions, rewriting the objective in terms of composite variables

(expressed in terms of the primary variables t1; . . . ; tr; ~k1; . . . ; ~kr) can simplify the choice of

the extremum values for variables other than those in e(). This is illustrated as follows.

Consider an objective expressed as a function of composite variables Tcomp, Tload, Tdrain,

and #PE as follows:

B = b (Tcomp; Tload; Tdrain;#PE) : (2.20)

It is easy to see that Tcomp = Tcomp(t1; . . . ; tr) is monotonic with respect to the g periods

t1; . . . ; tr. (An exact characterization is shown in Lemma 3.1 (p. 44) in Section 3.1.1 for

the transitive-closure problem.) Hence, we choose Tcomp as the monotonic component of
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objective function b() and enumerate the periods t1; . . . ; tr in an increasing order from their

smallest permissible values, i.e., t1; . . . ; tr = 1.

The upper bound TUB
comp can be re�ned if b() is monotonically increasing with Tcomp,

Tload, Tdrain and #PE. In this case, TUB
comp can be obtained by setting Tload = Tdrain = 0,

Tcomp = Tmin
comp, and #PE = #PEmin and solving

Binc = b
�
TUB
comp; T

min
load ; T

min
drain;#PE

min
�

(2.21)

= b
�
TUB
comp; 0; 0;#PE

min
�
; (2.22)

where Binc is the objective value of the current incumbent design (best feasible design found

so far). Hence,

TUB
comp = b�1

�
Binc; Tmin

load ; T
min
drain;#PE

min
�
; (2.23)

where b�1() is the inverse function of b() that rearranges Eq. (2.22) to compute TUB
comp in

terms of known constants.

The upper bound TUB
comp can further be re�ned if #PE can be expressed as a function

of
���~k1��� ; . . . ; ���~kr���. In this case, #PE is minimum when exactly one of the

���~ki���s is 1, and the

rest of the
���~kj ���, j 6= i, are 0. (An exact characterization is shown in Lemma 3.2 (p. 45) in

Section 3.1.1 for the transitive-closure problem.)

For instance, suppose the objective function is

B = (Tcomp + Tload + Tdrain)
2 �#PE : (2.24)

According to Eq. (2.22), we have

Binc = (Tcomp + 0 + 0)2 �#PE

=) TUB
comp =

q
Binc=#PEmin: (2.25)

Similarly, if the objective function to minimize completion time Tc,

B = Tc = Tcomp + Tload + Tdrain

=) TUB
comp = Binc � (Tmin

load + Tmin
drain) = Binc � (0 + 0) = Binc = T inc

c : (2.26)
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The upper bound TUB
comp is re�ned continuously as new incumbent designs are found in

the search. The search stops when there is no combination of ti, i = 1; . . . ; r, that satis�es

Tcomp � TUB
comp.

A special case of the optimization is to �nd a design with the minimum computation

time Tcomp (not including load and drain times). Here, TUB
comp = Binc = T inc

comp, and the �rst

feasible design is the optimal design that minimizes Tcomp.

2.4.3 Search procedure

In this section, we present our search procedure for minimizing b(#PE; Tc) = b(Tcomp,

Tload, Tdrain, #PE ) (Eq. (2.20)), where Tcomp is a function of t1; . . . ; tr; Tload and Tdrain are

functions of t1; . . . ; tr,
���~k1���, . . ., ���~kr���; and #PE is a function of

���~k1���, . . ., ���~kr���.
1. Choose g periods and g displacements to be unconstrained parameters. Without loss

of generality, let these periods and displacements be ti and ~ki, 1 � i � g, respectively.

2. Initialize TUB
comp to be T

seq
comp, the computation time required to evaluate the recurrence

sequentially.

3. Set the values of all the g unconstrained periods ti, i = 1; . . . ; g, to be 1.

4. Choose the magnitude of the g unconstrained displacements
���~ki���, i = 1; . . . ; g, to be

zero.

5. Compute the values of the other dependent r�g periods and r�g displacements using
the conditions of Theorem 5.2.

6. Compute T cur
comp using the periods and displacements found, where T cur

comp is the com-

putation time (without load and drain times) required for processing the recurrence.

The value of T cur
comp is found by substituting the current values of ti, i = 1; . . . ; r, in

Eq. (2.15). (Note that the design may not be feasible at this time.) If T cur
comp > TUB

comp,

then exit with the incumbent design.

7. Solve for the spacing parameters from Eq. (2.6) de�ned in Theorem 2.1.
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8. Check for data-input conicts using Theorem 2.1 on the spacing parameters; also, check

whether the constraints on Tc and #PE are violated (Constraint 4 in Eq. (2.16)).

9. If the solution is not feasible, then increment one of the
���~ki���s and repeat Steps 5, 6, 7

and 8 until all
���~ki��� equal ti, i = 1; . . . ; r. If all

���~ki��� equal ti and no feasible design is

found, then go to Step 10. If a feasible design is found, then go to Step 11.

10. Increment one of the periods such that T cur
comp increases by the lowest possible value.

Go to Step 4.

11. ComputeBcur, the objective value achieved by the current design found. IfBcur < Binc,

then set Binc = Bcur, and compute TUB
comp for the current design using Eq. (2.23).

Increment one of the
���~ki���s and go to Step 5.

For a design that minimizes #PE, the search procedure described above has to be

changed. In this case, e() should be de�ned as a function of
���~k1��� ; . . . ; ���~kr���, and the search

should start iterating with the smallest combinations of
���~k1��� ; . . . ; ���~kg���.

2.5 Summary

Algorithm-speci�c parallel processing with processor arrays can be systematically ac-

complished with the help of the general parameter-based approach (GPM) discussed in this

chapter. The techniques discussed in this chapter are ideally suited to nested loops described

as uniform recurrences or as a�ne recurrences that can be uniformized.

In GPM, the behavior of the target array is captured by a set of parameters, and the

design problem is formulated as an optimization problem with an objective and a set of

constraints speci�ed in terms of the parameters. The parameters in GPM can be expressed

in terms of the processor-allocation matrix S and the time schedule vector ~� in dependency-

based methods (DMs), thereby allowing GPM to be used in DMs to �nd optimal designs.

We present an e�cient search procedure for �nding Tc-optimal or Tcomp-optimal (respective-

ly, #PE-optimal) designs for speci�ed bounds on #PE (respectively, Tc or Tcomp), as well

as optimal designs with general objective functions. The distinct features of GPM lie in its
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ability to systematically search for optimal designs with speci�c design requirements on Tc

(or Tcomp) and #PE, and in its ability to include constraints on data-link and computation-

al conicts in the optimization procedure. In conclusion, Table 2.1 summarizes the unique

features of GPM and DM. The next chapter presents the results of applying GPM to two

important applications: computing transitive closures and matrix products.
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Table 2.1: Comparison between dependency-based and parameter-based methods.

Feature Dependency-Based Method Generalized Parameter Method

Applicable

Recurrences

General and applicable to uniform as well

as nonuniform recurrences.

Homogeneous uniform recurrences or uni-

formized a�ne recurrences.

Representation Schedule Vector and Allocation Matrix:

they are represented in the Cartesian co-

ordinate system with unit vectors as basis

vectors; for the dimension-reduction tech-

nique [2], the mappings are rank-de�cient;

(i.e., ~� and S yield T where rank(T) �

n).

Periods and Displacements: they are rep-

resented in a possibly nonorthogonal co-

ordinate system with dependence vectors

as basis vectors; hence, for uniform re-

currences, the representations in DM and

GPM are equivalent and are derivable

from each other by a coordinate (linear)

transformation.

Characteristics

of controls in

processor array

Nonuniform in the general case by spec-

ifying a general processor allocation ma-

trix; processor arrays derived may have in

the general case arbitrary speed/direction

changes for data tokens and have aperiod-

ic computations.

Uniform controls throughout the proces-

sor array, resulting in constant velocities

and periodic computations.

Design objective

and constraints

Computation-time optimal designs or

processor-optimal designs with linear ob-

jective function and linear constraints.

General nonlinear objective function and

constraints with certain monotonicity

properties on the objective function; new

constraints have been developed that

avoid data-link conicts.

Search methods

for �nding pro-

cessor array de-

signs

Choose processor-allocation matrix heu-

ristically, and �nd schedule vector satisfy-

ing processor-allocation constraints; met-

hods for �nding designs are based on

linear/integer programming or intelligent

searches.

Search method is systematic enumeration

and pruning on a search space whose size

is polynomial with respect to problem

size.

Designs

obtained

Designs found are optimal in computa-

tion time with respect to a given choice of

processor-allocation matrix; possible allo-

cation matrices chosen are those that min-

imize the number of processing elements.

Trade-o�s between number of processors

and computation time, or between num-

ber of processors and completion time (in-

cluding load and drain times) for a speci�c

problem instance can be obtained (Chap-

ter 3).

Summary The two methods are equivalent representations for synthesizing uniform recur-

rences. The formulation of the design optimization problem and the search tech-

niques developed are equally applicable in both representations.
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3. APPLICATIONS OF GENERAL PARAMETER METHOD

This chapter presents the application of the GPM developed in Chapter 2 to two im-

portant application problems: computing the transitive closure of a matrix (Section 3.1)

and computing the product of two matrices (Section 3.2). For each application, the per-

formance attributes are derived �rst (Sections 3.1.1, 3.2.1), followed by time-optimal and

processor-optimal linear array designs for di�erent objectives (Section 3.1.2, 3.2.2, 3.2.4).

Sections 3.1.3 and 3.2.5 show the continuous processor-time trade-o�s obtained using GPM,

and the chapter concludes with a summary in Section 3.3.

3.1 Algebraic Path-�nding Problems: Transitive Closure

Algebraic path-�nding problems (APPs) belong to an important class of optimization

problems. Typical examples include computing the transitive closure and the shortest paths

of a graph. Other problems in the class of APPs include the generation of regular expressions

from �nite automata [45], matrix inversion, and Gauss-Jordan elimination. For an overview

of applications of APPs see references [46, 47, 48]. A common algebraic framework for graph

algorithms and numerical algorithms in terms of APPs was �rst achieved by Lehmann [49].

The application of APPs in global ow analysis of programs useful for code optimization is

discussed in reference [50]. Two-dimensional processor arrays for �nding transitive closures

have been presented before [51, 52]. In this section we synthesize a one-pass linear processor

array for the transitive-closure problem using the Floyd-Warshall path-�nding algorithm.
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The transitive-closure problem is de�ned as follows. Given an N -node directed graph

with an N � N Boolean adjacency matrix C[i; j], 1 � i; j � N , the transitive closure

C+[i; j] = 1 if there exists a path from node i to node j, where C[i; j] = 1 if there is an edge

from node i to node j or i = j, and C[i; j] = 0 otherwise. That is,

for (k = 1; N ; i = 1; N ; j = 1; N)

C(i; j) = C(i; j) +C(i; k)�C(k; j):
(3.1)

The dependence structure of a general dynamic programming formulation of the transitive-

closure problem is irregular and di�cult to map on a regularly connected planar processor

array. To cope with this mapping problem, S.Y. Kung et. al., have converted the transitive-

closure algorithm into an reindexed form and have mapped it onto 2-D spiral and orthogonal

arrays [51]. Based on their algorithm we obtain the following �ve dependence vectors:

~d1 = (0; 0; 1)t for (k; i; j)t (k; i; j � 1)t; 2 � j � N;

~d2 = (0; 1; 0)t for (k; i; j)t (k; i� 1; j)t; 2 � i � N;

~d3 = (1;�1;�1)t for (k; i; j)t (k � 1; i+ 1; j + 1)t; 2 � k � N; 1 � i; j � N � 1;

~d4 = (1;�1; 0)t for (k; i;N)t (k � 1; i+ 1; N)t; 2 � k � N; 1 � i � N � 1;

~d5 = (1; 0;�1)t for (k;N; j)t  (k � 1; N; j + 1)t; 2 � k � N; 1 � j � N � 1; (3.2)

where ~I1 ~I2 means that the data at index point ~I2 are used at index point ~I1. For nodes on

the boundary of the dependence graph, where i = N (respectively, j = N), and dependence

~d4 (respectively, ~d5) is present instead of dependence ~d3. For other interior points, only 3

dependencies, ~d1; ~d2; ~d3, exist. The �ve dependence vectors listed above are identical to the

dependencies in Example 1.4 (Eq. (1.9)).

The key observation is as follows. Matrix C (whose transitive closure is to be found) is

input along dependence vector ~d3. Inputs along other dependence vectors, ~d1, ~d2, ~d4, ~d5, are

nonexistent; i.e., they are never sent into the array from the external host. Hence, there are

no data-input conicts along these dependence directions. As a result, we have to consider
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data-input conicts only along direction ~d3. Since dependencies ~d3, ~d4 and ~d5 never co-exist,

there are only two spacings for data along direction ~d3, namely, ~S3;1 and ~S3;2.

A total of 8 relevant parameters are de�ned for the transitive-closure problem: 3 periods

t1; t2; t3, 3 displacements ~k1; ~k2; ~k3, and 2 spacings ~S3;1, ~S3;2. For a linear processor array, all

of the parameters are scalars. As derived in Example 2.5, the periods and velocities along

directions ~d4 and ~d5 are given as t4 = t1 + t3, t5 = t2 + t3 (Eq. (2.11)), ~k4 = ~k1 + ~k3, and

~k5 = ~k2 + ~k3 (Eq. (2.12)), respectively. From Theorem 2.1 and Eq. (2.3), we have

~S3;1 =
t3~k1 � t1~k3

t3
; ~S3;2 =

t3~k2 � t2~k3

t3
: (3.3)

In the rest of this section, linear array designs are presented for the following formulations

of the optimization (Section 2.4): i) Tcomp-optimal designs without bound on #PE, ii) Tc-

optimal designs without bound on #PE, iii) #PE-optimal designs without bound on Tc

or Tcomp, and iv) optimal designs with speci�c bounds on Tcomp or #PE, and v) optimal

designs with speci�c bounds on Tc or #PE.

3.1.1 Performance attributes and constraints

Before optimal designs can be found, we have to express performance attributes in the

objective function in terms of the parameters in GPM. The attributes of interest are Tcomp,

Tload, Tdrain, #PE, and Tc, where Tc = Tload + Tcomp + Tdrain. In this section, we show

three lemmas that express these performance attributes in terms of the parameters de�ned.

We also show two constraints that re�ne the constraints de�ned in Theorem 2.3.

Lemma 3.1 The computation time Tcomp without load and drain times for �nding an N�N
transitive closure is given by

Tcomp = (N � 1)(2 t1 + 2 t2 + t3) + 1: (3.4)

Proof. The critical path in the execution is as follows:

(1; 1; 1)
(N�1)t1�! (1; 1; N)

(N�1)t2�! (1; N;N)
(N�1)t3�! (N; 1; 1)

(N�1)t1�! (N; 1; N)
(N�1)t2�! (N;N;N):

44



(1,1,1) (1,N,N)(1,1,N)(N,1,1)

AD B C

~k
00

3

~k
00

3 = ~k1 + ~k2 + ~k3

~k2~k1

Figure 3.1: PE allocation with ~k1; ~k2 � 0 and ~k
00

3 � 0.

Thus, Tcomp is (N � 1)(2 t1 + 2 t2 + t3) + 1.

Lemma 3.2 #PE, the number of processors for computing an N �N transitive closure on

a linear processor array satisfying the dependencies in Eq. (3.2), is given by

#PE = (N � 1)(
���~k1���+ ���~k2���+ ���~k1 + ~k2 + ~k3

���) + 1: (3.5)

Proof. Let ~k
00

3 be the displacement from the execution location of index point (k; i; j) to

index point (k + 1; i; j). From the de�nition of displacements ~k1; ~k2; ~k3 (Eq. (2.4)) for the

dependencies ~d1; ~d2; ~d3 (Eq. (3.2)), the displacement ~k
00

3 is equal to ~k1 + ~k2 + ~k3 as depicted

below.

(k; i; j)
~k1�! (k; i; j + 1)

~k2�! (k; i+ 1; j + 1)
~k3�! (k + 1; i; j) :

Consider the displacements ~k1, ~k2, and ~k
00

3 . Two of these 3 displacements should be in

the same direction, since the array is 1-D. Assume that ~k1 and ~k2 are positive displace-

ments, i.e., they correspond to velocities owing to the right (refer to Figure 3.1). Let A

be the PE where the computation indexed by (1; 1; 1) occurs. Therefore, computation cor-

responding to index point (1; 1; N) is executed at PE B at a distance (N � 1)
���~k1��� from PE

A. Similarly, computation corresponding to the index point (1; N;N) is executed at PE C

that is (N � 1)
���~k2��� PEs to the right of B. On the other hand, computation corresponding
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to index point (N; 1; 1) is executed at PE D, that is, at a distance of (N � 1)
���~k003
��� to the

left of PE A (since ~k3 corresponds to the left moving variable). All other computations in

the domain are executed by PEs between C and D. Therefore, the total number of PEs is

(N � 1)(
���~k1���+ ���~k2���+ ���~k003

���) + 1 = (N � 1)(
���~k1���+ ���~k2���+ ���~k1 + ~k2 + ~k3

���) + 1.

Lemma 3.3 Assuming that the input matrix is nonstationary, Tload, the load time, and

Tdrain, the drain time, for computing an N �N transitive closure on a linear processor array

satisfying the dependencies de�ned in Eq. (3.2) are given by

Tload = Tdrain = 1 + (N � 1)

2
666
t3
n
G (~k1; ~k3) + G (~k2; ~k3) + G ((~k1 + ~k2 + ~k3); ~k3)

o
���~k3���

3
777

+ (N � 1)

h
G (~S3;1; �~k3) + G (~S3;2; �~k3)

i
j~v3j

(3.6)

where

G(~x; ~y) =

8><
>:
j~xj if ~x and ~y are in opposite directions

0 otherwise.
(3.7)

Proof. Since the �rst index point executed is (1; 1; 1), the load time is the time for C1;1 to

reach the PE executing index (1; 1; 1). Let A be the PE that executes index (1; 1; 1) (refer

to Figure 3.1). Let C be the boundary PE for the inputs (assuming C ows to the left).

The load time, Tload, is the sum of the time for C1;1 to reach PE C, and the time for C1;1 to

move from PE C to PE A.

Since the layout of the processor array is governed by the displacements ~k1, ~k2 and ~k
00

3

(= ~k1 +~k2 +~k3; see proof for Lemma 3.2), the distance (l1) from PE C to PE A depends on

the relative signs of ~k1, ~k2, and ~k
00

3 with respect to
~k3. If ~k1 and ~k2 are in directions opposite to

~k3, then l1 = (N �1)(
���~k1���+ ���~k2���). In general, l1 = (N �1)

h
G(~k1; ~k3) + G(~k2; ~k3) + G (~k

00

3 ;
~k3)
i
,

and the time to move from PE C to PE A is given by
l
l1
~V3

m
.
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The distance from C1;1 to PE C (denoted as l2) is equal to the number of elements

between C1;1 and PE C before any input element is sent into the array. Since the data-

input pattern is dictated by ~S3;1 and ~S3;2, the distance l2 from C1;1 to PE C again depends

on the relative signs of ~S3;1 and ~S3;2 with respect to ~k3. If ~S3;1 and ~S3;2 are in the same

direction as ~k3, then C1;1 is the �rst element of the input, and l2 = 1. Similarly, if ~S3;1

and ~S3;2 are in the opposite direction to ~k3, then C1;1 is the last element of the input, and

l2 = (N � 1)(
���~S3;1���+ ���~S3;2���). In general, l2 = (N � 1)

h
G ((~S3;1); (�~k3)) + G ((~S3;2); (�~k3))

i
,

and the time to reach PE C is equal to l2
j~v3j. Hence, Tload is given by Eq. (3.6).

By symmetry, we can verify easily that Tdrain, the time to drain the outputs from the

array, is equal to Tload.

Lemma 3.3 does not cover the case in which the input matrix is stationary. As pointed

out in Section 2.3.4, stationary inputs have to be preloaded in the processor array before

computation begins. Since there is only one input matrix C, we assume that preloading

takes a lower-bound time computed as the oor of the number of elements to be preloaded

divided by the maximum number of input ports. A similar assumption is made when the

�nal stationary results have to be drained. Even with this optimistic assumption, we did not

�nd any design with stationary inputs/outputs that outperforms designs with moving inputs.

Although this observation is not true in general, we like to point out that a schedule to preload

data in the processor array may not be governed by the data dependence relations, and that

a general preloading schedule may depend on speci�c design parameters (such as values of

the GPM parameters) and architecture constraints (such as bandwidth and memory).

For linear-array synthesis, the condition for data-input conicts given in Theorem 2.3

can be re�ned further as follows. Since all of the spacings are scalars, let s3;1 be
���~S3;1��� and

s3;2 be
���~S3;2���.

Theorem 3.1 Data-input conicts occur in the N-by-N input matrix C if and only if

s3;1

�
< N; and

s3;2

�
< N (3.8)
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where � = gcd(s3;1; s3;2) is the greatest common divisor of s3;1 and and s3;2.

Proof.

If Part. Since � = gcd(s3;1; s3;2), we have s3;1 = �:�2 and s3;2 = �:�1, where �1; �2 are

integers such that j�1j ; j�2j < N . Hence,

s3;1

�2
= s3;2

�1
; where 1 � j�1j ; j�2j � N � 1;

=)
�
s3;1 s3;2

� 264 �1

�
0

2

3
75 = 0; where �

0

2 = ��2; 1 � j�1j ; j�2j � N � 1

=) Data-input conicts in input (according to Theorem 2.3).

Only-if Part. From Theorem 2.3,

Data-input conicts in input C =) s3;1�2 = s3;2�1

=) s3;1

�1
= s3;2

�2

where �1; �2 2 f�(N�1); . . . ; (N�1)g (since L3 = 1; U3 = 1, L3�U3 = �(N�1); L3+U3 =

(N � 1)), and gcd(�1; �2) = 1 (if not, scale �1 and �2 by their greatest common divisor).

