
SGPlan: Subgoal Partitioning and Resolution in Planning∗

Yixin Chen, Chih-Wei Hsu, and Benjamin W. Wah
Department of Electrical and Computer Engineering

and the Coordinated Science Laboratory
University of Illinois, Urbana-Champaign

Urbana, IL 61801, USA
{chen,chsu,wah}@manip.crhc.uiuc.edu

Abstract

We have developed SGPlan, a planner that com-
petes in the Fourth International Planning Com-
petition. SGPlan partitions a large planning prob-
lem into subproblems, each with its own subgoal,
and resolves inconsistent solutions of subgoals us-
ing our extended saddle-point condition. Subgoal
partitioning is effective because each partitioned
subproblem involves a substantially smaller search
space than that of the original problem. We have
developed methods for the detection of reason-
able orders among subgoals, an intermediate goal-
agenda analysis to hierarchically decompose each
subproblem, a search-space-reduction algorithm to
eliminate irrelevant actions in subproblems, and
a strategy to call the best planner to solve each
bottom-level subproblem. Currently, SGPlan sup-
ports PDDL2.1 and derived predicates, and algo-
rithms for supporting time initiated facts and ADL
are under development.

OVERALL ARCHITECTURE
By formulating a subproblem in such a way that each
has one goal state, SGPlan partitions a planning prob-
lem into subproblems, orders the subproblems accord-
ing to a sequential resolution of its subgoals, and finds
a feasible plan for each goal fact. Using the ex-
tended saddle-point condition and constrained search,
new constraints are enforced to ensure that facts and as-
signments in a later subgoal are consistent with those of
earlier subgoals.

Figure 1 shows the architecture of our planner. In
the global level, we select a suitable order for the plan-
ner to solve the partitioned subgoals, introduce artifi-
cial global constraints to enforce that the solution of one
subgoal solved later does not invalidate that of an earlier
subgoal, and resolve violated global constraints using
the theory of extended saddle points. In the local level,
we perform a hierarchical decomposition of first-level

∗Research supported by the National Aeronautics and
Space Administration Grant NCC 2-1230 the National Sci-
ence Foundation Grant ITR 03-12084.
Copyright c© 2004, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

Metric-FF

Techniques
Studied

G
lo

ba
l-L

ev
el

P
la

nn
in

g
S

ub
go

al
-L

ev
el

P
la

nn
in

g

Lagrange Multiplier
Evaluation

Plan

Global Constraints on Subgoals

Update Strategy

LPG

PN,1 PN,CN
P1,C1

P1,1

GNG2G1

Basic

Reduction
Space
Search

Decomposition
IGA

Subgoal
Ordering

Resolution
Constraint

Global

Planner
Selection

Figure 1:The architecture of SGPlan.

subgoals, prune irrelevant facts and actions before call-
ing a basic planner, and choose a suitable basic planner
for solving the second-level subproblem.

Figure 2 presents the pseudo code of our planner.
Based on the subgoals identified, we partition the prob-
lem into N subproblemsG1, · · · , GN , one for each
subgoal, and order the subproblems appropriately. For
Gi, we perform an intermediate-goal-agenda (IGA)
analysis to decompose it intoCi smaller subproblems
Pi,1, · · · , Pi,Ci

. For each second-level subproblem,
we perform subspace-reduction analysis to reduce its
search space and choose a suitable planner (calledbasic
planner) to solve it. Finally, we evaluate the composed
plan and update the Lagrange multipliers.

Our approach is different from incremental plan-
ning (Koehler & Hoffmann 2000) that uses a goal
agenda. In incremental planning, a planner maintains a
set of target facts, adds goal states incrementally into the
target set, and extends the solution by using the new tar-
get set. This means that a goal state will always be sat-
isfied once it is satisfied. However, it may be more ex-
pensive to solve subsequent problems, since the search
space increases as more goal states are added. More-
over, it is difficult to tell which goals should be satisfied
before others. In contrast, SGPlan always involves only



1. procedure SGPlan
2. compute the partial orders among subgoals;
3. generate an initial ordered list of subgoals;
4. setiter ←− 0;
5. repeat
6. for each goal fact in the subgoal list
7. find the intermediate goal facts;
8. generate an IGA agenda;
9. for each entry in the IGA agenda
10. call search space reduction procedure and

eliminate irrelevant actions;
11. call basic planner to solve the subproblem;
12. end for
13. end for
14. if (planz found is feasible)
15. evaluate the solution plan;
16. decrease some Lagrange multipliers;
17. else increase Lagrange multipliersγ on unsatisfied

global constraints;
18. iter ← iter + 1;
19. if (iter % τ == 0) dynamically re-order the subgoals;
20. until no change onz andγ in an iteration;
21.end procedure

Figure 2:The pseudo code of SGPlan.

one goal fact in a subproblem. Therefore, the search
space of the subproblems is not increasing, and irrele-
vant actions in each subproblem can be pruned.