Since �1 and �2 are relatively prime,

s3;1

�1
= s3;2

�2
= � =) �1 =

s3;1

�
and �2 =

s3;2

�

=) s3;1

�
< N and s3;2

�
< N:

Corollary 3.1 For any feasible design, t3(s3;1 + s3;2) � N + 1.
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Proof. Let s
0

3;1 = t3s3;1 and s
0

3;2 = t3s3;2. From Eq. (3.3), s
0

3;1 and s
0

3;2 are integers. Assume

for contradiction that there exists a solution such that s
0

3;1 + s
0

3;2 = x, x < N + 1. Then

1 � s
0

3;1; s
0

3;2 � (x�1). If � = gcd(s3;1; s3;2) and �
0

= gcd(s
0

3;1; s
0

3;2), then �
0

= t3�. Therefore,

1 �
s
0

3;1

�
0

;
s
0

3;2

�
0

� (x� 1) � N

1 � s3;1

�
;
s3;2

�
� (x� 1) � N ( since

s
0

3;1

�
0

=
s3;1

�
):

Hence, according to Theorem 3.1, data-input conicts are present, and the solution is not

feasible. Hence, for all feasible solutions, s
0

3;1 + s
0

3;2 � N + 1.

3.1.2 Time-optimal and processor-optimal linear array designs

Table 3.1 shows the optimal linear-array designs found by the search procedure of GP-

M (see Section 2.4.3) in which the objective is to minimize Tcomp (computation time, not

including load and drain times) without bounds on #PE. In �nding these designs, t3 is

incremented before t1 or t2 in Step 10 of the search procedure. This is done as it increases

Tcomp by the smallest amount. Among all of the designs that have the minimum Tcomp,

designs with minimum #PE are chosen �rst, followed by designs that require the minimum

Tload and Tdrain. We list Tload, Tcomp, Tdrain, #PEs needed, and the CPU time used by the

search procedure running on a Sun Sparcstation 10/30. We also list the equivalent values of

schedule vector ~� and allocation matrix S of DM by solving Eqs. (2.2) and (2.4).

In a similar way, we �nd designs that optimize Tc (completion time, including load and

drain times) without bounds on #PE. (See Table 3.2.) Note that these designs have smaller

total completion times and larger #PEs than the corresponding designs in Table 3.1. For

instance, for N = 300, the completion time for the design optimizing Tc requires 7% less

completion time and 35% more PEs than the one optimizing Tcomp. We also list the equivalent

~� and S in DM for minimizing Tc.
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Table 3.1: Tcomp-optimal linear processor arrays for �nding transitive closures of N � N

matrices.

GPM: Tcomp-Optimal Linear-Array Designs

N Periods Distances Schedule Allocation Min Tcomp Designs SS10/30

(t1; t2; t3) (~k1;~k2;~k3) ~� S (Tload; Tcomp; Tdrain) #PE (sec )

3 (1,1,2) (0,�1,1) (4,1,1) (0,�1,0) (5,13,5) 3 -

4 (1,1,3) (0,�1,1) (5,1,1) (0,�1,0) (10,22,10) 4 -

8 (1,1,5) (0,�1,3) (7,1,1) (2,�1,0) (13,64,13) 22 -

16 (1,2,5) (0,�2,3) (8,2,1) (1,�2,0) (51,166,51) 46 -

32 (1,3,6) (0,�3,5) (10,3,1) (2,�3,0) (113,435,113) 156 -

64 (1,5,7) (0,�5,6) (13,5,1) (1,�5,0) (369,1198,369) 379 1

100 (1,5,11) (0,�5,9) (17,5,1) (4,�5,0) (606,2278,606) 892 5

200 (1,8,13) (1,�8,12) (22,8,1) (5,�8,1) (1743,6170,1743) 2787 27

300 (1,9,18) (0,�9,17) (28,9,1) (8,�9,0) (2851,11363,2851) 5084 88

Table 3.2: Tc-optimal linear processor arrays for �nding transitive closures of N�N matrices.

GPM: Tc-Optimal Linear-Array Designs

N Periods Distances Schedule Allocation Min Tc Designs SS10/30

(t1; t2; t3) (~k1;~k2;~k3) ~� S (Tload; Tcomp; Tdrain) #PE (sec )

3 (1,2,1) (0,�1,1) (4,2,1) (0,�1,0) (3,15,3) 3 -

4 (1,1,5) (0,1,4) (7,1,1) (5,1,0) (2,28,2) 19 -

8 (1,1,5) (0,1,�4) (7,1,1) (�3,1,0) (10,64,10) 29 -

16 (1,2,6) (0,�1,5) (9,2,1) (4,�1,0) (19,181,19) 76 -

32 (1,3,9) (0,�1,8) (13,2,1) (7,�1,0) (36,528,36) 249 2

64 (1,4,14) (0,�1,13) (19,4,1) (12,�1,0) (69,1513,69) 820 12

100 (1,4,15) (0,�3,14) (20,4,1) (11,�3,0) (320,2476,320) 1387 33

200 (1,9,21) (0,�1,20) (31,9,1) (19,�1,0) (210,8160,210) 3981 206

300 (1,11,26) (0,�1,25) (38,11,1) (24,�1,0) (312,14951,312) 7476 609
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The results in Tables 3.1 and 3.2 demonstrate that GPM, based on the equivalence

between GPM and DM as shown in Eqs. (2.2) and (2.4), can serve as a powerful tool to �nd

optimal designs in DM.

It is important to point out that the objective function used (whether to minimize Tcomp

or Tc) depends on the application. If the linear processor array is used to evaluate the

transitive closure of one matrix, then minimizing Tc will be important. On the other hand, if

the processor array is used for pipelined evaluation of transitive closures of multiple matrices,

then minimizing Tcomp may be important.

If the objective is to minimize #PE in the linear processor array, then Theorem 3.2

characterizes the #PE-optimal design.

Theorem 3.2 The combinations of parameters (t1; t2; t3) = (1; 1; N � 1) and (~k1; ~k2; ~k3) =

(0;�1;�1) or (�1; 0;�1) result in linear processor arrays with a primary objective of min-

imizing the number of PEs, and a secondary objective of minimizing the computation time.

Proof. We show that the parameter values de�ned in Theorem 3.2 minimize the completion

time of a #PE-optimal linear processor array. From Lemma 3.2, #PE = (N � 1)(
���~k1��� +���~k2���+ ���~k1 + ~k2 + ~k3

���) + 1. Hence,

���~k1���+ ���~k2���+ ���~k1 + ~k2 + ~k3
��� � 1; else #PE = 1 and the computation is serial; (3.9)

���~k1���+ ���~k2���+ ���~k1 + ~k2 + ~k3
��� = 1; for minimum PE-count with #PE = N: (3.10)

The table below lists all of the possible values of displacements and spacings for a #PE-

optimal linear processor array (#PE = N) with periods ~T = (t1; t2; t3)t and
���~k1��� + ���~k2��� +���~k1 + ~k2 + ~k3

��� = 1.

Case ~k1 ~k2 ~k3 s3;1 s3;2

1 0 0 �1 t1
t3

t2
t3

2 0 �1 �1 t1
t3

t2+t3
t3

3 �1 0 �1 t1+t3
t3

t2
t3

51



Case 1. From Corollary 3.1, t1+t2 � N+1. For minimum Tcomp, t3 = 1 and t1+t2 = N+1.

Hence, ~T = (t1; t2; 1)t and K = (0; 0;�1)t, and Tcomp is equal to (N � 1)(2N + 3) + 1.

Case 2. From Corollary 3.1, we have t1 + t2 + t3 � N + 1, and

Tcomp = (N � 1)(2 t1 + 2 t2 + t3) + 1: = (N � 1)(2 (t1 + t2 + t3)� t3) + 1

Therefore, for minimum Tcomp, t1+ t2+ t3 should be minimized and t3 should be maximized.

The maximum value of t3 = N � 1 as t1 � 1 and t2 � 1. Hence, Tmin
comp = (N � 1)(N +3)+ 1

Case 3. Similar to Case 2, the best computation time Tmin
comp = (N � 1)(N + 3) + 1.

Therefore, the minimum computation time for the minimum-processor designs occur for

Cases 2 and 3 above.

Table 3.3 shows the #PE-optimal designs obtained by GPM as well as those obtained

by Lee and Kedem (LK) [40] and Shang and Fortes (SF) [2]. In this table, we show the load

and drain times, computation times, and #PEs for designs derived by these three methods.

Vector ~�, matrix S, and the corresponding parameters in GPM are summarized as follows.

Method ~� S (t1, t2, t3) (~k1, ~k2, ~k3)

LK [2N � 1, 2, 1]t [0, 1, 1]t (1, 2, 2N � 4) (1, 1, �2)

SF [N , 1, 1]t [0, 0, �1]t (1, 1, N � 2) (�1, 0, 1)

GPM [N + 1, 1, 1]t [0, 0, �1]t (1, 1, N � 1) (�1, 0, 1)

Table 3.3 shows that both the SF and GPM designs require the minimum number of

PEs. The SF designs, however, were developed based on di�erent assumptions. According

to Lemma 3.1 and the table above, the SF designs have a computation time Tcomp = (N �
1) (N + 2) + 1. This computation time is lower than that of the GPM designs characterized

by Theorem 3.2. This di�erence is attributed to the fact that Shang and Fortes assumed

that contention must be avoided only after the �rst use of a variable and before its last use

or generation. This is a valid assumption for systems with fast I/O (or where each PE has

its own I/O), or in cases in which inputs are preloaded and outputs need not be drained or

are postdrained. In GPM, we consider both contentions in computations as well as in data
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Table 3.3: #PE-optimal linear processor arrays for �nding transitive closures of N � N

matrices. (Parameters for GPM are shown in Theorem 3.2.)

Designs by LK [40] Designs by SF [2] Designs by GPM
N (Tload; Tcomp; Tdrain) #PE (Tload; Tcomp; Tdrain) #PE (Tload; Tcomp; Tdrain) #PE

3 (5, 17, 5) 5 (3, 11, 3) 3 (5, 13, 5) 3
4 (13, 31, 13) 7 (7, 19, 7) 4 (10, 22, 10) 4
8 (85, 127, 85) 15 (43, 71, 43) 8 (50, 78, 50) 8

16 (421, 511, 421) 31 (211, 271, 211) 16 (226, 286, 226) 16
32 (1861, 2047, 1861) 63 (931, 1055, 931) 32 (962, 1086, 962) 32
64 (7813, 8191, 7813) 127 (3907, 4159, 3907) 64 (3970, 4222, 3970) 64
100 (19405, 19999, 19405) 199 (9703, 10099, 9703) 100 (9802, 10198, 9802) 100
200 (78805, 79999, 78805) 399 (39403, 40199, 39403) 200 (39602, 40398, 39602) 200
300 (178205, 179999, 178205) 599 (89103, 90299, 89103) 300 (89402, 90598, 89402) 300

links. Excluding designs that have computational and data-link conicts results in designs

that require slightly longer load, drain, and computation times.

To illustrate the point above, we compute using Eq. (3.3) the spacings used in the SF

design [2]: s3;1 = �(N � 1)=(N � 2) and s3;2 = �1=(N � 2)). These values of spacings result

in data-input conicts between tokens (C1;j and CN;j�1), j = 2; 3; . . . ; N , of input matrix C

(Theorem 3.1).

The space-time diagrams of two linear processor arrays, one optimizing Tcomp and the

other optimizing Tc, for N = 3, are shown in Figures 3.2 and 3.3, respectively.

The design in Figure 3.2 optimizes Tcomp and has parameters: (t1; t2; t3) = (1; 1; 2) and

(~k1; ~k2; ~k3) = (0; 1;�1). This design minimizes both Tcomp and #PE, and therefore, mini-

mizes any objective of the form #PEx�T y
comp for x; y � 1. The space-time diagram shows

the execution times and locations of all of the index points in the domain of the algorithm.

The entire diagram can be derived recursively if the distance and time between index points

separated by basis vectors (0; 0; 1)t = ~d1; (0; 1; 0)t = ~d2; (1; 0; 0)t = ~d1 + ~d2 + ~d3 are known.

For example, consider the execution of two index points (1; 1; 1) and (2; 1; 1) in Figure 3.2

separated by the vector (1; 0; 0) = ~d1 + ~d2 + ~d3. From the de�nition of the periods, the time

di�erence between the execution of these two index points is t1 + t2 + t3 = 1 + 1 + 2 = 4.

Similarly, the displacement between the PEs executing the two index points is given by

~k1 + ~k2 + ~k3 = 0 + 1 + (�1) = 0, Hence, in Figure 3.2, they are executed by the same
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C11  C12  C13  C21  C22  C23  C31  C32  C33

8

1

2

3

4

5

6

7

9

10

11

12
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3 C33
1 C33
1 C33

2 C11
3 C12
3 C21

1 C11
1 C11
1 C11

1 C12
1 C11

1 C13
1 C11

3 C31
1 C33
2 C31

3 C32
1 C33
3 C32

2 C23
1 C22
2 C23

2 C21
1 C22
3 C21

2 C22
1 C22
1 C22

2 C12

3 C13

1 C23
2 C21
3 C13

1 C21
2 C21
1 C11

1 C22
2 C21
2 C22

3 C13
2 C13
1 C33

3 C11
2 C13
2 C31

3 C12
2 C13
3 C32

2 C32
2 C32
1 C22

2 C33
2 C32
2 C23

2 C31
2 C32
3 C21

Index (2,3,2) executes

with inputs  C13, C12, C23

1 C32
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Figure 3.2: Linear processor array for �nding the transitive closure of a 3 � 3 matrix using

parameters (t1; t2; t3) = (1; 1; 2) and (~k1; ~k2; ~k3) = (0;�1; 1). The array is optimal
for minimum Tcomp, minimum #PE, and minimum #PEx�T y

comp, x; y � 1. The

PE used is the same as in Lee and Kedem's design [3].
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Figure 3.3: Linear processor array for �nding the transitive closure of a 3 � 3 matrix using

parameters (t1; t2; t3) = (1; 2; 1) and (~k1; ~k2; ~k3) = (0;�1; 1). The array is optimal
for minimum Tc, minimum #PE, and minimum #PEx�Tcy, x; y � 1. The PE
used is the same as in Lee and Kedem's design [3].
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processor PE1 at times 1 and 5, respectively. In a similar fashion, the entire space-time

diagram can be derived mechanically from a knowledge of the periods and displacements.

The design in Figure 3.3 has parameters (t1; t2; t3) = (1; 2; 1) and (~k1; ~k2; ~k3) =

(0; �1; 1). It uses less load and drain times (3 units each), but its computation time Tcomp is

higher than that in Figure 3.2. It minimizes both Tc and #PE, and therefore, minimizes any

objective of the form #PEx � T y
c for x; y � 1. Note that the load and drain times are not

shown in these diagrams. Further, for correct execution of the Floyd-Warshall algorithm,

control signals are needed to govern the index-dependent assignments performed by the PEs

in the array. These assignments are given in Tables I and II in reference [3].

3.1.3 Processor-time trade-o�s

Comparing the results in Tables 3.2 and 3.3, we found, for instance, that for a problem of

size of 200, the Tc-optimal design is 13.94 times faster than the #PE-optimal design in terms

of completion time, and uses 19.91 times more PEs than the #PE-optimal design. (The

Tc-optimal design for N = 200 requires 8580 time units and 3981 PEs, whereas the #PE-

optimal design requires 119602 time units and 200 PEs.) A designer might be unwilling to

settle for either the large number of PEs required in the minimum-time design or the long

completion time of the minimum-processor design. In realistic design situations, there may

be bounds on the number of processors or the completion time or both. Hence, a possible

objective could be to have as few processors as possible, so long as the time is within a preset

upper limit, T ub
c (or T ub

comp), or to minimize Tc (or Tcomp) with #PE less than a given upper

bound #PEub.

In the following discussion, let Tmin
comp and #PEmax be, respectively, the completion time

and #PE of the minimum-Tcomp design. Designs with #PE � #PEmax would not be

useful as their completion times have to be at least Tmin
comp. On the other hand, let Tmax

comp and

#PEmin be, respectively, the computation time and #PE of the minimum-processor design

(from Theorem 3.2 and Lemma 3.2, #PEmin = N). Again, there is no bene�t in obtaining

designs with Tcomp � Tmax
comp, as the number of PEs cannot be reduced below #PEmin. In

this case, we are interested in �nding designs with completion time greater than Tmin
comp and

#PE less than #PEmax.
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Figure 3.4 shows how #PE varies with Tcomp for 3 di�erent problem sizes: N = 100, 200,

and 300. The y-axis #PE is normalized by #PEmax, and the x-axis Tcomp is normalized

by Tmax
comp. This let us compare the di�erent problem sizes uniformly on the same scale.

The stepped curves are obtained by bounding Tcomp and �nding the #PE-optimal designs

for speci�c recurrence sizes. These curves are stepped because there are only a small and

�nite number of processor-array con�gurations that can satisfy the given time constraints.

If the goal is to �nd the #PE-optimal designs, then we will have a small number of array

con�gurations; for each con�guration, we will select the one with the minimum computation

time.

Given the bound T ub
comp (respectively, #PE

ub) the designer can use Figure 3.4 to �nd the

minimum #PE (respectively, Tcomp) required, and decide (possibly from a cost perspective)

if it is acceptable. Again, the designer can exploit the initial steep decline in the plots to

choose an alternative design that trades performance for cost. For instance, the minimum

#PE for N = 200 drops by 43% for only a 19% increase in computation time.

If both Tcomp and #PE are bounded from above, then the design with the minimum

#PE for a given time bound is determined using Figure 3.4. First, a horizontal line is

drawn across the graph for the desired bound on #PE. The intersection between this line

and the stepped curve represents the minimum Tcomp needed for any feasible design. If this

minimum Tcomp is less than the desired Tcomp, then a feasible design can be obtained by the

procedure discussed in Section 2.4.3. This now represents the best design under both time

and processor constraints.

Another observation from Figure 3.4 is that the plots for larger N decrease more rapidly

than those for smaller N . Hence, for larger N , there is a substantial reduction in #PE (re-

spectively, Tcomp) for a relatively small increase of the computation time (respectively, #PE)

from the optimum. Hence, for large N , there are more attractive alternatives than the time-

or #PE-optimal designs.

Figure 3.5 shows a similar plot as in Figure 3.4 except that we depict the di�erence

between trade-o�s obtained on Tc and #PE versus trade-o�s obtained on Tcomp and #PE.

Two sets of curves are shown, one for designs that minimize Tcomp, and the other for designs

that minimize Tc, for N equal to 100 and 200, respectively. The y-axis of these curves is
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normalized with respect to #PE when Tc is minimum (since these designs require more PEs

and less Tc), and the x-axis is normalized with respect to Tc when Tcomp = Tmax
comp. These

graphs show the di�erence between designs obtained by di�erent objectives. Given a bound

T ub
c , we can see that the number of processors obtained by minimizing Tc is less than or

equal to the number of processors obtained by minimizing Tcomp.

3.2 Three-dimensional Cube Graph Algorithms: Matrix Product

Three-dimensional cube graph algorithms form an important fundamental class of prob-

lems in signal and image processing. The dependence graph for 3-D cube graph algorithms

is an N � N � N cubical mesh. Beyond matrix product, Ibarra and Palis [53] point out

that the cubical mesh is the dependence graph for a variety of recurrences in three variables

(e.g., �nding the longest common subsequence over three strings). Other computations

include L-U factorization [6], a three-pass transitive closure [54], matrix triangularization,

matrix inversion [52], and two-dimensional tuple comparison [42]. A special case of the

59



matrix-product is the matrix-vector product, which models FIR-�ltering, convolution, and

polynomial multiplication [42].

In this section we synthesize a linear processor array for computing the product of

two N �N matrices. The basic operation in this algorithm is the multiply-and-accumulate

computation, and most commercially available DSP microprocessors are evaluated on the

number of multiply-and-accumulate operations they can perform per second. The recur-

rences describing the matrix product (Example 1.3), parameter de�nitions (Example 2.1)

and constraints on parameters (Example 2.3) are indicated in Chapter 2. A total of 8 rel-

evant parameters are de�ned: 3 periods t1 (C), t2 (A), t3 (B), 3 displacements ~k1 (C), ~k2

(A), ~k3 (B), and 6 spacings. For a linear array, all of the parameters are scalars. The six

spacings are given by

C : s1;2 =
t1k2 � t2k1

t1
; s1;3 =

t1k3 � t3k1

t1
(3.11)

A : s2;1 =
t2k1 � t1k2

t2
; s2;3 =

t2k3 � t3k2

t2
(3.12)

B : s3;1 =
t3k1 � t1k3

t3
; s3;2 =

t3k2 � t2k3

t3
: (3.13)

We illustrate in this section �ve formulations of the optimization of PAs: a) Tcomp-optimal

designs without bound on #PE, b) Tc-optimal designs without bound on #PE, c) #PE-

optimal designs without bound on Tc or Tcomp, d) optimal designs with speci�c bounds on

Tcomp or #PE, and e) optimal designs with speci�c bounds on Tc or #PE.

3.2.1 Performance attributes

The attributes of interest are Tcomp (computation time), Tload (load time), Tdrain (drain

time), #PE (processor count), and Tc (completion time), where Tc = Tload + Tcomp + Tdrain.

For the case of computing the matrix product in a linear PA, Tcomp, #PE, Tload and Tdrain

are given below.
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(1,1,1) (1,N,N)(1,1,N)(N,1,1)

AD B C

~k2~k1~k3

Figure 3.6: PE allocation with ~k1; ~k2 � 0 and ~k3 � 0.

Lemma 3.4 The computation time Tcomp without load and drain times for �nding the prod-

uct of two N �N matrices is

Tcomp = (N � 1)(t1 + t2 + t3) + 1: (3.14)

Proof. The critical path in the execution is as follows:

(1; 1; 1)
(N�1)t1�! (1; 1; N)

(N�1)t2�! (1; N;N)
(N�1)t3�! (N;N;N):

Thus, Tcomp is (N � 1)(t1 + t2 + t3) + 1.

Lemma 3.5 #PE, the number of processor for computing the product of two N�N matrices

on a linear processor array is given by

#PE = (N � 1)(
���~k1���+ ���~k2���+ ���~k3���) + 1: (3.15)

Proof. Consider the displacements ~k1, ~k2, and ~k3. Two of these 3 displacements should be

in the same direction, since the array is 1-D. Assume that ~k1 and ~k2 are positive displace-

ments, i.e., they correspond to velocities owing to the right (refer to Figure 3.6). Let A be

the PE where the computation indexed by (1; 1; 1) occurs. Therefore, computation (1; 1; N)

is executed at PE B that is at a distance (N � 1)
���~k1��� from PE A. Similarly, computation

(1; N;N) is executed at PE C, that is, (N � 1)
���~k2��� PEs to the right of B. On the other
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hand, computation (N; 1; 1) is executed at PE D that is at a distance of (N � 1)
���~k3��� to the

left of PE A (since ~k3 corresponds to the left moving variable). All other computations in

the domain are executed by PEs between C and D. Therefore, the total number of PEs is

(N � 1)(
���~k1���+ ���~k2���+ ���~k3���) + 1.

The load and drain times are given as follows. Note that the C matrix does not have to

be loaded, and the A and B matrices do not have to be postdrained.

Tload = Tload(A) + Tload(B); (3.16)

Tdrain = Tdrain(C): (3.17)

The load time Tload(A) for nonstationary matrix A is given below in Lemma 3.6. The

load times Tload(B) and Tdrain(C) for nonstationary inputs B and C are given similar to

Eq. (3.19). If some ~ki = 0, for i = 1; 2; 3, then that input (or output) is stationary and

preloaded into (or postdrained from) the processor array.

Lemma 3.6 The loading time, Tload(A), for nonstationary input A (i.e., ~k2 6= 0) for com-

puting the product of two N �N matricex A and B is given by

Tload(A) = 1 + (N � 1)

�
G (~S2;1; �~v2) + G (~S2;3; �~v2)

�
j~v2j

(3.18)

+(N � 1)

2
666
t3
n
G (~k1; ~k2) + G (~k2; ~k2) + G (~k3; ~k2)

o
���~k2���

3
777

where

G(~x; ~y) =

8>>><
>>>:
j~xj if ~x, ~y are in opposite directions

0 otherwise.

(3.19)

Proof. Similar to the proof of Lemma 3.3 where A is used instead of C, and ~k3 is substi-

tuted for ~k1 + ~k2 + ~k3.
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For a linear PA all of the parameters are scalars. The condition for data-input conict

for each of the three variables C, A, B can be re�ned similar to Theorem 3.1. The re�ned

conditions are given in Theorem 3.3.

Theorem 3.3 Data-input conicts occur in the N-by-N input matrix X (X can be C;A;

or B) if and only if

s1

�
< N; and

s2

�
< N (3.20)

where � = gcd(s1; s2) is the greatest common divisor of s1 and and s2, and s1; s2 are the

two spacings associated with the appropriate input matrix X (s1 = s1;2; s2 = s1;3 for C,

s1 = s2;1; s2 = s2;3 for A, s1 = s3;1; s2 = s3;2 for B).

Proof. Similar to the proof of Theorem 3.1.

Corollary 3.2 captures the equivalent of Corollary 3.1 for the transitive-closure example.

Corollary 3.2 In any feasible design, for an input X (X can be C, A, or B) with period ti,

displacement ~ki, (i = 1; 2; or 3), and spacings s1; s2 (s1 = s1;2; s2 = s1;3 for C, s1 = s2;1; s2 =

s2;3 for A, s1 = s3;1; s2 = s3;2 for B),

ti(s1 + s2) � N + 1; if ~ki 6= 0: (3.21)

Proof. Similar to the proof of Corollary 3.1 using Theorem 3.3

3.2.2 Time-optimal linear array designs

Tables 3.4 and 3.5 show the optimal linear designs found by the search procedure of GPM.

The objectives used are to minimize Tcomp and Tc, respectively. In �nding these designs, t3 is

incremented before t1 or t2 in Step 10 of the search procedure presented in Section 2.4 (refer

to (3.14)). This is done as it increases Tcomp by the smallest amount. Note that the designs

were developed without bounds on #PEs. In these tables, we list Tload, Tcomp, Tdrain, #PEs
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Table 3.4: Tcomp optimal linear arrays for product of two N �N matrices.

GPM: Tcomp-Optimal Linear PA Designs
N Periods Distances Schedule Allocation Min Tcomp Designs SS10/30

(t1; t2; t3) (~k1;~k2;~k3) ~� S (Tload; Tcomp; Tdrain) #PE (sec )

3 (1,1,2) (0,�1,1) (2,1,1) (1,�1,0) (5,9,4) 5 -
4 (1,2,2) (0,�1,1) (2,2,1) (1,�1,0) (7,16,6) 7 -

8 (1,3,3) (0,�1,2) (3,3,1) (2,�1,0) (43,50,23) 22 -
16 (1,3,4) (0,�2,3) (4,3,1) (3,�2,0) (69,121,90) 76 -
32 (1,5,5) (0,�3,4) (5,5,1) (4,�3,0) (208,342,351) 218 -
64 (1,6,7) (0,�5,6) (7,6,1) (6,�5,0) (455,883,1391) 694 1
100 (1,7,9) (0,�6,7) (9,7,1) (7,�6,0) (810,1684,3370) 1288 6
200 (1,11,11) (0,�9,10) (11,11,1) (10,�9,0) (2434,4578,13415) 3782 99
300 (1,12,14) (0,�11,13) (14,12,1) (13,�11,0) (4242,8074,30132) 7177 101

Table 3.5: Tc-optimal linear PAs for product of two N �N matrices.

N Periods Distances Schedule Allocation Min Tc Designs SS10/30

(t1; t2; t3) (~k1;~k2;~k3) ~� S (Tload; Tcomp; Tdrain) #PE (sec )

4 (1,2,2) (0,�1,1) (2,2,1) (1,�1,0) (7,16,6) 7 -
8 (1,1,5) (0,�1,3) (5,1,1) (3,�1,0) (22,50,23) 29 1
16 (1,3,4) (0,�2,3) (4,3,1) (3,�2,0) (69,121,90) 76 18

32 (1,4,7) (0,�3,4) (7,4,1) (4,�3,0) (167,373,351) 218 1161
35 (1,4,7) (0,-3,4) (7,4,1) (4,-3,0) (183.0,409.0,418.0) 239.0 1781

36 (5,4,6) (4,3,-5) (6,4,5) (-5,3,4) (295.0,526.0,220.0) 421.0 1893
64 (6,5,8) (5,4,�7) (8,5,6) (�7,4,5) (649,1198,531) 1009 176
100 (7,7,9) (6,5,�8) (9,7,7) (�8,5,6) (1249,2278,925) 1882 483

200 (9,8,14) (8,7,�13) (14,8,9) (�13,7,8) (3216,6170,2912) 5573 3400
300 (11,11,16) (10,9,�15) (16,11,11) (�15,9,10) (6061,11363,4935) 10167 10903

needed, the equivalent ~� and S in DM, and the CPU time used by the search procedure

running on a Sun Sparcstation 10/30. Thus, by establishing the equivalence between DM

and GPM, GPM serves as a powerful tool to �nd optimal designs in DM (Figure 2.1).

Note that the designs in Table 3.4 require C to be stationary (as ~k1 = 0), and A and

B moving. These designs are found by optimizing Tcomp and are not a�ected by the values

of Tdrain. We further note that the designs in Table 3.5 are based on optimizing Tc. As a

result, they have less total completion time and more #PEs than the corresponding designs

in Table 3.4.

Table 3.5 shows that for N up to 35, the optimal designs for Tc have stationary output

matrix C. For N > 35, the optimal designs to minimize Tc have moving input and output

matrices. To arrive at this conclusion, we have to compute the lower and upper bounds of
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Tdrain (T lb
drain and T ub

drain) when C is stationary. Given N2 elements in the PA to be drained,

we assume that each PE in the PA has 3 input and 3 output ports (one each for A, B, C).

Hence, T lb
drain can be estimated as dN2

3
e. To compute T ub

drain we develop an optimal drain

schedule (given in Section 3.2.3) for elements of C when computation in the linear array

is completed. (It is possible to start draining elements of C even before computations in

the PA are completed; however, the resulting lower and upper bounds will be much more

complex and will be case dependent). For N � 35, we found that designs with stationary C

have smaller Tc even when T ub
drain is used as compared to the best designs when C is moving.

On the other hand, for N > 35, designs with moving C have smaller Tc as compared to

designs with stationary C even when T lb
drain is used. These lead us to conclude that C should

be stationary for N � 35 and moving for N > 35.

It is important to point out that the objective used (whether to minimize Tcomp or Tc)

depends on the application. If the linear PA is used to evaluate a single matrix product,

then minimizing Tc will be important. On the other hand, if the PA is used for pipelined

evaluation of matrix products, then minimizing Tcomp may be important.

3.2.3 Load and drain times for stationary data in linear arrays

For stationary variables, the assumption is to preload (respectively, postdrain) the tokens

of the stationary input (respectively, output) so that the computation phase can proceed

without any further delays. In this subsection, an optimal postdraining (or preloading)

schedule for stationary data on linear arrays is presented. This schedule is used to compute

the upper bounds of load and drain times of stationary inputs in Tables 3.4 and 3.5. The

precise statement of the problem and the proposed algorithm for computing the optimal

schedule are described below. The discussion below is with respect to the draining of a

stationary matrix from a linear array. The results would be immediately applicable to the

case of preloading data into a linear array.

Problem Statement: Given

� a linear array of l processing elements, PE1; PE2; . . . ; PEl, with two boundary PEs,

PE1 and PEl; k input ports and k output ports in each PE; of the k output ports in
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Figure 3.7: Draining X =
Pl

i=1 xi tokens distributed in a linear array. Each PE has k1 left
output ports and k2 right output ports, and all data have to be drained out
through the boundary PEs: PE1 and PEl.

PEi; i = 1; . . . ; l, pL ports connect PEi to PEi�1, and pR ports connect PEi to PEi+1,

where pL + pR = k (Figure 3.7) .

� a data distribution of x1; x2; . . . ; xl data tokens in PE1; PE2; . . . ; PEl, respectively.

The goal is to �nd a drain schedule to drain all of the X =
Pl

i=1 xi data tokens out of

the linear array in minimum time. Another assumption made in the proposed algorithm to

compute the optimal schedule is that each PE has unbounded storage. A drain schedule for

a token d is the trajectory of d from the PE it resides in, to an external port in one of the

two boundary PEs.

Optimal Schedule

The intuition is to �nd a line dividing the data tokens in the linear array such that all

of the tokens to the left of the line are drained left from PE1, and the tokens to the right

of the line are drained right from PEl. The optimal schedule to drain the X data tokens in

the linear array is given as follows.
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Schedule Opt:

� Partition the data tokens into two sets L and R, such that set L contains all the tokens

in PE1; PE2; . . . ; PEb�1 and xb1 tokens from PEb, and set R contains all the tokens

in PEb+1; PEb+2; . . . ; PEl and xb2 tokens from PEb (Figure 3.7). This division is done

such that xb1 + xb2 = xb and the total drain time Tdrain = max(Tdrain(L); Tdrain(R)) is

minimized, where Tdrain(L), Tdrain(R) are the time to drain set L and time to drain set

R, respectively. Procedure 3.1 describes an algorithm that given a data distribution

of x1; x2; . . . ; xl, �nds the optimal partitioning of the X =
Pl

i=1 xi data tokens into

the sets L and R such that Tdrain(L) = Tdrain(R) + �; � = 0;�1 (since it minimizes

max(Tdrain(L); Tdrain(R))).

� Drain all the tokens of set L from PE1 in a greedy fashion without direction changes,

and drain all tokens of set R from PEl in a greedy fashion without direction changes.

In the greedy schedule, PEi, 1 � i � b, whose tokens belong to set L, transfers as

many tokens as possible through its pL ports in each cycle, i.e., max(xi; pL) tokens are

transferred left in each cycle. Similarly, PEj, b � j � l, transfers max(xj; pR) tokens

through its pR ports in each cycle.

Procedure 3.1

Input: Data distribution x1; x2; . . . ; xl, where xi is the number of tokens in PEi with pL left

output ports and pR right output ports (Figure 3.7).

Output: Values b, xb1 and xb2 such that

� set L contains all of the tokens in PE1; PE2; . . . ; PEb�1and xb1 tokens from PEb,

� set R contains all of the tokens in PEb+1; PEb+2; . . . ; PEl and xb2 tokens from PEb,

� Tdrain(L) = Tdrain(R) + �, � = 0;�1.

Algorithm: To �nd the value of b, the following four arrays are de�ned.

� T imeLeft(i) is the time at which the last token of PEi is drained out of PE1, when

all of the tokens in PE1; PE2; . . . ; PEi are drained left from the pL ports of PE1.
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� T imeRight(i) is the time at which the last token of PEi is drained out of PEl, when

all of the tokens in PEi; PEi+1; . . . ; PEl are drained right from the pR ports of PEl.

� RemLeft(i) is the di�erence between pL and the number of tokens drained out of PE1

at time step T imeLeft(i), when all of the tokens in PE1; . . . ; PEi are drained left from

PE1. Hence, RemLeft(i) is the maximum number of tokens that can be added to PEi

without increasing T imeLeft(i).

� RemRight(i) is the di�erence between pR and the number of tokens drained out of

PEl at time step T imeRight(i), when all of the tokens in PEi; . . . ; PEl are drained

right from PEl. Hence, RemRight(i) is the maximum number of tokens that can be

added to PEi without increasing T imeRight(i).

The two arrays, T imeLeft(i) and RemLeft(i), i = 1; 2; . . . ; l, are computed as shown in

the pseudo-code below.

T imeLeft(0) = RemLeft(0) = 0
Empty := 1
for i = 1 to l step 1

if (xi = 0) then
Empty := Empty + 1
T imeLeft(i) := T imeLeft(i� 1)
RemLeft(i) := RemLeft(i� 1)

else
if (T imeLeft(i� 1) � Empty) then

T imeLeft(i) := T imeLeft(i� 1) +
l
xi
pL

m
RemLeft(i) := xi mod pL

else

T imeLeft(i) := T imeLeft(i� 1) +
l
xi�RemLeft(i�1)

pL

m
RemLeft(i) := (xi �RemLeft(i� 1)) mod pL

end-if
Empty := 1

end-if
end-for

The variable Empty for any given value of i corresponds to the distance between PEi and

the nearest nonempty PE to the left of PEi, i.e., Empty is the smallest k such that k > 0

and xi�k > 0; xi�k+1 = . . . == xi�1 = 0. T imeLeft(i�1) is the time at which the last token
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of PEi�Empty went out of PE1, and (pL �RemLeft(i� 1)) is the number of tokens drained

from the pL output ports of PE1 at time T imeLeft(i� 1). Hence, if there are fewer than

T imeLeft(i�1) empty PEs before PEi, then RemLeft(i�1) tokens in PEi can be drained

along with the set of tokens drained at time T imeLeft(i� 1).

Similarly, the pseudo-code to compute the two arrays, T imeRight(i), RemRight(i) can

be obtained by replacing T imeLeft by T imeRight, RemLeft by RemRight, i by (l+1� i),
pL by pR in the above pseudo-code with the initialization T imeLeft(l+ 1) = RemLeft(l +

1) = 0. The variable Empty now corresponds to the distance between PEi and the nearest

nonempty PE to the right of PEi, i.e., Empty is the smallest k such that k > 0 and

xi+k > 0; xi+1 = . . . = xi+k�1 = 0.

Note that T imeLeft(i) is a nondecreasing function of i, and T imeRight(i) is a nonin-

creasing function of i. The value of b is equal the value of i such that

T imeLeft(i� 1) � T imeRight(i) and T imeLeft(i)> TimeRight(i+ 1): (3.22)

Since T imeLeft(i) and T imeRight(i) are monotone functions of i, b will be uniquely de�ned.

Once b is known, xb1 is found by equating the time to drain set L (Tdrain(L)) and time to

drain set R (Tdrain(R)) (Eq. (3.23)). Since xb1 is an integer, Eq. (3.23) is solved for a real

value which is then relaxed to the next integer. Let e1 be the distance between PEb and

the nearest nonempty PE to the left of PEb (xb�e1 > 0; xb > 0; xb�e1+1 = . . . = xb�1 = 0),

and e2 be the distance between PEb and the nearest nonempty PE to the right of PEb

(xb+e2 > 0; xb > 0; xb+1 = . . . = xb+e2�1 = 0). The following equation is solved for x
0

b1 in the

set of real numbers:

T imeLeft(b� 1) +
y1

pL
= T imeRight(b+ 1) +

y2

pR
(3.23)

y1 =

8>>><
>>>:

x
0;
b1 if T imeLeft(b� 1) � e1

x
0

b1 �RemLeft(b� 1); else

(3.24)

y2 =

8>>><
>>>:

xb � x
0

b1; if T imeRight(b+ 1) � e2

xb � x
0

b1 �RemRight(b+ 1); else

(3.25)
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The values of xb1 and xb2 are given by

xb1 =
l
x
0

b1

m
(3.26)

xb2 = xb � xb1: (3.27)

It is easily veri�ed that the above integral value of xb1 leads to jTdrain(L)� Tdrain(R)j � 1,

where Tdrain(L) = T imeLeft(b� 1) + y1
pL

and Tdrain(R) = T imeRight(b+ 1) + y2
pR
.

Set L is de�ned as all of the tokens in PE1; . . . ; PEb�1, and xb1 tokens in PEb. Set

R is de�ned as all of the tokens in PEb+1; . . . ; PEl, and xb2 tokens in PEb. Since, xb1 =

dx0

b1e, Tdrain(L) = T imeLeft(b � 1) + d y1
pL
e, Tdrain(R) = T imeRight(b + 1) + d y2

pR
e, and

jTdrain(L)� Tdrain(R)j � 1 (Eq. (3.23)).

The running time of the above algorithm is O(l), as it takes O(l) time to compute each

of the four arrays, O(l) to �nd b using arrays T imeLeft(i) and T imeRight(i) (Eq. (3.22)),

and O(1) time to �nd xb1 and xb2 (Eq. (3.23)). Hence, the algorithm is optimal as it takes


(l) time to read the l numbers, x1; . . . ; xl.

The following lemmas are used to prove that the proposed schedule Opt minimizes the

total drain time.

Lemma 3.7 There exists an optimal drain schedule in which the trajectory of each token to

the boundary PEs is not a zig-zag path, i.e., there are no direction changes.

Proof. Consider an optimal schedule in which some data token d in PEi moves in a zig-zag

path from PEi to a boundary PE PEl. Let PEj , 1 � j � l, be a PE which is visited twice

by token d traveling in opposite directions as it moves to PEj from PEl (PEj must exist

else the path is not zig-zag). Therefore, the path of d is PEi ! PEj ! PEk ! PEj ! PEl

as depicted in Figure 3.8. Let ti be the time at which d starts from PEi, tj be the time at

which d enters PEj �rst, t
0

j be the time at which d reenters PEj, and tl be the time at which

it leaves the array from PEl, such that ti � tj < t
0

j � tl. The total transit time for d is then

tl � ti + 1 steps.
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Figure 3.8: Eliminating zig-zag paths in the optimal schedule. The dashed line represents
the new schedule of token d from PEi to PEl without direction changes.

Our approach is to construct an equivalent schedule without zig-zag paths that moves d

from PEi to PEl in the time interval ti to tl without interfering with the draining of other

tokens in the array. The new schedule (indicated by a dashed line in Figure 3.8) is

� move d from PEi to PEj in tj � ti + 1 steps starting from time ti as per the original

schedule,

� retain token d in PEj from time step tj to t
0

j, and

� move token d from PEj to PEl starting from time t
0

j + 1 to tl following the original

schedule.

Thus, the new schedule for token d is also optimal as token d leaves PEl at time tl. Hence,

there exists an optimal schedule in which the trajectory of each token to the boundary PE

is not a zig-zag path.

Let set L be the tokens drained out of the PE1 and set R be the tokens drained out

of PEl. The following lemma establishes that there exists an optimal schedule where the

trajectories of the tokens in set L and those in set R do not cross. Hence, the optimal
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Figure 3.9: Draining set L left from PE1 and set R right from PEl. The dashed line shows
the modi�ed schedule.

partitioning of the tokens in the linear array can be done by �nding a dividing line (as in

Figure 3.7) such that all of the tokens to the left of the line are drained left from PE1, and

the tokens to the right of the line are drained right from PEl.

Lemma 3.8 Consider a partitioning of the tokens into sets L and R, where set L consists

of the tokens drained out of PE1, and set R consists of the tokens drained out of PEl.

There exists an optimal drain schedule in which the trajectories of the tokens in set L do not

intersect with the trajectories of the tokens in set R.

Proof. Consider an optimal schedule in which every token moves in only one direction as

guaranteed by Lemma 3.7. Assume for contradiction that there exist tokens d1 and d2 in

PEi and PEj such that d1 2 R, d2 2 L and i < j (Figure 3.9).

Let ti and tj be the times when d1 and d2 are moved from PEi and PEj respectively. Let

t
0

i and t
0

j be the times when d1 and d2 are moved out of PEj and PEi as they move to PEl

and PE1, respectively. Let tl and t1 be the times at which d1 and d2 exit the array from PEl

and PE1, respectively. Consider the following modi�ed drain schedules for tokens d1 and d2:

� d1 remains in PEi from time ti to t
0

i, and moves from PEi to PE1 in time t
0

i to t1

following the trajectory of d2 from time t
0

i to t1, and
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� d2 remains in PEj from time tj to t
0

j, and moves from PEj to PEl in time t
0

j to tl

following the trajectory of d1 from time t
0

j to tl.

The schedule of d2 is used to drain d1 out of PE1, and the schedule of d1 is used to drain d2

out of PEl. The token d1 exits the array at time t1, and d2 exits the array at time tl, without

interfering with the movement of other tokens. Therefore, the above modi�ed schedule for

d1 and d2 does not increase the optimal drain time. Hence, there exists an optimal sched-

ule in which the trajectories of the tokens of set L and the tokens in set R do not intersect.