GLOBAL-LEVEL PLANNING
Subgoal Ordering and Global Constraints
When dependent subgoals are evaluated sequentially, it
is possible that a subgoal evaluated later may invalidate
the results of a subgoal evaluated earlier, and the ear-
lier subgoal has to be re-evaluated. Although such con-
flicts may be unavoidable, appropriately ordered sub-
goals can significantly reduce the occurrences of such
conflicts. Intuitively, difficult subgoals should be re-
solved before easier ones.

It is non-trivial to find an optimal order that mini-
mizes the conflicts among subgoals. In fact, it may be
more computationally expensive to find the best order
than solving the problem itself. In SGPlan, we have de-
veloped three heuristics for partial ordering of subgoals
that can be computed efficiently (Step 2 of SGPlan).

The first level is calledreasonable orderingproposed
in (Koehler & Hoffmann 2000). Suppose goal factA is
ordered beforeB in the subgoal list, but after we get a
plan that achievesA, we cannot achieveB without in-
validatingA first. Then the search for achievingA first
is wasted, and it is more efficient to achieveB before
A. We use an algorithm in FF2.2 (Koehler & Hoffmann
2000) to find such reasonable orders.

For goal pairs not ordered by reasonable ordering,
we apply a second level of ordering calledirrelevance
ordering. Based on backward relevance analysis (dis-
cussed in the next section), we compute the number of
irrelevant actions of each goal fact, and orderA before
B if A has less irrelevant actions. The idea is to resolve

more difficult subgoals, with less irrelevant actions.
For goal pairs not ordered by the first two levels, we

apply the third level of ordering calledprecondition or-
dering. Specifically, forA andB with the same number
of irrelevant actions that cannot be ordered by reason-
able ordering, we orderA beforeB if np(A) > np(B).
Here,np(A) is the minimum number of preconditions
of those supporting actions:

np(A) = min
a∈S(A)

npre(a), (1)

whereS(A) is the set of all actions that support goal fact
A, andnpre is the number of preconditions of actiona.
Again, the idea is that more difficult goals, with larger
np, should be resolved first.

For pairs of subgoals that are not involved in any of
the three levels or ordering, we randomly order them.
At the beginning of a search, we randomly generate a
total ordering of the goal facts that satisfy the three lev-
els of partial orders (Step 3) and periodically generate
new total orders during the search (Step 19).

To identify conflicts among solutions of subgoals, we
define a global constraint so that the solution plan of
a subgoal will not invalidate the goal fact of another
subgoal. Each global constraint in SGPlan is a binary
constraint that indicates whether conflicts exist or not.

Resolution of Global Constraints
The planning problems studied in SGPlan are defined
in mixed space with nonlinear objective and constraints
that may be procedural and not in closed form. SGPlan
implements a search to find extended saddle points in
the Lagrangian space of a problem (Chen & Wah 2003;
Wah & Chen 2003). The extended saddle-point condi-
tion (ESPC) states that solution points in mixed space
that are local optima of the objective and that satisfy
all the constraints must satisfy ESPC. The condition is
defined on a Lagrangian function that consists of the
sum of the objective and the constraints weighted by
Lagrange multipliers, where an extended saddle point is
a point that is a local minimum of Lagrangian function
with respect to the original variable space and a local
maximum of the function with respect to the Lagrange-
multiplier space.

An important property of ESPC is that the condition
is true for all Lagrange multipliers larger than a mini-
mum threshold. Hence, finding points that satisfy ESPC
can be implemented iteratively, with an inner loop that
looks for local minimum of the Lagrangian function,
and an outer loop that looks for any Lagrange multipli-
ers larger than the critical threshold. The property also
allows a search looking for extended saddle points to
be partitioned into multiple searches, each looking for
a local extended saddle point for a partitioned problem
(Steps 6-12 of Figure 2), and an outer loop that resolves
the global constraints across the subproblems (Step 17).

A direct implementation of ESPC in a search algo-
rithm may get stuck in an infeasible region when the
objective is too small or when the Lagrange multipliers



and/or constraint violations are too large. To address
this issue, SGPlan performs periodic decreases of La-
grange multipliers in the Lagrangian space in the outer
loop, in addition to ascents (Step 16).