Lemma 3.9 There exists an optimal drain schedule in which the PEs move data tokens

through their output links in a greedy fashion.

Proof. Consider PEi, 1 < i � b, whose tokens belong to set L. Note that PEi can move at

most pL tokens through its pL ports to PEi�1, 1 < i � b, in each cycle. Assume that in the

optimal schedule PEi transfers s < max(xi(ti); pL) tokens at some time ti, where xi(ti) is

the number of tokens residing in PEi at time ti. Note that the full link bandwidth between

PEi and PEi�1 is not used at time ti, as fewer than ki tokens are transferred. Let d be some

token in PEi that was not transferred at time ti from PEi to PEi�1 in the optimal schedule.

Without loss of generality, d does not have a zig-zag path from the result of Lemma 3.7.

Hence, d remains in PEi until time tj, tj > ti, and is then transferred to PEi�1 as shown in

Figure 3.10 by solid lines. Let t
0

j be the time at which d is moved out of PEi�1. Consider a

modi�ed drain schedule in which

� d is moved from PEi to PEi�1 at time ti with the unused link bandwidth between PEi

and PEi�1, and

� d is moved from PEi�1 to PE1 in a greedy fashion, whenever link bandwidth is avail-

able.

Since in the original optimal schedule d moves out of PEi�1 at time t
0

j, in the modi�ed

schedule d will have to wait at worst until time t
0

j in PEi�1 before it is moved to PEi�2.

Thus, d will reach PE1 at or before time t1. (Note that if link bandwidth is available in
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Figure 3.10: Greedy draining of tokens from PEs. The dashed line shows the modi�ed opti-
mal schedule where token d is moved in a greedy way.

PEi�1 before t
0

j, d will be moved out earlier than tj and may exit the array before time t1

from PE1.) Therefore, the new greedy schedule for token d does not increase the optimal

drain time. Hence, there exists an optimal schedule where the PEs move tokens greedily

through their links.

Theorem 3.4 The schedule Opt in Section 3.2.3 minimizes the total time to drain all the

tokens in the linear array.

Proof. The proposed schedule Opt in Section 3.2.3 consists of the following steps:

1. Divide the tokens into two sets L and R, such that all of the tokens in L are drained

left from PE1, all of the tokens in R are drained right from PEl, and the time to

drain L di�ers from the time to drain R by at most 1, i.e., jTdrain(L) � Tdrain(R)j � 1

(Procedure 3.1)

2. Drain set L left greedily without direction changes

3. Drain set R right greedily without direction changes
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d (i), i = 1; . . . ;X. The total drain time is minimized

when L = fd1; . . . ; dbg and R = fdb+1; . . . ; dXg such that TL
d (b) = TR

d (b).

Lemmas 3.7, 3.9, and 3.8 have established that there exists an optimal schedule that follows

steps 2,3 in the above schedule. To prove that the schedule Opt is optimal, it has to be

shown that the division should be done such that jTdrain(L)� Tdrain(R)j � 1.

Let dxi�1+1; dxi�1+2; . . . ; dxi denote the xi tokens in PEi, i = 1; 2; . . . ; l. Thus, d1; . . . ; dx1

are the tokens in PE1, dx1+1; . . . ; dx2 are the tokens in PE2 and so on. Let TL
d (i) be the time

taken to drain set L, when L consists of the tokens d1; . . . ; di, i = 1; . . . ;X, (X =
Pl

i=1 xi).

Let TR
d (i) be the time taken to drain setR, when R consists of tokens di; . . . ; dX , i = 1; . . . ;X.

Figure 3.11 shows the variation of TL
d (i) and TR

d (i) as functions of i. The total drain time

Tdrain is the maximum of TL
d (i) and TR

d (i + 1), i.e., Tdrain = max(TL
d (i); T

R
d (i + 1)), where

set L = fd1; . . . ; dig and set R = fdi+1; . . . ; dXg. Since, TL
d (i) is a nondecreasing function

of i and TR
d (i) is a nonincreasing function of i, the total drain time Tdrain is minimized

when TL
d (i) � TR

d (i + 1) is minimized. Let b be an integer between 1 and X such that

TL
d (b) = TR

d (b) (at least one such b has to exist as TL
d (1) = TR

d (X) = 1, TL
d (X); TR

d (1) � 1,

and TL
d (i) � TL

d (i+ 1), TR
d (i) � TR

d (i+ 1)). Let L = fd1; . . . ; dbg, and R = fdb+1; . . . ; dXg.

Hence, TL
d (b) = TR

d (b) = TR
d (b + 1) + �, where � = 0;�1 (since TR

drain(i) is a nonincreasing

function of i that decreases by at most 1 when i is increased by 1). Any other choice of

L and R will result in a higher drain time Tdrain. The partitioning of the tokens into sets

L = fd1; . . . ; dbg and R = fdb+1; . . . ; dXg such that jTdrain(L)�Tdrain(R)j � 1 minimizes the
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total drain time Tdrain. Hence, the schedule Opt minimizes the total time to drain all of the

tokens in the linear array.

Example 3.1 Figure 3.12 shows the PE structure and the data input patterns for a linear

processor array that optimizes computation time Tcomp and completion time Tc, for N = 4.

Matrices A and B are moving and encounter a delay of one cycle between PEs. Matrix C

is stationary and distributed in the PEs as shown in Figure 3.12. The number of left output

ports pL = 1 and number of right output ports pR = 2. The optimal drain schedule works as

follows. The 16 data tokens are partitioned into two sets, L and R, having 6 and 10 tokens,

respectively. Set L contains data tokens in PEs 1,2,3, and set R contains data tokens in

PEs 4,5,6,7. The time at which each data token exits the array using the above described

schedule is indicated in Figure 3.12. The drain time obtained is 6 time steps, which is optimal,

since the minimum time to drain 16 tokens using 3 output ports is 6 time steps (d16
3
e = 6).

3.2.4 Processor-optimal designs

If the objective is to minimize #PE, then Theorem 3.5 characterizes the #PE-optimal

design.

Theorem 3.5 The parameters (t1; t2; t3) = (N; 1; 1) and (~k1; ~k2; ~k3) = (0; 0; 1) result in

a linear PA with a primary objective of minimizing the number of PEs, and a secondary

objective of minimizing the completion time.

Proof. From Lemma 3.2, #PE = (N � 1)(
���~k1���+ ���~k2���+ ���~k3���) + 1. All three displacements,

~k1, ~k2, and ~k3, cannot be zero simultaneously, as all of the computations will be executed

serially on one PE. Hence,

���~k1���+ ���~k2���+ ���~k3��� � 1: (3.28)

For minimum PE count,
���~k1��� + ���~k2��� + ���~k3��� = 1. Therefore, (~k1; ~k2; ~k3) = (0; 0; 1) gives the

minimum PE count of N .
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Figure 3.12: Linear processor array for �nding the product C of two 4 � 4 matrices A and

B using parameters (t1; t2; t3) = (1; 2; 2) and (~k1; ~k2; ~k3) = (0;�1; 1). The array
is optimal for minimum Tcomp and minimum Tc.
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Table 3.6: #PE optimal linear arrays for product of two N �N matrices.

GPM: #PE-optimal Designs (Theorem 3.5)

N (t1; t2; t3) = (N;1;1), (~k1;~k2;~k3) = (0;0; 1)
(Tload; Tcomp; Tdrain) #PE

3 (4,11,3) 3
4 (7,19,6) 4
8 (23,71,22) 8
16 (87,271,86) 16
32 (343,1055,342) 32
64 (1367,4159,1366) 64
100 (3335,10099,3334) 100

200 (13335,40199,13334) 200
300 (30001,90299,30000) 300

To prove that (t1; t2; t3) = (N; 1; 1) minimizes the completion time given the displace-

ments (~k1; ~k2; ~k3) = (0; 0; 1), consider the spacings of the nonstationary input B. From

Eq. (3.12), s3;1 =
t1
t3
, and s3;2 =

t2
t3
. From Corollary 3.2, t1 + t2 � N + 1, for any feasible

design. Since matrices C and A are stationary (as ~k1 = ~k2 = 0), minimizing the com-

pletion time Tc = Tload(A) + Tload(B) + Tcomp + Tdrain(C) is equivalent to minimizing Tcomp

(Tload(A) = Tdrain(C) = dN
2

3
e, and Tload(B) = 1 from Lemma 3.6 as ~S3;1; ~S3;2 are both in di-

rection opposite to ~k3). Thus, we have to choose values of t1, t2, t3, such that t1+t2 � N+1,

and t1 + t2 + t3 is minimized, which leads to t3 = 1 and t1 + t2 = N + 1 for minimum com-

pletion time. Therefore, (t1; t2; t3) = (N; 1; 1) and (~k1; ~k2; ~k3) = (0; 0; 1) result in a linear

PA with a primary objective of minimizing the number of PEs and a secondary objective of

minimizing the completion time.

Note that in the optimal-#PE designs, input A and output C are stationary (preloaded)

with each PE containing one row of A and C. The number of PEs and the load, drain and

computation times of these minimum-#PE designs are shown in Table 3.6. From Eqs. (2.2)

and (2.4), the corresponding DM parameter for the minimum-#PE designs are ~� = [1; 1; N ]t

and S = [1; 0; 0]t.

As a comparison, Table 3.7 shows the values of Tload; Tcomp; Tdrain, and #PE for designs

obtained by Lee and Kedem (LK) [40] and Shang and Fortes (SF) [2]. These designs are
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Table 3.7: Feasible designs found by DM (Tc = (Tload; Tcomp; Tdrain)):

Designs by LK [40] Designs by SF [2]
N Tc #PE Tc #PE

3 (7,11,9) 7 (7,9,5) 7
7 (19,55,73) 19 (67,49,13) 19
15 (43,239,393) 43 (379,225,29) 43

31 (91,991,1801) 91 (1771,961,61) 91
63 (187,4031,7689) 187 (7627,3969,125) 187
101 (301,10301,20001) 301 (19901,10201,201) 301

201 (601,40601,80001) 601 (79801,40401,401) 601
301 (901,90901,180001) 901 (179701,90601,601) 901

feasible ones that do not optimize Tc, Tcomp, or #PE. The following table presents the

parameters of these designs as well as the corresponding GPM parameters.

Method ~� S (t1; t2; t3) (~k1; ~k2; ~k3)

LK [1; 2; N � 1]t [1; 1;�1]t (N � 1; 2; 1) (�1; 1; 1)

SF [1; N � 1; 1]t [1; 1;�1]t (1; N � 1; 1) (�1; 1; 1)

3.2.5 Processor-time trade-o�s

Comparing the results in Tables 3.4, 3.5, and 3.6, we found, for instance, that for a

problem of size 200, the Tc-optimal design is 5.44 times faster than the #PE-optimal design

in terms of completion time, and uses 27.87 times more PEs than the #PE-optimal design.

(The Tc-optimal design for N = 200 requires 12,298 time units and 5573 PEs, whereas the

#PE-optimal design requires 66,868 time units and 200 PEs.) A designer might be unwilling

to settle for either the large number of PEs required in the minimum-time design or the long

completion time of the minimum-processor design. In practice, there may be bounds on the

number of processors or the completion time or both. In the following, we present optimal

designs with bounds on Tc and #PE.

Figure 3.13 shows how #PE varies with Tc for 2 di�erent problem sizes: N = 50, and 100.

The y-axis #PE is normalized by #PEmax (processor count of the minimum-Tc design), and

the x-axis Tc is normalized by Tmax
c (completion time of the minimum-processor design). This
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Figure 3.13: Performance trade-o�s: Variation in #PE with Tc or Tcomp. The plots are given
for two problem sizes N = 50 and 100.

allows a comparison of di�erent problem sizes uniformly on the same scale. It is also clear

from Figure 3.13 that there are better alternatives than the time-optimal or #PE-optimal

designs.

Given the bound T ub
c (respectively, #PEub) the designer can use Figure 3.13 to �nd the

minimum #PE (respectively, Tc) required and decide (possibly from a cost perspective) if

it is acceptable. The designer can exploit the initial steep decline in the plots to choose

an alternative design that trades performance for cost. For instance, the minimum #PE

required for N = 50 drops by 43% for only a 15% increase in completion time.

If both Tc and #PE are bounded from above, then we draw a horizontal line across the

graph for the desired bound on #PE. The intersection between this line and the stepped

curve represents the minimum Tc needed for any feasible design. If this minimum Tc is less

than the desired Tc, then a feasible design can be obtained that represents the best design

under both time and processor constraints.

Figure 3.13 also shows the trade-o�s when Tcomp is bounded instead of Tc. These plots

(denoted by Tcomp in Figure 3.13) are obtained by computing the completion times Tc of
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designs that optimize Tcomp. Given a bound T ub
c , we can see that the number of processors

obtained by minimizing Tc is less than or equal to the number of processors obtained by

minimizing Tcomp.

3.3 Summary

This chapter presents the results of applying the GPM to derive linear processor arrays

for two important problems: �nding the transitive closure of an N�N matrix and computing

the product of two N �N matrices. Both of the chosen problems are benchmark problems

whose structure is found in many di�erent applications. The results of the transitive closure

problem is applicable to other members of a larger class of problems called the algebraic

path problems (APP), of which transitive closure is a special case. Similarly, the results for

the matrix-product problem can be easily extended to other member in the class of 3-D cube

graph algorithms.

In this chapter, results have been presented for the following �ve formulations of the

problem of �nding optimal linear processor array designs:

� Tcomp-optimal designs without bound on #PE (Tables 3.1, 3.4),

� Tc-optimal designs without bound on #PE (Tables 3.2, 3.5),

� #PE-optimal designs without bound on Tc or Tcomp (Theorems 3.2, 3.5),

� Optimal designs with speci�c bounds on Tcomp or #PE (Figures 3.4, 3.13), and

� Optimal designs with speci�c bounds on Tc or #PE (Figures 3.5, 3.13).

The space-time diagrams and data-input patterns are shown for �nding the transitive closure

of a 4�4 matrix in Figures 3.2 and 3.3, and for computing the product of two 4�4 matrices

in Figure 3.12. Tables 3.1, 3.4, 3.2, 3.5 also indicate the optimal values of ~�, and S of

dependence method, and illustrate that the GPM can be used to obtain optimal designs

in the representation of dependence-based methods (Figure 2.1). In the next chapter, the

extension of the GPM to two-level pipelined processor arrays with each PE having pipelined

functional units is presented.
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4. SYNTHESIS OF PROCESSOR ARRAYS WITH
PIPELINED ARITHMETIC UNITS

This chapter describes an extension of the General Parameter Method to synthesize pro-

cessor arrays (PAs) with pipelines of PEs, where each individual PE has pipelined functional

units (PFU). This technique of pipelining operations across PEs, and pipelining operations

in the functional units of the PEs, is known as two-level pipelining.

The motivation behind two-level pipelined PAs is as follows. Given the design of a PA,

its performance can be improved only by increasing the rate at which the PA is clocked. But,

it has become clear that it is increasingly di�cult to reduce the cycle time of non-pipelined

arithmetic-logic units (ALUs) in the PEs beyond a certain limit. In fact there is a steep

increase (possibly exponential) in design cost as well as design time when the the array is

designed for higher clock rates. For instance, the design and simulation tools existing today

can be used to design an array at a 10-20 MHz clock rate rather than at a 150-200 MHz clock

rate. A possible solution, then, is to design the ALUs in the PE of the array as pipelined

functional units and subdivide computations performed by each ALU into multiple stages.

This permits the array with PFU to be clocked at a much higher rate resulting in a net

increase in performance.

Using two-level pipelining, it is much easier to design a PA with the same clock rate,

using PFUs that perform fewer operations per cycle than a PA with nonpipelined functional

units. This leads to designs that require less power and are easier to manufacture. On the

other hand, the pipelined design can be clocked at a much higher rate using superpipelining

(up to S times faster for an S-stage pipeline than a nonpipelined design since there is less
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circuitry in each pipeline stage). This leads to a higher throughput than a nonpipelined

design.

A major problem in designing two-level pipelines is the lack of a systematic method

that evaluates alternative designs and �nds optimal designs with respect to user-speci�ed

objective function and design constraints. The search for the optimal design is di�erent than

that of PAs without PFUs because internal pipelining introduces a new dimension in the

design problem (e�ectively constraining the search space). Further, internal pipelines in a

PE can have a large number of stages (over 20 stages) when several functional units in a PE

are chained together to perform the operations in the body of a complex inner loop.

This chapter describes an enhancement to the General Parameter method to map nested-

loop algorithms into PAs with PFUs. The organization of the chapter is as follows. Sec-

tion 4.1 presents a brief review of GPM, followed by presentation of the new constraints

incorporated into GPM to automatically synthesize PAs with PFUs in Section 4.2. In Sec-

tion 4.3, a closed-form condition for deriving pipelined designs from nonpipelined ones for

n-dimensional (written as n-D) mesh algorithms is described. In Section 4.4, the results of

applying the enhanced GPM to the matrix-product and transitive-closure applications are

shown, followed in Section 4.5 by a comparison to previous work. Section 4.6 concludes this

chapter with a summary.

4.1 Review of General Parameter Method

The target algorithms in GPM are those that can be modeled directly as uniform re-

currences as well as a�ne recurrences that can be \uniformized" to yield equivalent sets of

uniform recurrences (Section 1.2).

The GPM synthesizes a set of n-D uniform recurrence equations into a set of vector and

scalar parameters that characterize the behavior, correctness, and performance of an m-D

PA, where m < n. A total of r � (r + 2) parameters are de�ned, of which r parameters

are periods (scalars); the remaining r2 + r are m-D vectors, of which r parameters are

displacements (or velocities), and r2 are spacings (r of these spacings are trivially zero)

(Section 2.2).
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The search for the \best" design can be represented by the following optimization prob-

lem:

Minimize b(N; t1; . . . ; tr; ~k1; . . . ; ~kr) (4.1)

Subject To:

8>>>>>>>><
>>>>>>>>:

1 � ti; i = 1; . . . ; r;

0 �
���~ki��� � ti; i = 1; . . . ; r

constraints de�ned in Theorems 2.1, 2.2 and 2.3

#PE � #PEUB and Tc � TUB
c :

(4.2)

The design objective at the logical level is a function of the number of PEs and the

completion time of processing an application problem. The optimal design is problem-size

dependent. If the objective is a nonmonotonic function of the parameters, a monotonic

component of the objective is identi�ed and enumerated e�ciently. The di�erence, however,

is that a feasible solution de�nes an upper bound on the value of the monotonic component

being enumerated. The search is then continued to �nd better designs until the upper bound

is reached. A special case happens when the objective function is monotonic. In this case,

the upper bound de�ned by the feasible solution is equal to the feasible objective value itself,

making the feasible solution optimal. Additional design constraints such as (i) maximum

number of PEs allowed in a design for a given application, (ii) maximum allowed completion

time, and (iii) additional delays incurred inside a PE (such as those due to internal pipelines

in a PE) can be easily incorporated into the optimization. The next section details the

constraints for such PAs with two-level pipelining. The following example shows a design of

a processor array with nonpipelined functional units using techniques presented in Chapter 2.

Example 4.1 Figure 4.1 shows a linear PA that minimizes computation time and #PE for

multiplying two 4-by-4 matrices using nonpipelined functional units. Note that computation

time measures the time between the �rst and last computations in the PA, and does not

include load time of inputs and drain time of outputs. For a linear PA, the parameter values

are (t1; t2; t3) = (1; 2; 3) and (k1; k2; k3) = (1; 1;�1). Each PE is an inner-product processor,

with computation time and #PE given as

Tcomp = 1 + (N � 1)(t1 + t2 + t3) = 19; (4.3)
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c44c34c24c14c43c33c23c13c42c32c22c12c41c31c21c11 ���������������

Figure 4.1: Linear PA for 4� 4 matrix product with nonpipelined functional units.

#PE = 1 + (N � 1)(jk1j+ jk2j+ jk3j) = 10: (4.4)

4.2 New Constraints for Pipelined Functional Units

The e�ect of pipelining can be summarized by the following simple observation.

Observation 4.1 Pipelining with S stages is equivalent to retiming by which the delays on

all inputs or all outputs, but not both, are increased by S.

In a PA, two types of data ows exist.

� Dependent. The datum is modi�ed as it ows through the PA (read-write data) ;

� Transmittent. The datum is not modi�ed (read-only).

If the processors have PFUs, only the delays of the dependent data and not the trans-

mittent data have to be increased. Figure 4.2 shows the e�ect of pipelining.

The following lemma characterizes the e�ect of internal pipelines in PEs as new con-

straints in GPM. We assume that in general each dependent ow i through the PE is com-

puted using a pipeline with Si stages.

Lemma 4.1 Pipelining the functional unit is equivalent to enforcing the following con-

straints in GPM:

ti � Si; for all dependent ows i; (4.5)
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Figure 4.2: Pipelining is equivalent to adding delays to dependent data.

where Si is the number of stages in the pipeline for dependent ow i.

Proof. An Si-stage pipeline delays dependent ow i passing through the PE by Si time

steps. Since, by de�nition, period ti captures the time di�erence between two dependent

computations of data ow i separated in the index space by vector ~di, constraint ti � Si

incorporates into GPM the e�ect of an Si-stage pipeline to compute the dependent ow i in

each PE.

Note that pipelining in a PE amounts to a reduction of the search space (as ti � 1

for nonpipelined designs). Hence, the computation or completion time (cycle count of the

PA) of the optimal two-level pipelined design is more than or at best equal to that of the

nonpipelined design. However, the clock rate of a pipelined design can be increased easily

to match the same throughput as that of a nonpipelined design. This approach, therefore,

provides a trade-o� between the degree of internal pipelining in PFUs and the rate at which

PEs are clocked.

4.2.1 Minimum initiation interval greater than one

The constraints in Eq. (4.5) assume that two independent operations can be initiated into

a PFU in successive cycles without any stage conicts; that is, MII, the Minimum Initiation

Interval, is 1. In general, for pipeline i computing dependent ow i, its reservation table

coud have a MII = �i > 1. Since in this model, each PE computes the entire body of the
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innermost loop in each time step, it is necessary to ensure that no two executions of any

PE are within � time steps of each other, where � = maxi �i. The following conditions avoid

scheduling two index points within � steps in any PE:

Min

8~�
���~T:~���� > �; subject to K~� = 0 and D~� 6= 0 ; (4.6)

where ~T = [t1t2 . . . tm] is the vector of periods, K = [~k1 ~k2 . . . ~km] is the matrix of displace-

ments, and D = [~d1 ~d2 . . . ~dm] is the matrix of dependencies. These conditions imply that

if two distinct computations are assigned to the same PE, then the time between execut-

ing them should be at least � steps. For each feasible solution (satisfying Eq. (4.2)) found

in GPM, Eq. (4.6) has to be checked, increasing the time complexity to �nd the optimal

parameter values.

4.3 Pipelined Designs for n-D Meshes

In this section, we present a closed-form condition for deriving pipelined designs from

nonpipelined ones for a class of algorithms whose dependence graphs are n-D meshes. For

an n-D mesh algorithm, the dependence graph is the identity matrix in n-D (In) with n� 1

transmittent ows of data and one dependent ow. For example, computing a matrix product

is a 3-D cube graph algorithm, with C as the dependent ow and A and B as transmitent

ows.

De�nition 4.1 Let ~I = (i1; � � � ; ik; ik+1; � � � ; in)t be the index vector of an n-D mesh depen-

dence graph G. We de�ne a cyclic interchange of distance k, denoted as CIk, as a reindexing

of G as follows:

CIk(G) : (in�k+1; � � � ; in; i1; � � � ; in�k)t �! (i1; � � � ; ik; ik+1; � � � ; in)t: (4.7)

Hence, CIk(G) is a linear transformation of dependence graph G and can be represent-

ed by the permutation matrix Pk = [~en�k+1; ~en�k+2; � � � ; ~en; ~e1; ~e2; � � � ; ~en�k]t, where column
vector ~ei = (0; � � � ; 0| {z }

i�1

; 1; 0; � � � ; 0)t is the i-th unit vector with a single 1 in the i-th position.
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We extend the de�nition of cyclic interchange CIk to apply to PAs as well. A PA for an

n-D mesh algorithm has n inputs: 
1;
2; � � � ;
n. A cyclic interchange, CIk, for a PA is equi-

valent to renaming the input variables as follows. CIk : (
n�k+1; � � � ;
n;
1; � � � ;
n�k) !
(
1; � � � ;
k;
k+1; � � � ;
n), i.e., variable 
n�k+1 is renamed as 
1, 
n�k+2 as V2, and so on.

Therefore, when referring to dependence graphs, a cyclic interchange CIk means a reindexing

of the index space. In the context of PAs, a cyclic interchange CIk means a reindexing of

the n-input variables. For example, for a PA that computes a matrix product, a cyclic

interchange of distance 1 renames variables (C;A;B) to (A;B;C). Thus, in Figure 4.4

(p. 92), variable A is replaced by variable C, variable B by A, and variable C by B.

Since PAs for solving a given algorithm are obtained by a linear transformation T of

dependence graph G, the following lemma shows that PAs for n-D mesh algorithms remain

valid under cyclic interchanges of their inputs.

Lemma 4.2 Given an n-D mesh algorithm with a dependence graph G, and a PA with

inputs 
1;
2; � � � ;
n, the new PA obtained by a cyclic interchange CIk; k = 1; 2; � � � ; n � 1

of the existing PA is a valid PA that solves the given n-D mesh algorithm.

Proof. Since mapping a uniform recurrence on a PA corresponds to a linear transforma-

tion, cyclically interchanging the inputs of the PA by CIk is equivalent to reindexing the

dependence graph by CIk. It is easy to see that reindexing by CIk maps the dependence

vectors into each other, resulting in the same set of dependence vectors. Thus, CIk maps

dependence vector ~di, i = 1; 2; � � � ; n, to vector ~d((i�k�1)modn+1). By applying the same

transformation (T) that de�nes the nonpipelined PA to the cyclically interchanged depen-

dence graph (CIk(G)), we have a new PA whose inputs are a cyclic interchange of inputs

in the original PA. In other words, the composite linear transformation TPk is also a valid

transformation, and PAs remain valid under cyclic interchanges for n-D mesh algorithms.

The next lemma establishes the main result for deriving designs of PAs with PFUs from

existing nonpipelined ones.

Lemma 4.3 Assume an n-D mesh algorithm involving inputs 
1;
2; � � � ;
n. Further, as-

sume that a nonpipelined PA exists for this algorithm with periods t1; . . . ; tn, where t1 is the
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dependent data ow. To obtain a PA with S-stage pipelined PEs from the original non-

pipelined design we can apply CIj�1, a cyclic interchange of distance j � 1, if there exists a

period tj � S.

Proof. For an n-D mesh algorithm, if t1 > S, then the parameters in GPM correspond to

a valid S-stage pipelined PA (Eq. (4.5)). Thus, if there exists some j, 1 � j � n, such that

tj > S, then by applying CIj�1 we obtain a dependence graph whose dependent ow is 
j

instead of 
1. This corresponds to a new PA with its inputs interchanged by the same CIj.

By Lemma 4.2, cyclically interchanging the inputs results in a valid PA that still solves the

same n-D mesh algorithm.

Lemma 4.3 can be used to derive PAs, given existing nonpipelined designs. In the next

section, we apply this result as a pruning condition to �nd optimal PA designs for the

matrix-product application.

4.4 Applications

This section presents the application of GPM to �nd optimal array designs for the matrix-

product and transitive-closure problems. The evaluation metric of the ratio of clock periods

of the nonpipelined and pipelined designs is described below in Section 4.4.1.

4.4.1 Evaluation metric

The total time to compute a matrix product is equal to T � tc, where T is the number of

clock cycles, and tc is the clock period of each clock cycle. Hence, for a given PA design, its

performance can be improved only by increasing its clock rate. This has become increasingly

di�cult, as there are a �xed number of gate delays (corresponding to the computation of

the inner loop body by each PE) that have to be incurred within a clock cycle.

For a given clock rate, it is much easier to design pipelined functional units in each

PE and subdivide the computations (and hence the �xed gate delays) than to design a

nonpipelined PE in which the entire inner loop has to be executed within a clock tick. As a

result, it is simpler to scale the clock rate of a pipelined design than that of a nonpipelined
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one. Equivalently, the clock rate of a pipelined design with ALUs of S stages can be up to

S times higher than that of a nonpipelined one. Since it is di�cult to predict how many

times the clock rate of a pipelined design would be as compared to a nonpipelined one (as

it depends on whether the designer can split the operation equally and balance the delays),

we evaluate an equivalent metric of the ratio of the clock periods as described below.

Let t1c and tSc be the clock periods of the nonpipelined PA and a PA with S-stage PFUs

(denoted as S-pipelined), respectively. Further, let T 1
comp and T S

comp be the computation

times (i.e., clock cycles) of the optimal nonpipelined PA and the optimal S-pipelined PA,

respectively. The metric used for evaluating an S-pipelined design over a nonpipelined design

is the ratio of clock periods R = tSc
t1c

in order for both designs to have the same performance

i.e., tSc � T S
comp = t1c � T 1

comp.

tSc � T S
comp = t1c � T 1

comp (4.8)

=) R =
tSc
t1c

=
T 1
comp

T S
comp

� 1 ( since T 1
comp � T S

comp): (4.9)

It is easy to see that for the same clock rate, if the pipelined design has the same perfor-

mance as a nonpipelined one, then all of the internal pipelines in the ALUs are fully utilized.

Hence, GPM aims to �nd pipelined designs so that T S
comp = T 1

comp or R = tSc = t1c = 1, i.e.,

all of the stages of the internal pipelines are fully utilized. A value of R < 1 implies that

the pipelined design has to be clocked faster in order to have the same performance as the

nonpipelined one. This also means that some of the stages in the internal pipelines are not

being fully utilized.

4.4.2 Matrix product: results

Computing the product of two matrices is a fundamental algorithm in signal and image

processing. In this section, we present optimal designs of pipelined PAs for computing the

product of two N �N matrices. Since, there is only one dependent ow C, let S denote the

number of stages in the PFU to compute C.

Figure 4.3 shows the 3-D plot of the ratio of clock periods R = tSc = t1c as a function of the

number of pipeline stages (S) and the matrix size (N). The X-Y plane of the 3-D plot also
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Figure 4.3: Matrix Product: Ratio of clock periods R = tSc
t1c

in order for the the S-pipelined

and nonpipelined designs to have the same performance, i.e., tSc � T S
comp = t1c �

T 1
comp.

shows the contours for di�erent �xed values of R, as S varies from 1 to 25, and the problem

size N varies from 4 to 512 in 8 steps. For any given value of N , R stays at the desired

maximum value of 1 until S reaches a critical value (Scrit(N)), beyond which R starts to fall

below 1. For example, for N = 128, R = 1 for S � 15, i.e., Scrit(128) = 15. Similarly, for a

given value of S, there is a minimum value of N (Ncrit(S)) such that GPM can �nd pipelined

designs with R = 1. Thus, given a 10-stage PFU (typical of an arithmetic pipeline), GPM is

able to �nd a pipelined PA design for the matrix-product problem that can fully exploit the

10-stage pipeline without increasing the cycle count when the matrix size N is at least 64,

i.e., Ncrit(10) = 64. Hence, for matrix products, given a value of S, there exists a reasonably

small matrix size Ncrit(S), beyond which the internal pipeline stages can be fully utilized.

These results show the ability of GPM to systematically explore the design space to arrive

at pipelined designs that optimize the given objective of computation time Tcomp.

Example 4.2 In the design presented in Figure 4.1, input C is the only dependent data ow

in computing matrix products. Therefore, if we assume 3-stage PFUs for computing inner
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Figure 4.4: A PA for matrix multiplication with 3-stage PFUs. Note that this is obtained
by a cyclic interchange of the inputs as compared to those shown in Figure 4.1.

products, the constraint t1 > 3 is added to account for the PFUs (Eq. (4.5)). Figure 4.4

shows the data ows for the new PA obtained. The two delays on the C-links in Figure 4.4

indicate that each PE has a 3-stage pipeline. The di�erent stages of the pipeline in each

PE are fully utilized to execute independent operations of 3 C elements. This leads to a

computation time of this PA of 19 cycles, which is the same as that of the nonpipelined

design (R = 1). Comparing the data ows in Figures 4.4 and 4.1, we see that the new PA

is obtained by replacing the C input by B, B by A, and A by C.

Lemma 4.3 has been applied in generating the results in Figure 4.3. For instance, given

a matrix size N = 64, the optimal nonpipelined design has periods (t1; t2; t3) = (4; 5; 10),

resulting in Tcomp = 1198. Using Lemma 4.3, the optimal pipelined designs for S varying

from 1 to 10 can be obtained by CI2 (interchange of distance 2) without any search, as the

objective function Tcomp (which is the sum of the three periods) evaluates to the same value

under any cyclic interchange of inputs. From the above parameter values and Lemma 4.3,

it is easy to see that all of the optimal designs for S = 1; � � � ; 10 have the same computation
time of 1198 cycles, i.e., R = 1 for S = 1; � � � ; 10. Consequently, Lemma 4.3 can be used as

an e�ective pruning condition in GPM to de�ne the at portion of the surface in Figure 4.3,

and can be used in trade-o� analysis discussed in the next section.
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Figure 4.5: Processor-time trade-o�s for matrix product: Variation in #PE with Tcomp.

Processor-Time Trade-o�s

The GPM can be used to generate optimal designs when there are constraints on processor

count #PE or computation time Tcomp for a given number of stages S in each PFU. Figure 4.5

shows the trade-o�s between #PE and Tcomp for computing 50 � 50 matrix products and

three values of S. A particular trade-o� curve (with a �xed value of S) shows the minimum

#PE (respectively, Tcomp) required, given an upper bound on the computation time T ub
comp

(respectively, #PEub). For example, given a bound Tcomp � T ub
comp = 25, Figure 4.5 shows

that the minimum #PE needed is 7, if each PE has a PFU with at most 16 stages. Thus,

the designer can use this �gure to arrive at a �nal design, given restrictions on resources such

as #PE or Tcomp. Figure 4.5 also shows that, given a �xed number of PEs, the minimum

computation time required increases as the number of stages in the PFU increases. This is

true because it becomes harder to utilize the PFUs e�ciently. For instance, if #PE � 12,

then T 1
comp � 17, T 16

comp � 23, and T 31
comp � 36. Further, the plot shows an initial steep
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Figure 4.6: Transitive Closure: Ratio of clock periods R = tSc
t1c
in order for the the S-pipelined

and nonpipelined designs to have the same performance, i.e., tSc � T S
comp = t1c �

T 1
comp.

decline as S is increased. Hence, for larger S, there are more attractive alternatives than the

time-optimal or processor-optimal designs.

4.4.3 Transitive closure: results

In this section, we present pipelined linear array designs for the problem of �nding the

transitive closure of an N �N matrix (Example 1.4). For transitive closure, the dependent

ow is along dependence vector ~d3 (Example 1.4); let S denote the number of stages in the

PFU of the PE.

Figure 4.6 shows a 3-D plot of the ratio of clock periods R = tSc = t1c as a function of

the number of pipeline stages (S) and the matrix size (N) for the transitive-closure problem

(similar to Figure 4.3 for matrix product). The X-Y plane of the 3-D plot also shows the

contours for di�erent �xed values of R, as S is varied from 1 to 25 and the problem size N

is varied from 4 to 512. The maximum value of R = 1 implies full utilization of internal

stages of the pipelined functional unit. For example, when N = 128, R = 1 for S � 14
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Figure 4.7: Linear PA for transitive closure with 3-stage PFUs with (t1; t2; t3) = (1; 1; 3),
(k1; k2; k3) = (0;�1; 1).

(Scrit(128) = 14). Similarly, for a 9-stage PFU, GPM is able to �nd the best pipelined

design when N � 64 (Ncrit(9) = 64). Compared to the matrix-product problem, the results

for transitive closure are slightly worse in the sense that the at portion of the surface where

R = 1 is smaller, i.e., R starts to fall o� from unity earlier as S or N is increased. This

indicates that transitive closure is a more di�cult problem to map ono a pipelined PA than

the matrix-product problem.

Example 4.3 Figure 4.7 shows the data ows for the pipelined design if we assume a 3-stage

PFU to compute the result in each PE.

Similar to Figure 4.5, Figure 4.8 shows the processor-time trade-o�s for the transitive

closure of a 50 � 50 matrix for three di�erent values of S. These trade-o� �gures can

be used to obtain the best designs when there are constraints on processor count #PE

or computation time Tcomp for a given number of stages S. For example, given a bound

Tcomp � T ub
comp = 25, Figure 4.8 shows that the minimum #PE needed is 4, if each PE has a

PFU with at most 16 stages. Figure 4.8 also shows that, given a �xed number of PEs, the

minimum computation time required increases as the number of stages in the PFU increases.

For instance, if #PE � 6, then T 1
comp � 18, T 16

comp � 24, and T 31
comp � 37. This is because

it becomes harder to utilize PFUs with more stages e�ciently. Further, the sharp decline
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in the curves indicates that there are more attractive alternatives than the time-optimal or

processor-optimal designs.

4.5 Comparisons with Existing Work

There have been earlier e�orts by Kung and Lam [4] and recently by Valero-Garcia

et al., [5] to obtain two-level pipelined PAs. They used a common approach that retimes a

PA in order to include additional delays for pipelining. Their approach, however, is restricted

to PAs that have already been designed; that is, they took an existing PA and derived a

two-level pipelined one by retiming. Since addition of delays increases the clock-cycle count

of the retimed PA, they coalesced the PEs in order to obtain better utilization and improved

execution time. Valero-Garcia et al. [5], further showed that linear PAs with contra-ow

data can be retimed and the PEs coalesced to obtain the same cycle count.
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The drawback with these previous approaches is that coalescing is not always possible.

In fact, for lower-dimensional PAs, there is no systematic technique to coalesce PEs by a

factor of S. In addition, these methods cannot systematically explore the space of pipelined

designs because they start with a particular PA and are restricted only to the data ows

de�ned in it. For instance, the PA shown in Figure 4.4 cannot be obtained by retiming

and coalescing, as there is a new data-ow pattern that is a cyclic interchange of the old

one. In contrast, GPM can be used as a systematic tool to explore the entire space of

pipelined PAs and arrive at a design that optimizes a user-speci�ed objective and satis�es

design constraints. Figure 4.9 shows the di�erences between the two methods. The proposed

method incorporates pipelining in the design process and hence can systematically enumerate

alternatives.
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4.6 Summary

Two-level pipelining in processor arrays (PAs) involves pipelining of operations across

processing elements (PEs) and pipelining of operations in functional units in each PE. Al-

though it is an attractive method for improving the throughput of PAs, existing methods

for generating PAs with two-level pipelining are restricted and cannot systematically ex-

plore the entire space of feasible designs. In this chapter, we extend the General Parameter

Method (GPM) to �nd optimal designs of PAs with two-level pipelines. The basic idea is

to add new constraints to include the e�ect of internal functional pipelines in the PEs. As

an illustration, pipelined PA designs for computing matrix product and transitive closure

have been presented. For n-dimensional meshes and other symmetric problems, pipelined

PA can be obtained from existing nonpipelined ones using a reindexing transformation. For

pipelines with a minimum initiation interval (MII) greater than one, additional constraints

that ensure correctness of the synthesized PAs are given.

In the next chapter, the design of an coprocessor with limited hardware resources targeted

for uniform dependence algorithms is presented. The general parameter method developed

is used at the heart of the mapping process to maximize utilization of PEs and achieve high

throughputs for the target application domain.
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5. COPROCESSOR DESIGN

The �rst part of this thesis, Chapters 2, 3, and 4, described a systematic synthesis method

for special-purpose systolic architectures designed as hardware implementation of a given

algorithm. In mass quantities, the production of such �xed-function arrays is manageable

and economical. However, when a systolic array was to be used for a new application,

the manufacturer has to take the long and costly process of designing and fabricating the

application-speci�c integrated chip (ASIC). Although the cost and risk of ASIC development

has decreased in recent years, budget constraints have motivated a trend away from custom

hardware development except in cases where the performance required justi�es the cost of

developing such specialized hardware. Consequently, general-purpose or versatile systolic

architectures are more attractive alternatives.

This chapter discusses the design of a parallel VLSI coprocessor that is programmable

for an application domain. The coprocessor interfaces with a front end (host) machine that

is responsible for data input and control. The overall requirements on the coprocessor are:

� �xed data bandwidth to main memory for easy integration into existing systems;

� scalability, or the ability to increase performance by adding processor/memory modules

without increasing the bandwidth to main memory.

Section 5.1 discusses how these requirements a�ect the choice of architecture for the copro-

cessor.

The domain of applications targeted for the coprocessor are the nested loop algorithms

given in Section 1.2. Such loops are found frequently in signal and image processing, scienti�c
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computations, matrix and linear algebra computations, optimization, digital communications

and control. Although an application-speci�c design for each application would result in

higher performance, we have chosen a common retargetable architecture that can be reused

for a number of applications. The proposed architecture can be visualized as a coprocessor

to workstations or as a VLSI pipeline in supercomputers for loop computations, similar to

vector functional units for executing vector instructions.

The goal of this research is to develop a general architecture such that the class of uniform

dependence algorithms can be mapped and executed e�ciently. The trade-o�s we consider

include the following.

� For a given performance, reduce clock frequency by increasing area;

� For a given clock rate, increase performance by increasing area.

Section 5.5 discusses the impact of the above trade-o�s on the overall system metrics of

design cost (improvement in yield), performance (speedup), and power.

There have been numerous e�orts to develop general-purpose systolic computers in the

past few years. These include Warp and iWarp [24, 25], Matrix-1 [26], SLAPP [27], medium-

grain architecture for Image and Signal processing [55, 56], VATA [57], pseudo-systolic linear

array [7, 58] and a host of others. However, most of these designs have powerful processors

with large local memories, and high-bandwidth data interconnect between processors and

host/global memory. Hence, the cost of such systems is very high (in thousands/millions

of dollars) due to expensive hardware and complex designs. In our approach, we aim at

building a simple, resource-limited VLSI array processor that can be attached to standard

single-ported main memory (with �xed bandwidth and long latencies for data access) that

results in a system with low cost and acceptable performance for targeted applications. This

is in contrast to most existing architectures in which the memory bandwidth is increased

proportionally as the system is scaled for higher performance. We believe good performance

can be obtained by sophisticated mapping and analysis in software (compiler) that can exploit

the hardware e�ectively for the set of applications. This is in contrast to most existing

\class-speci�c" or general-purpose systolic architectures in which it is the programmer's

responsibility to determine which computations are performed by which cells and how the

data are moved among the cells and memory.
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Recently, there have been e�orts to develop a systematic approach to partition and map

matrix algorithms on mesh-connected arrays [58, 6, 59]. Our approach di�ers in trying to

extract maximum data re-use under the constraint of a low-bandwidth interconnect to main

memory in our array processor. This work also di�ers from the traditional systolic array

mapping/partitioning on �xed processor arrays [1, 60, 61, 62, 63, 64, 65, 66] by assuming

only a limited storage in the processor array and by considering the e�ect of main-memory

latency due to low-bandwidth interconnection to main memory. The goals of our design that

are di�erent from other research e�orts are:

� combination of hardware architecture and software mapping methods (Section 5.3),

� reduction in clock rate for the same throughput (Section 5.4), and

� �xed bandwidth to main memory (Section 5.1).

The remainder of this chapter is organized as follows. We �rst present the proposed ar-

ray processor (Section 5.1), describe the mapping and partitioning techniques (Section 5.3),

evaluate and discuss results using matrix product and transitive closure as examples (Sec-

tion 5.4), discuss the impact of clock-rate reduction on overall system metrics (Section 5.5,

and conclude with a summary of the chapter (Section 5.6).

5.1 Coprocessor Architecture and Rationale

In this section we describe the architectural features of the coprocessor and the rationale

behind the choice of these features.