SUBGOAL-LEVEL PLANNING

Subgoal-Level Decomposition

Sometimes the subproblems after first-level partitioning
by subgoals are still too large to be solved quickly. An
obvious approach to reduce this complexity is to further
partition the subproblem into smaller ones.

Given subgoalG after first-level partitioning, we pro-
pose to identify some “hidden” intermediate second-
level subgoals (or facts) that must be true in any plan
that achievesG from a given initial state (Steps 7 and
8). These facts allow us to construct an intermediate
goal agenda (IGA), which is an ordered list of agenda
entries, each containing a set of intermediate facts.

From a fixed initial stateS, we define the following
relationship between two factsA andB. A is an in-
termediate goal beforeB, denoted asA �IGA B, if
the planning graph starting fromS cannot achieveB
without achievingA first. We construct the planning
graph similar to that in Graphplan, with the following
two changes: a) we do not compute any mutual exclu-
sion relations; b) we forbid the insertion ofA into the
planning graph at any level (thereby also forbidding the
insertion of any actions havingA as a precondition). If
B is not in the planning graph after the construction of
the graph, then we haveA �IGA B.

Based on the intermediate facts, we detect the�IGA

orders among them and construct a directed graph
showing their partial orders. We then identify an agenda
of sets of facts that must be true in any plan ofG.

SGPlan determines dynamically whether partitioning
should be further carried out, depending on whether a
subgoalG is easy enough to be resolved quickly us-
ing the IGA agenda. If subgoalG is to be partitioned,
SGPlan further uses symmetry-group detection to see if
a path can be constructed from the current facts to the
subgoal:f0 → f1 → · · · → G, wheref0, f1, · · · are
all in the same symmetry group as that ofG. It then
partitions the problem of achievingG from f0 into N
subproblems:f0 → f1, f1 → f2, . . . , fN−1 → G.

Our approach is different from existing approaches
for finding intermediate facts (Koehler & Hoffmann
2000) that expand a search space from the goal state and
find some indispensable pre-conditioning facts. Since
the initial state is not specified, there is no way to tell
to what depth the backward expansion should stop. In
contrast, our method considers both the initial and the
goal states in determining whether an intermediate fact
is critical and always stops in finite levels of expansions.
In addition, we detect the partial orders among these
facts and form an agenda to avoid unachievable inter-
mediate states, which could occur in previous methods.

Search-Space Reduction
After partitioning a subproblem into easier second-level
subproblems, we can often eliminate many irrelevant
actions in their search space before solving them. Such
a reduction is generally not applicable to planning prob-
lems that are not partitioned because in most cases all
actions in their search space are relevant.

We have designed a polynomial-timebackward rel-
evance analysisto exclude some irrelevant actions be-
fore applying any planner to solve a subproblem (Step
10). Given a subproblem to be solved, we maintain an
open listof unsupported facts, aclose listof relevant
facts, and arelevance listof relevant actions. In the be-
ginning, the open list contains only the subgoal facts of
the subproblem, and the relevance list is empty. In each
iteration, for each fact in the open list, we find all the
actions supporting that fact and not already in the rele-
vance list. We then add these actions to the relevance
list, and add the action preconditions that are not in the
close list to the open list. We move a fact from the open
list to the close list when it is processed. The analy-
sis ends when the open list is empty. At that point, the
relevance list will contain all possible relevant actions,
while excluding those irrelevant actions.

Since partitioned subproblems usually have similar
structures, we learn suitable rules for subproblem solv-
ing during a search. After a number of trial-and-error,
SGPlan records some suitable heuristics and parameters
that lead to the successful resolution of subgoals and use
them in solving other subproblems.

Basic-Planner Selection
Our current implementation of SGPlan uses a modi-
fied Metric-FF planner for basic planning and only in-
vokes LPG when the modified planner fails. We have
developed new algorithms and modified heuristic func-
tions in the enhanced Metric-FF to fully support derived
predicates, temporal planning, and time initiated facts
(still under development).

References
Chen, Y. X., and Wah, B. W. 2003. Automated planning and
scheduling using calculus of variations in discrete space.In
Proc. Int’l Conf. on Automated Planning and Scheduling, 2–
11.

Koehler, J., and Hoffmann, J. 2000. On reasonable and
forced goal ordering and their use in an agenda-driven plan-
ning algorithm.J. of AI Research12:339–386.

Wah, B. W., and Chen, Y. X. 2003. Partitioning of tem-
poral planning problems in mixed space using the theory of
extended saddle points. InProc. IEEE Int’l Conf. on Tools
with Artificial Intelligence, 266–273.