5.1.1 Coprocessor architecture

The architecture proposed in this research is broadly composed of the following compo-

nents (Figure 5.1):

� an external main memory (MM) to store input and output data,

� an access-unit (AU) to streamline the ow of data between the processors and main

memory,
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Figure 5.1: Coprocessor architecture proposed to solve a class of algorithms modeled by
uniform recurrences.

� a network that transfers the data between the AU and processors or main memory,

� a dedicated processor array (PA) to execute the computations of a given algorithm.

The remainder of this section describes the individual components in more detail.

Main Memory: (MM) The memory in the architecture is a standard (usually inter-

leaved) memory for storing data involved in the computations. The data in the memory are

accessed by supplying a memory address to the address decoder in the memory. The use

of memory addresses limits the bandwidth to access the data in the memory (as there are

address lines in addition to data lines), and constrains the data to be accessed through a

small number of memory ports (usually one or two). Further, the time to access the data
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is relatively long, because of both the decoding required and limited bandwidth. Hence, a

bu�er memory called the access-unit is included to store the data accessed from memory and

to feed the processor array at a much higher rate. The access-unit is used to recirculate the

data back to the processors, and reduce the demand on main memory. An important issue

to be resolved is the allocation of chip area between the processors and access-unit.

The assumption of accessing data from standard memory with low bandwidth simpli�es

the integration of the coprocessor to a conventional host. However, to obtain good perfor-

mance, this choice complicates the compiler that maps and partitions the computations to

mask the memory latency. One of the issues in the compiler is, therefore, how to schedule

the computations such that the total amount of data accesses to main memory is bounded.

Access-Unit: (AU) The purpose of the access-unit is to supply data to the processor

array and mask the long main-memory latencies. The AU has a �xed amount of storage

to bu�er the intermediate data that cannot be held in the processor array. The storage

in the AU is organized as FIFO queues, and explicit memory addresses (except for queue

numbers) are not used. In each cycle, the data present at the head of the queues are sent

to the PA or to main memory through the output network (Figure 5.1), and data from

the PA or main memory are sent to the tail of the queues. The queues require minimal

addressing mechanisms in the AU. In addition to saving memory for storing address bits,

the queues enable high rates of data transfer between the AU and the PA. The use of

queues further simpli�es address decoding as compared to a random access cache memory

in existing processors. The area saved from the decoding logic, address bits in instructions,

and interconnects can be used to increase the size and/or the number of I/O ports of the

AU. The queue structure also permits the size of the AU to be increased without changing

the number of address bits, number of ports to main memory, and number of ports to the

processor array. Hence, the coprocessor can be scaled to higher performance simply by

adding more processors and bu�er memory without redesigning other parts of the system.

In addition, the AU can (i) prefetch data from the main memory into its queues to hide

the memory latency, (ii) shift the di�erent queues at di�erent rates to reorder the data

relative to each other, (iii) perform indirect addressing of main memory, in which a sequence

of addresses obtained from the memory is subsequently used to access the data in the main
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memory. The indirect addressing corresponds to the gather-scatter instructions used to

process sparse matrices in a vector supercomputer.

Processor Array: (PA) The processor array obtains data items from the heads of the

queues in the AU. The choice of the array con�guration is again dictated by the requirement

of scalability on the coprocessor. For true hardware scalability, the number of memory ports,

number of ports to the PA, and number of address bits should be independent of the size

of the architecture and the size of the problem being solved. This implies that the PA

should be I/O bounded with a constant number of ports. A possible con�guration, then, is a

linear array of processors with two boundary processors that communicate with the AU. For

instance, if a 2-D square-mesh con�guration is chosen, the number of peripheral processors

is proportional to the square root of the total number of processors. Hence, as the mesh is

scaled to higher sizes, the AU will have to be redesigned to accommodate a higher number

of ports to the PA. However, a linear array is more di�cult to utilize than a square array

because it has only two boundary PEs. We use the General Parameter Method discussed in

Chapter 2 at the heart of the mapping process and achieve good performance even for large

linear array sizes. Section 5.4.4 shows that the performance degradation is only about 10%

for a linear array as compared to a square array. In addition, a linear array with limited I/O

is good from the point of view of wafer-scale integration [67].

Each of the PEs is locally connected and can only perform near-neighbor communication.

The PA can be clocked at high speeds because of data-driven PEs (i.e., no explicit synchro-

nization) and local connections without long signal delays. The array organization with a

small number of boundary (I/O) processors reduces the demand on the AU and simpli�es

the design of the output network between the AU and PA. For regular, recursive compu-

tations, this pipelined processing with bounded I/O is very e�ective, and the additional

complexity/cost of the output network is not justi�ed.

Each PE in the PA has a microprogrammed control that governs its operations. The

control speci�es the actions to be performed in the PE on receiving data from its neighbors.

For example, to solve a matrix product expressed as a 3-D recurrence, the PEs perform an

inner-product computation c = c+ a�b, where c, a, b are elements of matrices C, A, and B,

respectively. (C = A�B).
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Figure 5.2: Proposed partitioning of the coprocessor architecture into four chip types.

5.1.2 Proposed partitioning of the coprocessor architecture

Figure 5.2 shows the proposed partitioning of the architecture of the coprocessor into

four di�erent chip types. The FIFO queues of the access-unit are split over multiple chips

as the entire bu�er memory required for a large number of PEs cannot be put in a single

chip. Hence, we have a linear array of PEs with a linear array of access-unit chips to bu�er

the data. This layout permits a modular expansion of the system by simply adding more

PEs (chip type 1) in the linear array, and more access-unit chips (chip type 3) in the linear

bu�er chain.

5.1.3 Design approach

Our design procedure for the coprocessor has two major steps: (i) de�ne a model of the

architecture in terms of a few parameters (abstract model), (ii) arrive at the �nal architecture

by a trade-o� analysis driven by the compiler. The architecture is de�ned by the following

parameters:
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Figure 5.3: Proposed approach for designing the coprocessor architecture.

� Number of PE (#PE),

� Local Memory in each PE (l),

� Bandwidth between PA and AU,

� Interconnection of the PEs (linear, square),

� Size of AU (p),

� Bandwidth between AU and MM (BMM).

The �nal architecture is obtained after an analysis of the performance versus cost from

the point of view of software, algorithms, technology, and other performance constraints

(real-time processing, for instance) (see Figure 5.3).

5.1.4 Comparison to existing architectures

In this section, we perform a qualitative comparison of the coprocessor to other existing

architectures with limited bandwidth to main memory. The attributes used are:

� Hardware Cost

� Software Cost

� Generality

� Hardware Scalability
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Hardware scalability is the ability to increase performance by adding more processing units

to the system in a modular fashion. The architectures considered in the comparison are:

� Systolic \General-Purpose" Processors (SGPP). These are programmable general-pur-

pose systolic machines that have been built for a class of applications. Machines in

this category include iWARP (in the systolic mode) [25], SLAPP [27], Matrix-1 [26],

and medium-grain image processing architectures [56].

� Partitioned Systolic Arrays (PSA). These include a number of research e�orts aimed

at designing �xed-size systolic arrays [1, 60, 61, 62, 63, 64, 65, 68, 66, 69].

� Systolic Arrays (SA). These refer to traditional, algorithm-speci�c, problem-size-dep-

endent systolic arrays.

� Coprocessor (CoP). Our proposed coprocessor.

Commercially available shared-memory multiprocessors (SMM) and distributed-memory

multicomputers (DMM) do not have a bandwidth limitation to main memory. A SMM is

attached through a dedicated interconnection network to a set of memory modules. As a

SMM is scaled to higher performance, the number of memory modules and the size of the

network must also be increased. Likewise, a DMM with local memory in each processor also

has increased memory sizes and bandwidths, as it is scaled to higher system performance.

Figure 5.4 shows the comparison of the di�erent architectures on the chosen attributes. It

should be noted that the �gure tries to show only the relative ordering between the di�erent

architectures and not an absolute evaluation.

In terms of hardware cost (or equivalently, hardware complexity), a SA is the simplest

with SGPP being the most expensive. The CoP has about the same amount of hardware

complexity as a PSA with an external bu�er to recirculate the data.

In terms of software cost or the ease of programming the architecture, a SA is the lowest

as there is no programming e�ort once the hardware is designed. The CoP has the same

level of di�culty as a SGPP that accepts high-level sequential programs as input.

For generality, a SA is the most restricted in terms of the application and the problem

size it is designed for. A PSA removes the restriction of the application size but is still tied
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Figure 5.4: Comparing the coprocessor to other architectures with limited memory band-
width.

to an application. The domain of recursive algorithms targeted for the coprocessor is similar

in nature to the domain of a SGPP. Note that although iWARP is a general purpose DMM,

we are doing the comparison when it is operating in the systolic mode.

In terms of hardware scalability, the CoP is superior to the other architectures. A SA

is the least scalable and a SGPP requires a redesign of the network and controllers as the

system is scaled to larger sizes.

To summarize, the coprocessor has low hardware cost, low software cost, reasonable

generality, and very good hardware scalability. The software cost is reduced in a SGPP

by using complex hardware to achieve high performance. In our approach, we have chosen

limited hardware resources, and through our research on mapping and partitioning, have

reduced the software cost to achieve good performance.

5.2 Target Algorithms

The application domain of the coprocessor is the set of nested-loop algorithms described

in Section 1.2. As indicated there, nested-loop structures have a direct correspondence with
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recurrence equations, which provide a succinct mathematical representation for them. An

n-dimensional recurrence equation is equivalent to n nested loops, where the loop-carried

dependencies correspond to the dependencies in the recurrence equation.

Recurrences can be classi�ed as uniform or nonuniform based on the nature of the depen-

dencies [70]. A recurrence equation, Z(~p) = �[Z(~q1); Z(~q2); � � � ; Z(~qr)], is called uniform if

~qi = ~p+ ~di, where ~di is a constant n-dimensional vector independent of ~p and ~qi. A recurrence

equation is called a�ne or linear (LRE) if ~qi = Ai~p +~bi, where Ai is a constant-coe�cient

n�n matrix, and ~b is an n-dimensional vector. A recurrence equation is called nonlinear if

~qi = �(~p), where � is a nonlinear function.

In the remainder of this chapter, the dependence graph of the loop algorithm is used as

a graphical tool to discuss the partitioning and mapping procedure. The dependence graph

(DG) of an n-nested loop algorithm is de�ned over an an n-dimensional integer lattice do-

main, where nodes correspond to the operations inside the nested loops, and arcs correspond

to loop-carried dependencies.

In this work, we restrict ourselves to recurrences with uniform dependencies, which in-

volve uniform recurrences, and \uniformized" a�ne recurrences. Hence, only structural in-

formation of the algorithm, i.e., index set and dependence matrix, is needed. Examples 1.3

and 1.4 show the recurrences and nested-loop representations of the matrix-product and

transitive-closure algorithms, respectively.

In references [7, 6], Moreno and Lang describe a uniformization or regularization pro-

cedure to convert a matrix algorithm to a 3-D cubical mesh called the multimesh graph

(MMG). In this approach, a fully parallel data dependence graph of a given matrix algo-

rithm is converted to a regular MMG by performing transformations to remove broadcasting,

bidirectional ow of data, and irregular dependencies. Informally, a matrix algorithm is de-

scribed recursively by an outer loop with a loop body of vector, scalar, and other matrix

algorithms.1 The restriction is that each node of the data-dependence graph can have at

most three operands, which allow transformations to regularize the dependence graph to an

MMG with a 3-D cube structure. A number of important applications in signal processing

1For a formal de�nition, see Chapter 5 of reference [6].

109



N

N

N

Figure 5.5: Cubical-mesh dependence graph for computing the product of two N � N

matrices.

can be formulated as matrix algorithms and converted to 3-D MMGs. Therefore, the matrix

product is a benchmark problem for uniform recurrences from the point of view of MMGs.

For the transitive-closure problem, we use the regularization procedure of Moreno and

Lang to obtain a 3-D multimesh graph with a cubical structure. Figure 5.6 (p. 111) shows

the 3-D MMG for transitive closure. The darkened nodes in the �gure are delay nodes,

which are added in the regularization procedure to obtain a cubical structure. Such a 3-D

MMG with delay nodes is chosen as it presents a uniform and simple method of executing

the MMG. For an algorithm-speci�c design, the delay nodes would contribute to a signi�cant

portion of the execution time; hence, the MMG structure was not used in Chapters 3 and

4. For the coprocessor with a low bandwidth to an external main memory, the regular 3-D

MMG structure with additional delay nodes is justi�ed as it simpli�es the mapping (using

fewer control bits) and the access pattern to the external memory. Hence, in this chapter,

we use the 3-D MMG structure of the transitive-closure problem to evaluate the coprocessor.

Example 5.1 Figure 5.5 shows the 3-D dependence graph for the matrix-product algorithm

given in Example 1.3. The DG is an N �N � N cube with unit vectors along the axes as

dependence vectors.
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Figure 5.6: Cubical-mesh dependence graph for computing the transitive closure of an N�N
matrix [6, 7]. The �gure is drawn for N = 4.

Example 5.2 Figure 5.6 shows the cubical-mesh dependence graph [6, 7] for a 4�4 transitive-
closure problem shown in Example 1.3.

Figure 5.7 shows a pictorial view of the targeted algorithms considered in this chapter.

The coprocessor design includes both hardware and compiler design, as good performance

is dependent on both the ability of the compiler to exploit existing hardware and the choice

of hardware that can be best supported by the compiler.

5.3 Mapping Process

In this section, we describe our method of mapping the high-level loop speci�cation of

an algorithm to our target coprocessor, i.e., the compilation procedure from the program to

the architecture. The goal of the mapping process is to generate address sequences for the

controller in the AU and code sequences that the PEs execute on receiving the data. The

mapping process can be broken down into the following �ve steps:
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1. Partition the DG into blocks that can be executed in a single pass of the data on the

PA.

2. Sequence blocks through the AU, i.e., determine which blocks will occupy the AU in

each time step.

3. Schedule execution of a single block on the PA.

4. Generate address and code sequences from Steps 3 and 4.

The last step of address and code generation is well-de�ned once the partitioning, sequencing

and scheduling of the DG are known. Hence, in the following description, we assume that

the DG is given and proceed with the description of Steps 1,2, and 3 of the mapping process.

5.3.1 Partitioning

The objective in this step of the mapping process is to partition the DG into non-

overlapping blocks or chunks that can be processed by the PA in one pass. This step is
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necessary because the PA has only a limited number of PEs and I/O pins. Hence, the DG

is broken down into blocks of maximum size that can executed e�ciently in the PA.

Methods to �nd independent partitions in which the communication between blocks is

zero have been proposed before [71, 2]. However, when the original DG has only one connect-

ed component (which is the case for the algorithms we consider), independent partitioning

results only in one block, i.e., the entire DG. A technique called supernode partitioning has

been proposed [72], in which the goal is to partition the nodes that depend on each other

and reduce communication between supernodes by propagating results inside the supernode.

However, a systematic way to �nd such partitions is not presented.

In this paper, our approach to partitioning is similar to that in references [1, 73]. For an n-

D algorithm, we �nd n-independent hyperplanes to partition the DG into blocks. Hence, our

blocks are \parallelopipeds," and the shape of the blocks can be described by a partitioning

matrix P consisting of n partitioning vectors.

P = [~p1 ~p2 ~p3 � � � ~pn] :

Since we are dealing with uniform dependence algorithms, we restrict the sizes and shapes

of all the blocks to be the same, i.e., all of the blocks are identical. This simpli�es the

address and code generation for PEs. The reason for choosing exactly n partitioning vectors

in an n-D domain is that the blocks will not be regular if we have other than n partitioning

hyperplanes.

Example 5.3 In Figure 5.8, the index set is a 2-D plane, and the blocks formed by the

hyperplanes are normal to the vectors ~p1 and ~p2. Choosing ~p1 or ~p2 alone results in unequal

or unbounded blocks. Similarly, choosing ~p1, ~p2 and ~p3 results in unequal blocks.

De�nition 5.1 Given an n-D dependence graph G of an algorithm and a partitioning matrix

P, the block-level dependence graph Gb of G, is a dependence graph in n-D space, where

� nodes in Gb correspond to blocks of G that consists of all of the nodes within the

\parallelopiped" de�ned by n partitioning hyperplanes in P, and

� edges in Gb correspond to dependence vectors crossing the hyperplanes between adja-

cent blocks in G.
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Figure 5.8: Hyperplane partitioning of dependence graphs. The index set is the 2-D plane.
The vectors ~p1, ~p2, and ~p3 correspond to a family of regularly spaced hyperplanes
normal to them. The vectors determine only the orientation of the hyperplanes,
i.e., block shape, and not the spacing between them.

The following lemma presents the conditions for the choice of a valid partitioning matrix

P.

Lemma 5.1 The partitioning of a DG by a partitioning matrix P is valid if and only if

PtD � ~0 or PtD � ~0, where D is the dependency matrix.

Proof. A given partitioning matrix P is valid if the compressed or block-level DG is

acyclic. Hence, given a partitioning vector ~pi all of the dependence vectors ~dj should cross

the hyperplane corresponding to ~pi in the same direction, i.e., ~ptidj � 0 or ~ptidj < 0; 8j. Fig-
ure 5.9 shows the case in which ~pi is not valid (Block 1 depends on Block 2 and vice versa).

Next, we present a procedure to choose a good partitioning vector which results in a very

small amount of communication between adjacent dependent blocks.

Let g = rank(D), where D =
h
~d1~d2 � � � ~dk

i
is the dependency matrix. Hence, only g of

the k dependence vectors are linearly independent. Without loss of generality, assume that

the �rst g columns are linearly independent, and let D
0

=
h
~d1~d2 � � � ~dg

i
be an n�g matrix

consisting of the g linearly independent vectors of D. Let D
0

i be an n�g � 1 matrix derived

from D
0

by dropping the i-th column vector, i.e., D
0

i = [d1 � � � di�1di+1 � � � dg]. The number
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Figure 5.9: A pair of cyclically dependent blocks. Block 2 depends on block 1 through

dependence ~d1, while block 1 depends on block 2 through ~d2. Hence, partitioning
vector ~pi is invalid.

of partitioning hyperplanes needed to partition the DG is g (since g = rank(D)). Hence,

matrix P = [~p1 � � � ~pg] is chosen such that ~pi is given by

~ptiD
0

i = 0; 1 � i � g; and (5.1)

~pti
~di > 0:

The idea is to choose ~pi as the basis vector of the left null space of matrix D
0

i and invert the

sign of the elements of ~pi if ~pti ~di < 0. Hence, by construction, the partitioning matrix P is

feasible.

Corollary 5.1 If the columns of matrix D
0

form a normal basis, i.e., ~dti
~dj = 0; i 6= j, then

P = D
0

produces a valid partitioning matrix.

Proof. Consider column ~pi of partitioning matrix P = D
0

, where D
0

is an orthonormal

matrix. Hence, ~pti
~di = ~dti

~di = j~dij2 > 0, where j~dij is the magnitude of ~di. By Lemma 5.1, P

is valid. Also, ~pti
~dj = 0; j 6= i, hence it satis�es Eq. (5.1).
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Figure 5.10: Partitioned dependence graph for the matrix-product problem. The partition-
ing matrix P is equal to the dependence matrix D.

Example 5.4 For a 3-D matrix product, the dependency matrix is

D =

2
666664
1 0 0

0 1 0

0 0 1

3
777775 : (5.2)

According to the procedure above, the partitioning matrix P = D is feasible, as DtD =

I3 > 0 (I3 is the identity matrix in 3-dimensions). Figure 5.10 shows the partitioning of the

DG by the partitioning matrix P = D. The block-level DG is also a cubical 3-D mesh of

size N

m
� N

m
� N

m
.

Example 5.5 For the multimesh dependence graph of the transitive-closure problem, the

dependence vectors are (1; 0; 0)t; (0; 1; 0)t; (0; 0; 1)t. The partitioning matrix P is equal to

identity matrix I3. Figure 5.11 shows the block-level DG of size N+m
m
�N+1

m
�N

m
(N = 4;m = 2

in the �gure) for the transitive-closure problem. Thus, regularization into an MMG provides
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Figure 5.11: Partitioned multimesh dependence graph of the transitive-closure problem. The
partitioning matrix is equal to the identity matrix I3. The �gure is drawn for
N = 4;m = 2.

a uniform way of partitioning the input algorithm.

The following lemma shows that the above choice of P is good in the sense that it reduces

the amount of data communication between blocks.

Lemma 5.2 The choice of partitioning matrix P by the above procedure (Eq. (5.1)) results

in the minimum amount of communication between blocks in the partitioned DG.

Proof. The amount of communication between blocks in the partitioned DG is dependent

on the number of dependence vectors crossing the block boundary to adjacent blocks. Since

rank(D) = rank(P) = g, at least one dependence vector must cross each hyperplane ~pi

(else rank(D) < g if all ~di are parallel to pi). For a partitioning matrix P obtained using

the procedure, exactly one dependence vector di crosses the partitioning hyperplane ~pi (as

~ptidi > 0, and ~ptiD
0

i = ~0). Other choices of ~pi will result in equal or increased communication

across the hyperplane ~pi. Hence, partitioning with matrix P results in the minimum total

amount of communication among the blocks. The total amount of communication c from a
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(interior) block for P chosen using the procedure is given by

c =
gX
i=1

Qg
i=1 bi

bi
min(bi; ~p

t
i
~di) (5.3)

where bi is the size of the block along ~pi, i.e., two partitioning hyperplanes perpendicular to

~pi are placed bi apart. The value ~pti ~di is the projection of dependence vector ~di along parti-

tioning vector ~pi. Therefore, if ~pti ~di � bi, dependence vectors ~di from all of the
Qg

i=1 bi index

points cross the hyperplane perpendicular to ~pi resulting in
Qg
i=1 bi words of communication

along ~di.

The complexity of �nding matrix P is

 
k

g

!
O(n:g2) as there are

 
k

g

!
ways of choosing

g independent columns of D, and O(n:g2) is the cost of �nding a null-space vector of an

n�g � 1 matrix.

The size of a block is chosen such that the entire block can be processed by the PA in a

single pass. Hence, the size of a block is b1 � b2 � � � � � bg where bi; i = 1; � � � ; g is chosen

depending on the size of the PA and the local memory per PE.

5.3.2 Sequencing blocks through the access-unit

The execution model of the coprocessor is as follows. Initially, p blocks from main memory

(MM) are loaded into AU, and the PA begins executing these p blocks. As the execution

proceeds, new blocks are fetched from MM into AU, and some of the existing blocks in AU

are written back to MM. As the AU is of limited size, a block of data will have to be fetched

multiple times from MM, and the goal in this step is to decide which blocks will be fetched

into AU as the execution proceeds. The blocks to reside in AU must be chosen to reduce

the tra�c between MM and AU; equivalently, the data reuse should be maximized for the

blocks in AU.We can think of the AU forming a \storage window" or tile over the block-level

DG of the algorithm. The AU stores all of the data needed to compute the blocks in the

\storage window," and the output of this phase is to describe how the \storage window" will

be moved over block-level DG in a nonoverlapped fashion (else some computations will be

redundant).
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The sequencing procedure is described below for a block-level DG in the form of a n-

dimensional mesh with identity dependence matrix, i.e.,

D = In =

2
666666664

1 0 � � � 0

0 1 � � � 0
...

...
. . . 0

0 0 � � � 1

3
777777775
: (5.4)

Let the size of the block-level DG be V = N1 � N2 � � � �Nn, where Ni; i = 1; . . . ; n is

the number of nodes along direction di =

8<
:0 . . . 0| {z }

i�1

1 0 . . . 0| {z }
n�i

9=
;
t

. The \storage window" is an

(n � 1)-D tile in the n-D DG.

The following pseudo-code describes the movement of the \storage window" of p

blocks. Without loss of generality, assume that N1 � N2 . . . � Nn (otherwise the DG

can be reindexed).

Procedure 5.1

for i1 = 1 to N1 step n�1
p
p

. . .

for in�1 = 1 to Nn�1 step n�1
p
p

for in = 1 to Nn

Schedule(i1; i2; . . . ; in)

where Schedule(i1; i2; . . . ; in) schedules all of the p blocks in the

n�1z }| {
n�1
p
p� . . .� n�1

p
p (n�1)-

D \storage window" at node (i1; i2; . . . ; in) of the block-level DG to be brought into the AU.

The \storage window" is on a plane perpendicular to vector dn in the compressed DG, and

moves along direction ~dn.
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Consider a general URE in an n-D domain, with dependence vectors D = [~d1; ~d2; � � � ; ~dn]
(if the number of dependencies is larger than n we consider only the n linearly independent

ones). Note that a set of n linearly independent dependence vectors ~d1; ~d2; � � � ; ~dn can be

converted to a set of n unit vectors (corresponding to an n-D mesh) by a linear transformation

or an appropriate basis change. Thus, the UREs are in some sense equivalent to each other

from the point of view of dependencies; therefore, the sequencing scheme developed for n-

D meshes can be easily extended to other UREs. Consequently, the storage window is an

(n � 1)-D tile formed by the �rst (n � 1) dependence vectors, and the tile is moved along

the remaining vector ~dn in the DG.

The shape of a domain of a given URE is also taken into account in the sequencing scheme

as follows. For a URE de�ned over an arbitrary convex domain, the sequencing procedure

traverses the domain by a set of parallel 1-D \lines." The \width" of a line corresponds to an

(n�1)-D storage tile, and its direction denotes the movement of the (n�1)-D tile along the

n-th dependence vector. A penalty is incurred each time the storage tile shifts from the tail

of a line to the head of another parallel line (the term denoted by \XY plane except (0,0,0)"

in Eq. (5.9)). The head, tail and length of these parallel lines are di�erent for di�erent

domain shapes. For the n-D mesh, all of the lines are parallel to vector dn = (0; � � � ; 0; 1)t,
and are all of the same length Nn. Thus, the regularization of the given DG into a MMG

and the decomposition of the block-level DG into parallel lines present a uniform way of

handling general UREs.

Example 5.6 Figure 5.12 shows the storage-window movement for matrix product with

N = 6m, p = 9, where each tile is a square of size 3� 3. As the block-level DG is a full 3-D

mesh, it is perfectly tiled with 216 nodes covered in 24 tiles of size 9 each.

Example 5.7 Figure 5.13 shows the storage-window movement for transitive closure with

N = 4m, p = 4, where each tile is a square of size 2� 2. As the block-level DG is not a full

3-D mesh, the 100 nodes in the block-level DG are �tted into 36 tiles of 4 nodes each.
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Figure 5.12: Storage-window movement in the block-level DG for the matrix-product prob-
lem. The darkened areas show the storage window. For N = 6m, p = 9, there
are 24 tiles.

The size of the storage tile is chosen to minimize the total number of data accesses over

the link to MM. Since the size of AU is constant, the number of data accesses is proportional

to the perimeter of the tile. It can be easily seen that the shape of the tile should be chosen

as an equisided (n� 1)-D \parallelopiped" to minimize the total number of data accesses to

MM.

For the above sequencing scheme with an equisided storage tile, the number of data

accesses from the MM (or the I/O complexity denoted by Q) for a block-level DG in the

form of an n-D mesh is given by

Q =
(n� 1)V

n�1
p
p

+
V

Nn

: (5.5)

Lemma 5.3 establishes that the above sequencing scheme for n-D meshes is asympototi-

cally optimal with respect to the number of accesses to the MM.

Lemma 5.3 [74] For n-dimensional meshes, Q = 

�

V
n�1
p
S

�
, where S is the size of the

limited memory and Q is the I/O complexity.
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Figure 5.13: Storage-window movement in the block-level DG for the transitive-closure prob-
lem. The darkened areas show the storage window. For N = 4m, p = 4, there
are 36 tiles.

In this case, S = p, and it is obvious that the number of accesses from MM (Eq. (5.5))

due to the above described scheme (Procedure 5.1) has the same asymptotic complexity as

the lower bound given above. Hence, our sequencing scheme is optimal with respect to the

number of accesses from MM.

5.3.3 Executing a block in the processor array

In Sections 5.3.1 and 5.3.2, we have discussed techniques to partition the DG and sequence

the resulting blocks. In this step of the mapping process, the goal is to map a single block

onto a PA so that it can be executed in a single pass.

For this step, the Generalized Parameter Method (GPM) developed in Chapter 2 is used

to determine the data distributions of the inputs of a block of DG, i.e., which data should be

input into the boundary PEs at each time step. The objective used in GPM is to maximize

the utilization of the PA. If #PE; Tc, and Tseq denote the number of PEs in the processor

array, completion time of all of the blocks, and serial time to compute DG, respectively, then
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Figure 5.14: Data-input patterns for a linear array that computes the product of two 4 � 4
matrices.

.

the utilization U is given by

U =
Tseq

#PE � Tc
: (5.6)

Hence, for a given algorithm with �xed Tseq, maximizing U is equivalent to minimizing

the PE-time product #PE � Tc. This objective tries to reduce the computation time of

each block, and increases the overlap between consecutive blocks to reduce the load/drain

penalties of the blocks.

Example 5.8 Consider an m � m � m block from the 3-D mesh for matrix-product and

transitive-closure applications. If the target array is 1-dimensional, Figure 5.14 shows an

input distribution that minimizes the #PE � Tc product in the array for m = 4 (there are

10 PEs in this case). The data distribution of the inputs is as shown in the �gure. Sim-

ilar distributions are possible that minimize other objectives such as completion time and

processor-time product.
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Figure 5.15: Mapping the MMG of an algorithm to the coprocessor architecture.

5.3.4 Overview of mapping process

Having presented a glimpse of the individual steps in earlier subsections, we now present

the overview of the entire mapping process from the DG description to the array architecture.

Figure 5.15 gives the steps involved in the mapping process. The loop in Figure 5.15 indicates

the iteration over the many di�erent ways of partitioning the given DG, sequencing the

blocks, and determining a block schedule in GPM.

5.4 Applications: Matrix Product and Transitive Closure

In this section, we present our results in mapping algorithms described by UREs on the

coprocessor. Our results are based on the matrix-product and transitive-closure applications.

124



Let the DG of the 3-D mesh for the matrix product be of size N �N �N corresponding

to C = A�B, where A and B are two N �N matrices. As presented in Section 5.3.1, this

DG is partitioned into cubical blocks of size m�m�m. The AU holds a
p
p �pp square

tiles of blocks of DG (formed along dependencies (1; 0; 0)t and (0; 1; 0)t), and the movement

of the tile is along dependence vector (0; 0; 1)t. Figures 5.5, 5.10, and 5.12 show the original

DG, the block-level DG after partitioning, and the movement of the tile (sequencing blocks

through AU) for the matrix product, respectively.

Figures 5.6, 5.11, and 5.13 show the original DG, the block-level DG, and the movement

of the storage tile in the block-level DG for transitive closure, respectively. The darkened

nodes are delay nodes added to regularize the original DG to a cubical structure. The 3-D

MMG for transitive closure is also partitioned into cubical blocks of size m�m�m for 1-pass

execution on PA. The size of the block-level DG after partitioning is N+1
m
� N+m

m
� N

m
. Note

that block-level DG is identical to the original DG except for its dimensions. The \storage

window" is a
p
p � pp square set of blocks and is moved along the (0; 1; 0)t direction as

shown in Figure 5.13 in order to minimize the total number of data accesses.

These examples illustrate the bene�t of deriving MMG from the nested-loop algorithm,

as it provides for a uniform way of partitioning the MMG, sequencing the blocks of the

MMG, and designing the PE array to execute a block of the MMG.

5.4.1 Evaluation metrics

Since one of our goals is to develop a cost-e�ective design, the fundamental metric used

is the performance of the targeted algorithms on a given amount of silicon chip area. Hence,

we need an estimate of the area consumed and the completion time of the design in terms

of the abstract model parameters.

Area Model

The total area occupied by the array architecture is the sum of the areas of the processors,

AU, controller, and the input and output networks in the AU.

Area = Areaproc +AreaAU +Areapins +Areacontroller +Areanetwork: (5.7)
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The dominant terms in the total area are the �rst two terms: Areaproc and AreaAU . The

other 3 terms are lower-order terms, and their contribution is neglected in our simpli�ed

model. For example, for linear-array con�gurations, the number of ports on PA and AU

are constants, and, therefore, the area contributions due to the pins (proportional to the

number of ports) and the network (proportional to the square of the number of ports) are

constant and small. The area of the controller (size of the control memory) is dependent on

the mapping process and proportional to the regularity in data-access patterns from MM.

For UREs, the access pattern and address generation will be regular and simple, and the

size of the control memory will be small. Therefore, the area index, containing the dominant

terms, is given by

AreaIndex = #PE(APE + l)| {z }
AreaPA

+3
p
pm2 + pm2| {z }
AreaAU

(5.8)

where APE is the area of a single PE in memory words, which captures the implementation

cost of a PE, and l reects the local memory per PE. Since, AU holds
p
p�pp blocks of the

DG forming a square in the 3-D mesh (Figure 5.12), storage is needed in the AU for (i) pm2

elements of C, (ii)
p
pm2 elements of A, (iii)

p
pm2 elements of B, and (iv) additional

p
pm2

words for the next set of
p
p�pp blocks brought in from MM into AU for future processing.

Model of Completion Time

The total completion Tcompl in PE-cycles is given by

Tcompl = max

 
2
p
pm2

BMM

; p tblock

!
Num blocks(N;m)

p

+
2pm2

BMM

 
Num XY blocks(N;m)

p
� 1

!
| {z }

XY plane except block(0;0;0)

+
pm2 + 2

p
pm2

BMM| {z }
block(0;0;0)

+max

 
pm2

BMM

� (p � 1) tblock; 0

!
| {z }

block(N;N;N)

(5.9)
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where BMM is the bandwidth between MM-AU in elements per PA clock tick, tblock is

the nonoverlapped time taken to execute one block of DG by PA,2 Num blocks(N;m)

is the number of blocks of the DG or the number of nodes in the block-level DG, and

Num XY blocks(N;m) is the number of nodes in the projection of the block-level DG to

the XY plane parallel to the storage tile of AU, i.e., Num XY blocks(N;m) is the number

of times the storage tile has to change direction.

The �rst term in Eq. (5.9) is the dominant term and is the product of the time taken for

each window (
p
p � pp) in AU and the number of windows over DG. For each window of

size
p
p �pp, 2

p
pm2

BMM
is the time it takes to fetch the elements needed for the next window,

and p tblock is the time to process p blocks in the current window. The second term in

the equation models the additional time required whenever the window changes direction

which involves writing and reading pm2 elements of the output matrix. The third term is

the initial latency to load the data corresponding to
p
p�pp blocks in the storage window.

For a
p
p�pp storage window, there are pm2 elements of the result matrix (corresponding

to the area of the tile) and 2
p
pm2 elements of the input matrix (corresponding to half of

the perimeter). The �nal term is the additional time over the time for the �nal storage tile

(p tblock) to write back the results from AU to MM. Note that there are pm2 elements of the

output matrix to be written back to MM, and tblock is the earliest time after the start of the

last storage window when the �rst m2 elements are available for write-back.

Example 5.9 For the matrix-product problem, as shown in Figure 5.10,

Num blocks(N;m) =
N

m
� N

m
� N

m

Num XY blocks(N;m) =
N

m
� N

m
:

2For any block of the DG, the processing time includes the load, drain, and computation times of the

block on the PA. In GPM, the block scheduling is done to overlap consecutive blocks entering the array,

thereby reducing the e�ective load, drain (and maybe the computation time) of a block. The nonoverlapped

time for a block refers to those portions of the load, drain and computation times that are not masked by

successive blocks.
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For the transitive-closure problem with 3-D MMG, as shown in Figure 5.13,

Num blocks(N;m) =
N + 1

m
� N +m

m
� N

m

Num XY blocks(N;m) =
N + 1

m
� N

m
:

Size of AU

In order to have e�cient processing, AU must be large enough to mask the MM latency

fully, i.e., completely overlap the loading of the inputs of the next storage window with the

processing of the current one. Therefore,

2
p
pm2

BMM

� p tblock

p �
 

2m2

BMMtblock

!2
: (5.10)

Example 5.10 Let N = 512, m = 8 and BMM = 1=5 (5 cycles per word). The number of

processors, #PE = m2 = 64.

� For a square array, tblock = m = 8 and the AU size is about 400K words or 12:8M bits

assuming 4 bytes/word.

� For a linear array with tblock = m2 = 64 and the AU size is about 8K words or 256K

bits.

Although 12M bits of fast memory in the AU is not possible with the current technology,

256K bits is very feasible. For a linear array, as tblock = O(m2), p is independent of the block

size m. This is true because for a linear PA used for block processing, its I/O bandwidth is

constant, independent of the number of PEs and block size, and the size of AU in blocks (p)

depends only on the bandwidth to MM.
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Clock-rate Reduction

A useful way of looking at the coprocessor is as follows. Suppose that we increase the

area by a certain factor, what is the reduction in clock rate in order to obtain the same

throughput (or completion time)? Therefore,

Tcompl �
1

ClockPA
= Tref �

1

Clockref

Clockref

ClockPA
=

Tref

Tcompl

(5.11)

(5.12)

where Tref and Clockref are the completion time and clock rate of the the reference design,

respectively. The reference design is chosen as the basic coprocessor design with one PE and

the appropriate amount of AU memory to mask the MM latency. Thus, both the reference

and current designs have the same bandwidth limitation. The AreaIndex of the reference

design in memory words can be obtained from Eq. (5.8) and Eq. (5.10) whenm = 1, tblock = 1,

and #PE = 1. It is given by

AreaIndexref = Ape +
4

B2
MM

+
6

BMM

(5.13)

where Ape is the area of a PE in memory words and BMM is the bandwidth to MM. Section-

s 5.4.4 and 5.4.5 present the cost-performance trade-o�s of the coprocessor where the cost is

measured as the Area Index (Eq. (5.8)), and the performance is measured as the reduction

in clock rate over the reference design (Eq. (5.11)). Note that Eq. (5.11) can be interpreted

as the speedup over the reference design (with 1 PE) for equal clock rates.

A reduced clock speed is desirable for several reasons. First, and most important, the

chip yield would be signi�cantly higher if it were designed for a lower clock rate. For instance,

the yield would improve signi�cantly if the chip is designed for a 1-MHz instead of a 50-

MHz clock rate. Also, power dissipation is lower at lower clock rates, which leads to better

integration and lower packaging costs. Hence, reduced clock rates will lower the system cost.

This is intuitively in agreement with existing high-speed processors where there is a steep

(possible exponential) variation in cost (and design time) with clock speed.
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5.4.2 Relationship between clock-rate reduction and area index

If the size of PA is increased by a factor �, the block size m will have to be increased

by � for single-pass execution of each block by PA. For a linear array, tblock = O(m2), and

the number of blocks in AU (p) is independent of block size m (Eq. (5.10)). Therefore, the

area of AU for a linear array increases by �2 when m is increased by � (Eq. (5.8)). The total

area (AreaIndex) of the coprocessor, which is dominated by the area of AU, increases by a

factor �2 when m is increased by �. Hence, AreaIndex grows as the square of the number

of PEs in the linear array. The following argument shows that the size of AU has to grow

at least as the square of the number of PEs, in order to mask MM latency when processing

a cubical block of DG on a linear PA.

Consider a cubical m�m�m block of DG to be processed in a linear PA. For a linear

PA has constant I/O bandwidth, the time to process a block is 
(m2), as there are O(m2)

input and output elements to be loaded into PA. Therefore, the size of AU has to be 
(m2)

as all the O(m2) elements needed to process a block have to be held in the AU to mask the

MM latency. The number of PEs in PA is O(m), as there are m3 operations to be completed

in O(m2) time. Therefore, to mask MM latency, the size of AU (given by 
(m2)) grows at

least as the square of the number of PEs (given by O(m)).

The completion time Tcompl (and, hence, the clock-rate reduction) can, at best, increase

by � when the number of PEs is increased by � (superlinear speedups are not possible for

deterministic processing). The area index grows at least as �2 when the number of PEs is

increased by �. Thus, clock-rate reduction can grow at best as the square root of AreaIndex

when the e�ect of MM latency is masked completely. However, beyond a certain number of

PEs (or area index) for a �xed problem size, the completion time is bounded by the �xed

bandwidth to MM, and is equal to the time to read and write the elements of input and

output matrices. Hence, clock-rate reduction will atten out beyond a certain area ratio

(Acrit) when MM becomes a bottleneck. Thus,

Clock-rate reduction (CRR) =

8>>><
>>>:

Clockref

ClockPA
= O(

p
AreaIndex); AreaIndex � Acrit

Clockref

ClockPA
= V olume(N)

BMM
; otherwise
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Figure 5.16: Area allocation between AU and PA of the coprocessor for masking MM latency
fully. The area of the reference design is equal to 230 words for Ape = 100 and
1130 words for Ape = 1000 (Eq. (5.13)).

where V olume(N) is the total amount of data to be accessed (including both read and

write data) to process the given n-dimensional uniform dependence algorithm. Thus, for

AreaIndex � Acrit, CRRmax =
V olume(N)

BMM
.

5.4.3 Area allocation between AU and PA

Figure 5.16 shows the variation of the fraction of total area occupied by the PA as we

increase the total silicon area of the coprocessor. The size of AU in Eq. (5.8) is computed

using p from Eq. (5.10), which is chosen to overlap the memory fetches completely with

computations. The x-axis is the area of the chip in memory words. Thus, AreaIndex of 5

megawords corresponds to an area equivalent to 160 megabits of storage assuming each word

is 32 bits. The cost of a PE in memory words is denoted as Ape. Thus, Ape = 100 means

that each PE occupies an area equivalent to 100 words of memory. Hence, for 5000 K words

of total area and Ape = 100, only 4% of the total area is occupied by PEs for a linear-array

131



con�guration with Ape = 100. This shows that most of the chip area is taken up by the

AU if we design the chip with the optimal balance where memory latency is fully masked.

Moreover, for the same total area, a linear PA has more of its area devoted to PEs. The

e�ect of increased area of a PE is to lift the entire plot upwards both for linear and square

PAs. Although this �gure is for BMM = 1=5 (5 cycles to access a word from memory), the

same e�ect is observed for other bandwidths.

5.4.4 Cost-performance trade-o�s: matrix product

Figure 5.17 shows the cost-performance trade-o�s of the coprocessor on the matrix-

product application. Performance is measured as the reduction in clock rate, and the cost is

measured as AreaIndex. The system is designed at the balance point to mask memory laten-

cy fully (Eq. (5.10)). Trade-o�s are shown for problem sizes of N = 1; 024 and N = 10; 240

when the latency to access a word from MM is 5 cycles. The area cost of a PE in memory

words is denoted as Ape. It captures the e�ect of technology on PE implementations. The

amount of local memory in each PE is controlled by parameter l. In our approach, for a

given block size, we obtain a virtual array (linear or square), and cluster the virtual PEs to

obtain increased local memory per PE and reduced number of PEs. Hence, l virtual PEs are

clustered together, and the larger the value of l, the lower the number of PEs and the lower

the clock-rate reduction. For l = 1, each physical (and virtual PE) has 3 words of storage,

one for A;B; and C. The x-axis is again the area index in memory words.

Figure 5.17 shows that for 5 megawords of silicon area, we can reduce the clock rate

by a factor of about 175 for a square array and about 160 for a linear array. Therefore,

for a 10; 240 � 10; 240 matrix product, if we clock the array at 1 MHz, we will obtain a

performance equivalent to that of a reference design (with 1 PE) running at 160 MHz (6.25

ns). For a 66 MHz clock rate (15 ns), we can clock the coprocessor at 400 KHz for the same

performance (of about 160 MFLOPS), or run it at 1 MHz and obtain a 2.5 times speedup.

The �nal speed can be chosen from a variety of alternatives depending on the objective of

the design. Figure 5.17 shows the square-root relationship between clock-rate reduction and

area index (Section 5.4.2). For instance, when the area is increased from 1 megawords to 4

megawords, the clock-rate reduction only doubles from 75 to about 150 for a linear array.
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Figure 5.17: Cost-performance trade-o�s of the coprocessor on the matrix-product prob-
lem. The values of maximum clock-rate reduction are: CRR1

max = CRR2
max =

CRR3
max = CRR4

max = 512:5, CRR5
max = CRR6

max = 51:7. The values of criti-
cal AreaIndex in megawords beyond which clock-rate reduction saturates are:
A1
crit = 105:9; A2

crit = 111:4; A3
crit = 140; A4

crit = 155; A5
crit = 1:44; A6

crit = 2:97.
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The degradation in performance in using a linear array rather than a square array is about

8% for Ape = 100 and 20% for Ape = 5000.

Figure 5.17 also shows the cost-performance curves for a smaller problem size N =

1024. The performance of the coprocessor saturates because of the bottleneck of limited

bandwidth to MM. The completion time of the coprocessor is equal to the time to access the

input matrices (A, B) and the output matrix C from MM. Hence, the maximum clock-rate

reduction is given by
Clockref

ClockPA
=

Tref

Tcompl
= N3

4N2

BMM

= 51:2 for N = 1024. This maximum value of

51 is for AreaIndex � 1:4 megawords (Acrit = 1.4 megawords).

Therefore, a linear PA is an attractive choice for the matrix-product problem and other

UREs. Its advantages are its constant I/O bandwidth and modularly expandable layout.

The linear PA achieves good performance because of the ability of the mapping algorithm

to exploit locality in the high-dimensional loops e�ectively.

Figure 5.18 depicts the reduction in clock rate for linear and square arrays with l = 8.

Thus, 8 virtual PEs are coalesced into a physical PE leading to an 8-fold increase in local

memory of a PE. As the �gure shows, while the corresponding curves for square PAs remain

unchanged from Figure 5.17, the curves for a linear array are lower than the corresponding

ones in Figure 5.17. Figure 5.18 shows that there is an 100-fold reduction in clock speeds

possible (37.5% lower than when l = 1) as shown in the �gure. Again, the clock-rate

reduction grows as the square root of the area index when MM latency is masked.

Figure 5.19 shows the e�ect of increasing BMM between MM and AU on the cost-

performance trade-o�s. As shown in the �gure, the MM bandwidth is a key factor that in-

uences the performance of the coprocessor. For instance, when AreaIndex is 5 megawords,

the performance doubles from 150 to 300 when BMM is increased from 1=5 (5 cycles/word)

to 1=2 (2 cycles/word). High bandwidths are possible because of the lower frequency at

which the coprocessor can be clocked for a given performance level.

Figure 5.20 shows the sensitivity of the performance of the coprocessor to variations in

the size of AU. In Figure 5.20, the size of AU is scaled by a factor of ALPHA from the

optimal value given in Eq. (5.10). If ALPHA < 1, the PEs will be idle between the time

the current set of p-blocks is completed to the start of the next set of p blocks. Therefore,

the performance measured as clock-rate reduction will decrease as ALPHA is decreased.
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Figure 5.18: E�ect of local memory per PE (l) on cost-performance trade-o�s for the matrix-
product problem. Local memory in the PE is used to simulate a set of
virtual PEs reducing the PE-count. The values of maximum clock-rate re-
duction are: CRR1

max = CRR2
max = 512:5, CRR3

max = CRR4
max = 445:6,

CRR5
max = CRR6

max = 44:9. The values of critical AreaIndex in mega-

words are: A1
crit = 107:7; A2

crit = 112:8; A3
crit = 428:05; A4

crit = 433:1; A5
crit =

4:93; A6
crit = 5:53.
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Figure 5.19: E�ect of bandwidth (BMM) on cost-performance trade-o�s for the matrix-
product problem. The values of maximum clock-rate reduction for plots 2; 3; 4
are: CRR2

max = 1280:5, CRR3
max = 512:5, CRR4

max = 256:5. The values of
critical AreaIndex in megawords are: A2

crit = 211:6; A3
crit = 142:8; A4

crit = 123.
Plot 1 does not saturate as the bandwidth to MM is higher than the data rate
required by PA.
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Figure 5.20: Sensitivity of clock-rate reduction of coprocessor to changes in AU size for the
matrix-product problem. If ALPHA < 1, the PEs are idle due to insu�cient
data accessed from MM. If ALPHA > 1, chip area is wasted by the extra
memory in AU. The maximum clock-rate reduction for all curves is 512:5. The
values of critical AreaIndex in megawords are: A1

crit = A2
crit = 142:8; A3

crit =
175:1; A4

crit = 770:7; A5
crit = 2463:8.
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Figure 5.20 shows that for a 500-fold decrease in AU size (ALPHA = 0.002), the reduction

in clock rate drops by a factor of 4. For example, if the area index is 5 megawords, the clock-

rate reduction drops from 160 to 40 as ALPHA is moved from 1.0 (optimal value) to 0.002.

Hence, the linear-array design shows good resilience to change in the size of AU from its

desired optimal value. The low sensitivity to AU size can be used to obtain signi�cant area

savings without sacri�cing performance. For instance, when ALPHA = 0:33, the AU is one-

third smaller than when ALPHA = 1:0, resulting in a 32% area savings (from Figure 5.16

and 5.20) for only a 7% decrease in performance. Hence, the designer can �ne tune the �nal

design to maximize the area-performance trade-o�.

5.4.5 Cost-performance trade-o�s: transitive closure

Figures 5.21, 5.22, 5.23, and 5.24 show the cost-performance trade-o�s of the coprocessor

on transitive-closure problems described by 3-D MMGs. The x-axis is the cost or area

index in memory words, and the y-axis is the performance measured as clock-rate reduction.

Due to the more irregular nature of the transitive-closure algorithm, the performance of the

coprocessor on transitive closures is lower than that on matrix products.

For instance, from Figure 5.21, for 5 megawords of silicon area and a 10; 240 � 10; 240

problem, we can reduce the clock rate by a factor of about 135 (compared to 160 for a matrix

product) for a linear array to have the same execution time as a reference 1-PE system. For

N = 1024, the maximum clock-rate reduction is equal to 34:8 and Acrit = 1:45 megawords.

Again, the e�ect of local memory, l = 8, (Figure 5.22) is to scale the performance down

to about 80 for N = 10240. Figure 5.23 again shows that BMM is important for good

performance and shows the improvement due to increased bandwidths. Finally, Figure 5.24

establishes that the cost-performance trade-o�s are not very sensitive to the size of the

AU required for masking memory latency fully. For instance, when ALPHA = 0:33 in

Figure 5.24, the AU is one-third smaller than when ALPHA = 1:0, resulting in a 28% area

savings (from Figure 5.16 and 5.24) for a 15% decrease in performance. The cost-performance

trade-o�s are more sensitive for the transitive-closure problem than for the matrix-product

problem due to irregularities in the algorithm.
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Figure 5.21: Cost-performance trade-o�s for the transitive-closure problem. The values
of maximum clock-rate reduction are: CRR1

max = CRR2
max = CRR3

max =

342, CRR4
max = CRR5

max = CRR6
max = 34:8. The values of critical

AreaIndex in megawords beyond which clock-rate reduction saturates are:
A1
crit = 140; A2

crit = 144; A3
crit = 170:6; A4

crit = 1:44; A5
crit = 1:73; A6

crit = 4:6.
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Figure 5.22: E�ect of local memory per PE (l) on cost-performance trade-o�s for the
transitive-closure problem. The values of maximum clock-rate reduction are:
CRR1

max = CRR2
max = CRR3

max = 310:9, CRR4
max = CRR5

max = CRR6
max =

31:6. The values of critical AreaIndex in megawords are: A1
crit = 426:1; A2

crit =
427; A3

crit = 436:3; A4
crit = 4:23; A5

crit = 4:33; A6
crit = 5:26.
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Figure 5.23: E�ect of bandwidth (BMM) on cost-performance trade-o�s for the transitive-
closure problem. The values of maximum clock-rate reduction for plots 2; 3; 4
are: CRR2

max = 854, CRR3
max = 342, CRR4

max = 171:3. The values of critical
AreaIndex in megawords are: A2

crit = 215:4; A3
crit = 144; A4

crit = 123. Plot 1
does not saturate as the bandwidth to MM is higher than the data rate required
by PA.

141



0

50

100

150

200

250

0 1e+06 2e+06 3e+06 4e+06 5e+06

R
ed

uc
ti

on
 in

 C
lo

ck
 R

at
e

Area Index in Memory Words

Transitive Closure, N=10240, Ape = 1000, B_MM = 1/5, l = 1

1.   ALPHA = 1.5  
2.   ALPHA = 1.0  
3.  ALPHA = 0.33 
4.  ALPHA = 0.01 
5. ALPHA = 0.002

Figure 5.24: Sensitivity of cost-performance trade-o�s to changes in AU size for the transiti-
ve-closure problem. The maximum clock-rate reduction for all curves is 342.
The values of critical AreaIndex in megawords are: A1

crit = A2
crit = 144; A3

crit =

177:8; A4
crit = 780; A5

crit = 2498:3.
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5.5 Discussion

The main contribution of Section 5.4 is the square-root relationship between the clock-

rate reduction and the area of the coprocessor under �xed MM bandwidth. Two applications

of matrix product and transitive closure have been used to evaluate the coprocessor, and

the e�ect of the di�erent parameters of the abstract model on the square-root relationship

has been presented in Sections 5.4.4 and 5.4.5. In this section, we present the impact of

the square-root relationship on the overall system metrics such as yield (considered to be

indicative of the cost), performance (throughput), and power dissipation.

5.5.1 Yield

The most important consequence of reducing the clock rate is the improvement on the

yield of manufacturing the chips. Although chip yield would improve as the clock frequency

is reduced, we need larger silicon area to obtain lower clock frequencies. Hence, the number

of chips in the system will be higher as the clock rate is reduced. As an illustration, we

compute the rate at which the chip yield should drop with frequency in order to improve

the net system yield.

Let y denote the chip yield at some frequency f , and let #C be the number of chips used

in the system. We compute the expected number of chips that have to be tested to �nd #C

working chips. We assume that chips on a wafer are independent of each other and assume

them to be drawn with replacement from a large set, until the required number of working

chips are found. Hence, the expected number of draws (chips to be tested), E(1), until one

working chip is obtained is given by

E(1) =
1X
i=1

i (1 � y)i y =
1

y
; (5.14)

where y is the chip yield. Therefore, the expected number of chips to �nd #C working chips

is given as

E(#C) = #C E(1) =
#C

y
/ AreaIndex

y
; (5.15)
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expected number of chips tested (Eq. (5.16)).

as the number of chips used is directly proportional to the AreaIndex of the coprocessor.

The highest-order term in AreaIndex varies as the inverse-square of the clock frequency

(fclk), i.e., AreaIndex / 1
f2
clk

(since clock-rate reduction is proportional to the square root of

AreaIndex). Hence, the chip yield y has to drop at least as the inverse square of the clock

frequency in order to reduce the expected number of chips E(#C) in Eq. (5.15). Therefore,

for some constant c,

y(fclk) �
c

f2clk
for E(#C) to decrease. (5.16)

Hence, there would be a net reduction in the number of chips tested (improved system

yield) if chip yield drops at least as the inverse square of the clock frequency (Figure 5.25).

Therefore, as the area of the coprocessor is increased, the expected number of chips to be

tested would decrease, thus lowering the design cost.

5.5.2 Speedup

The metric of clock-rate reduction in Eq. (5.11) can be interpreted as the speedup over

the reference design of 1 PE for equal clock rates. Thus, clock-rate reduction can be thought

of as the improvement in throughput for a given clock rate, or as the reduction in clock

frequency for a given throughput. Hence, speedup over the reference design increases as the
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square root of area index for a �xed clock rate. It should be noted that speedup is linear

in the number of PEs since AreaIndex is proportional to the square of the number of PEs

(Section 5.4.2).

5.5.3 Power

There are three major sources of power dissipation in digital CMOS circuits, which are

summarized in the following equation [75] :

P = pt(CL:V:Vdd:fclk) + Isc:Vdd + Ileakage:Vdd: (5.17)

The �rst term represents the switching component of power, where CL is the loading ca-

pacitance, fclk is the clock frequency, Vdd is the supply voltage, V is the voltage swing

(usually equal to supply voltage Vdd), and pt is the activity factor, i.e., the probability that

a power-consuming transition occurs. The second term is due to direct-path, short-circuit

currents Isc, and the �nal term is due to leakage currents Ileakage. The dominant term in a

\well-designed" circuit is the switching component. Therefore, as the clock frequency fclk is

reduced, P decreases in a linear fashion, and as the area of the coprocessor is increased, P

decreases as the square root of the area.

The total power dissipated by the coprocessor Ptotal is proportional to P � AreaIndex,

where P is given by Eq. (5.17) and AreaIndex is the area of the coprocessor given by

Eq. (5.8). As the area is increased, the total power Ptotal increases as the square root of the

area (since P / 1
AreaIndex

).

Ptotal = P �AreaIndex /
p
AreaIndex (as P / 1p

AreaIndex
). (5.18)

Hence, total power dissipated increases in a square-root fashion as the area is increased.

However, the power density (measured as power per unit area) decreases as AreaIndex is

increased. This could simplify the design of the heat sinks and potentially reduce the cost

of a chip.

For low-power designs, the popular approach is to reduce power P (Eq. (5.17)) by de-

creasing the supply voltage Vdd. For a given performance, the supply voltage cannot be

lowered as it leads to slower operation of the circuit. Hence, multiple PEs can be used to
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lower the clock rate, so that the longer clock period can accommodate the slower operation

of the circuit at lower supply voltages. Lowering the clock rate with a linear array of PEs

allows power P (Eq. (5.17)) to be reduced by reducing the supply voltage while maintaining

the required performance. The linear array organization, in addition, does not increase the

loading capacitance, thereby allowing P (Eq. (5.17)) to be reduced from both a lower clock

frequency and a lower supply voltage for �xed performance.

5.6 Summary

This chapter describes an approach to designing a coprocessor for executing loop com-

putations described by uniform dependence algorithms. Our results show that a modularly

expandable linear array of PEs with constant main-memory bandwidth achieves high per-

formance and is a good choice for the processor array. We achieve this good performance

because our General Parameter Method can map the high-dimensional loops on the processor

array e�ciently.

An important result we have obtained is the square-root relationship between clock-rate

reduction and area of the coprocessor under �xed main-memory bandwidth. Two applica-

tions of matrix product and transitive closure have been used to evaluate the coprocessor and

to study the e�ect of the di�erent parameters on the square-root relationship. Section 5.5

presented the impact of the square-root relationship on system yield, speedup, and power

dissipation. We have found that the system yield improves with the area of the coprocessor

when chip yield decreases at least as the inverse square of clock frequency.
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6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

This thesis has addressed a number of issues in the design of �ne-grained processor arrays

for regular, recursive, uniform dependence algorithms. Such algorithms are commonly found

in a number of applications in digital signal processing, image, speech, text processing,

matrix algorithms, scienti�c computing, digital communications, pattern matching, graph

theory and others. The contributions made in this thesis are as follows:

General Parameter Method (GPM). A major contribution of this thesis is a system-

atic parameter-based approach to design optimal, lower-dimensional processor arrays for

algorithms with uniform dependencies. Chapter 2 discusses the parameter de�nitions and

the constraints developed for valid space-time mapping of the algorithms to processor arrays.

An e�cient polynomial-time search procedure to �nd the optimal array parameters for any

user-speci�ed nonlinear and nonmonotonic objective expressed in terms of the parameters is

given. Existing synthesis techniques such as the dependency method (DM) have exponential

complexity, in the worst case, in �nding optimal designs.

Chapter 2 also presents a set of equivalencies by which a designer familiar with the

dependence-based methods can utilize the e�ciency of the GPM to obtain optimal array

designs. This establishes and extends the importance of the general parameter method

which can then be used in a \black-box" fashion in the dependence methods.

147



Chapter 3 presents detailed results of applying GPM to two important benchmark prob-

lems: �nding the transitive closure of a matrix (Algebraic Path Problems) and �nding the

product of two matrices (3-D cube graph algorithms). Optimal array designs for minimiz-

ing computation time, completion time (with load and drain times), and processor count

are given. The formulation of the design as a constrained optimization problem allows a

designer to incorporate additional real-life constraints into the design process. Continuous

processor-time trade-o�s which arise when there are bounds on either processors or time or

both are also presented. Using these trade-o�s, a designer can arrive at a design that best

meets his or her design objectives.

In Chapter 4, the extension of GPM to synthesize two-level pipelined processor arrays

with pipelines of processors, and pipelined functional units in each processor is described.

Compared to existing approaches that can retime only an existing design, the extended GPM

can explore the search space systematically for alternative designs and �nd the optimal one.

For algorithms whose data-dependence graphs are n-D meshes, a closed form solution for

obtaining a two-level pipelined design from a nonpipelined one is given. Also, results of

applying the extended GPM to matrix product and transitive closure are presented.

Coprocessor Design In the second part of the thesis (Chapter 5), the design of a scal-

able VLSI coprocessor for the class of regular, recursive, uniform dependence algorithms is

dicussed. This work complements the GPM by focusing on issues of algorithm partitioning

and block sequencing for �xed-size arrays and a �xed amount of bu�er memory, instead of

mapping to an algorithm-speci�c size-dependent processor array. An architecture with a lin-

ear array of processors and a linear array of access-unit chips connected to a standard, slow

memory is proposed. The access-unit chips in turn contain a set of queues or shift registers

to bu�er the data between the processors and main memory. Such an architecture is useful

from the view of wafer-scale integration (�xed number of I/O ports) and can be easily scaled

for higher performance by simply adding extra processors and memory chips. In addition, a

linear array architecture is suitable for low-power designs as described in Section 5.5.3.

We also present the main steps in the design of the compiler to map high-level language

descriptions to the coprocessor architecture. There are three steps in the compilation process:

148



block partitioning (as the number of PEs is �xed), block sequencing (as the size of access-

unit is �xed), and block scheduling using the General Parameter Method. The hyperplane

partitioning method proposed in Section 5.3.1 minimizes the amount of communication be-

tween adjacent parallelopiped blocks. The block sequencing method minimizes the number

of data accesses to main memory. The GPM is used in the block scheduling onto the linear

array to maximize the utilization.

Results on matrix-product and transitive-closure applications indicate that the copro-

cessor can achieve an order of magnitude improvement in clock-rate or throughput over a

reference 1-PE design. An important result obtained is the square-root relationship between

clock-rate reduction and area of the coprocessor under �xed main-memory bandwidth. From

the square-root relationship, it can found that the system yield improves with the area of

the coprocessor when chip yield decreases as the inverse square of the clock frequency. The

proposed coprocessor can be used as a back-end accelerator in desktop workstations or as a

VLSI pipeline in supercomputer architectures for loop algorithms.

6.2 Future Work

In this section, some possible avenues of future research are indicated for an aspiring

researcher.

This thesis has tried to promote application-speci�c computing as a promising approach

for high-performance designs. Such special-purpose systems can now be inexpensively built

using custom designs or commercially available �eld programmable gate arrays (FPGA).

Moreover, recent advances in design and simulation tools have decreased the cost and risk of

ASIC development. An important research area would be to extend the class of algorithms

that can be executed on the coprocessor to nonlinear recurrences. Currently, there exist

good techniques to transform a�ne recurrences into equivalent uniform ones. A number of

important problems in optimization and NP-hard problems can be formulated as nonlinear

recurrences or loops with nonuniform dependencies. Hence, a scheme to systematically

regularize nonlinear dependencies would allow a number of synthesis techniques to be applied

to them.
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It is well-known that processors are an order of magnitude faster than memories and will

probably continue to be that way in future. Hence, it is important to develop schemes to

amortize the cost of memory accesses over many operations. The idea of access-unit used in

this thesis, i.e., a set of FIFO queues organized as a stream bu�er as opposed to a cache, can

be exploited to improve the memory system performance for certain access patterns found

commonly in many applications.

Power e�ciency is going to be a critical issue for the success of future portable information

systems. Voltage scaling and clock rate reduction are two approaches to designing low-power

systems. Voltage scaling has to be dealt with at the circuit-design level, while clock rate

reduction without performance loss can be achieved by exploiting parallelism. A possible

research area could be to apply and combine such system-level and circuit-level techniques to

design low-power systems into a uni�ed framework, and develop a CAD tool that considers

power consumption as one of the metrics at the algorithmic, architectural, and logic levels.

This would allow the designer to trade-o� power in a systematic manner with other metrics

such as cost and performance.

There are a number of commercially available distributed memory machines with thou-

sands of processors such as Intel Paragon, CM-5, Ncube, and Cray MPP. However, pro-

gramming these machines for high-performance seems to be a challenging and arduous task.

There are a number of research e�orts aimed at developing compilers that can automatical-

ly extract the parallelism from sequential programs and map them on to these machines.

But the key is to improve the e�ciency of mapping these scienti�c programs onto such dis-

tributed memory machines. In this regard, the idea of linear transformations of dependence

graphs at the heart of many array synthesis techniques can be adapted to develop e�cient

data alignment, data partitioning, and computation partitioning techniques for a compiler

for distributed memory machines starting from a speci�cation written in a language such as

High Performance Fortran (HPF).

Microprocessors with superscalar or VLIW hardware have started appearing in commer-

cial workstations. The key to the performance of these machines would be compiler methods

to exploit the multiple functional units (by issuing multiple instructions in each cycle), and
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e�ective cache management to hide the long memory latencies. There exist compiler op-

timization techniques such as, software pipelining to utilize the multiple functional units,

and loop blocking (or tiling) to improve cache performance. However, methods for software

pipelining are mainly local techniques that exploit parallelism only across consecutive loop

iterations. For certain common classes of applications, more global iteration-level transfor-

mations can be developed to detect independent iterations in the dependence graph and

issue them to the multiple functional units. In this thesis, some of these techniques have

been developed in the context of VLSI array architectures, and extending these methods to

a compiler for the superscalar/VLIW architectures would be a promising research direction.
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